A-Terms, Logic, Determiners and Quantifiers
the Journal of Logic, Language and Information 1(1),
79-103, 1992

Fairouz Kamareddine*
University of Glasgow
Department of Computing Sc
17 Lilybank Gardens
Glasgow G12 8QQ
Scotland, U.K.
email fairouz@dcs.glasgow.ac.uk

November 30, 1996

Abstract

In this paper, a theory T based on combining type freeness with logic is introduced
and is then used to build a theory of properties which is applied to determiners and
quantifiers.

keywords: type freeness, logic, property theory, determiners, quantifiers.

1 THE THEORY Ty

It is well known that mixing type freeness and logic leads to contradictions. For example, by
taking the following syntax of terms:
t:= x|)\x.t|t1t2|—|t

and applying the term Az.—zz to itself one gets a contradiction (known as Russell’s paradox).
Church was aware of the problem when he started the A-calculus which he intended to be a
theory of functions and logic. But his first theory of the A-calculus was type free and so was
inconsistent. The paradox could be described as follows: take a to be Az.(zx — L). Then
from Modus Ponens (MP), the Deduction Theorem (DT), and (-conversion, we could derive
Curry’s paradox:

1. aa =aa — L by 3 -conversion
2. aa - aa

3. aa - L by MP + 142
4. Faa — L by DT +3

. aa from 1

6. L by MP +4 45

*The author is currently on a study leave for one year at the University of Eindhoven, the Netherlands

The presence of these foundational difficulties led to the creation of two routes of research.
The first route placed a big emphasis on logic and deduction systems, but avoided the difficulty
by restricting the language used to first or higher order without allowing any self-reference or
polymorphism. The second route placed the emphasis on the expressiveness of the language
and the richness of functional application and self reference, but at the expense of including
logic in the language except if restrictions are made (such as using non-classical logics).
Church for example, followed Russell and introduced the simply typed A-calculus. However,
it became obvious that the theory was unattractive as one will have numbers at each level,
no polymorphic functions and so on. Church and others then decided to enrich the syntax
and the language but to avoid or restrict logic.

Mixing logic with the type free A-calculus is not straigthforward (see [Scott 75] and
[Aczel 80]). Furthermore there has been various attempts at so doing. All these attepmts
have many points in common. The theory we put forward below is influenced by all these
approaches and will be the constructive version of that of [Flagg, Myhill 84], as we shall be

explaining.

Assume a denumerably infinite set of variables and use x,y, z, £1, Y1, - . . to range over them.
Use t,t',t",t1,to,... to range over terms. The syntax of terms written in BNF notation is as
follows

1= $|>\$.t|t1t2|t1 == t2|t1 N t2|t1 V t2|t1 — t2|Ht|Vt|Elt.
All these terms are obvious except for Ht. H is essentially what enables the avoidance of the
paradox and when Ht is derivable, ¢ must be a proposition.

We use = for syntactic identity and define L =4 0 =1 where 0 = Afx.z and 1 = Afx.fx.
We define ‘=’ and ‘<’ out of the previous ones as follows:

—t =gt — L
t1 & 12 =df (tl — tg) N (tg — tl).
Bound/free variables and substitution are defined as usual; in [z := t2] the bound
variables of #; are changed to avoid collision. Moreover we write t[z := t1,...,x, :=t,] for

the simultaneous substitution of #; for x;, for 1 <7 <n, in ¢.

1.1 Type freeness

We counsider the following axioms and rules

() Az.t = Ay.t[z := y] where y is not free in ¢
(B) Az.t)t' = t[x :=t']

t1 =12 t) =t
() —

t=t t=1t"
(9) T

t'=1
te =t

(€) where z is not free in ¢,# or any open assumptions .

t=t

From the axioms so far, we can deduce the following

Lemma 1.1

(7) = is reflezive, i.e. t =1

t=t
=t

(i7) = is symmetric, i.e.

(111) = s transitive, i.e. P
. t=t
) Oy
(v) (n)(Ay.uy) = u for y not free in u.
Proof: Easy. -

Note, however, that from (e) above we have been able to deduce both (£) and (7), but
from () alone we cannot deduce (¢) as we will also need (n) in the derivation.

1.2 Logic

(a)-(€) are just axioms and rules of the A-calculus with extensionality; we still need a logic
and we therefore add the following

t Ht t Ht

(VI) — —
tVvt tvit
{t} {t'}

tvt S S

(VE)
S

Ht HY
HvV _
(HY) H(tVt)

t t
Vi -
(AT) (tAt)

tAY tAY
AE
(AE) ” 7

Ht HY
HA _—
(HN) H(tAt)

{t}

Ht t
— 1
() t—t

t t—t

(+ B) .
{t}
(H) Ht Ht
_)
H(t — 1)
1
J_ _
T
tt'
ar —
(31) 3t
{tx}
3t s . : : .
(3E) ———— provided z is not free in ¢, s or any open assumption
s
H(t
(H3) HE;;; x not free in ¢ or any open assumption
tx . . .
(VI) v ° not free in ¢ or in any open assumption
Vit
VE —
(VE) p
H(t
(HY) HEV:;; x not free in ¢ or any open assumption
t
H -
(H) T

t=1t t

(Tsub) 4

Now we stop to compare this theory with other ones based on combining type free A-
calculus with logic. In [Aczel 81] a formal language of Frege structures is presented but
negation there is a primitive operator. Flagg and Myhill (in [Flagg, Myhill 84]) offered the
classical version of the above theory. [Smith 84] offers a theory of Frege structures with the
aim of interpreting Martin-Lof type theory and [Moénnich 83] provided a theory similar to the
one found in [Aczel 81]. Finally [Beeson 87] offered an axiomatic theory of Frege structures.

