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Simply Typed Versions
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Abstract

Extending the A-calculus with either explicit substitution or gen-
eralized reduction has been the subject of extensive research recently,
and still has many open problems. This paper is the first investigation
into the properties of a calculus combining both generalized reduction
and explicit substitutions. We present a calculus, Ags, that combines
a calculus of explicit substitution, As, and a calculus with generalized
reduction, Ag. We believe that Ags is a useful extension of the \-
calculus, because it allows postponement of work in two different but
complementary ways. Moreover, Ags (and also \s) satisfies properties
desirable for calculi of explicit substitutions and generalized reduc-
tions. In particular, we show that \gs preserves strong normalization,
is a conservative extension of Ag, and simulates [-reduction of A\g
and the classical A-calculus. Furthermore, we study the simply typed
versions of As and Ags, and show that well-typed terms are strongly
normalizing and that other properties, such as typing of subterms and
subject reduction, hold. Our proof of the preservation of strong nor-
malization (PSN) is based on the minimal derivation method. It is,
however, much simpler, because we prove the commutation of arbit-
rary internal and external reductions. Moreover, we use one proof to
show both the preservation of A-strong normalization in As and the
preservation of Ag-strong normalization in Ags. We remark that the
technique of these proofs is not suitable for calculi without explicit
substitutions (e.g., the preservation of A-strong normalization in \g
requires a different technique).
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1 Introduction

1.1 The X-Calculus with Generalized Reduction

In the term ((A;.\,.N)P)Q, the abstraction starting with A, and the ar-
gument P form the redex (A;.A,.N)P. When this redex is contracted, the
abstraction starting with A, and ¢ will in turn form a redex. What is im-
portant is that the only argument the abstraction starting with A, (or some
residual of this abstraction) can ever have is @) (or some residual of ()). This
fact has been exploited by many researchers, and reduction has been exten-
ded so that the implicit redex based on the matching A, and @ is given the
same priority as the intervening redex.

An initial attempt to generalize the notion of redex might be to define a
rule like the following:

(Ae-Ay-N)PQ — (A N[y:=Q]) P

It quickly becomes evident that this is not sufficient. For example, the pro-
posed rule does not allow directly reducing the binding of y to ) in the term
A= (X,.(As-Ay.N)P)RQ. We shall exploit the notion of a well-balanced seg-
ment (sometimes known as a (3-chain), which is the special case of one-hole
contexts given by this grammar:!

Su=[-]| (S[Aa[-])M | S[S]
Using balanced segments, generalized reduction is then given by this rule:
S[Ae-M|N — S[M[z:=N]]

We find the above definition of well-balanced segments and generalized
reduction rather cumbersome, and believe that a more elegant definition
can be given. To do so, we change from the classical notation to the
item notation. Instead of writing \,.M, we write (\;)M; and instead of
MN, we write (N6)M. Item notation has many advantages, as shown in
[KN95, KN96]. Let us illustrate here using the term A given above, which we
write in item notation as in Figure 1. We see immediately that the redexes

! Actually, this is a grammar for expressions which can then be turned into contexts
by rewriting innermost subexpressions of the form S;[S2] into S; changed by replacing its
hole with S5. This is part of the awkwardness of specifying balanced segments in classical
notation.

2
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(Q9) (R3) (A:) (PO) (M) (Ay) N

Figure 1: Redexes in item notation in term A

originate from the couples (Q0)(A,), (RS)(A;), and (PJ)(A;). Moreover,
(Q)(RO)(AX,)(PS)(Az)(Ay) is a well-balanced segment. This natural match-
ing was not present in the classical notation. We call items of the form (P9)
and (\;) application and abstraction items, respectively. With item notation,
generalized reduction is written as: (M0)s(A\;)N —,5 s{N[z := M]} for 5
well balanced. (Here, the brackets { and } are used for grouping purposes,
so that no confusion arises.) For example,

(@) (RI)(A:)(PO)(Ae) (M) N =295 (1) (A:) (PO)(Ax){N]y := Ql}

Surely this is clearer than writing
(Az-(Az-Ay.N)P)RQ =43 (M. (As- Ny == Q|P)R

Generalized reduction was first introduced by Nederpelt in 1973 to aid
in proving the strong normalization of AUTOMATH [Ned73]. Kamareddine
and Nederpelt have shown how generalized reduction makes more redexes
visible, allowing flexibility in reducing a term [KN95]. Bloo, Kamareddine,
and Nederpelt show that with generalized reduction, one may indeed avoid
size explosion without the cost of a longer reduction path; and, simultan-
eously, the A-calculus can be elegantly extended with definitions that result
in shorter type derivations [BKN96|. Generalized reduction is strongly nor-
malizing [BKN96] for all systems of the A-cube [Bar92], and preserves the
strong normalization of ordinary (-reduction [Kam96]. In particular, gen-
eralized reduction allows the postponement of K-reductions (which discard
their argument) after I-reductions (which use their argument in at least one
place).

An alternative approach to generalized reduction which has been followed

3
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by many researchers is to use one of these two local transformations:

0) (A\e.N)P)Q — (\:.NQ)P
(1) (AeAy.N)P = A,.(A,.N)P

These rules transform terms to make more redexes visible to the ordinary
notion of f-reduction. For example, the y-rule makes sure that A, and @) in
the example A above can form a redex before the redex based on A\, and P is
contracted. Also, ((Az.A\y.N)P)Q —¢ (Xz.(A,.N)Q)P, and hence both § and
7 put A, next to its matching argument. The #-rule moves the argument next
to its matching A\, whereas v moves the A\ next to its matching argument.

Obviously, § and ~ are related to generalized reduction. In fact, # and
v transform terms to make more potential redexes visible, and then con-
ventional (-reduction can be used to contract those newly visible redexes.
Generalized reduction, on the other hand, performs reduction on the poten-
tial redexes without having to bother to make them into classical redexes.
Now, we go back to the above example, where with generalized reduction we
have: (A..(Az.A\y.N)P)RQ — 45 (A:.(A. N[y := Q])P)R. We illustrate how 6
and v work. The 0 case:

Ms-a Ay N)PYRQ =5 (Ae-(Mo- Ay N)PQ)R —5
Ae-a-(\y-N)Q)P)R =5 (Ao-(Ao-N[y == Q))P)R

The ~ case:

(Ae-Qa Ay N)PYRQ =, (Ao Ay (Ao N)P)RQ —,
MO NPYR)Q =5 (.M. N[y == Q))P)R

Finally, note that in item notation it is easier to describe # and . We
illustrate with # and the above example:

The term (Q5)(R6)(A,)(Pd)(Az)(Ay)N can be reshuffled to the term
(RO)(A)(PS)(Az)(Q0)(Ay)N to transform the bracketing structure {{ }{ }}
into { }{ }{ }, where all the redexes correspond to adjacent “{” and “}.”
In other words, Figure 1 can be redrawn using the f-reduction twice as in
Figure 2.

The #-rule can be applied to both explicitly and implicitly typed systems.
However, the transfer of v to explicitly typed systems is not straightforward,
since in these systems the type of y in the term A may be affected by the re-
ducible pair of A, and P. For example, it is fine to write ((Ag...Ayp-y)2)u —¢

4
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(R) (X2) (PO) (Aa) (@6) (Ay) N

Figure 2: #-normal forms in item notation for term A

(Agse-(Ayiz-y) )z, but not to write ((Agus-Ayiz-9)2)t = (Ayz- (Agi-yy) 2) 0
Local transformations such as 7 and 6 began to appear in the literat-
ure around 1989. (See [KW95a| for a summary.) Regnier [Reg92] intro-
duced the notion of a premier redex, which is similar to the redex based
on A\, and @ above (which we call a generalized redex). Later, he used
and 7 (and called the combination o) to show that the perpetual reduc-
tion strategy finds the longest reduction path when the term is strongly
normalizing (SN) [Reg94]. Vidal also introduced similar reductions [Vid89).
Kfoury, Tiuryn, and Urzyczyn used 6 (and other reductions) to show that
typability in ML is equivalent to acyclic semi-unification [KTU94]. Sabry
and Felleisen described a relationship between a reduction similar to 6 and
a particular style of CPS [SF93]. De Groote [dG93| used 6 and Kfoury and
Wells [KW95b] used 7 to reduce the problem of (-strong normalization to
the problem of weak normalization (WN) for related reductions. Kfoury and
Wells used # and ~ to reduce typability in the rank-2 restriction of system
F to the problem of acyclic semi-unification [KW94]. Klop, Serensen, and
Xi [K1o80, Xi96, Ser97] used related reductions to reduce SN to WN. Finally,
[AFM™95] used 0 (called “let-C”) as a part of an analysis of how to represent
sharing in a call-by-need language implementation in a formal calculus.

1.2 The A-Calculus with Explicit Substitution

Most literature on the A-calculus treats substitution as an atomic operation,
and leaves implicit the actual computational steps necessary to perform sub-
stitution. Substitution is usually defined with operators that do not belong to

2An alternative is to apply v to the type erasure of the term, which may be quite
complicated to express in terms of the type-annotated term.

5
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the language of the A-calculus. In any real implementation, the substitution
required by [-reduction (and similar higher-order operations) must be im-
plemented via smaller operations. Thus, there is a conceptual gap between
the theory of the A-calculus and its implementation in programming lan-
guages and proof assistants. Explicit substitution attempts to bridge this
gap without abandoning the setting of the A-calculus.

By representing substitutions in the structure of terms and by providing
(first-order) reductions to propagate the substitutions, explicit substitution
provides a number of benefits. A major benefit is that explicit substitution
allows more flexibility in ordering work. Propagating substitutions through
a particular subterm can wait until the subterm is the focus of computation.
This allows all of these substitutions to be done at once, thus improving
locality of reference. Obtaining more control over the ordering of work has
become an important issue in functional programming-language implementa-
tion (cf. [Jon87]). The flexibility provided by explicit substitution also allows
postponing unneeded work indefinitely (i.e., avoiding it completely). This can
yield profits, since implicit substitution can be an inefficient, maybe even ex-
ploding, process, owing to the many repetitions it causes. Another benefit
is that explicit substitution allows formal modeling of the techniques used
in real implementations, e.g., environments. Because explicit substitution is
closer to real implementations, it has the potential to provide a more accur-
ate cost model. (This possibility is particularly interesting in light of the
difficulty encountered in formulating a useful cost model in terms of graph
reduction [LM96, Jon87].)

