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Abstract

In this paper, we propose to extend the Barendregt Cube by generalising g-reduction
and by adding definition mechanisms. Generalised reduction allows contracting more
visible redexes than usual, and definitions are an important tool to allow for a more flexible
typing system. We show that this extension satisfies most of the original properties of the
Cube including Church-Rosser, Subject Reduction and Strong Normalisation.

Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church-Rosser, Subject
Reduction, Strong Normalisation.
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1 Introduction

1.1 Why generalised reduction

The usual notion of reduction in the A-calculus might not be as general as one desires as the
following example shows (we ignore types for the sake of clarity):

Example 1.1 In A = ((Af.(Az.Ay.foy)m)+)n, we have the redexes: (A;.\y.fay)m and
(Af-(Ag-Ay.fry)m)+. There is however a virtual redex which is not immediately visible in the
classical term; namely, (Ay.+my)n. Such a redex will only be visible after we have contracted
the above two redexes and can be said to arise in the computation. Furthermore, one may
want to contract the redex based on (A,.—)n (resulting in the term (As.(A;.fzn)m)+) before
one has contracted any of the redexes (Ay.—)+ and (Az.—)m.

All the above three redexes are meeded to reach the normal form of A. The virtual redex
however, could only be seen once we had contracted the first two redexes. There is moreover
a wish to make as many needed redexes as possible visible and even though the notion of a
needed redex is undecidable, much work has been carried out in order to study some classes
of needed redexes (as in [BKKS 87], [Gardner 94] and [BKN 9-]). Our proposal is not only to
make as many redexes as possible visible, but also to give newly visible redexes the possibility
to be contracted before other ones.

Firstly, this view on reduction gives an appropriate tool for the study of some programming
languages. For example, in lazy evaluation ([Launchbury 93]), some redexes get frozen while
other ones are being contracted. Now, if we had the ability of choosing which redex to
contract out of all visible redexes, rather than waiting for some redex to be evaluated first,
then we can say that we have achieved a flexible system where we have control over what to
contract rather than letting reductions force themselves in some order. Secondly, we think
that an investigation concerning the complete class of visible redexes in a term gives a better
understanding of reduction strategies, e.g. the optimal reductions as in [Lévy 80].

1.2 Why definition mechanisms

Practical experiences with type systems show that definitions are indispensable for any real-
istic application. Without definitions, terms soon become forbiddingly complicated. By using
definitions one can avoid such an explosion in complexity. This is, by the way, a very natural
thing to do: the apparatus of mathematics, for instance, is unimaginable without definitions.

In many type theories and lambda calculi, there is no possibility to introduce defini-
tions. This possibility is essential for practical use, and indeed implementations of Pure Type
Systems such as Nuprl ([CON 86]), Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do
provide this possibility. Moreover, experience with Automath ([NGV 94]) has shown the need
for definitions. But what are definitions and why are they attractive? Definitions are name
abbreviating expressions and occur in contexts where we reason about terms.

Example 1.2 Let id = (Apa.2) : A = Ain (A\pa-a.id)id defines id to be (Az:4.2) in a
more complex expression in which id occurs two times.

The intended meaning of a definition = «a is that the definiendum = can be substituted by
the definiens a in the expression b. In a sense, an expression let = : A be ¢ in b is similar to
(Az:4.b)a. It is not intended however to substitute all the occurrences of  in b by a. Nor is



it intended that such a definition is a part of our term. Rather, the definition will live in the
environment (or context) in which we evaluate or reason about the expression.

One of the advantages of the definition let = : A be a in b over (A;.4.b)a is that it is
convenient to have the freedom of substituting only some of the occurrences of an expression
in a given formula. Another advantage is efficiency; one evaluates a in let z: Abe ¢ in b
only once, even in lazy languages. A further advantage is that defining x to be a in b can be
used to type b efficiently, since the type A of a has to be calculated only once. Moreover, a
definition may be necessary to type a term as is shown in the following example.

Example 1.3 Without definitions, it is not possible to type Ay.;.Af.q—q.fy even when we
somehow know that x is an abbreviation for a¢. This is because f expects an argument of type
a, and y is of type x. Once we make use of the fact that x is defined to be a in our context,
then y will have type a and the term will be typable as we see in Example 1.6.

Introducing definitions in Pure Type Systems is an interesting subject of research at the
moment. For example, [SP 93] extended PTSs with definitions. Our approach enables such
an extension in an elegant way. In fact, the generated type derivations for terms in the
Cube with definitions become much shorter than those in the absence of definitions (see
Section 7.2). Moreover, we do not have to use complex relations to introduce definitions as
in [SP 93]. Rather, the extension will be a natural way to how our terms are written. Basic
for our proposed extensions is a new notation: the item notation.

1.3 The item notation for definitions and generalised reduction

The item notation is a simple variant of the usual notation where the argument is given before
the function, the type is given before the abstraction operator, and where the parentheses
are grouped differently than those of the classical notation. So that, if Z translates classical
terms into our notation, then Z(AB) is written as (Z(B)d)Z(A) (here is d a special symbol
used for application) and Z(Oy.4.B) is written as (Z(A)Oy)Z(B) where O = X or II. Both
(t0) and (tO,), t being a term in item notation, are called items. For reasons explaining the
usefulness of such a notation, the reader is referred to [KN 93] and [KN 96a]. For this paper
however, the reader is to notice that redexes and definitions can be easily generalised and
introduced with item notation. A traditional redex is a term that starts with a J-item next
to a A-item. A definition is itself a certain form of a d-item next to a A-item.

Example 1.4 Z((Ap.ao(B0)-Ay:a-wy)t) = (10)(A — (B — C)Ag)(ANy)(yd)z. The items
are (t9), (A = (B — C)Ay), (A)\y) and (yd). The definition is (t6)(A — (B — C)A;) and
the redex is the whole term.

Definition 1.5 (Classical redexes and [(3-reduction in item notation)

In the item notation of the A-calculus, a classical redex (Ay.5.A)C' is of the form (C§)(BAg)A.
We call the pair (C)(BA;), a d\-pair, or a dA-segment. The [-reduction aziom () is:
(CO)(BXAy)A —3 Alz := C]. One-step B-reduction —g is the compatible relation generated
out of (8). Many step B-reduction —»g, is the reflexive transitive closure of — 3.

In item notation, the term A of Example 1.1 becomes (nd)(4+9)(Ar)(md)(Az)(Ay)(yd)(xd) f
(recall that we ignore types). The two classical redexes correspond to d\-pairs as follows:



L. (Az-Ay.fry)m corresponds to (md)(A;). The remainder of the redex, (Ay)(yd)(zd)f,
corresponds to the maximal subterm of A to the right of (A\;).

2. (Af.(Ag-Ay.fry)m)+ corresponds to (+0)(Af), the rest being (md)(A;)(Ay)(yd)(zd)f.

Looking closely at A written in item notation, one sees that the third redex described in
Example 1.1 is obtained by just matching § and A-items. (\,.fzy)n is visible as it corresponds
to the matching (nd)()\,) where (nd) and (),) are separated by (409)(As)(md)(Az). Hence,
by extending the notion of a redex from being a d-item adjacent to a A-item, to being a
matching pair of §- and A-items, we can make more redexes visible. Such an extension is
simple, as in (C6)s(BA;), we say that (Cd) and (BA;) match if 5 has the same structure as a
matching composite of opening and closing brackets, each §-item corresponding to an opening
bracket and each A-item corresponding to a closing bracket. For example, in A above, (nd)
and (A\y) match as (+6)(Ar)(md)(A;) has the bracketing structure [][] (see Figure 1). We

(nd) (+0) (A) (md) (M) (Ay) (yd)(xd)f

Figure 1: Extended redexes in item notation

refine B-reduction by changing (3) to
(C6)5(BAs)A =5 5(Alx := C)) if (C6) and (BX;) match

Now, what about definitions? The first step is to define definitions as matching dA-couples
and to include them in contexts with the condition that if a definition occurs in a context
then it can be used anywhere in the term we are reasoning about in that context. Hence, if
we look at Example 1.3, then we can type the term now that we allow definitions to occur in
contexts and we extend I slightly so that it can see what is in its context.

Example 1.6 We use as context the segment (ad)(AN;)(xAy)(a — a Af), establishing that
x of type A is defined as a, that y has type x and that f has type a — a. Then, making use
of this definition, we have

ad)(AXz) F (zAy)(a = aXf)(yd)f :x = (a = a) 2 a = a— (a—a) = a
Based on the above discussion, we divide the paper into the following sections:
e In Section 2, we introduce the item notation.

e In Section 3, we recall the Cube as in [Bar 92], and all its properties.
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Figure 2: Properties of the Cube with various extensions

e In Section 4, we add to the Cube generalised reduction <3 and show that <3 (the
reflexive transitive closure of —g) generalises =3 (Lemma 4.3) such that =3 and ~3
are the same (Lemma 4.5). This means that almost all the original properties still hold
for <. However, Church-Rosser (CR) , Subject Reduction (SR), Subtyping (ST) and
Strong Normalisation (SN) deserve special attention. CR, ST and SN are shown to hold
(without the need for SR in the case of SN). SR holds in Aw and A_,, but fails in the
remaining systems. This problem is solved in Section 6 by adding definitions.

e In Section 5 we add definitions to the Cube and show that all the properties of [Bar 92]
(including SR) hold with definitions, except ST. We show however that a restricted form
of ST, RST, still holds. CR is not touched with the addition of definitions, contrary to
the account of [SP 93], where a reduction relation was introduced to capture definitions
and hence CR had to be shown.

e In Section 6, we extend the Cube with both generalised reduction and definitions. We
show that the Cube extended with definitions and generalised reduction, preserves all
its important properties, again except ST but we have RST. We present in particular,
the general proof of Strong Normalisation which applies to all the earlier systems.

e In Section 7, we discuss the conservativity of the Cube with definitions, with respect to
the Cube without definitions. We show that more terms are typable using definitions.
However, when a judgment is derivable in a system of the Cube with definitions, the
judgment itself where all the definitions are unfolded is derivable without definitions
(Theorem 7.3). We also compare our system of definitions with that of [SP 93] and
discuss type checking and the length of derivations using definitions. Finally, we mention
the relation of our work to that of Automath.

Figure 2 summarizes our results, showing that one can safely use the Cube with definitions
only, or with both definitions and generalised reduction. When using generalised reduction
without definitions, one must remain in the A, and Aw as the other systems lose their SR.

