Nominalization, Predication and Type
Containment
the Journal of Logic, Language and
Information 2, 171-215, 1993.

Fairouz Kamareddine *
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ

email: fairouz@dcs.glasgow.ac.uk
and

Ewan Kleinf
Centre for Cognitive Science
2 Buccleuch Place
University of Edinburgh
Edinburgh EH8 9LW

email: klein@cogsci.ed.ac.uk

5 February 1993

*Kamareddine is grateful to the Department of Mathematics and Computing Science, Tech-
nical University of Eindhoven, for their financial support and hospitality during the academic
year 1991-92.

fKlein’s work has been carried out as part of the research programmes of the DyaNa
project (BR 3175 and BR 6852), funded by ceEc ESPRIT Basic Research Division, and of the
Human Communication Research Centre, supported by the UK Economic and Social Research
Council.

Abstract

In an attempt to accommodate natural language phenomena involv-
ing nominalization and self-application, various researchers in formal se-
mantics have proposed abandoning the hierarchical type system which
Montague inherited from Russell, in favour of more flexible type regimes.
We briefly review the main extant proposals, and then develop a new
approach, based semantically on Aczel’s notion of Frege structure, which
implements a version of subsumption polymorphism. Nominalization is
achieved by virtue of the fact that the types of predicative and propo-
sitional complements are contained in the type of individuals. Russell’s
paradox is avoided by placing a type-constraint on lambda-abstraction,
rather than by restricting comprehension.

Keywords: Typed A-Calculus, Russell’s Paradox, Property Theory, Poly-
morphism, Natural Language Semantics.

1 Introduction

1.1 Overview

Type disciplines have featured prominently in formal approaches to natural
language since the work of Montague (e.g., [Montague 73]). Montague avoided
the paradoxes of naive set theory by adopting a version of Russell’s cumulative
hierarchy of types. Despite the successes of Montague’s type system for English,
it has met with criticism in recent years for being excessively rigid. One line of
research, initiated by Partee and Rooth [Rooth et al. 82, Partee et al. 83], has
tried to achieve greater flexibility, especially in the treatment of quantifiers, by
assigning each expression a family of types. Another line of work has moved in
the direction of type-free theories of properties, in order to accommodate the
difficulties raised by nominalization and self-application. In this paper, we will
focus our attention on the second of these two endeavours.

Historically, type disciplines for languages have developed in close association
with intended models for interpretation. The proposals we shall make can also
be construed in this way, inasmuch as they were inspired in part by Aczel’s
[Aczel 80] notion of a Frege structure, which is intended to provide a consistent
formulation of Frege’s logical notion of set.

The paper falls into four sections. The first of these presents some back-
ground notions, and briefly surveys the natural language data which motivates
our formal analysis. Section 2 presents the syntax, types and inference rules for
a language £ <, while Section 3 deals with the models of £. The final section
shows how a fragment of English can be treated within our formal framework.

1.2 Hierarchical Types

A system of types provides a classificatory scheme for the domain and range
of functors. The type of an expression determines the domain in which that
expression receives an interpretation. Thus, in (1) (where we use the notation
a:o to mean that expression a has type o), the proper noun Glasgow might
be assigned type e, the type of entities, while the predicate fun is assigned type
(e, p), which we construe as the type of objects which combine with expresions
of type e to yield expressions of type p.

(1) Glasgow:e is fun:(e,p) .

If we make the plausible assumption that the copular verb is here denotes
the identity function on predicates, then standard rules of type inference yield
the result that (1) is an expression of type p, the type of propositions.

In recent years, the semantic problems of nominalization in linguistically
motivated type theories have received increasing attention, particularly as a
result of the work of Bealer, Chierchia and Turner [Bealer 82, Chierchia 84,
Chierchia 85, Chierchia and Turner 88, Turner 87]. To illustrate, notice that

we might want to assign different types to different kinds of syntactic subjects,
as shown in the following two examples:

(2) a. [Running around the lake]:(e, p) is fun:{{e, p), p)
b. [For us to run around the lake]:p is fun:(p, p)

In (2a), we might expect the gerundive subject phrase to denote a property,
hence to be assigned type (e, p). But if (2a) is to be of type p, fun will require
a new type, namely ((e,p), p). Similarly, if the subject of (2b) denotes a propo-
sition, then the type of the predicate has to be changed to (p,p). Yet there is
no independent linguistic motivation for postulating distinct lexical entries for
the different funs of each type.