Proof assistants may benefit from explicit substitution, owing to the desire
to perform substitutions locally and in a formal manner. Local substitutions
are needed as follows. Given zz[z:=y]|, one may not be interested in having
yy as the result of xzz[r:=y|, but rather only yz[z:=y]. In other words,
one only substitutes one occurrence of x by y, and continues the substitution
later. Theorem provers such as Nuprl [CABC86] and HOL [GM93] implement
substitution that allows the local replacement of some abbreviated term. This
avoids a size explosion when it is necessary to replace a variable by a huge
term only in specific places to prove a certain theorem.

Formalization helps in studying the termination and confluence proper-
ties of systems. Without formalization, important properties such as the
correctness of substitutions often remain unestablished, causing mistrust in
the implementation. As the implementation of substitution in many the-
orem provers is not based on a formal system, it is not clear what properties

6
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their underlying substitution has, nor can their implementations be com-
pared. Thus, it helps to have a choice of explicit substitution systems whose
properties have already been established. This is witnessed by the recent
theorem prover ALF, which is formally based on Martin-Lof’s type theory
with explicit substitution [Mag95]. Another justification for explicit sub-
stitution in theorem proving is that some researchers believe “tactics” can
be replaced by the notion of incomplete proofs, which are believed to need
explicit substitutions [Hur96b, Mag95].

The last 15 years have seen an increasing interest in formalizing substi-
tution explicitly; various calculi, including new operators to denote substitu-
tion, have been proposed. Among these calculi we mention C'A\é¢ [dB78]; the
calculi of categorical combinators [Cur86]; Ao [ACCLI1], Ao, [CHL96], and
Aogp [Ri093], referred to as the Ao-family; A\v [BBLRDY6], a descendant of
the Ao-family; oo BLT [KN93]; Aexp [Blo95]; As [KR95a]; As. [KR97]; and
AC [Hur96a]. All of these calculi (except Aexp) are described in a de Bruijn
setting, where natural numbers play the role of variables.

In [KR95a], we extended the A-calculus with explicit substitutions by
turning de Bruijn’s meta operators into object operators, thus offering a style
of explicit substitution that differs from that of Ao. The resulting calculus
As remains intuitively as close to the A-calculus as possible for a calculus
of explicit substitution. An important motivation for introducing the As-
calculus [KR95a] was to provide a calculus of explicit substitutions which
would both preserve strong normalization and have a confluent extension
on open terms [KR97]. There are calculi of explicit substitutions that are
confluent on open terms, e.g., Ao, [CHL96] and A( [Hur96a], but they also
have important disadvantages. Mellies proved that Ao, (as well as the rest
of the A\o-family and the categorical combinators) does not preserve strong
normalization [Mel95]. There are also calculi that preserve strong normaliz-
ation, e.g., the Av-calculus [BBLRD96], but this calculus is not confluent on
open terms. Recently, the A(-calculus (cf. [Hur96a]) has been proposed as a
calculus that preserves strong normalization and is itself confluent on open
terms. The A(-calculus works with two new applications that allow the pas-
sage of substitutions within classical applications only if these applications
have a head variable. This is done to cut the branch of the critical pair that is
responsible for the nonconfluence of Av on open terms. Hence, A\( preserves
strong normalization, and is itself confluent on open terms. Unfortunately,
AC is not able to simulate one-step (-reduction, as shown in [Hur96a]. In-
stead, it simulates only a “big-step” [-reduction. On the other hand, As

7
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has been extended to As., which is confluent on open terms (cf. [KR97]) and
simulates one-step [-reduction, but the preservation of strong normalization
for the extension As, remained an open problem until it was shown at the
end of November 1997 by Bruno Guillome that the property does not hold.

1.3 Combining Generalized Reduction and Explicit
Substitution

We have already explained the separate usefulness of generalized reduction
and explicit substitutions. The main benefits of these concepts are similar:
both emphasize flexibility in the ordering of operations. In particular, gen-
eralized reduction and explicit substitution allow the postponement of work,
but in different, complementary ways. On one side, generalized reduction al-
ways allows unnecessary K-redexes to be bypassed. Explicit substitution will
not, in general, allow this, because reducing the K -redex might be necessary
to expose an essential /-redex. Similarly, on the other side, explicit substitu-
tion allows bypassing any work inside a subterm that will be discarded later.
However, generalized reduction does not provide any means for performing
only those parts of a substitution that will be used later. Thus, we can see
that their benefits are complementary.

We claim that a system with the combination of generalized reduction
and explicit substitution is more advantageous than a system containing
each concept separately. Obviously, if the benefits of both are desired simul-
taneously, it is important to study the combination, a task which this paper
performs. Before the combination can be safely used, it must be checked
that this combination is sound and safe, exactly as it has been checked that
each of explicit substitutions and generalized reductions separately are sound
and safe. This paper shows that extending the A-calculus with both concepts
results in theories that are confluent, preserve termination, and simulate (-
reduction.

Generalized reduction, (g3), has never before been introduced in a de
Bruijn setting. Explicit substitution has almost always been presented in
a de Bruijn setting. Since explicit-substitution calculi are usually written
with de Bruijn indices, we combine gf-reduction and explicit substitution
in a de Bruijn setting, giving the first calculus of generalized reduction a la
de Bruijn.® As we need to describe generalized redexes in an elegant way,

3The main advantages of de Bruijn’s notation is that it allows us to get rid of Baren-
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we use a notation for A-terms that is suitable for this purpose, the item
notation [KN96|.

In Section 2, we introduce the calculus of generalized reduction, the Ag-
calculus, in item notation with de Bruijn indices, and prove its confluence.
In Section 3 we introduce the As-calculus and extend it into the Ags-calculus
by adding the necessary reductions to simulate —,3. We show that Ags is a
conservative extension of \g, it simulates ¢/, and is confluent. In Section 4,
we prove that the Ags-calculus preserves Ag-strong normalization (i.e., a
is Ag-SN = @ is Ags-SN), and that the As-calculus preserves the A-strong
normalization. We conclude that a is A-SN & a is As-SN & a is Ag-SN
< a is Ags-SN. In Section 5, the simply typed versions of the As- and
Ags-calculi are presented and subject reduction, typing of subterms, strong
normalization of well-typed terms, and other properties are proved.

2 The Ag-Calculus

We assume familiarity with the A-calculus and its various notions such as
reduction, contexts, etc. Where not otherwise defined, we follow the con-
ventions of Barendregt [Bar84, Bar92]. Nevertheless, we present some basic
needed definitions in what follows:

Definition 1 (Reduction Notations)
Let A be a set, and r a binary relation on A. We denote the fact (a,b) € r
by a —,. b or a — b when the context is clear enough. We denote:

1. 7€ or <, or just =, the reflexive closure of r;
2. rT or =1 or just =T, the transitive closure of r;

3. r* or —». orjust —, the reflexive and transitive closure of r. When
a —» b, we say there exrists a reduction sequence from a to b;

4. =, the reflexive, symmetric and transitive closure of —,; that is, =,
15 the least-equivalence relation containing —,; and

5. = for syntactic identity, and write a = b when a and b are syntactically
tdentical.

dregt’s variable convention (which insists that free variables be different from bound ones,
and that if A, and A, occur in a term, then x must be distinct from y), since a-congruent
terms are syntactically identical.

9
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Definition 2 (Reduction Relations and Systems) For a given set of
rewrite rules v on a set A, we define r-reduction to be the reduction rela-
tion of the r-calculus (i.e., the least-compatible relation containing the rules

ofr). If R is a reduction relation on a set A, we say that (A, R) is a reduction

system.*

Definition 3 (Confluence and Church Rosser) Let R be a reduction
relation on A. For R, we define local confluence (or weak Church Rosser,
WCR); confluence (or Church Rosser, CR); and strong confluence (or strong
Church Rosser, SCR) respectively as follows:

1. WCR:

Va,bce A 3de€ A : (a =g, b N a =g c)= (b g d N ¢ —»g d).

2. CR:

Va,bce A dd€ A :(a g b AN a —»rc)= (b —»r dAc—gpd).

3. SCR:
Va,bce A dde€ A :(a wp b ANa =g c)= (b > p d N c —gd).
Definition 4 (Normal Forms and Normalization) Let R be a reduc-
tion relation on A.

e We say that a € A is an R-normal form (R-nf for short) if there exists
no be A such that a =g b.

e We say that b has an R-normal form if there exists an R-normal form
a such that b —»g a. In this case, we say b is R-normalizing.

e We say that R is weakly normalizing (WN) if every a € A has an
R-normal form.

e We say that R is strongly normalizing (SN) if there is no infinite
sequence (a;);so i A such that a; =g a1 for all > 0.

“Note that we depart from [Bar84, definition 3.1.1], where a reduction relation is not
only compatible, but also reflexive and transitive. Our reason for doing so is that we want
to keep the notation for the reduction system simpler.

10
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o We say that a term M is strongly R-normalizing if there are no infinite
R-reduction sequences starting at M.

e When no confusion arises, then R may be omitted, and we speak simply
of normal forms or normalization.

Note that confluence of R guarantees unicity of R-normal forms. In that
case, the R-normal form of «a, if it exists, is denoted by R(a). Strong nor-
malization implies weak normalization and, therefore, the existence of normal
forms. The following lemma is an important connection between strong nor-
malization and confluence (its proof can be found in [Bar84], proposition
3.1.25):

Lemma 1 (Newman[New42|) Every strongly normalizing, locally conflu-
ent reduction relation is confluent.

We assume familiarity with de Bruijn notation; e.g., A;.\,.(x(A..22))y is
written in ordinary de Bruijn notation as A(A(2(A(13))1)) and A;. A\ .2y as
AA(21). To translate free variables, we assume a fixed-ordered list of binders
(written from left to right) ..., \,, Ay, Az, and prefix it to the term to be
translated. Hence, \,.yz translates as A34, whereas \,.zy translates as \43.
Since generalized (-reduction is better described in item notation, we adopt
the item syntax (see [KN95, KN96] for the advantages of item notation)
and write ab as (bd)a, and Aa as (A\)a. The § symbol informs us that we are
dealing with an application, just as A informs us that there is an abstraction.

