
A Corresponden
e between Martin-L�of TypeTheory, the Rami�ed Theory of Types and PureType Systems �Fairouz Kamareddine Twan LaanHeriot-Watt UniversityComputing and Ele
tri
al Eng.Ri

arton, EdinburghEH14 4AS, S
otlandFax: +44 131 451 3327fairouz�
ee.hw.a
.uk
Mathemati
s and Computing S
.Eindhoven University of Te
hnologyP.O.Box 5135600 MB EindhovenThe NetherlandsFAX: +31 40 2463992laan�win.tue.nlAbstra
tIn Russell's Rami�ed Theory of Types rtt, two hierar
hi
al
on
epts dom-inate: orders and types. The use of orders has as a
onsequen
e that the logi
part of rtt is predi
ative. The
on
ept of order however, is almost deadsin
e Ramsey eliminated it from rtt. This is why we �nd Chur
h's simpletheory of types (whi
h uses the type
on
ept without the order one) at thebottom of the Barendregt Cube rather than rtt. Despite the disappearan
eof orders whi
h have a strong
orrelation with predi
ativity, predi
ative logi
still plays an in
uential role in Computer S
ien
e. An important example isthe proof
he
ker Nuprl, whi
h is based on Martin-L�of's Type Theory whi
huses type universes. Those type universes, and also degrees of expressions inAutomath, are
losely related to orders. In this paper, we show that ordershave not disappeared from modern logi
 and
omputer s
ien
e, rather, ordersplay a
ru
ial role in understanding the hierar
hy of modern systems. In orderto a
hieve our goal, we
on
entrate on a subsystem of Nuprl.The novelty of our paper lies in: 1) a modest revival of Russell's orders,12) the pla
ing of the histori
al system rtt underlying the famous Prin
ipiaMathemati
a in a
ontext with a modern system of
omputer mathemati
s(Nuprl) and modern type theories (Martin-L�of's type theory and PTSs), and3) the presentation of a
omplex type system (Nuprl) as a simple and
ompa
tPTS.1 Introdu
tionThe Rami�ed Theory of Types (rtt) was developed by Bertrand Russell [36, 41℄ inorder to solve the paradoxes that resulted from Frege's \Grundgesetze der Arith-metik" [11℄. It has a double hierar
hy: one of types (whi
h
an be seen as an�Following Kluwer's regulations, we in
lude the following statement: This paper has not beensubmitted elsewhere in identi
al or similar form. This work is supported by EPSRC grantsGR/L36963 and GR/L15685. The authors are grateful for Peter Han
o
k and the anonymousreferees for useful
omments.1The role of orders in modern style type theory has been well understood in the proof-theory
ommunity, but this paper looks at orders in an expli
it and fresh sense. A
al
ulus of orders isprovided and used to reason about
lassi�
ations of obje
ts and fun
tions in Nuprl1

elementary version of Chur
h's well-known Simple2 Theory of Types [3℄) and oneof orders, whi
h
an be
ompared with Kripke's Hierar
hy of Truths, see [21, 19℄.Although Chur
h followed Ramsey's simpli�
ation in [34℄ of rtt into the SimpleTheory of Types, he still attempted to explain orders in his book [4℄ and later on (aslate as 1976) in [5℄. Nevertheless, the hierar
hy of orders remains less known thanthe hierar
hy of types, as it be
ame unpopular when Ramsey [34℄ and Hilbert andA
kermann [15℄ showed that one
an avoid the paradoxes without this hierar
hy.Furthermore, even though it be
ame widely a
knowledged that the paradoxes
an beavoided without the use of orders, we believe that many logi
ians are (maybe un
on-s
iously) in
uen
ed by the hierar
hy of orders when
onstru
ting (non-paradoxi
al)theories. Moreover, orders
an elegantly explain some useful hierar
hies. As anexample, when Kripke wanted to build a logi
al theory [21℄ whi
h has its own truthpredi
ate (something not straightforward a

ording to Tarski's hierar
hy of truths[40℄, in whi
h the truth predi
ate is not de�nable), he used a hierar
hy of languageswhi
h
ould elegantly be explained via the notion of orders as is shown in [19℄. Sim-ilarly, when Martin-L�of's impredi
ative type theory was shown to su�er from theparadox, he moved to the predi
ative version in [26℄ and has sin
e, built layers ofuniverses that again
ould be elegantly explained by orders (see for example, page84 of [26℄). Also, [31℄ provides a treatment of trans�nite orders as universes, [25℄dis
usses predi
ative universes in the Cal
ulus of Constru
tions [7℄, [8℄ introdu
esthe \generalised" Cal
ulus of Constru
tions CC! whi
h in
ludes a
umulative hi-erar
hy of universes, [13℄ studies type
he
king and well-typedness in CC! and inan extended version of it with an anonymous universe Type whi
h is intended tomodel Russell and Whitehead's typi
al ambiguity
onvention, and [37℄ uses ordersin proof theory. Moreover, orders are
losely related to the degree of expressionnotion of Automath [30℄ where de Bruijn's notion of degree satis�es in the Au-tomath systems the property that: if E : F then degree(E) = degree(F) + 1. DeBruijn always assumed that degrees are �nite and although he usually only hadthree degrees (1, 2 and 3), other �nite degrees were possible in di�erent systems ofAutomath. That is, although in standard formulations of Automath, de Bruijnassumed the degrees 1, 2 and 3 and took 1 to be the degree of type, 2 to be thedegree of inhabitants of type and 3 to be the degree of inhabitants of inhabitantsof type, in various other systems of Automath, other degrees were allowed. Forexample, in AUT-4, 4 degrees are permitted: the degrees 3, 2 and 1 are for ele-ments, sets and the
lass of sets, but degrees 4, 3 and 2 are for proofs, theorems,and the
lass of propositions. Also, in AUT-SL, terms of any (�nite) degrees arepossible.Logi
 based on the double hierar
hy of orders and types is usually
alled pred-i
ative. The di�eren
e between predi
ative and impredi
ative logi
 may seem small,nevertheless, this small di�eren
e
an have some drasti

onsequen
es in fundamen-tal mathemati
s. When
onstru
ting the real numbers out of the rationals (withDedekind-
uts), the Theorem of the Least Upper Bound3, is not provable in pred-i
ative logi
 (see [39℄). The Theorem of the Least Upper Bound is, however, oneof the most fundamental theorems in real analysis as is illustrated in the work ofFeferman (see for instan
e [10℄).Many modern type systems are impredi
ative. For instan
e, the systems of theBarendregt
ube [1℄ that have the rule \(2; �)" are all impredi
ative. Hen
e, a proof
he
ker like Coq [9℄, based on the Cal
ulus of Constru
tions [7℄, is itself founded onimpredi
ative logi
.Nevertheless, mathemati
s with predi
ative logi
 is possible, and from a
on-2It should be noted here that the notion of simple types
an be found in the work of Frege asis explained for example, in the work of Quine [33℄.3This Theorem states that any non-empty set of real numbers with an upper bound has a leastupper bound. 2

stru
tive point of view it is even attra
tive. For instan
e, the proof
he
ker Nuprl[6, 18℄ is based on predi
ative logi
 yet many mathemati
al theories
an be de-veloped using this proof
he
ker (see [17℄). Of
ourse, we are not
laiming thatthe motivation of Nuprl and Martin-L�of's type theory for predi
ativity
ome frommathemati
s or
omputer s
ien
e. As we said above, there are parts of mathemati
sthat need impredi
ativity, and this explains why for example, Chet Murthy in [29℄provided an impredi
ative extension of Nuprl and why other resear
h in theoreti-
al
omputer s
ien
e (e.g. the work on the ��-
al
ulus [32℄) identi�es the need for
lassi
al rather than
onstru
tive logi
s. Nevertheless, we are
on
erned here withMartin-L�of's type theory and Nuprl, and not their impredi
ative extensions.Nuprl's type theory is related to type theories proposed by Martin-L�of [27, 28℄,used as a foundation for
onstru
tive mathemati
s. Nuprl's logi
 is related to itstype theory via the well-known propositions-as-types embedding, also known as theCurry-Howard-de Bruijn isomorphism (see [16℄). It is
onstru
tive on two points:it is based on intuitionisti
 logi
 (as is the Curry-Howard-de Bruijn isomorphism)and it is based on predi
ative logi
.In this paper, we will try to establish the relation between predi
ative logi
 aspresent in modern type theory (we
on
entrate on a subsystem of Nuprl be
auseMartin-L�of's type theory is one of the ri
hest and most expressive predi
ative typetheories) and Russell's Rami�ed Type Theory rtt. This has many advantages.The most important advantage is the formulation of the informal notion of universehierar
hy in these modern predi
ative logi
s using Russell's notion of order. Thereare however many important bonuses that result from our study:1. We give the �rst presentation of a subsystem of the proof
he
ker Nuprl as aPTS. In Se
tion 2 we give a formal des
ription of a part of the type systemof Nuprl as a Pure Type System (PTS) [38℄. The systems of the Barendregt
ube are examples of PTSs. Nuprl in PTS style enables us to formalize the
on
ept of order in Nuprl and to show its
orre
tness. This order
lassi�estypes and terms of Nuprl into their relevant hierar
hy.2. We give a formal presentation of rtt. Su
h a formal presentation is not givenin \Prin
ipia" [41℄. In Se
tion 3 we present a simpli�ed formalization of rtt,whi
h is based on a more extensive formalization given in [22℄.3. We give the �rst a

ount of embedding rtt in a relevant modern type theory.This is done in Se
tion 4, where we present an embedding of rtt in Nuprl'stype system. Note that this is very di�erent from [13℄ whi
h did not give apresentation of rtt, but instead, extended CC! with an anonymous universeType and intended this extension to model Russell and Whitehead's typi
alambiguity
onvention.4. Our study is the �rst to
onne
t rtt to the modern way of writing type theoryas a PTS. As we present a subsystem of Nuprl within the framework of PTSsin Se
tion 2, and as we present an embedding of rtt in Nuprl's type system inSe
tion 4, we also obtain a des
ription of rtt in PTS-style. The same remarkwe gave above
on
erning [13℄ applies here.5. Our study shows that orders in the histori
al system rtt
orrespond to or-ders in a very powerful modern system Nuprl. Our study of orders is di�erentfrom the approa
h of [13℄ whose main
on
erns were type
he
king and well-typedness in Coquand's CC!, extending CC! with anonymous universes tomodel Russell and Whitehead's typi
al ambiguity
onvention, and with de�-nitions. [13℄ is another example that orders and universes play an in
uentialrole in powerful modern systems. 3

