Canonical typing and II-conversion in the Barendregt Cube
Journal of Functional Programming 6(2), 1995*

Fairouz Kamareddine
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ), Scotland
email: fairouz@dcs.glasgow.ac.uk
and

Rob Nederpelt
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands

email: wsinrpn@win.tue.nl

June 5, 1996

“First of all, we are very grateful to our colleague Bert van Benthem Jutting who has read draft versions of
the manuscript, and who has made very useful suggestions. Furthermore, we are grateful for the discussions
with Henk Barendregt, Roel Bloo, Tijn Borghuis, Herman Geuvers, Kevin Hammond, Bart-Jan de Leuw,
Simon Peyton-Jones, Erik Poll and Phil Wadler, and for the helpful remarks received from them. Last but not
least, we are grateful to the anonymous referees for their constructive comments and criticisms.

fKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven University
of Technology, for their financial support and hospitality from October 1991 to September 1992, and during
various short visits in 1993 and 1994. Furthermore, Kamareddine is grateful to the Department of Mathematics
and Computer Science, University of Amsterdam, and in particular to Jan Bergstra and Inge Bethke for their
hospitality during the preparation of this article, and to the Dutch organisation of research (NWO) for its
financial support. Last but not least, Kamareddine is grateful to the ESPRIT Basic Action for Research
project “Types for Proofs and Programming” for its financial support.

Abstract

In this article, we extend the Barendregt Cube with II-conversion (which is the ana-
logue of S-conversion, on product type level) and study its properties. We use this exten-
sion to separate the problem of whether a term is typable from the problem of what is
the type of a term.

Keywords: Barendregt Cube, I1-conversion, Canonical Typing, Typable Terms, Subject
Reduction, Church Rosser, Strong Normalisation.

Contents

1 Introduction

2 The formal machinery of the Cube

3 The ordinary typing relation 5z and its properties
4 The extended typing relation 5 and its properties
5 The canonical typing operator 7 and its properties
6 The typability relation - and its properties

7 Conclusion

10

14

16

19

1 Introduction

At the end of the nineteenth century, types did not play a role in mathematics or logic, un-
less at the meta-level, in order to distinguish between different ‘classes’ of objects. Frege’s
formalization of logical reasoning, as explained in the Begriffsschrift ([Frege 1879]), was un-
typed. Only after the discovery of Russell’s paradox, undermining Frege’s work, one may
observe various formulations of typed theories. Types could explain away the paradoxical
instances. The first theory which aimed at doing so, was that of Russell and Whitehead,
as exposed in their famous Principia Mathematica ([Whitehead and Russell 1910]). Their
‘ramified theory of types’ has later been adapted and simplified by Hilbert and Ackermann
([Hilbert and Ackermann 1928]).

Church was the first to define a type theory ‘as such’, almost a decade after he developed
a theory of functionals which is nowadays called A-calculus ([Church 1932]). This calculus
was used for defining a notion of computability that turned out to be of the same power as
Turing-computability or general recursiveness. However, the original, untyped version did
not work as a foundation for mathematics. In order to come round the inconsistencies in his
proposal for logic, Church developed the ‘simple theory of types’ ([Church 1940]).

From then till the present day, research on the area has grown and one can find various
reformulations of type theories. A taxonomy of type systems has recently been given by
Barendregt ([Barendregt 92]). A version of Church’s simple theory of types is found in this
taxonomy under the name A_,. This A_, has, apart from type variables, so-called arrow-types
of the form A — B. In higher type theories, arrow-types are replaced by dependent products
I1,.4.B, where B may contain = as a free variable, and thus may depend on z. This means
that abstraction can be over types, similarly to the abstraction over terms: A,.4.b.

But, once we allow abstraction over types, it would be nice to discuss the reduction rules
which govern these types. We propose reduction rules which treat alike types and terms.
That is, not only we have (A,.4.b)C —4 blx := C], but also (II,.,.B)C —3 Blz := C|.

This strategy of permitting IT-application (II,.,.B)C in term construction is not commonly
used, yet is desirable for the following reasons:

1. II-reduction behaves like -reduction. One may say that J-reduction has been in-
vented as an expedient in order to forebode a possible substitution. So why does one use a
direct substitution as in equation 1 below, (which is used almost everywhere) if S-reduction
can be used to do the job, as shown in equation 2?7 (We omit the contexts, for the sake of
simplicity):

If f:11,.4.B and a: A, then fa: B[z := d] (1)
If f:1I,.4.Band a: A, then fa: (Il,.4.B)a (which f—reduces to fa: B[z :=a]). (2)

In fact, it is more elegant and uniform to use the second notation instead of the first one.

2. Compatibility. With I[I-reduction, one introduces a compatibility property for the typing
of applications:

M:N= MP:NP.

This is in line with the compatibility property for the typing of abstractions, which does hold
in general:

M:N = A\,pM : T0,.pN.

As an example, we give a simple derivation with the above-described compatible application
rule and with conversion on II-application:

A:xb:Aja: A F a: A (start)

A:x,b: A o (Aga-a) : (IT,.4.A) (abstraction)
A:xb: A F o (Apa-a)b: (I1,.4.A)b (application)
A:x,b: A Fo(Aga.a)b: A (conversion)

3. Unified treatment of terms and types. It is our belief that with II-reduction it is
simpler to treat terms and types in a unified manner. Such a treatment provides a step
towards the generalisation of type systems which is an important topic of research at the
present time. For example, Barendregt’s taxonomy of type systems in [Barendregt 92], but
also Pure Type Systems (PTSs) introduced by Terlouw and Berardi (see [Ter 89]), and our
generalised system in [NK 94| are attempts at combining all the important results of type
systems in a compact and elegant way. As a step towards this goal, we believe that conversion
should apply to both types and terms. In fact, II is indeed a kind of A, hence eligible for an
application. This is a quite natural approach and one may interpret (II,.4.B)a as the wish
to select the “axis” B(a) in the Cartesian product II,.,.B. One might argue that implicit
[I-reduction (as is the case of the ordinary Cube) is closer to the intuition in the most usual
applications. However, experiences with the Automath-languages ([de Bruijn 74]), containing
explicit II-reduction, demonstrated that there exists no formal or informal objection against
the use of this explicit II-reduction in natural applications of type systems.

4. The ability to divide two important questions of typing. Introducing explicit II-
reduction gives an elegant way to divide two important questions which are usually answered
together via the judgement I' = A : B. These questions are:

1. Is A typable in I'? (Below we use the simplified judgement I" = A for this question.)

2. Is B the type of A in I'? (Below we use a canonical type 7(I', A) for A and compare
this canonical type with B, for this question.)