Definition 5 The set of terms, A, is defined by the grammar A = N |
(AS)A | (MA. We let a,b, ... range over A and m,n,... over N (positive
natural numbers).> We write a <b when a is a subterm of b. A reduction
— 1s compatible on A when for all a, b, c € A, it holds that a — b implies
(@d)e — (bd)e, (cd)a — (cd)b, and (N)a — (N)b.

For example, (AzA,.z2y)(A.yz) =5 Ay.z(Ag.yz)u, which in de Bruijn
notation is (AA521)(A31) —4 A4(A41)1, is expressed in de Bruijn item nota-
tion as ((A)(10)30)(A)(A)(16)(26)5 —5 (A)(1)((A)(10)46)4. Note that we did
not simply replace 2 in (A\)(16)(20)5 by (A)(16)3. Instead, we decreased 5
as one A disappeared, and incremented the free variables of (A)(16)3 as they

50Qur use of N as the set of positive natural numbers may be considered nonstandard
by computer scientists who insist on having the number 0 as an element of N.
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occurred within the scope of one more A. For incrementing the free variables
we need updating functions U}, where k tests for free variables and 7 — 1 is
the value by which a variable, if free, must be incremented:

Definition 6 The updating functions U} : A — A for k > 0 and i > 1 are
defined inductively:

, = (Ui(a) 6)U5(b) Uiy = {nHim L ik
Ui((Na) = (N (Uky(a)) ‘ n ifn<k

In the following, we define meta substitution. The last equality substi-
tutes the intended variable (when n = j) by the updated term. If n is not
the intended variable, it is decreased by 1 if it is free (case n > j) as one A
has disappeared, and if it is bound (case n < j) it remains unaltered.

Definition 7 The meta substitutions at level j, for j > 1, of a term b € A
in a term a € A\, denoted af{j< b}, are defined inductively on a as follows:

. . . n—1 an > j,
((a18)az) Li+ b} = (a1 {j+b})0) (aa {j<b}Y) _ B A
(M) fi<b} = M) (cfj+1b}) nfjb} = nUg(b) ZZ ; j

The following lemma establishes the properties of meta substitution and
updating.

Lemma 2 Let a,b,c € A. The following properties hold:

1. fork<n<k+i: (Ui(a){n<b} =U"(a)

2. forl <k <l+j: ULU(a)) = U Y(a)

$Jorlsj<k+l UlUH0) = U}(ULy ()

4. fork+i<n: (Ui(a)fn«b} = Ui(afn —i+1<b})

5. forn <k+1: Uilafn<=b}) = (Uppi(a)f{nU; .1 (0)}

6. fori<mn: afi<—o}f{n<c} =afn+1<c}{i-0fn—i+1<c}}

Proof of Lemma 2 The proofis by induction on a. The proof of property 4
requires property 2 with [ = 0; the proof of property 6 uses properties 1 and
4, both with £ = 0; and finally, property 3 with [ = 0 is needed to prove
property 5.

Proof of Lemma 2 O
12
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To introduce generalized [(-reduction, we need some definitions
(cf. [KN96)).

Definition 8 (Items and Segments) Items, segments, and well-balanced
segments (w.b.) are defined, respectively, by:

Z:=(Ad)| (N
Su=¢|IS

Wi=o¢ | (AW | WW

where ¢ 1s the empty segment. Hence, a segment is a sequence of items.
Items (a0) and (N\) are called a 6-item and a M-item, respectively. We let
I, J, ... range over Z; S, S', ... over §; and W, U, ... over W. For a
segment S, len S is given by lenp = 0, and len(I S) = 1+lenS. The number

of main A-items in S, #(S), is given by #(¢) = 0; #1((a9)S) = #.(5);
and #,((A)S) =1+ #.(5).

Definition 9 (A-Calculus) The A-calculus (d la de Bruijn) is the reduction
system (A, —g), where — g is the least-compatible reduction on A generated
by the B-rule: (ad)(A\)b — b{l+al}.

Definition 10 (Ag-Calculus) The Mg-calculus is the reduction system
(A, —43), where —,5 denotes generalized (-reduction, the least-compatible
reduction on A generated by the g3-rule:

(ad)W(A)b — W(b{{leUfA(W)“(a)}}) where W is well balanced

Remark 1 The (-rule is an instance of the gfB-rule. (Take W = ¢, and
check that U} (a) = a.)

Now, let us briefly explain the relation between —,5 and —y and —,,
given in the introduction. It is helpful to write — and —, in item notation:

(Q0)(PO)(Ae)N —g (P5)(Ae)(QI)N

(PO)(Ae) (AN = (&) (PO)(Ar) N
13
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Note how in —, the start of a redex (P¢)()\,) is moved (or reshuffled), giving
(Q9) the chance to find its matching (A) in N. In —.,, the same happens but
now it is (\,) that is given the chance to look for its matching (—J). Only
after reshuffling has taken place can the newly found redex be contracted.
On the other hand, — 44 avoids reshuffling and contracts the redex as soon
as it sees the matching of § and A.

In the following, we extend the definitions of updating and meta substi-
tution to cover segments, and prove some useful properties.

Definition 11 Let S € S, a,b € A, k > 0, and n,i > 1. We define U.(S)
and S{n<a} by:

Uile) =¢ ¢fna} =¢
U?((M)S) (Ui(b)_(S)Uk(S) ((b9)S){n<—a} = (b{fn<—a} 6)(S{n<a})
Ui((N)S) = (N (Ug1a(9)) (W)S)na} = M) (S{n+1a})

Lemma 3 Let S, T be segments, and a,b € A. The following hold:

1 UN(ST) = UL(S)Uj, 4.

2. len(S) = len(UL(S)), and #(S) = #(UL(S)), and if S is w.b., then
Ui(S) is w.b.

3. (SE{n —al} = S{n—al E{n+#.(5) < a} for & a segment or a

term.

4. len(S) = len(S{n<«a}), and #.(S) = #r(S{n<a}). If S is w.b.,
then S{n<a} is w.b.

) (T) and Ui(Sa) = U,i(S)U,A#X (@)

Proof of Lemma 3 Points 1 and 3, by induction on S. Points 2 and 4, by
induction on S using points 1 and 3, respectively.

Proof of Lemma 3 O

Lemma 4 (Preservation of 3-Equivalence) Let a,b € A. If a =45 b,
then a =3 b.

Proof of Lemma 4 It is sufficient to prove by induction on a that a — 4
b implies a =3 b. We will only prove the particular base case a =

(YW (N =5 W (d{1 U ()}) = b, with W # 6, since the other
14
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cases are simpler. We prove this case by a nested induction on len W. Ob-
serve that W = (ed)W;(A\)Ws, where W, and W, are well balanced, because
W # ¢. Let wy = #(W1) and we = #,(W3). We have the following equalit-
ies, where in the justifications “IH” means the induction hypothesis and the
numbers are lemmas:

(co)W (N)d
= (c6)(ed)W1(N)Wa(N)d
(IH) =5 ()W (Wa(Nd) {1+ Ug* (e)})
(3.3) = (cé)W (Wof 1 U () (V) (A2 + wa = Ug T (e)})
(IH & 3.4) =5 Wi(Wof 1l U (e)])(Af2 + wo < U () J{1 UL T2t (e) })
(2.1) = Wl(Wz{{1<—U’”1+1(e)})

(A2 + w2 = U™ () H{1 - Ug" 2 () 1 + wa = U™ " () } )

(2.6) = Wi(Wf1<Ug" T (D1 U™ T2 () H{L + w2 = Ug" T (e)})
(33&34) =  Wi((Wa(df1Ug" 2 ()1 U (e)})
(IH) =5 ()W (W)W (df1 U () })

W (@1« o))

Proof of Lemma 4 0O
Theorem 1 (Confluence of Ag) The \g-calculus is confluent.

Proof of Theorem 1 This proof is the de Bruijn version of the proof given
n [KN95]. Let a =45 b, and @ =45 c. By Lemma 4, a =3 b, and a =5 ¢;
hence b =5 c¢. By confluence of 8, 3d € A where b =4 d, and ¢ —#5 d. By
Remark 1, b =43 d, and ¢ —» 43 d.

There are, as we mentioned in the introduction, various notions of gener-
alized reduction. For other proofs of confluence of some of these notions, we
refer the reader to [AFM 195, dG93, Kam96, KW95b, Kl080).

Proof of Theorem 1 O

Finally, the following ensures the good passage of g3-reduction through
{+ } and U;:

Lemma 5 Let a, b, ¢, d € A. The following hold:
1. If ¢ =45 d, then Ui(c) — 45 Ui(d).
2. If c =45 d, then af{n<c} —» 5 af{nd}}.
3. If a =45 b, then af{n<c} —45 bf{nc}.
15
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Proof of Lemma 5

1. By induction on e¢. We only prove the base case where ¢ = (¢10)W (M)cs,
W is well balanced, and d = W (c3{1<Uj A(W)J’l(cl)}}).

Ui(c)

= U((cd)W (M)
(1) = (U)W NV p iy (€3)
(3.2) —gs (UL(W))((U} brav <c3>>{{1eU#*W“<U,;<c1>>}}
23) = (UEVD(Up, v H(c@){{le%#wwo AW e
(25) = (ULW)UL, 4 (cg{{levf* e
(3.1) = U;(W(c3{{1evf* C )

= Uid)

2. By induction on a using point 1.

3. By induction on a. We only prove the base case: a = (a,0)W (\)as,
and b = W (ax {1 U™ (a))}).

afi<c}
((a10)W (N)az) {i e}

(3.3) (a1 i< PO W {i+—cH N (ax{i + #1(W )+1<—c}})

(34) —g W{i<cR(ax{i+ #r(W )+1ec}{{1%U#*( ( i)

24) = Wi} afi+#En(W) + 11 U @) {i + £ (W) )}
(2.6) Wi c}a{1 eU#*(WHl(al)}{i + #A (W) c})

(3.3) (W (ax {1 U (@) ) i c}

b{i+c}
Proof of Lemma 5 O

3 The As- and Ags-Calculi

The Ao-calculus (cf. [ACCL91]) reflects in its choice of operators and rules
the calculus of categorical combinators (cf. [Cur86]). The main innovation
of the Ao-calculus is the division of terms into two sorts: sort term and sort
substitution. We depart from this style of explicit substitutions in two ways.
First, we keep the classical and unique sort term of the A-calculus. Second,

16
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we do not use some of the categorical operators, especially those that are not
present in the classical A-calculus. We introduce new operators reflecting
the substitution and updating that are only present in the meta language
of the A-calculus. By doing so, we believe that our calculi are closer to the
A-calculus from an intuitive—rather than a categorical—point of view.

