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Mathematis and Computing S.Eindhoven University of TehnologyP.O.Box 5135600 MB EindhovenThe NetherlandsFAX: +31 40 2463992laan�win.tue.nlAbstratIn Russell's Rami�ed Theory of Types rtt, two hierarhial onepts dom-inate: orders and types. The use of orders has as a onsequene that the logipart of rtt is prediative. The onept of order however, is almost deadsine Ramsey eliminated it from rtt. This is why we �nd Churh's simpletheory of types (whih uses the type onept without the order one) at thebottom of the Barendregt Cube rather than rtt. Despite the disappearaneof orders whih have a strong orrelation with prediativity, prediative logistill plays an inuential role in Computer Siene. An important example isthe proof heker Nuprl, whih is based on Martin-L�of's Type Theory whihuses type universes. Those type universes, and also degrees of expressions inAutomath, are losely related to orders. In this paper, we show that ordershave not disappeared from modern logi and omputer siene, rather, ordersplay a ruial role in understanding the hierarhy of modern systems. In orderto ahieve our goal, we onentrate on a subsystem of Nuprl.The novelty of our paper lies in: 1) a modest revival of Russell's orders,12) the plaing of the historial system rtt underlying the famous PrinipiaMathematia in a ontext with a modern system of omputer mathematis(Nuprl) and modern type theories (Martin-L�of's type theory and PTSs), and3) the presentation of a omplex type system (Nuprl) as a simple and ompatPTS.1 IntrodutionThe Rami�ed Theory of Types (rtt) was developed by Bertrand Russell [36, 41℄ inorder to solve the paradoxes that resulted from Frege's \Grundgesetze der Arith-metik" [11℄. It has a double hierarhy: one of types (whih an be seen as an�Following Kluwer's regulations, we inlude the following statement: This paper has not beensubmitted elsewhere in idential or similar form. This work is supported by EPSRC grantsGR/L36963 and GR/L15685. The authors are grateful for Peter Hanok and the anonymousreferees for useful omments.1The role of orders in modern style type theory has been well understood in the proof-theoryommunity, but this paper looks at orders in an expliit and fresh sense. A alulus of orders isprovided and used to reason about lassi�ations of objets and funtions in Nuprl1



elementary version of Churh's well-known Simple2 Theory of Types [3℄) and oneof orders, whih an be ompared with Kripke's Hierarhy of Truths, see [21, 19℄.Although Churh followed Ramsey's simpli�ation in [34℄ of rtt into the SimpleTheory of Types, he still attempted to explain orders in his book [4℄ and later on (aslate as 1976) in [5℄. Nevertheless, the hierarhy of orders remains less known thanthe hierarhy of types, as it beame unpopular when Ramsey [34℄ and Hilbert andAkermann [15℄ showed that one an avoid the paradoxes without this hierarhy.Furthermore, even though it beame widely aknowledged that the paradoxes an beavoided without the use of orders, we believe that many logiians are (maybe unon-siously) inuened by the hierarhy of orders when onstruting (non-paradoxial)theories. Moreover, orders an elegantly explain some useful hierarhies. As anexample, when Kripke wanted to build a logial theory [21℄ whih has its own truthprediate (something not straightforward aording to Tarski's hierarhy of truths[40℄, in whih the truth prediate is not de�nable), he used a hierarhy of languageswhih ould elegantly be explained via the notion of orders as is shown in [19℄. Sim-ilarly, when Martin-L�of's imprediative type theory was shown to su�er from theparadox, he moved to the prediative version in [26℄ and has sine, built layers ofuniverses that again ould be elegantly explained by orders (see for example, page84 of [26℄). Also, [31℄ provides a treatment of trans�nite orders as universes, [25℄disusses prediative universes in the Calulus of Construtions [7℄, [8℄ introduesthe \generalised" Calulus of Construtions CC! whih inludes a umulative hi-erarhy of universes, [13℄ studies type heking and well-typedness in CC! and inan extended version of it with an anonymous universe Type whih is intended tomodel Russell and Whitehead's typial ambiguity onvention, and [37℄ uses ordersin proof theory. Moreover, orders are losely related to the degree of expressionnotion of Automath [30℄ where de Bruijn's notion of degree satis�es in the Au-tomath systems the property that: if E : F then degree(E) = degree(F ) + 1. DeBruijn always assumed that degrees are �nite and although he usually only hadthree degrees (1, 2 and 3), other �nite degrees were possible in di�erent systems ofAutomath. That is, although in standard formulations of Automath, de Bruijnassumed the degrees 1, 2 and 3 and took 1 to be the degree of type, 2 to be thedegree of inhabitants of type and 3 to be the degree of inhabitants of inhabitantsof type, in various other systems of Automath, other degrees were allowed. Forexample, in AUT-4, 4 degrees are permitted: the degrees 3, 2 and 1 are for ele-ments, sets and the lass of sets, but degrees 4, 3 and 2 are for proofs, theorems,and the lass of propositions. Also, in AUT-SL, terms of any (�nite) degrees arepossible.Logi based on the double hierarhy of orders and types is usually alled pred-iative. The di�erene between prediative and imprediative logi may seem small,nevertheless, this small di�erene an have some drasti onsequenes in fundamen-tal mathematis. When onstruting the real numbers out of the rationals (withDedekind-uts), the Theorem of the Least Upper Bound3, is not provable in pred-iative logi (see [39℄). The Theorem of the Least Upper Bound is, however, oneof the most fundamental theorems in real analysis as is illustrated in the work ofFeferman (see for instane [10℄).Many modern type systems are imprediative. For instane, the systems of theBarendregt ube [1℄ that have the rule \(2; �)" are all imprediative. Hene, a proofheker like Coq [9℄, based on the Calulus of Construtions [7℄, is itself founded onimprediative logi.Nevertheless, mathematis with prediative logi is possible, and from a on-2It should be noted here that the notion of simple types an be found in the work of Frege asis explained for example, in the work of Quine [33℄.3This Theorem states that any non-empty set of real numbers with an upper bound has a leastupper bound. 2



strutive point of view it is even attrative. For instane, the proof heker Nuprl[6, 18℄ is based on prediative logi yet many mathematial theories an be de-veloped using this proof heker (see [17℄). Of ourse, we are not laiming thatthe motivation of Nuprl and Martin-L�of's type theory for prediativity ome frommathematis or omputer siene. As we said above, there are parts of mathematisthat need imprediativity, and this explains why for example, Chet Murthy in [29℄provided an imprediative extension of Nuprl and why other researh in theoreti-al omputer siene (e.g. the work on the ��-alulus [32℄) identi�es the need forlassial rather than onstrutive logis. Nevertheless, we are onerned here withMartin-L�of's type theory and Nuprl, and not their imprediative extensions.Nuprl's type theory is related to type theories proposed by Martin-L�of [27, 28℄,used as a foundation for onstrutive mathematis. Nuprl's logi is related to itstype theory via the well-known propositions-as-types embedding, also known as theCurry-Howard-de Bruijn isomorphism (see [16℄). It is onstrutive on two points:it is based on intuitionisti logi (as is the Curry-Howard-de Bruijn isomorphism)and it is based on prediative logi.In this paper, we will try to establish the relation between prediative logi aspresent in modern type theory (we onentrate on a subsystem of Nuprl beauseMartin-L�of's type theory is one of the rihest and most expressive prediative typetheories) and Russell's Rami�ed Type Theory rtt. This has many advantages.The most important advantage is the formulation of the informal notion of universehierarhy in these modern prediative logis using Russell's notion of order. Thereare however many important bonuses that result from our study:1. We give the �rst presentation of a subsystem of the proof heker Nuprl as aPTS. In Setion 2 we give a formal desription of a part of the type systemof Nuprl as a Pure Type System (PTS) [38℄. The systems of the Barendregtube are examples of PTSs. Nuprl in PTS style enables us to formalize theonept of order in Nuprl and to show its orretness. This order lassi�estypes and terms of Nuprl into their relevant hierarhy.2. We give a formal presentation of rtt. Suh a formal presentation is not givenin \Prinipia" [41℄. In Setion 3 we present a simpli�ed formalization of rtt,whih is based on a more extensive formalization given in [22℄.3. We give the �rst aount of embedding rtt in a relevant modern type theory.This is done in Setion 4, where we present an embedding of rtt in Nuprl'stype system. Note that this is very di�erent from [13℄ whih did not give apresentation of rtt, but instead, extended CC! with an anonymous universeType and intended this extension to model Russell and Whitehead's typialambiguity onvention.4. Our study is the �rst to onnet rtt to the modern way of writing type theoryas a PTS. As we present a subsystem of Nuprl within the framework of PTSsin Setion 2, and as we present an embedding of rtt in Nuprl's type system inSetion 4, we also obtain a desription of rtt in PTS-style. The same remarkwe gave above onerning [13℄ applies here.5. Our study shows that orders in the historial system rtt orrespond to or-ders in a very powerful modern system Nuprl. Our study of orders is di�erentfrom the approah of [13℄ whose main onerns were type heking and well-typedness in Coquand's CC!, extending CC! with anonymous universes tomodel Russell and Whitehead's typial ambiguity onvention, and with de�-nitions. [13℄ is another example that orders and universes play an inuentialrole in powerful modern systems. 3



