
The Barendregt Cube with De�nitions and GeneralisedReductionAppears in Information and Computation 126(2), 123-143,'96�yRoel Blooz, Fairouz Kamareddinex, Rob Nederpelt{March 20, 1997

�The authors were supported by the Netherlands Computer Science Research Foundation (SION, NWO),the Basic Action for Research ESPRIT project \Types for Proofs and Programs", and the EPSRC Grant GR/K25014 and are grateful to the Department of Computing Science, Glasgow University, and to the Departmentof Mathematics and Computing Science, Eindhoven University of Technology, for their �nancial support andhospitality.yWe would like to thank Henk Barendregt, Bob Constable, Herman Geuvers, Stefan Khars, Tom Melhamand Joe Wells for their useful discussions and remarks.zDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,5600 MB Eindhoven, the Netherlands, email: bloo@win.tue.nlxDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, email: fairouz@dcs.glasgow.ac.uk{same address as Bloo. email: wsinrpn@win.tue.nl1

The Barendregt Cube with De�nitions and Generalised ReductionContact Author: Fairouz Kamareddine,Department of Computing Science,17 Lilybank Gardens,University of Glasgow,Glasgow G12 8QQ, Scotland,fairouz@dcs.glasgow.ac.uk

2

AbstractIn this paper, we propose to extend the Barendregt Cube by generalising �-reductionand by adding de�nition mechanisms. Generalised reduction allows contracting morevisible redexes than usual, and de�nitions are an important tool to allow for a more exibletyping system. We show that this extension satis�es most of the original properties of theCube including Church-Rosser, Subject Reduction and Strong Normalisation.Keywords: Generalised Reduction, De�nitions, Barendregt Cube, Church-Rosser, SubjectReduction, Strong Normalisation.

3

SYMBOLS USED=def, =�, �!, �!,!�,!!�,!!, ,!!�,!!, ,!, ,!!, �, �, �, �, �, �, `, `L, `e, s, weight,(),pred, def, subj, �, redk, SAT!!, SAT, SN, U , �, �-terms, �-term, �-objects, �-constructors,�-types, �-types, �-def, �-decl, �-kind, �-kinds, �-kinds, V, [[,]], [[]]� , d e, de, ([])�, ([]), ([])�,[[]]� , ([])�, [[]]� , [[]].

4

1 Introduction1.1 Why generalised reductionThe usual notion of reduction in the �-calculus might not be as general as one desires as thefollowing example shows (we ignore types for the sake of clarity):Example 1.1 In A � ((�f :(�x:�y:fxy)m)+)n, we have the redexes: (�x:�y:fxy)m and(�f :(�x:�y:fxy)m)+. There is however a virtual redex which is not immediately visible in theclassical term; namely, (�y:+my)n. Such a redex will only be visible after we have contractedthe above two redexes and can be said to arise in the computation. Furthermore, one maywant to contract the redex based on (�y:�)n (resulting in the term (�f :(�x:fxn)m)+) beforeone has contracted any of the redexes (�f :�)+ and (�x:�)m.All the above three redexes are needed to reach the normal form of A. The virtual redexhowever, could only be seen once we had contracted the �rst two redexes. There is moreovera wish to make as many needed redexes as possible visible and even though the notion of aneeded redex is undecidable, much work has been carried out in order to study some classesof needed redexes (as in [BKKS 87], [Gardner 94] and [BKN 9-]). Our proposal is not only tomake as many redexes as possible visible, but also to give newly visible redexes the possibilityto be contracted before other ones.Firstly, this view on reduction gives an appropriate tool for the study of some programminglanguages. For example, in lazy evaluation ([Launchbury 93]), some redexes get frozen whileother ones are being contracted. Now, if we had the ability of choosing which redex tocontract out of all visible redexes, rather than waiting for some redex to be evaluated �rst,then we can say that we have achieved a exible system where we have control over what tocontract rather than letting reductions force themselves in some order. Secondly, we thinkthat an investigation concerning the complete class of visible redexes in a term gives a betterunderstanding of reduction strategies, e.g. the optimal reductions as in [L�evy 80].1.2 Why de�nition mechanismsPractical experiences with type systems show that de�nitions are indispensable for any real-istic application. Without de�nitions, terms soon become forbiddingly complicated. By usingde�nitions one can avoid such an explosion in complexity. This is, by the way, a very naturalthing to do: the apparatus of mathematics, for instance, is unimaginable without de�nitions.In many type theories and lambda calculi, there is no possibility to introduce de�ni-tions. This possibility is essential for practical use, and indeed implementations of Pure TypeSystems such as Nuprl ([CON 86]), Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) doprovide this possibility. Moreover, experience with Automath ([NGV 94]) has shown the needfor de�nitions. But what are de�nitions and why are they attractive? De�nitions are nameabbreviating expressions and occur in contexts where we reason about terms.Example 1.2 Let id = (�x:A:x) : A ! A in (�y:A!A:id)id de�nes id to be (�x:A:x) in amore complex expression in which id occurs two times.The intended meaning of a de�nition x = a is that the de�niendum x can be substituted bythe de�niens a in the expression b. In a sense, an expression let x : A be a in b is similar to(�x:A:b)a. It is not intended however to substitute all the occurrences of x in b by a. Nor is5

it intended that such a de�nition is a part of our term. Rather, the de�nition will live in theenvironment (or context) in which we evaluate or reason about the expression.One of the advantages of the de�nition let x : A be a in b over (�x:A:b)a is that it isconvenient to have the freedom of substituting only some of the occurrences of an expressionin a given formula. Another advantage is e�ciency; one evaluates a in let x : A be a in bonly once, even in lazy languages. A further advantage is that de�ning x to be a in b can beused to type b e�ciently, since the type A of a has to be calculated only once. Moreover, ade�nition may be necessary to type a term as is shown in the following example.Example 1.3 Without de�nitions, it is not possible to type �y:x:�f :a!a:fy even when wesomehow know that x is an abbreviation for a. This is because f expects an argument of typea, and y is of type x. Once we make use of the fact that x is de�ned to be a in our context,then y will have type a and the term will be typable as we see in Example 1.6.Introducing de�nitions in Pure Type Systems is an interesting subject of research at themoment. For example, [SP 93] extended PTSs with de�nitions. Our approach enables suchan extension in an elegant way. In fact, the generated type derivations for terms in theCube with de�nitions become much shorter than those in the absence of de�nitions (seeSection 7.2). Moreover, we do not have to use complex relations to introduce de�nitions asin [SP 93]. Rather, the extension will be a natural way to how our terms are written. Basicfor our proposed extensions is a new notation: the item notation.1.3 The item notation for de�nitions and generalised reductionThe item notation is a simple variant of the usual notation where the argument is given beforethe function, the type is given before the abstraction operator, and where the parenthesesare grouped di�erently than those of the classical notation. So that, if I translates classicalterms into our notation, then I(AB) is written as (I(B)�)I(A) (here is � a special symbolused for application) and I(Ox:A:B) is written as (I(A)Ox)I(B) where O = � or �. Both(t�) and (tOx), t being a term in item notation, are called items. For reasons explaining theusefulness of such a notation, the reader is referred to [KN 93] and [KN 96a]. For this paperhowever, the reader is to notice that redexes and de�nitions can be easily generalised andintroduced with item notation. A traditional redex is a term that starts with a �-item nextto a �-item. A de�nition is itself a certain form of a �-item next to a �-item.Example 1.4 I((�x:A!(B!C):�y:A:xy)t) � (t�)(A ! (B ! C)�x)(A�y)(y�)x. The itemsare (t�), (A ! (B ! C)�x), (A�y) and (y�). The de�nition is (t�)(A ! (B ! C)�x) andthe redex is the whole term.De�nition 1.5 (Classical redexes and �-reduction in item notation)In the item notation of the �-calculus, a classical redex (�x:B:A)C is of the form (C�)(B�x)A.We call the pair (C�)(B�x), a ��-pair, or a ��-segment. The �-reduction axiom (�) is:(C�)(B�x)A !� A[x := C]. One-step �-reduction !� is the compatible relation generatedout of (�). Many step �-reduction !!�, is the reexive transitive closure of !�.In item notation, the term A of Example 1.1 becomes (n�)(+�)(�f)(m�)(�x)(�y)(y�)(x�)f(recall that we ignore types). The two classical redexes correspond to ��-pairs as follows:6

1. (�x:�y:fxy)m corresponds to (m�)(�x). The remainder of the redex, (�y)(y�)(x�)f ,corresponds to the maximal subterm of A to the right of (�x):2. (�f :(�x:�y:fxy)m)+ corresponds to (+�)(�f), the rest being (m�)(�x)(�y)(y�)(x�)f .Looking closely at A written in item notation, one sees that the third redex described inExample 1.1 is obtained by just matching � and �-items. (�y:fxy)n is visible as it correspondsto the matching (n�)(�y) where (n�) and (�y) are separated by (+�)(�f)(m�)(�x). Hence,by extending the notion of a redex from being a �-item adjacent to a �-item, to being amatching pair of �- and �-items, we can make more redexes visible. Such an extension issimple, as in (C�)s(B�x), we say that (C�) and (B�x) match if s has the same structure as amatching composite of opening and closing brackets, each �-item corresponding to an openingbracket and each �-item corresponding to a closing bracket. For example, in A above, (n�)and (�y) match as (+�)(�f)(m�)(�x) has the bracketing structure [][] (see Figure 1). We
(n�) (+�) (�f) (m�) (�x) (�y) (y�)(x�)fFigure 1: Extended redexes in item notationre�ne �-reduction by changing (�) to(C�)s(B�x)A ,!� s(A[x := C]) if (C�) and (B�x) matchNow, what about de�nitions? The �rst step is to de�ne de�nitions as matching ��-couplesand to include them in contexts with the condition that if a de�nition occurs in a contextthen it can be used anywhere in the term we are reasoning about in that context. Hence, ifwe look at Example 1.3, then we can type the term now that we allow de�nitions to occur incontexts and we extend ` slightly so that it can see what is in its context.Example 1.6 We use as context the segment (a�)(A�x)(x�y)(a ! a �f), establishing thatx of type A is de�ned as a, that y has type x and that f has type a! a. Then, making useof this de�nition, we have(a�)(A�x)(x�y)(a! a�f) ` f : a! a(a�)(A�x)(x�y)(a! a�f) ` y : x = a(a�)(A�x)(x�y)(a! a�f) ` (y�)f : a(a�)(A�x)(x�y) ` (a! a�f)(y�)f : (a! a)! a(a�)(A�x) ` (x�y)(a! a�f)(y�)f : x! (a! a)! a = a! (a! a)! aBased on the above discussion, we divide the paper into the following sections:� In Section 2, we introduce the item notation.� In Section 3, we recall the Cube as in [Bar 92], and all its properties.7

C,!!�(CR, SN, ST) Cdef (CR, SN, SR, RST)C(CR, SN, SR, ST)
@@@@R ����	C,!!�def (CR, SN, SR, RST)