A related problem arises when we consider cases of self-application, illus-
trated in (3a) and the simpler (though more artificial) instance (3b).!

(3) a. [Being fun]:(e, p) is fun:((e, p), p)
b. Fun:(e,p) is fun:((e, p), p)

Suppose we postulate a first-order predicate fun:{e,p), and a second order
predicate of predicates fun:({e, p), p). This allows us to deal with (3); but what
happens if we want to affirm that fun:({e, p),p) is fun? We are at the bottom
of an infinitely ascending ladder of types:

(4) Fun:({e,p),p) is fun:({(e, p), p), p)

There seem to be broadly three classes of response to these problems of ‘type
inflation’: type-lowering, type-freedom, and polymorphism. We briefly consider
these in turn.

Type-Lowering

We have just observed the potential difficulties which arise if the subject run-
ning in (5) is assigned the type (e,p) of verb phrases:

(5) Running hurts.

For then we are apparently forced to assign a correspondingly higher type to
runs. The approach proposed by Chierchia (e.g., in [Chierchia 84]) postulates
a nominalisation operator " which maps propositional functions (and propo-
sitions) into entities.? That is, if run’ (the semantic translation of run—we

IDespite appearances, such locutions are not entirely restricted to the discourse of the-
oreticians; the following sentence was noted in the T%Wmes Higher Education Supplement of
28th September 1990, p.17:

In fact, the fun of research is more fun than fun.

20ne of the earliest discussions of treating propositional arguments in a Montague frame-
work, namely Thomason [Thomason 76], adopts a similar type-lowering operation.

use Montague’s prime notation for semantic constants) denotes a propositional
function f, then "run’ is an expression of type e which denotes an individual
correlated to f. We might assume that the morphological operation which re-
lates the gerundive form running to the finite form runs has as its semantic
counterpart the introduction of this " operator. The resulting semantic analysis
is illustrated in (6):

(6) hurt':(e, p)("run’:e)

Type-Freedom

From a technical point of view, it is not necessary to explicitly map propo-
sitional functions into their individual correlates. Instead, we can regard all
properties as being a special sort of individual. Following Aczel [Aczel 80],
Bealer [Bealer 82] and others, properties are those first-order objects which can
be applied—using an explicit operation app of predication—to other objects so
as to yield a proposition. This first-order approach is illustrated in (7):

(7) app(hurt’:e, run’ :e):p

Although we have declared the types of the expressions in (7), they serve
little purpose, since none of them are functional in nature.

Polymorphism

We say that a function is polymorphic if it yields appropriate outputs for inputs
of a variety of types. There are at least two notions of polymorphism which can
be invoked to deal with these problems. The first, called parametric polymor-
phism (cf. [Cardelli et al. 85]), obtains polymorphic types by admitting type
variables. In Milner’s [Milner 78] approach, as implemented for the program-
ming language ML, types containing type variables are called generic. Suppose,
for example, that v is a type variable, and that we assign to fun the generic
type (v, p). What happens when we try to determine the type of an expression
involving self-application like fun(fun)? Assuming that the second occurrence
of fun has the most general type (i.e.,(v, p)), the first occurrence will have to be
assigned a more complex type, namely ({v,p), p), where the type variable v has
itself been instantiated as (v,p). Although we are required to assign different
types to functor and argument in such a case, it should be noted that the com-
plexity of a functor’s type is no greater than that required by the most general
type of its argument; thus we avoid the ‘infinitely ascending ladder of types’
alluded to in our discussion of strictly hierarchical type systems. An approach
similar in spirit to ML is adopted by Parsons [Parsons 79], where Montague’s
framework is modified to allow ‘floating’ types which again contain type vari-
ables. Although Parsons considers an interesting range of data, he does not
explicitly discuss problems of nominalization.