[I-reduction is needed in order to split elegantly these two questions. In particular, we require
for an applcation 7(I', Fa) = 7(I', F)a on the condition that 7(I', F') = II,.,.B, hence we
obtain (II,.4.B)a, a I-redex.

There are reasons why separating the questions “what is the type of a term” (via 7) and
“is the term typable” (via I), is advantageous. Here are some:

1. The canonical type of A is easy to calculate. The canonical type of A, 7(I", A) is de-
fined by just scanning through A, removing all so called main II-items I1,. 5, replacing all main
A-items A..p by Il,.p and replacing the heart of A by its obvious type in A. For example: if
A =T (A (Men-2°)Y) (M- (Aps-)y), then IT.., is the main IT-item of A, \,., and A,.. are
the main A-items and z° is the heart of A. Hence, 7(I', A) = (I, (Il %) y) (I s - (Aiis-) y) -

A consequence is that the mapping algorithm (in order to find a type for a term) is
extremely simple. This contrasts with the mapping algorithm in the usual setting, which
needs intermediate applications of the conversion rule. This is caused by the fact that Fa is
only typable if F' has an appropriate [I-type. If F' has not (yet) a II-type, then the conversion
rule must be used to find one. Of course we will need a conversion rule in order to check
whether A has type B in context I' (by establishing that 7(I'; A) = B). Note, however, that
we use only typing for the calculation of the canonical type, and only conversion for the second
part (“7(I'; A) = B?”). This is clearly a separation of concerns.

2. 7(A) plays the role of a preference type for A. To define the type of a term, in
the traditional Cube, one starts with the types of variables, and subsequently deduces other
statements of the form I' - A : B, by regarding more complex terms and their types. Finally,
a conversion rule expresses that the types of terms are given modulo conversion; i.e., if A: B
and B =5 C, then A : C. The typing relation is the smallest relation satisfying these rules.

In our opinion, the approach in the traditional frameworks is, in a sense, ambiguous. Note
that with each variable x and pseudo-context I', there is associated a preference type, which
is B for x : B € I'. For terms in general no preference type has been given, but a whole
collection of types, which are typeable by themselves and linked by means of S-reduction.

We define however, the canonical type of A, 7(A), which plays the role of a preference
type. For example, the preference type of A = A,...(A\n.y)z is 7(<>, A) = I, (I1,...%) .
This type indeed reduces with the relation =3y to II,...*, the type traditionally given to A.
3. The conversion rule is no longer needed as a separate rule in the definition of
F. In our approach, (3-conversion finds its place in the application condition of the rules of I,
where it naturally belongs. The conversion rule of the cube is redundant in our system. It is
accommodated in our application rule:

r-A I'-B
I'-AB

It will be the case that 7(I', AB) = 7(I', A)B =gn (II,.c.D)B —sn D]z := B] and so indeed
7(I', AB) =pn D]z := C].

4. Higher degrees If we use \' for IT and A\? for A then we can aim for a possible general-
ization. In fact, we can extend our system by incorporating more different \’s. For example,
with an infinity of X’s, viz. A%, A'; A2, A3 ... we replace 7(I', A\;.4.B) = I1,.4.7(I.A\,.4, B) and
7(I, . 4.B) = 7(I".A\;.4, B) by the following:

if 7(I', A) =pn I,.c.D and 7(I', B) =41 C

(0, N0.B) = X ,.7(T A4, B),for i = 0,1,2,... where \° ,.B =B

There is no reason why one cannot use as many A\’ as possible in a type system. In fact, even
though in the Cube there are only two, there are other systems with more. There may be
circumstances in which one desires to have more “layers” of \’s. As an example we refer to
[de Bruijn 74].

Following the above observations, we introduce and study three typing relations (g, Fgn
and) and a canonical typing operator 7. 4 is the typing relation of [Barendregt 92] and
Fsm is what we propose as its extension with II-conversion. - and 7 are what we use to divide
the two important questions of typing as mentioned above. We divide the paper as follows:

e In Section 2, we introduce the formal machinery needed for -4, Fg, = and 7.

e In Section 3, we introduce the usual properties of the Cube for -3 and —+5 which will
be studied for our extensions.

e In Section 4, we study in detail the properties of the Barendregt Cube extended with
II-conversion and show that kg satisfies all the essential properties of -5 except for
Subject Reduction. That is: I' Fgqg A : B AN A —=pn A" A ' bgn A’ © B. Subject
Reduction however holds for the case B = O or I' gy B : S. This Weak Subject
Reduction is sufficient to obtain the desirable typing properties such as unicity of typing.

The explanation for this is that, this B which is not O or of type S, reduces via — gy
to B’ which is itself either O or of type S, and hence I' Fzy; A : B implies I' -3 B’ where
B —3n B' and B’ has no Il-redexes.

e In Sections 5 and 6 we study the properties of the two separate typing questions regard-
ing 7 and F.

2 The formal machinery of the Cube

The systems of the Cube (see [Barendregt 92]), are based on a set of pseudo-ezpressions or
terms T defined by the following abstract syntax (let m range over both I and A):

T:*|D|V|TT|7TV:T'T

where V' is an infinite collection of variables over which z,y, z, ... range. * and O are called
sorts over which S, S5, S,,... are used to range. We take A, B,C,a,b... to range over 7.

Bound and free variables and substitution are defined as usual. We write BV (A) and
FV(A) to represent the bound and free variables of A respectively. We write A[z := B] to
denote the term where all the free occurrences of x in A have been replaced by B. Furthermore,
we take terms to be equivalent up to variable renaming. For example, we take A,.4.x = A 4.y
where = is used to denote syntactical equality of terms. We assume moreover, the Barendregt
variable convention which is formally stated as follows:

Convention 2.1 (BC': Barendregt’s Convention)

Names of bound variables will always be chosen such that they differ from the free ones in a
term. Moreover, different X’s have different variables as subscript. Hence, we will not have
(Az:a-)x, but (A\y.a.y)z instead.

Terms can be related via a reduction relation. An example is F-reduction (see Section 3). We
say that a reduction relation — on terms is compatible iff the following holds:

A — A, B, — B,
AlB — AQB ABl — AB?
A — Ay B, — B,
ﬂz:Al-B — 7TI:A2.B ﬂ_z:A-Bl — WI:A.Bg

A statement is of the form A : B with A, B € T. A is the subject and B is the predicate of
A : B. A declaration is of the form \,.4, with A € 7 and =z € V. A pseudo-context is a finite
ordered sequence of declarations, all with distinct subjects. The empty context is denoted by
<>. KT =Xa,----. Ae,a, then DA = Apyia, - e - Ain:a, -Aep and dom(T) = {zy,...,2,}.
We use I', A, I, '}, [y, ... to range over pseudo-contexts.