2 The item notation

For a detailed description of item notation, the reader is referred to [KN 93], [KN 94], [KN 95]
and [KN 96a]. We will introduce in this section the minimum machinery needed to represent
the Cube in item notation and for introducing generalised reduction and definitions.



The systems of the Cube are based on a set of pseudo-expressions T defined by:
T=V|C|(TO)T |(TOV)T

where V' and C are infinite collections of variables and constants respectively. We assume
that x,y, z,... range over V and we take two special constants * and O. These constants
are called sorts and the meta-variables S,S51,.59,... are used to range over the set of sorts
S = {*,0}. We take A, B,C,a,b... to range over pseudo-expressions. Parentheses will be
omitted when no confusion occurs. For convenience sake, we divide V' in two disjoint sets V*
and V", the sets of object respectively constructor variables. We take o*,y*, 2*, ... to range
over V* and x”,y", 27, ... to range over V". Throughout, we let O range over {\,II}.

Bound and free variables and substitution are defined as usual. We write BV (A) and
FV(A) to represent the bound and free variables of A respectively. We write A[z := B] to
denote the term where all the free occurrences of x in A have been replaced by B. Furthermore,
we take terms to be equivalent up to variable renaming and use = to denote syntactical
equality of terms. We assume moreover, the Barendregt variable convention, BC, which says
that names of bound variables differ from the free ones in a term and that different \’s have
different variables as subscript. Now, some machinery for item notation follows.

Definition 2.1 ((main) items, (main, §O-)segments, end variable, weight)

o If x is a variable, and A is a pseudo-expression then (AN;), (Ally) and (Ad) are items
(called \-item, TI-item and d-item respectively). We use s, s1, 8, ... to range over items.

e A concatenation of zero or more items is a segment. We use 5,51,35;,... to range over
segments and write () for the empty segment. A dO-segment is a d-item immediately
followed by an O-item. If s = s1s9- - sy, we call s1, So2, ...s,, the main items of 5.

e Each pseudo-expression A is the concatenation of zero or more items and a variable or
constant: A = s152---spx. These items s1,59,...,5y are colled the main items of A;
a concatenation of adjacent main items Sy, - -+ Smik, 45 called a main segment of A.

e The weight of a segment 5, weight(3), is the number of main items that compose the
segment. Moreover, we define weight(sx) = weight(3).

Definition 2.2 (well-balanced segments, definitions, definition unfolding)
e () is a well-balanced segment.
o [f 51,53 are well-balanced, then (Ad)s1(BQO;)s3 is well-balanced.

o [f 5 is well-balanced and does not contain main Il-items, then (Ad)S(BAg) occurring in
a context is called o definition.

o Let 5 be a well-balanced segment, occurring in a context, which consists of definitions
and let A € T. We define the unfolding of the definitions of 5 in A, written [Als,
inductively as follows: [Aly = A, [A]Bsysi(cr.) = [Alr = Bllsy and [Alst5 = [[Alszlsr
Note that substitution takes place from right to left and that when none of the binding
variables of S are free in A, then [Alz = A.



Remark 2.3 We maintain the same liberal attitude for definitions, as we did for generalised
redexes. That is, not only (Ad)(BA,) may act as a definition in a context, but also (Ad)s(BA,)
for any well-balanced segment § without main Il-items.

Note that we speak of definitions when such an (AJ)s(BA;) occurs in a context; otherwise,
when (Ad)S(BA;) occurs in a term, we speak of a (-redex.

Definition 2.4 (match, §O- (reducible) couple, partner, partnered item, bachelor item)
Let A€ T. Let 3= s1--- s, be a segment occurring in A.

o We say that s; and s; match, when 1 < i < j < n, s; is a 0-item, sj is a O-item
and the segment s;q1---s;—1 1s well-balanced. In this case, s;sj is a 0O-couple and if
O = X then s;s; is a reducible couple.

e When s; and s; match, we call both s; and s; the partners in the 0O-couple. We also
say that s; and s; are partnered items.

e All non-partnered O- (or d-)items sy in A, are called bachelor O- (resp. §-)items.

3 The ordinary typing relation and its properties

We now introduce some general notions concerning typing rules which are the same as the
usual ones when we do not allow definitions in the context (as is the case in the A-cube of
[Bar 92]). When definitions are present however, the notions are more general.

Definition 3.1 (declarations, pseudocontexts, C')

1. A declaration d is a A-item (AXz). We define subj(d) = x, pred(d) = A andd = 0. In
classical notation, d =z : A.

2. For a definition d = (B0)s(A\;) we define subj(d) = z, pred(d) = A, d =5 and
def(d) = B.

3. We use d,dy,da, ... to range over declarations and definitions.

4. A pseudocontext is a concatenation of declarations and definitions such that if (AX;)
and (BXy) are two different main items of the pseudocontext, then x # y. We use
[,A, I, T,Dg,... to range over pseudocontexts.

5. For I' a pseudocontext we define
s €' T to mean s is a main item occurring in T,
dom(T) ={z € V | (A\;) € T for some A}, (classically, {x €V |z: A€T})

[-decl = {s | s is a bachelor main A-item of I'}, (classically, any declaration is bachelor)
[-def = {5|5 = (AJ)351(BX\;) is a main segment of I' where 51 is well-balanced },
Note that dom(I") = {subj(d) | d € I'-dec1 UI'-def}.

6. Define C' between pseudocontexts as the least reflexive transitive relation satisfying:

e A C'T(CA)A if no A-item in A matches a d-item in T
o I'dA C'T'dA if d is a definition
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o I'S(AN)A C'T(DO)S(AN)A if (ANy) is bachelor in TS(AN,)A, 5 is well-balanced

Example 3.2 A definition d = (BJ)(A\;) can be written in classical notation (Ag.4.—)B and
defines z of type A to be B in —. If d = (B0)(C0)(DAy)(AN) then this is ((Ay:p-Ag:a.—)C)B.
It is hard to describe in words what this definition means since it is more or less parallel; it
has the same overall effect as (C9)(DA,)(BJ)(AA;) or classically (Ay:p.(Az:a.—)B)C.

T = (aXs)(bAy)(co)(dA,)(eAu)(f0)(90)(iMy)(jAw) then I-decl = {(a)y), (bAy), (eXu)}

and I'-def = {(cd)(dA.), (f0)(90)(iAv)(jAw), (96)(iAy)}-
Furthermore I' C" (xA,)(aA;)(bAy)(h0) () (dX, ) (kX )(10)(eAy)(f0)(90)(iAy) (jAw). Note
that I' C' IV % I'-decl C I'"-decl, but I' C' IV = I'-def C I"'-def.

Definition 3.3 (statements, judgements, <)

1. A statement is of the form A : B, A and B are called the subject and the predicate of
the statement respectively.

2. When U is a pseudocontext and A : B is a statement, we call ' - A : B o judgement,
and write ' A:B:C to meanI’'FA: BAT'FB:C.

3. For T be a pseudocontext and d € I'-def U '-decl, I invites d, notation I' < d, iff

e I'd is a pseudocontext

e I'd - pred(d) : S for some sort S and subj(d) € V.

e if d is a definition then I'd - def(d) : pred(d) and FV(def(d)) C dom(I').
' < d holds if d is a “good” declaration or a “good” definition with respect to I'. (Note
that d is empty if d is a declaration.) Moreover, usually, one requires that I'(A)\;) be a
pseudo-context and that I' - A : S before one can use I'(A)\;) in the start and weakening

rules (below). With definitions however, one also has to check that I'd - def(d) : pred(d)
and that F'V (def(d)) C dom(I") for obvious reasons, before I'd can be used.

Definition 3.4 (Definitional 3-equality) For all legal contexts T we define the binary relation
' - =q4ez - to be the equivalence relation generated by

® zfA:gBthenFI—A:defB

o ifd € I'-def and A,B € T such that B arises from A by substituting one particular
occurrence of subj(d) in A by def(d), then I' - A =4 B.

Remark 3.5 If no definitions are present in I' then I' - A =4.¢ B is the same as A =3 B.

Definition 3.6 Let I' be a pseudocontext and A be a pseudo-expression.

1. Let d,dy,...,d, be declarations and definitions. We define ' F d and T' + dy---d,
simultaneously as follows:
e Ifd is a declaration: Tk d iff T - subj(d) : pred(d).

o Ifd is a definition: T' - d iff I' - subj(d) : pred(d) AT+ def(d) : pred(d)A
I'FdAT F subj(d) =qer def(d).
e 'dy---dyiff T Hd; for all1 <i<n.

11



S}

. I is called legal if AP, Q) € T such that ' P : Q.

3. A€ T iscalled a U-term if 3B TI' - A: B or '+ B : A].
We take I'-terms ={A €T |ABeTI'FA: BVI F B: A]}.

4. We take I'-kinds = {A|T'F A: O} and U-types ={A €T |'F A: x}.

5. AT is called a I'-element if 3B € T3S € S’ A: B and I' - B : S]. We have two
categories of elements: constructors and objects. We take I'-constructors =
{AeT |3IBe Tl A:B:0)} and I'-objects={A €T |ABeT[I'H A: B:«|}.

6. A €T is called legal if AU[A € D'-terms]. Moreover, A is an X, if AU'[A € ['-Xs| for
X € {type, term, kind, object, constructor}.

Note that in 1. we do not have I'd - def(d) : pred(d) (as is the case for I' < d) since I' - d
intuitively means all information in d is already present in I', so extension of I' with d is
unnecessary.

In the Cube of [Bar 92] and revisited below, the only declarations allowed are of the form
(AXz). Hence there are no definitions. Therefore, I' < d is of the form I' < (4\;) and means
that T'F A : S for some S and that z is fresh in I'; A. Moreover, for any d = (A\;), remember
that d = (), subj(d) = x and pred(d) = A. Hence, in this section, d is a meta-variable
for declarations only and =4 is the same as =3 (which is independent of ).

3.1 The typing relation

Definition 3.7 (Azioms and rules of the Cube: d is a declaration, =qes is =3)

(aziom) <>Fx*:0

(start rule) TdT subI_]" (é)d pred(d) (usual notation —fl—fff,g:l_ Al—:f; x fresh)
(weakening rule) [<d TdF DF:C—ZE D:E (or LF AF:,i —F Drzl_ED By fresh)
(application rule) Ir FI‘ I(—A(Ic_llg))g Bl ::Fa'i a:4

(abstraction rule) L(42;) '}b'_: akm)b : (BEQ;()%HI)B )

(conversion rule) I'FA:B L ?EIA ?B’ [ B =ger B'

(ormation rate)  HEASL - TEAIEL 52 ip (51 5,) iy 0 rute

Note that we prefer I' < d over I' - d. The reason is that we like to have only one start and
weakening rule for both declarations and definitions. The notion < as defined in Definition 3.3
takes care of both cases. (cf. Section 5.1.)

