
�-Terms, Logic, Determiners and Quanti�ersthe Journal of Logic, Language and Information 1(1),79-103, 1992Fairouz Kamareddine�University of GlasgowDepartment of Computing Sc17 Lilybank GardensGlasgow G12 8QQScotland, U.K.email fairouz@dcs.glasgow.ac.ukNovember 30, 1996AbstractIn this paper, a theory TH based on combining type freeness with logic is introducedand is then used to build a theory of properties which is applied to determiners andquanti�ers.keywords: type freeness, logic, property theory, determiners, quanti�ers.1 THE THEORY THIt is well known that mixing type freeness and logic leads to contradictions. For example, bytaking the following syntax of terms:t := xj�x:tjt1t2j:tand applying the term �x::xx to itself one gets a contradiction (known as Russell's paradox).Church was aware of the problem when he started the �-calculus which he intended to be atheory of functions and logic. But his �rst theory of the �-calculus was type free and so wasinconsistent. The paradox could be described as follows: take a to be �x:(xx ! ?). Thenfrom Modus Ponens (MP), the Deduction Theorem (DT), and �-conversion, we could deriveCurry's paradox:1: aa = aa! ? by � -conversion2: aa ` aa3: aa ` ? by MP + 1+24: ` aa! ? by DT +35: aa from 16: ` ? by MP +4 +5�The author is currently on a study leave for one year at the University of Eindhoven, the Netherlands1

The presence of these foundational di�culties led to the creation of two routes of research.The �rst route placed a big emphasis on logic and deduction systems, but avoided the di�cultyby restricting the language used to �rst or higher order without allowing any self-reference orpolymorphism. The second route placed the emphasis on the expressiveness of the languageand the richness of functional application and self reference, but at the expense of includinglogic in the language except if restrictions are made (such as using non-classical logics).Church for example, followed Russell and introduced the simply typed �-calculus. However,it became obvious that the theory was unattractive as one will have numbers at each level,no polymorphic functions and so on. Church and others then decided to enrich the syntaxand the language but to avoid or restrict logic.Mixing logic with the type free �-calculus is not straigthforward (see [Scott 75] and[Aczel 80]). Furthermore there has been various attempts at so doing. All these attepmtshave many points in common. The theory we put forward below is inuenced by all theseapproaches and will be the constructive version of that of [Flagg, Myhill 84], as we shall beexplaining.Assume a denumerably in�nite set of variables and use x; y; z; x1; y1; : : : to range over them.Use t; t0; t00; t1; t2; : : : to range over terms. The syntax of terms written in BNF notation is asfollowst := xj�x:tjt1t2jt1 = t2jt1 ^ t2jt1 _ t2jt1 ! t2jHtj8tj9t.All these terms are obvious except for Ht. H is essentially what enables the avoidance of theparadox and when Ht is derivable, t must be a proposition.We use � for syntactic identity and de�ne ? =df 0 = 1 where 0 � �fx:x and 1 � �fx:fx.We de�ne `:' and `,' out of the previous ones as follows::t =df t! ?t1 , t2 =df (t1 ! t2) ^ (t2 ! t1):Bound/free variables and substitution are de�ned as usual; in t1[x := t2] the boundvariables of t1 are changed to avoid collision. Moreover we write t[x1 := t1; : : : ; xn := tn] forthe simultaneous substitution of ti for xi, for 1 � i � n, in t.1.1 Type freenessWe consider the following axioms and rules(�) �x:t = �y:t[x := y] where y is not free in t(�) (�x:t)t0 = t[x := t0]() t1 = t2 t01 = t02t1t01 = t2t02(�) t = t0 t = t00t0 = t00(�) tx = t0xt = t0 where x is not free in t; t0 or any open assumptions :From the axioms so far, we can deduce the following2

Lemma 1.1(i) = is reexive, i.e. t = t(ii) = is symmetric, i.e. t = t0t0 = t(iii) = is transitive, i.e. t = t0 t0 = t00t = t00(iv) (�) t = t0�x:t = �x:t0(v) (�)(�y:uy) = u for y not free in u:Proof: Easy. 2Note, however, that from (�) above we have been able to deduce both (�) and (�), butfrom (�) alone we cannot deduce (�) as we will also need (�) in the derivation.1.2 Logic(�)-(�) are just axioms and rules of the �-calculus with extensionality; we still need a logicand we therefore add the following(_I) t Ht0t _ t0 t0 Htt _ t0
(_E) t _ t0 ftg...s ft0g...ss(H_) Ht Ht0H(t _ t0)(^I) t t0(t ^ t0)(^E) t ^ t0t t ^ t0t0(H^) Ht Ht0H(t ^ t0)
(! I) Ht ftg...t0t! t0 3