6. Finally, our paper plaes the historial system underlying Prinipia Mathe-matia in a ontext with a modern system of omputer mathematis (Nuprl)and modern type theories (Martin-L�of's type theory and Pure Type Systems).2 The Nuprl type system and Martin-L�of's typetheoryMartin-L�of's type theory [26℄ was originally developed as a foundation of onstru-tive mathematis. The basi idea is the interpretation of logi within type the-ory through the Curry-Howard-de Bruijn isomorphism where (roughly speaking),a proposition is interpreted as a set whose elements represent the proofs of theproposition. Hene, a false proposition is interpreted as the empty set and a trueproposition is interpreted as a non-empty set. In order to prove that a propositionis true, we need to show that the proposition is inhabited.This idea has proved extremely attrative from the omputational point of viewand has been exploited in many theorem provers (e.g., Nuprl and Coq). This ideawas already exploited in de Bruijn's Automath whih played an inuential rolein both provers Coq and Nuprl. In this paper, we onentrate on a subsystem ofNuprl.2a A fragment of Nuprl in PTS-styleWe give a desription of a part of the type system on whih Nuprl is based (see[17, 6℄). We do not give a full presentation of all of Nuprl's type onstrutors, as wewill only need parts of it. The desription of the typing rules is given in a naturaldedution style similar to that used in the Barendregt Cube [1℄, and Pure TypeSystems [38℄.Below we assume V to be a set of variables, Z to be the set of integers, andS= f�1; �2; : : :g a set of sorts. The intuition behind the sort �a is that it representsthe propositions (and, more general, the types) of order � a. �a orresponds to theUniverse of Types Ua in [17, 27℄. ? represents the unde�ned or a ontradition.Appliation and abstration (� and �) are familiar from PTSs. The remainingnotions represent Cartesian produts, pairing, and �rst and seond projetions.De�nition 2.1 (Terms) The set of terms T is de�ned by the following abstratsyntax:T ::= S j V j ? j Z j TT j �V:T:T j �V:T:T j T � T j hT;Ti j �1(T) j �2(T)We let �; �; x; y; z; : : : range over V; m;n; : : : over Z and A;B;M;N; a; b over T.When x does not our free in B, we write A ! B for �x:A:B. Free and boundvariables are de�ned as usual. fv(A) and bv(A) denote the set of free and boundvariables of A. A[x:=B℄ denotes the term in whih all the free ourrenes of x inA have been replaed by B. Syntati equality of terms is taken modulo renamingof bound variables. This allows us to assume the following:Convention 2.2 (Barendregt's Convention) Names of bound variables di�erfrom the free ones in a term. Moreover, we use di�erent bound names for di�erentbound variables.We take the axioms:(!�) : (�x:T:A)B !� A[x:=B℄(!�) : �1(hA;Bi)!� A and �2(hA;Bi)!� B.We de�ne the redution relations!� and!� generated by the above two axiomsrespetively (with the usual ompatibility rules of ourse). !!� and !!� are the4



reexive transitive losures of !� and !� . We de�ne moreover !�� and !!��in the obvious way and take =�� to be the symmetri losure of !!��. We de�neontexts and some related properties:De�nition 2.3 (Contexts) A ontext is a �nite list x1:A1; : : : ; xn:An of delara-tions xi:Ai. fx1; : : : ; xng is alled the domain of the ontext. If �;� are ontextsthen we write � � � if all delarations in � are also in �. We let �;� range overontexts.De�nition 2.4 (Derivable statements) A statement � ` A : B is derivable if itan be dedued by repeated appliation of the rules below:(Axioms) ` ? : �1 ` �n : �n+1 (n 2 IN)` Z : �1 ` n : Z (n 2 Z)(Start) � ` A : �n�; x:A ` x:A (x is �-fresh)(Weak) � `M : N � ` A : �n�; x:A `M : N (x is �-fresh)(�-form) � ` A : �n �; x:A ` B : �n� ` (�x:A:B) : �n(�) �; x:A ` b : B � ` (�x:A:B) : �n� ` (�x:A:b) : (�x:A:B)(App) � `M : (�x:A:B) � ` N : A� `MN : B[x:=N ℄(�-form) � ` A : �n � ` B : �n� ` (A�B) : �n(Pairs) � ` a : A � ` b : B � ` (A�B) : �m� ` ha; bi : (A�B)(Left) � `M : (A�B)� ` �1(M) : A(Right) � `M : (A�B)� ` �2(M) : B(Conv) � `M : A � ` B : �n A =�� B� `M : B(�) � ` A : �n� ` A : �n+1To those familiar with PTSs and/or Nuprl, the above rules are straightforward.Some remarks are due however:1. The rule (�-form) may look restritive. This is not the ase however due to theinlusion rule (�). In fat, (�) simpli�es the formulation without sarifyingexpressivity.2. A type universe Un of Nuprl is losed under the onstrution of dependentCartesian produts. We use non-dependent Cartesian produts (�-form) .We refrain from introduing dependent Cartesian produts for two reasons:they are not needed for the purpose of the paper and they involve manyompliations that will obsure our main objetives.3. The inlusion rule (�) is interesting on its own. We will see below that itleads to the loss of uniity of types. However, uniity of types is valued inmany PTSs but not in Nuprl or Martin-L�of's type theory. We will in anyase derive a version of uniity of types that is faithful to this idea of a term5



having many types in Nuprl. That is, we will derive that if we ollapse theorders, then a term will have only one type.4. Nuprl itself is impliitly rather than expliitly typed. That is, Nuprl usesterms of the form �x:B rather than �x:A:B. There is a huge literature inprogramming language theory and design whih disusses the tradeo�s be-tween both styles. Our reason for the expliitly typed style in Nuprl is due tothe fat that PTSs deal with expliitly typed systems and only reently, havebeen extended to deal with the impliitly typed style ([2℄).Now we de�ne some notions familiar from PTSs.De�nition 2.5� � is alled legal if there are A;B suh that � ` A : B;� A is alled legal if there are �; B suh that � ` A : B or � ` B : A;� A is alled a �-term if there is B suh that � ` A : B or � ` B : A;� A is alled a �-type if there is n suh that � ` A : �n.We now show some PTS properties of the Nuprl type system. Omitted proofs areas in [1℄.Theorem 2.6 (Churh-Rosser Theorem for !� and !�)1. If A!!� B1 and A!!� B2 then there is C suh that B1 !!� C and B2 !!� C.2. If A!!� B1 and A!!� B2 then there is C suh that B1 !!� C and B2 !!� C.Proof: 2: any orthogonal term rewrite system (hene (T;!�)) is Churh-Rosser(see [20℄). 2Theorem 2.7 (Churh-Rosser Theorem for !��)1. If A!� B1 and A!� B2 then 9C suh that B1 !!� C, and either B2 !� Cor B2 � C;2. If A!� B1 and A!!� B2 then 9C suh that B1 !!� C, and either B2 !� Cor B2 � C;3. If A!!� B1 and A!!� B2 then 9C suh that B1 !!� C and B2 !!� C;4. !�� has the Churh-Rosser property.Proof: 1: indution on the struture of A. 2: use 1. 3: use 2. 4: use 3 andTheorem 2.6. 2Lemma 2.8 (Free Variable Lemma) Assume x1:A1; : : : ; xn:An ` B : C. Then� The x1; : : : ; xn are distint;� fv(B) [ fv(C) � fx1; : : : ; xng;� For eah i there is m suh that x1:A1; : : : ; xi�1:Ai�1 ` Ai : �m. 2Lemma 2.9 (Start Lemma) Assume � is a legal ontext. Then � ` ? : �1,� ` Z : �1, � ` n : Z for any n 2 Z, and � ` �n:�n+1 for any n � 1. Moreover,� ` x:C for all x:C 2 �. 26