Each of the systems of the Cube is obtained by taking the (S7,S2) rules allowed from a
subset of {(x,*), (x,0),(0,%),(d,0)}. The basic system is the one where (x,*) is the only

12



possible choice. All other systems have (x,x) plus some combination of (x,0), (O, %) and
(O, D) for (S1,S2). Here is the table which presents the eight systems of the Cube:

System Set of specific rules

A (%, %)

A2 (*,%) | (O,x%)

AP (*,*) (*7 D)

AP2 (,%) | (d,%) | (%,0)

Aw (+, %) (0,0)
Aw (%, %) | (O,x%) (O,0)
APw (%, %) (x,0) | (O,0)
APw = XC | (x,%) | (O,%) | (x,0) | (3O,0)

Example 3.8

1. Fxo (+II,)(ally)a : * as we have the rule (O, %), but t/z (xIly)(ally)a : 7 for any 7 where
L e {5, \w, \P,A\Pw}. (In classical notation, Fxa Iy..Ily.q.cx ¢ *.)

2. We discuss the following example as a preparation for Example 4.11.

(xAg) (0 Ae) ((0T1y) % AQ) ((t6)QAN) Fap (N6)(t0)(0As)((20)QAy) (y6)((26)QAz)Z : (t0)Q but
this derivation can not be obtained in A_,, Aw, Aw or A2 as we need the (*,0) rule in order
to derive that (oll;) : O and hence that ((oll;) * Ag) is allowed in the context. (In classical
notation, o : ,t:0,Q : Hg.o.x, N : Qt Fap ((Apio-Ay:Qa-(Az:0e-Z)y)t)N = Q1)

3.If L € {A5, Aw}, then (xAg)(BAy) Ve (4'6)(80)(%Aa)(ady) (yd)(aAg )z = B because the term
of part 1 of this example is not typable in £ (note that with definitions, the last 9 steps below
are replaced by a single one in Example 5.2). Here is how this judgement is derivable in A2.

(In classical notation, 5 : %,y : 8 Fx2 ((Aas-Ayia-(Agia-2)y) )Y : B.)

Fx:0 (axiom)

($Ag) Faz B:%: O (start resp. weakening rule)
($Ag)(BAy) Fr2y' : B %: 0 (start resp. weakening rule)
(xAg) (BAy ) (¥Aa) Faz a : % (start)

(A8) (BAy) ($Aa) (@Xy) Faz gt s % (start resp. weakening rule)
(xA3) (BAy ) (#Aa) (A ) (@Ae) Faz s x (start resp. weakening rule)
($A8) (BAy) (xAa) (@Ay) Faz (allg)or - (formation rule (*, %) )
(xA5) (BAy ) ($Aa) (@y) Faz (aAg)z @ (ally)or : * (abstraction rule)

(:A3) (BAy) ($Aa) (ady) Faz (y0) (adg)z : (application rule)

($Ag) (BAy) (xAa) Faz (ally)a = * (formation rule (x,*) )
(:A3) (BAy) ($Aa) Faz (aAy) (o) (ahg)w : (ally)or - * (abstraction rule)

(xAg) (BAy) Faz (+lla) (odly)a @ (formation rule (O, x) )
(:A3) (BAy) Faz (xAa) (a)y) (y0)(adg )z = (#I1y) (oIl ) (abstraction rule)

(xAg) (BAy) Faz (80)(¥Aa) (a)y) (yd) (adg)z : (BIL,)B  (application rule)

(:X38) (BAy) Faz (¥'0)(B6) (¥Aa) (ady) (y0) (adg)z : B (application rule)

3.2 Properties of the ordinary typing relation

Here we list the most important properties of the Cube (see [Bar 92]). In the subsequent
sections, these properties will be established for the Cube extended with generalised reduction
and definition mechanisms.
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Theorem 3.9 (The Church-Rosser Theorem for —3)
If A= B and A =3 C (orif B =3 C), then for some D, B =g D and C =5 D

Lemma 3.10 (Substitution Lemma for )
Assume I'(AXNG)AF B :C and I' = D : A then I'(Alx := D)) F Bz := D] : C[x := D].

Lemma 3.11 (Generation Lemma for +)
1.TFz:C=35,5%¢c€SIB=3CI'-B:S5 N(BX\;) € TATFC:S).

2. 0F(Al)B :C = 35,5, € SI'FA: Sy AT(AN;) F B : So A (S1,52) is a rule A

3. TF (AN)b: C = 38, B[+ (AIl,)B: S AT(A)N,) F b: BAC =4 (All,) BA
C # (All,)B = 3S € ST + C : S]]

J. Tk (a0)F:C = 3A,B,2[0 - F: (AIl)BAT Fa: ANC =5 Blz := a]A
(Blx :=a]ZC =35 S[['FC:9)).

Corollary 3.12 (Generation Corollary for I-)
I.TFA:B=3S[B=S orI'FB: 5]
2. T+ A:(BiIL)By = 3S[T - (B1L,)Bs : S]
3. If A is a U-term, then A is O, a I'-kind or a I'-element.
Corollary 3.13 (Subtyping for ) Any subterm of a legal term is a legal term.
Theorem 3.14 (Subject Reduction for - and —3) 'FA:BANA 3 A'=TFA:B
Lemma 3.15 (Unicity of Types for - and —3)
1.TFA:BiA\T'FA:By= By =g B>
2.TFA:BATHA:B'NA=3 A= B=3 DB
3. TFB:S,B=3 B . T+A:B =TFB":S§.

Theorem 3.16 (Strong Normalisation with respect to - and —3)
For all &=-legal terms M, M 1is strongly normalising with respect to —»g.

4 Generalising reduction in the Cube

In this section we extend the classical notions of redexes and (-reduction of the Cube and
show that all the properties of Section 3.2 except SR are preserved.

14



4.1 The generalised reduction

We allow dA-couples to have the same “reduction rights” as d\-segments as follows:

Definition 4.1 (General B-reduction —g for the Cube)
General one-step 3-reduction — g, is the least compatible relation generated out of:

(general (3) (BO)5(CAp)A — 5 5(Alx := B]) if 5 is well-balanced

General < is the reflexive and transitive closure of <3 and =g is the least equivalence
relation generated by — 3.

General (-reduction has firstly been introduced by Nederpelt in [Ned 73] in order to prove
strong normalisation for a typed lambda calculus inspired by de Bruijn’s Authomath.

Example 4.2 Cf. Example 1.1. As (¢d)(PAf)(md)(QA;) is a well-balanced segment, then:

A = (n0)(ed)(PAf)(md)(QAs) (BAy)(y0) (20) f = () (PAf)(md)(QAs)(nd)(x0) f

(nd)(RAy) corresponds to a “generalised” redex in classical notation, which appears after two
one-step [-reductions, leading to (Ay.r.cmy)n. —g reduces ((Af.p.(Az:@-Ay:r-fTy)m)c)n to
(Af:p-(Az:@-foxn)m)c. This is difficult in classical notation. We believe that item notation
enables one to extend reduction smoothly. Moreover, <4 extends —g.

Lemma 4.3 If A —3 B then A <3 B. Moreover, if A <3 B comes from contracting a
dA-segment then A —5 B
Proof: Obvious as a dA-segment is an ordinary redex. O

Lemma 4.4 If A —g B then A =3 B.

Proof: It suffices to consider the case A =37(C)S(DN;)E where the contracted redex is
based on (C)(DA;), B =515(E[x := C]), and 5 is well-balanced (hence weight(s) is even).
We prove the lemma by induction on weight(3). Case weight(5) = 0 then obvious as —p
coincides with — 3 in this case. Assume the property holds when weight(s) = 2n. Take s such
that weight(3) = 2n + 2. Now, 5 = (C'0)s'(D'\,)s" where s', s" are well-balanced. Assume
x £y (if necessary, use renaming).

o ;From 5(Elx = C]) —p §'(s"(E[z := ])[ := C']), IH and compatibility, B =g
518/ (s"(Elx = C))[y := C”]) =31 8'(s"[y := C"))(Elx := Clly := C"]) = B".

o Moreover, A = 57(C0)(C'8)s'(D'\)s" (DAy)E 5 51(C0)s'(s"(DA;)Ely = C']) =8¢
51(C0)s/ (s"[y == C"))(D[y = C"|A\)(Ely := C"]) = B'. So by IH A =3 B'.

o B' <5575 (s" [y :=C"))(Ely := C"[x :=C)), z, y & FV(C)UFV(C') (by BC). Hence,
by IH and substitution B' =5 515'(s"[y := C"))(E[z := C][y := C']) = B".

Therefore, A =3 B',B' =g B" and B =3 B", hence A =3 B. O
As a result we see that conversion does not change the typing relation of Section 3.1.

Corollary 4.5
If A —»g B then A =3 B. Moreover, A =g B iff A =3 B.
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4.2 Properties of ordinary typing with generalised reduction

Because =g and ~g are equivalent, the only lemmas/theorems of Section 3.2 affected by our
extension of reductions are those which have —#g in their heading. These are CR (Theo-
rem 3.9), SR (Theorem 3.14), Unicity of Types (Lemma 3.15) and SN (Theorem 3.16). In
this subsection, we show that CR and SN hold for the Cube with <4 and that SR holds for
Aw and A_, but fails for the other six systems. Unicity of typing depends on SR and on the
fact that =5 is the same as the symmetric transitive closure of <+5. Hence, we ignore it here
as once we prove SR, the proof of Unicity of Types will be exactly that of Lemma 3.15.

Theorem 4.6 (The Church-Rosser theorem for —»3)
If A —»g B and A =g C, then there exists D such that B —»g D and C —»g D.

Proof: As A <3 B and A <5 C then by Corollary 4.5, A =g B and A =g C. Hence,
B =5 C and by CR for —g, there exists D such that B —g D and C' —3 D. But, A —3 B
implies A <3 B. Hence CR holds for —g. O

Theorem 4.7 (Strong Normalisation with respect to - and —»g)
For all &-legal terms M, M is strongly normalising with respect to < g.
Proof: This is a special case of the proof of Theorem 6.19. O

In the rest of this section, £ ranges over \w and A_,. The crucial step in the proof of Subject
Reduction in Aw and A_, is proved in the following:

Lemma 4.8 (Shuffle Lemma for \w and \_,)
I ke 51(A0)59B @ C <= T b 5152(A0)B : C where 3y is well-balanced and the binding
variables in So are not free in A.