(! E) t t! t0t0
(H !) Ht ftg...Ht0H(t! t0)(?) ?t(9I) tt09t
(9E) 9t ftxg...ss provided x is not free in t; s or any open assumption(H9) H(tx)H(9t) x not free in t or any open assumption(8I) tx8t x not free in t or in any open assumption(8E) 8ttt0(H8) H(tx)H(8t) x not free in t or any open assumption(H) tHt(H =) H(t = t0)(Tsub) t = t0 tt0Now we stop to compare this theory with other ones based on combining type free �-calculus with logic. In [Aczel 81] a formal language of Frege structures is presented butnegation there is a primitive operator. Flagg and Myhill (in [Flagg, Myhill 84]) o�ered theclassical version of the above theory. [Smith 84] o�ers a theory of Frege structures with theaim of interpreting Martin-L�of type theory and [M�onnich 83] provided a theory similar to theone found in [Aczel 81]. Finally [Beeson 87] o�ered an axiomatic theory of Frege structures.Models of this theory exist and can be constructed using Aczel's techniques in [Aczel 80]or Scott's method in [Scott 75]. The models of the �-calculus cannot deal with logic added ontop of the �-calculus, since once logic is added, consistency might be threatened. Models oftype free �-calculus with logic were not obvious until they were initiated by Scott in [Scott 75]where simply the idea was to start from any model of the �-calculus and build logic on top4

by inductively constructing two collections one of the true propositions, the other of thefalse ones and by taking the limit of these two collections. Frege structures in [Aczel 80] areessentially based on the same idea, except that logic is built by inductively constructing thecollections of the possible propositions and the possible truths, and by taking the limit ofthese two collections.As it sounds, the process is quite simple, yet it depends on having a clear idea of thestructure and on proving some theorems which will ensure the existence of the various logicalconnectives in the model considered.2 THE METATHEORY OF THWe write ` t if t is a theorem of TH and � ` t if t is deducible from the set of hypothesis in�. The following are provable in TH(T0) H?(T1) t = t0 t00[x := t]t00[x := t0](T2) ti = t0i for i = 0; : : : ; n t0[x1 := t1; : : : ; xn := tn]t00[x1 := t01; : : : ; xn := t0n](T3) t = t0 HtHt0(T4) If ` t ^ t0 then ` t0 ^ t(T5) fHt;Ht0g ` (t _ t0 ! t0 _ t)(T6) If ` t then ` ::t(T7) fHtg ` t, t(T8) If ` t, t0 and ` t0 , t00 then fHt;Ht0g ` t, t00(T9) If ` t, t0 then ` t0 , t(T10) If ` 8t then ` :9(�x::(tx))(T11) fH(tx)g ` 8t! :9(�x::(tx))(T12) If ` t then ` 8(�x:t)(T13) If � ` t then � ` 8(�x:t)(T14) If � ` 8(�x:t) then � ` t(T15) ` 9(�x:(x = 0))(T16) ` 9(�x::(x = 0)) 5

(T17) If t 2 � then � ` t(T18) If � ` t and � ` t! t0 then � ` t0(T19) If � [ftg ` t0 then � [fHtg ` t! t0(T20) fHtg ` t! (:t! t0)(T21) fHtg ` t! ::t(T22) fHtg ` :t, :::t(T23) fHt;Ht0g ` :(t _ t0), :t ^ :t0(T24) If fHt;Ht0g ` t, t0 then fHt;Ht0g ` :t, :t0(T25) If � ` ? then � ` t(T26) If � ` t then � ` 9(�x:t)(T27) If � ` t then � [� ` t(T28) If � ` 9t and � [ftyg ` t0 then � [� ` t0 for y not free in �(T29) If � ` t and � ` t0 then � [� ` t ^ t0(T30) If � ` t _ t0;� [ftg ` t1 and � [ft0g ` t1 then � [� ` t1(T31) fHag ` :(a ^ :a)(T32) fHt;Ht0g ` t! (t0 ! t)(T33) fHt;Ht0g ` (t! t0)! ((t! :t0)! :t)(T34) fHt;Ht0g ` t! t _ t0(T35) fHt;Ht0g ` t! t0 _ t(T36) fHt;Ht0g ` t! (t0 ! t ^ t0)(T37) fHt;Ht0;Ht00; t, t0g ` t00[x := t], t"[x := t0](T38) If � [ftg ` t0 and � ` t then � ` t0Proof:1(T0) is an instance of (H =):(T1) is deducible by induction on the way terms are constructed, using(Tsub) among other things :(T2) is deducible by induction on the way terms are constructed.(T3) is deducible from () and (Tsub):(T4)� (T38) are easy exercises.1(T19) is known as the deduction Theorem; please note the insertion of fHtg. This is important as withoutit we would get Curry's paradox. 6

3 A THEORY OF PROPERTIESWe introduce in our language TH the operator �, understanding �P to mean that P is aproperty. � is de�ned as follows:�P =df 8xH(Px):That is, something is a property i� whenever it applies to an object, the result is a proposition;e.g. �x::(x = x).Having de�ned properties in TH let us now look at their closure conditions to see whetherthey `behave properly'. We can construct properties in the following way:1. P [P 0 = �x:(Px _ P 0x)2. P \ P 0 = �x:(Px ^ P 0x)3. P c = �x::Px4. P ! P 0 = �x:[8y(Py ! P 0(xy)]5. � = �x:(x = x)6. 5 = �x::(x = x)(1) - (3) give us boolean combinations of properties, using join, meet and complement. (4)gives us function space, and (5), (6) give us the universal and the empty property, respectively.Now before moving on to proving some important results about the collection of properties,we note that while we understand �P to be P is a property, some people understand it to beP is a class. Both interpretations work in parallel and to illustrate this point we introduce 2by a 2 P =df Pa;and we understand it as saying a belongs to the class P . We can hence easily prove thefollowing(i) P = P 0 �P�P 0ii) �PH(t 2 P)iii) H(tx)�(�x:tx) where no assumption depends on x:Now we can prove the following lemmaLemma 3.1 The following are provable(i) ` ��(ii) ` �5 7