@@@@R����	
Figure 2: Properties of the Cube with various extensions� In Section 4, we add to the Cube generalised reduction ,!� and show that ,!!� (thereexive transitive closure of ,!�) generalises !!� (Lemma 4.3) such that =� and ��are the same (Lemma 4.5). This means that almost all the original properties still holdfor ,!!�. However, Church-Rosser (CR) , Subject Reduction (SR), Subtyping (ST) andStrong Normalisation (SN) deserve special attention. CR, ST and SN are shown to hold(without the need for SR in the case of SN). SR holds in �! and �!, but fails in theremaining systems. This problem is solved in Section 6 by adding de�nitions.� In Section 5 we add de�nitions to the Cube and show that all the properties of [Bar 92](including SR) hold with de�nitions, except ST. We show however that a restricted formof ST, RST, still holds. CR is not touched with the addition of de�nitions, contrary tothe account of [SP 93], where a reduction relation was introduced to capture de�nitionsand hence CR had to be shown.� In Section 6, we extend the Cube with both generalised reduction and de�nitions. Weshow that the Cube extended with de�nitions and generalised reduction, preserves allits important properties, again except ST but we have RST. We present in particular,the general proof of Strong Normalisation which applies to all the earlier systems.� In Section 7, we discuss the conservativity of the Cube with de�nitions, with respect tothe Cube without de�nitions. We show that more terms are typable using de�nitions.However, when a judgment is derivable in a system of the Cube with de�nitions, thejudgment itself where all the de�nitions are unfolded is derivable without de�nitions(Theorem 7.3). We also compare our system of de�nitions with that of [SP 93] anddiscuss type checking and the length of derivations using de�nitions. Finally, we mentionthe relation of our work to that of Automath.Figure 2 summarizes our results, showing that one can safely use the Cube with de�nitionsonly, or with both de�nitions and generalised reduction. When using generalised reductionwithout de�nitions, one must remain in the �! and �! as the other systems lose their SR.2 The item notationFor a detailed description of item notation, the reader is referred to [KN 93], [KN 94], [KN 95]and [KN 96a]. We will introduce in this section the minimum machinery needed to representthe Cube in item notation and for introducing generalised reduction and de�nitions.8

The systems of the Cube are based on a set of pseudo-expressions T de�ned by:T = V j C j (T �)T j (T OV)Twhere V and C are in�nite collections of variables and constants respectively. We assumethat x; y; z; : : : range over V and we take two special constants � and 2. These constantsare called sorts and the meta-variables S; S1; S2; : : : are used to range over the set of sortsS = f�;2g. We take A;B;C; a; b : : : to range over pseudo-expressions. Parentheses will beomitted when no confusion occurs. For convenience sake, we divide V in two disjoint sets V �and V 2, the sets of object respectively constructor variables. We take x�; y�; z�; : : : to rangeover V � and x2; y2; z2; : : : to range over V 2. Throughout, we let O range over f�;�g.Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respectively. We write A[x := B] todenote the term where all the free occurrences of x inA have been replaced byB. Furthermore,we take terms to be equivalent up to variable renaming and use � to denote syntacticalequality of terms. We assume moreover, the Barendregt variable convention, BC, which saysthat names of bound variables di�er from the free ones in a term and that di�erent �'s havedi�erent variables as subscript. Now, some machinery for item notation follows.De�nition 2.1 ((main) items, (main, �O-)segments, end variable, weight)� If x is a variable, and A is a pseudo-expression then (A�x); (A�x) and (A�) are items(called �-item, �-item and �-item respectively). We use s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s; s1; si; : : : to range oversegments and write ; for the empty segment. A �O-segment is a �-item immediatelyfollowed by an O-item. If s � s1s2 � � � sn, we call s1, s2, . . . sn, the main items of s.� Each pseudo-expression A is the concatenation of zero or more items and a variable orconstant: A � s1s2 � � � snx. These items s1; s2; : : : ; sn are called the main items of A;a concatenation of adjacent main items sm � � � sm+k, is called a main segment of A.� The weight of a segment s, weight(s), is the number of main items that compose thesegment. Moreover, we de�ne weight(sx) = weight(s).De�nition 2.2 (well-balanced segments, de�nitions, de�nition unfolding)� ; is a well-balanced segment.� If s1; s2 are well-balanced, then (A�)s1(BOx)s2 is well-balanced.� If s is well-balanced and does not contain main �-items, then (A�)s(B�x) occurring ina context is called a de�nition.� Let s be a well-balanced segment, occurring in a context, which consists of de�nitionsand let A 2 T . We de�ne the unfolding of the de�nitions of s in A, written [A]s,inductively as follows: [A]; � A, [A](B�)s1(C�x) � [A[x := B]]s1 and [A]s1 s2 � [[A]s2]s1 .Note that substitution takes place from right to left and that when none of the bindingvariables of s are free in A, then [A]s � A.9

Remark 2.3 We maintain the same liberal attitude for de�nitions, as we did for generalisedredexes. That is, not only (A�)(B�x) may act as a de�nition in a context, but also (A�)s(B�x)for any well-balanced segment s without main �-items.Note that we speak of de�nitions when such an (A�)s(B�x) occurs in a context; otherwise,when (A�)s(B�x) occurs in a term, we speak of a �-redex.De�nition 2.4 (match, �O- (reducible) couple, partner, partnered item, bachelor item)Let A 2 T . Let s � s1 � � � sn be a segment occurring in A.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is a O-itemand the segment si+1 � � � sj�1 is well-balanced. In this case, sisj is a �O-couple and ifO = � then sisj is a reducible couple.� When si and sj match, we call both si and sj the partners in the �O-couple. We alsosay that si and sj are partnered items.� All non-partnered O- (or �-)items sk in A, are called bachelor O- (resp. �-)items.3 The ordinary typing relation and its propertiesWe now introduce some general notions concerning typing rules which are the same as theusual ones when we do not allow de�nitions in the context (as is the case in the �-cube of[Bar 92]). When de�nitions are present however, the notions are more general.De�nition 3.1 (declarations, pseudocontexts, �0)1. A declaration d is a �-item (A�x). We de�ne subj(d) = x, pred(d) = A and d = ;. Inclassical notation, d � x : A.2. For a de�nition d � (B�)s(A�x) we de�ne subj(d) = x, pred(d) = A, d = s anddef(d) = B.3. We use d; d1; d2; : : : to range over declarations and de�nitions.4. A pseudocontext is a concatenation of declarations and de�nitions such that if (A�x)and (B�y) are two di�erent main items of the pseudocontext, then x 6� y. We use�;�;�0;�1;�2; : : : to range over pseudocontexts.5. For � a pseudocontext we de�nes 20 � to mean s is a main item occurring in �,dom(�) = fx 2 V j (A�x) 20 � for some Ag, (classically, fx 2 V j x : A 2 �g)�-decl = fs j s is a bachelor main �-item of �g, (classically, any declaration is bachelor)�-def = fs j s � (A�)s1(B�x) is a main segment of � where s1 is well-balanced g,Note that dom(�) = fsubj(d) j d 2 �-decl [�-defg.6. De�ne �0 between pseudocontexts as the least reexive transitive relation satisfying:� �� �0 �(C�x)� if no �-item in � matches a �-item in �� �d� �0 �d� if d is a de�nition 10

� �s(A�x)� �0 �(D�)s(A�x)� if (A�x) is bachelor in �s(A�x)�, s is well-balancedExample 3.2 A de�nition d � (B�)(A�x) can be written in classical notation (�x:A:�)B andde�nes x of type A to be B in �. If d � (B�)(C�)(D�y)(A�x) then this is ((�y:D:�x:A:�)C)B.It is hard to describe in words what this de�nition means since it is more or less parallel; ithas the same overall e�ect as (C�)(D�y)(B�)(A�x) or classically (�y:D:(�x:A:�)B)C.If � � (a�x)(b�y)(c�)(d�z)(e�u)(f�)(g�)(i�v)(j�w) then �-decl = f(a�x); (b�y); (e�u)gand �-def = f(c�)(d�z); (f�)(g�)(i�v)(j�w); (g�)(i�v)g.Furthermore � �0 (��r)(a�x)(b�y)(h�)(c�)(d�z)(k�r0)(l�)(e�u)(f�)(g�)(i�v)(j�w). Notethat � �0 �0 6) �-decl � �0-decl, but � �0 �0) �-def � �0-def.De�nition 3.3 (statements, judgements, �)1. A statement is of the form A : B, A and B are called the subject and the predicate ofthe statement respectively.2. When � is a pseudocontext and A : B is a statement, we call � ` A : B a judgement,and write � ` A : B : C to mean � ` A : B ^ � ` B : C.3. For � be a pseudocontext and d 2 �-def [�-decl, � invites d, notation � � d, i�� �d is a pseudocontext� �d ` pred(d) : S for some sort S and subj(d) 2 V S.� if d is a de�nition then �d ` def(d) : pred(d) and FV (def(d)) � dom(�).� � d holds if d is a \good" declaration or a \good" de�nition with respect to �. (Notethat d is empty if d is a declaration.) Moreover, usually, one requires that �(A�x) be apseudo-context and that � ` A : S before one can use �(A�x) in the start and weakeningrules (below). With de�nitions however, one also has to check that �d ` def(d) : pred(d)and that FV (def(d)) � dom(�) for obvious reasons, before �d can be used.De�nition 3.4 (De�nitional �-equality) For all legal contexts � we de�ne the binary relation� ` � =def � to be the equivalence relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T such that B arises from A by substituting one particularoccurrence of subj(d) in A by def(d), then � ` A =def B.Remark 3.5 If no de�nitions are present in � then � ` A =def B is the same as A =� B.De�nition 3.6 Let � be a pseudocontext and A be a pseudo-expression.1. Let d; d1; : : : ; dn be declarations and de�nitions. We de�ne � ` d and � ` d1 � � � dnsimultaneously as follows:� If d is a declaration: � ` d i� � ` subj(d) : pred(d).� If d is a de�nition: � ` d i� � ` subj(d) : pred(d) ^ � ` def(d) : pred(d)^� ` d ^ � ` subj(d) =def def(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.11