6. Finally, our paper pla
es the histori
al system underlying Prin
ipia Mathe-mati
a in a
ontext with a modern system of
omputer mathemati
s (Nuprl)and modern type theories (Martin-L�of's type theory and Pure Type Systems).2 The Nuprl type system and Martin-L�of's typetheoryMartin-L�of's type theory [26℄ was originally developed as a foundation of
onstru
-tive mathemati
s. The basi
 idea is the interpretation of logi
 within type the-ory through the Curry-Howard-de Bruijn isomorphism where (roughly speaking),a proposition is interpreted as a set whose elements represent the proofs of theproposition. Hen
e, a false proposition is interpreted as the empty set and a trueproposition is interpreted as a non-empty set. In order to prove that a propositionis true, we need to show that the proposition is inhabited.This idea has proved extremely attra
tive from the
omputational point of viewand has been exploited in many theorem provers (e.g., Nuprl and Coq). This ideawas already exploited in de Bruijn's Automath whi
h played an in
uential rolein both provers Coq and Nuprl. In this paper, we
on
entrate on a subsystem ofNuprl.2a A fragment of Nuprl in PTS-styleWe give a des
ription of a part of the type system on whi
h Nuprl is based (see[17, 6℄). We do not give a full presentation of all of Nuprl's type
onstru
tors, as wewill only need parts of it. The des
ription of the typing rules is given in a naturaldedu
tion style similar to that used in the Barendregt Cube [1℄, and Pure TypeSystems [38℄.Below we assume V to be a set of variables, Z to be the set of integers, andS= f�1; �2; : : :g a set of sorts. The intuition behind the sort �a is that it representsthe propositions (and, more general, the types) of order � a. �a
orresponds to theUniverse of Types Ua in [17, 27℄. ? represents the unde�ned or a
ontradi
tion.Appli
ation and abstra
tion (� and �) are familiar from PTSs. The remainingnotions represent Cartesian produ
ts, pairing, and �rst and se
ond proje
tions.De�nition 2.1 (Terms) The set of terms T is de�ned by the following abstra
tsyntax:T ::= S j V j ? j Z j TT j �V:T:T j �V:T:T j T � T j hT;Ti j �1(T) j �2(T)We let �; �; x; y; z; : : : range over V; m;n; : : : over Z and A;B;M;N; a; b over T.When x does not o

ur free in B, we write A ! B for �x:A:B. Free and boundvariables are de�ned as usual. fv(A) and bv(A) denote the set of free and boundvariables of A. A[x:=B℄ denotes the term in whi
h all the free o

urren
es of x inA have been repla
ed by B. Synta
ti
 equality of terms is taken modulo renamingof bound variables. This allows us to assume the following:Convention 2.2 (Barendregt's Convention) Names of bound variables di�erfrom the free ones in a term. Moreover, we use di�erent bound names for di�erentbound variables.We take the axioms:(!�) : (�x:T:A)B !� A[x:=B℄(!�) : �1(hA;Bi)!� A and �2(hA;Bi)!� B.We de�ne the redu
tion relations!� and!� generated by the above two axiomsrespe
tively (with the usual
ompatibility rules of
ourse). !!� and !!� are the4

re
exive transitive
losures of !� and !� . We de�ne moreover !�� and !!��in the obvious way and take =�� to be the symmetri

losure of !!��. We de�ne
ontexts and some related properties:De�nition 2.3 (Contexts) A
ontext is a �nite list x1:A1; : : : ; xn:An of de
lara-tions xi:Ai. fx1; : : : ; xng is
alled the domain of the
ontext. If �;� are
ontextsthen we write � � � if all de
larations in � are also in �. We let �;� range over
ontexts.De�nition 2.4 (Derivable statements) A statement � ` A : B is derivable if it
an be dedu
ed by repeated appli
ation of the rules below:(Axioms) ` ? : �1 ` �n : �n+1 (n 2 IN)` Z : �1 ` n : Z (n 2 Z)(Start) � ` A : �n�; x:A ` x:A (x is �-fresh)(Weak) � `M : N � ` A : �n�; x:A `M : N (x is �-fresh)(�-form) � ` A : �n �; x:A ` B : �n� ` (�x:A:B) : �n(�) �; x:A ` b : B � ` (�x:A:B) : �n� ` (�x:A:b) : (�x:A:B)(App) � `M : (�x:A:B) � ` N : A� `MN : B[x:=N ℄(�-form) � ` A : �n � ` B : �n� ` (A�B) : �n(Pairs) � ` a : A � ` b : B � ` (A�B) : �m� ` ha; bi : (A�B)(Left) � `M : (A�B)� ` �1(M) : A(Right) � `M : (A�B)� ` �2(M) : B(Conv) � `M : A � ` B : �n A =�� B� `M : B(�) � ` A : �n� ` A : �n+1To those familiar with PTSs and/or Nuprl, the above rules are straightforward.Some remarks are due however:1. The rule (�-form) may look restri
tive. This is not the
ase however due to thein
lusion rule (�). In fa
t, (�) simpli�es the formulation without sa
rify
ingexpressivity.2. A type universe Un of Nuprl is
losed under the
onstru
tion of dependentCartesian produ
ts. We use non-dependent Cartesian produ
ts (�-form) .We refrain from introdu
ing dependent Cartesian produ
ts for two reasons:they are not needed for the purpose of the paper and they involve many
ompli
ations that will obs
ure our main obje
tives.3. The in
lusion rule (�) is interesting on its own. We will see below that itleads to the loss of uni
ity of types. However, uni
ity of types is valued inmany PTSs but not in Nuprl or Martin-L�of's type theory. We will in any
ase derive a version of uni
ity of types that is faithful to this idea of a term5

having many types in Nuprl. That is, we will derive that if we
ollapse theorders, then a term will have only one type.4. Nuprl itself is impli
itly rather than expli
itly typed. That is, Nuprl usesterms of the form �x:B rather than �x:A:B. There is a huge literature inprogramming language theory and design whi
h dis
usses the tradeo�s be-tween both styles. Our reason for the expli
itly typed style in Nuprl is due tothe fa
t that PTSs deal with expli
itly typed systems and only re
ently, havebeen extended to deal with the impli
itly typed style ([2℄).Now we de�ne some notions familiar from PTSs.De�nition 2.5� � is
alled legal if there are A;B su
h that � ` A : B;� A is
alled legal if there are �; B su
h that � ` A : B or � ` B : A;� A is
alled a �-term if there is B su
h that � ` A : B or � ` B : A;� A is
alled a �-type if there is n su
h that � ` A : �n.We now show some PTS properties of the Nuprl type system. Omitted proofs areas in [1℄.Theorem 2.6 (Chur
h-Rosser Theorem for !� and !�)1. If A!!� B1 and A!!� B2 then there is C su
h that B1 !!� C and B2 !!� C.2. If A!!� B1 and A!!� B2 then there is C su
h that B1 !!� C and B2 !!� C.Proof: 2: any orthogonal term rewrite system (hen
e (T;!�)) is Chur
h-Rosser(see [20℄). 2Theorem 2.7 (Chur
h-Rosser Theorem for !��)1. If A!� B1 and A!� B2 then 9C su
h that B1 !!� C, and either B2 !� Cor B2 � C;2. If A!� B1 and A!!� B2 then 9C su
h that B1 !!� C, and either B2 !� Cor B2 � C;3. If A!!� B1 and A!!� B2 then 9C su
h that B1 !!� C and B2 !!� C;4. !�� has the Chur
h-Rosser property.Proof: 1: indu
tion on the stru
ture of A. 2: use 1. 3: use 2. 4: use 3 andTheorem 2.6. 2Lemma 2.8 (Free Variable Lemma) Assume x1:A1; : : : ; xn:An ` B : C. Then� The x1; : : : ; xn are distin
t;� fv(B) [fv(C) � fx1; : : : ; xng;� For ea
h i there is m su
h that x1:A1; : : : ; xi�1:Ai�1 ` Ai : �m. 2Lemma 2.9 (Start Lemma) Assume � is a legal
ontext. Then � ` ? : �1,� ` Z : �1, � ` n : Z for any n 2 Z, and � ` �n:�n+1 for any n � 1. Moreover,� ` x:C for all x:C 2 �. 26

