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Calculi of Generalized �-Reduction andExplicit Substitutions: The Type-Free andSimply Typed VersionsFairouz Kamareddine Alejandro R��os J. B. Wells4 June, 1998AbstractExtending the �-calculus with either explicit substitution or gen-eralized reduction has been the subject of extensive research recently,and still has many open problems. This paper is the �rst investigationinto the properties of a calculus combining both generalized reductionand explicit substitutions. We present a calculus, �gs, that combinesa calculus of explicit substitution, �s, and a calculus with generalizedreduction, �g. We believe that �gs is a useful extension of the �-calculus, because it allows postponement of work in two di�erent butcomplementary ways. Moreover, �gs (and also �s) satis�es propertiesdesirable for calculi of explicit substitutions and generalized reduc-tions. In particular, we show that �gs preserves strong normalization,is a conservative extension of �g, and simulates �-reduction of �gand the classical �-calculus. Furthermore, we study the simply typedversions of �s and �gs, and show that well-typed terms are stronglynormalizing and that other properties, such as typing of subterms andsubject reduction, hold. Our proof of the preservation of strong nor-malization (PSN) is based on the minimal derivation method. It is,however, much simpler, because we prove the commutation of arbit-rary internal and external reductions. Moreover, we use one proof toshow both the preservation of �-strong normalization in �s and thepreservation of �g-strong normalization in �gs. We remark that thetechnique of these proofs is not suitable for calculi without explicitsubstitutions (e.g., the preservation of �-strong normalization in �grequires a di�erent technique). 1The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.11 Introduction1.1 The �-Calculus with Generalized ReductionIn the term ((�x:�y:N)P )Q, the abstraction starting with �x and the ar-gument P form the redex (�x:�y:N)P . When this redex is contracted, theabstraction starting with �y and Q will in turn form a redex. What is im-portant is that the only argument the abstraction starting with �y (or someresidual of this abstraction) can ever have is Q (or some residual of Q). Thisfact has been exploited by many researchers, and reduction has been exten-ded so that the implicit redex based on the matching �y and Q is given thesame priority as the intervening redex.An initial attempt to generalize the notion of redex might be to de�ne arule like the following:(�x:�y:N)PQ! (�x:N [y:=Q])PIt quickly becomes evident that this is not su�cient. For example, the pro-posed rule does not allow directly reducing the binding of y to Q in the termA � (�z:(�x:�y:N)P )RQ. We shall exploit the notion of a well-balanced seg-ment (sometimes known as a �-chain), which is the special case of one-holecontexts given by this grammar:1S ::= [ � ] j (S[�x:[ � ]])M j S[S]Using balanced segments, generalized reduction is then given by this rule:S[�x:M ]N ! S[M [x:=N ]]We �nd the above de�nition of well-balanced segments and generalizedreduction rather cumbersome, and believe that a more elegant de�nitioncan be given. To do so, we change from the classical notation to theitem notation. Instead of writing �x:M , we write (�x)M ; and instead ofMN , we write (N�)M . Item notation has many advantages, as shown in[KN95, KN96]. Let us illustrate here using the term A given above, which wewrite in item notation as in Figure 1. We see immediately that the redexes1Actually, this is a grammar for expressions which can then be turned into contextsby rewriting innermost subexpressions of the form S1[S2] into S1 changed by replacing itshole with S2. This is part of the awkwardness of specifying balanced segments in classicalnotation. 2The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.1
(Q�) (R�) (�z) (P�) (�x) (�y) NFigure 1: Redexes in item notation in term Aoriginate from the couples (Q�)(�y), (R�)(�z), and (P�)(�x). Moreover,(Q�)(R�)(�z)(P�)(�x)(�y) is a well-balanced segment. This natural match-ing was not present in the classical notation. We call items of the form (P�)and (�x) application and abstraction items, respectively. With item notation,generalized reduction is written as: (M�)s(�x)N !g� sfN [x := M ]g for swell balanced. (Here, the brackets f and g are used for grouping purposes,so that no confusion arises.) For example,(Q�)(R�)(�z)(P�)(�x)(�y)N !g� (R�)(�z)(P�)(�x)fN [y := Q]gSurely this is clearer than writing(�z:(�x:�y:N)P )RQ!g� (�z:(�x:N [y := Q]P )RGeneralized reduction was �rst introduced by Nederpelt in 1973 to aidin proving the strong normalization of AUTOMATH [Ned73]. Kamareddineand Nederpelt have shown how generalized reduction makes more redexesvisible, allowing 
exibility in reducing a term [KN95]. Bloo, Kamareddine,and Nederpelt show that with generalized reduction, one may indeed avoidsize explosion without the cost of a longer reduction path; and, simultan-eously, the �-calculus can be elegantly extended with de�nitions that resultin shorter type derivations [BKN96]. Generalized reduction is strongly nor-malizing [BKN96] for all systems of the �-cube [Bar92], and preserves thestrong normalization of ordinary �-reduction [Kam96]. In particular, gen-eralized reduction allows the postponement of K-reductions (which discardtheir argument) after I-reductions (which use their argument in at least oneplace).An alternative approach to generalized reduction which has been followed3The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.1by many researchers is to use one of these two local transformations:(�) ((�x:N)P )Q! (�x:NQ)P(
) (�x:�y:N)P ! �y:(�x:N)PThese rules transform terms to make more redexes visible to the ordinarynotion of �-reduction. For example, the 
-rule makes sure that �y and Q inthe example A above can form a redex before the redex based on �x and P iscontracted. Also, ((�x:�y:N)P )Q!� (�x:(�y:N)Q)P , and hence both � and
 put �y next to its matching argument. The �-rule moves the argument nextto its matching �, whereas 
 moves the � next to its matching argument.Obviously, � and 
 are related to generalized reduction. In fact, � and
 transform terms to make more potential redexes visible, and then con-ventional �-reduction can be used to contract those newly visible redexes.Generalized reduction, on the other hand, performs reduction on the poten-tial redexes without having to bother to make them into classical redexes.Now, we go back to the above example, where with generalized reduction wehave: (�z:(�x:�y:N)P )RQ!g� (�z:(�x:N [y := Q])P )R. We illustrate how �and 
 work. The � case:(�z:(�x:�y:N)P )RQ!� (�z:(�x:�y:N)PQ)R!�(�z:(�x:(�y:N)Q)P )R!� (�z:(�x:N [y := Q])P )RThe 
 case: (�z:(�x:�y:N)P )RQ!
 (�z:�y(�x:N)P )RQ!
(�y(�z:(�x:N)P )R)Q!� (�z:(�x:N [y := Q])P )RFinally, note that in item notation it is easier to describe � and 
. Weillustrate with � and the above example:The term (Q�)(R�)(�z)(P�)(�x)(�y)N can be reshu�ed to the term(R�)(�z)(P�)(�x)(Q�)(�y)N to transform the bracketing structure ff gf gginto f gf gf g, where all the redexes correspond to adjacent \f" and \g."In other words, Figure 1 can be redrawn using the �-reduction twice as inFigure 2.The �-rule can be applied to both explicitly and implicitly typed systems.However, the transfer of 
 to explicitly typed systems is not straightforward,since in these systems the type of y in the term A may be a�ected by the re-ducible pair of �x and P . For example, it is �ne to write ((�x:�:�y:x:y)z)u!�4The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.2
(R�) (�z) (P�) (�x) (Q�) (�y) NFigure 2: �-normal forms in item notation for term A(�x:�:(�y:x:y)u)z, but not to write ((�x:�:�y:x:y)z)u!
