
Nominalization, Predication and TypeContainmentthe Journal of Logic, Language andInformation 2, 171-215, 1993.Fairouz Kamareddine �Department of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQemail: fairouz@dcs.glasgow.ac.ukandEwan KleinyCentre for Cognitive Science2 Buccleuch PlaceUniversity of EdinburghEdinburgh EH8 9LWemail: klein@cogsci.ed.ac.uk5 February 1993
�Kamareddine is grateful to the Department of Mathematics and Computing Science, Tech-nical University of Eindhoven, for their �nancial support and hospitality during the academicyear 1991{92.yKlein's work has been carried out as part of the research programmes of the Dyanaproject (br 3175 and br 6852), funded by cec esprit Basic Research Division, and of theHuman Communication Research Centre, supported by the uk Economic and Social ResearchCouncil. 1

AbstractIn an attempt to accommodate natural language phenomena involv-ing nominalization and self-application, various researchers in formal se-mantics have proposed abandoning the hierarchical type system whichMontague inherited from Russell, in favour of more
exible type regimes.We brie
y review the main extant proposals, and then develop a newapproach, based semantically on Aczel's notion of Frege structure, whichimplements a version of subsumption polymorphism. Nominalization isachieved by virtue of the fact that the types of predicative and propo-sitional complements are contained in the type of individuals. Russell'sparadox is avoided by placing a type-constraint on lambda-abstraction,rather than by restricting comprehension.Keywords: Typed �-Calculus, Russell's Paradox, Property Theory, Poly-morphism, Natural Language Semantics.

2

1 Introduction1.1 OverviewType disciplines have featured prominently in formal approaches to naturallanguage since the work of Montague (e.g., [Montague 73]). Montague avoidedthe paradoxes of naive set theory by adopting a version of Russell's cumulativehierarchy of types. Despite the successes of Montague's type system for English,it has met with criticism in recent years for being excessively rigid. One line ofresearch, initiated by Partee and Rooth [Rooth et al. 82, Partee et al. 83], hastried to achieve greater
exibility, especially in the treatment of quanti�ers, byassigning each expression a family of types. Another line of work has moved inthe direction of type-free theories of properties, in order to accommodate thedi�culties raised by nominalization and self-application. In this paper, we willfocus our attention on the second of these two endeavours.Historically, type disciplines for languages have developed in close associationwith intended models for interpretation. The proposals we shall make can alsobe construed in this way, inasmuch as they were inspired in part by Aczel's[Aczel 80] notion of a Frege structure, which is intended to provide a consistentformulation of Frege's logical notion of set.The paper falls into four sections. The �rst of these presents some back-ground notions, and brie
y surveys the natural language data which motivatesour formal analysis. Section 2 presents the syntax, types and inference rules fora language L�, while Section 3 deals with the models of L�. The �nal sectionshows how a fragment of English can be treated within our formal framework.1.2 Hierarchical TypesA system of types provides a classi�catory scheme for the domain and rangeof functors. The type of an expression determines the domain in which thatexpression receives an interpretation. Thus, in (1) (where we use the notation�:� to mean that expression � has type �), the proper noun Glasgow mightbe assigned type e, the type of entities, while the predicate fun is assigned typehe; pi, which we construe as the type of objects which combine with expresionsof type e to yield expressions of type p.(1) Glasgow:e is fun:he; pi .If we make the plausible assumption that the copular verb is here denotesthe identity function on predicates, then standard rules of type inference yieldthe result that (1) is an expression of type p, the type of propositions.In recent years, the semantic problems of nominalization in linguisticallymotivated type theories have received increasing attention, particularly as aresult of the work of Bealer, Chierchia and Turner [Bealer 82, Chierchia 84,Chierchia 85, Chierchia and Turner 88, Turner 87]. To illustrate, notice that3

we might want to assign di�erent types to di�erent kinds of syntactic subjects,as shown in the following two examples:(2) a. [Running around the lake]:he; pi is fun:hhe; pi; pib. [For us to run around the lake]:p is fun:hp; piIn (2a), we might expect the gerundive subject phrase to denote a property,hence to be assigned type he; pi. But if (2a) is to be of type p, fun will requirea new type, namely hhe; pi; pi. Similarly, if the subject of (2b) denotes a propo-sition, then the type of the predicate has to be changed to hp; pi. Yet there isno independent linguistic motivation for postulating distinct lexical entries forthe di�erent funs of each type.A related problem arises when we consider cases of self-application, illus-trated in (3a) and the simpler (though more arti�cial) instance (3b).1(3) a. [Being fun]:he; pi is fun:hhe; pi; pib. Fun:he; pi is fun:hhe; pi; piSuppose we postulate a �rst-order predicate fun:he; pi, and a second orderpredicate of predicates fun:hhe; pi; pi. This allows us to deal with (3); but whathappens if we want to a�rm that fun:hhe; pi; pi is fun? We are at the bottomof an in�nitely ascending ladder of types:(4) Fun:hhe; pi; pi is fun:hhhe; pi; pi; piThere seem to be broadly three classes of response to these problems of `typein
ation': type-lowering, type-freedom, and polymorphism. We brie
y considerthese in turn.Type-LoweringWe have just observed the potential di�culties which arise if the subject run-ning in (5) is assigned the type he; pi of verb phrases:(5) Running hurts.For then we are apparently forced to assign a correspondingly higher type toruns. The approach proposed by Chierchia (e.g., in [Chierchia 84]) postulatesa nominalisation operator \ which maps propositional functions (and propo-sitions) into entities.2 That is, if run0 (the semantic translation of run|we1Despite appearances, such locutions are not entirely restricted to the discourse of the-oreticians; the following sentence was noted in the Times Higher Education Supplement of28th September 1990, p.17:In fact, the fun of research is more fun than fun.2One of the earliest discussions of treating propositional arguments in a Montague frame-work, namely Thomason [Thomason 76], adopts a similar type-lowering operation.4

use Montague's prime notation for semantic constants) denotes a propositionalfunction f , then \run0 is an expression of type e which denotes an individualcorrelated to f . We might assume that the morphological operation which re-lates the gerundive form running to the �nite form runs has as its semanticcounterpart the introduction of this \ operator. The resulting semantic analysisis illustrated in (6):(6) hurt0:he; pi(\run0:e)Type-FreedomFrom a technical point of view, it is not necessary to explicitly map propo-sitional functions into their individual correlates. Instead, we can regard allproperties as being a special sort of individual. Following Aczel [Aczel 80],Bealer [Bealer 82] and others, properties are those �rst-order objects which canbe applied|using an explicit operation app of predication|to other objects soas to yield a proposition. This �rst-order approach is illustrated in (7):(7) app(hurt0:e, run0 :e):pAlthough we have declared the types of the expressions in (7), they servelittle purpose, since none of them are functional in nature.PolymorphismWe say that a function is polymorphic if it yields appropriate outputs for inputsof a variety of types. There are at least two notions of polymorphism which canbe invoked to deal with these problems. The �rst, called parametric polymor-phism (cf. [Cardelli et al. 85]), obtains polymorphic types by admitting typevariables. In Milner's [Milner 78] approach, as implemented for the program-ming language ml, types containing type variables are called generic. Suppose,for example, that v is a type variable, and that we assign to fun the generictype hv; pi. What happens when we try to determine the type of an expressioninvolving self-application like fun(fun)? Assuming that the second occurrenceof fun has the most general type (i.e.,hv; pi), the �rst occurrence will have to beassigned a more complex type, namely hhv; pi; pi, where the type variable v hasitself been instantiated as hv; pi. Although we are required to assign di�erenttypes to functor and argument in such a case, it should be noted that the com-plexity of a functor's type is no greater than that required by the most generaltype of its argument; thus we avoid the `in�nitely ascending ladder of types'alluded to in our discussion of strictly hierarchical type systems. An approachsimilar in spirit to ml is adopted by Parsons [Parsons 79], where Montague'sframework is modi�ed to allow `
oating' types which again contain type vari-ables. Although Parsons considers an interesting range of data, he does notexplicitly discuss problems of nominalization.5

A di�erent route avoids type variables by using something which [Cardelli et al. 85]call inclusion polymorphism. Suppose, for example, that �1, �2, and � are typessuch that �2 � �1, i.e., �2 is subsumed by, or contained in (cf. [Mitchell 88]),�1, and let f be a functor of type h�1; � i. Suppose further that � is a term, notof type �1, but of the more speci�c type �2. Then f is polymorphic in the sensethat it can apply to �, and yields a value of type � . From a semantic point ofview, we model a type � as a set D� of values, and containment as inclusionbetween such sets. Now if a function assigns values to members of a particularset D�1 , then it will also assign values to members of any subset D�2 of D�1 .How does this help us deal with nominalization? If we let the type he; pi ofpredicates be contained within the type e of individuals, then, for example, funof type he; pi can apply to any expression of type � � e, including fun itself.1.3 Individuals, properties and functionsOur treatment takes subsumption polymorphism as a starting point|that is,we will develop a notion of type containment, but avoid type variables. In fact,the formal framework that we develop is
exible enough to encompass a rangeof di�erent approaches to nominalization, including type-free ones. However,within the space of options, we have made certain theoretical choices whichallow us to model certain linguistic generalizations. In this section, therefore,we will consider some of the motivating data.In order not to prejudge the issues to be decided, we use the term propositionalfunctor to refer to any expression f of English which can combine with an ar-gument a so that the result f(a) is a declarative sentence, i.e., capable of beingused to assert a proposition. Thus, a �nite verb phrase such as walks is apropositional functor, as is a declarative sentence lacking a direct object, suchas John annoys . We assume that propositional functors denote proposi-tional functions, though just what these are supposed to be is left till later.We will use the more neutral term predicative to cover both propositionalfunctors and words or phrases which intuitively express properties but whichcannot combine with other expressions to make sentences. Again, we leave tilllater what the denotation of predicatives is, if not propositional functions.The �rst generalization which we wish to capture is:Claim 1.1 Predicative expressions can appear in the position of noun phrase(NP) arguments to propositional functors.For example, predicatives can occur in subject position of tensed sentences,i.e., a position which is typically occupied by NPs:(8) a. To run will tire Mary.b. Running annoys Mary.Thus, according to our terminology, (8a) contains two predicatives, to run andwill tire Mary; the latter is, in addition, a propositional functor.6