2. � is called legal if 9P;Q 2 T such that � ` P : Q.3. A 2 T is called a �-term if 9B 2 T [� ` A : B or � ` B : A].We take �-terms = fA 2 T j 9B 2 T [� ` A : B _ � ` B : A]g.4. We take �-kinds = fA j � ` A : 2g and �-types = fA 2 T j � ` A : �g.5. A 2 T is called a �-element if 9B 2 T 9S 2 S[� ` A : B and � ` B : S]. We have twocategories of elements: constructors and objects. We take �-constructors =fA 2 T j 9B 2 T [� ` A : B : 2]g and �-objects = fA 2 T j 9B 2 T [� ` A : B : �]g.6. A 2 T is called legal if 9�[A 2 �-terms]. Moreover, A is an X, if 9�[A 2 �-Xs] forX 2 ftype, term, kind, object, constructorg.Note that in 1. we do not have �d ` def(d) : pred(d) (as is the case for � � d) since � ` dintuitively means all information in d is already present in �, so extension of � with d isunnecessary.In the Cube of [Bar 92] and revisited below, the only declarations allowed are of the form(A�x). Hence there are no de�nitions. Therefore, � � d is of the form � � (A�x) and meansthat � ` A : S for some S and that x is fresh in �; A. Moreover, for any d � (A�x), rememberthat d � ;, subj(d) � x and pred(d) � A. Hence, in this section, d is a meta-variablefor declarations only and =def is the same as =� (which is independent of `).3.1 The typing relationDe�nition 3.7 (Axioms and rules of the Cube: d is a declaration, =def is =�)(axiom) <> ` � : 2(start rule) � � d�d ` subj(d) : pred(d) (usual notation � ` A : S�; x : A ` x : A x fresh)(weakening rule) � � d �d ` D : E�d ` D : E (or � ` A : S � ` D : E�; x : A ` D : E x fresh)(application rule) � ` F : (A�x)B � ` a : A� ` (a�)F : B[x := a](abstraction rule) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(conversion rule) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(formation rule) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a ruleNote that we prefer � � d over � ` d. The reason is that we like to have only one start andweakening rule for both declarations and de�nitions. The notion � as de�ned in De�nition 3.3takes care of both cases. (cf. Section 5.1.)Each of the systems of the Cube is obtained by taking the (S1; S2) rules allowed from asubset of f(�; �); (�;2); (2; �); (2;2)g. The basic system is the one where (�; �) is the only12

possible choice. All other systems have (�; �) plus some combination of (�;2), (2; �) and(2;2) for (S1; S2). Here is the table which presents the eight systems of the Cube:System Set of speci�c rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)Example 3.81. `�2 (���)(��y)� : � as we have the rule (2; �), but 6`L (���)(��y)� : � for any � whereL 2 f�!; �!; �P; �P!g. (In classical notation, `�2 ��:�:�y:�:� : �.)2. We discuss the following example as a preparation for Example 4.11.(���)(��t)((��q) � �Q)((t�)Q�N) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)Q butthis derivation can not be obtained in �!, �!, �! or �2 as we need the (�;2) rule in orderto derive that (��q)� : 2 and hence that ((��q) � �Q) is allowed in the context. (In classicalnotation, � : �; t : �;Q : �q:�:�; N : Qt `�P ((�x:�:�y:Qx:(�Z:Qx:Z)y)t)N : Qt.)3. If L 2 f�!; �!g, then (���)(��y0) 6`L (y0�)(��)(���)(��y)(y�)(��x)x : � because the termof part 1 of this example is not typable in L (note that with de�nitions, the last 9 steps beloware replaced by a single one in Example 5.2). Here is how this judgement is derivable in �2.(In classical notation, � : �; y0 : � `�2 ((��:�:�y:�:(�x:�:x)y)�)y0 : �.)` � : 2 (axiom)(���) `�2 � : � : 2 (start resp. weakening rule)(���)(��y0) `�2 y0 : � : � : 2 (start resp. weakening rule)(���)(��y0)(���) `�2 � : � (start)(���)(��y0)(���)(��y) `�2 y : � : � (start resp. weakening rule)(���)(��y0)(���)(��y)(��x) `�2 x : � : � (start resp. weakening rule)(���)(��y0)(���)(��y) `�2 (��x)� : � (formation rule (�; �))(���)(��y0)(���)(��y) `�2 (��x)x : (��x)� : � (abstraction rule)(���)(��y0)(���)(��y) `�2 (y�)(��x)x : � (application rule)(���)(��y0)(���) `�2 (��y)� : � (formation rule (�; �))(���)(��y0)(���) `�2 (��y)(y�)(��x)x : (��y)� : � (abstraction rule)(���)(��y0) `�2 (���)(��y)� : � (formation rule (2; �))(���)(��y0) `�2 (���)(��y)(y�)(��x)x : (���)(��y)� (abstraction rule)(���)(��y0) `�2 (��)(���)(��y)(y�)(��x)x : (��y)� (application rule)(���)(��y0) `�2 (y0�)(��)(���)(��y)(y�)(��x)x : � (application rule)3.2 Properties of the ordinary typing relationHere we list the most important properties of the Cube (see [Bar 92]). In the subsequentsections, these properties will be established for the Cube extended with generalised reductionand de�nition mechanisms. 13

Theorem 3.9 (The Church-Rosser Theorem for !!�)If A!!� B and A!!� C (or if B =� C), then for some D, B !!� D and C !!� DLemma 3.10 (Substitution Lemma for `)Assume �(A�x)� ` B : C and � ` D : A then �(�[x := D]) ` B[x := D] : C[x := D].Lemma 3.11 (Generation Lemma for `)1. � ` x : C) 9S1; S2 2 S 9B =� C[� ` B : S1 ^ (B�x) 20 � ^ � ` C : S2].2. � ` (A�x)B : C) 9S1; S2 2 S [� ` A : S1 ^ �(A�x) ` B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ [C 6� S2) 9S[� ` C : S]]]3. � ` (A�x)b : C) 9S;B [� ` (A�x)B : S ^ �(A�x) ` b : B ^C =� (A�x)B^C 6� (A�x)B) 9S 2 S[� ` C : S]].4. � ` (a�)F : C) 9A;B; x[� ` F : (A�x)B ^ � ` a : A ^ C =� B[x := a]^(B[x := a] 6� C) 9S 2 S[� ` C : S])].Corollary 3.12 (Generation Corollary for `)1. � ` A : B) 9S[B � S or � ` B : S]2. � ` A : (B1�x)B2) 9S[� ` (B1�x)B2 : S]3. If A is a �-term, then A is 2, a �-kind or a �-element.Corollary 3.13 (Subtyping for `) Any subterm of a legal term is a legal term.Theorem 3.14 (Subject Reduction for ` and !!�) � ` A : B ^A!!� A0) � ` A0 : BLemma 3.15 (Unicity of Types for ` and !!�)1. � ` A : B1 ^ � ` A : B2) B1 =� B22. � ` A : B ^ � ` A0 : B0 ^A =� A0) B =� B03. � ` B : S;B =� B0;� ` A0 : B0) � ` B0 : S.Theorem 3.16 (Strong Normalisation with respect to ` and !!�)For all `-legal terms M , M is strongly normalising with respect to !!�.4 Generalising reduction in the CubeIn this section we extend the classical notions of redexes and �-reduction of the Cube andshow that all the properties of Section 3.2 except SR are preserved.
14

4.1 The generalised reductionWe allow ��-couples to have the same \reduction rights" as ��-segments as follows:De�nition 4.1 (General �-reduction ,!� for the Cube)General one-step �-reduction ,!�, is the least compatible relation generated out of:(general �) (B�)s(C�x)A ,!� s(A[x := B]) if s is well-balancedGeneral ,!!� is the reexive and transitive closure of ,!� and �� is the least equivalencerelation generated by ,!!�.General �-reduction has �rstly been introduced by Nederpelt in [Ned 73] in order to provestrong normalisation for a typed lambda calculus inspired by de Bruijn's Authomath.Example 4.2 Cf. Example 1.1. As (c�)(P�f)(m�)(Q�x) is a well-balanced segment, then:A � (n�)(c�)(P�f)(m�)(Q�x)(R�y)(y�)(x�)f ,!� (c�)(P�f)(m�)(Q�x)(n�)(x�)f(n�)(R�y) corresponds to a \generalised" redex in classical notation, which appears after twoone-step �-reductions, leading to (�y:R:cmy)n. ,!� reduces ((�f :P :(�x:Q:�y:R:fxy)m)c)n to(�f :P :(�x:Q:fxn)m)c. This is di�cult in classical notation. We believe that item notationenables one to extend reduction smoothly. Moreover, ,!� extends !�.Lemma 4.3 If A !� B then A ,!� B. Moreover, if A ,!� B comes from contracting a��-segment then A!� B.Proof: Obvious as a ��-segment is an ordinary redex. 2Lemma 4.4 If A ,!� B then A =� B.Proof: It su�ces to consider the case A � s1(C�)s(D�x)E where the contracted redex isbased on (C�)(D�x), B � s1 s(E[x := C]), and s is well-balanced (hence weight(s) is even).We prove the lemma by induction on weight(s). Case weight(s) = 0 then obvious as ,!�coincides with!� in this case. Assume the property holds when weight(s) = 2n. Take s suchthat weight(s) = 2n + 2. Now, s � (C 0�)s0(D0�y)s00 where s0, s00 are well-balanced. Assumex 6� y (if necessary, use renaming).� >From s(E[x := C]) ,!� s0(s00(E[x := C])[y := C 0]), IH and compatibility, B =�s1 s0(s00(E[x := C])[y := C 0]) � s1 s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.� Moreover, A � s1(C�)(C 0�)s0(D0�y)s00(D�x)E ,!� s1(C�)s0(s00(D�x)E[y := C 0]) �BCs1(C�)s0(s00[y := C 0])(D[y := C 0]�x)(E[y := C 0]) � B0. So by IH A =� B0.� B0 ,!� s1s0(s00[y := C 0])(E[y := C 0][x := C]), x, y 62 FV (C)[FV (C 0) (by BC). Hence,by IH and substitution B0 =� s1s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.Therefore, A =� B0; B0 =� B00 and B =� B00, hence A =� B. 2As a result we see that conversion does not change the typing relation of Section 3.1.Corollary 4.5If A ,!!� B then A =� B. Moreover, A �� B i� A =� B.15

4.2 Properties of ordinary typing with generalised reductionBecause =� and �� are equivalent, the only lemmas/theorems of Section 3.2 a�ected by ourextension of reductions are those which have !!� in their heading. These are CR (Theo-rem 3.9), SR (Theorem 3.14), Unicity of Types (Lemma 3.15) and SN (Theorem 3.16). Inthis subsection, we show that CR and SN hold for the Cube with ,!!� and that SR holds for�! and �! but fails for the other six systems. Unicity of typing depends on SR and on thefact that =� is the same as the symmetric transitive closure of ,!!�. Hence, we ignore it hereas once we prove SR, the proof of Unicity of Types will be exactly that of Lemma 3.15.Theorem 4.6 (The Church-Rosser theorem for ,!!�)If A ,!!� B and A ,!!� C, then there exists D such that B ,!!� D and C ,!!� D.Proof: As A ,!!� B and A ,!!� C then by Corollary 4.5, A =� B and A =� C. Hence,B =� C and by CR for !!�, there exists D such that B !!� D and C !!� D. But, A!!� Bimplies A ,!!� B. Hence CR holds for ,!!�. 2Theorem 4.7 (Strong Normalisation with respect to ` and ,!!�)For all `-legal terms M , M is strongly normalising with respect to ,!!�.Proof: This is a special case of the proof of Theorem 6.19. 2In the rest of this section, L ranges over �! and �!. The crucial step in the proof of SubjectReduction in �! and �! is proved in the following:Lemma 4.8 (Shu�e Lemma for �! and �!)� `L s1(A�)s2B : C () � `L s1s2(A�)B : C where s2 is well-balanced and the bindingvariables in s2 are not free in A.Proof: For a detailed proof, the reader is referred to [BKN 94y]. Informally, the reasonfor this lemma to be true for �! and �! is that in these systems, for any legal term of theform (P�x)Q, x =2 FV (Q) (this is not true for the other systems of the cube because of themixing of levels that comes with the rules (�;2) and (2; �)). Therefore none of the variablesof dom(s2) can occur free in the type of B which means that B must have a type of the form(C�x)D and hence B can be applied directly to A. 2Theorem 4.9 (Generalised Subject Reduction for �! and �! for ` and ,!!�)� `L A : B ^A ,!� A0) � `L A0 : B.Proof: We prove by simultaneous induction on the generation of � `L A : B that� `L A : B ^A ,!� A0) � `L A0 : B (i)� `L A : B ^ � ,!� �0) �0 `L A : B (ii)where � ,!� �0 means � � �1(A�x)�2;�0 � �1(A0�x)�2 and A ,!� A0 for some �1;�2; A;A0; x.The cases in which the last rule applied is axiom, start, weakening or conversion are easy (forstart: use conversion). We treat the three other cases.Formation: � `L (A1�x)B1 : S1 is a direct consequence of � `L A1 : S1 and �(A1�x) `L B1 :S1, then (i) comes from IH(i) and IH(ii); (ii) comes from IH(ii). Abstraction: similar to for-mation. Application: � `L (a�)F : B1[x := a] is a direct consequence of � `L F : (A1�x)B1and � `L a : A1. Now (ii) comes from IH(ii). We consider various cases:� Subcase 1: (a�)F ,!� (a�)F 0 because F ,!� F 0. Then (i) follows from IH(i).16