Lemma 2.10 (Transitivity Lemma) Let �, � be legal
ontexts su
h that � ` x :C for all x:C 2 �. Then � ` A : B) � ` A : B.Lemma 2.11 (Substitution Lemma)If �; x:A;� ` B : C and � ` D : A then �;�[x:=D℄ ` B[x:=D℄ : C[x:=D℄.Lemma 2.12 (Thinning Lemma)Let �;� be legal
ontexts, � � �. � ` A : B) � ` A : B.Lemma 2.13 (Generation Lemma)1. If � ` �n : C then C =�� �m for a m > n, and if C 6� �m then � ` C : �p forsome p � 1.2. If � ` ? : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.3. If � ` Z : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.4. If � ` n : C then C =�� Z, and if C 6� Z then � ` C : �p for some p � 1.5. If � ` x : C then there is B su
h that x:B 2 �, and either B =�� C, or thereare m;n with m < n and B =�� �m, C =�� �n. If C 6� B then � ` C : �p forsome p � 1.6. If � ` (�x:A:B) : C then there is m su
h that � ` A : �m, �; x:A ` B : �mand C =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.7. If � ` (�x:A:b) : C then there are m;B su
h that � ` (�x:A:B) : �m, �; x:A `b : B and C =�� �x:A:B. If C 6� �x:A:B then � ` C : �p for some p � 1.8. If � ` AB : C then there are x; P;Q su
h that � ` A : (�x:P:Q), � ` B : Pand either C =�� Q[x:=B℄, or there are m;n with m < n and Q[x:=B℄ =���m and C =�� �n. If C 6� Q[x:=B℄ then � ` C : �p for some p � 1.9. If � ` (A � B) : C then there is m su
h that � ` A : �m, � ` B : �m andC =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.10. If � ` ha; bi : C then there are m;A;B su
h that � ` (A�B) : �m, � ` a : A,� ` b : B and C =�� A�B. If C 6� A�B then � ` C : �p for some p � 1.11. If � ` �i(M) : C then there are A1; A2 su
h that � `M : (A1�A2) and eitherC =�� Ai or there are m;n with m < n and Ai =�� �m and C =�� �n.Proof: Tedious but straightforward indu
tion on the derivation � ` M : C. Weonly show two
ases:(Conversion:) � `M : C be
ause � ` C : �p, � `M : C 0 and C =�� C 0. We treatonly the
ase M � AB, the others are similar or easier. With the indu
tionhypothesis, determine x; P;Q su
h that � ` A : (�x:P:Q), � ` B : P . IfQ[x:=B℄ =�� C 0 then also Q[x:=B℄ =�� C; if m < n su
h that Q[x:=B℄ =���m and C 0 =�� �n then also C =�� �n.(�): � ` M : �k+1 be
ause � ` M : �k. Noti
e that, by the indu
tion hypothesis,the
asesM � n and M � �x:A:b are impossible. We treat the
aseM � AB;the other
ases are similar or easier. By the indu
tion hypothesis, there arex; P;Q su
h that � ` A : (�x:P:Q), � ` B : P . If �k =�� Q[x:=B℄ then takem = k and n = k + 1; if there are m0 < n0 su
h that Q[x:=B℄ =�� �m0 and�k =�� �n0 then noti
e that k = n0 by the Chur
h-Rosser Theorem, and takem = m0 and n = k + 1. 27

Corollary 2.14 (Corre
tness of Types)If � ` A : B then there is n � 1 su
h that � ` B : �n.Proof: Indu
tion on � ` A : B with the help of the Generation Lemma and theSubstitution Lemma for the
ases A �MN , A � �1(M) and A � �2(M). 2Theorem 2.15 (Subje
t Redu
tion)If � ` A : B and A!�� A0 then � ` A0 : B.Proof: As is usual in the literature, we use indu
tion on � ` A : B to provesimultaneously� � ` A : B;�!� �0) �0 ` A : B;� � ` A : B;A!� A0) � ` A0 : B. 2Corollary 2.16 (!!�� preserves �-terms)If A is a �-term and A!!�� A0 then A0 is a �-term.Proof: We only prove the
ase A!�� A0. If � ` A : B then by Subje
t Redu
tion,� ` A0 : B and A0 is a �-term. If � ` B : A then by
orre
tness of types � ` A : �nfor some n and we use Subje
t Redu
tion. 2Due to (�), Uni
ity of Types doesn't hold for Nuprl. For example, ? : �1 and? : �2. A weak version however, is possible. This version
ollapses the di�erentlevels of �'s into �1:De�nition 2.17 For ea
h term A we de�ne a term jAj as follows:j �m j = �1 j�x:A:Bj = �x:A:jBjjxj = x jA�Bj = jAj � jBjj?j = ? j hA;Bi j = hjAj; jBjijZj= Z j�1(M)j = �1(jM j)jMN j = jM jjN j j�2(M)j = �2(jM j)j�x:A:bj = �x:A:jbjTheorem 2.18 (Weak Uni
ity of Types)If � ` A : B1 and � ` A : B2 then jB1j =�� jB2j.Proof: Indu
tion on the stru
ture of A. We only treat A � (�x:M:N). ByLemma 2.13, 9D1, D2 with Bj =�� �x:M:Dj , and �; x:M ` N : Dj . By the in-du
tion hypothesis, jD1j =�� jD2j. Hen
e, jB1j =�� j�x:M:D1j � �x:M:jD1j =���x:M:jD2j � j�x:M:D2j =�� jB2j. 22b Orders in NuprlCorre
tness of Types makes the following lemma and de�nition possible:Lemma 2.19 If A is a �-term then 9 a �-term B, 9n � 1 su
h that � ` A : B : �n.Proof: A is a �-term) 9 �-term B with � ` A : B or � ` B : A. If � ` A : B,then by Corre
tness of Types 9n � 1 where � ` A : B : �n. If � ` B : A then againby Corre
tness of Types 9n � 1 where � ` A : �n and hen
e by Start and Thinning,� ` A : �n : �n+1. 2Note that by Corollary 2.16, if A is a �-term then for any A0 where A!!�� A0, A0is a �-term. There are also A0 =�� A where A 6!!�� A0 yet A0 is a �-term. Forexample, take A = (�x : �z : �1: �1 :xa)b and A0 = (�y : �1:by)a. For this reason,we introdu
e the following de�nition: 8

De�nition 2.20 (�-terms modulo A)We de�ne [A℄� = fA0jA0 is �-term and A =�� A0g.Now, we de�ne the order of a term:De�nition 2.21 (Order of a Term)Assume A is a �-term. We de�ne ord�(A), the order of A in �, as the smallestnatural number a (i.e. a � 0) for whi
h there are A0 2 [A℄� and B su
h that� ` A0 : B : �a+1.Let us explain the intuition behind this de�nition. The order of a term A must bethe smallest natural number n su
h that the type of A is of type �n+1. By (�),we get that for any m > n, the type of A is also of type �m. This
aptures thenotion of orders �a la Russell. If A itself is a type and n is the order of of A, thennot only the type of A is of type �n+1, but also A !!�� A0 for some A0 of type �n(see Lemma 2.29). Moreover, �n
an be regarded as the type of types of order � n(Corollary 2.30) and a term is always of a lower order than its type (Corollary 2.31).More importantly also, is the fa
t that a fun
tion
an never take arguments of ahigher order than itself (Lemma 2.33).Of
ourse, we want to make sure that any element =�� to A has the sameorder as A. For this reason, we de�ned order as above by �nding one A0 in [A℄�whi
h gives us the minimal n in question. Even better, there is su
h an A0 whereA!!�� A0 rather than only A =�� A0. The following lemma shows this:Lemma 2.22 Let A be a �-term and ord�(A) = a. The following holds:1. If A0 2 [A℄� then ord�(A) = ord�(A0).2. There are A0 and B su
h that � ` A0 : B : �a+1 and A!!�� A0.Proof: 1: easy. 2: by de�nition of ord�(A), 9A00 =�� A and B where � ` A00 :B : �a+1. By Chur
h-Rosser, A, A00 have a
ommon redu
t, say A0. By Subje
tRedu
tion, � ` A0 : B : �a+1. 2Corollary 2.23For a �-term A in ��-normal form and ord�(A) = a, 9B where � ` A : B : �a+1.Proof: Determine, with Lemma 2.22, A0 and B su
h that A!!�� A0 and � ` A0 :B : �a+1. As A is in normal form, A0 � A. 2In what follows, we prove some elementary properties of ord�(A). The �rst su
hproperty states that the order of a term does not
hange if the
ontext is expanded:Lemma 2.24 (Orders are invariant under
ontext expansion)If � ` A : B and �; x:C is legal, then ord�(A) = ord�;x:C(A).Proof: Let a = ord�;x:C(A). (�) By Thinning, � ` A0 : P) �; x:C ` A0 : P for allA0 =�� A and P , so ord�(A) � a. (�) 9A0 =�� A and P with �; x:C ` A0 : P : �a+1.By Lemma 2.22, assume A !!�� A0. By Lemma 2.11, � ` A0[x:=C℄ : P [x:=C℄ :�a+1. As fv(A0) � fv(A) � dom(�), x 62 fv(A0). Hen
e A0 � A0[x:=C℄, so� ` A0 : P [x:=C℄ : �a+1 and ord�(A) � ord�;x:C(A). 2Corollary 2.25 If A is a �-term and � � � is legal then ord�(A) = ord�(A).The order of a term does not in
rease under substitution:Lemma 2.26 (Substitution does not lead to order in
rease)If �; x:A;� ` B : C and � ` D : A then ord�;x:A;�(B) � ord�;�[x:=D℄(B[x:=D℄).9