 (�y:x:(�x:�:y)z)u.2Local transformations such as 
 and � began to appear in the literat-ure around 1989. (See [KW95a] for a summary.) Regnier [Reg92] intro-duced the notion of a premier redex, which is similar to the redex basedon �y and Q above (which we call a generalized redex ). Later, he used �and 
 (and called the combination �) to show that the perpetual reduc-tion strategy �nds the longest reduction path when the term is stronglynormalizing (SN) [Reg94]. Vidal also introduced similar reductions [Vid89].Kfoury, Tiuryn, and Urzyczyn used � (and other reductions) to show thattypability in ML is equivalent to acyclic semi-uni�cation [KTU94]. Sabryand Felleisen described a relationship between a reduction similar to � anda particular style of CPS [SF93]. De Groote [dG93] used � and Kfoury andWells [KW95b] used 
 to reduce the problem of �-strong normalization tothe problem of weak normalization (WN) for related reductions. Kfoury andWells used � and 
 to reduce typability in the rank-2 restriction of systemF to the problem of acyclic semi-uni�cation [KW94]. Klop, S�rensen, andXi [Klo80, Xi96, S�r97] used related reductions to reduce SN to WN. Finally,[AFM+95] used � (called \let-C") as a part of an analysis of how to representsharing in a call-by-need language implementation in a formal calculus.1.2 The �-Calculus with Explicit SubstitutionMost literature on the �-calculus treats substitution as an atomic operation,and leaves implicit the actual computational steps necessary to perform sub-stitution. Substitution is usually de�ned with operators that do not belong to2An alternative is to apply 
 to the type erasure of the term, which may be quitecomplicated to express in terms of the type-annotated term.5The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.2the language of the �-calculus. In any real implementation, the substitutionrequired by �-reduction (and similar higher-order operations) must be im-plemented via smaller operations. Thus, there is a conceptual gap betweenthe theory of the �-calculus and its implementation in programming lan-guages and proof assistants. Explicit substitution attempts to bridge thisgap without abandoning the setting of the �-calculus.By representing substitutions in the structure of terms and by providing(�rst-order) reductions to propagate the substitutions, explicit substitutionprovides a number of bene�ts. A major bene�t is that explicit substitutionallows more 
exibility in ordering work. Propagating substitutions througha particular subterm can wait until the subterm is the focus of computation.This allows all of these substitutions to be done at once, thus improvinglocality of reference. Obtaining more control over the ordering of work hasbecome an important issue in functional programming-language implementa-tion (cf. [Jon87]). The 
exibility provided by explicit substitution also allowspostponing unneeded work inde�nitely (i.e., avoiding it completely). This canyield pro�ts, since implicit substitution can be an ine�cient, maybe even ex-ploding, process, owing to the many repetitions it causes. Another bene�tis that explicit substitution allows formal modeling of the techniques usedin real implementations, e.g., environments. Because explicit substitution iscloser to real implementations, it has the potential to provide a more accur-ate cost model. (This possibility is particularly interesting in light of thedi�culty encountered in formulating a useful cost model in terms of graphreduction [LM96, Jon87].)Proof assistants may bene�t from explicit substitution, owing to the desireto perform substitutions locally and in a formal manner. Local substitutionsare needed as follows. Given xx[x:=y], one may not be interested in havingyy as the result of xx[x:=y], but rather only yx[x:=y]. In other words,one only substitutes one occurrence of x by y, and continues the substitutionlater. Theorem provers such as Nuprl [CABC86] and HOL [GM93] implementsubstitution that allows the local replacement of some abbreviated term. Thisavoids a size explosion when it is necessary to replace a variable by a hugeterm only in speci�c places to prove a certain theorem.Formalization helps in studying the termination and con
uence proper-ties of systems. Without formalization, important properties such as thecorrectness of substitutions often remain unestablished, causing mistrust inthe implementation. As the implementation of substitution in many the-orem provers is not based on a formal system, it is not clear what properties6The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.2their underlying substitution has, nor can their implementations be com-pared. Thus, it helps to have a choice of explicit substitution systems whoseproperties have already been established. This is witnessed by the recenttheorem prover ALF, which is formally based on Martin-L�of's type theorywith explicit substitution [Mag95]. Another justi�cation for explicit sub-stitution in theorem proving is that some researchers believe \tactics" canbe replaced by the notion of incomplete proofs, which are believed to needexplicit substitutions [Hur96b, Mag95].The last 15 years have seen an increasing interest in formalizing substi-tution explicitly; various calculi, including new operators to denote substitu-tion, have been proposed. Among these calculi we mention C��� [dB78]; thecalculi of categorical combinators [Cur86]; �� [ACCL91], ��* [CHL96], and��SP [R��o93], referred to as the ��-family; �� [BBLRD96], a descendant ofthe ��-family; '�BLT [KN93]; �exp [Blo95]; �s [KR95a]; �se [KR97]; and�� [Hur96a]. All of these calculi (except �exp) are described in a de Bruijnsetting, where natural numbers play the role of variables.In [KR95a], we extended the �-calculus with explicit substitutions byturning de Bruijn's meta operators into object operators, thus o�ering a styleof explicit substitution that di�ers from that of ��. The resulting calculus�s remains intuitively as close to the �-calculus as possible for a calculusof explicit substitution. An important motivation for introducing the �s-calculus [KR95a] was to provide a calculus of explicit substitutions whichwould both preserve strong normalization and have a con
uent extensionon open terms [KR97]. There are calculi of explicit substitutions that arecon
uent on open terms, e.g., ��* [CHL96] and �� [Hur96a], but they alsohave important disadvantages. Melli�es proved that ��* (as well as the restof the ��-family and the categorical combinators) does not preserve strongnormalization [Mel95]. There are also calculi that preserve strong normaliz-ation, e.g., the ��-calculus [BBLRD96], but this calculus is not con
uent onopen terms. Recently, the ��-calculus (cf. [Hur96a]) has been proposed as acalculus that preserves strong normalization and is itself con
uent on openterms. The ��-calculus works with two new applications that allow the pas-sage of substitutions within classical applications only if these applicationshave a head variable. This is done to cut the branch of the critical pair that isresponsible for the noncon
uence of �� on open terms. Hence, �� preservesstrong normalization, and is itself con
uent on open terms. Unfortunately,�� is not able to simulate one-step �-reduction, as shown in [Hur96a]. In-stead, it simulates only a \big-step" �-reduction. On the other hand, �s7The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x1.3has been extended to �se, which is con
uent on open terms (cf. [KR97]) andsimulates one-step �-reduction, but the preservation of strong normalizationfor the extension �se remained an open problem until it was shown at theend of November 1997 by Bruno Guillome that the property does not hold.1.3 Combining Generalized Reduction and ExplicitSubstitutionWe have already explained the separate usefulness of generalized reductionand explicit substitutions. The main bene�ts of these concepts are similar:both emphasize 
exibility in the ordering of operations. In particular, gen-eralized reduction and explicit substitution allow the postponement of work,but in di�erent, complementary ways. On one side, generalized reduction al-ways allows unnecessary K-redexes to be bypassed. Explicit substitution willnot, in general, allow this, because reducing the K-redex might be necessaryto expose an essential I-redex. Similarly, on the other side, explicit substitu-tion allows bypassing any work inside a subterm that will be discarded later.However, generalized reduction does not provide any means for performingonly those parts of a substitution that will be used later. Thus, we can seethat their bene�ts are complementary.We claim that a system with the combination of generalized reductionand explicit substitution is more advantageous than a system containingeach concept separately. Obviously, if the bene�ts of both are desired simul-taneously, it is important to study the combination, a task which this paperperforms. Before the combination can be safely used, it must be checkedthat this combination is sound and safe, exactly as it has been checked thateach of explicit substitutions and generalized reductions separately are soundand safe. This paper shows that extending the �-calculus with both conceptsresults in theories that are con