It can also be observed that the distribution of predicatives sometimes ex-tends beyond that of NPs. Thus we have:Claim 1.2 Predicative expressions can appear as arguments to propositionalfunctors where NPs are prohibited.In particular, certain lexical items are subcategorized to require predicativearguments, as opposed to ordinary noun phrases. The examples in (9) contrastwith those in (10):(9) a. John seems to annoy Mary/happyb. With John annoying Mary/happy/in love, we can stop worrying.c. Mary saw John run/running/happy(10) a. *John seems that boyb. *With John that boy, we can stop worrying.c. *Mary saw John that boyIt might be claimed that this patterning of data is purely syntactic. Certainly,it is true that items which require predicatives are usually subcategorized totake only a subset thereof. Thus, seems takes in�nitival complements but notbare or gerundive VPs, while see patterns the opposite way. Despite theseidiosyncracies, however, there are a variety of generalizations that can only beexpressed on the assumption that the class of predicatives can be somehowpicked out (cf. [Bach 79], [Pollard et al. 87]). It would be desirable to give asemantic characterization of this class, rather than just invoking an arbitrarysyntactic feature. As we will discuss later, our attempt to meet this criterion isonly partially successful.The next two claims have been particularly emphasized by Chierchia [Chierchia 85,Chierchia and Turner 88]. Recall Frege's view that a (propositional) functionis `unsaturated', or requires completion by an argument. On completion, thefunction yields a value, e.g., a proposition. Changing perspective slightly, wecan say that only functions have the combinatorial potential to `glue together'with arguments. The individual correlate of a function, by contrast, is `inert':it cannot by itself combine with an argument to produce a value. Translatedinto the realm of grammar, we have:Claim 1.3 Tensed predicative expressions are propositional functors, but un-tensed predicatives are not.Thus, the examples in (11) do not express assertible propositions, whereasthose in (12) do:(11) a. *John to run.b. *John (be) happy. 7

(12) a. John runs.b. John is happy.This claim, though attractive, seems to require modi�cation when embeddedin�nitives are considered. Thus, [Jacobson 90] has drawn attention to data like(13) Everyone likes their tea to be hot.The crucial question about such an example is whether the substring their teato be hot is an in�nitival sentence (as opposed to a sequence of two distinctcomplements of like). Evidence in favour of it being a single constituent isprovided by standard tests:(14) a. What everyone likes is their tea to be hot.b. Everyone likes their tea to be hot and their beer to be cold.Despite these examples, the fact that non�nite verbs cannot combine directlywith subjects in root clauses still requires explanation. In the present paper,therefore, we shall maintain Claim 1.3 as it stands, while accepting that furtheranalysis of the issues is called for.The fourth claim can be regarded as a further speci�cation of Claim 1.1.Chierchia suggests that it is an empirical generalization which holds for many,if not all, natural languages:Claim 1.4 Tensed predicative expressions cannot occur as arguments of propo-sitional functors.Thus, ungrammaticality results if we attempt to replace the untensed pred-icatives in our previous examples by tensed predicatives:(15) a. *Runs annoys Maryb. *John seems annoys Mary/is happyc. *John tries annoys Mary/is happyLet us now consider how these observations might be rendered in a formalframework. The generally accepted interpretation of Claim 1.1 is that propo-sitional functions have individual correlates. As a further terminological step,let us use the term nominal predicatives to refer to expressions which denotesuch individual correlates.3 We make the standard assumption that a modeldetermines a universe of individuals. However, this universe contains a greaterdiversity of objects than is usual in �rst order models; for example, it will con-tain all propositions as a subcollection. Following [Aczel 80], F0 is collection3Although we will also follow standard practise in saying that such expressions have been`nominalized', this is something of a misnomer inasmuch as we do not need to postulate anytype or category changing operation. 8

of objects, and F1 is the collection of unary functions from F0 to F0. WithinF1, we can identify the subcollection of propositional functions, i.e., functionsfrom F0 to propositions, and this we call pf. It turns out that F0 is also `bigenough' to contain, for each function from objects to objects, an object thatcorresponds to that function. We can then implement the idea of individualcorrelates by letting the collection pf be explicitly mapped, via the � operator,onto a subcollection set of the domain of F0. That is, each object in set is theindividual correlate of a propositional function. (See Lemma 6 for a proof that� is bijective.)Claim 1.2 shows that some lexical items select as their arguments nominalpredicatives. However, any solution to this is closely tied up with the problem ofcapturing the di�erence in combinatorial potential between tensed and untensedpredicatives, as required by Claim 1.3. For on the one hand, we would like to saythat a nominal predicative is the sort of thing which potentially combines withan argument; on the other hand, it can only do this under special circumstances,for example under the mediation of tense.Let us be more concrete. If we assign the type he; pi to nominal predicatives,then it is di�cult to avoid the conclusion that such expressions should combinewith arguments of type e to yield a result of type p, i.e, a proposition. If on theother hand we follow [Chierchia and Turner 88] in assigning them the type nfof nominalized functions, then it becomes hard to express the fact that therecan be semantic constraints on the type of the argument which a predicativeselects when it becomes `denominalized'. Suppose, for example, that we wantedto de�ne a subclass of untensed intransitive verbs which select for propositionalsubjects; it would be desirable to assign them the type hp; pi (which we couldtreat as a subtype of he; pi).A third option, and the one we shall adopt, is to give nominal predicativesthe type he; ei. This makes it clear that such expressions do select arguments,possibly of some proper subtype of e. At the same time, it does not claimthat such expressions can combine with their arguments to make propositions.Instead, this type remains `agnostic' about the precise nature of the resultingcombination; we know that it is an object, but in the absence of further infor-mation, can neither a�rm nor deny that the result is a proposition.4As pointed out by Chierchia and Turner [Chierchia and Turner 88], the ob-servation that propositional functions cannot act directly as arguments appearsto be inadequately captured by �rst-order theories of properties such as that ofBealer [Bealer 82] in which propositions only result by virtue of explicitly ap-plying a property to another object. For example, on such an approach, Johnwalks would be expressed as (16):(16) app(walk0:e, john0:e)4This is essentially Aczel's [Aczel 80] analysis of the Russell property|although the prop-erty is expressible in his system, the result of applying it to another object, including itself,is not provably a proposition. 9

The Fregean view (which Bealer [Bealer 82, Bealer 89] rejects) holds that propo-sitional functions should not be thought of as objects, but indeed as functions.This is re
ected in our framework, therefore, by the decision to view proposi-tional functions as elements of pf, not F0. This has the virtue of providing anatural explanation for Claim 1.4. For although elements of pf do have indi-vidual correlates in F0, they are not themselves objects, and as such are notpotential arguments for other propositional functions.As we will see, `nominal' types (including predicative nominals) are all con-structed as subtypes of e. Since, according to what we have just said, proposi-tional functors are not nominals, they cannot be assigned a nominal type. Wetherefore require a new kind of type for such functors, one which is not a sub-type of e. Expressions whose denotations lie outside the domain F0 of objectswill be assigned what we call metatypes. Whenever � and � are (meta-)types,(� ! �) will be a metatype. Note that we will not need to quantify over proposi-tional functions, nor will we need �-expressions whose domain of interpretationis the collection of propositional functions|we can use nominalized propertiesinstead. Hence, variables in our language will never be assigned metatypes.We shall assume that unin
ected (or base form) verb phrases denote objectsrather than propositional functions; for example, walk will be of type he; ei.When verb phrases receive tense, they are mapped by a predication opera-tor [into propositional functions, with the metatype (e! p). Thus if non�nitewalk translates aswalk0:he; ei, then tensed walks translates as [walk0:(e! p).Putting the various pieces together, we replace (16) with (17), where the propo-sitional functor is applied directly to its argument, rather than by the mediationof app:(17) [[walk0:(e! p)(john0:e)]:pBy way of summary, we give the following tabular presentation of our artic-ulation of the data. Note that our earlier notion of `predicative' is now dividedinto two.Syntactic Notion Semantic Notion (Meta-)Type Examplepropositional functor function from F0 to propositions (e ! p) walks, is funnominal predicative subcollection of F0 he; ei walk, be funIn this section, we have attempted to present and motivate the general struc-ture of our approach, and it will be observed that we have followed [Chierchia and Turner 88]closely in favouring a Fregean analysis over a �rst order property theory. Nev-ertheless, our formal framework di�ers from that of [Chierchia and Turner 88]in many respects; this will become obvious in the following sections, where wegive a more systematic presentation of the theory.
10

2 The Language L�2.1 Judgements and Type ContainmentIn the theory L� developed in this paper, we follow [Aczel 80] in starting frommodels of the type-free lambda calculus, on top of which an interpretation forlogical connectives has been constructed; we then construct types within the setof objects. In place of the domain f0; 1g of truth values, we have a domain propof propositions, included in which is the domain truth of true propositions.These collections provide values for the types p and t respectively. As mentionedearlier, there is also a domain F0 of individuals, with associated type e. Thisdomain turns out to be much richer than one might have expected. Indeed, itcontains prop (and hence truth) as subcollections. In Section 3, we shall lookin more detail at the intended models; for the time being, however, we presentthe type structure.Following usual practice in type theory (e.g., [Cardelli et al. 85], [Mitchell 88]),we use a natural deduction format for rules of type inference. A simple exampleis the following:`':p`9x:�:':pThe statement `':p is an assertion or judgement meaning that we can infer that' is of type p. The rule as a whole is a logical implication; given the premiss,we can infer that 9x:' is also of type p.What we have presented is not quite su�cient, however; if ' contains occur-rences of the variable x, the inference that it is of type p may in turn dependon the type of x; in other words, the judgement is made under the assumption,or in the context, x:�. Using�; x:�to represent a context � which contains the relevant assumption, we replace ourearlier rule by the following:�; x:�`':p�`9x:�:':pLet us now present these ideas in a more systematic format. A type statementis a pair, written �:�, consisting of an expression � and a type �, read \� hastype �"; � is said to be the subject of the statement. A signature � is a �nite setof distinct type statements the subjects of which are constants, while a context� is a �nite set of distinct type statements, the subjects of which are variablesor sentences. In the latter case, a statement of the form ':t indicates that ' is asentence of the logic whose truth is being assumed in the course of a proof; thatis, we are also using contexts in a sequent calculus style to encode the currentset of assumptions required at each line of a proof.11