(iii) f�P;�P 0g ` �(P [P 0)(iv) f�P;�P 0g ` �(P \ P 0)(v) f�P;�P 0g ` �P c(vi) f�P;�P 0g ` �(P ! P 0)Proof:We shall only prove (vi), as the others are similar.We have to show that 8xH(8z(Pz ! P 0(xz))).If �P 0 then 8xH(P 0x),hence H(P 0(xz)); but H(Pz) as �P .Therefore H(Pz ! P 0(xz)).Hence H(8z(Pz ! P 0(xz))) and so 8xH(8z(Pz ! P 0(xz))); hence �(P ! P 0). 2� stands for the universal property, 5 stands for the empty property, and, of course, if P; P 0are properties, then so are their disjunction and conjunction. Also, the complement of anyproperty is a property. This lemma implies that our domain of properties satis�es someimportant closure conditions; note especially that if P and P 0 are properties then P ! P 0is also a property. It is well known that this would not hold if the notion of property wasmore comprehensive. For instance, in [Turner 87] and [Feferman 79], if P , P 0 are propertiesor classes then P ! P 0 is not necessarily a property or a class because according to theirapproach, there were more propositions than there is according to the approach put forwardhere.Lemma 3.2 The following are provable(i) a 2 P \ P 0 = ((a 2 P) ^ (a 2 P 0))(ii) a 2 P [P 0 = ((a 2 P) _ (a 2 P 0))Proof: Obvious. 2Operators such as [;\ and c are just ways of building new properties (or classes) out of oldones. We have not yet de�ned any relations between properties (those relations may not beproperties). Here we take the �rst step and de�ne the following between properties:P � P 0 = (8x)(Px! P 0x)We understand P � P 0 to be P is a subproperty of P 0.We also de�ne the following operation on properties, which we have not included with theprevious ones because of its distinctive status | a status which will become clear below.�P = �x:(8y(Py ! yx))�P is the intersection of all properties that are themselves P . It is obvious that we shouldnot deduce from �P 0 and P � P 0 that �P ; but if �P , do we then have �(�P)? Well, weneed to add another condition, namely, 8y(Py ! �y). With this new condition, things �t;8

Lemma 3.3 If �P and 8y(Py ! �y) then �(�P).Proof:(�P)x = 8y(Py ! yx); and we can show by (H !),H(Py ! yx) if we can show both that(i) H(Py) is deducible, and that(ii) H(yx) is deducible from assumption that Py.(i) follows from �P and (ii) follows from Py and 8y(Py ! �y).Hence �(�P). 2Now we start by listing some characteristics of our domain of properties. We have alreadyseen two of these characteristics in Lemma 3.2. With the following lemma we reveal more ofour domain of properties,Lemma 3.4(i) (�x:�)t ^ (�x:)t = (�x:(� ^))t(ii) (�x::�)t = :(�x:�)t(iii) (�x:�)t _ (�x:)t = (�x:(� _))t(iv) (P c)t = :Pt(v) (P \ P 0)t = Pt ^ P 0t(vi) (P [P 0)t = Pt _ P 0t(vii) ((P c)c)t = ::Pt(viii) f�P;�P 0g ` (P [P 0)ct, (P c)t ^ (P 0c)t(ix) f�P;�P 0g ` (P c [P 0c)t = (P c)t _ (P 0c)t(x) f�P;�P 0g ` (P c \ P 0c)t, (P [P 0)ct(xi) fPtg ` ((P c)c)t(xii) If Ht then 8y(�x:t)t0 ! (�x:8yt)t0(xiii) If Ht then 9y(�x:t)t0 ! (�x:9yt)t0
9

Proof:2 We only prove (x) as (i)-(vii) are similar cases of �-conversion, (viii) comes from(x) and (v), (ix) is a particular case of (vi) and (xi) comes from (vii) and the fact that froma we deduce ::a. Also, (xii) and (xiii) are easy to prove.(P c \ P 0c)t = (�x:(P c)x ^ (P 0c)x)t= (P c)t ^ (P 0c)t= :Pt ^ :P 0t, :(Pt _ P 0t); from (T23);�P and �P 0:and ((P [P 0)c)t = (�x::(P [P 0)x)t= :(P [P 0)t= :(Pt _ P 0t)Hence (P c \ P 0c)t, ((P [P 0)c)t: 2Now we discuss what would happen to the lemmas above if we change the functionalapplication of the �-calculus by a more intentional application, call it pred. That is, fromPx = Qy, we can deduce nothing about the relationship between P and Q and x and y. predon the other hand, will satisfy that if pred(P; a) = pred(Q; b) then P = Q and a = b. So letus introduce pred such that(P1) pred(P; x)Px Pxpred(P; x) H(pred(P; x))H(Px) H(Px)H(pred(P; x))(P2) 8x(pred(P; x) = pred(Q;x))! P = Q(P3) pred(P; a) = pred(Q; b)! (P = Q ^ a = b)Lemma 3.5 If �P then 8x(Px, pred(P; x)).Proof: obvious. 2Now it is interesting to see what would happen to the closure of our properties if weunderstand the predication relation to be given in terms of pred and not functional application.We start from our de�nition of � above. We see that ��P =df 8xH(pred(P; x)) does notgive anything new. Suppose, however, that we introduce a relation 2� such that a 2� P =dfpred(P; a), then in Lemmas 3.1 and 3.3, nothing new results, since if �P then pred(P; x) � Pxfor any x. In Lemmas 3.2 and 3.4, let us replace any occurrences of 2 by 2�, = by � andfunctional application by pred. We combine the things that work for pred in one lemma,Lemma 3.6, and we add the condition that �P and �P 02But not necessarily:(viii0) f�P;�P 0g ` ((P \ P 0)c)t = (P c)t _ (P 0c)t(x0) (P c [P 0c)t = ((P \ P 0)c)t(xi0) ((P c)ct ` (P)t 10