uent, preserve termination, and simulate �-reduction.Generalized reduction, (g�), has never before been introduced in a deBruijn setting. Explicit substitution has almost always been presented ina de Bruijn setting. Since explicit-substitution calculi are usually writtenwith de Bruijn indices, we combine g�-reduction and explicit substitutionin a de Bruijn setting, giving the �rst calculus of generalized reduction �a lade Bruijn.3 As we need to describe generalized redexes in an elegant way,3The main advantages of de Bruijn's notation is that it allows us to get rid of Baren-8The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2we use a notation for �-terms that is suitable for this purpose, the itemnotation [KN96].In Section 2, we introduce the calculus of generalized reduction, the �g-calculus, in item notation with de Bruijn indices, and prove its con
uence.In Section 3 we introduce the �s-calculus and extend it into the �gs-calculusby adding the necessary reductions to simulate!g�. We show that �gs is aconservative extension of �g, it simulates g�, and is con
uent. In Section 4,we prove that the �gs-calculus preserves �g-strong normalization (i.e., ais �g-SN ) a is �gs-SN), and that the �s-calculus preserves the �-strongnormalization. We conclude that a is �-SN , a is �s-SN , a is �g-SN, a is �gs-SN. In Section 5, the simply typed versions of the �s- and�gs-calculi are presented and subject reduction, typing of subterms, strongnormalization of well-typed terms, and other properties are proved.2 The �g-CalculusWe assume familiarity with the �-calculus and its various notions such asreduction, contexts, etc. Where not otherwise de�ned, we follow the con-ventions of Barendregt [Bar84, Bar92]. Nevertheless, we present some basicneeded de�nitions in what follows:De�nition 1 (Reduction Notations)Let A be a set, and r a binary relation on A. We denote the fact (a; b) 2 rby a!r b or a! b when the context is clear enough. We denote:1. r� or �!r or just �! , the re
exive closure of r;2. r+ or !+r or just !+; the transitive closure of r;3. r� or !!r or just !! , the re
exive and transitive closure of r. Whena!! b , we say there exists a reduction sequence from a to b ;4. =r, the re
exive, symmetric and transitive closure of !r; that is, =ris the least-equivalence relation containing !r; and5. = for syntactic identity, and write a = b when a and b are syntacticallyidentical.dregt's variable convention (which insists that free variables be di�erent from bound ones,and that if �x and �y occur in a term, then x must be distinct from y), since �-congruentterms are syntactically identical. 9The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2De�nition 2 (Reduction Relations and Systems) For a given set ofrewrite rules r on a set A, we de�ne r-reduction to be the reduction rela-tion of the r-calculus (i.e., the least-compatible relation containing the rulesof r). If R is a reduction relation on a set A, we say that (A;R) is a reductionsystem.4De�nition 3 (Con
uence and Church Rosser) Let R be a reductionrelation on A . For R, we de�ne local con
uence (or weak Church Rosser,WCR); con
uence (or Church Rosser, CR); and strong con
uence (or strongChurch Rosser, SCR) respectively as follows:1. WCR:8a; b; c 2 A 9d 2 A : (a !R; b ^ a !R c)) (b !!R d ^ c !!R d) :2. CR:8a; b; c 2 A 9d 2 A : (a !!R b ^ a !!R c)) (b !!R d ^ c !!R d) :3. SCR:8a; b; c 2 A 9d 2 A : (a !R b ^ a !R c)) (b !R d ^ c !R d) :De�nition 4 (Normal Forms and Normalization) Let R be a reduc-tion relation on A .� We say that a 2 A is an R-normal form (R-nf for short) if there existsno b 2 A such that a!R b .� We say that b has an R-normal form if there exists an R-normal forma such that b!!R a . In this case, we say b is R-normalizing.� We say that R is weakly normalizing (WN) if every a 2 A has anR-normal form.� We say that R is strongly normalizing (SN) if there is no in�nitesequence (ai)i�0 in A such that ai !R ai+1 for all i � 0 .4Note that we depart from [Bar84, de�nition 3.1.1], where a reduction relation is notonly compatible, but also re
exive and transitive. Our reason for doing so is that we wantto keep the notation for the reduction system simpler.10The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2� We say that a term M is strongly R-normalizing if there are no in�niteR-reduction sequences starting at M .� When no confusion arises, then R may be omitted, and we speak simplyof normal forms or normalization.Note that con
uence of R guarantees unicity of R-normal forms. In thatcase, the R-normal form of a , if it exists, is denoted by R(a) . Strong nor-malization implies weak normalization and, therefore, the existence of normalforms. The following lemma is an important connection between strong nor-malization and con
uence (its proof can be found in [Bar84], proposition3.1.25):Lemma 1 (Newman[New42]) Every strongly normalizing, locally con
u-ent reduction relation is con
uent.We assume familiarity with de Bruijn notation; e.g., �x:�y:(x(�z:zx))y iswritten in ordinary de Bruijn notation as �(�(2(�(13))1)) and �x:�y:xy as��(21). To translate free variables, we assume a �xed-ordered list of binders(written from left to right) : : : ; �z; �y; �x, and pre�x it to the term to betranslated. Hence, �x:yz translates as �34, whereas �x:zy translates as �43.Since generalized �-reduction is better described in item notation, we adoptthe item syntax (see [KN95, KN96] for the advantages of item notation)and write a b as (b �)a, and �a as (�)a. The � symbol informs us that we aredealing with an application, just as � informs us that there is an abstraction.De�nition 5 The set of terms, �, is de�ned by the grammar � ::= N j(� �)� j (�)�. We let a; b; : : : range over � and m;n; : : : over N (positivenatural numbers).5 We write a / b when a is a subterm of b. A reduction! is compatible on � when for all a; b; c 2 �, it holds that a ! b implies(a �)c! (b �)c, (c �)a! (c �)b, and (�)a! (�)b.For example, (�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u, which in de Bruijnnotation is (��521)(�31)!� �4(�41)1, is expressed in de Bruijn item nota-tion as ((�)(1�)3�)(�)(�)(1�)(2�)5!� (�)(1�)((�)(1�)4�)4. Note that we didnot simply replace 2 in (�)(1�)(2�)5 by (�)(1�)3. Instead, we decreased 5as one � disappeared, and incremented the free variables of (�)(1�)3 as they5Our use of N as the set of positive natural numbers may be considered nonstandardby computer scientists who insist on having the number 0 as an element of N.11The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2occurred within the scope of one more �. For incrementing the free variableswe need updating functions U ik, where k tests for free variables and i � 1 isthe value by which a variable, if free, must be incremented:De�nition 6 The updating functions U ik : � ! � for k � 0 and i � 1 arede�ned inductively:U ik((a �)b) = (U ik(a) �)U ik(b)U ik((�)a) = (�)(U ik+1(a)) U ik(n) = (n+ i� 1 if n > kn if n � kIn the following, we de�ne meta substitution. The last equality substi-tutes the intended variable (when n = j) by the updated term. If n is notthe intended variable, it is decreased by 1 if it is free (case n > j) as one �has disappeared, and if it is bound (case n < j) it remains unaltered.De�nition 7 The meta substitutions at level j, for j � 1, of a term b 2 �in a term a 2 �, denoted affj bgg, are de�ned inductively on a as follows:((a1�)a2)ffj bgg = ((a1ffj bgg)�)(a2ffj bgg)((�)c)ffj bgg = (�)(cffj+1 bgg) nffj bgg = 8><>:n� 1 if n > j,U j0 (b) if n = j,n if n < j.The following lemma establishes the properties of meta substitution andupdating.Lemma 2 Let a; b; c 2 �. The following properties hold:1. for k < n < k + i: (U ik(a))ffn bgg = U i�1k (a)2. for l � k < l + j: U ik(U jl (a)) = U j+i�1l (a)3. for l + j � k + 1: U ik(U jl (a)) = U jl (U ik+1�j(a))4. for k + i � n: (U ik(a))ffn bgg = U ik(affn� i+ 1 bgg)5. for n � k + 1: U ik(affn bgg) = (U ik+1(a))ffn U ik�n+1(b)gg6. for i � n: affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cggggProof of Lemma 2 The proof is by induction on a. The proof of property 4requires property 2 with l = 0; the proof of property 6 uses properties 1 and4, both with k = 0; and �nally, property 3 with l = 0 is needed to proveproperty 5. Proof of Lemma 2 212The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2To introduce generalized �-reduction, we need some de�nitions(cf. [KN96]).De�nition 8 (Items and Segments) Items, segments, and well-balancedsegments (w.b.) are de�ned, respectively, by:I ::= (� �) j (�)S ::= � j I SW ::= � j (��)W(�) j W Wwhere � is the empty segment. Hence, a segment is a sequence of items.Items (a �) and (�) are called a �-item and a �-item, respectively. We letI, J , : : : range over I; S, S 0, : : : over S; and W , U , : : : over W. For asegment S, lenS is given by len� = 0, and len(I S) = 1+ lenS. The numberof main �-items in S, #�(S), is given by #�(�) = 0; #�((a �)S) = #�(S);and #�((�)S) = 1 + #�(S).De�nition 9 (�-Calculus) The �-calculus (�a la de Bruijn) is the reductionsystem (�;!�), where !� is the least-compatible reduction on � generatedby the �-rule: (a�)(�)b! bff1 agg.De�nition 10 (�g-Calculus) The �g-calculus is the reduction system(�;!g�), where !g� denotes generalized �-reduction, the least-compatiblereduction on � generated by the g�-rule:(a�)W (�)b! W (bff1 U#�(W )+10 (a)gg) where W is well balancedRemark 1 The �-rule is an instance of the g�-rule. (Take W = �, andcheck that U10 (a) = a.)Now, let us brie