As usual, we can regard signatures and contexts as functions from expres-sions to types. Thus, dom(�) denotes the set of expressions to which the sig-nature � assigns a type, and similarly for contexts. If A is a signature or acontext, we write A; �:� in place of A [f�:�g.Although the system used here does not use the power of higher-order typetheory (e.g., such as dependent types), we have nevertheless found it convenientto take as our framework the theory of expressions developed in the EdinburghLogical Framework [Harper et al. 87]. As pointed out in the preceding section,we distinguish types, whose interpretations are constructed within the domainof objects, from metatypes, which have a disjoint interpretation as collectionsof functions and functionals. Types and metatypes are both kinds.We need three further kinds, or classi�cations of types: �xed point types (fp-types) well-behaved types (wb-types) and non-propositional types. The latterhave the characteristic that their leftmost type is e, hence we use le-type forshort. All these types are all interpreted within the domain of objects. As weshall see later, there is a sense in which an fp-type is a complex type which doesnot have any proper subtypes.We will use � and � for types, m� for metatypes, and �; �1; �2 to rangeover both types and metatypes. We use c for constants (a special instance ofwhich is ?), x; y for variables, �; � for arbitrary object language expressionsand '; ; � for expressions which denote propositions. We use � ` s to meanthat s is derivable within context �, and �`� s to mean that s is derivable fromthe signature � within context �. ` s and `� s stand respectively for ; ` s and;`� s, where ; is the empty context.The syntax of the various sorts of expression can now be speci�ed as follows:Signatures � ::= ; j �; c:�Contexts � ::= ; j �; x:� j �; �: tKinds K ::= type j fp-type j le-type j wb-type j metatypeTypes � ::= e j t j p j h�; �iMetatypes m� ::= (�1 ! �2)Expressions � ::= c j x j �x:�:� j app(�; �) j �(�) j :� j [� j [� ^ �]j [� _ �] j [� � �] j [� = �] j 8x:�:� j 9x:�:�We will omit square brackets around complex sentences except in those caseswhere the scope of a typing statement needs to be made explicit.
12

Type theory (cf. [Martin-L�of 79]) provides rules for making judgements ofvarious forms. The ones which we are concerned with are the following:Judgements ` � sig � is a signature`� � context � is a context�`� � K � has kind K�`� ��� type � is contained in type ��`� ��� type � is equivalent to type ��`� �:� � has type �Examples of �`� � K are: �`� p type�`� (e! p) metatype�`� hhe; ei; ei le-typeNote that the � relation between types is the symmetric closure of �, thecontainment relation.We mentioned earlier that the inference rules by which judgements can bederived are formulated in natural deduction notation. We add glosses to arepresentative sample of the rules in order to help readers not familiar with thismode of presentation.Valid Signature(null sig) ` ; sigThe empty relation is a signature.(: sig) ` � sig `� � K` �; c:� sig if c 62 dom (�)If � is a kind, and � doesn't already assign a (meta-)type to the constantc, then we can augment � with the statement c:�.Valid Context(null context) ` � sig`� ; context(: context) `� � context �`� � type`� �; x:� context if x 62 dom (�)(: truthcontext) `� � context`� �; ':t context if ' 62 dom (�)We mentioned earlier that the type statements in a context have subjectswhich are variables or sentences. As far as the former is concerned, it can be seen13

that (: context) requires � to be a type, not an arbitrary kind; thus, our contextswill not assign metatypes to any variables. As far as the latter kind of statementis concerned, we obseve that although we can derive the judgement ':p, we donot require contexts which contain it; hence (:truth context) is su�cient.As we pointed out above, the following semantic domains are ordered byinclusion: truth � prop � F0set � F0And indeed there are other inclusions in the domains. This structure is re
ectedby the containment relation � (in fact, a partial order) which is imposed on thetypes. When � � � , we say that � is contained in, or is a subtype of, � . � � �means that any expression which is of type � is also of type � ; moreover, anyobject in the model which belongs to the domain D� associated with � alsobelongs to the domain D� associated with � . The most salient containments inour system are the following:t � p � eh�; �i � eRules for inferring judgements about containment will be given shortly. Be-fore that, however, we present the various kinds required.Kinds, Types and Metatypes(base types) `� sig `� � context�`� e type`� sig `� � context�`� t type`� sig `� � context�`� p type(complex types) �`� � type �`� � type�`� h�; �i type(le base) `� sig `� � context�`� e le-type(le complex) �`� � le-type �`� � type�`� h�; �i le-type(wb-types) �`� � le-type �`� � type �`� ����`� h�; � i wb-type14

(fp-types) �`� � type �`� ��p�`� hh�; �i; �i fp-typeIf � is a type and � is contained in p (that is, � = t or p), then hh�; �i; � iis an fp-type.(metatypes) �`� �1 K �`� �2 K�`� (�1 ! �2) metatypeHere are some examples of le-types: e, he; ei, he; pi, he; he; eii, he; he; pii,hhe; ei; ei, hhe; pi; ei, and so on. We claimed earlier that the `leftmost' type ofsuch an le-type must be e. The following lemmas show that this property doesindeed follow from the de�nitions we gave earlier.Lemma 1 If � is an le-type, then the leftmost type of �, call it leftmost(�), ise. Proof By induction on the judgement � le-type.� If � is basic, then leftmost(�) = � = e.� If h�; �i is an le-type then by (le-complex), � is an le-type. By hypothesis,the property holds of �. So leftmost(h�; �i) = leftmost(�) = e. 2As we will see later, �-abstraction will only be permitted when the type ofthe resulting abstract is a wb-type. A complex type h�; �i is a wb-type just incase the range type � is an le-type which is contained in the domain type �. Forexample, he; ei, he; he; eii, he; he; pii and hhe; pi; he; pii are wb-types. However,he; pi is not a wb-type, because p is not an le-type, while hp; ei is not because eis not contained in p. A consequence of our condition on �-abstraction is thatwe cannot form abstracts such as �x:e:app(a; x) where app(a; x) is provably oftype p. This might seem overly restrictive. However, it turns out that for mostpurposes, we need only to consider cases where app(a; x), say, is provably oftype e.The containment relation is governed by the following conditions:5Containment (e�) �`� � type�`� ��eObjects in the domain D� of any type � are also in De.(p�) `� � context�`� t�p5For a similar proposal, see [Curien et al. 89].15

Truths are propositions.(Dom�) �`� �1��2�`� h�2; ei�h�1; eiEvery function (returning arguments in De) de�ned on a domain D�2 isalso de�ned on subsets D�1 of D�2 .(Ran�) �`� � type �`� �1��2�`� h�; �1i�h�; �2iEvery function with values in the range D�1 also yields values in supersetsD�2 of D�1 .(Id�) �`� � type�`� ���(Trans�) �`� ��� �`� ����`� ���(Anti�) �`� ��� �`� ����`� � � �(Fix�) �`� hh�; �i; � i fp-type�`� hh�; �i; � i�h�; �iWe now prove some simple lemmas which help us to establish relationshipsbetween the di�erent categories of types in our system.Lemma 2 The only judgement e � � is: e � e.Proof By induction on the de�nition of �.� The cases (e �), (p �) and (Id �) are obvious.� Of the recursive clauses, the only relevant one is (Trans �), where � is eand e � � is derived from e � � and � � �. But by induction hypothesis, �must be e. Now again from the induction hypothesis and e � � we derivethat � must be e. 2As a corollary of the Lemma 2, we obtain the result that e � p is notderivable.Lemma 3 If h�; �i � �, then either � = e or � is a complex type.Proof By induction on the de�nition of �.16

� Case (e �) is obvious.� Cases (p �), (Dom �) and (Ran �) do not apply.� Case (Id �) is obvious.� Case (Trans �), then�`� h�; �i�� �`� ���0�`� h�; �i��0By the induction hypothesis, either � = e or � is complex. If � = e, wehave that e � �0, but then �0 = e, as required. If, on the other hand, � iscomplex, then by the induction hypothesis, from � � �0, we again concludethat �0 = e or �0 is complex.� Cases (Anti �) and (Fix �) do not apply. 2Lemma 4 If � � p, then � is not le-type. (Or conversely, if � is le-type, then� 6� p.)Proof By induction on the judgement � le-type.� Case � = e, then we use the corollary of Lemma 2.� Cases � = h�1; �2i, where �2 is le-type, then from Lemma 3, h�1; �2i 6� p,because h�1; �2i � p only if p = e or p is complex. 2The axiom (Fix �) gives us �xed points for type containment. That is, if �� p, then h�; �i � hh�; �i; � i � hhh�; � i; � i; � i While types such as he; ei,hhe; ei; ei, hhhe; ei; ei; ei, . . . are distinct, we need to be more restrictive abouttypes such as he; pi, hhe; pi; pi, . . . if we are to avoid the paradoxes. Accordingto (Dom �), since he; pi � e, we should have he; pi � hhe; pi; pi. The intuitionbehind calling hhe; pi; pi an fp-type is that this containment is not proper; thatis, we cannot get anything extra by going from he; pi to hhe; pi; pi. In otherwords, we can only map sets into propositions to the extent that we map thosesets qua objects into propositions.There is a complementarity between le-types and fp-types, in the follow-ing sense. Recall that for hh�; �i; �i to be an fp-type, we require � � p. Now if�`� � le-type; we can conclude that �6`� hh�; �i; �i fp-type; for example, hh�; ei; eiis not an fp-type. The reason is that if � is an le-type, then by Lemma 4, �cannot be a subtype of p.Conversely, from �`� hh�; �i; � i fp-type, we can conclude that �6`� � le-type.This also follows from Lemma 4, since �� p, and is therefore not le-type. Forexample, hh�; pi; pi is an fp-type, but p is not an le-type.17