A typability relation F is a relation between pseudo-contexts and pseudo-expressions writ-
ten as I' = A. The rules of typability establish which judgements I' - A can be derived. A
judgement I - A states that A is typable in the pseudo-context I.

A type assignment relation is a relation between a pseudo-context and two pseudo-expressions
written as I' = A : B. The rules of type assignment establish which judgements ' - A : B can
be derived. A judgement I' - A : B states that A : B can be derived from the pseudo-context
r.

WhenI' - Aor I' F A : B then A and B are called (legal) ezpressions and I' is a (legal)
context.

Wewrite 'FA:B:CforT'FA:BATFB:C.IfA=X4,----- Ae,-a, Withn >0
is a pseudo-context, then I' F A, for I' a type assignment, means I' - z; : A; for 1 <1 < n.
If A — B then we also say I'1.A\,.4.I's = I'1.A..5.I's and define —» on pseudo-contexts to be
the reflexive transitive closure of —.

Remark 2.2 Note that we differ from [Barendregt 92] in that we take a declaration to be
Az.4 rather than x : A. The reason for this is that we want pseudo-contexts to be as close
as possible to terms. In fact the context I' can be mapped to the term I'.x for example, and
definitions of boundness/freeness of variables in a term and the Barendregt convention are
thus easily extended to pseudo-contexts.

Definition 2.3 (Type of Bound Variables, Q)
o If x occurs free in B, then all its occurrences are bound with type A in w,.4.B.

e If an occurrence of x is bound with type A in B, then it is also bound with type A in
Ty.c.B fory #x, in BC, and in CB.

o Define O(z) =z, O(m.4.B) = Q(B) and O(AB) = Q(A).

In this paper (Section 6) we introduce a system where the type information B of a judge-
ment I' = A : B is no longer needed. Hence, judgements obtain the form I' - A (a simple
judgement). In the following definition, we include these simple judgements.

Definition 2.4 Let I’ be a pseudo-context, A be a pseudo-expression and b be a typability or
a type assignment relation.

1. T is called legal if AP,Q € T such that T'F P(: Q).

2. AT iscalled a term if 'F AQBB e T['FA: BVI'F B: A]).
We take I'-terms={A €T |[TFA@BBecTI'FA:BVIF B: A}

3. A €T is called legal if AT[A € D-terms].

4. We say that A is strongly normalising with respect to a reduction relation —» (written
SN_, (A)) iff every —»-reduction path starting at A terminates.

Definition 2.5 LetI'=A,,.4,.--.. Aenia, ONd A= Xy g, ... Ay:B,, be pseudo-contexts.
1. We write Ap.a €U if x =z; and A = A; for some i.
2. T is part of A, notation I' C A, if every Ap.a in T is also in A.

3. Let X be a set of variables. Then I'1 X is ' where \,,.a, is removed for every x; ¢ X.

3 The ordinary typing relation 3 and its properties

Definition 3.1 (3-reduction —5 for the Cube)
B-reduction — 3, is the least compatible relation generated out of the following axiom:

(B) (Ae:-A)C —5 Alx == C]

We take —5 to be the reflexive transitive closure of —5 and we take =5 to be the least
equivalence relation generated by —3.

Definition 3.2 (F5) The type assignement relation &5 is defined by the following inference
rules:

(axziom) <>kg#*:0
'z A: S
(start rule) F/\z,fm @l
(weakening rule) LEs AF:.i;A Fs Drzl_lg DB x gl
Fl_/BFHa:AB Fl_/gaA

(application rule) T+, Fa:Blz = q

(abstraction rule) —— '_ﬁfbﬁ,(a’B)\;c:A.b : ﬁ:Aﬁ’.gw:A-B &
(conversion rule) It A:B FFI—;BAB: B’S B =3B
ormation rule) e (S0 o a e

Each of the eight systems of the Cube is obtained by taking its set of (S;,.S>) rules allowed
in the formation rule out of {(x,*), (x,0), (O, x), (d,0)}. The basic system is the one where
(S1,S5) = (*, %) is the only possible choice. All other systems have this version of the forma-
tion rules, plus one or more other combinations of (x,0), (O, %) and (O,0) for (S}, S,). Here
is the table which presents the eight systems of the Cube (see also Figure 1):

System Allowed (S, Ss) rules

AL (%, %)

A2 (*,%) | (O,x%)

AP (*,*) (*7 D)

AP2 (,%) | (d,%) | (%,0)

Aw (, %) (0,0)
Aw (%, %) | (O,x%) (O,0)
APw (%, %) (x,0) | (O,0)
APw=MXC | (x,%) | (O,%) | (x,0) | (3,0)

Now, we list the properties of the Cube without proofs (see [Barendregt 92]). These
properties will be studied in Section 4 for the Cube extended with II-conversion and will be
discussed for the two different subjects of canonical typing and typability in Sections 5 and 6
respectively.

Figure 1: The Cube

Theorem 3.3 (The Church Rosser Theorem CR, for —+5)
If A —=+3 B and A —+5 C then there exists D such that B =3 D and C —+5 D O

Lemma 3.4 (Free variable lemma for tg5)
LetT'=Apjay----- Aen:a, be atg-legal context such that I' 5 B : C. Then we have:

1. The z; ...z, are all distinct.
2. FV(B),FV(C) C{zy,...,z,}.
3. FV(Al)g{xl,xl_l} fOTlS'LSn O

Lemma 3.5 (Start Lemma for t5)
Let I be a t-g-legal context. Then I' g x: 0 and VA,.c € I'[I' Fgz: C]. O

Lemma 3.6 (Transitivity Lemma for t-3)
Let I' and A be Fg-legal contexts. Then: I'-5 ANAFgA:B]=TF; A:B. O

Lemma 3.7 (Substitution Lemma for z)
Assume D' X\ya.AFg B:C and g D : A then T'.(A[z := D]) b3 B[z :== D] : Clz :=D]. O

Lemma 3.8 (Thinning Lemma for t5)
Let I' and A be -g-legal contexts such that ' CA. Then '3 A: B = Atz A: B O

Lemma 3.9 (Generation Lemma for tz)
1.TF3S:C=S=+C=50, and iof C #0 then ' -5 C : S' for some sort S'.
2.TrFgax:C=>3B=3CApp €N if CZDB then ' k5 C : S for some sort S].