Models of this theory exist and can be constructed using Aczel’s techniques in [Aczel 80]
or Scott’s method in [Scott 75]. The models of the A-calculus cannot deal with logic added on
top of the A-calculus, since once logic is added, consistency might be threatened. Models of
type free A-calculus with logic were not obvious until they were initiated by Scott in [Scott 75]
where simply the idea was to start from any model of the A-calculus and build logic on top

by inductively constructing two collections one of the true propositions, the other of the
false ones and by taking the limit of these two collections. Frege structures in [Aczel 80] are
essentially based on the same idea, except that logic is built by inductively constructing the
collections of the possible propositions and the possible truths, and by taking the limit of
these two collections.

As it sounds, the process is quite simple, yet it depends on having a clear idea of the
structure and on proving some theorems which will ensure the existence of the various logical
connectives in the model considered.

2 THE METATHEORY OF Ty

We write - ¢ if ¢ is a theorem of Ty and I' - ¢ if ¢ is deducible from the set of hypothesis in
I". The following are provable in Ty

(T0) HL
t=t t'z:=1
T1
(T [z = t/]
(2) ti=tifori=0,...,n to[ry:=1t1,..., 2, = ty)]
toler =t ...,z :=1]]
t=t Ht
T -
(T3) Ht
(T4) If FtAt then ' At
(T5) {Ht, H'} F (tVvt =t Vv t)
T6 If Htthen F ——t
(
(T7) {Ht}Ftet
(T8) If Ftet and Ft' < ¢ then {Ht, H'} Ft &t
(T9) If ~t&t then ' &t
(T'10) If -Vt then F-3(\z.~(tz))

(T11) {H(tz)} F Yt — -I(\z.~(tz))

(T12) If -t then FV(\z.t)
(T13) If T+ ¢ then T - V(\a.t)
(T'14) If T F V(Aa.t) then T+ ¢
(T15) - 3(Ax.(z = 0))

(T'16) - 3(Az.~(z = 0))

(T'17) Iftel then't¢
(T18) IfT+tand -t — ¢ then T ¢
(T19) UTU{t} -t then TU{Ht} -t =t
(T°20) {Ht} -t — (-t > t')
(T21) {Ht} -t — -t
(T22) {Ht} - -t & -t
(T23) {Ht, H'} F =(t V') & ~t A=t
(T24) If {Ht,Ht'} -t < ' then {Ht,Ht'} F —t & —t'
(T25) KEI'FLthenI'F¢
(7T26) If '+ ¢ then I' - J(Az.t)
(T27) fI'-tthenTUARE
(T28) If '3t and AU {ty} -t/ then T UA k¢ for y not free in A
(T29) IfT+tand At then TUAR AT
(730) UTDFtVE,AU{t}Ft; and EU{t'} Ht; then TUEF ¢
(T'31) {Ha} F —(a A —a)
(T32) {Ht, H'} Ft — (t' — 1)
(T33) {Ht, H'} F (t > ') = ((t = ~t') = =)
(T34) {Ht, Ht'} Ft >tV
(T'35) {Ht, H'} bt > t' Vvt
(T'36) {Ht, H'} Ft — (' =t ATt
(T37) {Ht, H',Ht" t s t'} "z :=t] & [z := ']
(T'38) UTU{t}Ft and '+ ¢ then I' - ¢
Proof:!
(T0) is an instance of (H =).
(T1) is deducible by induction on the way terms are constructed, using
(Tsyp) among other things .
(T2) is deducible by induction on the way terms are constructed.
(T3) is deducible from (v) and (Tsyp)-
(T4) — (T'38) are easy exercises.

1(T19) is known as the deduction Theorem; please note the insertion of {Ht}. This is important as without
it we would get Curry’s paradox.

3 A THEORY OF PROPERTIES

We introduce in our language Ty the operator A, understanding AP to mean that P is a
property. A is defined as follows:

AP =4 VoH(Pux).

That is, something is a property iff whenever it applies to an object, the result is a proposition;
e.g. A\x.~(z = x).

Having defined properties in Ty let us now look at their closure conditions to see whether
they ‘behave properly’. We can construct properties in the following way:

1. PUP' = Xx.(PzV P'x)

2. PN P = X\z.(Px A\ P'z)

3. P°=X\z.~Px

4. P — P' = \z.[Vy(Py — P'(zy)]
5. O =Xz.(z =x)

6. v = Az.~(x =x)

(1) - (3) give us boolean combinations of properties, using join, meet and complement. (4)
gives us function space, and (5), (6) give us the universal and the empty property, respectively.
Now before moving on to proving some important results about the collection of properties,
we note that while we understand AP to be P is a property, some people understand it to be
P is a class. Both interpretations work in parallel and to illustrate this point we introduce €
by

a € P =4 Pa,
and we understand it as saying a belongs to the class P. We can hence easily prove the
following
(i) pP=r AP
i
AP
AP
H(teP)

)

H(tx)
A(Az.tx)

ii1) where no assumption depends on z.