Note, however, that while fp-types and wb-types are mutually exclusive, le-types and fp-types are not; for example, hhe; pi; pi is both an le-type and anfp-type.As already remarked, the containment relation plays a central role in ourapproach to polymorphism. In Section 3, we shall show that there are modelsof the typing system; that is, we will have functional domains from D� to D�which are included in De; moreover, when D� � prop, we also have the resultthat objects in the function space domain `D� to D� ' are in D� .2.2 Type Inference RulesIn the preceding subsection, we gave a de�nition of the syntax of expressionsoccurring in judgements. These de�nitions were deliberately general, and couldencompass a variety of logical systems. In specifying a particular calculus, suchas L�, we need to make explicit how the types of expressions of L� are inferred.It is to this task that we now turn.Not all functions can be mapped down into the collection of objects, and fol-lowing Aczel [Aczel 80], we shall call these functionals. That is, adopting Frege'scorrelation thesis [Frege 77], we will see that all we need in the formal theoryare objects, functions and functionals and that functions at a higher level thanthose three can be mapped down to the lower domains. Among the functionalswe will count the interpretations of determiners and logical connectives|andindeed, these are expressions which do not admit of nominalization.The signature � of L� contains a �nite number of statements c:� whichassign types and metatypes to constants of the language. For now, we are onlyconcerned with logical constants and functionals:Signature of L� ? : p: : (e! e)^ : (e! (e! e))_ : (e! (e! e))� : (e! (e! e))= : (e! (e! e))[: (e! (e! e))app : (e! (e! e))� : ((e! e)! e)8 : ((e! e)! e)9 : ((e! e)! e)Two comments on the above are called for. First, it will be noticed that,for example, : is interpreted as a functional which maps any object in F0 intoanother such object; we cannot tell, for a given expression �, whether :� is a18

proposition unless we have some way of proving that � itself is a proposition.This will be made explicit in the axioms for type inference given below. Second,we will use conventional notation for the syntax of the various constants, writing' ^ in place of ^(')(), app(x; y) in place of app(x)(y), and 8x:' in place of8(�x:').A context � for L� contains a �nite number of statements of the form x:�,for any type �. Recall however that � never assigns metatypes to variables.Before launching into the type inference rules, we �rst de�ne substitution onexpressions, where we take �[�=x] to be the result of substituting � for all freeoccurrences of x in �.x[�=x] � �x[�=y] � x if x 6� yc[�=x] � c(�x:�)[�=x] � �x:�(�x:�)[�=y] � �x:�[�=y] if x 6� y and x not free in �(�x:�)[�=y] � �z:�[z=x][�=y] if x 6� y and x is free in � and z is not free in� or ��1(�)[�=x] � �1(�[�=x]) where �1 is :; [;^;_;�;=; app;8; 9, or elserepresents functional application.The other clauses for substitution in logically complex expressions carry onas usual.The next de�nition serves the following functions:1. It gives rules by which the type of an arbitrary expression of L� can beinferred.2. It exploits the type t of truths to give introduction (I) and elimination(E) rules for the logical connectives in L�.De�nition 1 (Type Inference for L�)(Base) `� � context�`� �:� where �:� 2 �(Contain) �`� ��� �`� �:��`� �:�(�) �; x:�`� �:� �`� h�; �i wb-type�`� (�x:�:�):h�; �i(app) �`� �:h�; �i �`� �:��`� app(�; �):�(Funct) �`� f :(� ! �) �`� �:��`� f(�):�19

([I) �`� �:he; ei�`� [�:(e! p)(= prop) �`� �:�1 �`� �:�2�`� [� = �]:p(= E) �`� [� = �]:t �`� �:��`� �:�(:prop) �`� ':p�`� :':p(:I) �`� ':p �; ':t`� ?:t�`� :':t(:E) �;:':t`� ?:t �`� ':p�`� ':t(^prop) �`� ':p �`� :p�`� [' ^]:p(^I) �`� ':t �`� :t�`� [' ^]:t(^E) �`� [' ^]:t�`� ':t �`� [' ^]:t�`� :t(_prop) �`� ':p �`� :p�`� [' _]:p(_I) �`� ':t �`� :p�`� [' _]:t �`� ':p �`� :t�`� [' _]:t(_E) �; ':t`� �:t �; :t`� �:t �`� [' _]:t�`� �:t(� prop) �; ':t`� :p �`� ':p�`� [' �]:p(� I) �; ':t`� :t �`� ':p�`� [' �]:t(� E) �`� ':t �`� [' �]:t�`� :t(8prop) �; x:�`� ':p�`� 8x:�:':p 20

(8I) �; x:�`� ':t�`� 8x:�:':t where x is not free in ' or any assumptions in �(8E) �`� 8x:�:':t �`� �:��`� '[�=x]:t(9prop) �; x:�`� ':p�`� 9x:�:':p(9I) �; x:�`� '[�=x]:t�`� 9x:�:':t(9E) �`� 9x:�:':t �; '[�=x]:t`� :t�`� :tAlthough most of these clauses are standard, it should perhaps be pointedout that the de�nition (�prop) of implication is the one proposed by [Aczel 80]to enable him to interpret Martin-L�of's type theory in a Frege structure; it hasthe consequence that if the antecedent ' of a conditional is not true, then ' � is a proposition whatever object is. For our purposes, it would also be possibleto omit the extra condition on the antecedent.2.3 Equality AxiomsWe now give a set of equality axioms which are similar to those of the �-calculus,except that we allow self-application and polymorphism. Note however that self-application is only possible for those expressions which have a complex type;indeed, this is what is required by clause (app) of the syntax above.(�) �`� [(�x:�:�) = (�y:�:�[y=x])]:t;where y is not free in �.(�) �`� [app(�x:�:�; a) = �[a=x]]:t;(
) �`� �1:h�; �i �`� �1:� �`� [�1 = �2]:t �`� [�1 = �2]:t�`� [app(�1; �1) = app(�2; �2)]:t(�) �`� �:��`� [� = �]:t(�) �`� [�1 = �2]:t �`� [�1 = �3]:t�`� [�2 = �3]:t(�6) �`� [app(�1; x) = app(�2; x)]:t�`� [�1 = �2]:t where x is not free in �1; �2 orany assumptions in �.6This is the axiom of extensionality. 21

2.4 Russell's and Curry's ParadoxesIt might be thought that the theory presented above would fall foul of Russell'sparadox, due to the fact that :app(x; x) is a well-formed formula for x of anytype h�; �i; hence by abstracting over :app(x; x), we could obtain the equalityapp(a; a) = :app(a; a)where a is �x::app(x; x).For example, given the following proof,�; x:he; pi`� x:he; pi �; x:he; pi`� x:he; pi(Contain)�; x:he; pi`� x:e(app)�; x:he; pi`� app(x; x):p (:prop)�; x:he; pi`� :app(x; x):pwe might conclude that we can set a equal to the abstraction�x:he; pi::app(x; x):hhe; pi; piand infer that app(a; a) is of type p, leading to a contradictory proposition fromthe above equality.However, one of the steps necessary to derive this contradiction is incorrect.That is, even if x is of type he; pi, and even though :app(x; x) is a proposition,�x:he; pi::app(x; x) is not typable in L�. More speci�cally, it is excluded byvirtue of clause (�) in the de�nition of type inference, since we cannot derive�`� p le-type, and hence cannot derive that hhe; pi; pi is a wb-type.In fact we have a more general result: the paradox does not arise for x ofany type h�; � i, where �= t or p. This is a consequence of the following lemma.Lemma 5 If x is of type h�; �i, �= t or p, then �x:h�; �i::app(x; x) is nottypable.Proof According to the de�nition of type inference for L�, it is enough toshow that we cannot derive �`� p le-type or �`� t le-type. This is obvious. 2Our manner of avoiding the paradox is somewhat new, we believe. It issimilar to Russell's own approach in that type constraints are invoked to limitabstraction, but di�ers of course with respect to the non-hierarchical nature ofthe type system. Unlike Aczel [Aczel 80], we do not take the step of question-ing the propositionhood of app(a; a); and unlike Turner [Turner 87], we do notrestrict the axiom of �-conversion.Let us turn now to the question of Curry's paradox. Recall the DeductionTheorem (in fact, our rule (� I)):(DT) �; ':t`� :t �`� ':p�`� [' �]:t 22

If we take a to be the formula�x:�[app(x; x) � ?];then by �-conversion we derive(ID) app(a; a) = [app(a; a) � ?]:Now, it holds trivially thatapp(a; a):t`� app(a; a):t:Hence, by (ID) we deriveapp(a; a):t`� [app(a; a) � ?]:t;and by (� E) we getapp(a; a):t`� ?:t:In order to derive by (DT) that`� [app(a; a) � ?]:twe must �rst be able to show;`� app(a; a):p;(where ; is the empty context). For we can derive the latter, we can use it inthe following step:app(a; a):t`� ?:t ;`� app(a; a):p;`� [app(a; a) � ?]:t (� prop)and also by (ID) and (= E);`� app(a; a):t:Given the last two steps, we can again apply (� E) to get`� ?:t:The proof only goes through, however, if ;`� app(a; a):p is derivable. Forthis, we would have to assign the type h�; pi to a, i.e., to �x:�[app(x; x) � ?].How could we show that(18) `� �x:�[app(x; x) � ?]:h�; pi?This can only be the last step of an inference involving the rules (�) or (Contain).We consider the two cases in turn. 23