Proof: �0 = �; x:A;�; �00 = �;�[x:=D℄; b = ord�0(B). 9P;B0 =�� B s.t.�0 ` B0 : P : �b+1. By Lemma 2.11 �00 ` B0[x:=D℄ : P [x:=D℄ : �b+1. B[x:=D℄ =��B0[x:=D℄, so b � ord�00(B[x:=D℄). 2Note here that ord�;x:A;�(B) = ord�;�[x:=D℄(B[x:=D℄) does not hold in general:take � � y:�1. Then �; x:�2 ` x:�2 and � ` y:�2, and (by Lemma 2.32 below)ord�;x:�2(x) = 2 and ord�(x[x:=y℄) = ord�(y) = 1.2
 Evaluating the order of a Nuprl termIn this subse
tion, we attempt to provide a pro
edure that evaluates the order ofalmost any Nuprl term. We use the word almost be
ause we are able to say howthe order of almost all
omplex terms (like A�B) is evaluated in term of the ordersof the
omponents (A and B). The only
ase that fails is that of an appli
ation.We
annot evaluate the order of AB pre
isely in terms of the orders of A and B.Rather, in the
ase of an appli
ation AB, we
an only establish that the order ofAB is � the order of A.We begin by evaluating the order of the �rst and se
ond proje
tions:Lemma 2.27 (Order of Proje
tions)For a �-term hA;Bi, ord�(�1(hA;Bi)) = ord�(A) and ord�(�2(hA;Bi)) = ord�(B).Proof: This is a dire
t
orollary of Lemma 2.22. 2The orders of
onstants and sorts are easy to
al
ulate:Lemma 2.28 (Orders of
onstants and sorts) Let � be a legal
ontext. Thenord�(�a) = a+ 1, ord�(?) = 1, ord�(Z) = 1, and ord�(n) = 0.Proof:� As � ` �a : �a+1 : �a+2, ord�(�a) � a+ 1. Now assume � ` A0 : P : �b for anA0 =�� �a (hen
e A0 !!�� �a). By repeated Subje
t Redu
tion, � ` �a : P : �b.By Generation, P =�� �
 for a
 > a (hen
e P !!�� �
). By repeated Subje
tRedu
tion, � ` �
 : �b, so again by Generation, 9d >
 where �b =�� �d. Hen
ed = b, so a <
 < b, so b � a+ 2, so ord�(�a) � a+ 1.� Noti
e that by the Start Lemma, � ` ? : �1 : �2 so ord�(?) � 1. Nowassume � ` A0 : P : �1 for an A0 =�� ?. Noti
e that ? is in normal form,so A0 !!�� ? and by repeated Subje
t Redu
tion, � ` ? : P : �1. Bythe Generation Lemma, P =�� �1, and as �1 is in normal form, P !!�� �1.By repeated Subje
t Redu
tion, � ` �1 : �1, whi
h
ontradi
ts the fa
t thatord�(�1) = 2.� The proof for Z is similar to that for ?.� By the Start Lemma, � ` n : Z : �1, so ord�(n) � 0. ord�(n) < 0 is notpossible. 2The following lemma and its
orollaries are not only needed for evaluating theorder of the remaining items, but they are also informative about the order of aterm. This lemma says that for any �-type B, there is always B0 of type �ord�(B)su
h that B !!�� B0. It also
on�rms that �a
an be seen as the type of types(propositions) of order � a (Corollary 2.30) and that a term is always of a lowerorder than its type (Corollary 2.31).Lemma 2.29 (A type B redu
es to a type B0 of type �ord(B))Let B be a �-type and b = ord�(B). 9B0 su
h that � ` B0 : �b and B !!�� B0.10

Proof: Assume � ` B : �p. By Lemma 2.22, 9B0 and P su
h that � ` B0 : P : �b+1and B !!�� B0. By Weak Uni
ity of Types 2.18, jP j =�� j �p j, say: P =�� �q.Hen
e P !!�� �q.� By repeated Subje
t Redu
tion, � ` �q : �b+1 : �b+2. By Lemma 2.28, b+1 �q + 1, so b � q.� By the Conversion Rule, � ` B0 : �q : �q+1, so by de�nition of b, q � b.We �nd: q = b, so P =�� �b, so � ` B0 : �b. 2Corollary 2.30 (�a is the type of types of order � a)If P is a �-type in ��-normal form, then � ` P : �a , ord�(P) � a.Proof: Let p = ord�(P). \)" is by de�nition of ord�(P); for \(", by Lemma2.29, 9P 0 where � ` P 0 : �p and P !!�� P 0. As P is in normal form, P 0 � P , so� ` P : �p. Sin
e p � a, repeated use of (�) derives � ` P : �a. 2Corollary 2.31 (A term is of a lower order than its type)If � ` A : B then ord�(A) < ord�(B).Proof: Let a = ord�(A), b = ord�(B). B is a type, so by Lemma 2.29, 9B0 where� ` B0 : �b and B !!�� B0. � ` A : B, so by
onversion, � ` A : B0 : �b. Byde�nition of a, b � a+ 1, so b > a. 2In the above
orollary, ord�(A) = ord�(B) � 1 does not hold: take � = ;, A � �1and B � �3. This is as expe
ted be
ause, by the in
lusion rule (�), on
e A is oftype �n, it is of type �m for any m � n.So far, we
an
al
ulate the order of proje
tions (Lemma 2.27) and the order ofsorts and
onstants (Lemma 2.28). Now, we present methods to
al
ulate the orderof almost all the other terms:Lemma 2.32 Let C be a �-term. The following holds:1. If C � x where x:A 2 � then ord�(x) = ord�(A)� 1.2. If C � �x:A:B then ord�(�x:A:B) = max(ord�(A); ord�;x:A(B)).3. If C � �x:A:b then ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b)).4. If C � A�B or C � hA;Bi then ord�(C) = max(ord�(A); ord�(B)).Proof: 1: Let m = ord�(x). From Corollary 2.23, 9B with � ` x : B : �m+1. Asm+ 1 is minimal, ord�(B) = m+ 1. By the Generation Lemma, A =�� B. Hen
e,ord�(A) = m + 1. Note that the
ase A =�� �n, P =�� �p with n < p does nothold as m is minimal.2: Let a = ord�(A), b = ord�;x:A(B), and p = ord�(�x:A:B). By Lemma 2.29,as �x : A:B is a �-type, 9P with � ` P : �p and �x:A:B !!�� P . P must be ofthe form �x:A1:B1, where A !!�� A1 and B !!�� B1. By Lemmas 2.29 and 2.13,9A2 and B2 su
h that � ` A2 : �a, �; x:A ` B2 : �b, A !!�� A2 and B !!��B2. By Chur
h-Rosser, A1 and A2 have a
ommon redu
t A3; B1 and B2 have a
ommon redu
t B3. By repeated Subje
t Redu
tion: � ` A3:�a; �; x:A ` B3:�b.As A!!�� A3 and B !!�� B3, Subje
t Redu
tion gives � ` (�x:A3:B3) : �p. Now,p = max(a; b) as follows:� By Generation 9m � p with � ` A3 : �m and �; x:A3 ` B3 : �m. By Transi-tivity, �; x:A ` B3 : �m. Hen
e a; b � m � p.11

� As � ` A3 : �a and �; x:A3 ` B3 : �b, so by repeated appli
ation of (�),� ` A3 : �max(a;b) and �; x:A3 ` B3 : �max(a;b). By (�-form), � ` (�x:A3:B3) :�max(a;b), and so p � max(a; b).3: Let a = ord�(A), m = ord�(�x:A:b), n = ord�;x:A(b). By Lemma 2.22, 9P;Qwhere � ` P : Q : �m+1 and �x:A:b !!�� P . Observe that P � �x:A0:b0 for someA0; b0 with A !!�� A0 and b !!�� b0. By the Generation Lemma, 9B su
h that�; x:A0 ` b0 : B and Q =�� �x:A0:B. Now m + 1 = ord�(Q) = ord�(�x:A0:B) =ord�(�x:A:B) = max(a; ord�;x:A(B)) by 2 above. Now m = max(a� 1; n) be
ausem+ 1 = max(a; n+ 1) as is seen by the two
ases:� m + 1 = a. By the Transitivity Lemma, �; x:A ` b0 : B. By Corollary 2.31:ord�;x:A(b0) = n < ord�;x:A(B), so m+ 1 = max(a; n+ 1).� m+1 = ord�;x:A(B) > a. 9B0, b00 with �; x:A0 ` b00 : B0 : �n+1 and b0 !!�� b00.By Transitivity, �; x:A ` b00 : B0 : �n+1. With the � and � rule: � ` (�x:A:b00) :(�x:A:B0) : �max(a;n+1). Hen
e, max(a; n + 1) � m + 1, and as a < m + 1,n+1 � m+1 and n � m. As �; x:A ` b0 : B, n < ord�;x:A(B) = m+1. Hen
en = m and m+ 1 = max(a; n+ 1).4: Case C � A�B is similar to 2. Case C � hA;Bi is similar to 3. 2As MN may be a redex, its order is harder to determine. We
an, however, provethe following:Lemma 2.33 (The order of an appli
ation)If � `M : �x:P:Q and � ` N : P then ord�(N); ord�(MN) � ord�(M).Proof: Let m = ord�(M). 9M 0; R su
h that � ` M 0 : R : �m+1 and M !!�� M 0. By Subje
t Redu
tion, � ` M 0 : �x:P:Q, so by Weak Uni
ity of Types,jRj =�� j�x:P:Qj � �x:P:jQj. By Chur
h-Rosser 9R0 su
h that R !!�� R0 and�x:P:jQj !!�� jR0j. Also, R0 must be of the form �x:P 0:Q0, where P !!�� P 0 andjQj !!�� jQ0j. By Subje
t Redu
tion and Conversion, � `M 0 : (�x:P 0:Q0) : �m+1.Asm is minimal, ord�(�x:P 0:Q0) = m+1. Now, m = ord�(M) = ord�(�x:P 0:Q0)�1 = max(ord�(P 0)� 1; ord�;x:P 0(Q0)� 1) � ord�(P 0)� 1 = ord�(P)� 1 � ord�(N).By
onversion, � ` N : P 0, so � ` M 0N : Q0[x:=N ℄. As MN =�� M 0N , we haveord�(MN) = ord�(M 0N) < ord�(Q0[x:=N ℄) � ord�;x:P 0(Q0) � ord�(�x:P 0:Q0) =m+ 1, so ord�(MN) � m. 2This shows that a fun
tion
an never take an argument of higher order, and thatthe order of a term
an not in
rease when applying an argument to that term.3 The Rami�ed Theory of Types rttIn this se
tion we give a short, formal des
ription of Russell's Rami�ed Theoryof Types (rtt). This formalisation is both faithful to Russell's original informalpresentation and
ompatible with the present formulations of type theories. Thebasi
 aim of rtt is to ex
lude the logi
al paradoxes from logi
 by eliminating allself-referen
es. An extended philosophi
al motivation for this theory
an be foundin [41℄, pages 38{55. We will not go into the full details of the formalisation of rtt(these details
an be found in [22℄, the presentation by Russell himself in \Prin
ipia"is informal).In Subse
tion 3a we introdu
e propositional fun
tions. In Subse
tion 3b weassign types to some of these propositional fun
tions. Paradoxi
al propositionalfun
tions are, of
ourse, not typeable. 12