A calculus accommodating explicit substitution via explicit rewrite rules
in the A-calculus was first presented in [KN93]. In that article, the intention
was to introduce the philosophy in general, and the calculus obtained did
not possess either confluence or preservation of strong normalization. In
[KR95a], the part of the calculus that was confluent and preserved strong
normalization was singled out. In this paper, we take that part (As) and
extend it with generalized reduction. We start this section by presenting the
As- and Ags-calculi, and then by studying their properties.

The As-calculus is obtained by internalizing the meta operators of Defini-
tions 6 and 7 in order to handle substitutions explicitly. Therefore, the syntax
of the As-calculus is obtained by adding to A two families of operators:

1. explicit substitution operators {o?};>1, where (bo?)a stands for a
where all free occurrences of the variable representing the index j are
to be substituted by the appropriately updated b, and

2. updating operators {t}x>o, which are necessary for working with de
i>1

Bruijn indices.

Definition 12 The set of terms of the As-calculus, denoted As, is given as
follows:

As =N | (Asd)As | (\)As | (Aso?)As | (¢h)As

where j,1 > 1 and k > 0. We let a, b, and ¢ range over As. A term
(ao?)b is called a closure. Furthermore, a term containing neither os nor
s is called a pure term. The symbol A denotes the set of pure terms. The
set DL of dA-segments is the set whose main items are either d-items or
A-items, i.e., DL == ¢ | (AsO)DL | (\)DL. As usual, a reduction — on
As is compatible if for all a,b,c € As, if a — b, then (ad)c — (bd)c,
(cd)a — (cd)b, Na — (A\)b, (ac?)e — (bal)e, (co?)a — (co’)b, and
(k)a — (gp)b.

17
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(o-generation) (b6)(N)a — (bo')a
(o-A-transition) (boh)(Na — (A)(bo'™a ‘
(o-0-transition) (bo?)(a10)as — ((bo?)aid) (bo?)asy

n—1 ifn>jy

(o-destruction) (bo)n — L ()b ifn =
n ifn<y
(p-A-transition) () (N)a — (A)(@h41)a
(p-0-transition)  (g})(ar0)az — ((9})a16)(k)az
: -1 if k
(p-destruction) (pi)n — n 1 "
n ifn <k

Figure 3: The As-calculus

Definition 13 Items, segments, and well-balanced segments for As are
defined as follows:

Tsz=(As0) | (A) | (Aso?) | ()
Ssi=¢ | IsSs
Wsi=¢ | (Asd)Ws(A) | Ws Ws

Welet I, J, ... range over Zs; S, S', ... over 8s; and W, U, ... over Ws.
We call (ao?) and (p}) a o-item and a @-item, respectively. The notion
len(S) is trivially extended to S € Ss in the obvious way, and #,(S) is

extended by declaring that #((a0?)S) = #(S) and #((04)S) = #(S).

As the As-calculus updates and substitutes explicitly, we include a set of
rules that are the equations in Definitions 6 and 7 oriented from left to right.

Definition 14 (As-Calculus) The As-calculus is the reduction system
(As, —»s), where — s is the least-compatible reduction on As generated by
the rules given in Figure 3. We use As to denote this set of rules.

Definition 15 (s-Calculus) The s-calculus, the calculus of substitutions
assoctated with the As-calculus, is the reduction system generated by the set
of rules s = As — {(o-generation)}.

18
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Definition 16 (Notation for s-Normal Forms) We use s(a) to denote
the s-normal form of a. Define s(S) for a dA-segment by s(¢) = ¢, and
s((ad)S) = (s(a)d)s(5), and s((A)S) = (A)s(S).

Definition 17 (Ags-Calculus) The \gs-calculus is the calculus whose set
of rules consists of A\gs where \gs = As U {(go-generation)} and (we write
w.b. for “well balanced”):

(go-generation) : bW (AN)a — W((w#k(WHl)b o')a
where W # ¢ is w.b.

Note that in the Ags-calculus we do not merge (o-generation) and
(go-generation) into the following:

(new go-generation) : bo)W(N)a — W((@O#*(W)H)b ola

where W is w.b. The reason for this lies in the fact that (new go-generation)
does not generalize (o-generation) of the As-calculus. That is,

(80)(N)a = -gen (b0 ), yet (85)(N)a = s gren (1))

The (0-generation) rule starts the simulation of a -reduction by gener-
ating a substitution operator (o'). The (o-0-transition) and (o-A-transition)
rules propagate copies of this operator throughout the term until they arrive
at the variable occurrences. If a variable should be affected by the substitu-
tion, the (o-destruction) rule (case j = n) carries out the substitution by the
updated term, thus introducing the updating operators. Finally, the ¢-rules
compute the updating.

We state now the following theorem of the As-calculus.

Theorem 2 The following hold:
1. The s-calculus is strongly normalizing and confluent on As.
2. All s-normal forms are unique.
3. The set of s-normal forms is exactly A.
4. For every a,b € As, the following hold:
(a) s((ad)b) = (s(a) 9)s(b)
19
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(b) s((Ma) = (A)(s(a))
(¢) s((#h)a) = Ui(s(a))
(@) s((bo?)a) = s(a){i<s(b)}

Proof of Theorem 2

1. We define recursively a weight function W:
W(n)=1 W ((ad)b) = W(a) + W(b) +1
W((gp)a) =2W(a)  W((bo?)a) = 2W (a)(W(b) +1)
W((AN)a) =W(a) +1

[t is easy to show by induction on a that a —4 b implies W (a) > W (b);
hence the s-calculus is strongly normalizing.

As for confluence, note first that the reduction —; is locally confluent
because there are no critical pairs and the theorem of Knuth-Bendix
applies trivially. Finally, Newman'’s lemma (see Lemma 1) guarantees
confluence.

2. The existence and unicity of s-normal forms (s-nf) is guaranteed by
point 1.

3. Check first by induction on a that (bo')a and (¢})a are not s-normal
forms. Then check by induction on « that if ¢ is an s-nf then a € A.
Conclude by observing that every term in A is in s-nf.

4. Cases a and b hold because there is no s-rule whose left-hand side
is an application or an abstraction. Case c is shown as follows: first
show the equality for terms in s-nf, i.e., use an inductive argument
on ¢ € A to show s((¢h)c) = Ui(s(c)). Then let a € As, s((¢})a) =
s((ph)s(a)) = Ui(s(s(a))) = Ui(s(a)). Case d is shown similarly to
(and using) Case c.

Proof of Theorem 2 0O
Lemma 6 Let a,b € As. Then both of these statements hold:
® if a =, gen b, then s(a) —»5 s(b); and
® if @ —gygen b, then s(a) —»45 s(b).
20
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Proof of Lemma 6 The first claim is proved by induction on @ using
Lemma 5 and Theorem 2. For the second claim, we need the following
additional argument. Observe that for any dA-segment S, it holds that
s(Sa) = s(S)s(a). Then note that if W is well balanced, then it is a JA-
segment, and thus s(W a) = s(W)s(a).

Proof of Lemma 6 O

Corollary 1 Let a,b € As. Then both of these statements hold:
o if a —») b, then s(a) —»3 s(b); and
o if a—»y, b, then s(a) —» 45 s(b).

Corollary 2 (Conservative Extension) Let a,b € A. Then both of these
statements hold:

® ifa—»xs b, then a =5 b; and

® if a—%ygs b, then a —» 43 b.

This last corollary says that the \(g)s-calculus is correct with respect to
the A(g)-calculus, i.e., if a A(g)s-reduction sequence begins and ends with
pure terms, there is a A(g)-reduction sequence beginning and ending with
the same terms.

Moreover, the A(g)s-calculus is powerful enough to simulate (g)f-
reduction.

Lemma 7 (Simulation of (g)3-Reduction) Let a,b € A. Then the fol-
lowing statements hold:

e ifa—4b, then a —7, b; and
e ifa—,5b, then a —>j{gs b.

Proof of Lemma 7 The first case is by induction on a. As usual, the

interesting case is when a = (A¢)d and b = {1 < d}. In this case,
c,dEA

(A)d —5g—gen co'd —», s(co'd) 2 s(o)f1 < s(d)} “E" cf1l « d}. The
second case is by induction on a using Theorem 2.

Proof of Lemma 7 O
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Corollary 3 Let a € A. The following hold:

e if a is strongly normalizing in the As-calculus, then a is strongly nor-
malizing in the A-calculus; and

e if a is strongly normalizing in the Ags-calculus, then a is strongly nor-
malizing in the Ag-calculus.

We prove now the confluence of As and Ags on ground terms. We remark
that not even As is confluent on open terms. As a matter of fact, to obtain
confluence on open terms, certain rules must be added. The calculus thus
obtained, As, has been shown confluent (cf. [KR97]). The combination of
Ase with generalized reduction has not yet been studied.

Theorem 3 (Confluence of As and Ags) The As and M\gs-calculi are
confluent on As.

Proof of Theorem 3 We use the interpretation method (cf. [Har89,
CHL96]). To prove confluence of the As-calculus, remove each (g) from the
proof below. For the confluence of the Ags-calculus, leave each (g) but remove
the parentheses that embrace the gs. The proof goes as follows:

We interpret the A(g)s-calculus into the A\(g)-calculus via s-normalization:

W N
.