Case 1: The premisses of the inference must include x:�`� [app(x; x) � ?]:p,which in turn is only derivable by (� prop) from the assumption that x:�`� app(x; x):p. However, we can only prove the latter if for some �0, � =h�0; pi, where h�0; pi ��0. But in this case, we would have to show that�`� p le-type, which is impossible.Case 2: We have to �nd some type � such that � �h�; pi and x:�`� �x:�[app(x; x) �?]:� . The only applicable derivation rule is (Ran �), setting � to be h�; ti.However, the judgement `� �x:�[app(x; x) � ?]:h�; ti is not derivable, forthe same reasons as those given in Case 1 above, since we cannot showthat �`� p le-type.3 Models of L�3.1 Frege StructuresAs pointed out earlier, our models are constructed using the notion of a Fregestructure as de�ned by Aczel [Aczel 80]. We begin with a collection F0 of ob-jects, and for each natural number n � 1, we de�ne Fn as ff : F0n 7!F0g,where F0n = n timesz }| {F0 �F0 � � � � F0. In particular, F1 is the set of all unary func-tions from F0 to F0. Within F0 we pick out prop, the collection of propositions,and truth, the collection of all true propositions. (Thus, Aczel makes a crucialdeparture from Frege in denying that all true propositions can be identi�ed withthe True).So far, then our Frege structures contain objects, functions, propositionsand truths. To these, we need to add functionals, logical connectives, and someclosure conditions. We now show how they are supplied.Two functionals are required in order to provide a model for the lambdacalculus:7 � : F1 7!F0app : F0 �F0 7!F0These obey a comprehension principle such that whenever f is a function in F1,then app(�x:f (x);a) = f (a):Let pf be the collection of unary propositional functions in a Frege structure,i.e., those functions f in F1 which map their arguments into prop:pf = ff 2 F1jfor all x inF0;f(x) is in propg7We adopt the notational convention of using boldface terms to denote elements of themodel, reserving italics for expressions of the object language. For example, app is a functionalin the model which corresponds to the functor app in the language.24

We can now identify a further subcollection of F0, namely set, as the indi-vidual correlates of propositional functions under �:De�nition 2 (Sets) An object is in set i� it is �f for some f in pf.The distinguishing characteristic of sets (i.e. elements of set) is that theycan be predicated of any object in F0 to yield a proposition:De�nition 3 (Predication) If a is in set, then app(a; b) is in prop, forany object b in F0.Comprehension can be restated as follows:De�nition 4 (Comprehension) If f is in pf, then �f is a set a such thatfor any object b, app(a, b) is in prop, and app(a, b) is in truth i� f(b) isin truth.The notions that we have introduced so far|objects, functions, prop, truth,set, comprehension and predication|are based on a model of the �-calculus.In order to ensure that they have the properties we want, our models shouldalso contain a logic. We know that such a construction is not straightforward;for instance, logic cannot be built in a simple way on the top of Scott domains(cf. [Scott 76]). The construction provided by Aczel inductively increases thetwo basic collections of propositions and truths, and the �xed point theorem isthen applied to provide the limit of these newly obtained collections, resultingin prop and truth. Hence prop is closed under all the logical connectives^;_;:; : : : (more strictly, the functionals corresponding to these connectives)and truth is the collection of all true propositions. The organization of F0and F1 in a Frege structure is illustrated in Figure 1.We now need to ensure that we have full abstraction. That is, if �[x1; x2; : : : ; xn]is an expression formed out of objects, functions, functionals and variables (rang-ing over objects in a Frege structure), where x1; x2; : : : ; xn are free variables of�, then there is a function f in the Frege structure such that f(a1;a2; : : : ;an) =�[a1=x1;a2=x2; : : : ;an=xn], where the substition of objects for variables is si-multaneous. This is called explicit substitution.We assume our construction is based on the model E1 of the untyped �-calculus [Scott 76]. We then takeBp = f0; 1g � F0 = E1:We next construct the logical constants so that prop is the smallest set con-taining Bp which is closed under the relevant clauses for connectives presentedin De�nition 1. Here, we give just two examples.(^ schema) If ' is in prop and is in prop, then ' ^ is in prop, and' ^ is in truth i� ' is in truth and is in truth.25

PROP

TRUTH

SET
PF

F F

λ

0 1

Figure 1: The functional �

26

(8 schema) For all n-ary functions f , if f(x1; x2; : : : ; xn) is in prop for allhx1; x2; : : : ; xni 2 F0n, then 8f is in prop, and 8f is in truth i�f(a1; a2; : : : ; an) is in truth for all ha1; a2; : : : ; ani 2 F0n.Whenever ' is a w� open in x, we understand h'jxi to be the function f inF1 such that for any a in F0, f(a) = '[a=x]. Since we have full abstraction,we can assume that f exists. Now, we take j j: F0 7!F1 to be the functionalsuch that jaj = happ(a;x) j xi:In general, we de�ne j jn :F0 7!Fn such thatj a jn= happn(a; ~x) j ~xiwhere app1 = app and appn+1(a; b;~b) = appn(app(a; b);~b), and ~x;~b aresequences of n variables or elements of F0. Now,�mn : Fm 7!Fn;m > nis de�ned inductively, for ~a = a1; : : : ;an as(�n+1n f)(~a) = �hf (~a;x) j xi(�n+m+1n f)(~a) = �n+1n (�n+m+1n+1 f)In particular, �n0 nominalizes an n-ary function f returning �n0f in F0.We takeset = f�n0f jf is any propositional function g:De�nition 5 A Frege Structure is a triple F = hF0; prop; seti constructed asabove.It might be unclear why we have only included F0, prop, and set in thestructure and ignored functions in general (though not functionals). The reasonfor this is that the principle of extensionality holds in E1 and hence we have abijection between F0 and Fn for n � 1. In fact, we can show that �(jaj) = a.Lemma 6 The functional � : F1 7!F0 is bijective.Proof1. � is injective, because�f = �g implies 8a(app(�f ;a) = app(�g;a))implies 8a(f (a) = g(a))implies f = g:27

2. � is surjective, because if a is in F0 then ha j xi is in F1 and for any bin F0, a 6= b implies ha j xi 6= hb j xi 2Hence we have su�cient structure within F0 to do everything we want with-out having to consider F1.Up until now, we have not said anything about the interpretation of the pred-ication operator [. It will be recalled that, by virtue of ([I), whenever � is anexpression of type he; ei, [� is of type (e! p). If � denotes the nominalization�f of a propositional function f , then we want [� to denote happ(�f ;x) j xi.However, the functional corresponding to [must carry any object in F0 into anappropriate value in F1. What happens if � denotes an object a not in set?In this case, happ(a;x) j xi will not be a propositional function; that is, forany argument b, app(a; b) will just denote an arbitrary object in F0. We takethis to be an acceptable alternative to the approach used in [Partee 84] where[is interpreted as a partial function, de�ned only on objects in set. Hence, wealways let [� denote happ([[�]];x) j xi, where [[�]] is the interpretation of �.We shall now show how to construct domains inside F0 such that the typesdescribed earlier can be mapped into them.3.2 DomainsWe distinguish between two kinds of domains, Dom1 and Dom2. We use X1,Y1 to range overDom1, X2, Y2 to range overDom2, and X, Y to range overboth domains. We also assume that � is a distinguished element in F0 whichwill be used to give functions a unde�ned value.Dom1 ::= F0 jX1)Y1Dom2 ::= prop j truth jX,!X2Dom1 interprets those le-types which are not fp-types. It is appropriate forle-types because the leftmost type of an le-type will always be in F0. It doesnot interpret fp-types because 8X 2 Dom1, X 6� prop. However, fp-types willbe interpreted by Dom2.De�nition 6 () Function Space)X)Y = fx 2 F0 : for all x0 2 X [app(x; x0) 2 Y]g:De�nition 7 (,! Function Space)X,!Y = fx 2 X : for all x0[if x0 2 X then app(x; x0) 2 Y]; else app(x; x0) =�g:We shall write `f is true' as an alternative for `f is in truth'. Similarly weuse `f is false' for `f is in prop{truth'. We also assume the presence of twospecial elements of the Frege structure, 1 in truth and 0 in prop{truth. Ofcourse, 1 is not the only truth in the model.28

De�nition 8 (Internal De�nability) We say that a collection C is internallyde�nable in a Frege structure if the following holds: there is some f in pf suchthat for all x in F0, f(x) is true i� x is in C. In this case, f is the characteristicfunction of C.The domain Dom1 can be understood as the collection of objects whichprovide interpretations for types not involving p and t. All the domains ofDom1 are internally de�nable. This can be proved by induction as follows:Lemma 71. F0 is internally de�nable, by taking the function f : F0 7!prop, wheref(x) = 1; for all x 2 F02. Assume X1, Y1 are internally de�nable by the propositional functions fand g respectively. Then we want to show that the collection X1) Y1 isalso internally de�nable.f :F0 7!prop wheref(x) is � true for all x 2X1false otherwiseg:F0 7!prop whereg(y) is � true for all y 2 Y1false otherwiseLet h : F0 7!prop, whereh(z) = 8x[f(x) � g(app(z; x))]Now,(a) h is a propositional function because f and g are, and(b) we have to prove that z 2X1) Y1 i� h(z) is true.i. Assume z 2 X1) Y1. Let x 2 X1; then f(x) 2 prop becausef 2 pf and app(z; x) 2 Y1 because z 2 X1) Y1. g(app(z; x))is true because g internally de�nes Y1. Hence f(x) 2 prop andf(x) 2 truth implies g(app(z; x)) 2 truth. Hence f(x) �g(app(z; x)) is true. But this holds for every x, hence 8x[f(x) �g(app(z; x))] is true. Hence h(z) is true.ii. Assume h(z) is true. z 2 F0, of course. Let x 2 X1, thenf(x) � g(app(z; x)) is true. But f(x) is true because x 2 X1.So g(app(z; x)) is true, and app(z; x) 2 Y1, since g internallyde�nes Y. Hence z 2X1)Y1.29