Proof: For a detailed proof, the reader is referred to [BKN 94y]. Informally, the reason
for this lemma to be true for \_, and A w is that in these systems, for any legal term of the
form (Pll;)Q, x ¢ FV(Q) (this is not true for the other systems of the cube because of the
mixing of levels that comes with the rules (x,0) and (O, %)). Therefore none of the variables
of dom(33) can occur free in the type of B which means that B must have a type of the form
(CTI,)D and hence B can be applied directly to A. O

Theorem 4.9 (Generalised Subject Reduction for A\w and A\, for - and < p)
F"ﬁA:B/\A‘—)/gA,iFl_gA’:B.
Proof: We prove by simultaneous induction on the generation of I't-y A : B that

Fl—gA:B/\A;)BA’ = Fl—gA’:B (’L)
b A:BAT T = I'bpA:B (i)

where I =g I" means T’ = T'1(AX)T2, I =T (A'A\)T2 and A =g A’ for some 'y, T'9, A, A, x.
The cases in which the last rule applied is axiom, start, weakening or conversion are easy (for
start: use conversion). We treat the three other cases.

Formation: Tz (A111;)By = S1 is a direct consequence of T'Fp Ay + S1 and T'(A1)g) b By :
S1, then (i) comes from IH(i) and IH(ii); (it) comes from IH(ii). Abstraction: similar to for-
mation. Application: T bz (ad)F : Bi|x := a] is a direct consequence of T'Fp F : (A1) By
and T'tFz a: Ay. Now (ii) comes from IH(ii). We consider various cases:

o Subcase 1: (ad)F —g (ad)F' because F —g F'. Then (i) follows from IH(7).
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o Subcase 2: (ad)F —g (a’'0)F because a —g a'. From IH(i) and application, T' - (a’0)F :
B[z := d']. Also, from Corollary 3.12, for some S1: T b (A1ll;)By : S1 and hence
by generation: T'(AX;) kg By : S1 and thus by substitution I' -z Bilz :=a] : S1. Now
conversion gives I' br (a'0)F : By[x := a] which proves (i).

o Subcase 3: F =5(A'\y)F', 5 well-balanced and (ad)F — 3 SF'[y := a]. Now, by Lemma
4.8, T Fr 5(ad)(A'\y)F' : Bi[z := a] and 5(ad)(A'\y)F’" —45 SF'[y := a] so by SR for
—»g, I'Fz 5F'[y := a] : Bi[z := a] which proves (i). 0

Generalised Subject Reduction however is not valid for the other systems as the following
examples show (note that failure of SR in A2 (resp. AP), means its failure in AP2, \w and AC'
(resp. AP2, A\Pw and A(C)):

Example 4.10 (SR does not hold in X2 using —3)
(:A3)(BAy) Fag (F for £ € {5, Aw}) (¥/0)(80)(xAa) (ady)(y0) (ady)z : B (see Example 3.8).
)

Yet, (+Ag)(BAy) x2 (86)(xAa)(y'0) (ade)z : 6.
Even, (+Ag)(BAy) a2 (86)(+Aa)(y'0)(@Az)z : 7 for any 7.
This is because (a\;)z : (all;)a and y' : 8 yet o and [ are unrelated and hence we fail in

firing the application rule to find the type of (y'0)(a);)z. Looking closer however, one finds
that (30)(x\,) is defining « to be 3, yet no such information can be used to combine (all; )«
with 5. We will redefine the rules of the Cube to take such information into account.

Example 4.11 (SR does not hold in AP using —3)

(¥A0) (0 A:) ((011g) ¥ AQ) (£0) QAN ) Fap (NO)(80)(0A) ((20)QAy) (y0) ((20)QAZ)Z : (16)Q. Note
here that this cannot be derived in A_,, Aw, A2 or \w (see Example 3.8).

And (N6)(t6)(0As) ((20)QAy) (y8) (#6)QAz)Z < (t6)(0A2) (N 6) ((#6)QAz) Z.

Now, N : (t0)Q,t : 0,y : (26)Q,x : 0, (t0)Q #p (x6)Q, hence:

(¥Ag) (0 ) ((o1ly) * AQ) ((t6)QAN) Vap (t0)(0As)(NO)((26)QAz)Z : T for any T.

Here again the reason of failure is similar to the above example. At one stage, we need
to match (z0)Q with (£6)Q but this is not possible even though we do have the definition
segment: (td)(o\;) which defines x to be t. All this calls for the need to use these definitions.

5 Extending the Cube with definition mechanisms

We extend the derivation rules so that we can use definitions in the context. The rules remain
unchanged except for the addition of one rule, the (def rule), and that the use of I' b B =40t B’
in the conversion rule really has an effect now, rather than simply postulating B =3 B'.
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5.1 The definition mechanisms and extended typing

Definition 5.1 (Azioms and rules of the Cube extended with definitions: d ranges over dec-
larations and definitions)

(aziom) <>Fx:0
r<d
(start rule) T'd ¢ subj(d) : pred(d)
(weakening rule) L=d Td e IF)Q“_E Db
I'¢F: (AIL,)B I'Fea: A

(application rule) TF° (a0)F : B[z = q

T'(A\,) Fb: B ' (ATl,)B: S

(abstraction rule) T F° (A\,)b: (All,)B

e . . . L.
(def rule) % if d is a definition
. I'F*A: B r-ep:s ¢ B =g B’
(conversion rule) e i
THeA:S D(A\,) F° B : S

(formation rule)

IFe (AHCI:)B : 82 Zf (51782) 18 a rule

In the above rules, start and weakening play a dual role (below, d = (BJ)s(A\;)):

rcA:S
(startl rule) Ty 2 A x fresh

I'skFeA: S I'st¢eB: A
[(Bo)s(AN,) Fex: A

(start2 rule) I'd pseudocontext, FV(B) C dom(T")

I'FcA:S ' D FE
A

TN D5 ©fresh

(w1 rule)

(w2 rule) [5 A ‘12(35;5?(;;5 I—éD , FEE FD:E pg pseudocontext, F'V(B) C dom(T")

Moreover, the (def rule) could also be split into two rules:

(defl rule) LA C 5 i¢ 445 a definition

T Fedc: S
(def2 rule)  LAEC: D LAEED:S if s a definition

We find it more elegant and compact to write one single rule to represent two different ones.
Some people might argue that in the case of the (def rule), we have to split it up in the above
rule. We do not agree with this. The (def rule) says that if C': D can be deduced from a
concatenation of definitions d, then dC will be of type D where all the sub-definitions in d
have been unfolded in D. We do not get type dD in order to avoid things like dO. It is worth
however pointing out that our (def rule) is equivalent to the above two by Corollary 5.6.
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Note that in the abstraction rule, it follows that (A\;) is bachelor in I'(A\;). The reason
is that we can show that if I' is legal then I' contains no bachelor main J-items. Hence as
'€ (AIl,)B : S, T has no bachelor é-items and so (A);) cannot be matched in T.

By I'd ¢ def(d) : pred(d) in the (start rule) and (weakening rule), abbreviating O (as
n (06)(AXz)) is not allowed. Also by I'd F¢ pred(d) : S, abbreviating kinds is not allowed.
We believe that this last condition can be omitted but it doesn’t seem urgent to do so. Note
that the (def rule) does global substitution in the predicate of all the occurrences of subjects
in d. The reason is that d no longer remains in the context. In the conversion rule however,
substitution is local as I" keeps all its information (see Definition 3.4).

Example 5.2 Here is how the term in Example 3.8 and its < g-contractum is typed in A2.
(Note how quicker we can type terms once we have definitions. Note also that the derivation
given in Example 3.8 is also valid here, yet it is more clear and efficient to use the definitional
segments (yd)(a\;) and (y'0)(30)(¥Aa)(c)y). The present derivation is even valid in A_,,
because we don’t need (¥An)(a)y)(yd)(aAz)x to have a type due to the (def rule).)

o *: (axiom)
(¥Ag) Fia B x: O (start resp. weakening)
(xAg)(BAy) FSo ¢/ : B %2 O (start resp. weakening)
(xAg) (BAy ) (B8) (xA )" Yy kO o x (start resp. weakening)
($A8) (BAy ) (B0) (%Aa) FSo @ =det B (definition of =ge¢)
(xAg) (BAy ) (86) (*Aa) " Sy otk (conversion)
($28) (BAy ) (y'6) (B9) (¥ Aa) (@Ay) FSo ¥ v % (start resp. weakening)
($28) (BAy ) (' 0) (89) (¥ Aa) (@Ay) (y0) (@Ag) FSo 2 - @ (start resp. weakening)
[ (4 8)(88) (+Aac )@y ) (w8) (ae) = 2 := ][y = ¢/ = B] =
(xAg) (BAy ) FSo (4/0)(86) (xAa) (ahy) (y6) (g )z : B (def rule)
Also (xAg)(BAy) F§o (B9)(¥Aa)(y'6)(ahg)x = B as follows (needed derivation steps, including
(*Ag) (BAy ) (B0) (*Aa) S y' : a by (conversion) , are left to the reader):

(#A8) (BAy) (86) (+Aa) (y'0) (@A) F5o @ : a so by (def rule):
(#A8) (BAy) F5a (B0)(#Aa) (y'0) (@da)z : afz := yf][ev = ] =

Example 5.3 Also the term of Example 4.11 can be easily and quickly typed in AP (note
that this term cannot be typed in A_, as the term @ can’t):

(¥Ag) (0 Ar) ((0T1g) * AQ) ((£0) QAN ) (NG)(20) (0 Ae) ((20)QAy ) (y0) (26)QAz) Fip Z = (26)Q
($A0) (0 Ae) ((01ly) ¥ AQ) (1) QAN) 5, (VO)(£0)(0Ax) ((£0)QAy) (59) ((20)QAz)Z : (20)Q

Its < g-contractum gets the same type in the same way:

(¥A0) (0 A) ((011y) * AQ) (1) QAN ) (10) (0 Aa) (NO) ((20)QAz) F5p Z = (20)Q
($A0) (0 Ae) ((o1lg) ¥ AQ)((#0)QAN) 5, (£9)(0Ae) (NO)((20)QAZ)Z = ()@

Remark 5.4 We need I' ¢ A =4.¢ B instead of A =g B in the conversion rule because we
want from (xAq)(A6)(xA;) F¢ A : * and y is fresh to derive not only (¥A4)(Ad)(xAz)(ANy) F©
y : A but also (xAa)(A0)(*Ay)(ANy) F¢ y - x. This is not possible if conversion is left with
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B =3 B': how can we ever derive (xA4)(A0)(xA\;)(ANy) F€ y: x as & #g A? If we change to
the conversion rule using =g4.¢, then we are fine:

ANy Fey: A
e x %

ANy)
A)Ny) F¢ 2 =g A and so with conversion,
ANy)

JFrom the point of view of efficiency, it may seem unsatisfactory that in the (def rule) defini-
tions are being unfolded in D, since this will usually mean a size explosion of the predicate.
The unfolding is not necessary for non-topsorts (i.e. for D # O) however:

Lemma 5.5 The following rule is a derived rule:

(derived def rule) Lld O :Fl?_e a0 ng FD:S if d is a definition
Proof: IfT'd ¢ C : D then by the (def rule), I' ¢ dC : [D]y; if Td F¢ D : S then by the (def
rule) I'+¢dD : S. Now by conversion I' F¢ dC' : dD since I' ¢ dD =ge¢ [D]g. O

Corollary 5.6 The def rule is equivalent to the defl and def2 rules together.