Lemma 2.10 (Transitivity Lemma) Let �, � be legal ontexts suh that � ` x :C for all x:C 2 �. Then � ` A : B ) � ` A : B.Lemma 2.11 (Substitution Lemma)If �; x:A;� ` B : C and � ` D : A then �;�[x:=D℄ ` B[x:=D℄ : C[x:=D℄.Lemma 2.12 (Thinning Lemma)Let �;� be legal ontexts, � � �. � ` A : B ) � ` A : B.Lemma 2.13 (Generation Lemma)1. If � ` �n : C then C =�� �m for a m > n, and if C 6� �m then � ` C : �p forsome p � 1.2. If � ` ? : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.3. If � ` Z : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.4. If � ` n : C then C =�� Z, and if C 6� Z then � ` C : �p for some p � 1.5. If � ` x : C then there is B suh that x:B 2 �, and either B =�� C, or thereare m;n with m < n and B =�� �m, C =�� �n. If C 6� B then � ` C : �p forsome p � 1.6. If � ` (�x:A:B) : C then there is m suh that � ` A : �m, �; x:A ` B : �mand C =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.7. If � ` (�x:A:b) : C then there are m;B suh that � ` (�x:A:B) : �m, �; x:A `b : B and C =�� �x:A:B. If C 6� �x:A:B then � ` C : �p for some p � 1.8. If � ` AB : C then there are x; P;Q suh that � ` A : (�x:P:Q), � ` B : Pand either C =�� Q[x:=B℄, or there are m;n with m < n and Q[x:=B℄ =���m and C =�� �n. If C 6� Q[x:=B℄ then � ` C : �p for some p � 1.9. If � ` (A � B) : C then there is m suh that � ` A : �m, � ` B : �m andC =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.10. If � ` ha; bi : C then there are m;A;B suh that � ` (A�B) : �m, � ` a : A,� ` b : B and C =�� A�B. If C 6� A�B then � ` C : �p for some p � 1.11. If � ` �i(M) : C then there are A1; A2 suh that � `M : (A1�A2) and eitherC =�� Ai or there are m;n with m < n and Ai =�� �m and C =�� �n.Proof: Tedious but straightforward indution on the derivation � ` M : C. Weonly show two ases:(Conversion:) � `M : C beause � ` C : �p, � `M : C 0 and C =�� C 0. We treatonly the ase M � AB, the others are similar or easier. With the indutionhypothesis, determine x; P;Q suh that � ` A : (�x:P:Q), � ` B : P . IfQ[x:=B℄ =�� C 0 then also Q[x:=B℄ =�� C; if m < n suh that Q[x:=B℄ =���m and C 0 =�� �n then also C =�� �n.(�): � ` M : �k+1 beause � ` M : �k. Notie that, by the indution hypothesis,the asesM � n and M � �x:A:b are impossible. We treat the aseM � AB;the other ases are similar or easier. By the indution hypothesis, there arex; P;Q suh that � ` A : (�x:P:Q), � ` B : P . If �k =�� Q[x:=B℄ then takem = k and n = k + 1; if there are m0 < n0 suh that Q[x:=B℄ =�� �m0 and�k =�� �n0 then notie that k = n0 by the Churh-Rosser Theorem, and takem = m0 and n = k + 1. 27



Corollary 2.14 (Corretness of Types)If � ` A : B then there is n � 1 suh that � ` B : �n.Proof: Indution on � ` A : B with the help of the Generation Lemma and theSubstitution Lemma for the ases A �MN , A � �1(M) and A � �2(M). 2Theorem 2.15 (Subjet Redution)If � ` A : B and A!�� A0 then � ` A0 : B.Proof: As is usual in the literature, we use indution on � ` A : B to provesimultaneously� � ` A : B;�!� �0 ) �0 ` A : B;� � ` A : B;A!� A0 ) � ` A0 : B. 2Corollary 2.16 (!!�� preserves �-terms)If A is a �-term and A!!�� A0 then A0 is a �-term.Proof: We only prove the ase A!�� A0. If � ` A : B then by Subjet Redution,� ` A0 : B and A0 is a �-term. If � ` B : A then by orretness of types � ` A : �nfor some n and we use Subjet Redution. 2Due to (�), Uniity of Types doesn't hold for Nuprl. For example, ? : �1 and? : �2. A weak version however, is possible. This version ollapses the di�erentlevels of �'s into �1:De�nition 2.17 For eah term A we de�ne a term jAj as follows:j �m j = �1 j�x:A:Bj = �x:A:jBjjxj = x jA�Bj = jAj � jBjj?j = ? j hA;Bi j = hjAj; jBjijZj= Z j�1(M)j = �1(jM j)jMN j = jM jjN j j�2(M)j = �2(jM j)j�x:A:bj = �x:A:jbjTheorem 2.18 (Weak Uniity of Types)If � ` A : B1 and � ` A : B2 then jB1j =�� jB2j.Proof: Indution on the struture of A. We only treat A � (�x:M:N). ByLemma 2.13, 9D1, D2 with Bj =�� �x:M:Dj , and �; x:M ` N : Dj . By the in-dution hypothesis, jD1j =�� jD2j. Hene, jB1j =�� j�x:M:D1j � �x:M:jD1j =���x:M:jD2j � j�x:M:D2j =�� jB2j. 22b Orders in NuprlCorretness of Types makes the following lemma and de�nition possible:Lemma 2.19 If A is a �-term then 9 a �-term B, 9n � 1 suh that � ` A : B : �n.Proof: A is a �-term ) 9 �-term B with � ` A : B or � ` B : A. If � ` A : B,then by Corretness of Types 9n � 1 where � ` A : B : �n. If � ` B : A then againby Corretness of Types 9n � 1 where � ` A : �n and hene by Start and Thinning,� ` A : �n : �n+1. 2Note that by Corollary 2.16, if A is a �-term then for any A0 where A!!�� A0, A0is a �-term. There are also A0 =�� A where A 6!!�� A0 yet A0 is a �-term. Forexample, take A = (�x : �z : �1: �1 :xa)b and A0 = (�y : �1:by)a. For this reason,we introdue the following de�nition: 8



De�nition 2.20 (�-terms modulo A)We de�ne [A℄� = fA0jA0 is �-term and A =�� A0g.Now, we de�ne the order of a term:De�nition 2.21 (Order of a Term)Assume A is a �-term. We de�ne ord�(A), the order of A in �, as the smallestnatural number a (i.e. a � 0) for whih there are A0 2 [A℄� and B suh that� ` A0 : B : �a+1.Let us explain the intuition behind this de�nition. The order of a term A must bethe smallest natural number n suh that the type of A is of type �n+1. By (�),we get that for any m > n, the type of A is also of type �m. This aptures thenotion of orders �a la Russell. If A itself is a type and n is the order of of A, thennot only the type of A is of type �n+1, but also A !!�� A0 for some A0 of type �n(see Lemma 2.29). Moreover, �n an be regarded as the type of types of order � n(Corollary 2.30) and a term is always of a lower order than its type (Corollary 2.31).More importantly also, is the fat that a funtion an never take arguments of ahigher order than itself (Lemma 2.33).Of ourse, we want to make sure that any element =�� to A has the sameorder as A. For this reason, we de�ned order as above by �nding one A0 in [A℄�whih gives us the minimal n in question. Even better, there is suh an A0 whereA!!�� A0 rather than only A =�� A0. The following lemma shows this:Lemma 2.22 Let A be a �-term and ord�(A) = a. The following holds:1. If A0 2 [A℄� then ord�(A) = ord�(A0).2. There are A0 and B suh that � ` A0 : B : �a+1 and A!!�� A0.Proof: 1: easy. 2: by de�nition of ord�(A), 9A00 =�� A and B where � ` A00 :B : �a+1. By Churh-Rosser, A, A00 have a ommon redut, say A0. By SubjetRedution, � ` A0 : B : �a+1. 2Corollary 2.23For a �-term A in ��-normal form and ord�(A) = a, 9B where � ` A : B : �a+1.Proof: Determine, with Lemma 2.22, A0 and B suh that A!!�� A0 and � ` A0 :B : �a+1. As A is in normal form, A0 � A. 2In what follows, we prove some elementary properties of ord�(A). The �rst suhproperty states that the order of a term does not hange if the ontext is expanded:Lemma 2.24 (Orders are invariant under ontext expansion)If � ` A : B and �; x:C is legal, then ord�(A) = ord�;x:C(A).Proof: Let a = ord�;x:C(A). (�) By Thinning, � ` A0 : P ) �; x:C ` A0 : P for allA0 =�� A and P , so ord�(A) � a. (�) 9A0 =�� A and P with �; x:C ` A0 : P : �a+1.By Lemma 2.22, assume A !!�� A0. By Lemma 2.11, � ` A0[x:=C℄ : P [x:=C℄ :�a+1. As fv(A0) � fv(A) � dom(�), x 62 fv(A0). Hene A0 � A0[x:=C℄, so� ` A0 : P [x:=C℄ : �a+1 and ord�(A) � ord�;x:C(A). 2Corollary 2.25 If A is a �-term and � � � is legal then ord�(A) = ord�(A).The order of a term does not inrease under substitution:Lemma 2.26 (Substitution does not lead to order inrease)If �; x:A;� ` B : C and � ` D : A then ord�;x:A;�(B) � ord�;�[x:=D℄(B[x:=D℄).9