Hence z 2X1)Y1 () h(z) is true. 2Now that we know Dom1 is the domain of internally de�nable collections,we can write X)Y using fX and fY , the characteristic functions of X and Y :X)Y = fx 2 F0 : for all x0[fX(x0) � fY (app(x; x0))]gDom2, on the other hand, involves domains which are not internally de�n-able. For example, the two basic domains prop and truth cannot be internallyde�ned. In fact, according to Tarski's theorem on the unde�nability of truth,we cannot have a propositional function in the object language which internallyde�nes truth; this implies that we cannot have a propositional function whichinternally de�nes propositions; see [Aczel 80] for discussion.It might be asked whether the existence of judgements like �`� �:t meansthat we have in e�ect committed ourselves to the internal de�nability of truth.The �rst point to note is that typing statements are not propositions in L�,but judgements about the language. Second, we have no way of telling for anarbitrary expression � whether the judgement �`� � : t holds. In particular,since contexts � are �nite, they will not necessarily determine the type of anarbitrary variable.Recall that app is the functional in the Frege structure which correspondsto app in the language of L�. We saw that in a standard Frege structure,F1 = ff : F0 7!F0g is the collection of all functions from F0 to F0, and containsa subcollection pf of unary propositional functions. We also saw earlier that � isa bijective map from F1 to F0. What we now have to check is that, as a specialcase of De�nition 6, there is an appropriate domain F0,!prop inside F0 whichwill contain the nominals of propositional functions. In fact (F0,!prop) = set(easy to prove).Our next lemma illustrates the fact that the domains constructed above doindeed model the types in our language.Lemma 8 If X1, Y1 are any domains in Dom1, then (X1)Y1)�F0.The proof is trivial. 2In other words, every function in Dom1 is an object. This enables us to inter-pret self-application and nominalization.Lemma 9 If X is any domain and Y2 is in Dom2 then (X,!Y2)�X.The proof is trivial. 2Lemma 10 IfX1;Y1;Y10 are inDom1, then Y1�Y10 implies (X1)Y1)�(X1)Y10).Proof If x 2 X1)Y1, then 8x0 2 X1; app(x; x0) 2 Y1, by De�nition 6.Since Y1�Y10, it follows that for all x0 2 X1; app(x; x0) 2 Y10 and so x 2X1)Y10. 230

Lemma 11 If X;Y2;Y2 0 are domains such that Y2;Y2 0 are in Dom2, thenY2�Y2 0 implies (X,!Y2)�(X,!Y2 0).Proof Same as above. 2Lemma 12 IfX1;X10 and Y1 are inDom1, thenX1�X10 implies (X10)Y1)�(X1)Y1).Proof If x 2 (X10)Y1), then by De�nition 6, for all x0 2 X10, app(x; x0) 2Y1. Since X1�X10, then for all x0 2 X1; app(x; x0) 2 Y1. Therefore x 2X1)Y1. 2A model for L� is a 6-tuple M = hF ;); ,!; I; D; gi, where1. F is a Frege Structure ,2.) and ,! are de�ned as above,3. I is an interpretation function which takes any constant of kind � to anobject in D�, and takes ? to the element 0 in prop,4. D is a function which maps types into domains of M as follows:(a) De = F0(b) Dp = prop(c) Dt = truth(d) Dh�; �i = � D�,! D� ; if D� 2Dom2D�) D� if D� 2Dom1 and D� 2 Dom1(e) D(� ! �) = ff : f is an F-functional such that for all x 2 D�;f (x) 2D� g,5. g is an assignment function which takes any variable of type � to an objectin D� .Note that Dom1 \Dom2 is empty and that Dom1 will interpret le-typeswhich are not fp-types, among others. Dom2 will interpret the fp-types, amongothers.Since we do not allow variables to range over F-functionals, the interpreta-tion function I is su�cient to determine the denotation of functors.We now de�ne a valuation function [[]] which given an expression � and anassignment g yields a value in Dom1 [Dom2.1. [[c]]M;g = I(c)2. [[x]]M;g = g(x)3. [[app(�; �)]]M;g = app([[�]]M;g; [[�]]M;g)4. [[�(�)]]M;g = [[�]]M;g([[�]]M;g) 31

5. [[[(�)]]M;g =j [[�]]M;g j6. [[�x:�:']]M;g = �f; where f 2 F1 and f(a) = [[']]M;g[a=x] for all a 2D�7. [[:']]M;g = :[[']]M;g8. [[' ^]]M;g = [[']]M;g^[[]]M;g9. [[' _]]M;g = [[']]M;g_[[]]M;g10. [[' �]]M;g = [[']]M;g�[[]]M;g11. [[8x:�:']]M;g = 8f ; where f 2 F1 and f(a) = [[']]M;g[a=x] for all a 2D�12. [[9x:�:']]M;g = 9f ; where f 2 F1 and f (a) = [[']]M;g[a=x] for all a 2D�It will be observed that these valuation clauses depend on the existence of theappropriate functionals (e.g., app;:;^;_;8;9) in the Frege structure. It wouldbe straightforward to convert the clauses for propositions into truth-theoreticde�nitions, along the following lines:80 [[' �]]M;g 2 truth () [[]]M;g 2 truth whenever [[']]M;g 2truth90 [[8x:�:']]M;g 2 truth () [[']]M;g[a=x] 2 truth for all a 2 D�Lemma 13 Dh�; �i = (D�) D�)� De if D�;D� 2 Dom1Proof Obvious by Lemma 8. 2Lemma 14 Dh�; �i�D� if D� 2 Dom2Proof If D� 2 Dom2; then Dh�; �i = (D�,! D�)�D� by Lemma 9 . 2Lemma 15 For any type �, D� is either in Dom1 or in Dom2.Proof By induction on the construction of types.� If �= p, t, or e, then obvious.� If � = h�1; �2i, where the property holds for �1 and �2, then also obvious.2Lemma 16 D��De for any type �.8Proof By induction on �.8Of course, the domain for (�1 ! �2) is not contained in De; but this follows from the factthat (�1 ! �2) is not a type but a metatype.32

� � is base type (i.e., e; t or p). Obvious.� Assume � = h�1; �2i, where D�1�De and D�2�De.Case 1 D� = D�1 ,!D�2 . Then D��D�1 by Lemma 14. Since D�1�De,by induction hypothesis, we have D��De.Case 2 D� = D�1)D�2 . Then D��De by Lemma 13. 2Lemma 17 If �� � , then D� � D� .Proof(e �) Case �� e.D� � De always holds, by Lemma 16.(p �) Case t � p.Dt � Dp, since truth � prop.(Ran �) Case �1 � �2.1. If D�1 ; D�2 2 Dom2 then use Lemma 11.2. If D�1 ; D�2 2 Dom1 then use Lemma 10.3. It cannot be the case that D�1 2 Dom1 and D�2 2Dom2.4. If D�1 2 Dom2 and D�2 2 Dom1 then Dh�; �1i = (D�,! D�1)and Dh�; �2i = (D�) D�2). It is easy to check (D�,! D�1) �(D�) D�2).(Id �, Trans �, Anti �) Obvious.(Prop �) � � p implies Dh�; �i� D�. This holds since Dh�; �i = (D�,! D�)� D�,by Lemma 9.(Fix �) � � p implies Dhh�; � i; � i = Dh�; �i. We need to show that (D�,! D�),! D�=D�,! D� : From the proof of (Prop �) above, it follows that Dhh�; �i; � i� Dh�; �i.The reverse inclusion is established as follows. Let x 2 (D�,! D�). Thisimplies that for all x0 2 (D�,! D�)� D�, app(x;x0) 2 D� . Hencex 2 (D�,! D�),! D� .(Dom �) �1 � �2 implies Dh�2; ei� Dh�1; ei. By the induction hypothesis,�1� �2 implies D�1� D�2 . De is in Dom1 and as we restrict types sothat a domain type is never strictly less than the range type, then D�133

and D�2 must be in Dom1. Hence by de�nition, Dh�2; ei = D�2) De.Let x 2 Dh�2; ei. Hence x 2 (D�2)De). So x 2 F0 and for all x0 2D�2 ; app(x;x0) 2 De and Dh�1; ei = D�1) De. Since D�1 � D�2 ,it follows that x 2 F0 and for all x0 2 D�1 ; app(x;x0) 2 De. Hencex 2 D�1)De. 2Theorem 1 If �`�:�, where D� 2 Dom1 then [[�]]M;g 2 D�.Proof� If � is a constant c or variable x, this is obvious from the de�nition of Iand g.� Let us assume the property holds for expressions �; �, and show that itholds for app(�; �). �`app(�; �):� i� �`�:h�; �i and �`�:�. So [[�]]M;g 2Dh�; �i, [[�]]M;g 2 D� , and [[app(�; �)]]M;g = app([[�]]M;g ; [[�]]M;g).The latter belongs to D� , as Dh�; �i = D�) D� .� Let us prove [[�x:�:�]]M;g 2 Dh�; �i, where �`� � le-type;� 6 `� � � � ,and by induction hypothesis [[�]]M;g[a=x] 2 D� for all x:�.Since Dh�; �i is inDom1 then Dh�; �i = D�)D� . Hence [[�x:�:�]]M;g 2F0, and for all a 2 D�; app([[�x:�:�]]M;g;a) = app(�f ;a) = f (a),where f(a) = [[�]]M;g[a=x] 2 D� : Hence [[�x:�:�]]M;g 2 D�)D� . 24 A Fragment of EnglishThe English fragment that we consider is intentionally simple,9 and will focusattention on issues of polymorphism and self-application. One possible way ofsetting up the grammar would be to follow Montague in using the standard frac-tional notation of categorial grammar, together with a homomorphism whichmaps the categories into semantic types. However, for our purposes, it wouldbe preferable to build the syntactic categories directly on top of the types. Con-sequently, the categories of the grammar will consist of decorated types andmetatypes of L�; that is, types and metatypes annotated with phrase struc-ture labels. The latter will provide us with the power to draw somewhat �nerdistinctions of the kind required for English syntax. For example, (untensed) in-transitive verbs, adjectives and common nouns will all belong to the type he; ei;however, this type will be annotated as he; eiV , he; eiA, or he; eiN , respectively.9In particular, we do not treat quanti�ed noun phrases. It would be straightforward toimplement [Chierchia and Turner 88]'s treatment of type-shifting for quanti�er arguments. Itis unclear to us, however, what the appropriate analysis of scope would be in the currentsetting. Promising approaches include [Pereira 91] and [Emms 91].34