3. T l_/g H,;:A.B :C => 3(81,52)[F l_/g A: Sl AN F.)\,;:A l_/g B : SQ AN (81,52) is a rule N C =g
SyA[C 2 S, = 3S[TH, C: S]]

4. Db Apab s C = 3(S,B)[L bp MypB: SATAua b b: BAC =5 Iy aBAC #

5. 'FgFa:C=3AB,x[lU'Fs F: 1l oBAl'Fga: ANC =5 Blx :==a| AN (Blx :=a] #
C=3S[I'kz C:8))]. O

Corollary 3.10 (Correctness of types for Fg)
IfT'Fg A: B then (B=0 or 't B: S for some sort S). O

Lemma 3.11 (Legal terms and contexts for b5 and —5)
Fs-legal terms and contexts contain no Il-redezes. O

Theorem 3.12 (Subject Reduction SR, for s and —+3)
FF/@)AB/\A%‘)BA’#FFBA,B Od

Corollary 3.13 (SR Corollary for kg and —5)

1 IfT 3 A:Band B —v B' then T k5 A: B,

2. If Ais a T -term and A =5 A’ then A’ is a I -term. O
Lemma 3.14 (Unicity of Types for -5 and —»3)

L.Trs A: BIAT 3 A: By = By =4 By

2. Try A:BATFs A B'ANA=3 A' = B = B'

3. TryB:S,B=3 B, TFy A :B thenT Fs B :S. 0

Theorem 3.15 (Strong Normalisation with respect to bg and —+5)
For all -3-legal terms M, SN_, ,(M); i.e. M is strongly normalising with respect to —5. O

4 The extended typing relation g and its properties

Definition 4.1 (BII-reduction —sn for the Cube)
Bll-reduction — gy, is the least compatible relation generated out of the following aziom:

(p1I) (Te.5.-A)C —pn Az 1= C]

We take — g1 to be the reflexive transitive closure of —gn and we take =gy to be the least
equivalence relation generated by — .

Definition 4.2 (Fg5;) We define gy as Fg of Section 3 with the difference that the applica-
tion and conversion rules change as follows:

FFQHFIHa::A.B Fl_/gnaIA
I'Fgn Fa: (11,.4.8)a

(new application rule)

. ! . — !
(new conversion rule) [Fond:B FFI—';EHAB: B,S B=m B

The following lemmas hold for g and — 5y and have the same formulation (only change
to S1I everywhere) and proofs as for the case of 5 and —+:

e The Church Rosser Theorem for —+ s

10

Free variable lemma for gy

Start lemma for Fgp

Transitivity lemma for sy

Thinning lemma for g

Substitution lemma for sy

e Generation lemma for s where in clause 5, we replace B[z := a| by (II.4.B)a

Remark 4.3 (Correctness of types does not hold for +pn)

The new legal terms of the form (II,.5.C)A imply the failure of Corollary 3.10 for gy That
is,even in A,, ' Fgp A: B # (B=0or Fgg B: S for some sort S). For example, if
I'= XA then I Fpy (Ayy)z o (I,.,.2)z, but ' gy (I1,...2)x : S from Lemma 4.5.

Failure of correctness of types implies failure of Subject Reduction even in A_,:

Example 4.4 In A\, \.... A\ Fon « @ (II,..2)z. Otherwise, by generation: A....\,.. bFsn
(IT,...z)x : S, which is absurd by Lemma 4.5. Yet in A_,, A\....\e. b (Ayoy)x o (I, .2) 2.

We do have however, a weak subject reduction which we will prove after we show the rela-
tionship between Fsn and Fj5.

Lemma 4.5 For any A,B,C,S, I' /g (I1..4.B)C : S.
Proof: IfI' Fgn (I1,.4.B)C : S then by generation, T’ kg I, 4.B : II,.o.B' and again by
generation, I'\Xp.4 Fogn B : S'NS" =g .4 .B" which is absurd. O

We do have the following lemma which is a sort of weak generation corollary:

Lemma 4.6 I'Fg A: B A B is not a ll-redex = (B =0 or I' gy B : S for some sort S).
Proof: By a trivial induction on the derivation of I' =g A : B noting that the application
rule does not apply as (I1,.4.B)a is not a Il-redez. O

Lemma 4.7 (Legal terms and contexts for by and —y1)

1. If I'Fgp A: B then A and ' are free of ll-redexes, and either B contains no Il-redexes
or B is the only Il-redex in B.

2. If A= (7..p.E)B is Fpn-legal, then E[x := B] contains no ll-redezes.

Proof: 1. is by induction on the derivation of I' Fgn A : B. 2. By 1, we only need to show
that iof B =11,.¢.H, then E does not contain a subterm zF. Now, suppose B = 1l,.c.H and
E = C[zF], then it is easy to see that D =11,.;.J for some I,J, and I' Fgy B : D for some
context I'. But I' Fgyy 11,.¢. H : 11..1.J s impossible. O

To relate 5 and Fgr, we introduce a notation which removes the unique IlI-redex in a Fgp-
legal term (if it exists):

Definition 4.8 For A tFgp-legal, let A be Clz:= D] if A= (I,.5.C)D and A otherwise.

Lemma 4.9

11

1. IfT sy A: B then T3 A: B.
2. IfT'Fg A: B thenI' Fgn A: B.

Proof: 1. By a trivial induction on the derivations I Fgn A : B. 2. By induction on
the deriwation I' =5 A : B. The only interesting cases come from conversion and application.
The conversion case is easy as if B = B' then B =gn B'. The application case is shown
as follows: If I' b5 Fa : Blx := a] comes from I' b5 F : II,.o.B and I 5 a : A, then
by IH, ' g F : I1,.4.B and T’ Fpn a : A. Hence, by application, T' Fgn Fa : (II,.4.B)a.
But (I1,.4.B)a =gy Blz := a]. If ' bgy Blx := a] : S for some S, then by conversion
I'bsn Fa: Blx:=a]. But ' gy Blx :=a]: S is shown as follows:

Ibpn F o 1a.B then 11,.4.B is Fg-legal and I Fgpy 11, 4.B : S for some S’ by Lemma 4.6.
Now, by the generation lemma I\, .o Fgn B : S for some S. But I' Fgra : A. Hence by the
substitution lemma: I' gy Blx :=a) : S. O

Remark 4.10 Note that we may have I' k5 A : B without having T Fen A @ B, even
if B is Fgp-legal. Take for example I' = A\, A\, A = z and B = (II,.,.x)z. We have
I Fsn (Ay.y)z : B hence B is Fgp-legal. We also have I' -5 2 : B. Yet I' s o : B.

Lemma 4.11 If'tFgqp A: B and A = A’ then A’ has no Il-redezes.