3a Propositional Fun
tionsIn this se
tion we shall des
ribe the set of propositions and propositional fun
tionswhi
h Whitehead and Russell use in \Prin
ipia". We give a modernised, formalde�nition whi
h
orresponds to the des
ription in \Prin
ipia". Of
ourse, the strat-i�
ation notion plays a
ru
ial role in the formulations of propositions and formulaeand this notion has been used in other modern works (e.g. [24℄). Our des
riptionof Russell's notions in a modern style is the �rst of its kind and attempts to be asfaithful as possible. At the basis of the system of our formalization there is� an in�nite set A of individual-symbols and an in�nite set V of variables ;� an in�nite set R of relation-symbols together with an arity map a : R ! IN+.0-ary relations are not expli
itly used in \Prin
ipia" but
ould be added withoutproblems. Sin
e fun
tions are relations in Prin
ipia, we will not introdu
e a spe
ialset of fun
tion symbols.We assume that fa1; a2; : : :g � A; fx; x1; x2; : : : ; y; y1; : : : ; z; z1; : : :g � V ; andthat fR; R1; : : : ; S; S1; : : :g � R. We will use the letters x; y; z; x1; : : : as meta-variables over V , and R;R1; : : : as meta-variables over R. Note that variables arewritten in typewriter style and that meta-variables are written in itali
s: x denotesone, �xed obje
t in V whilst x denotes an arbitrary obje
t of V .We assume that there is an order (e.g. alphabeti
al) on the
olle
tion V , andwrite x < y if the variable x is ordered before the variable y. In parti
ular, weassume that x < x1 < : : : < y < y1 < : : : < z < z1 < : : :We also have the logi
al symbols ^, : and 8 in our alphabet, and the non-logi
alsymbols: parentheses and the
omma. Note that Russell used
lassi
al logi
 (in-tuitionisti
 logi
 did not exist in its present form when \Prin
ipia" appeared) andhen
e he didn't need to make symbols like _, !, 9 primitive.De�nition 3.1 (Propositional fun
tions)We de�ne a
olle
tion F of propositional fun
tions , and for ea
h element f of F wesimultaneously de�ne the
olle
tion fv(f) of free variables of f :1. If R 2 R and i1; : : : ; ia(R) 2 A [V then R(i1; : : : ; ia(R)) 2 F .fv(R(i1; : : : ; ia(R))) def= fi1; : : : ; ia(R)g \ V ;2. If z 2 V , n 2 IN and k1; : : : ; kn 2 A [V [F , then z(k1; : : : ; kn) 2 F .fv(z(k1; : : : ; kn)) def= fz; k1; : : : ; kng \ V .If n = 0, we write z() so as to distinguish the propositional fun
tion z() fromthe variable z;43. If f; g 2 F then f ^ g 2 F and :f 2 F . fv(f ^ g) def= fv(f) [fv(g);fv(:f) def= fv(f);4. If f 2 F and x 2 fv(f) then 8x[f ℄ 2 F . fv(8x[f ℄) = fv(f) n fxg.5. All propositional fun
tions
an be
onstru
ted by using the rules 1, 2, 3 and4 above.4A variable is not a propositional fun
tion. See [35℄, Chapter viii: \The variable", p.94 of the7th impression.
13

We use the letters f; g; h as meta-variables over F and similar to Convention 2.2,we assume that bound variables di�er from free ones and that di�erent boundvariables have di�erent names.A propositional fun
tion f is a proposition in whi
h some parts (the free vari-ables) have been left undetermined. It will turn into a proposition as soon as weassign values to all its free variables. In this light, a proposition
an be seen as adegenerated propositional fun
tion (with 0 free variables).It will be
lear now what the intuition behind propositional fun
tion of the formR(i1; : : : ; ia(R)), f^g, :f and 8x[f ℄ is. The intuition behind propositional fun
tionsof the se
ond kind is not so obvious. z(k1; : : : ; kn) is a propositional fun
tion ofhigher order: z is a variable for a propositional fun
tion with n free variables; theargument list k1; : : : ; kn indi
ates what should be substituted5 for these free variablesas soon as one assigns su
h a propositional fun
tion to z.Noti
e that there are propositional fun
tions of the form z(k1; : : : ; kn) (where z 2V) but that expressions of the form f(k1; : : : ; kn), where f 2 F , are not propositionalfun
tions. Even substituting f for z in z(k1; : : : ; kn) does not lead to f(k1; : : : ; kn),as the notion of substitution in rtt is quite di�erent from the usual notion ofsubstitution in �rst order logi
 .Example 3.2 Here are some higher-order propositional fun
tions (pfs) from math-emati
s:1. The pfs z(x) and z(y) in the de�nition of Leibniz-equality: 8z[z(x)$ z(y)℄.2. The pfs z(0), z(x) and z(y) in the formulation of
omplete indu
tion:[z(0)! (8x8y[z(x)! (S(x; y)! z(y))℄)℄! 8x[z(x)℄.3. The pf z() in the formulation of the law of the ex
luded middle: 8z[z() _ :z()℄.3b Rami�ed TypesNot all propositional fun
tions should be allowed in our language. For instan
e,the expression :x(x) is a perfe
tly legal element of F , nevertheless, it is the propo-sitional fun
tion that makes it possible to derive the Russell Paradox. Therefore,types are introdu
ed.De�nition 3.3 (Rami�ed Types)The rami�ed types T are de�ned indu
tively as follows:1. �0 is a rami�ed type (0 is
alled the order of this type);2. If t1; : : : ; tn are rami�ed types of orders a1; : : : ; an respe
tively, and a >max(a1; : : : ; an), then (t1; : : : ; tn)a is a rami�ed type of order a (if n = 0then take a � 1);3. All rami�ed types
an be
onstru
ted using the rules 1 and 2.�0 is the type of individuals, and (t1; : : : ; tn)a is the type of the propositional fun
-tions with n free variables, say x1; : : : ; xn, su
h that if we assign values k1 of typet1 to x1, . . . , kn of type tn to xn, then we obtain a proposition. The type ()a is thetype of propositions of order a.Russell stri
tly divides his propositional fun
tions in orders. For instan
e, both8p[p() ^ :p()℄ and R(a) are propositions, but of di�erent level: The �rst presumesa full
olle
tion of propositions, hen
e it
annot belong to the same
olle
tion ofpropositions as the propositions p over whi
h it quanti�es (among whi
h R(a)). Thisled Russell to make 8p[p() ^ :p()℄ belong to a type of a higher order (level) than5In Prin
ipia, it is not
lear how su
h substitutions are
arried out. One must depend onintuition and on how substitution is used in the Prin
ipia. It is quite hard and elaborate to givea proper de�nition of substitution. 14

the order of R(a). This
an already be seen in the de�nition of rami�ed types:(t1; : : : ; tn)a
an only be a type if a is stri
tly greater than ea
h of the orders of thetis.De�nition 3.4 Let x1; : : : ; xn be a list of distin
t variables, and t1; : : : ; tn be alist of rami�ed types. We
all x1:t1; : : : ; xn:tn a
ontext and
all fx1; : : : ; xng itsdomain.We write � ` f : t to express that f 2 F has type t in
ontext �, and extend thevariable
onvention to
ontexts: If x is bound in f , then x does not o