Now we can prove the following lemma

Lemma 3.1 The following are provable
(7) FAGO

(i7) FAY

(idi) {AP,AP'} F A(PUP)

(iv) {AP,AP'} - A(PN P

(v) {AP,AP'} - AP®

(vi) {AP,AP'} + A(P = P')
Proof:

We shall only prove (vi), as the others are similar.

We have to show that VxH(Nz(Pz — P'(zz))).

If AP' then VaH (P'z),

hence H(P'(xz)); but H(Pz) as AP.

Therefore H(Pz — P'(xz)).

Hence H(Vz(Pz — P'(zz))) and so YxH(Vz(Pz — P'(xz))); hence A(P — P'). O

© stands for the universal property, 3/ stands for the empty property, and, of course, if P, P’
are properties, then so are their disjunction and conjunction. Also, the complement of any
property is a property. This lemma implies that our domain of properties satisfies some
important closure conditions; note especially that if P and P’ are properties then P — P’
is also a property. It is well known that this would not hold if the notion of property was
more comprehensive. For instance, in [Turner 87] and [Feferman 79|, if P, P’ are properties
or classes then P — P’ is not necessarily a property or a class because according to their
approach, there were more propositions than there is according to the approach put forward
here.

Lemma 3.2 The following are provable

(i) a€ PNP =((aeP)A(aeP))
(i7) a€ PUP' =((aeP)V(aeP))
Proof: Obvious. O

Operators such as U,N and ¢ are just ways of building new properties (or classes) out of old
ones. We have not yet defined any relations between properties (those relations may not be
properties). Here we take the first step and define the following between properties:

P C P'= (Vx)(Px — P'z)

We understand P C P’ to be P is a subproperty of P’.
We also define the following operation on properties, which we have not included with the
previous ones because of its distinctive status — a status which will become clear below.

IIP = \z.(Vy(Py — yx))

IIP is the intersection of all properties that are themselves P. It is obvious that we should
not deduce from AP’ and P C P’ that AP; but if AP, do we then have A(IIP)? Well, we
need to add another condition, namely, Vy(Py — Ay). With this new condition, things fit;

Lemma 3.3 If AP and Vy(Py — Ay) then A(ILP).

Proof:

(ITP)x = Yy(Py — yz); and we can show by (H —),
H(Py — yx) if we can show both that

(i) H(Py) is deducible, and that

(ii) H(yx) is deducible from assumption that Py.

(i) follows from AP and (ii) follows from Py and Vy(Py — Ay).

Hence A(ILP).

Now we start by listing some characteristics of our domain of properties. We have already
seen two of these characteristics in Lemma 3.2. With the following lemma we reveal more of

our domain of properties,

Lemma 3.4

(Az.@)t A (Az.0)t = (A\z.(D A L))t
(A.=®)t = ~(\z.D)t

(A2 ®)t V (M. D)t = Az (B V T))t

(P€)t = —Pt

(PNPYt=PtAP't

(PUPYt=Ptv Pt

((P))t = ==Pt

{AP,AP'} - (P UP')t < (Pt A (P)t
{AP,AP'} F (P°U P)t = (P)t V (P")t
{AP,AP'} - (P°NP)t & (PUP)t
{pt} F ((P9)°)t

If Ht then Yy(Az.t)t' — (Az.Vyt)t'

If Ht then Jy(Az.t)t' — (\z.Jyt)t’

Proof:2. We only prove (z) as (i)-(vii) are similar cases of 3-conversion, (viii) comes from
(z) and (v), (iz) is a particular case of (vi) and (zi) comes from (vii) and the fact that from
a we deduce ——a. Also, (xii) and (xiii) are easy to prove.

(PN Pt = (Mx.(P%)z A (P')x)t
= (POt A (Pt
=Pt \N-P't
& (Pt V P't), from (T23), AP and AP'.

and (P U Pt = (Az.~(PUP)x)t
—(PUP"t
= —(PtV P't)

Hence (PN P'°)t < ((PUP))t. O

Now we discuss what would happen to the lemmas above if we change the functional
application of the A-calculus by a more intentional application, call it pred. That is, from
Pz = Qy, we can deduce nothing about the relationship between P and) and x and y. pred
on the other hand, will satisfy that if pred(P, a) = pred(Q,b) then P = Q and a = b. So let
us introduce pred such that

) pred(P, x) Px H(pred(P,x)) H(Px)

! Px pred(P, x) H(Px) H(pred(P,x))
(P2) Va(pred(P,z) = pred(Q,x)) - P =Q
(Ps) pred(P,a) = pred(Q,b) - (P=Q ANa=0)

Lemma 3.5 If AP then Va(Px < pred(P,x)).
Proof: obvious. O

Now it is interesting to see what would happen to the closure of our properties if we
understand the predication relation to be given in terms of pred and not functional application.