y explain the relation between !g� and !� and !
,given in the introduction. It is helpful to write!� and!
 in item notation:(Q�)(P�)(�x)N !� (P�)(�x)(Q�)N(P�)(�x)(�y)N !
 (�y)(P�)(�x)N13The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2Note how in!�, the start of a redex (P�)(�x) is moved (or reshu�ed), giving(Q�) the chance to �nd its matching (�) in N . In!
, the same happens butnow it is (�y) that is given the chance to look for its matching (��). Onlyafter reshu�ing has taken place can the newly found redex be contracted.On the other hand, !g� avoids reshu�ing and contracts the redex as soonas it sees the matching of � and �.In the following, we extend the de�nitions of updating and meta substi-tution to cover segments, and prove some useful properties.De�nition 11 Let S 2 S, a; b 2 �, k � 0, and n; i � 1. We de�ne U ik(S)and Sffn agg by:U ik(�) = � �ffn agg = �U ik((b �)S) = (U ik(b) �)U ik(S) ((b �)S)ffn agg = (bffn agg �)(Sffn agg)U ik((�)S) = (�)(U ik+1(S)) ((�)S)ffn agg = (�)(Sffn+1 agg)Lemma 3 Let S; T be segments, and a; b 2 �. The following hold:1. U ik(S T ) = U ik(S)U ik+#�(S)(T ) and U ik(S a) = U ik(S)U ik+#�(S)(a).2. len(S) = len(U ik(S)), and #�(S) = #�(U ik(S)), and if S is w.b., thenU ik(S) is w.b.3. (S �)ffn agg = Sffn agg �ffn+#�(S ) agg for � a segment or aterm.4. len(S) = len(Sffn agg), and #�(S) = #�(Sffn agg). If S is w.b.,then Sffn agg is w.b.Proof of Lemma 3 Points 1 and 3, by induction on S. Points 2 and 4, byinduction on S using points 1 and 3, respectively. Proof of Lemma 3 2Lemma 4 (Preservation of �-Equivalence) Let a; b 2 �. If a !!g� b,then a =� b.Proof of Lemma 4 It is su�cient to prove by induction on a that a !g�b implies a =� b. We will only prove the particular base case a =(c�)W (�)d !g� W (dff1 U#�(W )+10 (c)gg) = b, with W 6= �, since the other14The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x2cases are simpler. We prove this case by a nested induction on lenW . Ob-serve that W = (e�)W1(�)W2, where W1 and W2 are well balanced, becauseW 6= �. Let w1 = #�(W1) and w2 = #�(W2). We have the following equalit-ies, where in the justi�cations \IH" means the induction hypothesis and thenumbers are lemmas:(c�)W (�)d= (c�)(e�)W1(�)W2(�)d(IH) =� (c�)W1((W2(�)d)ff1 Uw1+10 (e)gg)(3.3) = (c�)W1(W2ff1 Uw1+10 (e)gg)(�)(dff2+ w2 Uw1+10 (e)gg)(IH & 3.4) =� W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+10 (c)gg)(2.1) = W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+20 (c)ff1+ w2 Uw1+10 (e)gggg)(2.6) = W1(W2ff1 Uw1+10 (e)gg)(dff1 Uw1+w2+20 (c)ggff1+ w2 Uw1+10 (e)gg)(3.3 & 3.4) = W1((W2(dff1 Uw1+w2+20 (c)gg))ff1 Uw1+10 (e)gg)(IH) =� (e�)W1(�)W2(dff1 Uw1+w2+20 (c)gg)= W (dff1 U#�(W )+10 (c)gg) Proof of Lemma 4 2Theorem 1 (Con
uence of �g) The �g-calculus is con
uent.Proof of Theorem 1 This proof is the de Bruijn version of the proof givenin [KN95]. Let a !!g� b, and a !!g� c. By Lemma 4, a =� b, and a =� c;hence b =� c. By con
uence of �, 9d 2 � where b !!� d, and c !!� d. ByRemark 1, b!!g� d, and c!!g� d.There are, as we mentioned in the introduction, various notions of gener-alized reduction. For other proofs of con
uence of some of these notions, werefer the reader to [AFM+95, dG93, Kam96, KW95b, Klo80].Proof of Theorem 1 2Finally, the following ensures the good passage of g�-reduction throughff gg and U ik:Lemma 5 Let a; b; c; d 2 �. The following hold:1. If c!g� d, then U ik(c)!g� U ik(d).2. If c!g� d, then affn cgg !!g� affn dgg.3. If a!g� b, then affn cgg !g� bffn cgg.15The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3Proof of Lemma 51. By induction on c. We only prove the base case where c = (c1�)W (�)c3,W is well balanced, and d = W (c3ff1 U#�(W )+10 (c1)gg).U ik(c)= U ik((c1�)W (�)c3)(3.1) = (U ik(c1)�)(U ik(W ))(�)U ik+#�(W )+1(c3)(3.2) !g� (U ik(W ))((U ik+#�(W )+1(c3))ff1 U#�(W )+10 (U ik(c1))gg)(2.3) = (U ik(W ))((U ik+#�(W )+1(c3))ff1 U ik+#�(W )(U#�(W )+10 (c1))gg)(2.5) = (U ik(W ))U ik+#�(W )(c3ff1 U#�(W )+10 (c1)gg)(3.1) = U ik(W (c3ff1 U#�(W )+10 (c1)gg))= U ik(d)2. By induction on a using point 1.3. By induction on a. We only prove the base case: a = (a1�)W (�)a2,and b = W (a2ff1 U#�(W )+10 (a1)gg).affi cgg= ((a1�)W (�)a2)ffi cgg(3.3) = (a1ffi cgg�)(Wffi cgg)(�)(a2ffi+#�(W ) + 1 cgg)(3.4) !g� Wffi cgg(a2ffi+#�(W ) + 1 cggff1 U#�(W )+10 (a1ffi cgg)gg)(2.4) = Wffi cgg(a2ffi+#�(W ) + 1 cggff1 (U#�(W )+10 (a1))ffi+#�(W ) cgggg)(2.6) = Wffi cgg(a2ff1 U#�(W )+10 (a1)ggffi+#�(W ) cgg)(3.3) = (W (a2ff1 U#�(W )+10 (a1)gg))ffi cgg= bffi cgg Proof of Lemma 5 23 The �s- and �gs-CalculiThe ��-calculus (cf. [ACCL91]) re
ects in its choice of operators and rulesthe calculus of categorical combinators (cf. [Cur86]). The main innovationof the ��-calculus is the division of terms into two sorts: sort term and sortsubstitution. We depart from this style of explicit substitutions in two ways.First, we keep the classical and unique sort term of the �-calculus. Second,16The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3we do not use some of the categorical operators, especially those that are notpresent in the classical �-calculus. We introduce new operators re
ectingthe substitution and updating that are only present in the meta languageof the �-calculus. By doing so, we believe that our calculi are closer to the�-calculus from an intuitive|rather than a categorical|point of view.A calculus accommodating explicit substitution via explicit rewrite rulesin the �-calculus was �rst presented in [KN93]. In that article, the intentionwas to introduce the philosophy in general, and the calculus obtained didnot possess either con
uence or preservation of strong normalization. In[KR95a], the part of the calculus that was con
uent and preserved strongnormalization was singled out. In this paper, we take that part (�s) andextend it with generalized reduction. We start this section by presenting the�s- and �gs-calculi, and then by studying their properties.The �s-calculus is obtained by internalizing the meta operators of De�ni-tions 6 and 7 in order to handle substitutions explicitly. Therefore, the syntaxof the �s-calculus is obtained by adding to � two families of operators:1. explicit substitution operators f �jgj�1, where (b �j)a stands for awhere all free occurrences of the variable representing the index j areto be substituted by the appropriately updated b, and2. updating operators f'ikgk�0i�1 , which are necessary for working with deBruijn indices.De�nition 12 The set of terms of the �s-calculus, denoted �s, is given asfollows: �s ::= N j (�s �)�s j (�)�s j (�s �j)�s j ('ik)�swhere j; i � 1 and k � 0. We let a, b, and c range over �s. A term(a �j)b is called a closure. Furthermore, a term containing neither �s nor's is called a pure term. The symbol � denotes the set of pure terms. Theset DL of ��-segments is the set whose main items are either �-items or�-items, i.e., DL ::= � j (�s �)DL j (�)DL. As usual, a reduction ! on�s is compatible if for all a; b; c 2 �s, if a ! b, then (a �)c ! (b �)c,(c �)a ! (c �)b, (�)a ! (�)b, (a �j)c ! (b �j)c, (c �j)a ! (c �j)b, and('ik)a! ('ik)b. 17The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3(�-generation) (b �)(�)a �! (b �1)a(�-�-transition) (b �j)(�)a �! (�)(b �j+1)a(�-�-transition) (b �j)(a1�)a2 �! ((b �j)a1�) (b �j)a2(�-destruction) (b �j)n �! 8><>:n� 1 if n > j('j0)b if n = jn if n < j('-�-transition) ('ik)(�)a �! (�)('ik+1)a('-�-transition) ('ik)(a1�)a2 �! (('ik)a1�)('ik)a2('-destruction) ('ik)n �! (n+ i� 1 if n > kn if n � kFigure 3: The �s-calculusDe�nition 13 Items, segments, and well-balanced segments for �s arede�ned as follows: Is::=(�s �) j (�) j (�s �j) j ('ik)Ss::=� j IsSsWs::=� j (�s �)Ws(�) j WsWsWe let I, J , : : : range over Is; S, S 0, : : : over Ss; and W , U , : : : over Ws.We call (a �j) and ('ik) a �-item and a '-item, respectively. The notionlen(S) is trivially extended to S 2 Ss in the obvious way, and #�(S) isextended by declaring that #�((a �j)S) = #�(S) and #�(('ik)S) = #�(S).As the �s-calculus updates and substitutes explicitly, we include a set ofrules that are the equations in De�nitions 6 and 7 oriented from left to right.De�nition 14 (�s-Calculus) The �s-calculus is the reduction system(�s;!�s), where !