Proof: Only the direction from right to left is worth showing. This depends on:
1. correctness of types: if IF¢ A: B then B=0O or'F¢ B: S.
2.4fT+¢dD : S thenT ¢ [D]g: S.
Both 1 and 2 are easy to show. Now, if I'd -¢ C : D and D = O then use the def2 rule to
get ' F¢dC : [D]g. IfTdF¢C: D and I'd ¢ D : S then use the defl rule, conversion and 2
above to get I' H¢ dC' : [D]g. O

If D is a sort then of course unfolding d in D is not inefficient since d will disappear.

Due to the possibility of using the (def rule) to type a redex, by using the (derived def
rule), in some cases it is even possible to circumvent a normally inevitable size explosion:
suppose we want to derive in A\C' a type for the term (B6)(xAg)(8Az)((BIL,)BAf)(x0) f.

In AC without definions, we will have to derive first the type (*Ilg)(3IL;)((51l,)B11f)3 for
the subterm (xAg)(8Az)((BIl;)BAf)(20)f, and by the application rule we will finally derive
the type (BIl,)((BIL,)BIl;) B. Note that due to the last applied application rule the term B
has been copied four times, which could make the resulting type very large.

Using our type system extended with definitions however, we would first derive the type
(BLL) ((BIL,)BI1s) B for the term (BA;)((BIL,)BAf)(xd)f, and then by the derived definition
rule we would derive the type (Bd)(x\3)(81L;)((BIL,)5I17)3 and avoid the substitution of B
for 3. This is a further evidence for the advantage of using definitions.

5.2 Properties of the Cube with definitions

If we look at Section 3.2 and because we have changed - to ¢ but left —5 unchanged, we
see that all the lemmas and theorems which had F in their heading get affected. In this
subsection, we will list these lemmas and theorems for ¢ and give their proofs.

Lemma 5.7 (Free variable lemma for ) Let I" be a legal context such that ' ¢ B : C.

1. If d and d' are two different elements of I'-decl U'-def, then subj(d) # subj(d').
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2. FV(B),FV(C) C dom(T).
3. For s a main item of I', FV (s) C {subj(d) | d € I'-declUI'-def,d is to the left of s in I'}.

Proof: All by induction on the derivation of ' -¢ B : C. O

Lemma 5.8 (Start Lemma for +¢)
Let T be a legal context. Then I' ¢ x: O and Vd €' T'[I" ¢ d].
Proof: I' legal = 3B, C[I"' ¢ B : C]; now use induction on the derivation I' =¢ B : C. O

Lemma 5.9 (Transitivity Lemma for °)
Let T' and A be legal contexts. Then: ' FC ANAF*A:B]=TF A:B.
Proof: Induction on the derivation A+ A: B. O

Lemma 5.10 (Definition-shuffling for ¢) Let d be a definition.
1. If TdA F¢ C =gz D then I'd(def(d)d)(pred(d)Asupj(d)) A F¢ C =ges D.
2. If TdA ¢ C: D then I'd(def(d)d)(pred(d)Asuj(a))A F¢ C: D.

Proof: 1. is by induction on the generation of T(Ad)S(BAg)A ¢ C =qe¢ D. 2. is by induction
on the derivation of I'(A0)5(BAz)A F¢ C : D using 1. for conversion. 0

Lemma 5.11 (Thinning for ¢)
1. If Iy F° A =40t B, I'NAD'y is a legal context, then I'{/Al's F¢ A =4.¢ B.
2. If T and A are legal contexts such that T' C' A and if T'F¢ A: B, then A ¢ A : B.
Proof: 1. is by induction on the derivation I'1\['s F¢ A =4¢ B. 2. is as follows:

o [fTAF* A: B, I'F¢C: S, x is fresh, and no \-item in A is partnered in T', then
LD(CAz)A F¢ A: B. Use induction on the derivation TA ¢ A: B + 1. for conversion.

o I[fTSAF¢A:B, TsF¢C:D:S, FV(C) C dom(T"), = is fresh, 5 is well-balanced, then
L(CH)s(DA)A R A: B. Use induction on the derivation ISA ¢ A: B.

o IfI'S(AX;)A F€ B : C,(A);) bachelor, 5 well-balanced, I's -¢ D : A, FV (D) C dom(I"),
then T'(D&)S(AN;)A F¢ B : C is shown by induction on the derivation T'S(AN;)A €
B : C (for conversion, use 1.). O

Lemma 5.12 (Substitution lemma for F¢) Let d be a definition.

1. If TdA F° A =4e¢ B, A and B are I'dA-legal terms, then I'[A]g F¢ [Alg =aet [Bla

2. If B is a T'd-legal term, then D'd H¢ B =ge¢ [Blg

3. If T(A0)(BAz)A F¢ C : D then T'Alx := A F¢ Clz := A] : D[z := A]

4. IfT(BA;))AF¢C: D, T'F¢ A: B, (BA;) bachelor in T, then T Az := A] ¢ Clz := A] :

Dz := A]
5. IfTdA V¢ O : D, then T[A]y F¢ [Ca : [D]a
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Proof:
1. Induction on the derivation rules of =ges, 2. Induction on the structure of B, 3. Induc-
tion on the derivation rules, using 1., 2. and thinning, 4. Idem and 5. use 3. O

Lemma 5.13 (Generation Lemma for )
1. If T2 : A then 3B, S": (BA\;) €' T, TFB:S, THF A=4es BandT'H* A: 5"

2. If ' F¢ (AXg)B : C then for some D and sort S: I'(AX;) F¢ B : D, I' ¢ (All)D : S,
e (All,)D =4es C and if (All,)D # C then T ¢ C : S’ for some sort S'.

3. If U ¢ (All,)B : C then for some sorts S1,S2: I'F¢ A: S, I'F¢ B : Sy, (51,59) € R,
['F¢ C =4es S and if So Z C then I' ¢ C': S for some sort S.

4. If T' ¢ (A0)B : C, (AJd) bachelor in B, then for some D,E, z: T' ¢ A: D, I'+¢ B :
(DII,)E, I' F¢ E[x := A] =4ez C and if E[x := A] £ C thenT' ¢ C : S for some S.

5. IfTF¢SA: B, then [SH¢ A: B

Proof: 1., 2., 3. and 4. follow by induction on the derivations (use the thinning lemma).
As to 5., we use induction on weight(s). Case weight(S) = 0: nothing to prove. If we have
proven the hypothesis for all segments S that obey weight(3) < 2n and weight(3) = 2n + 2,
S = 35183 (neither 35T = 0 nor 353 = 0) then by the IH: I'sy ¢ 53A : B, again applying the
induction hypothesis gives I's1s3 F¢ A : B. If we have proven the hypothesis for all segments s
for which weight(5) < 2n and weight(s) = 2n + 2,5 = (DJ)s1(EX;) where weight(s1) = 2n
then an induction on the derivation rules shows that one of the following cases is applicable:

e I'st¢ A: B', '+ [B'|s =qet B and if [B']s # B then ' F¢ B : S for some sort S.

e 'FD:F, T FSi(EN)A : (FIIy)G, I' F¢ B =4e¢ Gly := D] and if Gy :== D] # B
then I' ¢ B : S for some sort S.

In the first case note that FV(B) N dom(s) = 0 and by thinning I's F° [B'ls =gt B, by
substitution T's F¢ [B'ls =get B'. So I's - B =4¢¢ B and by conversion I's ¢ A : B.

In the second case, by IH, I's7 ¢ (EX;)A : (FII,)G. Now 2. tells us I'sy(EX;) F¢ A: L,
I's7 ¢ (Ell,) L =4es (FIL,)G and (Ell,)L # (F11,)G gives I'sy ¢ (FI1,)G : Sy for some S, .

This means that x =y, ['s7 F¢ E =g F, I's7 F¢ L =4e¢ G. Out of T'sy ¢ (EIL,)L : S we
get by 3. that I'sy ¢ E : Sy for some sort So, thinning gives I'sy ¢ D : F' so by conversion
st ¢ D : E and by thinning on IU'st(EXy) F¢ A: L we get TsH® A: L.

Out of I' F¢ B =4e¢ Gz := D] we get (thinning and substitution) I's ¢ B =4 G, out of
I'STF® L =40t G we get I'SH® L =40¢ G, hence I's F¢ B =g4o¢ L.

Now if Gly := D] # B then 3S : ' ¢ B : S, and if Gy := D] = B we get out of
s ¢ (EXp)A : (FII,)G that 38" : 57 F° G = S, by thinning and substitution we get that
I'sk¢ Gly:=D]:S". Hence 3S :T5F° B : S and by conversion we conlude I's+¢ A: B. O

Theorem 5.14 (Subject Reduction for ¢ and —p)
' A:BANA—»3 A=TF A :B.

Proof: We only need to consider A —g A'. Suppose I' F¢ (Ad)(BA,;)C : D. Then by
generation, I'(Ad)(BAz) F¢ C : D, and by substitution we get I' -¢ Clx := A] : D[z := A], but
as x ¢ FV (D), D[x := A] = D. The compatibility cases are easy. O
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This may seem to be too easy a proof for Subject Reduction, but remember that the hard
work is already done in case 5. of the Generation Lemma.