We start from our definition of A above. We see that A*P =4 VaH (pred(P,x)) does not
give anything new. Suppose, however, that we introduce a relation €* such that a €* P =4
pred(P, a), then in Lemmas 3.1 and 3.3, nothing new results, since if AP then pred(P,x) = Px
for any z. In Lemmas 3.2 and 3.4, let us replace any occurrences of € by €*, = by = and
functional application by pred. We combine the things that work for pred in one lemma,
Lemma 3.6, and we add the condition that AP and AP’

2But not necessarily:
(vigi') {AP,AP'} F (PN P))t= (P°)tVv (P}t
(x) (PCUP)t=((PNP))t

(zi") ((P°)°tH (P)t

10

Lemma 3.6

If AP, AP’ then the following holds,

1.

o e

pred(P,t) A pred(P',t) < pred(P N P't)
pred(P°¢U P'°,t) & pred(P¢,t) A pred(P'c,t)

pred(P,t) — pred((P€)¢,t)*

(
(
pred(P¢ N P, t) & pred((P U P')¢,).
(
pred(P°

,t) < —pred(P,t)

Proof:

1.

If AP,AP' then A(P N P).
Therefore H(pred(P N P',t)), H(pred(P,t)) and H(pred(P',t)).

But pred(P N P',t) = pred(Az.Pxz A\ P'z,t)
< Pt A P't, as A(PNP').

Since pred(P,t) < Pt and pred(P',t) & P't
then pred(P,t) A pred(P',t) < Pt A P't.

Hence 1 is a theorem.

AP = AP® = pred(P¢,t) & P*t.
AP' — AP’ = pred(P'*,t) & P't.
AP and AP = AP°U P'*
= pred(PcU P'c,t) & (P°U P')t.
But by Lemma 3.4 (vi), (P¢U P'“)t = (P°)tV (P")t,
hence pred(P¢U P'°,t) < (P9)tV (P'°)t < pred(P€,t) V pred(P',t).
AP = AP*
AP' = AP
AP and AP = A(P‘NP'*) =
pred(P°N P'“ t) & (PN P“)t.
AP and AP' = A(PUP'¢) = A((P U P')") =
pred(P°U P'“,t) < (P U P')“t
But by Lemma 3.4, (V), (PN P'“)t = (P°)t A (P°)t
and by Lemma 3.4, (Viii), (P U P")t < (P)t A (P")t.
Hence (PN P')t < ((PUP)°)t
and so pred(P°N P'°,t) < pred((P U P')°,t).

3Not necessarily pred(P° U P'°,t) = pred((P N P')°,t), as we have: {Ht, Ht'} - ~(t Vt') = =t A =t’ but
not: {Ht,Ht'} - =(tAt) =tV —t.
“But not necessarily pred((p°)¢,t) — pred(P,t); this will only be the case if DP where DP will be defined

below.

11

4. AP = H(pred(P,t))
AP = AP® = A(P°)".
But by Lemma 8.4, (Vii), ((P°¢)°t = -—Pt

{pred(P,t)}
Pt
=Pt
((P)e)t
H(pred(P,t)) pred((P€)¢, t)
pred(P,t) — pred((P°¢)¢,t)

5. pred(P¢,t) & (P°)t when AP.
(Pt = ~(P);
hence pred(P¢,t) < —Pt.
But Pt < pred(P,t); hence by (T24), ~Pt < pred(P,t).
Therefore, pred(P¢,t) < —pred(P,t).

If AP and AP’ are not assumed then the version of Lemma 3.6 is as follows

Lemma 3.7 The following holds in Ty,

(i) {pred(P N P',t)} - pred(P,t) A pred(P',t)
(i) {pred(P,t) A pred(P',t)} & pred(P N P',t)
(i) {pred(P°,t)} - —~pred(P,)
(iv) {~pred(P,t)} & pred(P°,t).

Proof:

(i) If we assume pred(P N P',t) then H(pred(P N P’ t)),
hence H((P N P')t)) and so H(Pt) and H(P't).
This means that H(pred(P,t)) and H(pred(P',t)).

But Pt < pred(P,t), P't < pred(P',t),

(PN Pt < pred(P NP, t) and (PN P')t = Pt A P't.
Hence pred(P N P t) & (pred(P,t) A pred(P',t)).
Therefore the assumption pred(P N P',t)
implies pred(P,t) A pred(P',t);

i.e.pred(P N P' t) - pred(P,t) A pred(P',t).

Now (ii), (i1i) and (iv) are easy.

12

4 DETERMINATE PROPERTIES

Now, even if AP, we still do not have that pred(P,c) V —pred(P,c); we therefore define a
property to be determinate as follows

DP =y Va(pred(P,z) V —pred(P,x))

E.g. DO; this is because Vz(pred(0,z) V —pred(©,x)) is true as it is equivalent (in terms
of &) to Vz((x = x) V =(x = z)). We know that © = x is always true, therefore (z =
x) V =(x = x) is always true and so Vz((x = x) V =(x = x)) is true. For 57, we know that
pred(s7,z) < —(r = z) and so for any x, —pred(s7,z) < (z = x) which is true; therefore,
Vz(pred(v7,z) V —pred(s/,z)) is true and so Dyy.