ur in thedomain of �.We use �;� to range over
ontexts and t1; t2; : : : to range over types. To avoid
onfusion we sometimes write `n for derivability in the Nuprl type system, and `rfor derivability in rtt.We now present the typing rules for rtt. These rules are derived from andequivalent to the rules in [22℄, whi
h are as
lose as possible to Russell's originalideas. We
hange our notation for propositional fun
tions slightly: Instead of 8x[f ℄we write 8x:t[f ℄, where t is some rami�ed type.De�nition 3.5 (Typing Rules for rtt)� If
 2 A, then � `
 : �0 for any
ontext �;� If f 2 F , and x1 < : : : < xn are the free variables of f , and t1; : : : ; tn aretypes su
h that xi:ti 2 �, then � ` f : (t1; : : : ; tn)a if and only if{ If f � R(i1; : : : ; ia(R)) then ti = �0 for all i, and a = 1;{ If f � z(k1; : : : ; km) then there are u1; : : : ; um su
h that z:(u1; : : : ; um)a�1 2�, and � ` ki:ui for all ki 2 A [F , and ki:ui 2 � for all ki 2 V ;{ If f � f1 ^ f2 then there are ua11 ; ua22 su
h that � ` fi : uaii and a =max(a1; a2);if f � :f 0 then � ` f 0 : (t1; : : : ; tn)a.{ If f � 8x:t0[f 0℄ then 9j where �; x:t0 ` f 0 : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a.Example 3.6 :x(x) is not typeable in any
ontext �. If � ` :x(x) : t then tmust be of the form (u)a, with x:u 2 �, as :x(x) has one free variable. Hen
e� ` x(x) : (u)a, and by Uni
ity of Types below, u � (u0)a�1, with x : u0 2 �. As �is a
ontext, u � u0, hen
e u � (u)a�1. Absurd.An important result (whose proof follows dire
tly from the de�nition of � ` f : t)is the following:Theorem 3.7 (Uni
ity of Types) If � ` f : t and � ` f : u then t � u.4 RTT in NuprlWe present a straightforward embedding of rtt in the type theory of Nuprl writtenas a PTS (Se
tion 2). The embedding will
onsist of two parts: First we give arepresentation of the rami�ed types in Nuprl (Subse
tion 4a), then we representthe typable propositional fun
tions in Nuprl (Subse
tion 4b).
15

4a Rami�ed Types in NuprlThe main
lue to our embedding is the interpretation of �n as the sort
ontaining allorder-n-propositions. There is a small di�eren
e in that Nuprl
onsiders any termof type �n to be of type �n+1 as well. This means that any proposition of order n
an be interpreted as a proposition of order n + 1 as well. This in
lusion is not afeature of rtt; yet it isn't a serious extension.Another small point is that Russell doesn't spe
ify his underlying set of \indi-viduals" and that we want to use Z as translation of this underlying set. Therefore,we will assume that the set A of rtt-individuals is equal to the set Z of integers.Re
all that, when x 62 fv(B), we write �x : A:B as A! B.De�nition 4.1 De�ne a mapping T : T ! T as follows:T (�0) def= Z and T ((ta11 ; : : : ; tann)a) def= T (ta11)! : : : T (tann)! �aNote that T (()a) = �a and T does indeed interpret the type of order-a-propositionsas �a. Moreover, translations of rami�ed types are typable in Nuprl:Lemma 4.2 If ta is a rami�ed type of order a then `n T (ta) : �a+1.Proof: Indu
tion on the
onstru
tion of rami�ed types. 2When we speak of a rami�ed type ta of order a, we a
tually mean that the termsthat are of type ta have order a. T (ta) itself should, therefore, have order a+ 1 inNuprl. Indeed, we
an prove:Lemma 4.3 If � is a legal
ontext then ord�(T (ta)) = a+ 1.Proof: Indu
tion on rami�ed types. T (�0) = Z and ord�(Z) = 1 by Lemma 2.28.Now assume ord�(T (taii)) = ai + 1 for i = 1; : : : ; n. Noti
e thatord�(T ((ta11 ; : : : ; tann)a)) = ord�(T (ta11)! : : :! T (tann)! �a)2.32= max(ord�(T (ta11)); : : : ; ord�(T (tann)); ord�(�a))2.28, IH= max(a1 + 1; : : : ; an + 1; a+ 1) a > ai= a+ 124b Propositional Fun
tions of rtt in NuprlWe extend the mapping T of De�nition 4.1 so that a propositional fun
tion with freevariables x1 < : : : < xn will be translated into a �-term of the form �x1:t1 � � �xn:tn:A,where A itself is not of the form �x:t:A0. For notational
onvenien
e, T is extendedto A and V as well.De�nition 4.4 Let � be a rtt-
ontext. We extend T to the sets A, V and F .If i 2 A [V then T (i) def= i. Now let f 2 F and assume f has free variablesx1 < : : : < xn, su
h that xi:ti 2 �.� If f = R(i1; : : : ; ia(R)) then T (f) def= �x1:T (t1) � � �xn:T (tn):Ri1 � � � ia(R)� If f = z(k1; : : : ; km) then T (f) def= �x1:T (t1) � � �xn:T (tn):zT (k1) � � �T (km);� If f = g1 ^ g2, and gi has free variables yi1 < : : : < yimi , then T (gi) ��yi1:ui1 � � � yimi :uimi :Gi for some term Gi.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G1 �G2.16

� If f = :g, then T (g) � �x1:T (t1) � � �xn:T (tn):G for some term G.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G! ?.� If f = 8x:t:g thenT (g) � �x1:T (t1) � � �xi:T (ti):x:T (t):xi+1:T (ti+1) � � �xn:T (tn):Gfor some term G. Let T (f) def= �x1:T (t1) � � �xn:T (tn):�x:T (t):G.The extension of T as de�ned above also depends on the
ontext �. Normally itwill be
lear whi
h
ontext � is meant. If
onfusion arises, we write T� to indi
atethe
ontext in question.It is important to noti
e that, for propositions f , T (f) is exa
tly the interpre-tation of f provided by the Curry-Howard-de Bruijn isomorphism.Finally, we de�ne a spe
ial Nuprl-
ontext �0 whi
h
ontains information on therelation and individual symbols of rtt by: �0 def= fR : a(R) times Zz }| {Z! : : :! Z! �1 j R 2 Rg.We assume R to be �nite for the moment, so that �0 is �nite as well, andtherefore is a Nuprl-
ontext. �0 is legal, as we have `n Z! : : :! Z! �1 : �2.The following theorem states that the embedding T respe
ts the type stru
tureof rtt. This means that we
an see Nuprl as an extension of the Rami�ed Theoryof Types.Theorem 4.5 (Nuprl extends rtt) If � `r f : t then �0 `n T (f) : T (t).Proof: Indu
tion on the de�nition of � `r f : t. If � `
 : �0 be
ause
 2 Z then
:Z 2 �0, so �0 `
 : Z. Now assume f 2 F , f has free variables x1 < : : : < xn,and t1; : : : ; tn where xi:ti 2 � for i = 1; : : : ; n, and � `r f : (t1; : : : ; tn)a. ByLemma 4.2, `n T (ti) : �ai for some ai. Hen
e, by the Start and Weakening rules,we add xi:T (ti) one by one to the
ontext �0, obtaining a legal
ontext �1 =�0; x1:T (t1); : : : ; xn:T (tn). We only treat the
ase f = 8x:t0[g℄:If f = 8x:t0[g℄ then 9j su
h that �; x:t0 `r g : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a. Bythe indu
tion hypothesis, �0 ` T (g) : T (t1) ! � � � ! T (tj�1) ! T (t0) ! T (tj) !� � � ! T (tn)! �a. By the Generation Lemma,�0; x1:T (t1); : : : ; xj�1:T (tj�1); x:T (t0); xj :T (tj); : : : ; xn:T (tn) `n G : �a where g ��x1 � � �xj�1xxj � � �xn:G. As the types of the variables in the
ontext are indepen-dent from ea
h other, we also have �1; x:T (t0) `n G : �a. As the order of typet0 is smaller than a, we have �1 `n T (t0) : �a (Lemma 4.2), so by (�-form):�1 `n �x:T (t0):G : �a. By �-abstra
ting over all the variables in fv(f) we obtain�0 `n T (f) : T (t). 2It would be ni
e if we
ould also prove a kind of opposite of Theorem 4.5. However,the statement \If �0 `n T (f) : T (t) then there is a
ontext � su
h that � `r f : t"is not true. We
an derive �0 `n T (8x:�0[R(x)℄) : �n for any n � 1. Nevertheless,we have � `r 8x:�0[R(x)℄ : ()1 for all rtt-
ontexts �, so by Uni
ity of Types 3.7it is impossible that � `r 8x:�0[R(x)℄ : ()n for any n > 1. It is
lear that thisdi�eren
e between rtt and Nuprl is
aused by the type in
lusion rule �, whi
h isonly present in Nuprl, and not in rtt. We do have a partial result, however:Lemma 4.6 If � `r f : (ta11 ; : : : ; tann)a and x1 < : : : < xn are the free variables off , then ord�0(T (8x1:ta11 : � � � 8xn:tann [f ℄)) = a.Proof: Indu
tion on the de�nition of � `r f : (ta11 ; : : : ; tann)a. Note that xi:taii 2 �for all i, and � `r 8x1:ta11 � � � 8xn:tann [f ℄ : ()a. Let �i � �0; x1:T (ta11); : : : ; xi:T (taii).We only treat the
ase f � z(k1; : : : ; km); the other
ases are similar. z 2 fv(f),17