Proof: We only show this for A — s A'. Note that A has no Il-redexes and so A —5 A'.
Now, from I =gn A - B we get by Lemma 4.9, 1, T' =5 A : B and so by Subject reduction for
—g we get I'=5 A" B. Hence A' has no Il-redezes by Lemma 4.7. O

Lemma 4.12 (Weak Subject Reduction for sy and —gy1)
1.F"ﬁHAIB/\A—)')ﬁnAIiF'_ﬁHAIIB
2.Fl—ﬁnA:B/\A%-)BHA’/\Bisl—g—legal:>Fl—ﬁnA’:B

Proof: 1. From T by A: B, and Lemma 4.9, 1, T 5 A: B. also, from A —»4y A, and
A and A’ have no Il-redexes (Lemmas 4.7 and 4. 11) A =5 A'. Now, from SR for —5 we
get'g A" B. Hence, by Lemma 4.9, 2, we get T Fom A" : B. 2. s a corollary of 1. O

Corollary 4.13 (WSR Corollary for bsn and —»sn)
1. If T'Fgn A: B and I' =3 I then I Fgp A : B.
2. IfUbun A: By and By =4y By then T kg A : By,
3. IfU'gn A: B and B =g S then I'kgp A: S.
4. If Ais T7on-term and A —spn A’ then A' is a T7em-term.

Proof: 1. By an easy induction on I' Fgq A : B using Lemma 4.12. 2. Usel' 5 A : B,
B —4 B' and SR for —5. 3. is a corollary of 2. 4. Case T Fyn A : B and A —»py A’
then it is easy to show A’ is Fg-legal using Lemma 4.12. Here we show that if I'-py B : A
and A = A’ then A’ is Fgn-legal. We will only consider the case where A =g A’ as the
reflezivity and transitivity of —»sn are easy. There are only three cases to consider:

e Case A= A then A —5 A" and by Lemma 4.9, 1, I' -5 B : A. Hence, I' 3 B : A" by
SR for =5 and so I' Fgn B : A" by Lemma 4.9, 2.

12

o Case A= (Il,.p.EF)A, A' = E[z := C] then by Lemma 4.9, 1, I' 5 B : A=A hence,
I'tgn B: A by Lemma 4.9, 2.

o Case A = (Il,p.E)C, A' = (Il,.p.E")C", then C,D,E are -g-legal, B = FC, I Fg
F:N,p.E,TFsnC:D and hence '3 F :1,.p.E, T -3 C:D. SoT' 5 F:11,.p.E,
I' =5 C" : D'. Therefore, I' Fpng F : l,.p.E', ' Fgg C' : D" and so I' Fgy FC' :
(IL,.pr.E")C". O

Remark 4.14 We cannot replace 2 of Corollary 4.13 by: If I' Fgn A : B and B —sn
B'" then I' gy A : B'. For example, take I' = A\ hya, 4 = (X0-2)(Apa-®)y), B =
(IL..o.c) (Agia-®)y) and B" = (II..,.)y. Then, I' Fgg A : B but I" /sn A : B because if
otherwise, we get by generation, I' gy (IL..,.«)y : S, absurd by Lemma 4.5.

The result concerning WSR might look a bit disappointing. It is however discussed in detail
in Section 7 which explains how the legal terms for - are not rich enough even though they
are richer than the legal terms for 5. Furthermore, in Section 7, we also explain how WSR
can be pushed back to full SR if the system is extended further.

Lemma 4.15 (Unicity of Types for sn and —pm)
1. Thpg A:BiAT by A: By = By =sn By
2. Th A:BAT by A : BANA=py A' = B =gy B'
3. I'kgn B:S,B=5B" I'rgn A" : B then I't-gy B' : S.

Proof: 1. by induction on the structure of A using the generation lemma. 2. by Church
Rosser, Weak Subject Reduction, 1, and Lemma 4.7. 3. This is the same as I' 5 B :
S,B =3 B',I' /g A" : B' then I' =5 B' : S which is 3 of lemma 3.14 and hence has the
same proof. It is to be noted here that 3 fails for the case B =gy B'. Take for example

r l_/gn * o D, * =p11 (Hg:*.*)a,)\a:* |_BH ()\/3*5)04 H (Hg:*.*)a,f' |7[BH (Hﬁ**)a : 0 O

Lemma 4.16

If SN, (Blw := C]), SN, (A), SN, (B) and SN, (C) then SN, (II,.1.B)C).
Proof: This is standard. O

Theorem 4.17 (Strong Normalisation with respect to Fgn and —sn)

For all Fgn-legal terms A, SN_, . (A); i.e. A is strongly normalising with respect to —sn.
Proof: Note that if A is Il-redex free and SN_,,(A) then SN_,, (A). We show that if

T Fsn A : B then SN_,, (A) and SN, (B). By Lemma 4.9, 1, T k3 A : B. Hence, by

—*BII —* I

Theorem 3.15, SN_, ,(A) and SN_,[,(B?). Hence, SN_,
SN.

ou(B).

A) and we only have to show that

[1‘1'[(

e Case B = B then SN

—*BII

(B).

e Case B = (1l,.p,.B>) B3 then B = B2[:cA:: Bs], By, By, B are Fg-legal. By Lemma 4.16,
SN_, .. (B;) for 1 <i <3 and SN_,,,(B), we get SN_,,, ((IL..,.B>)Bs). O

—*BII

13

5 The canonical typing operator 7 and its properties

Definition 5.1 (Canonical Type Operator) For any pseudo-context I' and pseudo-expression
A, we define the canonical type of A in T, 7(T', A) as follows:

7(T, %) = O

(T, z) = Aifdaa€l

7(T, Fa) = 7(I,F)a

T(LyApa.B) = a7l Aeia, B) if o € dom(T)
7(T,I4.B) = 7(F.Auia, B) if © & dom(T)

Example 5.2 In usual type theory, the type of A,..A,...y is II,...II,...x and the type of
IL,.. .11,...z is x. Now, with our 7, we get the same result:

(<> Ao Ayie-Y) = oo T(Ay Ayint) = o Iy T Mg Ay, v) = L I
(<>, M Iy) = T(Mgy Hyn @) = 7(A Ay,) = %

Remark 5.3 Note that 7(I',0) is undefined. We write | 7(I', A) for 7(I', A) defined. Note
also that FV(7(I', A)) # FV(I"A). For example, if I' = A\, \,...\.,, then 7(T,y) = z,
xe FV(r(l,y))\ FV(l.y),and p € FV(L.y) \ FV(r(L,y)).

z:py

In what follows, we study the properties of 7.