As an example of an undeterminate property, take: P, = Az.(x = a); P, is undeterminate
for take pred(P,,x) < (x = a) and pred(P,,z) < —(x = a). Therefore, pred(P,,x) V
—pred(Py,z) < (v = a) V —(xr = a) which we do not have a proof for and so we do not have
that P, is determinate.®

Lemma 4.1 Let P be a property such that DP. Then for any t, pred(P,t) < ——pred(P,t).
Proof:

(=) We always have pred(P,t) — ——pred(P,t) for any property P.

(<)

1. H(——pred(P,t)) because H(pred(P,t)).

2. pred(P,t)V—pred(P,t) because DP.

{=pred(P,t)} {pred(P,t)}
{pred(P,t)} L
H(——pred(P,t) pred(P,t) V —pred(P,t) pred(P,t) pred(P,t)

——pred(P,t) — pred(P,t)

The above lemma shows that the domain of determinate properties obeys classical logic; the
following lemma shows that this domain is closed under U, N, and €.

Lemma 4.2 If DP and DP' then D(P U P'),DP¢,D(P N P’).
Proof: Obuvious. U

The following lemma pushes negation inside pred in the definition of DP and shows that for
any object we cannot predicate both a property and its complement to that object.

Lemma 4.3

(¢) For any P such that AP, DP < Vx(pred(P,z) V pred(P¢,x)).
(i1) Vex, if Ax then [Vy|-[pred(z,y) A pred(z€,y)]]].

>This is mainly because equality is not determinate in the A-calculus; and we are using an intuitionistic
theory.

13

Proof:
(¢) If AP then pred(P¢,z) < (P and pred(P,z) < Pu;
but (P¢)xz = —=Px and Px < pred(P,x),
hence pred(P¢,) < —pred(P,z).
Therefore
Va(pred(P,z) V —pred(P,z)) < Yr(pred(P, x) V pred(P¢, x));
and so DP < Vx(pred(P, z) V pred(P¢, r)).

(i) If Az then pred(z©,y) < —pred(x,y), from above .
But =(pred(z,y) Apred(c©,y)) < —(pred(z,y) A —pred(z,y))
and we always have —(pred(x,y) A —pred(z,y)).

The next lemma is concerned with the conjunction of complements of properties

Lemma 4.4 For any properties P and P', if DP and DP' then we can derive the following
m TH

(i) (P°UPco)t < (PNPHH

(it) pred(P¢U P t) < pred((P NP, t)

(ii1) ((P9)°)t — Pt

(iv) pred((P°)°,t) — pred(P,t)

Proof:

(¢1) (=) We have to show that

PtvV—-Pt P'tv-P't - Ptv-'t
—(PtAP't)

In other words, we need to prove that
(a\/ﬁa) (b\/ﬁb) (ﬁa\/ﬁb)
—(aNb)
This is done as follows:
(@V—-a) (bVv-b) (-aV-b)
{a AN b}(1)
a b {-a} {-b}
L 1L (VE) and —a V —b
L By discharging (1)
—(aNb)
(<) is similar .

(i1) Now it is enough to say that
pred(P¢U P’ t) & (P°U P'“)t and
pred((P NP t) < (PN P

(i51) We proved in Lemma 4.1 that if P is a property such that DP then
pred(P,t) < ——pred(P,t). We also proved in Lemma 3.6 that if
P is a property then pred(Pc,t) < —pred(P,t). Hence as P¢
is a property, pred((P°€)¢ t) < —pred(P¢,t) < ——pred(P,t).
Therefore pred((P°)¢,t) < ——pred(P,t).
As ((P°)°)t « pred((P°€),t) and Pt < pred(P,t) then
((P°)°)t & == Pt and so ((P°)°)t — Pt.

14

(iv) is a consequence from the proof of (iii) above.

Now we define introduce préd for those who are intersted in comparing the theory that is
presented here with those theories presented elsewhere such as feferman’s and Turner’s. For
this purpose we define

préd(P,x) =g pred(P°, x).

Lemma 4.5

(1) If DP then we have pred(P,z) V préd(P,z) for any .
(i) If HA then préd(Az.A,t) & —pred(Az.A,t)
(t3i) For P a property, Ve—(pred(P,x) A préd(P, x)).

Proof:

(i) DP =g Vapred(P,z)V —pred(P,x).
But pred(P¢, z) < —pred(P,x) for any property P,
hence if DP then pred(P,x) V pred(P€,x) for any x.

(i7) préd(Az.A,t) = pred((Az.A),t).
If HA then A(Ax.A) and so
pred((Ax.A)¢,t) = pred(Az.A,t).
Hence préd((Az.A),t) & —pred(Az.A,t).

(¢ii) If AP then pred(P¢, z) < —pred(P,x);
as we have Vx—(pred(P, z) \ —pred(P,x)),
then Yo—(pred(P,) A préd(P, z)).

One of the basic characteristics of the theory of property offered here is the full (even
though weak) comprehension principle. This principle says that:

(CP) For f a propositional function, we have:
(Az.fx)t is true iff ft is true .