� Subcase 2: (a�)F ,!� (a0�)F because a ,!� a0. From IH(i) and application, � ` (a0�)F :B1[x := a0]. Also, from Corollary 3.12, for some S1: � `L (A1�x)B1 : S1 and henceby generation: �(A�x) `L B1 : S1 and thus by substitution � `L B1[x := a] : S1. Nowconversion gives � `L (a0�)F : B1[x := a] which proves (i).� Subcase 3: F � s(A0�y)F 0, s well-balanced and (a�)F ,!� sF 0[y := a]. Now, by Lemma4.8, � `L s(a�)(A0�y)F 0 : B1[x := a] and s(a�)(A0�y)F 0 !� sF 0[y := a] so by SR for!!�, � `L sF 0[y := a] : B1[x := a] which proves (i). 2Generalised Subject Reduction however is not valid for the other systems as the followingexamples show (note that failure of SR in �2 (resp. �P), means its failure in �P2; �! and �C(resp. �P2; �P! and �C)):Example 4.10 (SR does not hold in �2 using ,!!�)(���)(��y0) `�2 (6`L for L 2 f�!; �!g) (y0�)(��)(���)(��y)(y�)(��x)x : � (see Example 3.8).Moreover, (y0�)(��)(���)(��y)(y�)(��x)x ,!� (��)(���)(y0�)(��x)x.Yet, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : �.Even, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : � for any � .This is because (��x)x : (��x)� and y0 : � yet � and � are unrelated and hence we fail in�ring the application rule to �nd the type of (y0�)(��x)x. Looking closer however, one �ndsthat (��)(���) is de�ning � to be �, yet no such information can be used to combine (��x)�with �. We will rede�ne the rules of the Cube to take such information into account.Example 4.11 (SR does not hold in �P using ,!!�)(���)(��t)((��q)��Q)((t�)Q�N) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)Q. Notehere that this cannot be derived in �!, �!, �2 or �! (see Example 3.8).And (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z ,!� (t�)(��x)(N�)((x�)Q�Z)Z.Now, N : (t�)Q; t : �; y : (x�)Q;x : �; (t�)Q 6=� (x�)Q, hence:(���)(��t)((��q) � �Q)((t�)Q�N) 6`�P (t�)(��x)(N�)((x�)Q�Z)Z : � for any � .Here again the reason of failure is similar to the above example. At one stage, we needto match (x�)Q with (t�)Q but this is not possible even though we do have the de�nitionsegment: (t�)(��x) which de�nes x to be t. All this calls for the need to use these de�nitions.5 Extending the Cube with de�nition mechanismsWe extend the derivation rules so that we can use de�nitions in the context. The rules remainunchanged except for the addition of one rule, the (def rule), and that the use of � ` B =def B0in the conversion rule really has an e�ect now, rather than simply postulating B =� B0.

17

5.1 The de�nition mechanisms and extended typingDe�nition 5.1 (Axioms and rules of the Cube extended with de�nitions: d ranges over dec-larations and de�nitions)(axiom) <> `e � : 2(start rule) � � d�d `e subj(d) : pred(d)(weakening rule) � � d �d `e D : E�d `e D : E(application rule) � `e F : (A�x)B � `e a : A� `e (a�)F : B[x := a](abstraction rule) �(A�x) `e b : B � `e (A�x)B : S� `e (A�x)b : (A�x)B(def rule) �d `e C : D� `e dC : [D]d if d is a de�nition(conversion rule) � `e A : B � `e B0 : S � `e B =def B0� `e A : B0(formation rule) � `e A : S1 �(A�x) `e B : S2� `e (A�x)B : S2 if (S1; S2) is a ruleIn the above rules, start and weakening play a dual role (below, d � (B�)s(A�x)):(start1 rule) � `e A : S�(A�x) `e x : A x fresh(start2 rule) �s `e A : S �s `e B : A�(B�)s(A�x) `e x : A �d pseudocontext, FV (B) � dom(�)(w1 rule) � `e A : S � `e D : E�(A�x) `e D : E x fresh(w2 rule) �s `e A : S �s `e B : A �s `e D : E�(B�)s(A�x) `e D : E �d pseudocontext, FV (B) � dom(�)Moreover, the (def rule) could also be split into two rules:(def1 rule) �d `e C : S� `e dC : S if d is a de�nition(def2 rule) �d `e C : D �d `e D : S� `e dC : dD if d is a de�nitionWe �nd it more elegant and compact to write one single rule to represent two di�erent ones.Some people might argue that in the case of the (def rule), we have to split it up in the aboverule. We do not agree with this. The (def rule) says that if C : D can be deduced from aconcatenation of de�nitions d, then dC will be of type D where all the sub-de�nitions in dhave been unfolded in D. We do not get type dD in order to avoid things like d2. It is worthhowever pointing out that our (def rule) is equivalent to the above two by Corollary 5.6.18

Note that in the abstraction rule, it follows that (A�x) is bachelor in �(A�x). The reasonis that we can show that if � is legal then � contains no bachelor main �-items. Hence as� `e (A�x)B : S, � has no bachelor �-items and so (A�x) cannot be matched in �.By �d `e def(d) : pred(d) in the (start rule) and (weakening rule), abbreviating 2 (asin (2�)(A�x)) is not allowed. Also by �d `e pred(d) : S, abbreviating kinds is not allowed.We believe that this last condition can be omitted but it doesn't seem urgent to do so. Notethat the (def rule) does global substitution in the predicate of all the occurrences of subjectsin d. The reason is that d no longer remains in the context. In the conversion rule however,substitution is local as � keeps all its information (see De�nition 3.4).Example 5.2 Here is how the term in Example 3.8 and its ,!�-contractum is typed in �2.(Note how quicker we can type terms once we have de�nitions. Note also that the derivationgiven in Example 3.8 is also valid here, yet it is more clear and e�cient to use the de�nitionalsegments (y�)(��x) and (y0�)(��)(���)(��y). The present derivation is even valid in �!,because we don't need (���)(��y)(y�)(��x)x to have a type due to the (def rule).)`e�2 � : 2 (axiom)(���) `e�2 � : � : 2 (start resp. weakening)(���)(��y0) `e�2 y0 : � : � : 2 (start resp. weakening)(���)(��y0)(��)(���) `e�2 y0 : � : � : 2; � : � (start resp. weakening)(���)(��y0)(��)(���) `e�2 � =def � (de�nition of =def)(���)(��y0)(��)(���) `e�2 y0 : � : � (conversion)(���)(��y0)(y0�)(��)(���)(��y) `e�2 y : � : � (start resp. weakening)(���)(��y0)(y0�)(��)(���)(��y)(y�)(��x) `e�2 x : � (start resp. weakening)[�](y0�)(��)(���)(��y)(y�)(��x) � �[x := y][y := y0][� := �] � �(���)(��y0) `e�2 (y0�)(��)(���)(��y)(y�)(��x)x : � (def rule)Also (���)(��y0) `e�2 (��)(���)(y0�)(��x)x : � as follows (needed derivation steps, including(���)(��y0)(��)(���) `e�2 y0 : � by (conversion) , are left to the reader):(���)(��y0)(��)(���)(y0�)(��x) `e�2 x : � so by (def rule):(���)(��y0) `e�2 (��)(���)(y0�)(��x)x : �[x := y0][� := �] � �Example 5.3 Also the term of Example 4.11 can be easily and quickly typed in �P (notethat this term cannot be typed in �! as the term Q can't):(���)(��t)((��q) � �Q)((t�)Q�N)(N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z) `e�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N) `e�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)QIts ,!�-contractum gets the same type in the same way:(���)(��t)((��q) � �Q)((t�)Q�N)(t�)(��x)(N�)((x�)Q�Z) `e�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N) `e�P (t�)(��x)(N�)((x�)Q�Z)Z : (t�)QRemark 5.4 We need � `e A =def B instead of A =� B in the conversion rule because wewant from (��A)(A�)(��x) `e A : � and y is fresh to derive not only (��A)(A�)(��x)(A�y) `ey : A but also (��A)(A�)(��x)(A�y) `e y : x. This is not possible if conversion is left with
19

B =� B0: how can we ever derive (��A)(A�)(��x)(A�y) `e y : x as x 6=� A? If we change tothe conversion rule using =def, then we are �ne:(��A)(A�)(��x)(A�y) `e y : A(��A)(A�)(��x)(A�y) `e x : �(��A)(A�)(��x)(A�y) `e x =def A and so with conversion,(��A)(A�)(��x)(A�y) `e y : x>From the point of view of e�ciency, it may seem unsatisfactory that in the (def rule) de�ni-tions are being unfolded in D, since this will usually mean a size explosion of the predicate.The unfolding is not necessary for non-topsorts (i.e. for D 6� 2) however:Lemma 5.5 The following rule is a derived rule:(derived def rule) �d `e C : D �d `e D : S� `e dC : dD if d is a de�nitionProof: If �d `e C : D then by the (def rule), � `e dC : [D]d; if �d `e D : S then by the (defrule) � `e dD : S. Now by conversion � `e dC : dD since � `e dD =def [D]d. 2Corollary 5.6 The def rule is equivalent to the def1 and def2 rules together.Proof: Only the direction from right to left is worth showing. This depends on:1. correctness of types: if � `e A : B then B � 2 or � `e B : S.2. if � `e dD : S then � `e [D]d : S.Both 1 and 2 are easy to show. Now, if �d `e C : D and D � 2 then use the def2 rule toget � `e dC : [D]d. If �d `e C : D and �d `e D : S then use the def1 rule, conversion and 2above to get � `e dC : [D]d. 2If D is a sort then of course unfolding d in D is not ine�cient since d will disappear.Due to the possibility of using the (def rule) to type a redex, by using the (derived defrule), in some cases it is even possible to circumvent a normally inevitable size explosion:suppose we want to derive in �C a type for the term (B�)(���)(��x)((��y)��f)(x�)f .In �C without de�nions, we will have to derive �rst the type (���)(��x)((��y)��f)� forthe subterm (���)(��x)((��x)��f)(x�)f , and by the application rule we will �nally derivethe type (B�x)((B�y)B�f)B. Note that due to the last applied application rule the term Bhas been copied four times, which could make the resulting type very large.Using our type system extended with de�nitions however, we would �rst derive the type(��x)((��y)��f)� for the term (��x)((��y)��f)(x�)f , and then by the derived de�nitionrule we would derive the type (B�)(���)(��x)((��y)��f)� and avoid the substitution of Bfor �. This is a further evidence for the advantage of using de�nitions.5.2 Properties of the Cube with de�nitionsIf we look at Section 3.2 and because we have changed ` to `e but left !!� unchanged, wesee that all the lemmas and theorems which had ` in their heading get a�ected. In thissubsection, we will list these lemmas and theorems for `e and give their proofs.Lemma 5.7 (Free variable lemma for `e) Let � be a legal context such that � `e B : C.1. If d and d0 are two di�erent elements of �-decl[�-def, then subj(d) 6� subj(d0).20