Proof: �0 = �; x:A;�; �00 = �;�[x:=D℄; b = ord�0(B). 9P;B0 =�� B s.t.�0 ` B0 : P : �b+1. By Lemma 2.11 �00 ` B0[x:=D℄ : P [x:=D℄ : �b+1. B[x:=D℄ =��B0[x:=D℄, so b � ord�00(B[x:=D℄). 2Note here that ord�;x:A;�(B) = ord�;�[x:=D℄(B[x:=D℄) does not hold in general:take � � y:�1. Then �; x:�2 ` x:�2 and � ` y:�2, and (by Lemma 2.32 below)ord�;x:�2(x) = 2 and ord�(x[x:=y℄) = ord�(y) = 1.2 Evaluating the order of a Nuprl termIn this subsetion, we attempt to provide a proedure that evaluates the order ofalmost any Nuprl term. We use the word almost beause we are able to say howthe order of almost all omplex terms (like A�B) is evaluated in term of the ordersof the omponents (A and B). The only ase that fails is that of an appliation.We annot evaluate the order of AB preisely in terms of the orders of A and B.Rather, in the ase of an appliation AB, we an only establish that the order ofAB is � the order of A.We begin by evaluating the order of the �rst and seond projetions:Lemma 2.27 (Order of Projetions)For a �-term hA;Bi, ord�(�1(hA;Bi)) = ord�(A) and ord�(�2(hA;Bi)) = ord�(B).Proof: This is a diret orollary of Lemma 2.22. 2The orders of onstants and sorts are easy to alulate:Lemma 2.28 (Orders of onstants and sorts) Let � be a legal ontext. Thenord�(�a) = a+ 1, ord�(?) = 1, ord�(Z) = 1, and ord�(n) = 0.Proof:� As � ` �a : �a+1 : �a+2, ord�(�a) � a+ 1. Now assume � ` A0 : P : �b for anA0 =�� �a (hene A0 !!�� �a). By repeated Subjet Redution, � ` �a : P : �b.By Generation, P =�� � for a  > a (hene P !!�� �). By repeated SubjetRedution, � ` � : �b, so again by Generation, 9d >  where �b =�� �d. Hened = b, so a <  < b, so b � a+ 2, so ord�(�a) � a+ 1.� Notie that by the Start Lemma, � ` ? : �1 : �2 so ord�(?) � 1. Nowassume � ` A0 : P : �1 for an A0 =�� ?. Notie that ? is in normal form,so A0 !!�� ? and by repeated Subjet Redution, � ` ? : P : �1. Bythe Generation Lemma, P =�� �1, and as �1 is in normal form, P !!�� �1.By repeated Subjet Redution, � ` �1 : �1, whih ontradits the fat thatord�(�1) = 2.� The proof for Z is similar to that for ?.� By the Start Lemma, � ` n : Z : �1, so ord�(n) � 0. ord�(n) < 0 is notpossible. 2The following lemma and its orollaries are not only needed for evaluating theorder of the remaining items, but they are also informative about the order of aterm. This lemma says that for any �-type B, there is always B0 of type �ord�(B)suh that B !!�� B0. It also on�rms that �a an be seen as the type of types(propositions) of order � a (Corollary 2.30) and that a term is always of a lowerorder than its type (Corollary 2.31).Lemma 2.29 (A type B redues to a type B0 of type �ord(B))Let B be a �-type and b = ord�(B). 9B0 suh that � ` B0 : �b and B !!�� B0.10



Proof: Assume � ` B : �p. By Lemma 2.22, 9B0 and P suh that � ` B0 : P : �b+1and B !!�� B0. By Weak Uniity of Types 2.18, jP j =�� j �p j, say: P =�� �q.Hene P !!�� �q.� By repeated Subjet Redution, � ` �q : �b+1 : �b+2. By Lemma 2.28, b+1 �q + 1, so b � q.� By the Conversion Rule, � ` B0 : �q : �q+1, so by de�nition of b, q � b.We �nd: q = b, so P =�� �b, so � ` B0 : �b. 2Corollary 2.30 (�a is the type of types of order � a)If P is a �-type in ��-normal form, then � ` P : �a , ord�(P ) � a.Proof: Let p = ord�(P ). \)" is by de�nition of ord�(P ); for \(", by Lemma2.29, 9P 0 where � ` P 0 : �p and P !!�� P 0. As P is in normal form, P 0 � P , so� ` P : �p. Sine p � a, repeated use of (�) derives � ` P : �a. 2Corollary 2.31 (A term is of a lower order than its type)If � ` A : B then ord�(A) < ord�(B).Proof: Let a = ord�(A), b = ord�(B). B is a type, so by Lemma 2.29, 9B0 where� ` B0 : �b and B !!�� B0. � ` A : B, so by onversion, � ` A : B0 : �b. Byde�nition of a, b � a+ 1, so b > a. 2In the above orollary, ord�(A) = ord�(B) � 1 does not hold: take � = ;, A � �1and B � �3. This is as expeted beause, by the inlusion rule (�), one A is oftype �n, it is of type �m for any m � n.So far, we an alulate the order of projetions (Lemma 2.27) and the order ofsorts and onstants (Lemma 2.28). Now, we present methods to alulate the orderof almost all the other terms:Lemma 2.32 Let C be a �-term. The following holds:1. If C � x where x:A 2 � then ord�(x) = ord�(A)� 1.2. If C � �x:A:B then ord�(�x:A:B) = max(ord�(A); ord�;x:A(B)).3. If C � �x:A:b then ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b)).4. If C � A�B or C � hA;Bi then ord�(C) = max(ord�(A); ord�(B)).Proof: 1: Let m = ord�(x). From Corollary 2.23, 9B with � ` x : B : �m+1. Asm+ 1 is minimal, ord�(B) = m+ 1. By the Generation Lemma, A =�� B. Hene,ord�(A) = m + 1. Note that the ase A =�� �n, P =�� �p with n < p does nothold as m is minimal.2: Let a = ord�(A), b = ord�;x:A(B), and p = ord�(�x:A:B). By Lemma 2.29,as �x : A:B is a �-type, 9P with � ` P : �p and �x:A:B !!�� P . P must be ofthe form �x:A1:B1, where A !!�� A1 and B !!�� B1. By Lemmas 2.29 and 2.13,9A2 and B2 suh that � ` A2 : �a, �; x:A ` B2 : �b, A !!�� A2 and B !!��B2. By Churh-Rosser, A1 and A2 have a ommon redut A3; B1 and B2 have aommon redut B3. By repeated Subjet Redution: � ` A3:�a; �; x:A ` B3:�b.As A!!�� A3 and B !!�� B3, Subjet Redution gives � ` (�x:A3:B3) : �p. Now,p = max(a; b) as follows:� By Generation 9m � p with � ` A3 : �m and �; x:A3 ` B3 : �m. By Transi-tivity, �; x:A ` B3 : �m. Hene a; b � m � p.11