Here f is a propositional function iff for every x, we have H(fx). This full comprehension
principle would lead to inconsistency if the notion of property was strengthened. This is why
the work of Turner, Feferman and others focussed on restricting the principle. The fullness
of the principle however is very useful to have because, as we see from (CP), it relates the
‘internal’ logic to the ‘external’ one. To be more specific, let us understand by the term
‘external’ logic to be the logic which enables us to make the usual logical derivations such as
the ability to deduce from ®[t] — Y[t] and ®[t], U[t]. Let us moreover, understand by the
term ‘internal’ logic to be the logic which enables us to make derivations inside the A-operator,
for example deducing from pred(Ax.®,t) and pred(Az.® — ¥, t), that pred(Az.U,t). In our

15

theory, we have by (CP) that the laws of the ‘internal’ logic are a consequence of the laws
of the ‘external’ one. That is, having (CP), one can make do with just the axioms of first
order logic. On the other hand, because of the unavailability of (CP), [Turner 87] had to
treat the ‘internal’ and ‘external’ logics separately. According to our theory, if we work with
propositions then we could have the following;

pred(Ax.®,t) A pred(Ax. ¥, t) < pred(Az.® A ¥, t) and:
pred(Ax.—®,t) & —~(t).

Now if we want a more general version of the comprehension principle, we can introduce
the following:

For any W a propositional wif open in x,
(3P)(Vt)(pred(P,t) < ¥[t/x]);

the above principle is valid. Also we of course have extensionality:

(V) (Vy)((Vz) (22 = y2) = = = y)

5 DETERMINERS

One of Montague’s main achievement in PTQ (see [Thoamson 74]) was to show how a log-
ically adequate treatment of quantifier phrases could be systematically incorporated into a
fragment of English. A further round of investigation into the characteristics of quantifiers
and determiners was inaugurated by Barwise and Cooper’s paper [Barwise, Cooper 81], which
explored the way in which results in the area of generalised quantifiers could be applied to
natural language. Since then, there has been a copious discussion of this topic - van Benthem
provides a good summary of the main results (in [Benthem 83] and [Benthem 84]). Here,
we inquire how natural language quantifiers and determiners might be incorporated into the
framework of our theory of properties.

In a Montague treatment, a sentence like Every boy runs receives a translation of the
following form:

(1) (every' (boy')) (run’).

Within the framework of [Barwise, Cooper 81], we say that every’(boy’) is a quantifier -
interpreted as a set of sets (or, intensionally, as a second order property of properties), and
that every’ is a determiner - interpreted as a function from sets to quantifiers. An alternative
analysis, adopted by van Benthem, treats determiners as relations between sets. For example,
(2) denotes an instance of the schema (3):

(2) every' (boy', run’)
(3) (4, B)

(3) provides a convenient notation for expressing interesting characteristics of determiners,
Introducing ¢ in (3) above prepares us for the important concept of a determiner relation,

16

also known as the characteristic property of the determiner. A characteristic property of a
determiner is that particular set theoretical relation which characterises this determiner set
theoretically; e.g. for every’, it is C and for a’ it is N'. We shall see below what C and N!
are.

We start first by defining the two determiners every’ and a’ in our framework. Let

every =g A yVz(zz — yz)
a' =g Av. Ay 3z(z A yz)

The meanings of every’, a’ are not classes but we can prove some important theorems about
them. We need however to introduce the characteristic properties of these determiners. We
have also to show that these characteristic properties (or for that matter the determiners
themselves) behave properly; that is when we combine things together in the right way we
get a proposition. This is shown to be the case in the following few definitions and lemmas.
The characteristic property of every’, namely C, has already been defined as follows:

If P, P, are properties ,
P CPh =df V.%‘(Pl.%‘ — PQ.%‘)

Lemma 5.1 C is a transitive, reflexive relation on properties.
Proof: Obvious. O

Another important property that one might desire is equisymmetry which is defined as
follows: C is equisymmetric iff

IfP1 g P2 and P2 g P1 then Vl‘(Pl.’,CEPgl‘)

As can be seen from the lemma below, equisymmetry holds for C.

Lemma 5.2 C is equisymmetric on properties.
Proof: Easy. O

Of course one has to note here that only equivalence between P, and P, is obtained and not
equality. I.e. we have equisymmetry rather than antisymmetry. This is due of course to the
intensional notion that is embedded in the system.

Lemma 5.3 If P, and P> are properties then

(i) every' PPy =P C P, and
(i) H(every' P P;).

Proof: Obvious. |

We define P, Nt P, =g 32(P1z N\ Pyz).

It is obvious that P, N' P, is a proposition when both P, and P, are properties.

Another concept that we introduce here is that of an empty property. We say that a
property P is empty and write)P iff Vz(=Pz). E.g. v/ is an empty property.

17

Lemma 5.4 If P, P, and P, are properties then the following holds:

(i) If 0P then —0(P U P)
(ZZ) If _I(Z)(Pl U P2) then _I(Z)(Pg U Pl)

Proof: FEasy. O

Lemma 5.5 If P, and P, are properties then

(’L) PP, =P ak Py
(ZZ) H(a'Png)

Proof: FEasy. O

6 NON DETERMINATE RESULTS

Outside the collection of properties, we cannot draw useful conclusions about every’ be-
cause we cannot decide the propositionhood of an arbitrary formula in which — is the main
connective® This is not a disadvantage as we only want every’ to have meaning when we are
working with properties. Moreover, we cannot define the type of every’ or of determiners
inside our formal language. That is if we define Quant and Det” as follows

Quant t =4 Vo (Azx — H(tx))
Det t =4r Vo(Az — Quant (tz)).

then there is no way to prove that Det and Quant always return propositions when applied
to terms, because

Vz(Az — Quant (fzr)) and
Va(Az — H(tx))

are not propositions for any . In fact even if ¢ is a property, we still do not have a guarantee
that Det ¢t and Quant ¢t are propositions, due to the fact that Az is not a proposition. This
is not serious as there is no particular reason for wanting determiners and quantifiers to be
determinate. Everything fits together properly, and we can prove many desirable features of
our determiners, why insist on determinability? The following lemma proves inside the theory
that combining a determiner and a property results in a quantifier.