Theorem 1

\&/

The existence of the arrows s( 08 S( and s( )8 s(c) is guar-
anteed by Corollary 1. We can close the dlamond thanks to the confluence of
the A(g)-calculus. Finally, Lemma 7 ensures s(b) —x(g)s d and s(b) —#x(g)s d,
proving thus the confluence for the \(g)s-calculus.

Proof of Theorem 3 O
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4  Preservation of Strong Normalization

We show in this section that the As-calculus preserves the A-calculus strong
normalization and that the Ags-calculus preserves the Ag-calculus strong nor-
malization.

The technique used in this section to prove preservation of strong nor-
malization (PSN) is an adaptation of the minimal derivation method used
in [BBLRD96] to prove PSN for Av and in [KR95a] to prove PSN for As.
Our proof includes the first proof of the commutation of arbitrary external
and internal reduction. Moreover, we give an inductive and elegant definition
of internal/external reduction, instead of the one that depends on internal
and external positions as in [BBLRD96]. Finally, we introduce a syntactic
notion of skeletons that will be very informative about internal and external
reduction. The elegance of our presentation is reflected by the fact that one
proof is enough to achieve both preservation results above.

Notation 1 We write a € A-SN, respectively, a € Ar-SN, when a 1s
strongly normalizing in the \-calculus (respectively in the Ar-calculus) for
r € {g,9s,s}. We write a e b to denote that p is the position of the redex
that is contracted. Therefore, a — b means that the reduction takes place
at the root. We denote by < the prefix order between positions in a term.
Hence if p and q are positions in the term a such that p < q, and we write
a, (respectively a,) for the subterm of a at position p (respectively q), then
aq 15 a subterm of a,.

For example, if a = ((40)(\)103)2, we have a; = 2, ay = (46)(A\)1, ay =
(M1, as;p =1, and agy = 4. For example, since 2 < 21, it must hold that ay
is a subterm of a,.

The following three lemmas assert that every o in the last term of a
reduction sequence beginning with a A-term must have been created at some
previous step by a (generalized) ((g)o-generation), and trace the history of
these closures. The first lemma deals with one-step reduction where the redex
is at the root; the second generalizes the first; and the third treats arbitrary
reduction sequences.

Lemma 8 Let =€ {—,, —=ags}- If a = Cl(eo’)d], then one of the follow-
ing must hold:

1. a=(ed)(Nd, C =1-], andi=1;
23
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2. =g, a = (W, W # ¢, C=W[], e = (o), and

1=1; or
3. a=C"(ec?)d'] for some context C', some term d', and j € {i —1,i}.

Proof of Lemma 8 Since the reduction is at the root, we must check for
every rule a — a’ that if (e 0%)d occurs in o, then one of the three possibilities
follows. We supply proofs only for the interesting rules:

(o-generation): a = (cd)(A\)b, and a' = (coh)b. If (eo’)d matches (co')d,
then rule 1 holds; else (e o%)d must occur within b or ¢, and hence rule
3 holds, with j =i and d' = d.

(go-generation): Occurs only if -=—),. a = (cH)W(X)b, W # ¢, and
a = W@ o, If (eo?)d is (07" )eol)d, then rule 2
holds; else (e o')d occurs in b, ¢, or W, hence rule 3 holds, with j = i,
and d' = d.

(o-A-transition): a = (co™)(A)b, and a' = (\)(co™1)b. If (eo’)d matches
(co™™1)b, then rule 3 holds, with j =i — 1, and d' = (\)d; else (eo?)d
occurs in b or ¢, hence rule 3 holds, with j =4, and d' = d.

Proof of Lemma 8 0O

Lemma 9 Let =€ {—, —rgs}- If a = C[(ec’)d], then one of the follow-
tng must hold:

1. a=C[(ed)(N)d] and i = 1;

2. ===, a = C'[(€ W], C = C'W[-]], e = (" )e!, and
1=1; or

3. a=C"(e07)d'] where e’ =e ore —e and j € {i—1,i}.

Proof of Lemma 9 Induction on a, using Lemma 8 for the reductions at
the root.

Proof of Lemma 9 O

Lemma 10 Let —€ {—5, —ags}- Let ay — -+ = ap, = apy1 = C[(eo?)d].
There exist €' ,d" € As, and a context C'[-] such that ¢ — e and one of the
following holds:

24
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1. ap = C'"[(€ 6)(N)d'] and apy1 = C'[(€' 0')d'] for some k < n;

2. == —>>\gs, ap = C'[(e HWN], apy1 = C'[W(e"o')d'], and " =
(go#*( Ne' for k< n and w.b. W; or

a, = C'[(e' 0?)d'], where j < i.
Proof of Lemma 10 Induction on n and use of Lemma 9.

Proof of Lemma 10 O

We now define internal and external reductions. An internal reduction
takes place somewhere at the left of a of-operator. An external reduction is
a noninternal one. Our definition is inductive rather than starting from the
notions of internal and external position, as in [BBLRDY6].

Definition 18 (Internal Reduction)

For any notion of reduction r, the reduction ™, is defined by the following
rules:

a—>,b a itn b a itha b
(aoi)e M. (bot)e (ad)c ", (bo)c (c)a ™, (¢6)b
a ﬁn b a J) b a J) b
(Ma 5, (A)b (cot)a =5, (cot)b (k)a 5 ()b
a—>, b

Therefore, ™, is the least-compatible relation closed under —.
(aot)e M, (boi)c

Remark 2 By inspecting the inference rules, one can check that:
1. Ifa 2% (\)b, then a = (N)e, and ¢ 25, b.

2. If a ", (cO)b, then a = (ed)d, and ((d ™, b and e = ¢) or (e ™, ¢
andd=1)).

3. If a 5. W(A\)b with W well balanced, then one of the following holds:

o a =W witht ™, b, or
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o W = Wi(b\6)Wo(XN)W3 where Wy, Wy, and Wy are well balanced,
a = Wl(bl(S)Wg()\)Wg()\)b, and b1 Lt)r bll
4. a ™, n is impossible.

Definition 19 (External Reduction) For any notion of reduction r, the
reduction =%, is defined by induction. The azioms are the rules of r, and
the inference rules are the following:

a e_xt>r b a e—Xt>r b
(ad)e =5, (bd)c (cd)a =5, (cd)b
a e_xt>r b a e—Xt>r b a e_xt>r b
(Na =5, (\)b (cot)a =%, (cot)b (¥h)a =5, (¥})b
a5, b

Note that the potential rule is excluded from the defin-

(act)c =5, (bo')c
ition of external reduction. Thus, as expected, external reductions will not
occur at the left of a o’-operator. This enables us to write —* 4 instead of

—»3 in the following proposition (compare with Lemma 6).

ext, ext,

Proposition 1 Leta, b € As. a 5,4, b = s(a)—=Tgs(b), and a =545 gen
b = s(a) =Ty s(b).

Proof of Proposition 1 By induction on a (as in Lemma 6). Note that
when a = (do')c, the reduction cannot take place within d because it is
external, and this is the only case that forced us to consider the reflexive-
transitive closure because of Lemma 5.2.

Proof of Proposition 1 O

The following is needed in Lemma 12 and hence in the preservation the-
orem. Note that we depart from the traditional minimal derivation method
(which we call here the minimal reduction-sequence method) which commutes
internal Ar-steps and external s-steps and assumes that s(a) is A-SN and that
s(a) = s(b). Instead, we commute arbitrary internal and external reduction,
and drop the extra assumptions concerning SN and the s-normal forms. Our
generality enables us to simplify the proof of the commutation lemma (no
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need to always check during the induction that terms are A\-SN, and evalu-
ate the s-normal forms). Moreover, our commutation of arbitrary internal
and external reduction simplifies Lemma 12, which is needed in the proof of
PSN. In particular, Lemma 12 drops the condition that the term is strongly
normalizing, and its proof is very simple.

Lemma 11 (Commutation of Internal/External Reduction)
Let a,b € As, and r € {s,gs}. If a ™5 - =5, b, then a =5+ 5,, b.

Remark 3 The relation e—”)jr can represent one or two steps. The two-

step use s necessary when the internal step changes an external redex from
(ac™)n to (a'c™)n and the external step uses (o-destruction) to destroy this

redex, producing oia’. The relation Ant e can represent zero, one, or two
steps. The zero-step case is necessary when the two-step case of e—“)jfr occurs
(already mentioned), or when the internal step changes an external redex from
(ao®)n to (a'c*)n and i # n, and the external step uses (o-destruction) to
destroy this redex, discarding the subterm a'. The two-step case happens when
the internal step changes an external redex from (a o*)(bd)c to (a’ o*)(bd)c,
and the external step uses the (o-d-transition) rule to duplicate the o-item,

producing ((a’' 0)bd)(a’ o%)c.

Proof of Lemma 11 By induction on a, analyzing the positions of the re-
dexes. We give the proof for r = gs. The basic case, which is a = n, is
trivial.

a = (azd)ay: Since we are dealing with an internal reduction, there are only
two possibilities: a; 5,5 @}, or az 3y, aj. Let us study, for in-
stance, the first one. There are four cases:

o a = (axd)a; s (a20)a] =5y (a20)ay, and a; 5y g5 @) =545
ay. Therefore, by induction hypothesis, a; =%y, - =g af, and
then (azd)a; =57 - s (a2d)al.