� As � ` A3 : �a and �; x:A3 ` B3 : �b, so by repeated appliation of (�),� ` A3 : �max(a;b) and �; x:A3 ` B3 : �max(a;b). By (�-form), � ` (�x:A3:B3) :�max(a;b), and so p � max(a; b).3: Let a = ord�(A), m = ord�(�x:A:b), n = ord�;x:A(b). By Lemma 2.22, 9P;Qwhere � ` P : Q : �m+1 and �x:A:b !!�� P . Observe that P � �x:A0:b0 for someA0; b0 with A !!�� A0 and b !!�� b0. By the Generation Lemma, 9B suh that�; x:A0 ` b0 : B and Q =�� �x:A0:B. Now m + 1 = ord�(Q) = ord�(�x:A0:B) =ord�(�x:A:B) = max(a; ord�;x:A(B)) by 2 above. Now m = max(a� 1; n) beausem+ 1 = max(a; n+ 1) as is seen by the two ases:� m + 1 = a. By the Transitivity Lemma, �; x:A ` b0 : B. By Corollary 2.31:ord�;x:A(b0) = n < ord�;x:A(B), so m+ 1 = max(a; n+ 1).� m+1 = ord�;x:A(B) > a. 9B0, b00 with �; x:A0 ` b00 : B0 : �n+1 and b0 !!�� b00.By Transitivity, �; x:A ` b00 : B0 : �n+1. With the � and � rule: � ` (�x:A:b00) :(�x:A:B0) : �max(a;n+1). Hene, max(a; n + 1) � m + 1, and as a < m + 1,n+1 � m+1 and n � m. As �; x:A ` b0 : B, n < ord�;x:A(B) = m+1. Henen = m and m+ 1 = max(a; n+ 1).4: Case C � A�B is similar to 2. Case C � hA;Bi is similar to 3. 2As MN may be a redex, its order is harder to determine. We an, however, provethe following:Lemma 2.33 (The order of an appliation)If � `M : �x:P:Q and � ` N : P then ord�(N); ord�(MN) � ord�(M).Proof: Let m = ord�(M). 9M 0; R suh that � ` M 0 : R : �m+1 and M !!�� M 0. By Subjet Redution, � ` M 0 : �x:P:Q, so by Weak Uniity of Types,jRj =�� j�x:P:Qj � �x:P:jQj. By Churh-Rosser 9R0 suh that R !!�� R0 and�x:P:jQj !!�� jR0j. Also, R0 must be of the form �x:P 0:Q0, where P !!�� P 0 andjQj !!�� jQ0j. By Subjet Redution and Conversion, � `M 0 : (�x:P 0:Q0) : �m+1.Asm is minimal, ord�(�x:P 0:Q0) = m+1. Now, m = ord�(M) = ord�(�x:P 0:Q0)�1 = max(ord�(P 0)� 1; ord�;x:P 0(Q0)� 1) � ord�(P 0)� 1 = ord�(P )� 1 � ord�(N).By onversion, � ` N : P 0, so � ` M 0N : Q0[x:=N ℄. As MN =�� M 0N , we haveord�(MN) = ord�(M 0N) < ord�(Q0[x:=N ℄) � ord�;x:P 0(Q0) � ord�(�x:P 0:Q0) =m+ 1, so ord�(MN) � m. 2This shows that a funtion an never take an argument of higher order, and thatthe order of a term an not inrease when applying an argument to that term.3 The Rami�ed Theory of Types rttIn this setion we give a short, formal desription of Russell's Rami�ed Theoryof Types (rtt). This formalisation is both faithful to Russell's original informalpresentation and ompatible with the present formulations of type theories. Thebasi aim of rtt is to exlude the logial paradoxes from logi by eliminating allself-referenes. An extended philosophial motivation for this theory an be foundin [41℄, pages 38{55. We will not go into the full details of the formalisation of rtt(these details an be found in [22℄, the presentation by Russell himself in \Prinipia"is informal).In Subsetion 3a we introdue propositional funtions. In Subsetion 3b weassign types to some of these propositional funtions. Paradoxial propositionalfuntions are, of ourse, not typeable. 12



3a Propositional FuntionsIn this setion we shall desribe the set of propositions and propositional funtionswhih Whitehead and Russell use in \Prinipia". We give a modernised, formalde�nition whih orresponds to the desription in \Prinipia". Of ourse, the strat-i�ation notion plays a ruial role in the formulations of propositions and formulaeand this notion has been used in other modern works (e.g. [24℄). Our desriptionof Russell's notions in a modern style is the �rst of its kind and attempts to be asfaithful as possible. At the basis of the system of our formalization there is� an in�nite set A of individual-symbols and an in�nite set V of variables ;� an in�nite set R of relation-symbols together with an arity map a : R ! IN+.0-ary relations are not expliitly used in \Prinipia" but ould be added withoutproblems. Sine funtions are relations in Prinipia, we will not introdue a speialset of funtion symbols.We assume that fa1; a2; : : :g � A; fx; x1; x2; : : : ; y; y1; : : : ; z; z1; : : :g � V ; andthat fR; R1; : : : ; S; S1; : : :g � R. We will use the letters x; y; z; x1; : : : as meta-variables over V , and R;R1; : : : as meta-variables over R. Note that variables arewritten in typewriter style and that meta-variables are written in italis: x denotesone, �xed objet in V whilst x denotes an arbitrary objet of V .We assume that there is an order (e.g. alphabetial) on the olletion V , andwrite x < y if the variable x is ordered before the variable y. In partiular, weassume that x < x1 < : : : < y < y1 < : : : < z < z1 < : : :We also have the logial symbols ^, : and 8 in our alphabet, and the non-logialsymbols: parentheses and the omma. Note that Russell used lassial logi (in-tuitionisti logi did not exist in its present form when \Prinipia" appeared) andhene he didn't need to make symbols like _, !, 9 primitive.De�nition 3.1 (Propositional funtions)We de�ne a olletion F of propositional funtions , and for eah element f of F wesimultaneously de�ne the olletion fv(f) of free variables of f :1. If R 2 R and i1; : : : ; ia(R) 2 A [ V then R(i1; : : : ; ia(R)) 2 F .fv(R(i1; : : : ; ia(R))) def= fi1; : : : ; ia(R)g \ V ;2. If z 2 V , n 2 IN and k1; : : : ; kn 2 A [ V [ F , then z(k1; : : : ; kn) 2 F .fv(z(k1; : : : ; kn)) def= fz; k1; : : : ; kng \ V .If n = 0, we write z() so as to distinguish the propositional funtion z() fromthe variable z;43. If f; g 2 F then f ^ g 2 F and :f 2 F . fv(f ^ g) def= fv(f) [ fv(g);fv(:f) def= fv(f);4. If f 2 F and x 2 fv(f) then 8x[f ℄ 2 F . fv(8x[f ℄) = fv(f) n fxg.5. All propositional funtions an be onstruted by using the rules 1, 2, 3 and4 above.4A variable is not a propositional funtion. See [35℄, Chapter viii: \The variable", p.94 of the7th impression.
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We use the letters f; g; h as meta-variables over F and similar to Convention 2.2,we assume that bound variables di�er from free ones and that di�erent boundvariables have di�erent names.A propositional funtion f is a proposition in whih some parts (the free vari-ables) have been left undetermined. It will turn into a proposition as soon as weassign values to all its free variables. In this light, a proposition an be seen as adegenerated propositional funtion (with 0 free variables).It will be lear now what the intuition behind propositional funtion of the formR(i1; : : : ; ia(R)), f^g, :f and 8x[f ℄ is. The intuition behind propositional funtionsof the seond kind is not so obvious. z(k1; : : : ; kn) is a propositional funtion ofhigher order: z is a variable for a propositional funtion with n free variables; theargument list k1; : : : ; kn indiates what should be substituted5 for these free variablesas soon as one assigns suh a propositional funtion to z.Notie that there are propositional funtions of the form z(k1; : : : ; kn) (where z 2V) but that expressions of the form f(k1; : : : ; kn), where f 2 F , are not propositionalfuntions. Even substituting f for z in z(k1; : : : ; kn) does not lead to f(k1; : : : ; kn),as the notion of substitution in rtt is quite di�erent from the usual notion ofsubstitution in �rst order logi .Example 3.2 Here are some higher-order propositional funtions (pfs) from math-ematis:1. The pfs z(x) and z(y) in the de�nition of Leibniz-equality: 8z[z(x)$ z(y)℄.2. The pfs z(0), z(x) and z(y) in the formulation of omplete indution:[z(0)! (8x8y[z(x)! (S(x; y)! z(y))℄)℄! 8x[z(x)℄.3. The pf z() in the formulation of the law of the exluded middle: 8z[z() _ :z()℄.3b Rami�ed TypesNot all propositional funtions should be allowed in our language. For instane,the expression :x(x) is a perfetly legal element of F , nevertheless, it is the propo-sitional funtion that makes it possible to derive the Russell Paradox. Therefore,types are introdued.De�nition 3.3 (Rami�ed Types)The rami�ed types T are de�ned indutively as follows:1. �0 is a rami�ed type (0 is alled the order of this type);2. If t1; : : : ; tn are rami�ed types of orders a1; : : : ; an respetively, and a >max(a1; : : : ; an), then (t1; : : : ; tn)a is a rami�ed type of order a (if n = 0then take a � 1);3. All rami�ed types an be onstruted using the rules 1 and 2.�0 is the type of individuals, and (t1; : : : ; tn)a is the type of the propositional fun-tions with n free variables, say x1; : : : ; xn, suh that if we assign values k1 of typet1 to x1, . . . , kn of type tn to xn, then we obtain a proposition. The type ()a is thetype of propositions of order a.Russell stritly divides his propositional funtions in orders. For instane, both8p[p() ^ :p()℄ and R(a) are propositions, but of di�erent level: The �rst presumesa full olletion of propositions, hene it annot belong to the same olletion ofpropositions as the propositions p over whih it quanti�es (among whih R(a)). Thisled Russell to make 8p[p() ^ :p()℄ belong to a type of a higher order (level) than5In Prinipia, it is not lear how suh substitutions are arried out. One must depend onintuition and on how substitution is used in the Prinipia. It is quite hard and elaborate to givea proper de�nition of substitution. 14