�s is the least-compatible reduction on �s generated bythe rules given in Figure 3. We use �s to denote this set of rules.De�nition 15 (s-Calculus) The s-calculus, the calculus of substitutionsassociated with the �s-calculus, is the reduction system generated by the setof rules s = �s� f(�-generation)g. 18The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3De�nition 16 (Notation for s-Normal Forms) We use s(a) to denotethe s-normal form of a. De�ne s(S) for a ��-segment by s(�) = �, ands((a �)S) = (s(a) �)s(S), and s((�)S) = (�)s(S).De�nition 17 (�gs-Calculus) The �gs-calculus is the calculus whose setof rules consists of �gs where �gs = �s [ f(g�-generation)g and (we writew.b. for \well balanced"):(g�-generation) : (b �)W (�)a �! W (('#�(W )+10 )b �1)awhere W 6= � is w.b.Note that in the �gs-calculus we do not merge (�-generation) and(g�-generation) into the following:(new g�-generation) : (b �)W (�)a �!W (('#�(W )+10 )b �1)awhere W is w.b. The reason for this lies in the fact that (new g�-generation)does not generalize (�-generation) of the �s-calculus. That is,(b�)(�)a!�-gen (b�1)a, yet (b�)(�)a!new g�-gen (('10b)�1)a.The (�-generation) rule starts the simulation of a �-reduction by gener-ating a substitution operator (�1). The (�-�-transition) and (�-�-transition)rules propagate copies of this operator throughout the term until they arriveat the variable occurrences. If a variable should be a�ected by the substitu-tion, the (�-destruction) rule (case j = n) carries out the substitution by theupdated term, thus introducing the updating operators. Finally, the '-rulescompute the updating.We state now the following theorem of the �s-calculus.Theorem 2 The following hold:1. The s-calculus is strongly normalizing and con
uent on �s.2. All s-normal forms are unique.3. The set of s-normal forms is exactly �.4. For every a; b 2 �s, the following hold:(a) s((a �)b) = (s(a) �)s(b) 19The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3(b) s((�)a) = (�)(s(a))(c) s(('ik)a) = U ik(s(a))(d) s((b �j)a) = s(a)ffj s(b)ggProof of Theorem 21. We de�ne recursively a weight function W :W (n) = 1 W ((a�)b) =W (a) +W (b) + 1W (('ik)a) = 2W (a) W ((b �j)a) = 2W (a)(W (b) + 1)W ((�)a) =W (a) + 1It is easy to show by induction on a that a!s b impliesW (a) > W (b);hence the s-calculus is strongly normalizing.As for con
uence, note �rst that the reduction !s is locally con
uentbecause there are no critical pairs and the theorem of Knuth-Bendixapplies trivially. Finally, Newman's lemma (see Lemma 1) guaranteescon
uence.2. The existence and unicity of s-normal forms (s-nf) is guaranteed bypoint 1.3. Check �rst by induction on a that (b �i)a and ('ik)a are not s-normalforms. Then check by induction on a that if a is an s-nf then a 2 �.Conclude by observing that every term in � is in s-nf.4. Cases a and b hold because there is no s-rule whose left-hand sideis an application or an abstraction. Case c is shown as follows: �rstshow the equality for terms in s-nf, i.e., use an inductive argumenton c 2 � to show s(('ik)c) = U ik(s(c)). Then let a 2 �s, s(('ik)a) =s(('ik)s(a)) = U ik(s(s(a))) = U ik(s(a)). Case d is shown similarly to(and using) Case c. Proof of Theorem 2 2Lemma 6 Let a; b 2 �s. Then both of these statements hold:� if a!�-gen b, then s(a)!!� s(b); and� if a!g�-gen b, then s(a)!!g� s(b).20The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x3Proof of Lemma 6 The �rst claim is proved by induction on a usingLemma 5 and Theorem 2. For the second claim, we need the followingadditional argument. Observe that for any ��-segment S, it holds thats(S a) = s(S)s(a). Then note that if W is well balanced, then it is a ��-segment, and thus s(W a) = s(W )s(a). Proof of Lemma 6 2Corollary 1 Let a; b 2 �s. Then both of these statements hold:� if a!!�s b, then s(a)!!� s(b); and� if a!!�gs b, then s(a)!!g� s(b).Corollary 2 (Conservative Extension) Let a; b 2 �. Then both of thesestatements hold:� if a!!�s b, then a!!� b; and� if a!!�gs b, then a!!g� b.This last corollary says that the �(g)s-calculus is correct with respect tothe �(g)-calculus, i.e., if a �(g)s-reduction sequence begins and ends withpure terms, there is a �(g)-reduction sequence beginning and ending withthe same terms.Moreover, the �(g)s-calculus is powerful enough to simulate (g)�-reduction.Lemma 7 (Simulation of (g)�-Reduction) Let a; b 2 �. Then the fol-lowing statements hold:� if a!� b, then a!+�s b; and� if a!g� b, then a!+�gs b.Proof of Lemma 7 The �rst case is by induction on a. As usual, theinteresting case is when a = (�c)d and b = cff1  dgg. In this case,(�c)d !��gen c�1d !!s s(c�1d) T2= s(c)ff1  s(d)gg c;d2�= cff1  dgg. Thesecond case is by induction on a using Theorem 2.Proof of Lemma 7 221The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4Corollary 3 Let a 2 �. The following hold:� if a is strongly normalizing in the �s-calculus, then a is strongly nor-malizing in the �-calculus; and� if a is strongly normalizing in the �gs-calculus, then a is strongly nor-malizing in the �g-calculus.We prove now the con
uence of �s and �gs on ground terms. We remarkthat not even �s is con
uent on open terms. As a matter of fact, to obtaincon
uence on open terms, certain rules must be added. The calculus thusobtained, �se has been shown con
uent (cf. [KR97]). The combination of�se with generalized reduction has not yet been studied.Theorem 3 (Con
uence of �s and �gs) The �s and �gs-calculi arecon
uent on �s.Proof of Theorem 3 We use the interpretation method (cf. [Har89,CHL96]). To prove con
uence of the �s-calculus, remove each (g) from theproof below. For the con
uence of the �gs-calculus, leave each (g) but removethe parentheses that embrace the gs. The proof goes as follows:We interpret the �(g)s-calculus into the �(g)-calculus via s-normalization:
a �����������(g)s@@@@R@@@@R�(g)s

b
c

--s
--s--s s(a) s(b)

s(c)����������(g)�@@@@R@@@@R(g)� @@@@R@@@@R(g)�����������(g)�dTheorem 1The existence of the arrows s(a) !!(g)� s(b) and s(a)!!(g)� s(c) is guar-anteed by Corollary 1. We can close the diamond thanks to the con
uence ofthe �(g)-calculus. Finally, Lemma 7 ensures s(b)!!�(g)s d and s(b)!!�(g)s d,proving thus the con
uence for the �(g)s-calculus.Proof of Theorem 3 2
22The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x44 Preservation of Strong NormalizationWe show in this section that the �s-calculus preserves the �-calculus strongnormalization and that the �gs-calculus preserves the �g-calculus strong nor-malization.The technique used in this section to prove preservation of strong nor-malization (PSN) is an adaptation of the minimal derivation method usedin [BBLRD96] to prove PSN for �� and in [KR95a] to prove PSN for �s.Our proof includes the �rst proof of the commutation of arbitrary externaland internal reduction. Moreover, we give an inductive and elegant de�nitionof internal/external reduction, instead of the one that depends on internaland external positions as in [BBLRD96]. Finally, we introduce a syntacticnotion of skeletons that will be very informative about internal and externalreduction. The elegance of our presentation is re
ected by the fact that oneproof is enough to achieve both preservation results above.Notation 1 We write a 2 �-SN, respectively, a 2 �r-SN, when a isstrongly normalizing in the �-calculus (respectively in the �r-calculus) forr 2 fg; gs; sg. We write a �!p b to denote that p is the position of the redexthat is contracted. Therefore, a �!� b means that the reduction takes placeat the root. We denote by � the pre�x order between positions in a term.Hence if p and q are positions in the term a such that p � q, and we writeap (respectively aq) for the subterm of a at position p (respectively q), thenaq is a subterm of ap.For example, if a = ((4�)(�)1�3)2, we have a1 = 2, a2 = (4�)(�)1, a21 =(�)1, a211 = 1, and a22 = 4. For example, since 2 � 21, it must hold that a21is a subterm of a2.The following three lemmas assert that every � in the last term of areduction sequence beginning with a �-term must have been created at someprevious step by a (generalized) ((g)�-generation), and trace the history ofthese closures. The �rst lemma deals with one-step reduction where the redexis at the root; the second generalizes the �rst; and the third treats arbitraryreduction sequences.Lemma 8 Let !2 f!�s;!�gsg. If a �!� C[(e �i)d], then one of the follow-ing must hold:1. a = (e �)(�)d, C = [ � ], and i = 1;23The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x42. !=!�gs, a = (e0 �)W (�)d, W 6= �, C = W [ � ], e = ('#�(W )+10 )e0, andi = 1; or3. a = C 0[(e �j)d0] for some context C 0, some term d0, and j 2 fi� 1; ig.Proof of Lemma 8 Since the reduction is at the root, we must check forevery rule a! a0 that if (e �i)d occurs in a0, then one of the three possibilitiesfollows. We supply proofs only for the interesting rules:(�-generation): a = (c �)(�)b, and a0 = (c �1)b. If (e �i)d matches (c �1)d,then rule 1 holds; else (e �i)d must occur within b or c, and hence rule3 holds, with j = i and d0 = d.(g�-generation): Occurs only if !=!�gs. a = (c �)W (�)b, W 6= �, anda0 = W (('#�(W )+10 )c �1)b. If (e �i)d is (('#�(W )+10 )c �1)d, then rule 2holds; else (e �i)d occurs in b, c, or W , hence rule 3 holds, with j = i,and d0 = d.