Lemma 5.4 (T-weakening)

Let I',I" be pseudo-contexts. ' CT'A | 7(I', A) = [} 7(I", A) and 7(I", A) = 7(I', A)].
Proof: By induction on A, noting that bound variables in A can always be renamed so

that they don’t occur in dom(I"). O

Lemma 5.5 (Context-reduction for T)
For I, 1" be pseudo-contexts, ' =z I'AN L 7(I' A) = [L 7(I", A) AT(T, A) =5 7(I7, A)].
Proof: By induction on 7(I", A). O

Lemma 5.6 (7-restriction)
If | 7(T', A) then T(T'|FV(A),A) = 7(T, A).
Proof: By induction on A. O

Lemma 5.7 (7-Substitution Lemma) Let ~ be —»sm, =pn or =.
If T(D.X\pa.A,B) = C and 7(I', D) ~ A then 7(U.(Alz := D)), Blz := D]) ~ C[z := D].
Proof: By induction on the structure of A. O

Note that when I', A contain no Il-redexes, 7(I', A) is exactly as A except that:

1. An occurrence of 7,.5 in A which is not an occurrence in some C' where 7,.c.D or DC
is a subterm of A, disappears in the case m = II and becomes II,.5 in the case m = .

2. O(A) is replaced by 7(I",O(A)) where I'' =T".X\;,.4, Az,.4, and z; : A; are those of
m,.5 Which have either disappeared or been replaced by II,.p, taken in the same order
in which they appeared in A.

14

Example 5.8

T(<> 10 Aye Qpee @) Y) (- Apew)y) =

z)x)C)D =
* C)D

This can be made clearer by using the item notation via a translation function Z where
I(men.-B) = (Z(A)7,)I(B) and Z(AB) = (Z(B)d)Z(A). Note that for each A, Z(A) =
L1,... I,z where each main item I; is of the form (A,w) for w € {6} U {m,;y € V} and
z = Q(A). Moreover, any 7w-redex (m,.5.C)D in A will be (Z(D)0)(Z(B)m,)Z(C). Hence,
m-redexes start by a d-item just before a m-item.

With this item notation, it is clearer to evaluate 7. In fact, we go through Z(A) from left
to right and for every I; we reach, we keep it unchanged if it is a d-item, we remove it if it is
a Il-item and we change the A to II if it is a A-item. Finally, we replace O(A) which is z by
7(I'",) where I = Z(T').I} I, and I, are all the m-items of A where I is changed to A. Of
course Z(7(I'; A)) = 7(Z(T"),Z(A)). For example, for A = IL,...(Ayi- (A @) Y) (L. (A7) y)

>\::*-
1_[z:>o<-

I(4) = (L) ((+IL)(o)(A)2d) (1) (y0) (+A.) @
r(<>,I(4)) = ((]IL)(48) (=X)2d) (L) (y8) (+IL) T((+A)(xA,)(¥A,),)
= ((|IL,) (90) (+Ao)26) (+IL) (yo) (+IL) +

Note that I; has disappeared, I and I, remained unchanged whereas the A in I3 and Ij
changed to II. Note also that Z(7(<>,A)) = 7(<>,Z(A)). In item notation, every term is
of the form Sx or S* where S is a segment, i.e. a sequence of items. For a segment S, we
define S as § where all the main 7-items are written as A-items and where all the main
§-items are removed. We define S as S where all the main M-items are replaced by Il-items,
all the main §-items remain unchanged and all the main II-items are removed. For example,
if § = (26)(yA.)(2IL,) then 5" = (yA.)(z)\,) and §' = (x6)(yIL.). With these notations,
7(T,Sz) = ?HT(I@A, x).

This item notation has been used to study, extend and clarify many notions of the A-
calculus (see [KN 93] and [KN 9y]).

Remark 5.9 Note that typability of subterms fails for 7. That is, 7 can be defined for some
A without being defined for all its subterms. For example, 7(<>, (Aps.2)y) = (I,...%)y,
but 7(<>,y) is not defined. Note also that unicity of types fails for 7. That is, we can
have A =5 A’ without having 7(I', A) =g 7(I', A’). For example, A = (A\,...x)(A\yv.¥) =50
Ayt = A yet 7(<>, A) = (I ¥) (Ayin-y) #pn 7(<>, Ayiieoy) = 1. Moreover, SN_, | (A)
SN_, . (7(I', A)). For example, take I' = Au.(,.. wa)(11,...00) and A = z. In Lemmas 6.7
and 6.17, we show that typability of subterms and unicity of types hold for 7 when I' - A.
We conjecture moreover, that if ' = A then 7(T', A) is strongly normalising.

15

6 The typability relation - and its properties

Definition 6.1 (+) The Typability relation & is defined by the following rules:

(F-aziom,) <> x

(F-start rule) % if ve

(F-weakening rule) LF ff{./\m:A = gl_ D if ve
(F-application rule) I FF FFa I'Fa if ap
(F-abstraction rule) LAsa b br =)\w:A.Fb'_ 0B if ab
(F-formation) I't4 e ng"%*‘ - B if fe

ve (variable condition): © € I' and 7(I'; A) =5 S for some S

ap (application condition): 7(I', F) =g II,.4.B and 7(T',a) =sn A for some A, B.

ab (abstraction condition): T(I'.Ay.a,b) =su B and 7(I',11,.4.B) =5 S for some S.

fe (formation condition): 7(I', A) —»sn S1 and 7(F.\,.a, B) =0 S2 for some (S1,S2) rule.

When I' F A, we say that A is typable in T'.

Lemma 6.2 (Free variable lemma and type-definability for & and 7)
LetU'=Xpjoaye--- Aepa,- IfD'H A Then we have:

1. The z; ...z, are all distinct.

2. FV(A) C{zy,...,x,.}.

3. FV(A4;) C{x1,...xi_1} for 1 <i<n.

4. L7(IA) and FV(1(I', A)) C{xy1,..., 20}

Proof: By induction on ' - A. O

Lemma 6.3 (Start Lemma for - and)
If T is F-legal, then I' - % and YA,.c e '[C Fax AT(T,z) = C].
Proof: By induction on the derivation I' - A. O

Lemma 6.4 (Substitution Lemma for - and 7)
If T’Xpa A F Band ' F D and 7(I', D) =y A, then I'.(Alz := D]) F B[z := D] and
7(I.(A[z := D)), B[z := D]) =g 7(I'"X\s:a.A, B)[z := D].