The list of admissible labels is the following: S (sentences), V (verbs), N (nouns),CN (common nouns), A (adjectives), P (prepositions), Adv (adverbials).In some cases, we extend these labels with feature speci�cations along thelines of [Gazdar et al 85]. For example, we use `P[to]' as the label for prepo-sitional phrases whose head is the word to, and `vform' to specify the in
ec-tional status of a verb or verb phrase. Thus V[vform bse], V[vform fin],V[vform psp] indicate verbal categories in, respectively, base form (e.g., be),�nite form (e.g., is), and present participial form (e.g., being). We use X asan underspeci�ed category label; this will be useful when we want to give amaximally general decoration to a type.Whenever � is a kind, and C is a category label, then �C is a decorated kind.The rules given previously for constructing a complex kind can be generalized inthe obvious way to decorated kind. We use the symbols `s, t, r' as metavariablesranging over decorated kinds. It is obvious that we can simply strip the labelso� a decorated kind s to recover our original kind. We use `�s' to denote thestripped-down version of s, where �hs; tiC = h�s; �ti, and �(s! r)C = (�s! �t).An English grammar object will be a triple(w; s; �)where w is a phonological (in practice, orthographic) form, s is a decorated kind,� is an expression of L�, and moreover �`� �:�s, with � as speci�ed before.As a typographical convenience, we shall also employ the following verticalformat for these triples:ws�For example, the representations of the words John and kiss can be stated as:(19) JohneNjohn0 kissheN ; he; eiV i Vkiss0Thus, kiss has the type of a verbal expression which will combine withsomething of type eN to make something of type he; eiV . The decorated typetherefore combines standard categorial information, which would usually benotated V P=NP (i.e., a functor which combines with an NP to make VP),together with the semantic type that such a category would be mapped into.The rules of type inference are like those for L� with some provisos whichwe will come to shortly.It will be noticed that the type assigned to kiss, namely,(20) heN ; he; eiV i V , 35

appears redundant in the sense that not only is the type as whole speci�ed to beV , but the result type, he; eiV , is also so speci�ed. Yet inasmuch as kiss is thehead of verb phrase, it should be predictable that the result type has the samecategory decoration as the whole complex type. In response to this observation,we adopt the convention that if the result type lacks a decoration, then it canbe inferred from the decoration of the enclosing decorated type; in other words,a type like (21) is shorthand for (20).(21) heN ; he; eiiVWe can make this more explicit by means of a modi�ed inference rule of thefollowing sort (where � is restricted to undecorated types):(22) �:hs; �iC �:sapp(�; �):�COur grammar for English is non-directional, in the sense that we do notencode whether a functor seeks its argument to the left or to the right. Modifyingthe notation to allow this would be trivial, but would add an extra degree ofcomplexity which would detract from the main thrust of the exposition. Forconvenience, we shall simply write the premisses of a type inference rule in thecorrect left-to-right order, and stipulate that the string in the conclusion is theright of concatenating the strings of the premisses. This is shown in the followingschema for type inference in the fragment, (where `_' indicates concatenation):De�nition 9 (Concatenation Schema for English)(Concat) (w1; s1; �1) (w2; s2; �2)(w_1 w2; s3; �3)is valid only if the corresponding inference�`� �1:�s1 �`� �2:�s2�`� �3:�s3is derivable for the undecorated types �s1, �s2, and �s3.4.1 Verb-Object CombinationWhether a verb is tensed a�ects its ability to combine with a subject, but notits ability to combine with object arguments and complements:(23) a. to kiss Mary/kissed Maryb. *John to kiss Mary/John kissed Mary36

Now, in the semantic framework we have developed there are two distinctways in which a syntactic functor can combine semantically with an argument:either via the app relation, or by normal functional application. Moreover,app is invoked for functors which we earlier called `nominal predicatives', i.e.,expressions which denote objects in the Frege structure domain F0; by contrast,expressions which denote propositional functions live outside F0 and thereforecannot act as nominal arguments of app. In this section, we examine how appcomes into play when we combine verbs with their objects.Let us start by looking at transitive and intransitive verbs. The base, ornontensed, form of an intransitive verb like run is translated as a constant run0of type he; eiV ; as we observed in Section 1, such constants denote (a special sortof) nominal objects, not propositional functions. Similarly, the base form of atransitive verb such as kiss is translated as a constant kiss0 of type heN ; he; eiiV ,which also denotes a sort of nominal object.The schema in De�nition 9 licenses derivations like the following:(24) kissheN ; heN ; eiiV [vform bse]kiss0 MaryeNmary0kiss MaryheN ; eiV [vform bse]app(kiss0;mary0) (Concat)The same approach extends to verbs which combine with more than onecomplement. Before considering such a case, let us introduce some new notationto indicate the iterated application of a functor � to a series of arguments:De�nition 10 (Multiple Application)[�; x1; : : : ; xn] =df app(: : : (app(�; x1); : : :); xn)Assuming give0 to be of type heP [to]; heN ; he; eiiiV , we have the followingsemantic translation for give the cat to Mary:(25) [give0,mary0, (the cat)0]:he; ei= app(app(give0,mary0), (the cat)0)The last step in the derivation of (25) is:10(26) give to MaryheN ; he; eiiV[give0;mary0] the cateNthe cat0give the cat to Maryhe; eiV[give0;mary0; (the cat)0]10As presented, this derivation would require a wrapping operation to produce the conclu-sion, rather than just string concatenation; cf. [Dowty 82] for some arguments in favour of thisapproach. Alternatively, we could have combined give the cat with to Mary after makingappropriate modi�cations to the type of give.37

4.2 Verb-Subject CombinationIn our discussion of predication in Section 1, we argued that untensed verbphrases should be assigned the type he; ei. Let us consider how this type entersinto our English fragment, taking the string *John walk as an example.11 Asthe following derivation shows, we can infer a type for the string, namely e:(27) JohneNjohn0 walkhe; eiV [vform bse]walk0John walkeV [vform bse]app(walk0; john0) (Concat)But John walk comes out as anomalous qua sentence. That is, since it doesnot have the type p, it does not have the semantic value which we would expecta sentence to bear. And although we know that John walk does denote someobject in the semantic domain, our type rules give us no means of inferring themore speci�c conclusion that it expresses a proposition. Similar reasoning willlabel as deviant strings like *John to run.What we must do now is make explicit the way in which tense is intro-duced. From a semantic point of view, it is easiest map untensed verb phrasesinto tensed ones.12 That is, we require a rule which will convert a phrase likegive the cat to Mary into gives the cat to Mary. We accomplish this bymeans of an inference schema like the following (where C is a metavariable overcategories):De�nition 11 (Tense Introduction)(Tense) (w; heC ; eiV [vform bse]; �)(infl(w); (eC ! p)V [vform fin]; [�)The type change in this rule is closely coupled with the introduction ofthe predication operator in the semantics. That is, given an expression w whichcombines with an e(in e�ect, any nominalizable expression) to yield an e, we caninfer that infl(w) will combine with that same argument to yield a proposition.And whereas w denoted some object in F0, infl(w) denotes a function fromF0 to prop.infl is intended to be a morphological operation which assigns appropriatein
ections to the verbal head(s) of its argument. In a more detailed treat-ment, the operation would need to be parameterized for person, number, andcase. Moreover, in addition to denominalizing the interpretation of � via [,the semantic correlates of, say, past tense would need to be accommodated. To11We are ignoring the analysis under which walk is present tense, but not third person.12This has been the standard approach in most Montagovian approaches, and is also theone adopted by [Chierchia and Turner 88]. 38

simplify exposition, however, we shall con�ne our attention to one instance ofinfl, namely third person singular present.This inference rule is illustrated in (28) and (29) below.(28) be funheX ; eiV [vform bse][be0; fun0]is fun(eX ! p)V [vform fin][[be0; fun0] (Tense)Notice that be places no restrictions on the syntactic decoration of its subjectargument, requiring only that it be of type e. By contrast, walk is subcatego-rized to take a nominal subject:(29) walkheN ; eiV [vform bse]walk0walks(eN ! p)V [vform fin][walk0 (Tense)As a further illustration, we show how a tensed intransitive verb combineswith a subject noun phrase:(30) JohneNjohn0 walks(eN ! pS)V[walk0John walkspS[walk0(john0) (Funct)Table 1 summarizes the assignment of categories to expressions of English inour fragment. A major distinction is drawn between those expressions which re-ceive ordinary types, and are therefore open to nominalization, and those whichreceive metatypes, and can never be nominalized. The notion of `predicative',which we appealed to at the beginning of this paper, cuts across this distinc-tion. That is, it was intended to cover expressions with type he; ei, which canbe nominalized, and expressions with metatype (� ! �), which cannot.It will be observed that there is a broad correspondence between our type`he; ei' and the [Chierchia and Turner 88] sort `nf ', standing for nominalizedfunctions, and to this extent the two fragments are quite similar.Note in passing that we have chosen to analyse fun as a mass noun ratherthan an adjective, on the grounds that collocations involving noun modi�ers,as (31a), seem signi�cantly better than those involving adjectival modi�ers, as(31b): 39

Informal Name Type Basic ExpressionsNominalizable ExpressionsNP eN John, MaryCNcount he; eiCN dog, man, woman, parkCNmass he; eiN water, gold, funADJ he; eiA happy, drunk, oldPP hhe; eiX ; he; eiX iP ;TV heN ; heN ; eiiV kiss, seekheX ; heN ; eiiV believe, knowhhe; eiV [vform inf]; heN ; eiiV seem, try, wanthhe; eiX ; heX ; eiiV beTTV heP [to]; heN ; heN ; eiiiV give, sendhhe; eiV [vform inf]; heN ; heN ; eiiiV force, believeIV heN ; eiV run, walk, talkS pS ;S0 pS[comp] ;IVinf he; eiV [vform inf] ;Non-nominalizable ExpressionsDet (he; eiCN ! eN)Det the, a, everyVP (eX ! pS) ;AdSent (pS ! pS)Adv necessarily, possiblyAdVerb (he; eiV ! he; eiV)Adv almost, slowlyP (eN ! hhe; eiX ; he; eiX i)P in, with, toAdNom (he; eiN ! he; eiN)A former, allegedCOMP (he; eiV ! he; eiV [vform inf]) to(pS ! pS[comp that]) thatTable 1: Categories and expressions in the fragment(31) a. It wasn't much/a lot of fun.b. ?It was extremely/very fun.Nothing crucial hangs on this decision. Nevertheless, it follows on our accountthat all mass nouns can occur as nominal arguments. They can also occur aspredicative complements by virtue of the polymorphic type assigned to be.4.3 Nominalization and PolymorphismAs we indicated at the beginning of this paper, we do not employ a rule of nomi-nalization as such. Rather, some expressions|the ones categorised as `nominal-izable' in Table 1|have kinds which are contained in the type e of individuals.40