the order of R(a). This an already be seen in the de�nition of rami�ed types:(t1; : : : ; tn)a an only be a type if a is stritly greater than eah of the orders of thetis.De�nition 3.4 Let x1; : : : ; xn be a list of distint variables, and t1; : : : ; tn be alist of rami�ed types. We all x1:t1; : : : ; xn:tn a ontext and all fx1; : : : ; xng itsdomain.We write � ` f : t to express that f 2 F has type t in ontext �, and extend thevariable onvention to ontexts: If x is bound in f , then x does not our in thedomain of �.We use �;� to range over ontexts and t1; t2; : : : to range over types. To avoidonfusion we sometimes write `n for derivability in the Nuprl type system, and `rfor derivability in rtt.We now present the typing rules for rtt. These rules are derived from andequivalent to the rules in [22℄, whih are as lose as possible to Russell's originalideas. We hange our notation for propositional funtions slightly: Instead of 8x[f ℄we write 8x:t[f ℄, where t is some rami�ed type.De�nition 3.5 (Typing Rules for rtt)� If  2 A, then � `  : �0 for any ontext �;� If f 2 F , and x1 < : : : < xn are the free variables of f , and t1; : : : ; tn aretypes suh that xi:ti 2 �, then � ` f : (t1; : : : ; tn)a if and only if{ If f � R(i1; : : : ; ia(R)) then ti = �0 for all i, and a = 1;{ If f � z(k1; : : : ; km) then there are u1; : : : ; um suh that z:(u1; : : : ; um)a�1 2�, and � ` ki:ui for all ki 2 A [ F , and ki:ui 2 � for all ki 2 V ;{ If f � f1 ^ f2 then there are ua11 ; ua22 suh that � ` fi : uaii and a =max(a1; a2);if f � :f 0 then � ` f 0 : (t1; : : : ; tn)a.{ If f � 8x:t0[f 0℄ then 9j where �; x:t0 ` f 0 : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a.Example 3.6 :x(x) is not typeable in any ontext �. If � ` :x(x) : t then tmust be of the form (u)a, with x:u 2 �, as :x(x) has one free variable. Hene� ` x(x) : (u)a, and by Uniity of Types below, u � (u0)a�1, with x : u0 2 �. As �is a ontext, u � u0, hene u � (u)a�1. Absurd.An important result (whose proof follows diretly from the de�nition of � ` f : t)is the following:Theorem 3.7 (Uniity of Types) If � ` f : t and � ` f : u then t � u.4 RTT in NuprlWe present a straightforward embedding of rtt in the type theory of Nuprl writtenas a PTS (Setion 2). The embedding will onsist of two parts: First we give arepresentation of the rami�ed types in Nuprl (Subsetion 4a), then we representthe typable propositional funtions in Nuprl (Subsetion 4b).
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4a Rami�ed Types in NuprlThe main lue to our embedding is the interpretation of �n as the sort ontaining allorder-n-propositions. There is a small di�erene in that Nuprl onsiders any termof type �n to be of type �n+1 as well. This means that any proposition of order nan be interpreted as a proposition of order n + 1 as well. This inlusion is not afeature of rtt; yet it isn't a serious extension.Another small point is that Russell doesn't speify his underlying set of \indi-viduals" and that we want to use Z as translation of this underlying set. Therefore,we will assume that the set A of rtt-individuals is equal to the set Z of integers.Reall that, when x 62 fv(B), we write �x : A:B as A! B.De�nition 4.1 De�ne a mapping T : T ! T as follows:T (�0) def= Z and T ((ta11 ; : : : ; tann )a) def= T (ta11 )! : : : T (tann )! �aNote that T (()a) = �a and T does indeed interpret the type of order-a-propositionsas �a. Moreover, translations of rami�ed types are typable in Nuprl:Lemma 4.2 If ta is a rami�ed type of order a then `n T (ta) : �a+1.Proof: Indution on the onstrution of rami�ed types. 2When we speak of a rami�ed type ta of order a, we atually mean that the termsthat are of type ta have order a. T (ta) itself should, therefore, have order a+ 1 inNuprl. Indeed, we an prove:Lemma 4.3 If � is a legal ontext then ord�(T (ta)) = a+ 1.Proof: Indution on rami�ed types. T (�0) = Z and ord�(Z) = 1 by Lemma 2.28.Now assume ord�(T (taii )) = ai + 1 for i = 1; : : : ; n. Notie thatord�(T ((ta11 ; : : : ; tann )a)) = ord�(T (ta11 )! : : :! T (tann )! �a)2.32= max(ord�(T (ta11 )); : : : ; ord�(T (tann )); ord�(�a))2.28, IH= max(a1 + 1; : : : ; an + 1; a+ 1) a > ai= a+ 124b Propositional Funtions of rtt in NuprlWe extend the mapping T of De�nition 4.1 so that a propositional funtion with freevariables x1 < : : : < xn will be translated into a �-term of the form �x1:t1 � � �xn:tn:A,where A itself is not of the form �x:t:A0. For notational onveniene, T is extendedto A and V as well.De�nition 4.4 Let � be a rtt-ontext. We extend T to the sets A, V and F .If i 2 A [ V then T (i) def= i. Now let f 2 F and assume f has free variablesx1 < : : : < xn, suh that xi:ti 2 �.� If f = R(i1; : : : ; ia(R)) then T (f) def= �x1:T (t1) � � �xn:T (tn):Ri1 � � � ia(R)� If f = z(k1; : : : ; km) then T (f) def= �x1:T (t1) � � �xn:T (tn):zT (k1) � � �T (km);� If f = g1 ^ g2, and gi has free variables yi1 < : : : < yimi , then T (gi) ��yi1:ui1 � � � yimi :uimi :Gi for some term Gi.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G1 �G2.16