Lemma 3.6If �P;�P 0 then the following holds,1. pred(P; t) ^ pred(P 0; t), pred(P \ P 0; t)2. pred(P c [P 0c; t), pred(P c; t) ^ pred(P 0c; t)3. pred(P c \ P 0c; t), pred((P [P 0)c; t).34. pred(P; t)! pred((P c)c; t)45. pred(P c; t), :pred(P; t)Proof:1. If �P;�P 0 then �(P \ P 0).Therefore H(pred(P \ P 0; t));H(pred(P; t)) and H(pred(P 0; t)).But pred(P \ P 0; t) = pred(�x:Px ^ P 0x; t), Pt ^ P 0t; as �(P \ P 0):Since pred(P; t), Pt and pred(P 0; t), P 0tthen pred(P; t) ^ pred(P 0; t), Pt ^ P 0t.Hence 1 is a theorem.2. �P =) �P c =) pred(P c; t), P ct:�P 0 =) �P 0c =) pred(P 0c; t), P 0ct:�P c and �P 0c =) �P c [P 0c=) pred(Pc [P 0c; t), (P c [P 0c)t:But by Lemma 3.4 (vi), (P c [P 0c)t = (P c)t _ (P 0c)t;hence pred(P c [P 0c; t), (P c)t _ (P 0c)t , pred(P c; t) _ pred(P 0c; t):3. �P =) �P c�P 0 =) �P 0c�P c and �P 0c =) �(P c \ P 0c) =)pred(P c \ P 0c; t), (P c \ P 0c)t.�P and �P 0 =) �(P [P 0c) =) �((P [P 0)c) =)pred(P c [P 0c; t), (P [P 0)ct.But by Lemma 3.4, (V), (P c \ P 0c)t = (P c)t ^ (P 0c)tand by Lemma 3.4, (Viii), (P [P 0)ct, (P c)t ^ (P 0c)t.Hence (P c \ P 0c)t, ((P [P 0)c)tand so pred(P c \ P 0c; t), pred((P [P 0)c; t).3Not necessarily pred(P c [P 0c; t) � pred((P \ P 0)c; t), as we have: fHt;Ht0g ` :(t _ t0) � :t ^ :t0 butnot: fHt;Ht0g ` :(t ^ t0) � :t _ :t0.4But not necessarily pred((pc)c; t)! pred(P; t); this will only be the case if DP where DP will be de�nedbelow. 11

4. �P =) H(pred(P; t))�P =) �P c =) �(P c)c:But by Lemma 3.4, (Vii), ((P c)ct = ::Pt
H(pred(P; t)) fpred(P; t)gPt::Pt((P c)c)tpred((P c)c; t)pred(P; t)! pred((P c)c; t)5. pred(P c; t), (P c)t when �P .(P c)t = :(P)t;hence pred(P c; t), :Pt:But Pt, pred(P; t); hence by (T24), :Pt, pred(P; t):Therefore, pred(P c; t), :pred(P; t): 2If �P and �P 0 are not assumed then the version of Lemma 3.6 is as followsLemma 3.7 The following holds in TH ,(i) fpred(P \ P 0; t)g ` pred(P; t) ^ pred(P 0; t)(ii) fpred(P; t) ^ pred(P 0; t)g ` pred(P \ P 0; t)(iii) fpred(P c; t)g ` :pred(P; t)(iv) f:pred(P; t)g ` pred(P c; t):Proof: (i) If we assume pred(P \ P 0; t) then H(pred(P \ P 0; t));hence H((P \ P 0)t)) and so H(Pt) and H(P 0t):This means that H(pred(P; t)) and H(pred(P 0; t)):But Pt, pred(P; t); P 0t, pred(P 0; t);(P \ P 0)t, pred(P \ P 0; t) and (P \ P 0)t = Pt ^ P 0t:Hence pred(P \ P 0; t), (pred(P; t) ^ pred(P 0; t)):Therefore the assumption pred(P \ P 0; t)implies pred(P; t) ^ pred(P 0; t);i:e:pred(P \ P 0; t) ` pred(P; t) ^ pred(P 0; t):Now (ii), (iii) and (iv) are easy. 212