say: z � xp. As xp:tapp 2 �, ap = a�1. Hen
e ord�n(z) = ord�n(T (tapp))�1 = a�1.By 2.33, ord�n(zT (k1) � � �T (km)) � a� 1. Hen
eord�0(T (8x1:ta11 � � � 8xn:tann [f ℄)) =ord�0(�x1:T (ta11): � � ��xn:T (tann):zT (k1) � � �T (km)) =max(ord�n(zT (k1) � � �T (km));maxi�n(ord�i(T (taii))) =max(ord�n(zT (k1) � � �T (km));maxi�n(ai + 1)) = ap + 1 = a 2Corollary 4.7 If � `r f : ()a then ord�0(T (f)) = a.4
 Logi
 in rtt and NuprlIn the paper so far, our main
on
ern has been the type theory of both rtt andNuprl rather then logi
al derivations. We have related the typing systems in bothrtt and Nuprl and not their logi
s. In this se
tion, we will move into the logi
alaspe
ts of rtt and Nuprl and see how they
an be
onne
ted.This se
tion parallels the work of Laan in [23℄ where rtt's logi
 was interpretedin �rtt, a Pure Type System whose derivation rules
onsist of a subset of thoseof De�nition 2.4 (basi
ally, the x-form, Pairs, Left and Right rules are eliminatedfrom �rtt whi
h does not have produ
t and proje
tions in its syntax).The main observation here is that, Russell and Whitehead designed their systemfor
lassi
al logi
 whereas Nuprl is based on intuitionisti
 logi
. Hen
e, we need tosupply extra logi
al axioms to Nuprl in order to interpret the
lassi
al logi
 ofRussell and Whitehead. Moreover, Rtt is
onstru
ted with the logi
al
onne
tives^ (or _), :, 8, while Nuprl is strongly based on the interpretation of ! and 8as fun
tion types (via Curry-Howard-de Bruijn isomorphism). For this reason,Nuprl's formulation as a PTS must be extended as follows in order to deal withrtt's
lassi
al logi
:� The :-introdu
tion rule of natural dedu
tion systems is already in
orporatedin the translation of :A to A ! ?. If we have a proof T of ? under theassumption that x is a proof of A, then �x:A:T is a proof of A! ?;� For the rule \ex falso sequitur quodlibet" the type system of Nuprl doesnot provide a natural equivalent (also Martin-L�of's type theory does in theelimination rule of N0). We therefore introdu
e to Nuprl an axiomExFalson : �f:�n:�p:?:ffor ea
h n 2 IN+. We will store these axioms in some basi

ontext �0.We remark that the type �f: �n :�p:?:f is indeed a type in Nuprl. It isstraightforward to derive that it is a type of sort �n+1.We also remark that it is ne
essary to introdu
e separate axioms ExFalso1,ExFalso2; : : :. If we want to
on
lude the proposition f using the ExFalso-axiom, we must provide the type of f , and in that type the order of f isalso mentioned. This is a usual thing in rami�ed type systems, and su
h
onstru
tions o

ur also in Prin
ipia (
f. [41℄, pp. 41{43);� Rtt is based on
lassi
al logi
, and Nuprl on intuitionisti
 logi
. Therefore wemust add a \
lassi
al" axiom. We prefer to add the \law of double negation",and introdu
e axiomsDblNegn : �f:�n:�p:(f!?)!?:f:It is easy to show that the type of this axiom is of sort �n+1. We store theaxioms DblNegn in the same
ontext �0.18

Those re
ommended additions to Nuprl are exa
tly the additions made to �rttin [23℄ in order to interpret rtt in �rtt. Following [23℄, one
an show that the
lassi
al logi
 of rtt
an be interpreted in Nuprl with the axioms ExFalson andDblNegn.5 Con
lusionsIn this paper we fo
us on Nuprl and des
ribe a fragment of it as a Pure TypeSystem �N. A type universe Un (n � 1) of Nuprl
ontains
ertain basis types, andis
losed under the
onstru
tion of dependent produ
t types and Cartesian produ
ts.Moreover, Un is an element of Un+1 , and all types in Un also belong to Un+1 . Werepresent the type universe Un by the PTS sort �n. Closure under the
onstru
tionof dependent produ
ts is given by rule (�n; �n), and the fa
t that Un is element ofUn+1 is represented by the PTS axiom �n : �n+1. We extend this PTS as follows:� For Cartesian produ
ts, we introdu
e the rule � ` A1 : �n � ` A2 : �n� ` A1 �A2 : �nCanoni
al inhabitants of A1�A2 are terms of the form ha1; a2i, where ai : Ai.� We also introdu
e the proje
tion fun
tions �i: � ` a : A1 �A2� ` �i(a) : Aitogether with a redu
tion relation generated by the axiom �i(ha1; a2i)!� ai.� As Un � Un+1 , we introdu
e an in
lusion rule (�): � ` A : �n� ` A : �n+1A type universe Un in Nuprl is
losed under the
onstru
tion of dependent Cartesianprodu
ts, but as we do not need dependent Cartesian produ
ts in the paper, we donot introdu
e them.The system �N thus obtained has many properties of usual PTSs, like Chur
h-Rosser (for !��), Subje
t Redu
tion and Corre
tness of Types. With rule (�), welose Uni
ity of Types, but we
an prove a weakened version of it.Let � be a
ontext for �N. Due to
orre
tness of types, for ea
h �-type A thereis n � 1 su
h that � ` A : �n. (
ompare this to Nuprl: ea
h type in Nuprl belongsto some type universe Un). We
all the smallest n for whi
h � ` A : �n the orderof A (in �), notation ord�(A). We generalize this de�nition to arbitrary �-terms A:ord�(A) is the minimal n for whi
h there is B su
h that � ` A : B : �n. We provesome elementary properties of ord�(A):� ord�(A) = ord�(A) if � is legal and � � �;� ord�(�n) = n+ 1;� If � ` A : B then ord�(A) < ord�(B);� If x:A 2 � then ord�(x) = ord�(A)� 1;� ord�(�x:A:B) = max(ord�(A); ord�;x:A(B));� ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b));� ord�(hA1; A2i) = ord�(A1 �A2) = max(ord�(A1); ord�(A2)).We show that the orders in �N (and thus the type universes in Nuprl) are
losely re-lated to orders in rtt by looking at translations of rtt propositions to �N types viaa propositions-as-types embedding T : We prove that if f is an order-n propositionin rtt, then ord�0(T (f)) = n. Here, �0 is some basi

ontext that
ontains onlysome type information of the relation symbols that are used in rtt. We
on
ludethat our formulation of Nuprl as a PTS is faithful to the idea behind universes inMartin-L�of's type theory and our de�nition of order on Nuprl terms
aptures thehierar
hy of universes in Nuprl and provides an elegant
omparison between Nuprland rtt. As a bonus, we get a des
ription of rtt in a propositions-as-types stylein whi
h the notion of order is maintained.19

There are more similarities between rtt and Nuprl. Both Nuprl and rtt havea kind of higher order substitution (see Chapter 5 of [18℄ and Se
tion 3 of [22℄). Weare
urrently investigating the similarities between both notions of substitution.Now we stop to explain the philosophy of our approa
h and the novelty of whatwe have provided. We also dis
uss future resear
h that might be sparked by ourpaper.At the beginning of this
entury, the paradoxes led to many new formulationsof logi
al systems and an amazing variety of ideas and approa
hes. Later on, someof these ideas were abandoned when they shouldn't have been. Even more, someof the ideas proposed were found later to
ontribute nothing to the solution of theparadoxes. For example, even though ZF set theory uses the foundation axiom, itis quite
lear now that it is the separation rather than the foundation axiom whi
hwas responsible for the avoidan
e of the paradoxes.Our standpoint in this paper is not to defend one line against another. Rather,we aim to
larify the di�erent notions and philosophies assumed in the foundationof logi
. In this paper, our
hosen notion is that of Russell's orders as found inthe famous Rami�ed Theory of Types rtt. Russell, whose
ontribution to modernlogi
 is histori
al, avoided the paradox (that he himself dis
overed) by adoptingtwo layers: types and orders. Later it was found that orders
ontributed nothingto the avoidan
e of the paradox and Ramsey's work led to the abandonment ofRussell's orders. It is not
lear to us whether Russell did a
tually know that ordersdo not
ontribute to the avoidan
e of the paradox. We believe however that hisintuition of using orders (as well as types) is a solid one and we have seen thisintuition being repeated in many predi
ative styles logi
s. In [19℄, we show thatRussell's orders
ome ba
k in Kripke's a

ount of levels of truths. In this paper, weshow that Russell's orders are present in Martin-L�of's type theory and the proof
he
ker Nuprl. Of
ourse the word \orders" is not used by Kripke, Martin-L�of andConstable. Our study however shows that formally representing (with orders) theinformal hierar
hies of these systems is informative about these hierar
hies, aboutthe systems themselves and about the philosophies behind them.Not only does our paper o�er a fresh look at the \order"
on
ept, and showits usefulness for explaining basi
 hierar
hies and philosophies in modern systems,but also, our paper pla
es the histori
al system underlying Prin
ipia Mathemati
ain a
ontext with a modern system of
omputer mathemati
s (Nuprl) and moderntype theories (Martin-L�of's type theory and PTSs). Our main results
on
erningthe relationship between these various systems
an be summarised as follows (wetake `r (resp. `n) to stand for type derivation in rtt (resp. in Nuprl), and assumea translation T from types and fun
tions in rtt into Nuprl; also �0 is a basi
Nuprl-
ontext whi
h
ontains information on the relation and individual symbolsof rtt):1. The system (underlying) Nuprl
an be seen as a simple extension of a PTS.2. rtt
an be embedded in Nuprl.3. Hen
e rtt
an be regarded as a PTS.4. Nuprl extends rtt in the sense that if � `r f : t then �0 `n T (f) : T (t).A number of questions on extending these results remain open. These questions areas follows:1. Sin
e Martin-L�of's type theory, Nuprl and rtt have as aim to be a foundationof mathemati
s, one should have an interpretation of the most basi
 systemsof logi
: predi
ate logi
 (Pred) in rtt. This would be ni
e and the advantagesof relating rtt, PTSs and Nuprl would
arry over to Pred as well. Moreover,one would get the following pi
ture: Pred < rtt < Nuprl < PTSs.20