Proof: By induction on the derivations of I'\X,.4.A F B. O

Lemma 6.5 (Thinning Lemma for - and T)

IfT and A be t--legal and T' C A, then ' A = A+ A (note that 7(T', A) = 7(A, A)).
Proof: By induction on the length of the derivations I' - A. O

16

Lemma 6.6 (Generation Lemma for - and 1)
I.TFS=S5=x*
2.TFex=3AN . acTAT(T,2) = A

3. Ik Hx;A.B = Hsl,SQ[F FA N F-Aw:A F BA T(F,A) =pIL Sl N T(F.)\x;A,B) =pIL SQ N
(S1,S52) is a rule].

4. '~ AI:A.b = HS,B[F F Hw:A-B/\F-)\z:A = b/\T(FAzA,b) —pII BAT(F,H,;AB) —pII S]
5.TF Fa=3A,B,z[TF FATFaA7(T,F) =gy a. B AT(T,a) =1 Al

Proof: By induction on the derivations I' - A. O

Lemma 6.7 (Typability of subterms)
IfT'F A and A’ is a subexpression of A then (II7)[[.I" - A'].
Proof: By induction on I' - A. O

Lemma 6.8 (Legal terms and contexts for)
F-legal terms and contexts are free of Il-redexes,

Proof: By induction on I' = A. The only interesting case is application. Assume I' = F,
I'ta, 7(T,F) =pn IL,.4.B and 7(T',a) =sn A. By IH, T',F,a are Il-redexes free. Also,
F #11,.c.D, otherwise, T(I'\X\;.c, D) = 7(I', F) =pu S2 =pn ll,.4.B, absurd. O

Note that I' - A # (7(['A) = OV I F 7([, A)). For example, \,.. F (A,..y)z and A, V/
(IL,...x)z, by Lemma 6.8. The property however holds when 7(I", A) is II-redex free. We need
first the following lemma:

Lemma 6.9
IfT-A, T'F B and A =5 B then 7(I', A) =4 7(I', B).
Proof: By induction on A =5 B using Lemmas 5.5 and 5.7. O

Lemma 6.10 If '+ A and 7(I', A) is ll-redex free, then 7(I'; A) =0 or I' - 7([, A).
Proof: By induction on T' = A using Lemma 6.9 (application cannot apply otherwise,
(I, Fa) =7(I', F)a =pn (p.a.B)a = 7(I', F) = ,.0.B" and 7(I', Fa) is a Il-redex). 0

Now, let us study the relationship between Fg and .

Lemma 6.11 IfI'Fgq A: B then '+ A and 7(I', A) =sn B.
Proof: By induction on the derivations I' =g A : B. O

Definition 6.12 For A a pseudo-term, we take A to be the BII-normal form of A.

17

Lemma 6.13 IfI'+ A then L 7(I', A) and I' 5 A: 7(I", A)
Proof: By induction on I' = A. We only treat three cases:
application: Assume ' F F and T' F a give T' = Fa where the application condition (ap)
holds and IH holds for the first two derivations. 7(I', F) =gy lz.a.B A 7(I',a) =gn A = 3
C,D where A —sn C, B —sn D, 7(I', F) =11,.c.D and 7(I',a) = C.
Moreover, by IHT 5 (I, F') : S (otherwise by Corollary 3.10, I1,.c.D = O absurd).
Now, use application onT'Fga:C, kg F:1,.c.D to get ' -5 Fa: D[z := al.
Hence by Strong Normalisation of g, | D]z := a.
But, 7(I', Fa) = 7(T', F)a = (Il,.c.D)a = D[z := a] and so | 7(T, Fa).
Now, by Corollary 3.10, I't-5 Fa : Djx :=a] = D[z :=a]| =0 V 3S[I' s D[z :=a] : 5].

e Case D[z :=a] =0 then 7(I', Fa) = Djx :=a]| = D[z :=a] and ' k5 Fa : 7(T, Fa).

e Case ' 5 D[z :=a]: S, then by SR for -5, as D[z := a] =5 D]z := qa],
I'Fs Dz :=a]:S.
Now, use I' -5 Fa : Djx :=a], I' Fg D[z :=a] : S and D[z := a] =3 D[z :=a] and

conversion for g to get I' Fg Fa : D[z :=a]. Hence, I't5 Fa : 7(I', Fa).

abstraction: assume I' - 11,.4.B and T.A\,.4o = b imply T' = X\,.4.b where 7(I'.\;.4,b) =pn B,
and T(I',11,.4.B) —%sn S. Hence, 7(I',11,.4.B) = S.

By IH, T g II,.4.B : 7(I',I1,.4.B) = S. Moreover, by ab as 7(I'.\X;.4,b) =sn B, we get
B =51 T(DApa,b). Hence, 1. a.B =g Hpa.7(DApia,0) and T Fp Hpa.m7(D s, 0) 0 S by
SR for Fg.

Furthermore, by IH, I'X\p.a Fp b 7(I'"Az.a, b).

Now, use I'\Xpoa g b: 7(DXpa,b), T g I a7 (D A4, b) - S and abstraction to get

r "5 Az:A-b H Hz:A-T(F-Az:A, b)

But Tyoq. 7 (T Ains) =5 IL, 5.7 (T-Aein, D) = 7(1, Aaia,).

Hence by Corollary 3.13, I'tg Apab: 7(I', Apoalb).

formation: Assume I' F A and IU'\X,.a b B give I' F 11,.4.B and IH holds for the first two
derivations. Hence, | T(L,A), T(C.X\pa, B), T'Fg A: 7(0, A) and T X\p.a b B : 7(D.X\oa, B).
Hence, as 7(I',11,.4.B) = 7(I".A\;.4, B), we get | 7(I',11,.4.B).

Furthermore, as by fe, (L', A) =gn S1 and 7(I'.A\,.a, B) =pn Sa, for some (Si,Ss) rule, we
get T(C,A) = S) and 7(I'\,.4,B) = S,.

Now, we use formation to get I' 5 I1,.4.B : 7(I',11,.4.B). O

Lemma 6.14 (Subject Reduction for & and 7)
'HFAANA — GBI A = [F HA A T(F, A) =p0 T(F, A’)]
Proof: Use Lemmas 6.11, 6.13 and SR for t-4. O

Corollary 6.15 (SR corollary for - and 7)
1. If T Aand I' =5 IV then I = A and 7(I', A) =g 7(I"A).

2. If Ais " -term and A =35 A’ then A’ is a I -term.

Proof:1. I' Fg A : 7(I'A) = I" 5 A : 7(I'; A). Hence, by Lemma 6.11 I" - A and

7(I'", A) =pn 7(I', A) =g 7(I', A). m]

18

Remark 6.16 Note that I' - A and A =3 A" %A 7(I' A) =5 7(I', A"). For example, If
A= (Mw-2)y and I' = Ao Ayi(apoyw, then A =5y, 7(I, A) = (IL.,.w)y A4s (1, y).