5The reader is reminded again that a — b is a proposition in the case where a is a proposition and b is a
proposition assumning a is true.

"Note that we could have defined it as: Det(t) = Voy((Az A Ay) — H((tz)y)) which is closer to van
Benthem’s approach in [Benthem 83] and [Benthem 84].

18

Lemma 6.1 { Det Q,AP} - Quant (QP).
Proof:

{AP}
{DetQ}
Vr(Azr = Quant(Q)) From Det Q By (VE)

AP—Quant(QP)
AP AP—Quant(QP) By (»E)

Quant(QP)

Having determiners such as every’, a’ is one thing; being able to deduce that every’, a’ are
determiners is something else. L.e. can we prove that Det(every’), Det(a’), etc..? Take the
formula for every’:

Az Ay Vz[zz — yz;
To show that Det(every’) we have to show that
Vo (Ax — Vy(Ay — H(every'zy))).

But to be able to show the implication we need to have H(Az), and H(Ay), which we cannot
assume. For this we need an extension for implication as follows:

We always have that if {a} F b then {Ha} F a — b (our version of the deduction theorem).
We need that if {Ha} - b then - Ha — b. Can we assert this rule? That is:

(%) If {Ha} Fbthen - Ha — b.

It may be claimed here that this rule leads to an inconsistency similar to Curry’s paradox
because if a is Az(H (xx) — L), then a is a well-formed expression. However it is not the case
that we will get Curry’s paradox, for take the following chain of deductions:

app(a,a) = H(aa) - L by [-conversion

aa + H(aa) — L from above
aa + H(aa) obvious

aa = L by MP
H(aa) Faa — L by DT

But now applying (*) we get: - H(aa) — (aa — 1)
which is not contradictory.

Note that we should not always deduce from {a} F b that - a — b; because if we did then
we get Curry’s paradox. However, I am not sure whether the deduction from {Ha} - b to
F Ha — bis harmless and hence the following theorem that every’,.a’ and the’ are determiners
can only hold if we conjecture that (*) holds.

19

Lemma 6.2 Det(every’), Det(a’), if (*) holds.
Proof: For every’: We have to prove that Va(Az — y(Ay — H(every'zy))).

{Az, Ay} F H(every'zy)).

{Az} + H(yz) — H(every'zy) according to (x).

From this we have: {Axz} FVz[H (yz) — H(every' zy)]
{Az} F [VzH (yz)] — H(every'zy)

{Az} F Ay — H(every'zy)

{Az} FVy(Ay — H(every'zy)).

Repeating the same process, we get:

F Az — Vy(Ay — H(every'zy))

FVa(Az — Vy(Ay — H(every'zy))).

The proof of a’ is similar to that of every’. O

7 Charactersistics of determiners and quantifiers

Here we are concerned with some characteristics of determiners that can be proven in our
theory. We start with the first theorem that asserts that the result of applying a quantifier
to a property results in a proposition.

Lemma 7.1 {Quant(Q), DP} + H(QP)
Proof:

We have to prove that: H(QP) from assumptions:
Va(Az — H(Qx)) and AP.

But {Vz(Ax — H(Qz)),DP} - AP,AP — H(QP)
and {AP,AP — H(QP)} - H(Qx)

We still cannot prove: {Quant(Q),AP,AP'} - (QP AP C P') — QP’, but this is not
worrying as it should not always hold. The following lemma is to show that the domain of
quantifiers is closed under U, N and ©.

Lemma 7.2

(1) {Quant(a), Quant(b)} F Quant(a Nb)
(17) {Quant(a), Quant(b)} F Quant(a U b)
(¢ii) {Quant(a)} F Quant(a®)

20

Proof:® We illustrate only (i):

Va(Az — H(ax)) Vz(Ax — H(bx))
Va(Az — H(ax) A H(bz))
Hence Vo (Az — H(ax A bx))

Also the following lemma is concerned with the closure on the domain of determiners. Now
closure is in term of Ny, Uy,°t.?

Lemma 7.3

(¢) {Det(a),Det(b)} - Det(a Ny b)
(¢3) {Det(a),Det(b)} - Det(a Uy b)
(iii) {Det(a)} F Det(a‘t)

Where

aMmb = Ax.(ax Nbz)
aUp b = Az.(az U bx)
a®t = \z.(ax)¢

f:10

Proo We illustrate only (iii).

Det(a) = Vz(Azr — Quant(ax)
= Vo (Azx — Quant(az®) By Lemma 7.2, (iii).
Hence Det(at).