4 DETERMINATE PROPERTIESNow, even if �P , we still do not have that pred(P; c) _ :pred(P; c); we therefore de�ne aproperty to be determinate as followsDP =df 8x(pred(P; x) _ :pred(P; x))E.g. D�; this is because 8x(pred(�; x) _ :pred(�; x)) is true as it is equivalent (in termsof ,) to 8x((x = x) _ :(x = x)). We know that x = x is always true, therefore (x =x) _ :(x = x) is always true and so 8x((x = x) _ :(x = x)) is true. For 5, we know thatpred(5; x) , :(x = x) and so for any x;:pred(5; x) , (x = x) which is true; therefore,8x(pred(5; x) _ :pred(5; x)) is true and so D5.As an example of an undeterminate property, take: Pa = �x:(x = a); Pa is undeterminatefor take pred(Pa; x) , (x = a) and pred(Pa; x) , :(x = a). Therefore, pred(Pa; x) _:pred(Pa; x), (x = a) _ :(x = a) which we do not have a proof for and so we do not havethat Pa is determinate.5Lemma 4.1 Let P be a property such that DP . Then for any t, pred(P; t), ::pred(P; t).Proof:(=)) We always have pred(P; t)! ::pred(P; t) for any property P .((=)1. H(::pred(P; t)) because H(pred(P; t)).2. pred(P; t)V :pred(P; t) because DP .3. H(::pred(P; t) f::pred(P; t)gfpred(P; t)gpred(P; t) _ :pred(P; t) f:pred(P; t)g?pred(P; t) pred(P; t)::pred(P; t)! pred(P; t) 2The above lemma shows that the domain of determinate properties obeys classical logic; thefollowing lemma shows that this domain is closed under [;\, and c.Lemma 4.2 If DP and DP 0 then D(P [P 0);DP c;D(P \ P 0).Proof: Obvious. 2The following lemma pushes negation inside pred in the de�nition of DP and shows that forany object we cannot predicate both a property and its complement to that object.Lemma 4.3(i) For any P such that �P;DP , 8x(pred(P; x) _ pred(P c; x)):(ii) 8x; if �x then [8y[:[pred(x; y) ^ pred(xc; y)]]]:5This is mainly because equality is not determinate in the �-calculus; and we are using an intuitionistictheory. 13

Proof: (i) If �P then pred(P c; x), (P c)x and pred(P; x), Px;but (P c)x = :Px and Px, pred(P; x);hence pred(P c; x), :pred(P; x):Therefore8x(pred(P; x) _ :pred(P; x)), 8x(pred(P; x) _ pred(P c; x));and so DP , 8x(pred(P; x) _ pred(P c; x)):(ii) If �x then pred(xc; y), :pred(x; y); from above :But :(pred(x; y) ^ pred(xc; y)), :(pred(x; y) ^ :pred(x; y))and we always have :(pred(x; y) ^ :pred(x; y)): 2The next lemma is concerned with the conjunction of complements of propertiesLemma 4.4 For any properties P and P 0, if DP and DP 0 then we can derive the followingin TH (i) (P c [P 0c)t, ((P \ P 0)c)t(ii) pred(P c [P 0c; t), pred((P \ P 0)c; t)(iii) ((P c)c)t! Pt(iv) pred((P c)c; t)! pred(P; t)Proof: (i) (=)) We have to show thatPt_:Pt P 0t_:P 0t :Pt_:0t:(Pt^P 0t)In other words, we need to prove that(a_:a) (b_:b) (:a_:b):(a^b)This is done as follows:(a _ :a) (b _ :b) (:a _ :b)fa ^ bg(1)a b f:ag f:bg? ? (_E) and :a _ :b? By discharging (1):(a^b)((=) is similar :(ii) Now it is enough to say thatpred(P c [P 0c; t), (P c [P 0c)t andpred((P \ P 0)c; t), ((P \ P 0)c)t:(iii) We proved in Lemma 4.1 that if P is a property such that DP thenpred(P; t), ::pred(P; t): We also proved in Lemma 3.6 that ifP is a property then pred(Pc; t), :pred(P; t): Hence as P cis a property, pred((P c)c; t), :pred(P c; t), ::pred(P; t):Therefore pred((P c)c; t), ::pred(P; t):As ((P c)c)t, pred((P c)c; t) and Pt, pred(P; t) then((P c)c)t, ::Pt and so ((P c)c)t! Pt:14

(iv) is a consequence from the proof of (iii) above. 2Now we de�ne introduce pr�ed for those who are intersted in comparing the theory that ispresented here with those theories presented elsewhere such as feferman's and Turner's. Forthis purpose we de�nepr�ed(P; x) =df pred(P c; x):Lemma 4.5(i) If DP then we have pred(P; x) _ pr�ed(P; x) for any x:(ii) If HA then pr�ed(�x:A; t), :pred(�x:A; t)(iii) For P a property, 8x:(pred(P; x) ^ pr�ed(P; x)):Proof: (i) DP =df 8xpred(P; x) _ :pred(P; x):But pred(P c; x), :pred(P; x) for any property P,hence if DP then pred(P; x) _ pred(P c; x) for any x:(ii) pr�ed(�x:A; t) = pred((�x:A)c; t):If HA then �(�x:A) and sopred((�x:A)c; t) � pred(�x:A; t):Hence pr�ed((�x:A); t) , :pred(�x:A; t):(iii) If �P then pred(P c; x), :pred(P; x);as we have 8x:(pred(P; x) ^ :pred(P; x));then 8x:(pred(P; x) ^ pr�ed(P; x)): 2One of the basic characteristics of the theory of property o�ered here is the full (eventhough weak) comprehension principle. This principle says that:(CP) For f a propositional function, we have:(�x:fx)t is true i� ft is true :Here f is a propositional function i� for every x, we have H(fx). This full comprehensionprinciple would lead to inconsistency if the notion of property was strengthened. This is whythe work of Turner, Feferman and others focussed on restricting the principle. The fullnessof the principle however is very useful to have because, as we see from (CP), it relates the`internal' logic to the `external' one. To be more speci�c, let us understand by the term`external' logic to be the logic which enables us to make the usual logical derivations such asthe ability to deduce from �[t] ! 	[t] and �[t];	[t]. Let us moreover, understand by theterm `internal' logic to be the logic which enables us to make derivations inside the �-operator,for example deducing from pred(�x:�; t) and pred(�x:� ! 	; t), that pred(�x:	; t). In our15