Then type containment is invoked to derive the more general type.Let us take the following strings to illustrate the mechanisms:(32) a. Mary is fun.b. Fun is fun.c. Running is fun.d. For us to run is fun.We start o� by considering how the untensed phrase be fun is derived:13(33) behhe; eiX ; heX ; eiiVbe0 funhe; eiXfun0be funheX ; eiVapp(be0; fun0) (Concat)This in turn will constitute a premise for the inference (30) which derivesthe string is fun. The latter can be predicated of any string whose category isa possible argument for the type (eX ! pS)V , that is, any string for which thecategory eX can be inferred. Recall the axiom we presented earlier for derivingtype containments:(Contain) �`� ��� �`� �:��`� �:�As we showed in preceding sections, this gives us an account of inclusionpolymorphism for the typed language L�. In order to deal with polymorphismin the English fragment, we need to extend containment to our decorated types.To do this, we supplement � over types with a new partial order �� overcategory labels. In the following de�nition s, t are decorated types, while C;Dare category decorations:De�nition 12 (Containment of decorated types)1. sC � tD i� �s � �t and C��D.2. �� is re
exive, transitive and antisymmetric.3. Cat ��X, where Cat ::= f N, P, V, S g, and where V is not speci�ed asvform fin.13As we will shortly explain, the type he; eiX can be inferred for fun by a modi�ed contain-ment axiom.
41

This now gives rise to a modi�ed Containment rule:(Contain*) sC� tD (w; sC ; �)(w; tD; �)The following example shows how the rule is invoked for the subject of (32b).(34) funhe; eiNfun0funeXfun0 (Contain*)The inference works in a completely parallel fashion for the other two cases:(35) runninghe; eiV [vform psp]run0(36) for mary to runpSfor0(app(run0;mary0)After the (Contain*) inference, fun can combine with is fun as shown in(37):(37) funeXfun0 is fun(eX ! pS)V[[be0; fun0]fun is funpS[[be0; fun0](fun0) (Funct)We also need to show that certain expressions cannot act as nominal argu-ments. Consider for example(38) *Runs is fun.In order to derive a type for this, we would have to deduce that the type ofruns, namely (eN ! p)V [vform fin] is contained in eX . But (eN ! p)V [vform fin]is a metatype, not a proper type, and therefore not a subtype of e. Hence the(Contain*) step which would be required for (38) in fact fails. The same reason-ing shows that types cannot be derived for strings like (39) where an expressionwith a metatype is �lling an argument role:1414Examples like Slowly would be fun seem relatively acceptable. One conclusion couldbe that manner adverbs should have (at least) the type he; pi, perhaps as predicates of events.Alternatively, such examples might involve ellipsis of a modi�ed verb phrase; cf. Jogging fastwould be a pain, but slowly would be fun.42

(39) *The/possibly/almost/to is fun.In Section 1.3, we noted that certain verbs, such as seem, required a pred-icative rather than a nominal complement. This is witnessed by the followingcontrast:(40) a. John seems to annoy Mary.b. *John seems the boy.In Table 1, we categorized seem as hhe; eiV [vform inf]; he; eiiV ; that is, it re-quires an expression of type he; eiV [vform inf] as argument.15 This, of course,is the type which would be assigned to to annoy Mary. But de�nite nounphrases such as the boy are of type eN . Could we use the (Contain*) rule toinfer that the boy is also of type he; ei? No, because the only type � such thate � � is e itself. Hence (40b) will not be well-typed.There is an interesting di�erence between our approach and that of [Chierchia and Turner 88]when nominalizations of verbs are considered. For Chierchia and Turner, onlyexpressions of type nf are nominals. Since their nominalization operator is ex-clusively de�ned for expressions of type he; ei16, and they do not have any kindof type containment for functional types, they do not allow transitive verbs likelove and ditransitives like give to be nominalised. Yet examples such as (41a)(from [Partee 86]) and (41b) show that untensed transitive verbs enter into thesame nominal patterns as intransitives:(41) a. To love is to exalt.b. To give is better than to receive.By contrast, we have heN ; heN ; eiiV [vform inf] � eX , and can thus accom-modate such data straightforwardly.5 AcknowledgementsWe are grateful to David Beaver, Inge Bethke, Max Cresswell, Lex Holt, UweM�onnich and an anonymous referee for their comments on previous versions ofthis paper.
15In fact, this needs to be generalized, since it excludes John seems happy. However,this would have to form part of a more comprehensive analysis of syntactic containments inEnglish.16This type corresponds to our metatype (e ! e).43

References[Aczel 80] Aczel, P. (1980) `Frege Structures and the Notions of Proposition,Truth and Set.' In Barwise, J., Keisler, H. J. and Kunen, K. (eds.) TheKleene Symposium, pp31-59. Amsterdam: North Holland.[Bach 79] Bach, E. (1979) `Control in Montague Grammar.' Linguistic Inquiry10, 515{531.[Bealer 82] Bealer, G. (1982) Quality and Concept. Oxford: Clarendon Press.[Bealer 89] Bealer, G. (1989) `On the Identi�cation of Properties and Proposi-tional Functions.' Linguistics and Philosophy 12, 1{14.[Cardelli et al. 85] Cardelli, L. and P. Wegner (1985) `On understanding types,data abstraction and polymorphism.' Computing Surveys 17, 471{522.[Chierchia 84] Chierchia, G. (1984) Topics in the Syntax and Semantics of In-�nitives and Gerunds. Unpublished PhD Thesis, University of Massachusetts.[Chierchia 85] Chierchia, G. (1985) `Formal Semantics and the Grammar ofPredication.' Linguistic Inquiry 16, pp.417{443.[Chierchia and Turner 88] Chierchia, G. and R. Turner (1988) `Semantics andProperty Theory.' Linguistics and Philosophy 11, pp.261{302.[Curien et al. 89] Curien, P.-L. and G. Ghelli (1989) `Coherence of Subsump-tion.' Unpublished ms, Liens (cnrs), Paris.[Dowty 82] Dowty, D. (1982) `Grammatical Relations and Montague Grammar,pp. 79{130 in The Nature of Syntactic Representation, P. Jacobson and G.K. Pullum, eds., Dordrecht: Reidel.[Emms 91] Emms, M. (1991) `Polymorphic Quanti�ers', pp. 65{112 in Studiesin Categorial Grammar , G. Barry and G. Morrill, eds., Edinburgh: Centrefor Cognitive Science, U of Edinburgh.[Frege 77] Frege, G. (1977) Translations from the Philosophical Writings of Got-tlob Frege.Geach, P. and Black, M. (eds.), 3rd Edition, pp56-78. Oxford: BasilBlackwell.[Gazdar et al 85] Gazdar, G., Klein, E., Pullum G.K., and I.A. Sag (1985) Gen-eralized Phrase Structure Grammar. Oxford: Basil Blackwell.[Harper et al. 87] Harper, R., Honsell, F., and G. Plotkin (1987) `A Frame-work for De�ning Logics.' Second Annual Symposium on Logic in ComputerScience, ieee, pp.194{204. 44

[Jacobson 90] Jacobson, P. (1990) `Raising as Function Composition.' Linguis-tics and Philosophy 13, pp.423{475.[Martin-L�of 79] Martin-L�of, P. (1978) `Constructive Mathematics and Com-puter Programming.' In Logic, Methodology and Philosophy of Science, VI,1979, pp.153{175, North-Holland.[Milner 78] Milner, R. (1978) `A Theory of Type Polymorphism in Program-ming.' Journal of Computer and System Sciences 17, pp.348{375.[Mitchell 88] Mitchell, J. C. (1988) `Polymorphic Type Inference and Contain-ment.' Information and Computation 76, pp.211{249.[Montague 73] Montague, R. (1973) `The proper treatment of quanti�cationin ordinary English.' In Hintikka, J., Moravcsik, J. M. E. and Suppes, P.(eds.) Approaches to Natural Language. Dordrecht: D. Reidel. Reprinted inR. H. Thomason (ed.) (1974), Formal Philosophy: Selected Papers of RichardMontague, pp247-270. Yale University Press: New Haven, Conn.[Parsons 79] Parsons, T. (1979) `The theory of types and ordinary language.'In S. Davies and M. Mithun (eds.) Linguistics, Philosophy and MontagueGrammar, University of Texas Press, Austin.[Partee et al. 83] Partee, B. H. and M. Rooth (1983) `Generalized conjunctionand type ambiguity.' In R. B�auerle, C. Schwarze, and A. von Stechow (eds.)Meaning, Use, and Interpretation of Language, De Gruyter.[Partee 84] Partee, B. H. (1984) `Compositionality.' In F. Landman and F. Velt-man (eds.) Varieties of Formal Semantics: Proceedings of The Fourth Ams-terdam Colloquium, Sept 1982 Foris Press, Dordrecht.[Partee 86] Partee, B. H. (1986) `Ambiguous pseudo-clefts with ambiguous be.'In S. Berman, J. Choe and J. McDonough (eds.) Proceedings of the SixteenthAnnual Meeting of the North Eastern Linguistic Society, University of Mas-sachusetts, Amherst.[Pereira 91] Pereira, F. (1991) `Deductive Interpretation', pp. 117{133 in Nat-ural Language and Speech, E. Klein and F. Veltman, eds., Berlin: Springer-Verlag.[Pollard et al. 87] Pollard, C. and I. A. Sag (1987) Information-Based Syntaxand Semantics, Vol. 1. csli Lecture Notes, No. 13.[Rooth et al. 82] Rooth, M. and B. H. Partee Mats Rooth `Conjunction, typeambiguity, and wide scope `or'.' In M. Barlow, D. Flickinger and M. Westcoat(eds.) Proceedings of the Second West Coast Conference on Formal Linguis-tics, pp353-362. 45

[Scott 76] Scott, D. (1976) `Data Types as Lattices.' SIAM Journal of Comput-ing, 5, 522{587.[Thomason 76] Thomason, R. H. (1976) `On the Semantic Interpretation ofthe Thomason 1972 Fragment'. Distributed by Indiana University LinguisticsClub, Bloomington, Indiana.[Turner 87] Turner, R. (1987) `A Theory of Properties.' Journal of SymbolicLogic 52, 63{86.

46