Ags
_ int ;1 ext / / : int, I
o a = (ad)ar —ags (ag0)a] =Sngs (ah0)al, with a1 55y df

and as %,\gs ay.  We can simply commute the reductions:
a = (a20)a; =5y (ay6)ar ™, (ahd)d).

e a = (ad)uy ﬂb\gs (a2d)(N)a] =555 (agot)a), with ay %Ags
(A)a). Hence, by Remark 2, a; = ()\_)bl with b ™%,,, a}. Now,
(a25)a1 = (025)()\)[)1 e—Xt>)\g5 (agal)bl lt})\gs (agal)a'l.
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o a = (axd)a; s (azd)W(N)a) 255, W((#WH)ay0t)al,
with W well balanced and a; ﬁb\gs W(A)ay. Hence, by Re-
mark 2.3, there are two cases:

—case a3 = W(A)by, where b ﬂb\gs aj.  Then a =
(azd)W (A\)by e—xtngs W (Mg, M, ,,, and
W ((p# ")t )az0")a), and

— case a; = Wi (b18)Wa(A)W5(N)a) and W = Wy (b 6)Wa(N) W,
where Wy, Wy, and W3, are well balanced, and b, ltb\gs bl.
Then,

a = (a25)W1(b16)W2()\)W3()\)a’1 %)\gs
Wi(b:10)Wa(NWs((9™ M ) azat)a] 55,

Wi (b1 0)Wa (N W3 (0™ ay0h)a) = W (V) ay)0h)a).

a = (A)ay: The reduction must take place within a;, and we use the induction
hypothesis.

a = (ay0')a;: Again, as we are analyzing an internal reduction, two cases
arise:

ay ltb\gs a}: The external reduction can only take place within a} or

at the root:
e a = (ay Ui)al %Ags (az 0%)a)) e—Xt>,\gs (az0¥)ay, and a, %Ags
al %Ags al. We can now apply the induction hypothesis to
- g af, and

a1 "ags @y THags af to obtain a; 5

hence (ag 0')a; =57, - % vgs (a2 0%)al.

e 0= (ay0')ay —>,\gs (az0')a) =545 b, and a3 5,4 a}. The

external reduction takes place at the root. We study the three
possible rules:

— (o-A-transition):  We have af = (\)¢, and b =
(A)(ago*™)c’. Remark 2.1 ensures that a; = (\)c and
¢ M4 ¢. We can then commute: a = (ay0%)ay
(a3 07) (N2 g5 (N) (a0 ) e M5 s (V) (ag0™ ) = b.
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— (o-0-transition): a} = (¢8)d', and b = ((ay 0*)'d)(ay 0¥)d'.
Remark 2.2 ensures that a; = (¢§)d and either ¢ ™%,/ ¢
and d = d', or d ﬂb\gs d and ¢ = . In both cases we
can commute, as in the previous case.

— (o-destruction): We have a} = n, and this is impossible
by Remark 2.4.

as —rags 05t As in the previous case, the external reduction can take
place within a; or at the root:
_ i int 10 ext, [ AN ext,
o 0= (ay0")a; “=ags (aho')ayr =554 (ahy0t)al, and a1 =5y
aj. We can commute to obtain:

a = (az0)a; 2B (a2 0")a) ™, (afot)a).

o a = (ap0%)a; ™y, (aho')ay =5, b, and the external re-
duction takes place at the root. We study the three possible
rules:

— (o-A-transition):  We have a; = (Ae, and b =
(A)(dho*™)e. We can commute:

a = (ay0")a; = (ay U.i)()\)c
25 305 (V) (aga™ e
0t s M) (@b e =10

— (o-0-transition):  We have a; = (cd)d, and b =
((ahy o) cd)(abho")d. We can commute, generating two in-
ternal steps:

a=(ay0')a, = (az Ui)(C5)d
25105 ((az0*)cd)(az o')d
e (0 0%)c8)(020')d
“oags ((ay0")e)(ayo")d = b
— (o-destruction): We have a; =n. If n > i, then b =n — 1.
But (azo')n 5,5 n—1. If n < i, then b = n. But
(az o )n =55 n. If n =i, then b = (p})al. We must now
consider whether ay — )5 @), is external or internal. If it is
internal, we can commute to obtain:
a=(ag0")a; = (azo')n 25, (0))ag g (5)ah = b
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If it is external, we get:

ext,

a = (ay0")a; = (azo')n =5 205 (¢h)as =5 g5 (¢h)ah = b
giving us @ =% b % rgs b-

a = (% )a;: Two possibilities exist, according to the position of the external
reduction:

ext,

1 int, 1 1 int,
o (ph)ar =g (¢h)d) %Ags (ph)ay, and a; "=y a) ZSygs af.
Use the induction hypothesis.

ext,

o (pi)ar M (9h)a) =5 b, and a; ™,,, a). The external
reduction takes place at the root. Three rules are possible:
— (p-A-transition): We have a} = (N\)¢, and b = (A)(p}, ).

Remark 2.1 ensures that a; = (A\)c and ¢ ,,, ¢. We can

then commute:
a = (ph)ar = (¢h)(N)e 25 s (N (@hir)e Mg (V) (Phi1)c = b

— (p-O-transition):  We have a} = (dd)d, and b =
((gp}%c’)é)_(gp};)d’. Remark 2.2 ensures that a; = (cd)d, and
either ¢ Ltb\gs dandd=d,ord ltb\gs d and ¢ = ¢. In both
cases, we can commute as in the previous case.

— (p-destruction): We have @ = n, and this is impossible by
Remark 2.4.

Proof of Remark 3 O

Lemma 12 Let a € As, and r € {s,gs}. For every infinite Ar-reduction

sequence a —>yy by = v = by = ..., one of these two possibilities
holds:

1. there exists N such that for i > N, it holds that b; nt, biv1, t.e., all
the reductions beyond the Nth step are internal; or

2. there exists an infinite external Ar-reduction sequence:

ext, ext, ext,

ext,
a ?ar C1 PAT - ?Ar Cn PAT -
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Proof of Lemma 12 Suppose there are an infinite number of external steps
in the given reduction sequence. Then by repeated use of the commutation
lemma (Lemma 11), we construct an infinite external reduction sequence
starting from a. Otherwise, there is some N such that all steps past the Nth
step are internal.

Proof of Lemma 12 0O

To prove the preservation theorem (Theorem 4), we need two definitions.

Definition 20 Let r € {s,gs}. An infinite Ar-reduction sequence a; —
-oe = ap — ... ts minimal if for every step a; 7)\ air1, every other reduc-
r

tion sequence beginning with a; ?M a;., where p < q is finite.

The idea of a minimal reduction sequence is that at every step, it picks a
redex as deeply nested as possible without preventing an infinite reduction.
If one changes any one of its steps to rewrite a redex within a subterm of the
original redex, then an infinite reduction sequence is impossible.

Definition 21 The syntax of skeletons and the skeleton of a term are defined
as follows:

Skeletons K =:=N| (K&K | (MK | ([-]0?)K | (p%) K

Sk(n) =n Sk((ad)b) = (Sk(a)6)Sk(b)
Sk(Na) = (\)Sk(a)
Sk((ba*)a) = ([]0")Sk(a)
Sk((¢)a) = (¢})Sk(a)

Remark 4 A definition of internal and external reduction equivalent to
Definitions 18 and 18 is the following. Let a,b € As. Then define:

a ", b (a—, b and Sk(a) = Sk(D))
a5, bs (a—,band Sk(a) # Sk(b))

In other words, skeletons provide a syntax that is informative regarding what
kind of r-reduction takes place. In particular, the following two properties
hold:
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1. each occurrence of [-] in Sk(a) corresponds to an external closure of
a (i.e., a closure that is not at the left of any other closure), and this
correspondence is a bijection; and

2. internal closures (those which are at the left of another closure) vanish
in the skeleton.

Theorem 4 (Preservation of Strong Normalization) Let a € A. The

following hold:

1. if a is strongly normalizing in the \-calculus, then a is strongly nor-
malizing in the \s-calculus; and

2. if a is strongly normalizing in the Ag-calculus, then a is strongly nor-
malizing in the \gs-calculus.

Proof of Theorem 4 The proof of rule 1 is obtained by replacing, in the
proof below, A\g by A and Ags by As, and by dropping the second case given
in Lemma 10. We prove rule 2.

Assume a € Ag-SN, a € Ags-SN, and take a minimal infinite Ags-
reduction sequence:

D:a—xgs Q1 —rxrgs " —> Op —Frgs - - -

Lemma 12 gives N such that for i > N, a; —,gs @;41 is internal. (Note that
case 2 of Lemma 12 cannot hold. Otherwise, by Proposition 1, there would
be an infinite Ag-reduction sequence starting at a and hence a ¢ Ag-SN—
contradiction.) By Remark 4, Sk(a;) = Sk(a;;1) for i > N. As there are
only a finite number of closures in Sk(ay) and as the reductions within
these closures are independent, an infinite reduction sequence D' can be
formed by taking steps from D such that all steps take place within a single
closure in Sk(ay) and D' is also minimal. Let C' be the context such that
anx = C[(do')c], and (d o")c is the closure where D' takes place:

DI anN = C’[(dol)c] ﬁ))\gs C[(dl O'i)C] ﬁb\gs e ﬂb\gs O[(dn O'i)C] ﬂ))\gs Ce
Since a is a pure term, Lemma 10 ensures the existence of I < N such that
one of the following holds:

1. a; = C'[(d' 6)(N)] =ags art1 = C'[(d'c")c] and d' —»yys d, or
32
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2. ar = C'[(d' OWNE] —rgs arsr = C'W (9™ daY)e] and
d 7 \gs d.

Let us consider in the first and second cases, respectively, the following in-
finite Ags-reduction sequences:

D" :a —7Ags AT —FAgs Cl[(dé) ()\)Cl] 7 \gs Ol[(dlé) ()\)Cl] —Xgs """ T7Ags

C'[(dn0)(AN)€] —ags - -
D" a —»rgs ar —Hrgs C'[(dO)W (N —=rgs C'[(d10)W (N)]
—ags * —ags Cl(dn®)W(A)] —ags - -

In D" and D", the redex in a; is within d’, which is a proper subterm of
(d'0)(N) (of (d'6)W(A)C in the second case), whereas in D', the redex in
ar is (d'8)(N)c (in the second case, (d' 6)W (A)c'), and this contradicts the
minimality of D’.

Proof of Theorem 4 0O
Theorem 5 For every a € A, the following equivalences hold:
a € A\-SN & a € A\s-SN
and
a € \g-SN & a € A\gs-SN

Proof of Theorem 5 By Lemma 3 and Theorem 4.