2. FV (B); FV (C) � dom(�).3. For s a main item of �, FV (s) � fsubj(d) j d 2 �-decl[�-def; d is to the left of s in �g.Proof: All by induction on the derivation of � `e B : C. 2Lemma 5.8 (Start Lemma for `e)Let � be a legal context. Then � `e � : 2 and 8d 20 �[� `e d].Proof: � legal) 9B;C[� `e B : C]; now use induction on the derivation � `e B : C. 2Lemma 5.9 (Transitivity Lemma for `e)Let � and � be legal contexts. Then: [� `e � ^� `e A : B]) � `e A : B.Proof: Induction on the derivation � `e A : B. 2Lemma 5.10 (De�nition-shu�ing for `e) Let d be a de�nition.1. If �d� `e C =def D then �d(def(d)�)(pred(d)�subj(d))� `e C =def D.2. If �d� `e C : D then �d(def(d)�)(pred(d)�subj(d))� `e C : D.Proof: 1. is by induction on the generation of �(A�)s(B�x)� `e C =def D. 2. is by inductionon the derivation of �(A�)s(B�x)� `e C : D using 1. for conversion. 2Lemma 5.11 (Thinning for `e)1. If �1�2 `e A =def B, �1��2 is a legal context, then �1��2 `e A =def B.2. If � and � are legal contexts such that � �0 � and if � `e A : B, then � `e A : B.Proof: 1. is by induction on the derivation �1�2 `e A =def B. 2. is as follows:� If �� `e A : B, � `e C : S, x is fresh, and no �-item in � is partnered in �, then�(C�x)� `e A : B. Use induction on the derivation �� `e A : B + 1. for conversion.� If �s� `e A : B, �s `e C : D : S, FV (C) � dom(�), x is fresh, s is well-balanced, then�(C�)s(D�x)� `e A : B. Use induction on the derivation �s� `e A : B.� If �s(A�x)� `e B : C; (A�x) bachelor, s well-balanced, �s `e D : A;FV (D) � dom(�),then �(D�)s(A�x)� `e B : C is shown by induction on the derivation �s(A�x)� `eB : C (for conversion, use 1.). 2Lemma 5.12 (Substitution lemma for `e) Let d be a de�nition.1. If �d� `e A =def B, A and B are �d�-legal terms, then �[�]d `e [A]d =def [B]d2. If B is a �d-legal term, then �d `e B =def [B]d3. If �(A�)(B�x)� `e C : D then ��[x := A] `e C[x := A] : D[x := A]4. If �(B�x)� `e C : D, � `e A : B, (B�x) bachelor in �, then ��[x := A] `e C[x := A] :D[x := A]5. If �d� `e C : D, then �[�]d `e [C]d : [D]d21

Proof:1. Induction on the derivation rules of =def, 2. Induction on the structure of B, 3. Induc-tion on the derivation rules, using 1., 2. and thinning, 4. Idem and 5. use 3. 2Lemma 5.13 (Generation Lemma for `e)1. If � `e x : A then 9B;S0: (B�x) 20 �, � `e B : S, � `e A =def B and � `e A : S0.2. If � `e (A�x)B : C then for some D and sort S: �(A�x) `e B : D, � `e (A�x)D : S,� `e (A�x)D =def C and if (A�x)D 6� C then � `e C : S0 for some sort S0.3. If � `e (A�x)B : C then for some sorts S1; S2: � `e A : S1, � `e B : S2, (S1; S2) 2 R,� `e C =def S2 and if S2 6� C then � `e C : S for some sort S.4. If � `e (A�)B : C, (A�) bachelor in B , then for some D;E, x: � `e A : D, � `e B :(D�x)E, � `e E[x := A] =def C and if E[x := A] 6� C then � `e C : S for some S.5. If � `e sA : B, then �s `e A : BProof: 1., 2., 3. and 4. follow by induction on the derivations (use the thinning lemma).As to 5., we use induction on weight(s). Case weight(s) = 0: nothing to prove. If we haveproven the hypothesis for all segments s that obey weight(s) � 2n and weight(s) = 2n+ 2,s � s1s2 (neither s1 � ; nor s2 � ;) then by the IH: �s1 `e s2A : B, again applying theinduction hypothesis gives �s1s2 `e A : B. If we have proven the hypothesis for all segments sfor which weight(s) � 2n and weight(s) = 2n+ 2; s � (D�)s1(E�x) where weight(s1) = 2nthen an induction on the derivation rules shows that one of the following cases is applicable:� �s `e A : B0, � `e [B0]s =def B and if [B0]s 6� B then � `e B : S for some sort S.� � `e D : F , � `e s1(E�x)A : (F�y)G, � `e B =def G[y := D] and if G[y := D] 6� Bthen � `e B : S for some sort S.In the �rst case note that FV (B) \ dom(s) = ; and by thinning �s `e [B0]s =def B, bysubstitution �s `e [B0]s =def B0. So �s `e B0 =def B and by conversion �s `e A : B.In the second case, by IH, �s1 `e (E�x)A : (F�y)G. Now 2. tells us �s1(E�x) `e A : L,�s1 `e (E�x)L =def (F�y)G and (E�x)L 6� (F�y)G gives �s1 `e (F�y)G : S1 for some S1.This means that x � y, �s1 `e E =def F , �s1 `e L =def G. Out of �s1 `e (E�x)L : S weget by 3. that �s1 `e E : S2 for some sort S2, thinning gives �s1 `e D : F so by conversion�s1 `e D : E and by thinning on �s1(E�x) `e A : L we get �s `e A : L.Out of � `e B =def G[x := D] we get (thinning and substitution) �s `e B =def G, out of�s1 `e L =def G we get �s `e L =def G, hence �s `e B =def L.Now if G[y := D] 6� B then 9S : � `e B : S, and if G[y := D] � B we get out of�s1 `e (E�x)A : (F�y)G that 9S0 : �s1 `e G : S0, by thinning and substitution we get that�s `e G[y := D] : S0. Hence 9S : �s `e B : S and by conversion we conlude �s `e A : B. 2Theorem 5.14 (Subject Reduction for `e and !!�)� `e A : B ^A!!� A0) � `e A0 : B.Proof: We only need to consider A !� A0. Suppose � `e (A�)(B�x)C : D. Then bygeneration, �(A�)(B�x) `e C : D, and by substitution we get � `e C[x := A] : D[x := A], butas x =2 FV (D), D[x := A] � D. The compatibility cases are easy. 222

This may seem to be too easy a proof for Subject Reduction, but remember that the hardwork is already done in case 5. of the Generation Lemma.Lemma 5.15 (Unicity of Types for `e)1. � `e A : B ^ � `e A : B0) � `e B =def B02. � `e A : B ^ � `e A0 : B0 ^A =� A0) � `e B =def B0Proof:1. By induction on the structure of A using the Generation Lemma.2. By Church-Rosser and Subject Reduction using 1. 2Remark 5.16 We didn't prove � `e B : S, � `e A : B0, B =� B0) � `e B0 : S. This seemsdi�cult to prove because if � `e B0 : S0 then by Unicity of Types � `e S =def S0 and it isunclear if S � S0. Furthermore, we didn't prove � `e A : B, � `e A0 : B0, � `e A =def A0) � `e B =def B0 as here we face similar problems. We claim that one can prove this byshowing �rst that � `e A : B) � `e [A]� : [B]�, where [A]� means all de�nitions in � are tobe unfolded in A. We don't need these properties for our theory however.Theorem 5.17 (Strong Normalisation for the Cube with respect to `e and !!�)For all `e-legal terms M , M is strongly normalising with respect to !!�.Proof: This is a special case of the proof of Theorem 6.19. 2Fact 5.18 Subtyping does not hold for `e. Consider the following derivable judgement:(���) `e (��)(���)(��y)(y�)(��z)z : (��y)�The subterm (���)(��y)(y�)(��z)z is not typable: suppose � `e (���)(��y)(y�)(��z)z : A,then by the Generation Lemma, �0 `e z : �0 where �0 � �(���)(��y)(y�)(��z) and �0 satis�es�0 `e � =def �0 and �0 `e �0 : S.Since � cannot contain bachelor �-items, we know that (���) is not partnered in �0, hence�0 6`e � =def �. But since (y�)(��z) 2 �0-def we know that �(���)(��y) `e y : � : S, also�(���)(��y) `e y : � so by Unicity of Types, �(���)(��y) `e � =def �, contradiction.The reason for this is that when we typed (��)(���)(��y)(y�)(��z)z, we used the context(���)(��)(���) to type (��y)(y�)(��z)z. This context de�nes � to be �. Now, to type(���)(��y)(y�)(��z)z, the de�nition (��)(���) cannot be used. Hence, we don't have allnecessary information to type (���)(��y)(y�)(��z)z. We do however have a partial result:Lemma 5.19 (Restricted Subtyping) If � `e A : B, A0 is a subterm of A such that allbachelor items in A0 are also bachelor in A, then A0 is legal.Proof: We prove by induction on the derivations: if A0 is a subterm of � or A such thatall bachelor items in A0 are also bachelor items in � respectively A, then A0 is legal.Note that in the case of the (def rule) subterms s2C where d � s1 s2, s1 6� ; do not satisfythe restrictions, since at least one item of s2 is bachelor in s2C but partnered in dC. 2Subterms satisfying the bachelor restriction as in Lemma 5.19 above, are more important thanthose not satisfying it. The reason for this is that the latter terms have an extra abstraction(the newly bachelor �-item) and hence are �-types which makes them more involved, whereasthe subterm property is usefull because it tells something about less involved terms.23