A different route avoids type variables by using something which [Cardelli et al. 85]
call inclusion polymorphism. Suppose, for example, that o1, 02, and 7 are types
such that o2 < 01, i.e., 02 is subsumed by, or contained in (cf. [Mitchell 88]),
o1, and let f be a functor of type (o1, 7). Suppose further that « is a term, not
of type o1, but of the more specific type o2. Then f is polymorphic in the sense
that it can apply to «, and yields a value of type 7. From a semantic point of
view, we model a type o as a set Dy of values, and containment as inclusion
between such sets. Now if a function assigns values to members of a particular
set Dg,, then it will also assign values to members of any subset Dg, of Dg, .
How does this help us deal with nominalization? If we let the type (e,p) of
predicates be contained within the type e of individuals, then, for example, fun
of type (e, p) can apply to any expression of type o < e, including fun itself.

1.3 Individuals, properties and functions

Our treatment takes subsumption polymorphism as a starting point—that is,
we will develop a notion of type containment, but avoid type variables. In fact,
the formal framework that we develop is flexible enough to encompass a range
of different approaches to nominalization, including type-free ones. However,
within the space of options, we have made certain theoretical choices which
allow us to model certain linguistic generalizations. In this section, therefore,
we will consider some of the motivating data.

In order not to prejudge the issues to be decided, we use the term propositional
functor to refer to any expression f of English which can combine with an ar-
gument a so that the result f(a) is a declarative sentence, i.e., capable of being
used to assert a proposition. Thus, a finite verb phrase such as walks is a
propositional functor, as is a declarative sentence lacking a direct object, such
as John annoys ___. We assume that propositional functors denote proposi-
tional functions, though just what these are supposed to be is left till later.

We will use the more neutral term predicative to cover both propositional
functors and words or phrases which intuitively express properties but which
cannot combine with other expressions to make sentences. Again, we leave till
later what the denotation of predicatives is, if not propositional functions.

The first generalization which we wish to capture is:

Claim 1.1 Predicative expressions can appear in the position of noun phrase
(NP) arguments to propositional functors.

For example, predicatives can occur in subject position of tensed sentences,
i.e., a position which is typically occupied by NPs:

(8) a. To run will tire Mary.

b. Running annoys Mary.

Thus, according to our terminology, (8a) contains two predicatives, to run and
will tire Mary; the latter is, in addition, a propositional functor.

It can also be observed that the distribution of predicatives sometimes ex-
tends beyond that of NPs. Thus we have:

Claim 1.2 Predicative expressions can appear as arguments to propositional
functors where NPs are prohibited.

In particular, certain lexical items are subcategorized to require predicative
arguments, as opposed to ordinary noun phrases. The examples in (9) contrast
with those in (10):

9) a. John seems to annoy Mary/happy
b. With John annoying Mary/happy/in love, we can stop worrying.
c. Mary saw John run/running/happy

(10) a. *John seems that boy
b. *With John that boy, we can stop worrying.
c. *Mary saw John that boy

It might be claimed that this patterning of data is purely syntactic. Certainly,
it is true that items which require predicatives are usually subcategorized to
take only a subset thereof. Thus, seems takes infinitival complements but not
bare or gerundive VPs, while see patterns the opposite way. Despite these
idiosyncracies, however, there are a variety of generalizations that can only be
expressed on the assumption that the class of predicatives can be somehow
picked out (cf. [Bach 79], [Pollard et al. 87]). It would be desirable to give a
semantic characterization of this class, rather than just invoking an arbitrary
syntactic feature. As we will discuss later, our attempt to meet this criterion is
only partially successful.