theory, we have by (CP) that the laws of the `internal' logic are a consequence of the lawsof the `external' one. That is, having (CP), one can make do with just the axioms of �rstorder logic. On the other hand, because of the unavailability of (CP), [Turner 87] had totreat the `internal' and `external' logics separately. According to our theory, if we work withpropositions then we could have the following;pred(�x:�; t) ^ pred(�x:	; t), pred(�x:� ^	; t) and:pred(�x::�; t), :�(t):Now if we want a more general version of the comprehension principle, we can introducethe following: For any 	 a propositional w� open in x;(9P)(8t)(pred(P; t), 	[t=x]);the above principle is valid. Also we of course have extensionality:(8x)(8y)((8z)(xz = yz)! x = y)5 DETERMINERSOne of Montague's main achievement in PTQ (see [Thoamson 74]) was to show how a log-ically adequate treatment of quanti�er phrases could be systematically incorporated into afragment of English. A further round of investigation into the characteristics of quanti�ersand determiners was inaugurated by Barwise and Cooper's paper [Barwise, Cooper 81], whichexplored the way in which results in the area of generalised quanti�ers could be applied tonatural language. Since then, there has been a copious discussion of this topic - van Benthemprovides a good summary of the main results (in [Benthem 83] and [Benthem 84]). Here,we inquire how natural language quanti�ers and determiners might be incorporated into theframework of our theory of properties.In a Montague treatment, a sentence like Every boy runs receives a translation of thefollowing form:(1) (every0(boy0))(run0):Within the framework of [Barwise, Cooper 81], we say that every'(boy') is a quanti�er -interpreted as a set of sets (or, intensionally, as a second order property of properties), andthat every' is a determiner - interpreted as a function from sets to quanti�ers. An alternativeanalysis, adopted by van Benthem, treats determiners as relations between sets. For example,(2) denotes an instance of the schema (3):(2) every0(boy0; run0)(3) �(A;B)(3) provides a convenient notation for expressing interesting characteristics of determiners,Introducing � in (3) above prepares us for the important concept of a determiner relation,16

also known as the characteristic property of the determiner. A characteristic property of adeterminer is that particular set theoretical relation which characterises this determiner settheoretically; e.g. for every', it is � and for a' it is \1. We shall see below what � and \1are.We start �rst by de�ning the two determiners every' and a' in our framework. Letevery0 =df �x:�y:8z(xz ! yz)a0 =df �x:�y:9z(xz ^ yz)The meanings of every', a' are not classes but we can prove some important theorems aboutthem. We need however to introduce the characteristic properties of these determiners. Wehave also to show that these characteristic properties (or for that matter the determinersthemselves) behave properly; that is when we combine things together in the right way weget a proposition. This is shown to be the case in the following few de�nitions and lemmas.The characteristic property of every', namely �, has already been de�ned as follows:If P1; P2 are properties ;P1 � P2 =df 8x(P1x! P2x)Lemma 5.1 � is a transitive, reexive relation on properties.Proof: Obvious. 2Another important property that one might desire is equisymmetry which is de�ned asfollows: � is equisymmetric i�If P1 � P2 and P2 � P1 then 8x(P1x � P2x):As can be seen from the lemma below, equisymmetry holds for �.Lemma 5.2 � is equisymmetric on properties.Proof: Easy. 2Of course one has to note here that only equivalence between P1 and P2 is obtained and notequality. I.e. we have equisymmetry rather than antisymmetry. This is due of course to theintensional notion that is embedded in the system.Lemma 5.3 If P1 and P2 are properties then(i) every0P1P2 = P1 � P2 and(ii) H(every0P1P2):Proof: Obvious. 2We de�ne P1 \1 P2 =df 9z(P1z ^ P2z).It is obvious that P1 \1 P2 is a proposition when both P1 and P2 are properties.Another concept that we introduce here is that of an empty property. We say that aproperty P is empty and write ;P i� 8z(:Pz). E.g. 5 is an empty property.17