6 The Cube with de�nitions and generalised reductionNow we extend the type system of Section 5 by changing the reduction!!� into ,!!�. As wasthe case in Section 4 the derivation rules stay the same as those with classical �-reduction,hence almost all lemmas that have been proved for the system in Section 5 are still valid, forinstance the Generation Lemma and Restricted Subtyping. The only properties that haveto be investigated are Church-Rosser, Subject Reduction and Strong Normalisation. We willshow now that these properties too are still valid.Theorem 6.1 (The Church-Rosser theorem for ,!!�) If A ,!!� B and A ,!!� C, thenthere exists D such that B ,!!� D and C ,!!� D.Proof: see Theorem 4.6. 2Again the hard work for Subject Reduction is already done in the Generation Lemma:Theorem 6.2 (Subject Reduction for `e and ,!!�)If � `e A : B and A ,!!� A0 then � `e A0 : B.Proof: We only need to consider A ,!� A0. Suppose � `e dC : D. Then by generation,�d `e C : D. Hence by de�nition-shu�ing (5.10, say A � def(d), B � pred(d) and x �subj(d)), �d(A�)(B�x) `e C : D. Hence by substitution �d `e C[x := A] : D[x := A], and by(def rule) � `e d(C[x := A]) : [D[x := A]]d, which is � `e d(C[x := A]) : [D]d. Now by thevariable convention [D]d � D so we are done. The compatibility cases are easy. 26.1 Strong NormalisationIn [BKN 94x], we used the technique of [Bar 92] to show Strong Normalisation for �! withextended reduction. Here we shall extend the exible proof of [Geuvers 94]. We do not givethe full details, but we only give a rough outline of the adaptations that had to be made tothe proof in [Geuvers 94]. For details, the reader is referred to [BKN 94y]. The proof holdsfor any ` relation of Section 3, for `e and any reduction relation ! which is CR, contains!� and is such that the least equivalence relation closed under ! is the same as =�.Lemma 6.3 (Soundness of !!) If A;B 2 T are legal terms such that A =� B then thereis a path of one-step reductions and expansions via legal terms between A and B.Proof: By Church-Rosser there exists a term C such that A !!� C and B !!� C. BySubject Reduction for ordinary �-reduction all terms on the path A � � �C � � �B are legal. 2De�nition 6.4 De�ne the key redex of a term M as follows:1. (A�)(B�x)C has key redex (A�)(B�x)C.2. If M has key redex N , then (P�)M has key redex N .De�ne redk(M) to be the term obtained from M by contracting its key redex. Note that notall terms have a key redex and that if a term has a key redex then it is unique.De�nition 6.5� De�ne the set of base terms B!! � � by V � B!!, and if M 2 B!!; N 2 SN!! then also(N�)M 2 B!!. 24

� Call X � � saturated!! i�: X � SN!!, B!! � X and for all M 2 �: if M 2 SN!! andredk(M) 2 X then also M 2 X.� De�ne SAT!! = fX � � : X is saturated!!gLemma 6.61. SN!! 2 SAT!!.2. 8X 2 SAT!! : X 6= ;:3. If N 2 SN!!;M 2 X 2 SAT!! and x =2 FV (M) then (N�)(�x)M 2 X. (Note here that[Geuvers 94] takes (N�)(M�)(�y)(�x)y instead of (N�)(�x)M . The �rst however, willnot �t our purposes as is explained in Remark 6.17)4. A;B 2 SAT!!) A �! B 2 SAT!!.5. If I is a set and Xi 2 SAT!! for all i 2 I, then Ti2I Xi 2 SAT!!.We de�ne in analogy to [Geuvers 94] three maps, �rst V of �-kinds to the function space ofSAT!!, then [[]]� of �-termsn�-objects to elements of the function space of SAT!!, and third([])� of �-terms to �, such that when certain conditions are met we have:� ` A : B : 2) [[A]]� 2 V(B); [[B]]� 2 SAT!! and � ` A : B) ([A])� 2 [[B]]� .De�nition 6.7 De�ne for all kinds A the set-theoretical interpretation of A as follows:� V(�) = SAT!!,� V((A�x2)B) = V(A)! V(B), the function space of V(A) to V(B)� V((A�x�)B) = V(B)� V(dA) = V(A) if d a de�nitionNow de�ne U = SfV(A) j A is a `-kind g.Lemma 6.81. If A is a legal kind, B a legal constructor and C is a legal object, thenV(A) = V(A[x2 := B]) and V(A) = V(A[x� := C]).2. If dA is a legal kind, d is a de�nition, then V([A]d) = V(A).De�nition 6.9 Let � be a `-legal context.� A �-constructor valuation, notation � j=2 �, is a map � : V 2 �! U such that forall (A�x) 20 � with A a �-kind (i.e. x 2 V 2): �(x) 2 U(A).� If � is a constructor valuation, then [[]]� : �-termsn�-objects! U is de�ned inductivelyas follows:[[2]]� := SN!![[�]]� := SN!![[x2]]� := �(x2) 25

[[(A�)B]]� := ([[B]]�[[A]]� if A 2 �-constructors[[B]]� if A 2 �-objects[[(A�x)B]]� := (�f 2 V(A):[[B]]�(x:=f) if A 2 �-kinds[[B]]� if A 2 �-types[[(A�x)B]]� := ([[A]]� ! Tf2V(A)[[B]]�(x:=f) if A 2 �-kinds; x 2 V 2[[A]]� ! [[B]]� if A 2 �-types; x 2 V �where �(x := N) is the valuation that assigns �(y) to y 6� x and N to x. Furthermore,with [[A]]� [[B]]� we mean application of the function [[A]]� onto its argument [[B]]� and by� we mean function-abstraction.Lemma 6.10 (Soundness of [[]]�) If � ` A : B : 2 then for all � such that � j=2 �, wehave: [[A]]� and [[B]]� are well-de�ned and [[A]]� 2 V(B), [[B]]� 2 SAT!!.De�nition 6.11 If � j=2 �, then we call � cute with respect to � if for all d 2 �-def suchthat subj(d) 2 V 2, �(subj(d)) = [[def(d)]]�.Lemma 6.121. If � j=2 � and A is �-legal, then [[A]]� depends only on the values of � on the freeconstructor variables of A.2. If � j=2 � then there is a cute �0 such that �0 j=2 � and �0 = � on the non-de�nitionalconstructor variables of dom(�).3. If � j=2 � and � is cute with respect to � then � ` A =def B =) [[A]]� = [[B]]�.De�nition 6.13� Let � j=2 � such that � is cute with respect to �. An object valuation of � with respectto �, notation �; � j= �, is a map � : V ! � such that for all (A�x) 20 �: �(x) 2 [[A]]�(regardless of whether A 2 �-kinds or A 2 �-types).� For �; � j= � (note: this implies � is cute), de�ne ([])� : �-terms �! � as follows:([x])� := �(x)([�])� := �([2])� := 2([(N�)M])� := (([N])��)([M])�([(A�x)B])� := (([A])��)(�y)(�x)([B])�(x:=x) (where y =2 FV (B))([(A�x)B])� := ((�y)([B])�(x:=y)�)(([A])��)x (where y =2 FV (B))Note that we need BC to ensure that no unwanted bindings occur in the case (A�x)B.The use of x in this case is not essential, we also could reserve one special variable w thatshould not be used otherwise and de�ne ([(A�x)B])� to be ((�x)([B])�(x:=x)�)(([A])��)w.26

� We de�ne another map d e : �-terms �! � bydxe := xd�e := �d2e := 2d(N�)Me := (dNe�)dMed(A�x)Be := (dAe�)(�y)(�x)dBe (where y =2 FV (B))d(A�x)Be := ((�y)dB(x := y)e�)(dAe�)x (where y =2 FV (B))De�nition 6.14 Let � be a context, A;B 2 �-terms. � satis�es that A is of type B withrespect to ` and !!, notation � j=!̀! A : B, i� 8�; �[�; � j= �) ([A])� 2 [[B]]�].Lemma 6.151. If �(A�)d(B�x)� is a legal context and �; � j= �(A�)d(B�x)� then ([A])� 2 [[B]]� and([B])� 2 SAT!!.2. �d j= A : B =) � j= dA : [B]dLemma 6.16 (([])� versus d e)1. 8M 2 �-terms, 8�: ([M])� � dMe[~x := ~�(x)] where ~x are the free variables of M .2. If s is a well-balanced segment then dsAe � dsedAe and dse is also well-balanced. More-over, FV (dAe) = FV (A).3. For all M 2 �-terms: dMe is strongly normalising)M is strongly normalising.Remark 6.17 With this Lemma, it becomes clear why we depart from [Geuvers 94] by usingd(A�x)Be to be (dAe�)(�y)(�x)dBe instead of (dAe�)((�x)dBe�)(�u)(�v)u.Consider for example P � (A�)(B�)(C�x)(D�y)E and Q � (B�)(C�x)E[y := A]. It isobvious that P ,!� Q and that dP e � (dAe�)(dBe�)(dCe�)(�p)(�x)(dDe)�)(�q)(�y)dEe ,!!�dQe � (dBe�)(dCe�)(�p)(�x)dEe[y := dAe]. Yet, if we use the translation of [Geuvers 94],then we get dP e � (dAe�)(dBe�)(dCe�)((�x)d(D�y)Ee�)(�u)(�v)u6,!!� dQe � (dBe�)(dCe�)((�x)dEe[y := dAe]�)(�s)(�t)s.Lemma 6.18 � ` A : B) � j= A : BTheorem 6.19 (Strong Normalisation for the Cube with respect to `e and ,!!�)For all `e-legal terms M , M is strongly normalising with respect to ,!!�.Proof: Let M be a `e-legal term. Then either M � 2 or for some context � and term N ,� `e M : N . In the �rst case, clearly M is strongly normalising. In the second case, de�necanonical elements cA 2 V(A) for all A 2 �-kinds as follows:c� := SN,!!�c(A�x)B := �f 2 V(A):cB if A 2 �-kinds; x 2 V 2c(A�x)B := cB if A 2 �-types; x 2 V �Take � such that �(x) = cA whenever (A�x) 20 � and �(subj(d)) = [[def(d)]]� wheneverd 20 �-def and take � such that �(subj(d)) = ([def(d)])� for all subde�nitions d of � and�(x) = x otherwise. Then �; � j= �, hence ([M])� 2 [[N]]�, where ([M])� = dMe as mentionedin lemma 6.16. Hence dMe 2 [[N]]� � SN,!!� . By lemma 6.16 now also M 2 SN,!!� . 227