Lemma 5.15 (Unicity of Types for )
I.TF*A: BATFA:B' =T+ B =4 B
2.TFCA:BATH A :B'NA=3 A" =T F° B =4¢ B
Proof:
1. By induction on the structure of A using the Generation Lemma.
2. By Church-Rosser and Subject Reduction using 1. O

Remark 5.16 We didn’t prove ' B: S, '+ A: B', B=43 B' = I'-° B’ : S. This seems
difficult to prove because if I' ¢ B’ : S’ then by Unicity of Types I' F¢ S =4o¢ S and it is
unclear if S = S’. Furthermore, we didn’t prove ' ¢ A : B, ' ¢ A’ : B, T'F¢ A =45 A’
= [' F¢ B =4t B’ as here we face similar problems. We claim that one can prove this by
showing first that ' = A : B = I' ¢ [A]p : [B]r, where [A]p means all definitions in I" are to
be unfolded in A. We don’t need these properties for our theory however.

Theorem 5.17 (Strong Normalisation for the Cube with respect to ¢ and —3)
For all =°-legal terms M, M is strongly normalising with respect to —g.
Proof: This is a special case of the proof of Theorem 6.19. O

Fact 5.18 Subtyping does not hold for -°. Consider the following derivable judgement:

(¥Aa) ¢ (@0)(xAg)(BAy) (y6) (aAz)z : (ally)ox

The subterm (xAg)(BAy)(yd)(aA;)z is not typable: suppose I' ¢ (xXg)(BAy)(yd)(aA;)z = A,
then by the Generation Lemma, I' ¢ z : o/ where I" = T'(xAg)(BAy) (y0)(a\;) and o satisfies
I"Fe o =ges & and I" F¢ o/ : S.

Since T' cannot contain bachelor d-items, we know that (x\g) is not partnered in I, hence
I I/ @ =qget B. But since (yo)(aA;) € I'-def we know that T'(xAg)(BAy) F¢ y : a : S, also
L(xXg)(BAy) ¢y : B so by Unicity of Types, I'(xAg)(BAy) F¢ o =4ez B, contradiction.

The reason for this is that when we typed (ad)(xA3)(BAy)(yd)(aX;)z, we used the context
(*Aa)(@d)(xAg) to type (BAy)(yd)(aA;)z. This context defines B to be a. Now, to type
(x*Ag)(BAy) (yd)(aA;)z, the definition («d)(xAg) cannot be used. Hence, we don’t have all
necessary information to type (¥Ag)(8Ay)(yd)(aX,)z. We do however have a partial result:

Lemma 5.19 (Restricted Subtyping) IfT'F¢ A : B, A" is a subterm of A such that all
bachelor items in A’ are also bachelor in A, then A’ is legal.

Proof: We prove by induction on the derivations: if A' is a subterm of T' or A such that
all bachelor items in A' are also bachelor items in I respectively A, then A’ is legal.

Note that in the case of the (def rule) subterms s3C where d = 5153, 51 Z () do not satisfy
the restrictions, since at least one item of S3 is bachelor in 53C but partnered in dC. O

Subterms satisfying the bachelor restriction as in Lemma 5.19 above, are more important than
those not satisfying it. The reason for this is that the latter terms have an extra abstraction
(the newly bachelor A-item) and hence are II-types which makes them more involved, whereas
the subterm property is usefull because it tells something about less involved terms.
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6 The Cube with definitions and generalised reduction

Now we extend the type system of Section 5 by changing the reduction —%3 into <3. As was
the case in Section 4 the derivation rules stay the same as those with classical S-reduction,
hence almost all lemmas that have been proved for the system in Section 5 are still valid, for
instance the Generation Lemma and Restricted Subtyping. The only properties that have
to be investigated are Church-Rosser, Subject Reduction and Strong Normalisation. We will
show now that these properties too are still valid.

Theorem 6.1 (The Church-Rosser theorem for <—»3) If A =3 B and A <=3 C, then
there exists D such that B <5 D and C <3 D.
Proof: see Theorem 4.6. O

Again the hard work for Subject Reduction is already done in the Generation Lemma:

Theorem 6.2 (Subject Reduction for - and —»g)
IfTH*A:B and A —»g A" thenT F¢ A" : B.

Proof: We only need to consider A —g A’. Suppose I' = dC : D. Then by generation,
I'd F¢ C : D. Hence by definition-shuffling (5.10, say A = def(d), B = pred(d) and = =
subj(d)), T'd(Ad)(B\;) F¢ C : D. Hence by substitution T'd F¢ C[z := A] : D[z := A], and by
(def rule) I' F¢ d(Clx := A]) : [D[x := Allq, which is I' k¢ d(Clz := A]) : [D]q. Now by the
variable convention [D]y = D so we are done. The compatibility cases are easy. O

6.1 Strong Normalisation

In [BKN 94x]|, we used the technique of [Bar 92] to show Strong Normalisation for A_, with
extended reduction. Here we shall extend the flexible proof of [Geuvers 94]. We do not give
the full details, but we only give a rough outline of the adaptations that had to be made to
the proof in [Geuvers 94]. For details, the reader is referred to [BKN 94y]. The proof holds
for any F relation of Section 3, for ¢ and any reduction relation — which is CR, contains
— 4 and is such that the least equivalence relation closed under — is the same as =g4.

Lemma 6.3 (Soundness of =) If A,B € T are legal terms such that A =3 B then there
is a path of one-step reductions and expansions via legal terms between A and B.

Proof: By Church-Rosser there exists a term C such that A —5 C and B —3 C. By
Subject Reduction for ordinary (-reduction all terms on the path A---C--- B are legal. O

Definition 6.4 Define the key redex of a term M as follows:
1. (Ad0)(BAz)C has key redex (Ad)(BA;)C.
2. If M has key redex N, then (P3)M has key redex N.

Define redy (M) to be the term obtained from M by contracting its key redex. Note that not
all terms have a key redex and that if a term has a key redex then it is unique.

Definition 6.5

e Define the set of base terms B, C A by V C B, and if M € B_,, N € SN_, then also
(NO)M € B.,.
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e (Call X C A saturated., iff: X C SN, B, C X and for all M € A: if M € SN_, and
redy (M) € X then also M € X.

e Define SAT, = {X C A: X is saturated,}
Lemma 6.6

1. SN, € SAT.,.
2. VX € SAT., : X # 0.

3. If N e SN, M € X € SAT., and x ¢ FV (M) then (N§)(A\y)M € X. (Note here that
[Geuvers 94] takes (NS)(M6)(Ay)(Ae)y instead of (NO)(Az)M. The first however, will
not fit our purposes as is explained in Remark 6.17)

4. A,B € SAT,= A— B e SAT,,.
5. If I is a set and X; € SAT., for all i € I, then (;c; X; € SAT.,.

We define in analogy to [Geuvers 94] three maps, first V of I'-kinds to the function space of
SAT.,, then [ J¢ of [-terms\I'-objects to elements of the function space of SAT_,, and third
( )p of I-terms to A, such that when certain conditions are met we have:

THA:B:0= [A]e € V(B),[Bl¢ € SAT, and T - A: B = (4), € [B].

Definition 6.7 Define for all kinds A the set-theoretical interpretation of A as follows:
o V(x) = SAT,,
e V((All0)B) = V(A) — V(B), the function space of V(A) to V(B)
e V((All,+)B) = V(B)
e V(dA) =V(A) if d a definition
Now define U = J{V(A) | A is a F-kind }.
Lemma 6.8

1. If A is a legal kind, B a legal constructor and C is a legal object, then
V(A) = V(A[z" := B]) and V(A) = V(A[z* := O)).

2. If dA is a legal kind, d is a definition, then V([A]s) = V(A).
Definition 6.9 Let I’ be a F-legal context.

e A I'-constructor valuation, notation ¢ =" T, is a map € : V2 — U such that for
all (AX;) € T with A a T-kind (i.e. x € V2): £(x) € U(A).

o If & is a constructor valuation, then [ ¢ : I'-terms\I'-objects — U is defined inductively

as follows:
[O]e = SN

[z7]¢ = &(=7)
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o [Ble[Ale if A € T-constructors
[[(Afs)B]]g o { [[B]]g if A € I'-objects

[(AXz)B]e = { Af € V(A).[Ble@=y) if A€T-kinds

[Ble if A e T'-types
[(ATl;)B]e := [Ale = Nyev(a[Blew=y) if A € T-kinds,z € V-
R [A]e — [Ble if A€ D-types,x € V*

where £(x := N) is the valuation that assigns &(y) to y Z x and N to x. Furthermore,
with [A]¢[B]e we mean application of the function [A]¢ onto its argument [B]e and by
A we mean function-abstraction.

Lemma 6.10 (Soundness of [ |¢) If '+ A : B : O then for all & such that £ E° T, we
have: [A]¢ and [B]¢ are well-defined and [A]e € V(B), [B]¢ € SAT.,.

Definition 6.11 If £ =7 T, then we call £ cute with respect to U if for all d € I'-def such
that subj(d) € V7, ¢(subj(d)) = [def(d)].

Lemma 6.12

1. If € E7 T and A is D-legal, then [A]e depends only on the values of & on the free
constructor variables of A.

2. If £ =7 T then there is a cute & such that & =" T and & = € on the non-definitional
constructor variables of dom(T").

8. If € =" T and & is cute with respect to T then T'F A =4e¢ B = [A]¢ = [B]e.
Definition 6.13

o Let £ EU T such that £ is cute with respect to T'. An object valuation of T with respect
to &, notation p,§ =T, is a map p: V — A such that for all (A\;) €' T': p(x) € [A]e
(regardless of whether A € T'-kinds or A € I'-types).

o For p,§ =T (note: this implies & is cute), define (), : I'-terms — A as follows:

(z)p = p()

(<)p = =

(@), = O
((No)M), = ((N)p0)(M),
((Axe)B)p = ((ADp0)(Ay)A2)(B)pwi=a)  (where y & FV(B))
(AlL:)B)p = (M) (B)pi=y)0)((A)pd)z  (where y ¢ FV(B))

Note that we need BC to ensure that no unwanted bindings occur in the case (All;)B.
The use of x in this case is not essential, we also could reserve one special variable w that

should not be used otherwise and define ((Ally)B)), to be ((Az)(B) p(z:=z)0) ((A) p6)w.
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o We define another map | | :I'-terms — A by

[x] = =z

[*] = =x

o] = O
[(NO)M] = ([N]6)[M]
[(AXs)B] = ([A]0)(Ay)(X2)[B]  (where y ¢ FV(B))
[(All;)B] = ((Ay)[B(z :=y)10)([A]6)z  (where y ¢ FV(B))

Definition 6.14 Let I' be a context, A, B € TI'-terms. T satisfies that A is of type B with
respect to = and —», notation I' EL, A« B, iff V€, plp, € E T = (A), € [Bl¢).