Proof of Theorem 5 O

To complete the picture, we need to use a result of [Kam96|:

Theorem 6 Let a € A. It holds that a € A\-SN < a € Ag-SN.
Corollary 4 For every a € A, the following equivalences hold:
a € \g-SN & a € A\-SN < a € A\s-SN & a € \gs-SN

Note that the main preservation results that we show in this paper (The-
orem 4) are concerned with substitution calculi. That is, we show that if
a € Ar-SN, then a € Ars-SN for \r € {A\, A\g}. What we do not show in
this paper is the preservation result concerned with generalized reduction.
That is, we do not prove a € A-SN = a € Ag-SN; rather, we take the result
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of [Kam96]. The reason for this is that the minimal derivation method and
even our adaptation of it are not suited to prove PSN for calculi that do not
have explicit substitutions. In fact, the whole idea of internal and external
reduction and of skeletons is based around substitutions. It is also fair to say
that generalized reduction did not play any role in the proof of PSN (despite
its role in proofs of SN as shown in [KW95b, Klo80, Ned73]).

5 The Typed As- and Ags-Calculi

Our calculi of explicit substitutions As and A\gs possess a very nice property
that other calculi of explicit substitutions do not possess: namely, the simply
typed versions of As and Ags are strongly normalizing. The Ao-calculus of
[GLI7] does not possess this property, as is shown by Mellies in [Mel95], and
only very recently has its weak normalization on open terms been shown to
hold, in [GL97]. The simply typed Av-calculus of [BBLRD96| is strongly
normalizing, however, it is not confluent on open terms. In fact, our As- and
Ags-calculi are the first calculi of explicit substitutions whose simply typed
versions are strongly normalizing (cf. [KR95b, KR96]) and which possess
a confluent extension on open terms (we have shown the confluence of the
extension of A\s on open terms; although the extension for Ags on open terms
has not yet been investigated, we believe that the details are similar to those
for As).

In this section, we present the simply typed versions of As and Ags, and
prove the strong normalization of the well-typed terms using the technique
developed in [KR95b] to prove As-SN, which was suggested to us by P.-A.
Mellies as a successful technique to prove Av-SN (personal communication).

We recall the syntax and typing rules for the simply typed A-calculus in
de Bruijn notation. The types are generated from a set of basic types 1" with
the binary type operator —. Environments are lists of types. Typed terms
differ from the untyped ones only in the abstractions, which are now marked
with the type of the abstracted variable.

Definition 22 (A; and L1) The syntaz for the simply typed A-terms is
given as follows:

Types To=T|T—>T

Environments & ==mnil | T,€E

Terms At = N | (At 5)At | (T)\)At
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Welet A, B, ... range over T; E, Eq, ... overE; and a, b, ... over A;. The
typing rules are given by the typing system L1 as follows:

(L1-var) AEF1:A
EFn:B

L1-

e Ayl

(L1-abs) : '

EF(ANb:A— B
ErFb:A— B, FEta:A

(L1-app) Etr (ad)b: B

Before presenting the simply typed As-calculus and Asg-calculus, we in-
troduce the following notation concerning environments. If E is the envir-
onment A, As, ..., Ay, we shall use the notation E; for the environment
Aj, Aigr, ..., An. Analogously, E<; stands for A,,..., A;. The notations F;
and E; are defined similarly.

Definition 23 (As; and Lsl) The syntaz for the simply typed \s-terms is
given as follows:

As; = N | (As; 6)Asy | (T N)Asy | (As;o)As, | (ph)As; wherei > 1, k>0

Types and environments are as above. The typing rules of the system Lsl are
as follows. The rules Lsl-var, Lsl-varn, Lsl-abs, and Lsl-app are exactly
the same as Ll-var, L1-varn, L1l-abs, and Ll-app, respectively. The new
rules are:

EsiFb:B, E.,B,Esita:A

(Lsl-o) EF(boha: A

ES’W EZ/H-Z' Fa:A
EF(pi)a: A

(Lsl-¢)

The reduction rules of the simply typed As- and Asg-calculi are given by the
same rules of the corresponding untyped versions, except that abstractions in
the typed versions are marked with types.

We say that a : A is derivable in some type system X € {L1,Lsl} from
an environment F, notation £ Fx a : A if and only if £ F a : A can be
produced by the typing rules of the system X. We say that a € As; is well
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typed if there exists an environment F and a type A such that F Fi4 a: A.
The symbol As,; denotes the set of well-typed terms.

The aim of this section is to prove that every well-typed As-term a is
Ags-SN (and hence As-SN). To do so, we show As,; C = C Ags-SN, where

= ={a € As, | for every subterm b of a, s(b) € A\g-SN }

To prove As,; C = (Proposition 2), we need to establish some useful results
such as subject reduction, soundness of typing (i.e., Lsl is a conservative
extension of L1), and typing of subterms:

Lemma 13 Let E be a type environment; A and B be types; and a,b, c € As;.
The following hold:

1. E+((¢y)ad)(cd)(BAb: A if and only if EF (c6)(BA)((¢h)ad)b: A
2. E+(¢)(h)a: A if and only if E+ (957 a: A
3. EF(ad)(BAb: A if and only if E+ (ac')b: A

Proof of Lemma 13 We supply only the proof of the first item, since the
others are similar.

EF ((p)ad)(cd)(BA)b: A
iff 3C.(EF (co)(BAN)b:C = A and EF+ (p8)a:C)
iff 3C.(EF(BA)b:B— (C— A) and Erc:B and Es;ta:C)
iff 3C. (B,E+b:C— A and EFc:B and (B, E)>it1Fa:C)
iff 3C.(B,EFb:C — A and EtFc:B and BEI—(%“)a C)
iff (B, El—(( cad)b: A and EFc:B)
iff ( F (BN ((pit)ad)b: B — A and EFc:B)
iff F(e8) (BN (g5t )ad)b: A

Proof of Lemma 13 O

Lemma 14 Let C' be a context, and a,b € As;,. E will range over type
environments, and A will range over types. The following holds:

(VE,A. (FFa: A< EFb:A)= (VE,A. (EFCla]: A= EFC[b) : A)
Proof of Lemma 14 By induction on C.

Proof of Lemma 14 O

The following lemma is necessary in the case of generalized reduction.
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Lemma 15 (Shuffle Lemma) Let S be an arbitrary segment, W a well-
balanced segment, and a,b € As;. Then:

E+ S@&)Wb: Aif and only if B+ SW (o) ™a6)b: A

Proof of Lemma 15 By induction on W, using Lemmas 13 and 14. If
W = ¢, it is immediate since E' = d : D if and only if E'  (¢3)d : D. Let
us assume W = (¢d)U(B M)V, with U and V well balanced. The following
equivalences hold using the indicated lemmas:

Et S@d)(cH)UBNVDL: A
(IH) ifft B+ Sad) U™ eo)(BAVD: A
(IH) iff £+ SU(P™a6) (P ™es)(BA)W D A
(13.1,14) iff E+ SU((QO#A(U)“)C(S)(B A (e Vb A
(IH, twice) iff EF S(cO)U(BNV((@iP* 1)(90#*( 24 8)b: A
(13.2,14) iff E+ S(coH)UBNV (@O 5)p A

Proof of Lemma 15 O

Lemma 16 (Subject Reduction) Let r € {s,gs}. If E Frq a : A and
a — - b, then E Fiq b A.

Proof of Lemma 16 By induction on a. If the reduction is not at the
root, use the induction hypothesis. If it is, check that for each rule a — b
we have E Frg a @ A implies E Frq b : A. For the case of (0-generation),
use Lemma 13i, rule 3. For the case of (go-generation) and r = gs, if E

(@d)W(BA)b: A, then by Lemma 15, we have E W((goo#*(w)ﬂ)a 3)(BA)b:
A, and by Lemma 13, rule 3, we conclude E I W((goo#*(w)ﬂ)a o')b: A. The
other rules are proven by similar reasoning.

Proof of Lemma 16 O
Corollary 5 Letr € {s,gs} and E 15 a: A. Ifa —»), b, then E b5 b @ A.
Lemma 17 (Typing of Subterms) If a € As,; and b<a, then b € Asy,.

Proof of Lemma 17 By induction on a. If b is not an immediate subterm
of @, use the induction hypothesis. Otherwise, the last rule used to type «a
must contain a premise in which b is typed.

Proof of Lemma 17 O
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Lemma 18 (Conservative Extension of Typing)
IfaeAiand Etbpga: A, then EbFpa: A

Proof of Lemma 18 Easy induction on a.

Proof of Lemma 18 O
Proposition 2 As,; C =.

Proof of Proposition 2 Let a € As,;, and b be a subterm of a. By
Lemma 17, b € As,y, and by Corollary 5, s(b) € As,,. Since s(b) € A (The-
orem 2), Lemma I8 yields that s(b) is L1-typable, and it is well known that
classical typable A-terms are strongly normalizing in the A-calculus. Hence,
s(b) € A-SN, and by preservation (Corollary 4), s(b) € Ag-SN. Therefore
a € =.

Proof of Proposition 2 O
Proposition 3 = C Ags-SN.

Proof of Proposition 3 Suppose there exist a’ € Zand a’ € Ags-SN. Then
there must exist a term a of minimal size such that a € = and a € A\gs-SN.
Let us consider a minimal infinite Ags-derivation D : a — a; — -+ — a, —
..., and follow the proof of Theorem 4 to obtain:

D' :ay = C[(do’)c] ™yys Cl(dr0)e] ™rgs . Mrgs Cl(dn )] Drgs ...
(Again, as we argued in Theorem 4, case 2 of Lemma 12 is discarded.
This is because a € = = s(a) € Ag-SN, and Proposition 1 would yield a
contradiction if case 2 of Lemma 12 holds.) Now three possibilities arise
from Lemma 10. Two of them have been considered in the proof of The-
orem 4 and have contradicted the minimality of D. Use the third one, that
a = C'[(d' 0")c'] where d' — d. Now we have d' —»d — d; — -+ — d, — .. ..
Since d’ is a subterm of a, it must be the case that d’ € =, contradicting our
choice of a with minimal size.

Proof of Proposition 3 O
Therefore we conclude, using Propositions 2 and 3 and Corollary 4:

Theorem 7 FEvery well-typed As-term 1is strongly normalizing in the Ags-
calculus.