This Theorem also proves SN for the other Cubes in this paper (the Cube extended withnothing, de�nitions or ,!!�) as the legal terms of those Cubes are also legal in the Cube ofthis section, and SN with respect to ,!!� implies SN with respect to !!�.7 Comparing the system with de�nitions to other systemsIn this section we compare the type systems generated by `e with the one generated by `, andwith the one of [SP 93]. We show a conservativity result which says that in a certain sense,de�nitions are harmless. That is, even though we can type more terms using `e than using `,whenever a judgement is derivable in a theory L using de�nitions and `e, it is also derivablein the theory L without de�nitions, using only ` and where all the de�nitions are unfolded.We discuss the e�ectiveness of derivations and type-checking using de�nitions. More workhas to be done still but it is certain that there is a gain in using de�nitions.7.1 ConservativityAs we saw in example 5.2, in the type systems with de�nitions there are more legal terms.Therefore, it has to be investigated to what extent the set of legal terms has changed. Note�rst that all derivable judgements in a type system of the �-cube are derivable in the sametype system extended with de�nitions as we only extended, not changed, the derivation rules.A second remark concerns the bypassing of the formation rule by using the weakening andde�nition rule instead: In �2 without de�nitions we can derive the following by using theformation rules (�; �) and (2; �) (take � � (���)(��y)):� `�2 y : � : � : 2�(���) `�2 � : � (start)�(���)(��x) `�2 x : � : � (start resp weakening)�(���) `�2 (��x)� : � (formation rule (�; �))�(���) `�2 (��x)x : (��x)� (abstraction)� `�2 (���)(��x)� : � (formation rule (2; �))� `�2 (���)(��x)x : (���)(��x)� (abstraction)� `�2 (��)(���)(��x)x : (��x)� (application, we already knew � `�2 � : �)� `�2 (y�)(��)(���)(��x)x : � (application, we already knew � `�2 y : �)It is not possible to derive this judgement in �! as (2; �) is needed. Using the observationthat (y�)(��)(���)(��x)x can be seen as x with two de�nitions added, we can derive thejudgement in a system with de�nition without having to use the (�; �) and (2; �):� `e�! y : � : � : 2�(��)(���) `e�! y : �; � : � (weakening resp. start)�(��)(���) `e�! � =def � (use the de�nition in the context)�(��)(���) `e�! y : � (conversion)�(y�)(��)(���)(��x) `e�! x : � (start)� `e�! (y�)(��)(���)(��x)x : �[x := y][� := �] � � (de�nition rule)This example shows that in �!def we have more legal judgements than in �!. Nowtake the judgement � ` (��)(���)(M�x)x : (M�x)M where M � (y�)(��z)(��)(��) and28

� � (���)(��y). This can be derived in �C using (2;2), (2; �), (�;2) and (�; �) as follows:� `�C � : � : 2�(���) `�C � : � : 2 (weakening)�(���)(��z) `�C z : � : � : 2 (start resp. weakening)�(���)(��z)(��) `�C : � : 2 (start resp. weakening)�(���)(��z) `�C (��)� : 2 (formation rule (2;2))�(���)(��z) `�C (��) : (��)� (abstraction)�(���)(��z) `�C (��)(��) : � (application)�(���) `�C (��z)� : 2 (formation rule (�;2))�(���) `�C (��z)(��)(��) : (��z)� (abstraction)�(���) `�C M : � (application, M � (y�)(��z)(��)(��))�(���)(M�x) `�C x :M : � (start resp. weakening)�(���) `�C (M�x)M : � (formation rule (�; �))�(���) `�C (M�x)x : (M�x)M (abstraction)� `�C (���)(M�x)M : � (formation rule (2; �))� `�C (���)(M�x)x : (���)(M�x)M (abstraction)� `�C (��)(���)(M�x)x : (M�x)M (application)It is impossible to derive this judgement in any other system of the cube than �C as all fourformation rules are needed. We can however derive this judgement in �!def:� `e�! � : � : 2�(��)(���) `e�! � : � : 2 (weakening)�(��)(���)(y�)(��z) `e�! � : � : 2 (weakening)�(��)(���)(y�)(��z)(��)(��) `e�! : � (weakening)�(��)(���) `e�! (y�)(��z)(��)(��) : �[:= �][z := y] i.e. M : � (de�nition rule)�(��)(���)(M�x) `e�! x : M : � (start, weakening)�(��)(���) `e�! (M�x)M : � (formation (�; �))�(��)(���) `e�! (M�x)x : (M�x)M (abstraction)� `e�! (��)(���)(M�x)x : (M�x)M [� := �] � (M�x)M (de�nition rule)This shows that in every system of the cube (except �C), de�nitions derive more judgements.As was shown in Example 5.2, (���)(��y0) `e�2 (��)(���)(y0�)(��x)x : � is derivable in�2def and hence is also derivable in �Cdef, but this judgement cannot be derived in �C as y isof type � and not of type �. At �rst sight this might cause the reader to suspect type systemswith de�nitions of having too much derivable judgements. However, we have a conservativityresult stating that a judgement that can be derived in Ldef can be derived in L when allde�nitions in the whole judgement have been unfolded.De�nition 7.1 For � `e A : B a judgement we de�ne the unfolding of � `e A : B, [� `e A :B]u to be the judgement obtained from � `e A : B in the following way:� �rst, mark all visible ��-couples in �, A and B,� second, contract in �, A and B all these marked ��-couples.When � � � � � (C�)s(D�x) � � �, contracting (C�)(D�x) amounts to substituting all free occur-rences of x in the scope of �x by C; these free occurrences may also be in one of the termsA and B. The result is independent of the order in which the redexes are contracted, as onecan see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.29

Example 7.2 [(���)(��y)(y�)(��)(���)(��x)(��z) `e ((��u)u�)((��u)��v)(x�)v : �]u is(���)(��y)((��z)[x := y][� := �]) `e (((x�)v)[v := (��u)u])[x := y][� := �] : �[x := y][� := �],which is (���)(��y)(��z) `e (y�)(��u)u : �. Note that the resulting context contains only�-items and that the resulting subject and predicate need not be in normal form.Theorem 7.3 (Conservativity of de�nitions) Let L be one of the systems of the Cube,� a context (possibly with de�nitions) and A;B pseudoterms. If � `eL A : B then:1. [� `eL A : B]u2. �0 `L A0 : B0, where �0 `eL A0 : B0 is [� `eL A : B]u.Proof: 1., 2. are both proven by induction on the derivation of � `eL A : B. Axiom, abstrac-tion and formation rules are easy, we treat the other cases for 2.� The last rule applied is the start rule. Then �d `eL subj(d) : pred(d) as a consequenceof � � d. Now if d � (A�x) then by IH �0 `L A0 : S (S a sort, x fresh) so by the startrule �0(A0�x) `L x : A0. On the other hand, if d is a de�nition, say d � (A�)d(B�x),then by IH (�d)0 `L A0 : B0 : S (S a sort), which is �0 `L A0 : B0 : S as d will befully unfolded, and the unfolding of �d `eL subj(d) : pred(d) is �0 `L def(d)0 : pred(d)0which is �0 `L A0 : B0 so we are done.� The last rule applied is the weakening rule, say �d `eL D : E as a consequence of � � dand �d `eL D : E. Because subj(d) is fresh we have that (�d)0 `L D0 : E0 is the sameas (�d)0 `L D0 : E0 so by IH we are done.� The last rule applied is the application rule. Then � `eL (a�)F : B[x := a] as aconsequence of � `eL F : (A�x)B and � `eL a : A. By IH and the application rule we get�0 `L (a0�)F 0 : B0[x := a0]. Now by subject reduction also �0 `L ((a0�)F 0)0 : B0[x := a0].If B0[x := a0] � (B0[x := a0])0 then we are done, otherwise, by the Generation Corollary�0 `L B0[x := a0] : S for some sort S, so by subject reduction �0 `L (B0[x := a0])0 : Sand as B0[x := a0] =� (B0[x := a0])0 by conversion we are done.� The last rule applied is the conversion rule. Then � `eL A : B2 as a consequenceof � `eL A : B1, � `eL B2 : S and � `eL B1 =def B2. Now � `eL B1 =def B2 impliesB01 =� B02 because if C results from D by locally unfolding a de�nition of � then C 0 � D0,so the result follows by IH.� The last rule applied is the de�nition rule. Then � `eL dc : [D]d as a consequence of�d ` C : D. By IH, �0 `L [C 0]d : [D0]d which is the unfolding of � `eL dc : [D]d.Corollary 7.4 Let �; A;B be de�nitions-free. If � `eL A : B then � `L A : B.Remark 7.5 It is not su�cient in theorem 7.3 to unfold all the de�nitions in the contextonly, because a redex in the subject may have been used to change the type when it was stillin the context, this is illustrated by (���)(��y) `e�! (��)(���)(y�)(��x)x : � which cannot bederived using `�!. However, this judgement where all the de�nitions are unfolded in context,subject and predicate, is derivable using `e. That is, (���)(��y) `�! y : �.30

7.2 Shorter derivations and type checkingAs already noted, derivations using the de�nitions need considerably less steps to derive ajudgement that can also be derived without de�nitions. This is due to the fact that redexesin the term to be derived can be introduced by the def rule which bypasses the formationrule.Type checking with de�nitions at �rst sight seems to be more di�cult than in the sys-tems of the �-cube of Barendregt. Consider for instance the type-checking problem � `e(��)(���)(x�)(��)P : ? where � � (���)((���)(��y)��P)(��x).Note that this problem is not solvable in the non-extended systems, since (��)P : �! �and x : �, so (x�)(��)P is not typable. In the extended systems, the only thing a typecheckingalgorithm can do is trying to solve �(��)(���) `e (x�)(��)P : ?,which is equivalent to �nding A;B; y such that (�(��)(���) `e (��)P : (A�y)B�(��)(���) `e x : Awhich again is equivalent to �nding z; C such that 8><>: �(��)(���) `e P : (C�z)(A�x)B�(��)(���) `e � : C�(��)(���) `e x : ANow �(��)(���) `e P : (���)(��y)� and �(��)(���) `e � : �, hence �(��)(���) `e(��)P : (��y)� and �(��)(���) `e x : �.Now we face the problem of converting (��y)� to (��y)? or � to � in the context�(��)(���) and this is easily done by unfolding the de�nition (��)(���) in (��y)�, giving�(��)(���) `e (��)P : (��y)� and hence � `e (��)(���)(x�)(��)P : �.We saw that typechecking gave rise to locally unfolding a de�nition in the type (��y)�.This is something new in comparison with typechecking in the �-cube of Barendregt whereonly reduction to (weak head-) normal form of the type is needed. Now if we want to typechecka redex it appears to be a reasonable strategy to consider it as a de�nition since it is not easyto see whether a redex in a term can be typed without the (def rule).So for example, when typechecking (t�)(��x)(Q�)(x�)(��)P in our extended system withcontext � such that � `e ((���)(��y)(��z)��P) and � `e (���), an automated type checkerwill try to solve�(t�)(��x) `e (Q�)(x�)(��)P : ? instead of (� `e (��x)(Q�)(x�)(��)P : (��x)A� `e t : �As a result, something like (�(t�)(��x) `e (x�)(��)P : (A�y)B�(t�)(��x) `e Q : A0will be derived and now it has to be checked whether �(t�)(��x) `e A =def A0. In case theoriginal redex was not a de�nition, A =def A0 can be established without using the contextde�nition (t�)(��x). Hence we conjecture that an intelligent typecheck algorithm can avoidneedless extra work by unfolding de�nitions only as a last resort. Further research has yet tobe done in this direction.7.3 Comparison with the systems of the Barendregt cubeHere we discuss the (dis)advantages of our extended typing systems to the cube systems.In the extended typing systems we can reason with de�nitions in the context (which isvery natural to do): we can add de�nitions to the context in which we reason (the start rule31