Lemma 5.4 If P; P1 and P2 are properties then the following holds:(i) If :;P then :;(P [P)(ii) If :;(P1 [P2) then :;(P2 [P1)Proof: Easy. 2Lemma 5.5 If P1 and P2 are properties then(i) a0P1P2 = P1 \1 P2(ii) H(a0P1P2)Proof: Easy. 26 NON DETERMINATE RESULTSOutside the collection of properties, we cannot draw useful conclusions about every' be-cause we cannot decide the propositionhood of an arbitrary formula in which ! is the mainconnective6 This is not a disadvantage as we only want every' to have meaning when we areworking with properties. Moreover, we cannot de�ne the type of every' or of determinersinside our formal language. That is if we de�ne Quant and Det7 as followsQuant t =df 8x(�x! H(tx))Det t =df 8x(�x! Quant (tx)):then there is no way to prove that Det and Quant always return propositions when appliedto terms, because8x(�x! Quant (tx)) and8x(�x! H(tx))are not propositions for any t. In fact even if t is a property, we still do not have a guaranteethat Det t and Quant t are propositions, due to the fact that �x is not a proposition. Thisis not serious as there is no particular reason for wanting determiners and quanti�ers to bedeterminate. Everything �ts together properly, and we can prove many desirable features ofour determiners, why insist on determinability? The following lemma proves inside the theorythat combining a determiner and a property results in a quanti�er.6The reader is reminded again that a ! b is a proposition in the case where a is a proposition and b is aproposition assumning a is true.7Note that we could have de�ned it as: Det(t) = 8xy((�x ^ �y) ! H((tx)y)) which is closer to vanBenthem's approach in [Benthem 83] and [Benthem 84].
18

Lemma 6.1 f Det Q;�Pg ` Quant (QP):Proof: f�PgfDetQg8x(�x! Quant(Qx)) From Det Q By (8E)�P!Quant(QP)�P �P!Quant(QP) By (!E)Quant(QP) 2Having determiners such as every', a' is one thing; being able to deduce that every', a' aredeterminers is something else. I.e. can we prove that Det(every'), Det(a'), etc..? Take theformula for every':�x:�y:8z[xz ! yz];To show that Det(every') we have to show that8x(�x! 8y(�y! H(every0xy))):But to be able to show the implication we need to have H(�x), and H(�y), which we cannotassume. For this we need an extension for implication as follows:We always have that if fag ` b then fHag ` a! b (our version of the deduction theorem).We need that if fHag ` b then ` Ha! b. Can we assert this rule? That is:(�) If fHag ` b then ` Ha! b:It may be claimed here that this rule leads to an inconsistency similar to Curry's paradoxbecause if a is �x(H(xx)! ?), then a is a well-formed expression. However it is not the casethat we will get Curry's paradox, for take the following chain of deductions:app(a; a) = H(aa)! ? by � -conversionaa ` H(aa)! ? from aboveaa ` H(aa) obviousaa ` ? by MPH(aa) ` aa! ? by DTBut now applying (*) we get: ` H(aa)! (aa! ?)which is not contradictory.Note that we should not always deduce from fag ` b that ` a! b; because if we did thenwe get Curry's paradox. However, I am not sure whether the deduction from fHag ` b to` Ha! b is harmless and hence the following theorem that every',.a' and the' are determinerscan only hold if we conjecture that (*) holds.
19

Lemma 6.2 Det(every'), Det(a'), if (*) holds.Proof: For every': We have to prove that 8x(�x! y(�y ! H(every0xy))).f�x;�yg ` H(every0xy)):f�xg ` H(yz)! H(every0xy) according to (�):From this we have: f�xg ` 8z[H(yz)! H(every0xy)]f�xg ` [8zH(yz)]! H(every0xy)f�xg ` �y ! H(every0xy)f�xg ` 8y(�y ! H(every0xy)):Repeating the same process, we get:` �x! 8y(�y! H(every0xy))` 8x(�x! 8y(�y! H(every0xy))):The proof of a' is similar to that of every'. 27 Charactersistics of determiners and quanti�ersHere we are concerned with some characteristics of determiners that can be proven in ourtheory. We start with the �rst theorem that asserts that the result of applying a quanti�erto a property results in a proposition.Lemma 7.1 fQuant(Q);DPg ` H(QP)Proof: We have to prove that: H(QP) from assumptions:8x(�x! H(Qx)) and �P:But f8x(�x! H(Qx));DPg ` �P;�P ! H(QP)and f�P;�P ! H(QP)g ` H(Qx) 2We still cannot prove: fQuant(Q);�P;�P 0g ` (QP ^ P � P 0) ! QP 0, but this is notworrying as it should not always hold. The following lemma is to show that the domain ofquanti�ers is closed under [;\ and c.Lemma 7.2(i) fQuant(a); Quant(b)g ` Quant(a \ b)(ii) fQuant(a); Quant(b)g ` Quant(a [b)(iii) fQuant(a)g ` Quant(ac)
20

Proof:8 We illustrate only (i):8x(�x! H(ax)) 8x(�x! H(bx))8x(�x! H(ax) ^H(bx))Hence 8x(�x! H(ax ^ bx)) 2Also the following lemma is concerned with the closure on the domain of determiners. Nowclosure is in term of \1;[1;c1.9Lemma 7.3(i) fDet(a);Det(b)g ` Det(a \1 b)(ii) fDet(a);Det(b)g ` Det(a [1 b)(iii) fDet(a)g ` Det(ac1)Where a \1 b = �x:(ax \ bx)a [1 b = �x:(ax [bx)ac1 = �x:(ax)cProof:10 We illustrate only (iii).Det(a) = 8x(�x! Quant(ax)� 8x(�x! Quant(axc) By Lemma 7.2 ; (iii):Hence Det(ac1): 2We would be interested in proving something in general about these determiner relations.Let us consider monotonicity. We have two kinds of monotonicity: upwards monotonicity anddownwards monotonicity (see [Benthem 83] and [Benthem 84]). These are de�ned as follows,where C is a property of sets:(upwards) If A � A0 and C(A) then C(A0)8The following are examples of (i), (ii) and (iii) respectively:� Every man and some women.� Every man or some women.� Not every man.9We introduce the subscript `1' to make the distinction between the intersections considered.10The following are examples of (i), (ii) and (iii) respectively:� Many and many.� Some or few.� Not all, not every. 21