(�-�-transition): a = (c �h)(�)b, and a0 = (�)(c �h+1)b. If (e �i)d matches(c �h+1)b, then rule 3 holds, with j = i� 1, and d0 = (�)d; else (e �i)doccurs in b or c, hence rule 3 holds, with j = i, and d0 = d.Proof of Lemma 8 2Lemma 9 Let !2 f!�s;!�gsg. If a ! C[(e �i)d], then one of the follow-ing must hold:1. a = C[(e �)(�)d] and i = 1;2. !=!�gs, a = C 0[(e0 �)W (�)d], C = C 0[W [ � ]], e = ('#�(W )+10 )e0, andi = 1; or3. a = C 0[(e0 �j)d0] where e0 = e or e0 ! e and j 2 fi� 1; ig.Proof of Lemma 9 Induction on a, using Lemma 8 for the reductions atthe root. Proof of Lemma 9 2Lemma 10 Let !2 f!�s;!�gsg. Let a1 ! � � � ! an ! an+1 = C[(e �i)d].There exist e0; d0 2 �s, and a context C 0[ � ] such that e0 !! e and one of thefollowing holds: 24The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x41. ak = C 0[(e0 �)(�)d0] and ak+1 = C 0[(e0 �1)d0] for some k � n;2. !=!�gs, ak = C 0[(e0 �)W (�)d0], ak+1 = C 0[W (e00 �1)d0], and e00 =('#�(W )+10 )e0 for k � n and w.b. W ; or3. a1 = C 0[(e0 �j)d0], where j � i.Proof of Lemma 10 Induction on n and use of Lemma 9.Proof of Lemma 10 2We now de�ne internal and external reductions. An internal reductiontakes place somewhere at the left of a �i-operator. An external reduction isa noninternal one. Our de�nition is inductive rather than starting from thenotions of internal and external position, as in [BBLRD96].De�nition 18 (Internal Reduction)For any notion of reduction r, the reduction int�!r is de�ned by the followingrules: a �!r b(a �i)c int�!r (b �i)c a int�!r b(a �)c int�!r (b �)c a int�!r b(c �)a int�!r (c �)ba int�!r b(�)a int�!r (�)b a int�!r b(c �i)a int�!r (c �i)b a int�!r b('ik)a int�!r ('ik)bTherefore, int�!r is the least-compatible relation closed under a �!r b(a �i)c int�!r (b �i)c .Remark 2 By inspecting the inference rules, one can check that:1. If a int�!r (�)b, then a = (�)c, and c int�!r b.2. If a int�!r (c �)b, then a = (e �)d, and ((d int�!r b and e = c) or (e int�!r cand d = b)).3. If a int�!r W (�)b with W well balanced, then one of the following holds:� a = W (�)b0 with b0 int�!r b, or25The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4� W = W1(b01�)W2(�)W3 where W1, W2, and W3 are well balanced,a = W1(b1�)W2(�)W3(�)b, and b1 int�!r b01.4. a int�!r n is impossible.De�nition 19 (External Reduction) For any notion of reduction r, thereduction ext�!r is de�ned by induction. The axioms are the rules of r, andthe inference rules are the following:a ext�!r b(a �)c ext�!r (b �)c a ext�!r b(c �)a ext�!r (c �)ba ext�!r b(�)a ext�!r (�)b a ext�!r b(c �i)a ext�!r (c �i)b a ext�!r b('ik)a ext�!r ('ik)bNote that the potential rule a ext�!r b(a �i)c ext�!r (b �i)c is excluded from the de�n-ition of external reduction. Thus, as expected, external reductions will notoccur at the left of a �i-operator. This enables us to write !+� instead of!!� in the following proposition (compare with Lemma 6).Proposition 1 Let a; b 2 �s. a ext�!�-gen b ) s(a)!+�s(b) , and a ext�!g�-genb ) s(a)!+g� s(b) .Proof of Proposition 1 By induction on a (as in Lemma 6). Note thatwhen a = (d �i)c, the reduction cannot take place within d because it isexternal, and this is the only case that forced us to consider the re
exive-transitive closure because of Lemma 5.2. Proof of Proposition 1 2The following is needed in Lemma 12 and hence in the preservation the-orem. Note that we depart from the traditional minimal derivation method(which we call here the minimal reduction-sequence method) which commutesinternal �r-steps and external s-steps and assumes that s(a) is �-SN and thats(a) = s(b). Instead, we commute arbitrary internal and external reduction,and drop the extra assumptions concerning SN and the s-normal forms. Ourgenerality enables us to simplify the proof of the commutation lemma (no26The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4need to always check during the induction that terms are �-SN, and evalu-ate the s-normal forms). Moreover, our commutation of arbitrary internaland external reduction simpli�es Lemma 12, which is needed in the proof ofPSN. In particular, Lemma 12 drops the condition that the term is stronglynormalizing, and its proof is very simple.Lemma 11 (Commutation of Internal/External Reduction)Let a; b 2 �s, and r 2 fs; gsg. If a int�!�r � ext�!�r b, then a ext�!+�r � int�!!�r b.Remark 3 The relation ext�!+�r can represent one or two steps. The two-step use is necessary when the internal step changes an external redex from(a �n)n to (a0�n)n and the external step uses (�-destruction) to destroy thisredex, producing 'n0a0. The relation int�!!�r can represent zero, one, or twosteps. The zero-step case is necessary when the two-step case of ext�!+�r occurs(already mentioned), or when the internal step changes an external redex from(a �i)n to (a0�i)n and i 6= n, and the external step uses (�-destruction) todestroy this redex, discarding the subterm a0. The two-step case happens whenthe internal step changes an external redex from (a �i)(b �)c to (a0 �i)(b �)c,and the external step uses the (�-�-transition) rule to duplicate the �-item,producing ((a0 �i)b �)(a0 �i)c.Proof of Lemma 11 By induction on a, analyzing the positions of the re-dexes. We give the proof for r = gs. The basic case, which is a = n, istrivial.a = (a2�)a1: Since we are dealing with an internal reduction, there are onlytwo possibilities: a1 int�!�gs a01, or a2 int�!�gs a02. Let us study, for in-stance, the �rst one. There are four cases:� a = (a2�)a1 int�!�gs (a2�)a01 ext�!�gs (a2�)a001, and a1 int�!�gs a01 ext�!�gsa001. Therefore, by induction hypothesis, a1 ext�!+�gs � int�!!�gs a001, andthen (a2�)a1 ext�!+�gs � int�!!�gs (a2�)a001.� a = (a2�)a1 int�!�gs (a2�)a01 ext�!�gs (a02�)a01, with a1 int�!�gs a01and a2 ext�!�gs a02. We can simply commute the reductions:a = (a2�)a1 ext�!�gs (a02�)a1 int�!�gs (a02�)a01.� a = (a2�)a1 int�!�gs (a2�)(�)a01 ext�!�gs (a2�1)a01, with a1 int�!�gs(�)a01. Hence, by Remark 2, a1 = (�)b1 with b1 int�!�gs a01. Now,(a2�)a1 = (a2�)(�)b1 ext�!�gs (a2�1)b1 int�!�gs (a2�1)a01.27The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4� a = (a2�)a1 int�!�gs (a2�)W (�)a01 ext�!�gs W (('#�(W )+1)a2�1)a01,with W well balanced and a1 int�!�gs W (�)a01. Hence, by Re-mark 2.3, there are two cases:{ case a1 = W (�)b1, where b1 int�!�gs a01. Then a =(a2�)W (�)b1 ext�!�gs W (('#�(W )+1)a2�1)b1 int�!�gs, andW (('#�(W )+1)a2�1)a01, and{ case a1 = W1(b1�)W2(�)W3(�)a01 and W =W1(b01�)W2(�)W3,where W1, W2, and W3, are well balanced, and b1 int�!�gs b01.Then, a = (a2�)W1(b1�)W2(�)W3(�)a01 ext�!�gsW1(b1�)W2(�)W3(('#�(W )+1)a2�1)a01 int�!�gsW1(b01�)W2(�)W3(('#�(W )+1)a2�1)a01 = W (('#�(W )+1a2)�1)a01:a = (�)a1: The reduction must take place within a1, and we use the inductionhypothesis.a = (a2 �i)a1: Again, as we are analyzing an internal reduction, two casesarise:a1 int�!�gs a01: The external reduction can only take place within a01 orat the root:� a = (a2 �i)a1 int�!�gs (a2 �i)a01 ext�!�gs (a2 �i)a001, and a1 int�!�gsa01 ext�!�gs a001. We can now apply the induction hypothesis toa1 int�!�gs a01 ext�!�gs a001 to obtain a1 ext�!+�gs � int�!!�gs a001, andhence (a2 �i)a1 ext�!+�gs � int�!!�gs (a2 �i)a001.� a = (a2 �i)a1 int�!�gs (a2 �i)a01 ext�!�gs b, and a1 int�!�gs a01. Theexternal reduction takes place at the root. We study the threepossible rules:{ (�-�-transition): We have a01 = (�)c0, and b =(�)(a2�i+1)c0. Remark 2.1 ensures that a1 = (�)c andc int�!�gs c0. We can then commute: a = (a2 �i)a1 =(a2 �i)(�)c ext�!�gs(�)(a2�i+1)c int�!�gs (�)(a2�i+1)c0 = b.28The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4{ (�-�-transition): a01 = (c0�)d0, and b = ((a2 �i)c0�)(a2 �i)d0.Remark 2.2 ensures that a1 = (c�)d and either c int�!�gs c0and d = d0, or d int�!�gs d0 and c = c0. In both cases wecan commute, as in the previous case.{ (�-destruction): We have a01 = n, and this is impossibleby Remark 2.4.a2 !�gs a02: As in the previous case, the external reduction can takeplace within a1 or at the root:� a = (a2 �i)a1 int�!�gs (a02 �i)a1 ext�!�gs (a02 �i)a01, and a1 ext�!�gsa01. We can commute to obtain:a = (a2 �i)a1 ext�!�gs (a2 �i)a01 int�!�gs (a02 �i)a01:� a = (a2 �i)a1 int�!�gs (a02 �i)a1 ext�!�gs b, and the external re-duction takes place at the root. We study the three possiblerules:{ (�-�-transition): We have a1 = (�)c, and b =(�)(a02�i+1)c. We can commute:a = (a2 �i)a1 = (a2 �i)(�)cext�!�gs (�)(a2�i+1)cint�!�gs (�)(a02�i+1)c = b{ (�-�-transition): We have a1 = (c�)d, and b =((a02 �i)c�)(a02 �i)d. We can commute, generating two in-ternal steps: a = (a2 �i)a1 = (a2 �i)(c�)dext�!�gs ((a2 �i)c�)(a2 �i)dint�!�gs ((a02 �i)c�)(a2 �i)dint�!�gs ((a02 �i)c)(a02 �i)d = b{ (�-destruction): We have a1 = n. If n > i, then b = n� 1.But (a2 �i)n ext�!�gs n� 1. If n < i, then b = n. But(a2 �i)n ext�!�gs n. If n = i, then b = ('i0)a02. We must nowconsider whether a2 !�s a02 is external or internal. If it isinternal, we can commute to obtain:a = (a2 �i)a1 = (a2 �i)n ext�!�gs ('i0)a2 int�!