and weakening rule), we can eliminate de�nitions in the context (the def rule) and we canunfold a de�nition in the context locally in the type (the conversion rule).Furthermore, in the terms, there are more visible (and subject to contraction) redexes.If one considers one of the seven lower systems in the �-cube, some abstractions areforbidden, for instance in �P! the abstraction of a term over a type is not allowed (thisabstraction corresponds to universal quanti�cation in logic). Intuitively such a quanti�cationneed not be forbidden if it is immediately instantiated by an application, as is the casein (��:�:(�x:�:x))�. However, in the system �P! this term is untypable as the subterm��:�:(�x:�:x) should have type ��:�:(�x:�:�), which is forbidden as (2; �) is not allowed.Now in our extended typing system �P!e we can type the term (��:�:(�x:�:x))� byusing the def rule: from (���)(��)(���) `e (��x)x : (��x)x we may conclude (���) `e(��)(���)(��x)x : (��x)x. Note that the use of the formation rule (2; �) is avoided.By this property, the extended type systems are closer to intuition than the systems ofthe cube as there are more (intuitively correct) derivable inhabitants of certain types.In the last paragraphs of [Bar 92], a term is shown which is an inhabitant of ? in �U�.It is remarked that the given term is not legal due to the fact that some de�nitions are beingused that shorten the term by a factor 72. In the system �U� extended with de�nitions, thisterm is still illegal due to the restriction that de�nitions should have a typable pred. Thissuggests that there is a need for an even more exible use of de�nitions, such that also termson the highest typing levels can be abbreviated.7.4 Comparison with the type systems of Poll and SeveriWhen we compare the extended type systems to those of Poll and Severi (see [SP 93]), weobserve the following di�erences.1. In the systems of [SP 93], the de�nition of pseudoterms has been adapted, not onlythe usual variables, abstractions and applications are pseudoterms, but de�nitions, i.e.terms of the form x = a : A inB are added. A new reduction relation has to be intro-duced to be able to unfold these de�nitions (locally in the predicate of the judgement).This means Church Rosser has to be shown again.In our approach, we treat de�nitions not much di�erent from �-redexes, hence thesyntax of pseudoterms remains the same. We only change the syntax of contexts andextend �-equality in a natural way to be able to use the de�nitions in the context andunfold them locally in the predicate of a judgement. Church Rosser remains unchanged.2. [SP 93] have a rule that takes a de�nition out of the context and puts it in front ofthe term and type, provided that the type is not a topsort. In our extended systemhowever, we only put the de�nition in front of the term and unfold it in the type. Aswe already noted (cf. Lemma 5.5), the (derived def rule) allows to put the de�nitionalso in front of the type without unfolding it.7.5 Comparison with AutomathOur item notation is inuenced by the Automath notation (see [NGV 94]). For example, deBruijn uses the words wagon, train and AT-pair for item, segment and ��-pair respectively.Furthermore, our de�nitions are also inuenced by de Bruijn's introduction of de�nitions inhis system AUT-�� (see B.7 of [NGV 94]). In AUT-��, de Bruijn re�nes reduction in order32

to accommodate local reductions which are necessary for representing de�nitions. His mainmotivation in doing so are examples where the unfolding of a de�nition is usually desired atone speci�c instance of the de�nition and not everywhere it occurs.Our presentation of de�nitions in this article, even though motivated by reasons similarto those of de Bruijn, is written in a way that �ts elegantly with the style of the cube. Ourextension of the cube systems to deal with de�nitions only had to change the context a bit andto add the de�nition rule. De Bruijn claims Church Rosser for his mini reductions whereaswe have studied all the cube systems with de�nitions and established their properties.8 ConclusionWe have proposed an extension of �-reduction called generalised reduction and an extensionof the typing rules of the cube with de�nitions. We use the item notation to make thegeneralised redexes clearly visible and to be able to describe nested de�nitions in a neat way.Generalised reduction and de�nitions are shown to behave well with respect to �-reductionand the typing systems of the Barendregt cube.With respect to reduction, generalised reduction has the Church-Rosser property andgenerates �-equality. SR has been studied and is shown to hold for all systems of the cubeextended with de�nitions, which are also shown to be SN.We showed that the extension of the typing systems, is a conservative one and thatderivations become shorter without slowing down type-checking algorithms.Before closing, it is worth mentioning where reductions related to our generalised notionhave been used elsewhere. At the time of writing this paper, we were unaware of many relatedwork and we are grateful to Joe Wells who has compiled most of the following details. Wewill be short in what follows but we refer to [KW 95b] which discusses the subject in detail.Here are two rules related to our generalised reduction:(�) (Q�)(P�)(�x)N ! (P�)(�x)(Q�)N() (P�)(�x)(�y)N ! (�y)(P�)(�x)NIt is obvious that � may move the �-item (Q�) next to a �-item in N if N � (�y)M , and hencethe �-couple (Q�)(�y) becomes a �-pair making the generalised redex a classical one (visible)and subject to contraction. The rule is unrelated to what we do here yet has almost alwaysbeen used with � for technical reasons. (The transfer of rule to explicitly typed lambdacalculus however, is not straightforward, since the type of y may be a�ected by the reduciblepair (P�)(�x).)Regnier's notion of `premier redex' (see [Reg 92]) is the same as our notion of generalisedredex on untyped terms. We study it for Church-style type systems whereas Regnier studiesCurry-style type systems. [Reg 94] uses � and (and calls the combination �) to showthat the perpetual reduction strategy �nds the longest reduction path when the term is SN.[Vid 89] also introduces reductions similar to those of [Reg 94]. Furthermore, [KTU 94] uses �(and other reductions) to show that typability in ML is equivalent to acyclic semi-uni�cation.[SF 92] uses a reduction which has some common themes to �. [dG 93] uses a restricted versionof � and [KW 95a] uses to reduce the problem of strong normalisation for �-reduction to theproblem of weak normalisation for related reductions. [KW 94] uses amongst other things,� and to reduce typability in the rank-2 restriction of system F to the problem of acyclic33

semi-uni�cation. [AFM 95] uses � to analyse how to implement sharing in a real languageinterpreter in a way that directly corresponds to a formal calculus.References[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P. (1995), A call by needlambda calculus, Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM.[Barendregt 84] Barendregt, H. (1984), Lambda Calculus: its Syntax and Semantics, North-Holland.[Bar 92] Barendregt, H. (1992), Lambda calculi with types, Handbook of Logic in Computer Science,Volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press.[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R. (1987), Needed reductionand spine strategies for the �-calculus, Information and Computation 75 (3), 1191-231.[BKN 94x] Bloo, R., Kamareddine, F., Nederpelt, R. (1994), Beyond �-reduction in Church's �!,Computing Science Note 94/20, Eindhoven University of Technology, Department of Mathematicsand Computing Science.[BKN 94y] Bloo, R., Kamareddine, F., Nederpelt, R. (1994), The Barendregt Cube with De�nitionsand Generalised Reduction, Computing Science Note 94/34, Eindhoven University of Technology,Department of Mathematics and Computing Science.[BKN 9-] Bloo, R., Kamareddine, F., Nederpelt, R. (199-), The �-cube with classes which approximatereductional equivalence, submitted.[CON 86] Constable, R.L. et al. (1986), Implementing Mathematics with the Nuprl proof developmentsystem, Prentice Hall.[Dow 91] Dowek, G. et al. (1991), The Coq proof assistant version 5.6, Users guide, Rapport derecherche 134, INRIA.[Gardner 94] Gardner, P. (1994), Discovering Needed Reductions Using Type Theory, TACS.[Geuvers 94] Geuvers, H. (1994), A short and exible proof of Strong Normalisation for the Calculusof Constructions, in Types for Proofs and Programs, eds P. Dybjer, B. Nordstr�om and J. Smith,Selected Papers, International Workshop, Bastad, Sweden, LNCS 996.[GM 93] Gordon M.J.C. and Melham, T.F. (eds) (1993), Introduction to HOL: A Theorem ProvingEnvironment for Higher Order Logic, Cambridge University Press.[dG 93] de Groote, P. (1993), The conservation theorem revisited, Int'l Conf. Typed Lambda Calculiand Applications, vol. 664 of LNCS, 163-178, Springer-Verlag.[KN 93] Kamareddine, F., and Nederpelt, R.P. (1993), On stepwise explicit substitution, InternationalJournal of Foundations of Computer Science 4 (3), 197-240.[KN 94] Kamareddine, F., and Nederpelt, R.P. (1994), A uni�ed approach to type theory through are�ned �-calculus, Theoretical Computer Science 136, 183-216.[KN 95] Kamareddine, F., and Nederpelt, R.P. (1995), Re�ning reduction in the �-calculus, Journalof Functional Programming 5 (4).[KN 96a] Kamareddine, F., and Nederpelt, R.P. (1996), A useful �-notation, Theoretical ComputerScience 155.[KN 96b] Kamareddine, F., and Nederpelt, R.P. (1996), Canonical Typing and �{conversion in theBarendregt Cube, Journal of Functional Programming 6 (2).[KTU 94] Kfoury, A.J., Tiuryn, J. and Urzyczyn, P. (1994), An analysis of ML typability, J. ACM41(2), 368-398. 34

[KW 94] Kfoury, A.J. and Wells, J.B. (1994), A direct algorithm for type inference in the rank-2fragment of the second order �-calculus, Proc. 1994 ACM Conf. LISP Funct. Program..[KW 95a] Kfoury, A.J. and Wells, J.B. (1995), New notions of reductions and non-semantic proofs of�-strong normalisation in typed �-calculi, LICS.[KW 95b] Kfoury, A.J. and Wells, J.B. (1995), Addendum to new notions of reduction and non-semantic proofs of �-strong normalisation in typed �-calculi, Boston University.[Launchbury 93] Launchbury, J. (1993), A natural semantics of lazy evaluation, ACM POPL 93, 144-154.[L�evy 80] L�evy, J.-J. (1980), Optimal reductions in the lambda calculus, in To H. B. Curry: Essayson Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, AcademicPress.[LP 92] Luo Z., and Pollack, R. (1992), LEGO proof development system: User's manual, Technicalreport ECS-LFCS-92-211, LFCS, University of Edinburgh.[Ned 73] Nederpelt, R.P. (1973), Strong Normalisation in a typed lambda calculus with lambda struc-tured types, Ph.D. thesis, Eindhoven University of Technology.[NGV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., (eds) (1994), Selected papers on Au-tomath, Studies in Logic and The foundations of Mathematics, 133, North Holland.[Reg 92] Regnier, L. (1992), Lambda calcul et r�eseaux, Th�ese de doctorat de l'universit�e Paris 7.[Reg 94] Regnier, L. (1994), Une �equivalence sur les lambda termes, Theoretical Computer Sci. 126,281-292.[SF 92] Sabry, A., and Felleisen, M. (1992), Reasoning about programs in continuation-passing style,Proc. 1992 ACM Conf. LISP Funct. Program., 288-298.[SP 93] Severi, P., and Poll, E. (1993), Pure Type Systems with De�nitions, Computing Science Note93/24, Eindhoven University of Technology, Department of Mathematics and Computing Science.[Vid 89] Vidal, D. (1989), Nouvelles notions de r�eduction en lambda calcul, Th�ese de doctorat, Uni-versit�e de Nancy 1.

35