(downwards) If A0 � A and C(A) then C(A0)As an example of an upwards monotone determiner, we take a', a' is monotone in both ar-guments. E.g.a boy who sings walks entails a boy walks. Also a boy sings and dances entailsa boy sings.Hence to show that a' is upwards monotone in both arguments we need to show that(i) a0P1P2 ^ P1 � P 01 ! a0P 01P2 and(ii) a0P1P2 ^ P2 � P 02 ! a0P1P 02:Both (i) and (ii) can be shown as follows:For (i) :a0P1P2 ^ P1 � P 01 =9z(P1z ^ P2z) ^ P1 � P 01! 9z(P 01z ^ P2z).The proof of (ii) is similar.every' can also be shown monotone in the right argument but not in the left.11We now consider another property of determiner relations; that is conservativity. We saythat a property of sets C is conservative if(CONS) �(P1; P2) � �(P1; P2 \ P1); where � is the determiner relation of C:As an example, a' and every' are conservative. E.g. a boy walks entailsa boy is both a boy and he walks.Also every man runs entails every man is both man and he runs. Now to show that a' andevery' are conservative, we have to show that for any P1 and P2 properties,(a0CONS) P1 \1 P2 � P1 \1 (P2 \ P1):(every0CONS) P1 � P2 � P1 � (P2 \ P1):This is shown by the following two lemmas:Lemma 7.4 If P1 and P2 are properties then P1 \1 P2 � P1 \1 (P2 \ P1).Proof: The only thing worth mentioning here is that (P2 \ P1)z = P2z ^ P1z. 2Lemma 7.5 P1 � P2 � P1 � (P2 \ P1).Proof: Trivial. 2Of course we would like the conservativity condition to hold of any determiner we de�ne andwe would be happy if we could prove conservativity for determiner relations as a special typeof their own. It is not obvious how to do so and we must be satis�ed with proving propertiesabout each determiner relation individually.Now we can take the de�nition of properties of concepts which is given in [Benthem 83],page 459, to be:\determiners only dependent upon the intersection of their arguments;11For a clear discussion of such characteristics of determiners, the reader is referred to [Benthem 83].22

that is if C \D = A \B then �(C;D) � �(A;B)".Now we can prove that a' has such a property. This is because the determiner relation fora' is \1 and we can prove that if C \D = A \B then C \1 D � A \1 B:Before closing this section, we give the following lemma which shows that every' is atransitive relationLemma 7.6 fevery0P1P2; every0P2; P3g ` every0P1P3.Proof:every0P1P2 ^ every0P2P3 �8z(P1z ! P2z) ^ 8z(P2z ! P3z).Hence 8z(P1z ! P3z) and so every0P1P3. 2Transitivity does not hold for a'.8 AcknowledgementsI would like to thank the referee for his productive comments and the editing department forhaving dealt e�ciently with the manuscript.References[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium.[Aczel 81] Aczel, P., A formal language; privately circulated note, Manchester University.[Aczel 85] Aczel P. , Properties and propositional functions; privately circulated note, ManchesterUniversity.[Barwise, Cooper 81] Barwise J. and Cooper R., Generalised quanti�ers and natural language, Lin-guistics and Philosophy 4, pp 159-219.[Benthem 83] Van Benthem J. (1983), Determiners and logic, Linguistics and Philosophy 6, pp 447-478.[Benthem 84] Van Benthem J. , Questions about quanti�ers, Journal of Symbolic Logic 49, pp 443-469.[Beeson 87] Beeson M.J, Foundations of constructive Mathematics, Springer-Verlag, Berlin.[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloquium '78, M.Bo�a et al (eds), pp 159-224, North Holland, 1979.[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic logic 49, pp75-111, 1984.[Flagg, Myhill 84] Flagg R. and Myhill J., Notes on a type-free system extending ZFC; privatelycirculated note, Ohio State University and University of New York at Bu�alo.[M�onnich 83] M�onnich U., Toward a calculus of concepts as a semantical metalanguage, In Meaning,Use and Interpretation of Language, De Gruyter, pp 342-360.[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, LectureNotes in Computer Science 37, B�ohm (ed), Springer, Berlin, pp 1-26, 1975.[Smith 84] Smith J., An interpretation of Martin-L�of's type theory in a type-free theory of proposi-tions, Journal of Symbolic Logic 49, pp 730-753.23

[Thoamson 74] Thomason R. Formal philosophy, selected papers by Richmond Montague, Yale uni-versity.[Turner 87] Turner, R., A Theory of properties Journal of Symbolic Logic 52, pp. 63-89, 1987.

24