�gs ('i0)a02 = b29The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4If it is external, we get:a = (a2 �i)a1 = (a2 �i)n ext�!�gs ('i0)a2 ext�!�gs ('i0)a02 = bgiving us a ext�!+�gs b int�!!�gs b.a = ('ik)a1: Two possibilities exist, according to the position of the externalreduction:� ('ik)a1 int�!�gs ('ik)a01 ext�!�gs ('ik)a001, and a1 int�!�gs a01 ext�!�gs a001.Use the induction hypothesis.� ('ik)a1 int�!�gs ('ik)a01 ext�!�gs b, and a1 int�!�gs a01. The externalreduction takes place at the root. Three rules are possible:{ ('-�-transition): We have a01 = (�)c0, and b = (�)('ik+1)c0.Remark 2.1 ensures that a1 = (�)c and c int�!�gs c0. We canthen commute:a = ('ik)a1 = ('ik)(�)c ext�!�gs (�)('ik+1)c int�!�gs (�)('ik+1)c0 = b{ ('-�-transition): We have a01 = (c0�)d0, and b =(('ikc0)�)('ik)d0. Remark 2.2 ensures that a1 = (c�)d, andeither c int�!�gs c0 and d = d0, or d int�!�gs d0 and c = c0. In bothcases, we can commute as in the previous case.{ ('-destruction): We have a01 = n, and this is impossible byRemark 2.4. Proof of Remark 3 2Lemma 12 Let a 2 �s, and r 2 fs; gsg. For every in�nite �r-reductionsequence a !�r b1 !�r � � � !�r bn !�r : : :, one of these two possibilitiesholds:1. there exists N such that for i � N , it holds that bi int�!�r bi+1, i.e., allthe reductions beyond the N th step are internal; or2. there exists an in�nite external �r-reduction sequence:a ext�!�r c1 ext�!�r : : : ext�!�r cn ext�!�r : : :30The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x4Proof of Lemma 12 Suppose there are an in�nite number of external stepsin the given reduction sequence. Then by repeated use of the commutationlemma (Lemma 11), we construct an in�nite external reduction sequencestarting from a. Otherwise, there is some N such that all steps past the Nthstep are internal. Proof of Lemma 12 2To prove the preservation theorem (Theorem 4), we need two de�nitions.De�nition 20 Let r 2 fs; gsg. An in�nite �r-reduction sequence a1 !� � � ! an ! : : : is minimal if for every step ai �!p �r ai+1, every other reduc-tion sequence beginning with ai �!q �r a0i+1 where p � q is �nite.The idea of a minimal reduction sequence is that at every step, it picks aredex as deeply nested as possible without preventing an in�nite reduction.If one changes any one of its steps to rewrite a redex within a subterm of theoriginal redex, then an in�nite reduction sequence is impossible.De�nition 21 The syntax of skeletons and the skeleton of a term are de�nedas follows:Skeletons K ::= N j (K �)K j (�)K j ([ � ] �j)K j ('ik)KSk(n) = n Sk((a �)b) = (Sk(a) �)Sk(b)Sk((�)a) = (�)Sk(a)Sk((b �i)a) = ([ � ] �i)Sk(a)Sk(('ik)a) = ('ik)Sk(a)Remark 4 A de�nition of internal and external reduction equivalent toDe�nitions 18 and 18 is the following. Let a; b 2 �s. Then de�ne:a int�!r b , (a!r b and Sk(a) = Sk(b))a ext�!r b, (a!r b and Sk(a) 6= Sk(b))In other words, skeletons provide a syntax that is informative regarding whatkind of r-reduction takes place. In particular, the following two propertieshold: 31The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x41. each occurrence of [ � ] in Sk(a) corresponds to an external closure ofa (i.e., a closure that is not at the left of any other closure), and thiscorrespondence is a bijection; and2. internal closures (those which are at the left of another closure) vanishin the skeleton.Theorem 4 (Preservation of Strong Normalization) Let a 2 �. Thefollowing hold:1. if a is strongly normalizing in the �-calculus, then a is strongly nor-malizing in the �s-calculus; and2. if a is strongly normalizing in the �g-calculus, then a is strongly nor-malizing in the �gs-calculus.Proof of Theorem 4 The proof of rule 1 is obtained by replacing, in theproof below, �g by � and �gs by �s, and by dropping the second case givenin Lemma 10. We prove rule 2.Assume a 2 �g-SN, a 62 �gs-SN, and take a minimal in�nite �gs-reduction sequence:D : a!�gs a1 !�gs � � � ! an !�gs : : :Lemma 12 gives N such that for i � N , ai !�gs ai+1 is internal. (Note thatcase 2 of Lemma 12 cannot hold. Otherwise, by Proposition 1, there wouldbe an in�nite �g-reduction sequence starting at a and hence a 62 �g-SN|contradiction.) By Remark 4, Sk(ai) = Sk(ai+1) for i � N . As there areonly a �nite number of closures in Sk(aN) and as the reductions withinthese closures are independent, an in�nite reduction sequence D0 can beformed by taking steps from D such that all steps take place within a singleclosure in Sk(aN) and D0 is also minimal. Let C be the context such thataN = C[(d �i)c], and (d �i)c is the closure where D0 takes place:D0 : aN = C[(d �i)c] int�!�gs C[(d1 �i)c] int�!�gs : : : int�!�gs C[(dn �i)c] int�!�gs : : :Since a is a pure term, Lemma 10 ensures the existence of I � N such thatone of the following holds:1. aI = C 0[(d0 �)(�)c0]!�gs aI+1 = C 0[(d0�1)c0] and d0 !!�gs d, or32The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x42. aI = C 0[(d0 �)W (�)c0]!�gs aI+1 = C 0[W (('#�(W )+10 )d0�1)c0] andd0 !!�gs d.Let us consider in the �rst and second cases, respectively, the following in-�nite �gs-reduction sequences:D00 : a!!�gs aI !!�gs C 0[(d�)(�)c0]!�gs C 0[(d1�)(�)c0]!�gs � � � !�gsC 0[(dn�)(�)c0]!�gs : : :D000 : a!!�gs aI !!�gs C 0[(d�)W (�)c0]!�gs C 0[(d1�)W (�)c0]!�gs � � � !�gs C 0[(dn�)W (�)c0]!�gs : : :In D00 and D000, the redex in aI is within d0, which is a proper subterm of(d0 �)(�)c0 (of (d0 �)W (�)c0 in the second case), whereas in D0, the redex inaI is (d0 �)(�)c0 (in the second case, (d0 �)W (�)c0), and this contradicts theminimality of D0. Proof of Theorem 4 2Theorem 5 For every a 2 �, the following equivalences hold:a 2 �-SN, a 2 �s-SNand a 2 �g-SN, a 2 �gs-SNProof of Theorem 5 By Lemma 3 and Theorem 4.Proof of Theorem 5 2To complete the picture, we need to use a result of [Kam96]:Theorem 6 Let a 2 �. It holds that a 2 �-SN, a 2 �g-SN.Corollary 4 For every a 2 �, the following equivalences hold:a 2 �g-SN, a 2 �-SN, a 2 �s-SN, a 2 �gs-SNNote that the main preservation results that we show in this paper (The-orem 4) are concerned with substitution calculi. That is, we show that ifa 2 �r-SN, then a 2 �rs-SN for �r 2 f�; �gg. What we do not show inthis paper is the preservation result concerned with generalized reduction.That is, we do not prove a 2 �-SN ) a 2 �g-SN; rather, we take the result33The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x5of [Kam96]. The reason for this is that the minimal derivation method andeven our adaptation of it are not suited to prove PSN for calculi that do nothave explicit substitutions. In fact, the whole idea of internal and externalreduction and of skeletons is based around substitutions. It is also fair to saythat generalized reduction did not play any role in the proof of PSN (despiteits role in proofs of SN as shown in [KW95b, Klo80, Ned73]).5 The Typed �s- and �gs-CalculiOur calculi of explicit substitutions �s and �gs possess a very nice propertythat other calculi of explicit substitutions do not possess: namely, the simplytyped versions of �s and �gs are strongly normalizing. The ��-calculus of[GL97] does not possess this property, as is shown by Melli�es in [Mel95], andonly very recently has its weak normalization on open terms been shown tohold, in [GL97]. The simply typed ��-calculus of [BBLRD96] is stronglynormalizing, however, it is not con
uent on open terms. In fact, our �s- and�gs-calculi are the �rst calculi of explicit substitutions whose simply typedversions are strongly normalizing (cf. [KR95b, KR96]) and which possessa con
uent extension on open terms (we have shown the con
uence of theextension of �s on open terms; although the extension for �gs on open termshas not yet been investigated, we believe that the details are similar to thosefor �s).In this section, we present the simply typed versions of �s and �gs, andprove the strong normalization of the well-typed terms using the techniquedeveloped in [KR95b] to prove �s-SN, which was suggested to us by P.