Lemma 6.15

1. If T(A0)d(BXz)A is a legal context and p,& |= T'(A0)d(BA;)A then (A), € [B]e and
(B), € SAT,,.

2. Td=A:B=T|=dA: Bl
Lemma 6.16 (( ), versus | |)
1. VM € I'-terms, Vp: (M), = [M][Z := p(?v)] where & are the free variables of M.

2. If s is a well-balanced segment then [SA] = [S|[A] and [3] is also well-balanced. More-
over, FV([A]) = FV(A).

3. For all M € I'-terms: [M] is strongly normalising = M is strongly normalising.

Remark 6.17 With this Lemma, it becomes clear why we depart from [Geuvers 94] by using
[(AXg) B] to be ([A]6)(Ay)(Az)[B] instead of ([A]6)((A)[B]0)(Au)(Av)u.

Counsider for example P = (Ad)(BJ)(CAy)(DAy)E and Q = (B6)(CA)Ely := A]. It is
obvious that P <5 @ and that [P] = ([A]0)([B19)([C16)(Ap)(A2)([D1)8)(Ag) (M) [ET =5
[Q] = (IB19)([C18)(Ap)(Ae)[Ely := [A]]. Yet, if we use the translation of [Geuvers 94],
then we get [P] = ([A10)([B16)([CT0)((Ae )[(D/\ )E16) (Aw) (Av)u
#rp [Q = ([BIO)([CT0)((Ae)[ET[y == [A]]6)(As)(A)s.

Lemma 6.18 'FA:B=TEFA:B

Theorem 6.19 (Strong Normalisation for the Cube with respect to - and —»p)
For all =°-legal terms M, M is strongly normalising with respect to —g.

Proof: Let M be a F°-legal term. Then either M = O or for some context I' and term N,
I'F¢ M : N. In the first case, clearly M is strongly normalising. In the second case, define
canonical elements ¢ € V(A) for all A € T-kinds as follows:

c* = SNc_»B
c(All:)B . Af €V(A).cB if AeT-kinds,x € V©
cAll)B . .B if A € D-types,xz € V*

Take & such that £(z) = ¢ whenever (A);) € T and &(subj(d)) = [def(d)]¢ whenever
d € T'-def and take p such that p(subj(d)) = (def(d)), for all subdefinitions d of T’ and
p(x) = = otherwise. Then p,& |= T, hence (M), € [N]¢, where (M), = [M] as mentioned
in lemma 6.16. Hence [M] € [N]¢ € SNe,,. By lemma 6.16 now also M € SNe, ,. O
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This Theorem also proves SN for the other Cubes in this paper (the Cube extended with
nothing, definitions or <) as the legal terms of those Cubes are also legal in the Cube of
this section, and SN with respect to <3 implies SN with respect to — 3.

7 Comparing the system with definitions to other systems

In this section we compare the type systems generated by F¢ with the one generated by -, and
with the one of [SP 93]. We show a conservativity result which says that in a certain sense,
definitions are harmless. That is, even though we can type more terms using ¢ than using -,
whenever a judgement is derivable in a theory £ using definitions and ¢, it is also derivable
in the theory £ without definitions, using only F and where all the definitions are unfolded.
We discuss the effectiveness of derivations and type-checking using definitions. More work
has to be done still but it is certain that there is a gain in using definitions.

7.1 Conservativity

As we saw in example 5.2, in the type systems with definitions there are more legal terms.
Therefore, it has to be investigated to what extent the set of legal terms has changed. Note
first that all derivable judgements in a type system of the A-cube are derivable in the same
type system extended with definitions as we only extended, not changed, the derivation rules.
A second remark concerns the bypassing of the formation rule by using the weakening and
definition rule instead: In A2 without definitions we can derive the following by using the

formation rules (*,*) and (O, ) (take I' = (*Ag)(BAy)):
FFypy:0:x:0
L(*Aa) "A2 Q:ok (start)
L(#Aa)(@Ag) Fa2 ot * (start resp weakening)
L(*Aa) Faz (ally)ac: * (formation rule (x,*) )
L(#Aa) Fa2 (@Ag)z : (olly)a (abstraction)
I' Fag (1T a)( 2)o sk (formation rule (O, %) )
[ Fyo (xAa)(a)g)x @ (I1,)(all, ) (abstraction)
[ Fxg (8)(xAa) (A )x (f1,)B8  (application, we already knew ' Fyg 3 : % )
( (

36
I'Faz (50)(80) (+Aa) (A

)T application, we already knew ' o y : 3 )
It is not possible to derive this judgement in A_, as (O, *) is needed. Using the observation
that (yd)(59)(xAa)(aXz)z can be seen as x with two definitions added, we can derive the

judgement in a system with definition without having to use the (*,*) and (O, *):

PHES, y:B:x:0

L(B0)(¥Aa) FS_ v : Bt x (weakening resp. start)
L(B0)(¥Aa) F§ . o =ges B (use the definition in the context)
L(B)(xAa) FS . ¥ (conversion)
L(yd)(B)(xAa)(adg) F§ . 2« (start)

LS. (90)(B0)($Aa) (@Ag)z @ afr := y][a:= ] = B (definition rule)

This example shows that in A4 we have more legal judgements than in A_,. Now

take the judgement I' = (50) (Ao ) (MAg)x

: (MTII;)M where M = (yd6)(8A;)(80)(*A,)y and
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I' = (*Ag)(BAy). This can be derived in AC using (&, 0), (O, *), (x,0) and (*,*) as follows:

Iy B:x:0

C(xX\o) Fac B:%: 0 (weakening)

LX) (B\) Fac z: B:x: O (start resp. weakening)
C(#Aa)(BA2)(¥Ay) Fac v - % : O (start resp. weakening)
L(*Aa)(BA:2) Fac (¥ILy)* : O (formation rule (0,0) )
L(#Aa) (BA2) Fac (xAy)7y « (+I1,)* (abstraction)
L(*Aa)(BA2) Fac (B) (xAy)y « * (application)

['(xAa) Fac (BIL)* : O (formation rule (x,0) )
L'(*Aa) Fac (BA2)(B6)(xAy)y : (BI;)x (abstraction)

D(ha) Fac M : 5 (application, M = (y3) (5X.) (3)(+A, 1)
LX) (M) Faxc z: M : % (start resp. weakening)
L (o) Fac (MII,)M : x (formation rule (x,x) )
C(xXa) Fac (MAg)z : (MIL,) M (abstraction)

[ by (xI1y) (MII,) M : * (formation rule (O, x*) )
Lo (X)) (MAg)z : (xI1,)(MII,)M  (abstraction)

I'Fac (80)(xAa) (M Ag)x : (MII;)M  (application)

It is impossible to derive this judgement in any other system of the cube than AC' as all four
formation rules are needed. We can however derive this judgement in A_,ges¢:

IS B %

F(ﬁd)(*)\a) f\ B:x:0O (weakening)
L(86)(*Aa) (y0)(BA) B, B *: O (weakening)
['(80) (+Aa ) (y0) (BA )(55)(* v) P (weakening)
D(39)(:2) E5 (1) (32:) 09 Ny oy = Bl = y] e, M s+ (definition rule)
F(ﬁ5)(*>\a)( Ag) F§, T M (start, weakening)
L(B0)(xAa) S, (MIL)M (formation (x,x))
I'(86)(xAa) (M 2)T (MH )M (abstraction)
'S (55)(*>\ Y(M M)z : (M) M| := 3] = (MII,)M (definition rule)

This shows that in every system of the cube (except AC'), definitions derive more judgements.

As was shown in Example 5.2, (¥Ag)(BAy) FSy (80)(%Aa)(y'0)(a)g)z = 3 is derivable in
A2qes and hence is also derivable in ACyes, but this judgement cannot be derived in AC' as y is
of type B and not of type . At first sight this might cause the reader to suspect type systems
with definitions of having too much derivable judgements. However, we have a conservativity
result stating that a judgement that can be derived in L4e¢ can be derived in £ when all
definitions in the whole judgement have been unfolded.

Definition 7.1 For I' ¢ A: B a judgement we define the unfolding of ' ¢ A: B, [['F¢ A :
Bl to be the judgement obtained from I' F¢ A : B in the following way:

e first, mark all visible §\-couples in I', A and B,

e second, contract in I';, A and B all these marked §\-couples.

When T’ = --- (C6)S(DAy) - -+, contracting (CO)(DN,) amounts to substituting all free occur-
rences of x in the scope of Ay by C; these free occurrences may also be in one of the terms
A and B. The result is independent of the order in which the redezes are contracted, as one
can see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.
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Example 7.2 [(xAg)(BAy)(y0)(BI) (xAa) (adz)(aA;) F¢ ((ary)ud)((all,) BAy) (xd)v @ of* is
() (BAy) ((@Az) [z := y][a == B]) ¢ (((zd)v)[v := (@Au)u])[z := yllo:= f] : afz := y][a = f],
which is (xAg)(BAy)(BA;) F¢ (y0)(BAy)u : B. Note that the resulting context contains only
A-items and that the resulting subject and predicate need not be in normal form.

Theorem 7.3 (Conservativity of definitions) Let £ be one of the systems of the Cube,
I' a context (possibly with definitions) and A, B pseudoterms. IfI' =% A : B then:

1 D+ A: B
2. T"kp A" : B, where I" % A" : B" is [T % A : B]".

Proof: 1., 2. are both proven by induction on the derivation of I' =% A : B. Axiom, abstrac-
tion and formation rules are easy, we treat the other cases for 2.

e The last rule applied is the start rule. Then I'd - subj(d) : pred(d) as a consequence
of ' < d. Now if d= (AX;) then by IHT' F, A" S (S a sort, x fresh) so by the start
rule I'(A'\;) bz z : A'. On the other hand, if d is a definition, say d = (Ad)d(B)\,),
then by IH (I'd) Fp A" : B": S (S a sort), which is " Fp A" : B' : S as d will be
fully unfolded, and the unfolding of I'd % subj(d) : pred(d) is I -, def(d)’ : pred(d)’
which is T" =, A" : B' so we are done.

e The last rule applied is the weakening rule, say I'd =7 D : E as a consequence of I' < d
and I'd +% D : E. Because subj(d) is fresh we have that (I'd)' -z D' : E' is the same
as (Od) Fz D' : E' so by IH we are done.

e The last rule applied is the application rule. Then I' F% (ad)F : Blx := a] as a
consequence of ' =% F : (All)B and I' % a : A. By IH and the application rule we get
I'Fp (d'0)F' . B'[x := d']. Now by subject reduction also I b, ((a/0)F") : B'[z := d].
If B'[x :=d'] = (B'[z := d])’ then we are done, otherwise, by the Generation Corollary
I'"Fr Bl :=d']: S for some sort S, so by subject reduction I Fp (B'[x :=d'])' : S
and as B'[z .= d'] =3 (B'[x := d'])’ by conversion we are done.

e The last rule applied is the conversion rule. Then I' 7 A : By as a consequence
of ' ¢ A: By, ' F: By i S and I' B By =get Bo. Now I' FG By =qe¢ By implies
B =g B because if C results from D by locally unfolding a definition of T’ then C' = D',
so the result follows by IH.

o The last rule applied is the definition rule. Then I' F% dc : [D]y as a consequence of
I'dt-C:D. By IH, I'" b [C')q : [D']4 which is the unfolding of I' F% dc : [D]g.