We would be interested in proving something in general about these determiner relations.
Let us consider monotonicity. We have two kinds of monotonicity: upwards monotonicity and
downwards monotonicity (see [Benthem 83] and [Benthem 84]). These are defined as follows,
where C' is a property of sets:

(upwards) If AC A" and C(A) then C(A")

8The following are examples of (i), (ii) and (iii) respectively:
e Every man and some women.
e Every man or some women.

e Not every man.

9We introduce the subscript ‘1’ to make the distinction between the intersections considered.
10The following are examples of (i), (ii) and (iii) respectively:

e Many and many.
e Some or few.

e Not all, not every.

21

(downwards) If A" C A and C(A) then C(A")

As an example of an upwards monotone determiner, we take a’, a’ is monotone in both ar-
guments. E.g.a boy who sings walks entails a boy walks. Also a boy sings and dances entails
a boy sings.

Hence to show that a’ is upwards monotone in both arguments we need to show that

(’L) a' PP, A\ P, C Pll — a’PllPQ and
(ZZ) a,P1P2/\P2 QPQI —>a'P1P2'.

Both (i) and (ii) can be shown as follows:

For (i) :

a,P1P2/\P1gP1,:

HZ(PLZ VAN PQZ) NP C Pll

— 3z(P]z \ Pez).

The proof of (ii) is similar.

every’ can also be shown monotone in the right argument but not in the left.'!

We now consider another property of determiner relations; that is conservativity. We say
that a property of sets C' is conservative if

(CONS) §(P1,P) =0(Py,P,N Py), where 0 is the determiner relation of C.

As an example, a’ and every’ are conservative. E.g. a boy walks entails
a boy is both a boy and he walks.
Also every man runs entails every man is both man and he runs. Now to show that a’ and
every’ are conservative, we have to show that for any P; and P properties,

(a'CONS) P, ﬂl P=P ﬂl (PQﬂPl).
(GUCTy,CONS) P1 QPgEPl - (PgﬂPl).
This is shown by the following two lemmas:

Lemma 7.4 If P; and P, are properties then PLN' P, = P N (PN Py).
Proof: The only thing worth mentioning here is that (P, N Py)z = Poz A Py 2. O

Lemma 7.5 P1 - P2 = P1 - (P2 ﬂPl).
Proof: Trivial. U

Of course we would like the conservativity condition to hold of any determiner we define and
we would be happy if we could prove conservativity for determiner relations as a special type
of their own. It is not obvious how to do so and we must be satisfied with proving properties
about each determiner relation individually.

Now we can take the definition of properties of concepts which is given in [Benthem 83],
page 459, to be:

“determiners only dependent upon the intersection of their arguments;

"For a clear discussion of such characteristics of determiners, the reader is referred to [Benthem 83)].

22

that is if CND = AN B then 6(C, D) = (A, B)”.

Now we can prove that a’ has such a property. This is because the determiner relation for
a’ is N and we can prove that if CND =ANBthen CN'D = AN'B.

Before closing this section, we give the following lemma which shows that every’ is a
transitive relation

Lemma 7.6 {every PPy, every Py, P3} t every' Py Ps.
Proof:
every PPy N\ every' PyP3 =
Vz(Prz — Pyz) ANVz(Paz — Psz).
Hence Vz(P1z — Psz) and so every' P Ps. O

Transitivity does not hold for a’.

8 Acknowledgements

I would like to thank the referee for his productive comments and the editing department for
having dealt efficiently with the manuscript.

References

[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium.
[Aczel 81] Aczel, P., A formal language; privately circulated note, Manchester University.

[Aczel 85] Aczel P. , Properties and propositional functions; privately circulated note, Manchester
University.

[Barwise, Cooper 81] Barwise J. and Cooper R., Generalised quantifiers and natural language, Lin-
guistics and Philosophy 4, pp 159-219.

[Benthem 83] Van Benthem J. (1983), Determiners and logic, Linguistics and Philosophy 6, pp 447-
478,

[Benthem 84] Van Benthem J. , Questions about quantifiers, Journal of Symbolic Logic 49, pp 443-469.
[Beeson 87] Beeson M.J, Foundations of constructive Mathematics, Springer-Verlag, Berlin.

[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloquium ’78, M.
Boffa et al (eds), pp 159-224, North Holland, 1979.

[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic logic 49, pp
75-111, 1984.

[Flagg, Myhill 84] Flagg R. and Myhill J., Notes on a type-free system extending ZFC; privately
circulated note, Ohio State University and University of New York at Buffalo.

[Monnich 83] Monnich U., Toward a calculus of concepts as a semantical metalanguage, In Meaning,
Use and Interpretation of Language, De Gruyter, pp 342-360.

[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, Lecture
Notes in Computer Science 37, Bshm (ed), Springer, Berlin, pp 1-26, 1975.

[Smith 84] Smith J., An interpretation of Martin-Lo6f’s type theory in a type-free theory of proposi-
tions, Journal of Symbolic Logic 49, pp 730-753.

23

[Thoamson 74] Thomason R. Formal philosophy, selected papers by Richmond Montague, Yale uni-
versity.

[Turner 87] Turner, R., A Theory of properties Journal of Symbolic Logic 52, pp. 63-89, 1987.

24