-A.Melli�es as a successful technique to prove ��-SN (personal communication).We recall the syntax and typing rules for the simply typed �-calculus inde Bruijn notation. The types are generated from a set of basic types T withthe binary type operator !. Environments are lists of types. Typed termsdi�er from the untyped ones only in the abstractions, which are now markedwith the type of the abstracted variable.De�nition 22 (�t and L1) The syntax for the simply typed �-terms isgiven as follows:Types T ::= T j T ! TEnvironments E ::= nil j T ; ETerms �t ::= N j (�t �)�t j (T �)�t34The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x5We let A, B, : : : range over T ; E, E1, : : : over E; and a, b, : : : over �t. Thetyping rules are given by the typing system L1 as follows:(L1-var) A;E ` 1 : A(L1-varn) E ` n : BA;E ` n+ 1 : B(L1-abs) A;E ` b : BE ` (A�)b : A! B(L1-app) E ` b : A! B; E ` a : AE ` (a �)b : BBefore presenting the simply typed �s-calculus and �sg-calculus, we in-troduce the following notation concerning environments. If E is the envir-onment A1; A2; : : : ; An, we shall use the notation E�i for the environmentAi; Ai+1; : : : ; An. Analogously, E�i stands for A1; : : : ; Ai. The notations E<iand E>i are de�ned similarly.De�nition 23 (�st and Ls1) The syntax for the simply typed �s-terms isgiven as follows:�st ::= N j (�st �)�st j (T �)�st j (�st �i)�st j ('ik)�st where i � 1; k � 0Types and environments are as above. The typing rules of the system Ls1 areas follows. The rules Ls1-var, Ls1-varn, Ls1-abs, and Ls1-app are exactlythe same as L1-var, L1-varn, L1-abs, and L1-app, respectively. The newrules are: (Ls1-�) E�i ` b : B; E<i; B; E�i ` a : AE ` (b �i)a : A(Ls1-') E�k; E�k+i ` a : AE ` ('ik)a : AThe reduction rules of the simply typed �s- and �sg-calculi are given by thesame rules of the corresponding untyped versions, except that abstractions inthe typed versions are marked with types.We say that a : A is derivable in some type system X 2 fL1;Ls1g froman environment E, notation E `X a : A if and only if E ` a : A can beproduced by the typing rules of the system X. We say that a 2 �st is well35The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x5typed if there exists an environment E and a type A such that E `Ls1 a : A.The symbol �swt denotes the set of well-typed terms.The aim of this section is to prove that every well-typed �s-term a is�gs-SN (and hence �s-SN). To do so, we show �swt � � � �gs-SN, where� = f a 2 �st j for every subterm b of a; s(b) 2 �g-SNgTo prove �swt � � (Proposition 2), we need to establish some useful resultssuch as subject reduction, soundness of typing (i.e., Ls1 is a conservativeextension of L1), and typing of subterms:Lemma 13 Let E be a type environment; A and B be types; and a; b; c 2 �st.The following hold:1. E ` (('i0)a �)(c �)(B �)b : A if and only if E ` (c �)(B �)(('i+10 )a �)b : A2. E ` ('i0)('j0)a : A if and only if E ` ('i+j�10 )a : A3. E ` (a �)(B �)b : A if and only if E ` (a �1)b : AProof of Lemma 13 We supply only the proof of the �rst item, since theothers are similar.E ` (('i0)a �)(c �)(B �)b : Ai� 9C: (E ` (c �)(B �)b : C ! A and E ` ('i0)a : C)i� 9C: (E ` (B �)b : B ! (C ! A) and E ` c : B and E�i ` a : C)i� 9C: (B;E ` b : C ! A and E ` c : B and (B; E)�i+1 ` a : C)i� 9C: (B;E ` b : C ! A and E ` c : B and B;E ` ('i+10 )a : C)i� (B;E ` (('i+10 )a �)b : A and E ` c : B)i� (E ` (B �)(('i+10 )a �)b : B ! A and E ` c : B)i� E ` (c �)(B �)(('i+10 )a �)b : A Proof of Lemma 13 2Lemma 14 Let C be a context, and a; b 2 �st. E will range over typeenvironments, and A will range over types. The following holds:(8E;A: (E ` a : A, E ` b : A))) (8E;A: (E ` C[a] : A, E ` C[b] : A))Proof of Lemma 14 By induction on C. Proof of Lemma 14 2The following lemma is necessary in the case of generalized reduction.36The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x5Lemma 15 (Shu�e Lemma) Let S be an arbitrary segment, W a well-balanced segment, and a; b 2 �st. Then:E ` S(a �)W b : A if and only if E ` SW (('#�(W )+10 )a �) b : AProof of Lemma 15 By induction on W , using Lemmas 13 and 14. IfW = �, it is immediate since E 0 ` d : D if and only if E 0 ` ('10)d : D. Letus assume W = (c �)U(B �)V , with U and V well balanced. The followingequivalences hold using the indicated lemmas:E ` S(a �)(c �)U(B �)V b : A(IH) i� E ` S(a �)U(('#�(U)+10 )c �)(B �)V b : A(IH) i� E ` SU(('#�(U)+10 )a �)(('#�(U)+10 )c �)(B �)V b : A(13.1, 14) i� E ` SU(('#�(U)+10 )c �)(B �)(('#�(U)+20 )a �)V b : A(IH, twice) i� E ` S(c �)U(B �)V (('#�(V )+10 )('#�(U)+20 )a �)b : A(13.2, 14) i� E ` S(c �)U(B �)V (('#�(V )+#�(U)+20 )a �)b : AProof of Lemma 15 2Lemma 16 (Subject Reduction) Let r 2 fs; gsg. If E `Ls1 a : A anda!�r b, then E `Ls1 b : A.Proof of Lemma 16 By induction on a. If the reduction is not at theroot, use the induction hypothesis. If it is, check that for each rule a ! bwe have E `Ls1 a : A implies E `Ls1 b : A. For the case of (�-generation),use Lemma 13i, rule 3. For the case of (g�-generation) and r = gs, if E `(a �)W (B �)b : A, then by Lemma 15, we have E ` W (('#�(W )+10 )a �)(B �)b :A, and by Lemma 13, rule 3, we conclude E ` W (('#�(W )+10 )a �1)b : A. Theother rules are proven by similar reasoning. Proof of Lemma 16 2Corollary 5 Let r 2 fs; gsg and E `Ls1 a : A. If a!!�r b, then E `Ls1 b : A.Lemma 17 (Typing of Subterms) If a 2 �swt and b / a, then b 2 �swt.Proof of Lemma 17 By induction on a. If b is not an immediate subtermof a, use the induction hypothesis. Otherwise, the last rule used to type amust contain a premise in which b is typed. Proof of Lemma 17 237The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x6Lemma 18 (Conservative Extension of Typing)If a 2 �t and E `Ls1 a : A; then E `L1 a : AProof of Lemma 18 Easy induction on a. Proof of Lemma 18 2Proposition 2 �swt � �.Proof of Proposition 2 Let a 2 �swt, and b be a subterm of a. ByLemma 17, b 2 �swt, and by Corollary 5, s(b) 2 �swt. Since s(b) 2 � (The-orem 2), Lemma l8 yields that s(b) is L1-typable, and it is well known thatclassical typable �-terms are strongly normalizing in the �-calculus. Hence,s(b) 2 �-SN, and by preservation (Corollary 4), s(b) 2 �g-SN. Thereforea 2 �. Proof of Proposition 2 2Proposition 3 � � �gs-SN.Proof of Proposition 3 Suppose there exist a0 2 � and a0 62 �gs-SN. Thenthere must exist a term a of minimal size such that a 2 � and a 62 �gs-SN.Let us consider a minimal in�nite �gs-derivation D : a! a1 ! � � � ! an !: : :, and follow the proof of Theorem 4 to obtain:D0 : aN = C[(d �i)c] int�!�gs C[(d1 �i)c] int�!�gs : : : int�!�gs C[(dn �i)c] int�!�gs : : :(Again, as we argued in Theorem 4, case 2 of Lemma 12 is discarded.This is because a 2 � ) s(a) 2 �g-SN, and Proposition 1 would yield acontradiction if case 2 of Lemma 12 holds.) Now three possibilities arisefrom Lemma 10. Two of them have been considered in the proof of The-orem 4 and have contradicted the minimality of D. Use the third one, thata = C 0[(d0 �i)c0] where d0 !! d. Now we have d0 !! d! d1 ! � � � ! dn ! : : :.Since d0 is a subterm of a, it must be the case that d0 2 �, contradicting ourchoice of a with minimal size. Proof of Proposition 3 2Therefore we conclude, using Propositions 2 and 3 and Corollary 4:Theorem 7 Every well-typed �s-term is strongly normalizing in the �gs-calculus.Corollary 6 Every well-typed �s-term is strongly normalizing in the �s-calculus. 38The Journal of Functional and Logic Programming 1998-5



Kamareddine, et al. Calculi of Generalized �-Reduction x66 ConclusionIn this paper, we �rst explained the relevance and bene�ts of both generalizedreduction and explicit substitution. We discussed alternatives and presen-ted the research history behind the two concepts. We explained that theyhave never been combined, and we commented that the combination mightindeed join both bene�ts, hence a �-calculus extended with both needed tobe studied.Then we introduced �g, the �rst system of generalized reduction us-ing de Bruijn indices. We proved �g con
uent, sound (i.e., it preserves�-equivalence), and complete (it properly contains �-reduction) with respectto the ordinary �-calculus with de Bruijn indices.Building on this success, we then introduced �gs, the �rst system com-bining generalized reduction with explicit substitution. For this combination,we relied on the proven explicit substitution technology of the �s-calculus.We proved �gs sound (a conservative extension) and complete (simulatingg�-reduction) with respect to �g. We proved that �gs preserves the strongnormalization (PSN) of terms that are terminating in �g, �s, and the ordin-ary �-calculus (all with de Bruijn indices). Our proof of PSN included the�rst proof of the commutation of arbitrary external and internal reductions,and is simpler than the standard proof of PSN using the traditional methodof minimal derivations.We proceeded further and added simple types to both �s and �gs (sim-ultaneously) in the form of the type system Ls1. By proving the strongnormalization (SN) of well-typed terms under �gs-reduction (and thereforealso under �s-reduction), we have provided the �rst typed systems of explicitsubstitution and generalized reduction with the SN property. We proved that�gs (and therefore also �s) has the essential property of subject reductionwith respect to Ls1 typing. We also proved that typing for Ls1 is sound (aconservative extension) and complete (a proper extension) with respect tothe simply typed �-calculus, and that it has typing of subterms.Now that a calculus combining both concepts has been shown to be the-oretically correct, it would be interesting to extend our �gs-calculus to onethat is con
uent on open terms, as is the tradition with calculi of explicit sub-stitution. It would also be interesting to study the polymorphically (ratherthan the simply) typed version of �gs. These are issues we are investigatingat the moment. We are also investigating the correspondence of our calculusto methods that implement sharing, to test if the analysis of sharing given39The Journal of Functional and Logic Programming 1998-5
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