Corollary 6 FEvery well-typed As-term is strongly normalizing in the A\s-
calculus.
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6 Conclusion

In this paper, we first explained the relevance and benefits of both generalized
reduction and explicit substitution. We discussed alternatives and presen-
ted the research history behind the two concepts. We explained that they
have never been combined, and we commented that the combination might
indeed join both benefits, hence a A-calculus extended with both needed to
be studied.

Then we introduced Ag, the first system of generalized reduction us-
ing de Bruijn indices. We proved Ag confluent, sound (i.e., it preserves
(-equivalence), and complete (it properly contains 3-reduction) with respect
to the ordinary A-calculus with de Bruijn indices.

Building on this success, we then introduced Ags, the first system com-
bining generalized reduction with explicit substitution. For this combination,
we relied on the proven explicit substitution technology of the As-calculus.
We proved Ags sound (a conservative extension) and complete (simulating
gf-reduction) with respect to Ag. We proved that Ags preserves the strong
normalization (PSN) of terms that are terminating in Ag, As, and the ordin-
ary A-calculus (all with de Bruijn indices). Our proof of PSN included the
first proof of the commutation of arbitrary external and internal reductions,
and is simpler than the standard proof of PSN using the traditional method
of minimal derivations.

We proceeded further and added simple types to both As and Ags (sim-
ultaneously) in the form of the type system Lsl. By proving the strong
normalization (SN) of well-typed terms under Ags-reduction (and therefore
also under As-reduction), we have provided the first typed systems of explicit
substitution and generalized reduction with the SN property. We proved that
Ags (and therefore also As) has the essential property of subject reduction
with respect to Lsl typing. We also proved that typing for Lsl is sound (a
conservative extension) and complete (a proper extension) with respect to
the simply typed A-calculus, and that it has typing of subterms.

Now that a calculus combining both concepts has been shown to be the-
oretically correct, it would be interesting to extend our Ags-calculus to one
that is confluent on open terms, as is the tradition with calculi of explicit sub-
stitution. It would also be interesting to study the polymorphically (rather
than the simply) typed version of Ags. These are issues we are investigating
at the moment. We are also investigating the correspondence of our calculus
to methods that implement sharing, to test if the analysis of sharing given
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in [AFM™95] can be recast in an elegant fashion in our calculus.

Acknowledgement of support: This work is supported by EPSRC grants
GR/K25014 and GR/L36963, and by NSF grant CCR-9417382.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit
substitutions. Journal of Functional Programming, 1:375-416,
1991.

[AFM*95] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and
P. Wadler. A call-by-need lambda calculus. In Proceedings of
the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, New York, 1995. ACM.

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntaz and Se-
mantics. North-Holland, Amsterdam, revised edition, 1984.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of

Logic in Computer Science, volume 2, chapter 2, pages 117-309.
Oxford University Press, Oxford, 1992.

[BBLRD96] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli.
Av, a calculus of explicit substitutions which preserves strong
normalisation. Journal of Functional Programming, 6, 1996.

[BKN96] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt
cube with definitions and generalised reduction. Information €
Computation, 126:123-143, May 1996.

[Blo95] R. Bloo. Preservation of strong normalisation for explicit sub-
stitution. Technical Report 95-08, Department of Mathematics
and Computing Science, Eindhoven University of Technology,
Eindhoven, Netherlands, 1995.

[CABCS86] R. L. Constable, S. Allen, H. Bromely, and W. Cleveland. Im-
plementing Mathematics with the NUPRL Development System.
Prentice-Hall, Englewood Cliffs, NJ, 1986.

40

The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized S-Reduction (Ref)

[CHL96] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties
of weak and strong calculi of explicit substitutions. Journal of
the ACM, 43:362-397, March 1996.

[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms
and Functional Programming. Wiley, New York, 1986.

[dB78] N. G. de Bruijn. A name-free lambda calculus with facilities for
internal definition of expressions and segments. Technical Re-
port 78-WSK-03, Department of Mathematics, Eindhoven Uni-
versity of Technology, 1978.

[dG93] P. de Groote. The conservation theorem revisited. In Proceed-
ings of the International Conference on Typed Lambda Calculi
and Applications, volume 664 of Lecture Notes in Computer Sci-
ence, pages 163-178, Berlin, March 1993. Springer-Verlag.

[GLIT] Jean Goubault-Larrecq. A proof of weak termination of the
simply typed Ao-calculus. Technical Report 3090, INRIA, Janu-
ary 1997.

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cam-
bridge University Press, Cambridge, 1993.

[Har89] T. Hardin. Confluence results for the pure strong categorical lo-
gic CCL: A-calculi as subsystems of CCL. Theoretical Computer
Science, 65:291-342, 1989.

[Hur96a] C. A. Munoz Hurtado. Confluence and preservation of strong
normalisation in an explicit substitutions calculus. In Proceed-
ings of the 11th Annual IEEE Symposium on Logic in Computer
Science, pages 440-447, Los Alomitos, 1996. IEEE.

[Hur96b] C. A. Munoz Hurtado. Proof representation in type theory:
State of the art. In Proceedings, XXII Latin-American Confer-
ence of Informatics CLEI Panel ’96, June 1996.

[Jon87] S. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice-Hall, Englewood Cliffs, NJ, 1987.

41

The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized S-Reduction (Ref)

[Kam96]

[K1080]

[KN93]

[KN95]

[KN96]

[KR95a)]

[KR95b]

[KR6]

[KR97]

F. Kamareddine. A reduction relation for which postponement
of k-contractions, conservation, and preservation of strong nor-
malisation hold. Technical Report TR-1996-11, University of
Glasgow, Scotland, March 1996.

J. W. Klop. Combinatory Reduction Systems. PhD thesis, Math-
ematical Centre Tracts. Mathematisch Centrum, Amsterdam,
1980.

F. Kamareddine and R. Nederpelt. On stepwise explicit sub-
stitution. International Journal of Foundations of Computer
Science, 4:197-240, 1993.

F. Kamareddine and R. Nederpelt. Generalising reduction in
the A-calculus. Journal of Functional Programming, 5:637-651,
1995.

F. Kamareddine and R. Nederpelt. A useful A-notation. The-
oretical Computer Science, 155:85—109, 1996.

F. Kamareddine and A. Rios. A A-calculus a la de Bruijn with
explicit substitution. In Proceedings of the 7th International
Symposium of Programming Languages: Implementation, Lo-
gics and Programs PLILP ’95, volume 982 of Lecture Notes in
Computer Science, pages 45-62, Berlin, 1995. Springer-Verlag.

F. Kamareddine and A. Rios. The As-calculus: Its typed and
its extended versions. Technical Report TR-95-13, Department
of Computing Science, University of Glasgow, 1995.

F. Kamareddine and A. Rios. A generalised (-reduction and
explicit substitutions. In Proceedings of the 8th International
Symposium of Programming Languages: Implementation, Lo-
gics and Programs, PLILP 96, volume 1140 of Lecture Notes
in Computer Science, pages 378-392, Berlin, 1996. Springer-
Verlag.

F. Kamareddine and A. Rios. Extending a A-calculus with ex-
plicit substitution which preserves strong normalisation into a
confluent calculus on open terms. Journal of Functional Pro-
gramming, 7:395-420, 1997.

42

The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized S-Reduction (Ref)

[KTU9A4]

[KWO4]

[KW95a]

[KWO5b]

[LMO96]

[Mag95]

[Mel95]

[Ned73]

[New42]

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML
typability. Journal of the ACM, 41:368-398, March 1994.

A. J. Kfoury and J. B. Wells. A direct algorithm for type infer-
ence in the rank-2 fragment of the second-order A-calculus. In
Proceedings of the 199, ACM Conference on LISP Functional
Programming, New York, 1994. ACM.

A. J. Kfoury and J. B. Wells. Addendum to “New notions of
reduction and non-semantic proofs of (-strong normalization
in typed A-calculi”. Technical Report 95-007, Department of
Computer Science, Boston University, 1995.

A. J. Kfoury and J. B. Wells. New notions of reduction and non-
semantic proofs of (-strong normalization in typed A-calculi.
In Proceedings of the 10th Annual IEEE Symposium on Logic
in Computer Science, pages 311-321, Los Alamitos, CA, 1995.
IEEE.

J. L. Lawall and H. Mairson. Optimality and inefficiency: What
isn’t a cost model of the lambda calculus? In Proceedings of the
1996 ACM SIGPLAN International Conference on Functional
Programming, pages 92-101, New York, 1996. ACM.

L. Magnusson. The implementation of ALF—a proof editor
based on Martin-Lof’s monomorphic type theory with explicit
substitution. PhD thesis, Chalmers University of Technology
and Goteborg University, January 1995.

P.-A. Mellies. Typed A-calculi with explicit substitutions may
not terminate. In Second International Conference on Typed
Lambda Calculi and Applications, Berlin, April 1995. Springer-
Verlag.

R. P. Nederpelt. Strong normalization for a typed lambda cal-
culus with lambda structured types. PhD thesis, Technische Ho-
geschool Eindhoven, 1973.

M. H. A. Newman. On theories with a combinatorial definition
of “equivalence”. Annals of Mathematics, 43(2):223-243, 1942.

43

The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized S-Reduction (Ref)

[Reg92]

[Reg94|

[Ri093]

[SF93]

[Ser97]

[Vid89)

[Xi96]

L. Regnier. Lambda calcul et réseauz. PhD thesis, Université de
Paris VII, 1992.

L. Regnier. Une équivalence sur les lambda-termes. Theoretical
Computer Science, 126:281-292, 1994. (In French).

A. Rios. Contribution a l’étude des \-calculs avec substitutions
explicites. PhD thesis, Université de Paris VII, 1993.

A. Sabry and M. Felleisen. Reasoning about programs in
continuation-passing style. LISP and Symbolic Computation,
6:289, November 1993.

M. H. Sgrensen. Strong normalization from weak normalization
in typed A-calculi. Information and Computation, 133(1):35-71,
25 February 1997.

D. Vidal. Nouwvelles notions de réduction en lambda-calcul. PhD
thesis, Université de Nancy, February 1989.

H. Xi. On weak and strong normalizations. Technical Report
96-187, Carnegie Mellon University, 1996.

44

The Journal of Functional and Logic Programming 1998-5