2. We have shown that Nuprl extends rtt (see 4 above). It would be ni
e toanswer the question whether Nuprl is a
onservative extension of rtt.Questions 1 and 2 are very interesting and must be the subje
t of future resear
h.We have thought about them and up to this stage, no
lear answer has been found.Question 1
auses diÆ
ulties pre
isely be
ause Russell's notion of substitution isdi�erent from substitution as is used in modern logi
 and type theory. We have
ome a long way at formalising in modern style Russell's ideas and theory. Thereis still work to be done in this �eld and we believe that this work might prove veryuseful to modern
omputer s
ien
e.Question 2 has been partially attempted in the paper. We have said that the
onverse of Theorem 4.5 does not hold. We have given as a reason for this thein
lusion rule (�) whi
h is only present in Nuprl and not in rtt. As shown in thepaper, rtt enjoys the uni
ity of types property whereas Nuprl does not. Here weexplain intuitively this problem
aused by the di�eren
e between Nuprl and rttand give our opinion of how future dire
tions in establishing a form of
onservativitymust be followed.We know from the fa
t that Nuprl extends rtt that � `r f : t then �0 `nT (f) : T (t). Now, let us take this example:� `r 8x:�0[R(x)℄ : ()1)�0 `n T (8x:�0[R(x)℄) : �1)(�)�0 `n T (8x:�0[R(x)℄) : �n � T (()n) for any n � 1 6)uni
ity of types in rtt� `r 8x:�0[R(x)℄ : ()n for any n > 1.This means that we
annot go ba
k from Nuprl to rtt.We
an however do something about that. The idea is to establish the order ofthe Nuprl term A and to only go in the opposite dire
tion of Theorem 4.5 whenthe type of A is �a and a is the order of A. Hen
e in our example above, as 1 isthe order of T (8x:�0[R(x)℄), we
an only go ba
k with �0 `n T (8x:�0[R(x)℄) : �1obtaining the valid typing � `r 8x:�0[R(x)℄ : ()1.We have provided a partial result related to this question (given by Lemma 4.6and Corollary 4.7) whi
h says that for any Russell typable propositional fun
tionf of order a, we
an establish that its Nuprl order is also a and hen
e when wetry and mimi
k the Nuprl typing in rtt, we should only restri
t ourselves to doingthis when the Nuprl type is �a and a is the order of the Nuprl term avoiding thein
lusion rule as mu
h as possible. This is already a powerful result. Of
ourse, itremains that we fully work out a translation from Nuprl to rtt and show in whatway it
an be said that rtt extends Nuprl. This will involve a huge te
hni
ality
on
erning rtt's substitution and free variables. It is left as a subje
t for futureresear
h.Referen
es[1℄ H.P. Barendregt. Lambda
al
uli with types. In S. Abramsky, Dov Gabbay,and T.S.E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e 2: Ba
k-ground: Computational Stru
tures, 117{309. Oxford University Press, 1992.[2℄ G. Barthe, M.H. Sorensen. Domain-free pure type systems. Logi
al Foundationsof Computer S
ien
e, (Yaroslavl), Le
ture Notes in Computer S
ien
e, 1234,9{20, Springer, Berlin, 1997.[3℄ A. Chur
h. A formulation of the simple theory of types. The Journal ofSymboli
 Logi
, 5:56{68, 1940.[4℄ A. Chur
h. Cal
uli of Lambda Conversion. Annals of Mathemati
al Studies 6,prin
eton University Press, Prin
eton, 1941.21

[5℄ A. Chur
h. Comparaison of Russell's resolution of the semanti
al antinomieswith that of Tarski. Journal of Symboli
 Logi
, 41 (4): 747{460, 1976.[6℄ R.L. Constable et al. Implementing Maths with the Nuprl Proof DevelopmentSystem. Prenti
e-Hall, 1986.[7℄ T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Information andComputation, 76:95{120, 1988.[8℄ T. Coquand. An analysis of Girard's paradox. IEEE Symposium on Logi
 inComputer S
ien
e, 227-236, Boston, 1986.[9℄ G. Dowek et al. The Coq proof assistant version 5.6, Users guide. Rapport dere
her
he 134, INRIA, 1991.[10℄ S. Feferman. Systems of Predi
ative Analysis. Journal of Symboli
 Logi
, 29:1-30, 1964.[11℄ G. Frege. Grundgesetze der Arithmetik, begri�ss
hriftli
h abgeleitet, I + II.Pohle, Jena, 1892 and 1903.[12℄ K. G�odel. �Uber formal unents
heidbare S�atze der Prin
ipia Mathemati
a undverwandter Systeme I. Monatshefte f�ur Mathematik und Physik, 38:173{198,1931. German; English translation in [14℄, pages 592{618.[13℄ R. Harper and R. Polla
k. Type Che
king with Universes. Theoreti
al COm-puter S
ien
e, 89: 107-136, 1991.[14℄ J. van Heijenoort, editor. From Frege to G�odel: A Sour
e Book in Mathemati
alLogi
, 1879{1931. Harvard University Press, Cambridge, Massa
husetts, 1967.[15℄ D. Hilbert and W. A
kermann. Grundz�uge der Theoretis
hen Logik. DieGrundlehren der Mathematis
henWissens
haften in Einzeldarstellungen, BandXXVII. Springer Verlag, Berlin, �rst edition, 1928.[16℄ W.A. Howard. The formulas-as-types notion of
onstru
tion. In J.P. Seldinand J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logi
, �-Cal
ulus and Formalism, 479{490, 1980. A
ademi
 Press.[17℄ P.B. Ja
kson. Enhan
ing the Nuprl Pro� Development System and Applyingit to Computational Abstra
t Algebra. PhD thesis, Cornell University, Itha
a,New York, 1995.[18℄ P.B. Ja
kson. The Nuprl proof development system, Version 4.1 referen
e man-ual and user's guide. Cornell University, Department of Computing S
ien
e,Itha
a, New York., 1995.[19℄ F. Kamareddine and T. Laan. A re
e
tion on Russell's rami�ed types andKripke's hierar
hy of truths. Journal of the Interest Group in Pure and AppliedLogi
 4(2), 1996.[20℄ J.W. Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, andT.S.E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e 2: Ba
k-ground: Computational Stru
tures, pages 1{116. OUP, 1992.[21℄ S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690{716,1975.[22℄ T.D.L. Laan and R.P. Nederpelt. A modern elaboration of the Rami�ed Theoryof Types. Studia Logi
a, 57:243{278, 1996.22

[23℄ T.D.L. Laan. The Evolution of Type Theory in Logi
 and Mathemati
s. PhDthesis, Eindhoven University of Te
hnology, the Netherlands, 1997.[24℄ D. Leivant. Finitely Starti�ed Polymorphism. Sele
tions from the 1989 IEEESymposium on Logi
 in Computer S
ien
e. Information and Computation 93,1991.[25℄ Z. Luo. Computation and Reasoning. Oxford University Press, 1994.[26℄ P. Martin-L�of. An intuitionisti
 theory of types: predi
ative part. In H.E. Roseand J. Shepherdson, editors, logi
 Colloquium '73. North Holland, 1975.[27℄ P. Martin-L�of. Constru
tive mathemati
s and
omputer programming. In SixthInternational Congress for Logi
, Methodology and Philosophy of S
ien
e, 153{175, Amsterdam, 1982. North-Holland.[28℄ P. Martin-L�of. Intuitionisti
 Type Theory. Bibliopolis, 1984.[29℄ C. Murthy. Extra
ting Constru
tive Conent from Classi
al Proofs. PhD thesis,Cornell University, Itha
a, New York, 1990.[30℄ R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Sele
ted Papers onAutomath. Studies in Logi
 and the Foundations of Mathemati
s 133. North-Holland, Amsterdam, 1994.[31℄ E. Palmgren. On �xed point operators, indu
tive de�nitions and universe inMartin-Lof type theory. PhD thesis, Uppsala University 1991.[32℄ M. Parigot. Lambda-mu-
al
ulus:an algorithmi
 interpretation of
lassi
al nat-ural dedu
tion. In A. Voronkov, editor, Logi
 Programming and AutomatedReasoning: International Conferen
e LPAR '92 Pro
eedings, St Petersburg,Russia, pages 190{201, Berlin, DE, 1992. Springer-Verlag.[33℄ W.V. Quine. The Ways of Paradox and Other Essays. New York: RandomHouse; se
ond revised edition, Cambridge Mass., and London: Harvard Uni-versity press, 1976.[34℄ F.P. Ramsey. The foundations of mathemati
s. Pro
. of the London Mathe-mati
al So
iety, 338{384, 1925.[35℄ B. Russell. The Prin
iples of Mathemati
s. Allen & Unwin, London, 1903.[36℄ B. Russell. Mathemati
al logi
 as based on the theory of types. Ameri
anJournal of Mathemati
s, 30, 1908.[37℄ K. S
h�utte. Proof Theory. Grundlehren de mathematis
hen Wissens
haften225, Springer-Verlag, 1977.[38℄ J. Terlouw. Een nadere bewijstheoretis
he analyse van GSTT's. Te
hni
alreport, Department of Computer S
ien
e, University of Nijmegen, 1989.[39℄ H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das Kontin-uum und andere Monographien, Chelsea Pub.Comp., New York, 1960.[40℄ A. Tarski. Der Wahrheitsbegri� in den formalisierten Spra
hen. Studia Philo-sophi
a, 1:261{405, 1936. German translation by L. Blauwstein from the Polishoriginal (1933) with a posts
ript added.[41℄ A.N. Whitehead and B. Russell. Prin
ipia Mathemati
a. Cambridge UniversityPress, 19101, 19272. 23