� If f = :g, then T (g) � �x1:T (t1) � � �xn:T (tn):G for some term G.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G! ?.� If f = 8x:t:g thenT (g) � �x1:T (t1) � � �xi:T (ti):x:T (t):xi+1:T (ti+1) � � �xn:T (tn):Gfor some term G. Let T (f) def= �x1:T (t1) � � �xn:T (tn):�x:T (t):G.The extension of T as de�ned above also depends on the ontext �. Normally itwill be lear whih ontext � is meant. If onfusion arises, we write T� to indiatethe ontext in question.It is important to notie that, for propositions f , T (f) is exatly the interpre-tation of f provided by the Curry-Howard-de Bruijn isomorphism.Finally, we de�ne a speial Nuprl-ontext �0 whih ontains information on therelation and individual symbols of rtt by: �0 def= fR : a(R) times Zz }| {Z! : : :! Z! �1 j R 2 Rg.We assume R to be �nite for the moment, so that �0 is �nite as well, andtherefore is a Nuprl-ontext. �0 is legal, as we have `n Z! : : :! Z! �1 : �2.The following theorem states that the embedding T respets the type strutureof rtt. This means that we an see Nuprl as an extension of the Rami�ed Theoryof Types.Theorem 4.5 (Nuprl extends rtt) If � `r f : t then �0 `n T (f) : T (t).Proof: Indution on the de�nition of � `r f : t. If � `  : �0 beause  2 Z then:Z 2 �0, so �0 `  : Z. Now assume f 2 F , f has free variables x1 < : : : < xn,and t1; : : : ; tn where xi:ti 2 � for i = 1; : : : ; n, and � `r f : (t1; : : : ; tn)a. ByLemma 4.2, `n T (ti) : �ai for some ai. Hene, by the Start and Weakening rules,we add xi:T (ti) one by one to the ontext �0, obtaining a legal ontext �1 =�0; x1:T (t1); : : : ; xn:T (tn). We only treat the ase f = 8x:t0[g℄:If f = 8x:t0[g℄ then 9j suh that �; x:t0 `r g : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a. Bythe indution hypothesis, �0 ` T (g) : T (t1) ! � � � ! T (tj�1) ! T (t0) ! T (tj) !� � � ! T (tn)! �a. By the Generation Lemma,�0; x1:T (t1); : : : ; xj�1:T (tj�1); x:T (t0); xj :T (tj); : : : ; xn:T (tn) `n G : �a where g ��x1 � � �xj�1xxj � � �xn:G. As the types of the variables in the ontext are indepen-dent from eah other, we also have �1; x:T (t0) `n G : �a. As the order of typet0 is smaller than a, we have �1 `n T (t0) : �a (Lemma 4.2), so by (�-form):�1 `n �x:T (t0):G : �a. By �-abstrating over all the variables in fv(f) we obtain�0 `n T (f) : T (t). 2It would be nie if we ould also prove a kind of opposite of Theorem 4.5. However,the statement \If �0 `n T (f) : T (t) then there is a ontext � suh that � `r f : t"is not true. We an derive �0 `n T (8x:�0[R(x)℄) : �n for any n � 1. Nevertheless,we have � `r 8x:�0[R(x)℄ : ()1 for all rtt-ontexts �, so by Uniity of Types 3.7it is impossible that � `r 8x:�0[R(x)℄ : ()n for any n > 1. It is lear that thisdi�erene between rtt and Nuprl is aused by the type inlusion rule �, whih isonly present in Nuprl, and not in rtt. We do have a partial result, however:Lemma 4.6 If � `r f : (ta11 ; : : : ; tann )a and x1 < : : : < xn are the free variables off , then ord�0(T (8x1:ta11 : � � � 8xn:tann [f ℄)) = a.Proof: Indution on the de�nition of � `r f : (ta11 ; : : : ; tann )a. Note that xi:taii 2 �for all i, and � `r 8x1:ta11 � � � 8xn:tann [f ℄ : ()a. Let �i � �0; x1:T (ta11 ); : : : ; xi:T (taii ).We only treat the ase f � z(k1; : : : ; km); the other ases are similar. z 2 fv(f),17



say: z � xp. As xp:tapp 2 �, ap = a�1. Hene ord�n(z) = ord�n(T (tapp ))�1 = a�1.By 2.33, ord�n(zT (k1) � � �T (km)) � a� 1. Heneord�0(T (8x1:ta11 � � � 8xn:tann [f ℄)) =ord�0(�x1:T (ta11 ): � � ��xn:T (tann ):zT (k1) � � �T (km)) =max(ord�n(zT (k1) � � �T (km));maxi�n(ord�i(T (taii ))) =max(ord�n(zT (k1) � � �T (km));maxi�n(ai + 1)) = ap + 1 = a 2Corollary 4.7 If � `r f : ()a then ord�0(T (f)) = a.4 Logi in rtt and NuprlIn the paper so far, our main onern has been the type theory of both rtt andNuprl rather then logial derivations. We have related the typing systems in bothrtt and Nuprl and not their logis. In this setion, we will move into the logialaspets of rtt and Nuprl and see how they an be onneted.This setion parallels the work of Laan in [23℄ where rtt's logi was interpretedin �rtt, a Pure Type System whose derivation rules onsist of a subset of thoseof De�nition 2.4 (basially, the x-form, Pairs, Left and Right rules are eliminatedfrom �rtt whih does not have produt and projetions in its syntax).The main observation here is that, Russell and Whitehead designed their systemfor lassial logi whereas Nuprl is based on intuitionisti logi. Hene, we need tosupply extra logial axioms to Nuprl in order to interpret the lassial logi ofRussell and Whitehead. Moreover, Rtt is onstruted with the logial onnetives^ (or _), :, 8, while Nuprl is strongly based on the interpretation of ! and 8as funtion types (via Curry-Howard-de Bruijn isomorphism). For this reason,Nuprl's formulation as a PTS must be extended as follows in order to deal withrtt's lassial logi:� The :-introdution rule of natural dedution systems is already inorporatedin the translation of :A to A ! ?. If we have a proof T of ? under theassumption that x is a proof of A, then �x:A:T is a proof of A! ?;� For the rule \ex falso sequitur quodlibet" the type system of Nuprl doesnot provide a natural equivalent (also Martin-L�of's type theory does in theelimination rule of N0). We therefore introdue to Nuprl an axiomExFalson : �f:�n:�p:?:ffor eah n 2 IN+. We will store these axioms in some basi ontext �0.We remark that the type �f: �n :�p:?:f is indeed a type in Nuprl. It isstraightforward to derive that it is a type of sort �n+1.We also remark that it is neessary to introdue separate axioms ExFalso1,ExFalso2; : : :. If we want to onlude the proposition f using the ExFalso-axiom, we must provide the type of f , and in that type the order of f isalso mentioned. This is a usual thing in rami�ed type systems, and suhonstrutions our also in Prinipia (f. [41℄, pp. 41{43);� Rtt is based on lassial logi, and Nuprl on intuitionisti logi. Therefore wemust add a \lassial" axiom. We prefer to add the \law of double negation",and introdue axiomsDblNegn : �f:�n:�p:(f!?)!?:f:It is easy to show that the type of this axiom is of sort �n+1. We store theaxioms DblNegn in the same ontext �0.18