Corollary 7.4 Let I', A, B be definitions-free. If I'=¢- A: B then 'z A: B.

Remark 7.5 It is not sufficient in theorem 7.3 to unfold all the definitions in the context
only, because a redex in the subject may have been used to change the type when it was still
in the context, this is illustrated by (xAg)(BAy) FS_ (80)(¥Aa)(yd)(a)y)z : B which cannot be
derived using - _,. However, this judgement where all the definitions are unfolded in context,
subject and predicate, is derivable using =¢. That is, (¥Ag)(BAy) Fa_, v : B.
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7.2 Shorter derivations and type checking

As already noted, derivations using the definitions need considerably less steps to derive a
judgement that can also be derived without definitions. This is due to the fact that redexes
in the term to be derived can be introduced by the def rule which bypasses the formation
rule.

Type checking with definitions at first sight seems to be more difficult than in the sys-
tems of the A-cube of Barendregt. Consider for instance the type-checking problem I' ¢
(00)(*Aq ) (z0)(ad) P : 7 where I' = (xA\,) ((+ILg) (BI,) BAp) (0 Az)-

Note that this problem is not solvable in the non-extended systems, since (ad)P : @ = «
and x : 0, so (zd)(ad) P is not typable. In the extended systems, the only thing a typechecking
algorithm can do is trying to solve I'(00)(xAq) F¢ (20)(ad)P : ?,

F¢ (ad)P : (Ally)B
l_

e

which is equivalent to finding A, B,y such that { L(00)(xA ;

[(0d)(+A z:A
D(08)(+Aa) ¢ P : (CIL)(AIL) B
which again is equivalent to finding z, C' such that ¢ ['(cd)(x\y) F¢ a: C
C(od)(xX\a) Fé 2t A

Now ['(0d)(xAa) F¢ P @ (xIlg)(BIL,)B and I'(00)(¥Aa) F® « : *, hence I'(0d)(x\o) F°
(ad)P : (odly)a and T'(06) (xAg) F€ 2 : 0.

Now we face the problem of converting (ally)a to (olIl;)? or o to « in the context
I'(06)(xAs) and this is easily done by unfolding the definition (06)(*Aq) in (ally)«, giving
['(06)(xAq) F€ (ad) P : (0lly)o and hence I' ¢ (06)(xAy)(20)(ad) P : 0.

We saw that typechecking gave rise to locally unfolding a definition in the type (ally)a.
This is something new in comparison with typechecking in the A-cube of Barendregt where
only reduction to (weak head-) normal form of the type is needed. Now if we want to typecheck
a redex it appears to be a reasonable strategy to consider it as a definition since it is not easy
to see whether a redex in a term can be typed without the (def rule).

So for example, when typechecking (t0)(cA\z)(Q0)(x0)(0d)P in our extended system with
context I such that I' =¢ ((xIl)(adly,)(all,)aAp) and I' ¢ (A, ), an automated type checker
will try to solve

L(td)(oAz) F€ (QO)(xd)(0d)P : ? instead of { [ (042)(Q0)(20)(00) P = (

q

oll;)A
F'Fet:o

[(t0)(oAg) ¢ (20)(00) P - (All,) B
L(td)(oAs) FeQ : A

will be derived and now it has to be checked whether T'(t0)(ocA;) F¢ A =ges A’. In case the
original redex was not a definition, A =g.s A’ can be established without using the context
definition (¢§)(oc\;). Hence we conjecture that an intelligent typecheck algorithm can avoid
needless extra work by unfolding definitions only as a last resort. Further research has yet to
be done in this direction.

As a result, something like

7.3 Comparison with the systems of the Barendregt cube

Here we discuss the (dis)advantages of our extended typing systems to the cube systems.
In the extended typing systems we can reason with definitions in the context (which is
very natural to do): we can add definitions to the context in which we reason (the start rule
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and weakening rule), we can eliminate definitions in the context (the def rule ) and we can
unfold a definition in the context locally in the type (the conversion rule).

Furthermore, in the terms, there are more visible (and subject to contraction) redexes.

If one considers one of the seven lower systems in the A-cube, some abstractions are
forbidden, for instance in APw the abstraction of a term over a type is not allowed (this
abstraction corresponds to universal quantification in logic). Intuitively such a quantification
need not be forbidden if it is immediately instantiated by an application, as is the case
in (Ag:x-(Az:a-z))B. However, in the system APw this term is untypable as the subterm
Aa:x-(Az:o-z) should have type Iy...(I1;.q.«0), which is forbidden as (O, *) is not allowed.

Now in our extended typing system APw, we can type the term (Ay:.x.(Az:a-z))3 by
using the def rule: from (xAg)(86)(xAq) F¢ (aAg)z : (ally)z we may conclude (xAg) F°
(86)(xAa)(aAz)z : (Bll;)x. Note that the use of the formation rule (O, %) is avoided.

By this property, the extended type systems are closer to intuition than the systems of
the cube as there are more (intuitively correct) derivable inhabitants of certain types.

In the last paragraphs of [Bar 92], a term is shown which is an inhabitant of L in A\U™.
It is remarked that the given term is not legal due to the fact that some definitions are being
used that shorten the term by a factor 72. In the system AU~ extended with definitions, this
term is still illegal due to the restriction that definitions should have a typable pred. This
suggests that there is a need for an even more flexible use of definitions, such that also terms
on the highest typing levels can be abbreviated.

7.4 Comparison with the type systems of Poll and Severi

When we compare the extended type systems to those of Poll and Severi (see [SP 93]), we
observe the following differences.

1. In the systems of [SP 93], the definition of pseudoterms has been adapted, not only
the usual variables, abstractions and applications are pseudoterms, but definitions, i.e.
terms of the form z = a : Ain B are added. A new reduction relation has to be intro-
duced to be able to unfold these definitions (locally in the predicate of the judgement).
This means Church Rosser has to be shown again.

In our approach, we treat definitions not much different from [-redexes, hence the
syntax of pseudoterms remains the same. We only change the syntax of contexts and
extend [-equality in a natural way to be able to use the definitions in the context and
unfold them locally in the predicate of a judgement. Church Rosser remains unchanged.

2. [SP 93] have a rule that takes a definition out of the context and puts it in front of
the term and type, provided that the type is not a topsort. In our extended system
however, we only put the definition in front of the term and unfold it in the type. As
we already noted (cf. Lemma 5.5), the (derived def rule) allows to put the definition
also in front of the type without unfolding it.

7.5 Comparison with Automath

Our item notation is influenced by the Automath notation (see [NGV 94]). For example, de
Bruijn uses the words wagon, train and AT-pair for item, segment and JA-pair respectively.
Furthermore, our definitions are also influenced by de Bruijn’s introduction of definitions in
his system AUT-AA (see B.7 of [NGV 94]). In AUT-AA, de Bruijn refines reduction in order
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to accommodate local reductions which are necessary for representing definitions. His main
motivation in doing so are examples where the unfolding of a definition is usually desired at
one specific instance of the definition and not everywhere it occurs.

Our presentation of definitions in this article, even though motivated by reasons similar
to those of de Bruijn, is written in a way that fits elegantly with the style of the cube. Our
extension of the cube systems to deal with definitions only had to change the context a bit and
to add the definition rule. De Bruijn claims Church Rosser for his mini reductions whereas
we have studied all the cube systems with definitions and established their properties.

8 Conclusion

We have proposed an extension of S-reduction called generalised reduction and an extension
of the typing rules of the cube with definitions. We use the item notation to make the
generalised redexes clearly visible and to be able to describe nested definitions in a neat way.

Generalised reduction and definitions are shown to behave well with respect to S-reduction
and the typing systems of the Barendregt cube.

With respect to reduction, generalised reduction has the Church-Rosser property and
generates [-equality. SR has been studied and is shown to hold for all systems of the cube
extended with definitions, which are also shown to be SN.

We showed that the extension of the typing systems, is a conservative one and that
derivations become shorter without slowing down type-checking algorithms.

Before closing, it is worth mentioning where reductions related to our generalised notion
have been used elsewhere. At the time of writing this paper, we were unaware of many related
work and we are grateful to Joe Wells who has compiled most of the following details. We
will be short in what follows but we refer to [KW 95b] which discusses the subject in detail.

Here are two rules related to our generalised reduction:

(6) (QI)(PO)(Ae)N — (P9)(Ar)(QO)N
(7) (P0)(A)Ay)N = (Ay)(PO)(As) N

It is obvious that # may move the J-item (QJ) next to a A-item in N if N = (\,)M, and hence
the é-couple (QJ)(),) becomes a J-pair making the generalised redex a classical one (visible)
and subject to contraction. The rule 7 is unrelated to what we do here yet has almost always
been used with € for technical reasons. (The transfer of rule v to explicitly typed lambda
calculus however, is not straightforward, since the type of y may be affected by the reducible
pair (P8)(A,).)

Regnier’s notion of ‘premier redex’ (see [Reg 92]) is the same as our notion of generalised
redex on untyped terms. We study it for Church-style type systems whereas Regnier studies
Curry-style type systems. [Reg 94] uses 6 and 7 (and calls the combination o) to show
that the perpetual reduction strategy finds the longest reduction path when the term is SN.
[Vid 89] also introduces reductions similar to those of [Reg 94]. Furthermore, [KTU 94] uses 6
(and other reductions) to show that typability in ML is equivalent to acyclic semi-unification.
[SF 92] uses a reduction which has some common themes to 6. [dG 93] uses a restricted version
of 6 and [KW 95a] uses v to reduce the problem of strong normalisation for S-reduction to the
problem of weak normalisation for related reductions. [KW 94] uses amongst other things,
0 and ~ to reduce typability in the rank-2 restriction of system F to the problem of acyclic
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semi-unification. [AFM 95] uses € to analyse how to implement sharing in a real language
interpreter in a way that directly corresponds to a formal calculus.
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