Lemma 6.17 (Unicity of Types for - and 7)
I.TFAADFBAA=; B = 7(T,A) = (T, B)
Proof: Use CR and SR to show I't-C, 7(I', A) =pn 7(I', C) =pn 7(I', B). O

Theorem 6.18 (Strong Normalisation for)
If A is " -legal, then SN_,,(A).
Proof: By Lemma 6.13, I' =3 A : 7(I', A). Hence, by Theorem 3.15, SN_, ,(A). O

We believe that if I' = A then SN_,, (7(I', A)). We leave this as an open problem for the
moment.

Remark 6.19 Note that from Lemmas 6.11, 6.13 and 4.9 , ll-reduction is necessary for
splitting ' = A : B into I' = A and 7(I', A) =pn B, yet Fgn is not necessary. This is shown
by the following proposition (call B tg-legal type iff B=0 or I' g B : S for someI',S).

Proposition 6.20
' A:BeT'FANANT(D,A) =su B A B is Fg-legal type.
Proof:
=) By Lemma 4.9, T'\5n A: B. Hence, by Lemma 6.11, T'+ A and 7(I', A) =sn B.
Moreover, by Corollary 3.10, as I' =5 A : B, B is -g-legal type.
<) By Lemma 6.13, | 7(I', A) and T' 5 A : 7(T', A). Moreover, B —»5 7(', A).

e Case B=0O then T(I';A)=0 and '3 A: B.

e Case I' b3 B : S then by I' 5 A : 7(I',A), B =5 7(I',; A) and conversion, we get
ThyA:B. 0

Note in this proposition that B is |-3-legal type is needed. The reason is obvious of course. We
may have 7(I', A) =g B and I' - A, yet B contains II-redexes, hence making it impossible to
have I' kg A : B. For example, if ' = A\, AL Auey A = (A (Ay.p)u)u and B = (11, .%)u
then obviously I' - A and 7([', A) = (IL,...(II,...x)u)u =gn B but I' t/5 A : B. In fact, B is
not a legal term nor type for -5 according to Lemma 3.11. We do however have the following:

Lemma 6.21
If B is in fll-normal form, then '3 A: B & ' A A7(I', A) =sn B.
Proof:
=) is a corollary of Proposition 6.20. <) As B is in Sll-normal form and 7(I', A) =sn B,
we get (I, A) = B. Now, use Lemma 6.13 to get '35 A : B. O

7 Conclusion
In Section 1 we introduced various desirable properties for type theory. In this section we

remark how these properties have been treated in our paper discussing any limitations or
future work.

19

1. [I-reduction behaves like g-reduction. This has of course been a fundamental point
to our paper. In fact, recall Remark 6.19 which explained that II-reduction is necessary for
splitting the question does A have B as o type into the two questions about whether A is
typable and whether its preference type is equal to B.

2. Compatibility. This has certainly been achieved in kg via the new application rule.

3. Unified treatment of terms and types. This is achieved slightly in the Barendregt
Cube. With our II-reduction we go a step further allowing types to have similar reduction
rights as terms.

4. The ability to divide two important questions of typing. This has been achieved in
our paper by replacing 5 or kg by = and 7. The important relation between the standard
way of typing terms and our two separate questions is given in Proposition 6.20.

As for the other points, it has been made clear in the paper that 7(A) plays the role of a
preference type for A and that it is very easy to calculate. Furthermore, we have eliminated
the conversion rule from the typing rules for .

Now, let us reflect on the legal terms obtained via g comparing them to those legal
terms of 5. Lemma 3.11 informs us that Fgp-legal terms and contexts have no Il-redexes.
Lemma 4.7 tells us that if I' kg A : B then we can only have Il-redexes in B and if this is
the case than B is itself the unique Il-redex. So really, we have not increased our terms or
types much via Fgp. Still this tiny increase is what led to the loss of SR (even though we get
WSR). It is however easy to get back full SR in two different ways which have been ignored
in this article because they emphasize different issues than those we emphasize in this paper.
We will here just briefly discuss how these two methods work.

The first method (which is being investigated) adds definitions to Fgy via the following
extra typing rule (note m = A or II):

F.(ﬂ'w;A.—)B "51‘[C:D
r |_BH (WI:A.C)B : D[Q} = B]

(def rule)

The intuition behind this rule is obvious. It says that if C': D can be typed using the
definition that = of type A is B, then (m,.4.C)B : D[z := B] can be typed without this
definition. With definitions, terms, types and contexts contain as many Il-redexes as they
like.

A second method to retrieve back full SR would be to add the following rule to g:

Fl_/gn’ﬂ'm:A.CIS Fl_/gnBA
r '_,31-[(TI'JC:A.C)B)

The intuition behind this rule is obvious. In fact, think of the formation rule. For II,.4,.B : S
we needed B : S. Now, if B : S then B[z : a] : S and hence (II,.4.B)a : S. With this
extension, terms would contain as many II-redexes as they like. Contexts however would still
not contain any Il-redex.

References
[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,

volume II, eds. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 118-414,
1992.

20

[de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4 family, Dept. of Math-
ematics, Eindhoven University of Technology, 1974.

[Church 1932] Church, A., A set of postulates for the foundation of logic, Annals of Math. 33 (1932),
346-366 and 34 (1933), 839-864.

[Church 1940] Church, A., A formulation of the simple theory of types, Journal of Symbolic Logic 5
(1940), 56-68.

[Frege 1879] Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens (Halle, Verlag von Louis Nebert, 1879). Reprint 1964 (Hildesheim, Georg Olms Verlags-
buchhaltung).

[Hilbert and Ackermann 1928] Hilbert, D. and Ackermann, W., Grundzige der theoretischen Logik
(Berlin, Springer Verlag, 1928).

[How 80] Howard, W.A., The formulae-as-types notion of constructions, in To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, eds. Hindley J.R., and Seldin, J.P.
Academic Press, 1980.

[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (8), 197-240, 1993.

[NK 94] Kamareddine, F., and Nederpelt, R.P., A unified approach to type theory through a refined
A-calculus, Theoretical Computer Science 136, 183-216, 1994.

[KN 9y] Kamareddine, F., and Nederpelt, R.P., The Beauty of the A\-Calculus, in preparation.

[KN 94] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and II-Conversion, Research report,
Department of Mathematics and Computing Science, Eindhoven University of Technology, 1994.

[Ter 89] Terlouw, J., Een nadere bewijstheoretische analyse van GSTT’s. Technical report, Depart-
ment of Computer Science, University of Nijmegen, 1989.

[Whitehead and Russell 1910] Whitehead, A.N. and Russell, B., Principia Mathematica (Cambridge,
Cambridge University Press, 1910/1913). Reprint 1960, same editor.

21