Those reommended additions to Nuprl are exatly the additions made to �rttin [23℄ in order to interpret rtt in �rtt. Following [23℄, one an show that thelassial logi of rtt an be interpreted in Nuprl with the axioms ExFalson andDblNegn.5 ConlusionsIn this paper we fous on Nuprl and desribe a fragment of it as a Pure TypeSystem �N. A type universe Un (n � 1) of Nuprl ontains ertain basis types, andis losed under the onstrution of dependent produt types and Cartesian produts.Moreover, Un is an element of Un+1 , and all types in Un also belong to Un+1 . Werepresent the type universe Un by the PTS sort �n. Closure under the onstrutionof dependent produts is given by rule (�n; �n), and the fat that Un is element ofUn+1 is represented by the PTS axiom �n : �n+1. We extend this PTS as follows:� For Cartesian produts, we introdue the rule � ` A1 : �n � ` A2 : �n� ` A1 �A2 : �nCanonial inhabitants of A1�A2 are terms of the form ha1; a2i, where ai : Ai.� We also introdue the projetion funtions �i: � ` a : A1 �A2� ` �i(a) : Aitogether with a redution relation generated by the axiom �i(ha1; a2i)!� ai.� As Un � Un+1 , we introdue an inlusion rule (�): � ` A : �n� ` A : �n+1A type universe Un in Nuprl is losed under the onstrution of dependent Cartesianproduts, but as we do not need dependent Cartesian produts in the paper, we donot introdue them.The system �N thus obtained has many properties of usual PTSs, like Churh-Rosser (for !��), Subjet Redution and Corretness of Types. With rule (�), welose Uniity of Types, but we an prove a weakened version of it.Let � be a ontext for �N. Due to orretness of types, for eah �-type A thereis n � 1 suh that � ` A : �n. (ompare this to Nuprl: eah type in Nuprl belongsto some type universe Un ). We all the smallest n for whih � ` A : �n the orderof A (in �), notation ord�(A). We generalize this de�nition to arbitrary �-terms A:ord�(A) is the minimal n for whih there is B suh that � ` A : B : �n. We provesome elementary properties of ord�(A):� ord�(A) = ord�(A) if � is legal and � � �;� ord�(�n) = n+ 1;� If � ` A : B then ord�(A) < ord�(B);� If x:A 2 � then ord�(x) = ord�(A)� 1;� ord�(�x:A:B) = max(ord�(A); ord�;x:A(B));� ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b));� ord�(hA1; A2i) = ord�(A1 �A2) = max(ord�(A1); ord�(A2)).We show that the orders in �N (and thus the type universes in Nuprl) are losely re-lated to orders in rtt by looking at translations of rtt propositions to �N types viaa propositions-as-types embedding T : We prove that if f is an order-n propositionin rtt, then ord�0(T (f)) = n. Here, �0 is some basi ontext that ontains onlysome type information of the relation symbols that are used in rtt. We onludethat our formulation of Nuprl as a PTS is faithful to the idea behind universes inMartin-L�of's type theory and our de�nition of order on Nuprl terms aptures thehierarhy of universes in Nuprl and provides an elegant omparison between Nuprland rtt. As a bonus, we get a desription of rtt in a propositions-as-types stylein whih the notion of order is maintained.19



There are more similarities between rtt and Nuprl. Both Nuprl and rtt havea kind of higher order substitution (see Chapter 5 of [18℄ and Setion 3 of [22℄). Weare urrently investigating the similarities between both notions of substitution.Now we stop to explain the philosophy of our approah and the novelty of whatwe have provided. We also disuss future researh that might be sparked by ourpaper.At the beginning of this entury, the paradoxes led to many new formulationsof logial systems and an amazing variety of ideas and approahes. Later on, someof these ideas were abandoned when they shouldn't have been. Even more, someof the ideas proposed were found later to ontribute nothing to the solution of theparadoxes. For example, even though ZF set theory uses the foundation axiom, itis quite lear now that it is the separation rather than the foundation axiom whihwas responsible for the avoidane of the paradoxes.Our standpoint in this paper is not to defend one line against another. Rather,we aim to larify the di�erent notions and philosophies assumed in the foundationof logi. In this paper, our hosen notion is that of Russell's orders as found inthe famous Rami�ed Theory of Types rtt. Russell, whose ontribution to modernlogi is historial, avoided the paradox (that he himself disovered) by adoptingtwo layers: types and orders. Later it was found that orders ontributed nothingto the avoidane of the paradox and Ramsey's work led to the abandonment ofRussell's orders. It is not lear to us whether Russell did atually know that ordersdo not ontribute to the avoidane of the paradox. We believe however that hisintuition of using orders (as well as types) is a solid one and we have seen thisintuition being repeated in many prediative styles logis. In [19℄, we show thatRussell's orders ome bak in Kripke's aount of levels of truths. In this paper, weshow that Russell's orders are present in Martin-L�of's type theory and the proofheker Nuprl. Of ourse the word \orders" is not used by Kripke, Martin-L�of andConstable. Our study however shows that formally representing (with orders) theinformal hierarhies of these systems is informative about these hierarhies, aboutthe systems themselves and about the philosophies behind them.Not only does our paper o�er a fresh look at the \order" onept, and showits usefulness for explaining basi hierarhies and philosophies in modern systems,but also, our paper plaes the historial system underlying Prinipia Mathematiain a ontext with a modern system of omputer mathematis (Nuprl) and moderntype theories (Martin-L�of's type theory and PTSs). Our main results onerningthe relationship between these various systems an be summarised as follows (wetake `r (resp. `n) to stand for type derivation in rtt (resp. in Nuprl), and assumea translation T from types and funtions in rtt into Nuprl; also �0 is a basiNuprl-ontext whih ontains information on the relation and individual symbolsof rtt):1. The system (underlying) Nuprl an be seen as a simple extension of a PTS.2. rtt an be embedded in Nuprl.3. Hene rtt an be regarded as a PTS.4. Nuprl extends rtt in the sense that if � `r f : t then �0 `n T (f) : T (t).A number of questions on extending these results remain open. These questions areas follows:1. Sine Martin-L�of's type theory, Nuprl and rtt have as aim to be a foundationof mathematis, one should have an interpretation of the most basi systemsof logi: prediate logi (Pred) in rtt. This would be nie and the advantagesof relating rtt, PTSs and Nuprl would arry over to Pred as well. Moreover,one would get the following piture: Pred < rtt < Nuprl < PTSs.20



2. We have shown that Nuprl extends rtt (see 4 above). It would be nie toanswer the question whether Nuprl is a onservative extension of rtt.Questions 1 and 2 are very interesting and must be the subjet of future researh.We have thought about them and up to this stage, no lear answer has been found.Question 1 auses diÆulties preisely beause Russell's notion of substitution isdi�erent from substitution as is used in modern logi and type theory. We haveome a long way at formalising in modern style Russell's ideas and theory. Thereis still work to be done in this �eld and we believe that this work might prove veryuseful to modern omputer siene.Question 2 has been partially attempted in the paper. We have said that theonverse of Theorem 4.5 does not hold. We have given as a reason for this theinlusion rule (�) whih is only present in Nuprl and not in rtt. As shown in thepaper, rtt enjoys the uniity of types property whereas Nuprl does not. Here weexplain intuitively this problem aused by the di�erene between Nuprl and rttand give our opinion of how future diretions in establishing a form of onservativitymust be followed.We know from the fat that Nuprl extends rtt that � `r f : t then �0 `nT (f) : T (t). Now, let us take this example:� `r 8x:�0[R(x)℄ : ()1 )�0 `n T (8x:�0[R(x)℄) : �1 )(�)�0 `n T (8x:�0[R(x)℄) : �n � T (()n) for any n � 1 6)uniity of types in rtt� `r 8x:�0[R(x)℄ : ()n for any n > 1.This means that we annot go bak from Nuprl to rtt.We an however do something about that. The idea is to establish the order ofthe Nuprl term A and to only go in the opposite diretion of Theorem 4.5 whenthe type of A is �a and a is the order of A. Hene in our example above, as 1 isthe order of T (8x:�0[R(x)℄), we an only go bak with �0 `n T (8x:�0[R(x)℄) : �1obtaining the valid typing � `r 8x:�0[R(x)℄ : ()1.We have provided a partial result related to this question (given by Lemma 4.6and Corollary 4.7) whih says that for any Russell typable propositional funtionf of order a, we an establish that its Nuprl order is also a and hene when wetry and mimik the Nuprl typing in rtt, we should only restrit ourselves to doingthis when the Nuprl type is �a and a is the order of the Nuprl term avoiding theinlusion rule as muh as possible. This is already a powerful result. Of ourse, itremains that we fully work out a translation from Nuprl to rtt and show in whatway it an be said that rtt extends Nuprl. This will involve a huge tehnialityonerning rtt's substitution and free variables. It is left as a subjet for futureresearh.Referenes[1℄ H.P. Barendregt. Lambda aluli with types. In S. Abramsky, Dov Gabbay,and T.S.E. Maibaum, editors, Handbook of Logi in Computer Siene 2: Bak-ground: Computational Strutures, 117{309. Oxford University Press, 1992.[2℄ G. Barthe, M.H. Sorensen. Domain-free pure type systems. Logial Foundationsof Computer Siene, (Yaroslavl), Leture Notes in Computer Siene, 1234,9{20, Springer, Berlin, 1997.[3℄ A. Churh. A formulation of the simple theory of types. The Journal ofSymboli Logi, 5:56{68, 1940.[4℄ A. Churh. Caluli of Lambda Conversion. Annals of Mathematial Studies 6,prineton University Press, Prineton, 1941.21
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