The next two claims have been particularly emphasized by Chierchia [Chierchia 85,
Chierchia and Turner 88]. Recall Frege’s view that a (propositional) function
is ‘unsaturated’, or requires completion by an argument. On completion, the
function yields a value, e.g., a proposition. Changing perspective slightly, we
can say that only functions have the combinatorial potential to ‘glue together’
with arguments. The individual correlate of a function, by contrast, is ‘inert”:
it cannot by itself combine with an argument to produce a value. Translated
into the realm of grammar, we have:

Claim 1.3 Tensed predicative expressions are propositional functors, but un-
tensed predicatives are not.

Thus, the examples in (11) do not express assertible propositions, whereas
those in (12) do:

(11) a. *John to run.
b. *John (be) happy.

(12) a. John runs.
b. John s happy.

This claim, though attractive, seems to require modification when embedded
infinitives are considered. Thus, [Jacobson 90] has drawn attention to data like

(13) Everyone likes their tea to be hot.

The crucial question about such an example is whether the substring their tea
to be hot is an infinitival sentence (as opposed to a sequence of two distinct
complements of like). Evidence in favour of it being a single constituent is
provided by standard tests:

(14) a. What everyone likes is their tea to be hot.
b. Everyone likes their tea to be hot and their beer to be cold.

Despite these examples, the fact that nonfinite verbs cannot combine directly
with subjects in root clauses still requires explanation. In the present paper,
therefore, we shall maintain Claim 1.3 as it stands, while accepting that further
analysis of the issues is called for.

The fourth claim can be regarded as a further specification of Claim 1.1.
Chierchia suggests that it is an empirical generalization which holds for many,
if not all, natural languages:

Claim 1.4 Tensed predicative expressions cannot occur as arguments of propo-
sitional functors.

Thus, ungrammaticality results if we attempt to replace the untensed pred-
icatives in our previous examples by tensed predicatives:

(15) a. *Runs annoys Mary
b. *John seems annoys Mary/is happy
c. *John tries annoys Mary/is happy

Let us now consider how these observations might be rendered in a formal
framework. The generally accepted interpretation of Claim 1.1 is that propo-
sitional functions have individual correlates. As a further terminological step,
let us use the term mnominal predicatives to refer to expressions which denote
such individual correlates.> We make the standard assumption that a model
determines a universe of individuals. However, this universe contains a greater
diversity of objects than is usual in first order models; for example, it will con-
tain all propositions as a subcollection. Following [Aczel 80], Fy is collection

3 Although we will also follow standard practise in saying that such expressions have been
‘nominalized’, this is something of a misnomer inasmuch as we do not need to postulate any
type or category changing operation.

of objects, and F; is the collection of unary functions from Fgy to Fo. Within
F1, we can identify the subcollection of propositional functions, i.e., functions
from Fy to propositions, and this we call PF. It turns out that Fy is also ‘big
enough’ to contain, for each function from objects to objects, an object that
corresponds to that function. We can then implement the idea of individual
correlates by letting the collection PF be explicitly mapped, via the A operator,
onto a subcollection SET of the domain of Fy. That is, each object in SET is the
individual correlate of a propositional function. (See Lemma, 6 for a proof that
A is bijective.)

Claim 1.2 shows that some lexical items select as their arguments nominal
predicatives. However, any solution to this is closely tied up with the problem of
capturing the difference in combinatorial potential between tensed and untensed
predicatives, as required by Claim 1.3. For on the one hand, we would like to say
that a nominal predicative is the sort of thing which potentially combines with
an argument; on the other hand, it can only do this under special circumstances,
for example under the mediation of tense.

Let us be more concrete. If we assign the type (e, p) to nominal predicatives,
then it is difficult to avoid the conclusion that such expressions should combine
with arguments of type e to yield a result of type p, i.e, a proposition. If on the
other hand we follow [Chierchia and Turner 88] in assigning them the type nf
of nominalized functions, then it becomes hard to express the fact that there
can be semantic constraints on the type of the argument which a predicative
selects when it becomes ‘denominalized’. Suppose, for example, that we wanted
to define a subclass of untensed intransitive verbs which select for propositional
subjects; it would be desirable to assign them the type (p,p) (which we could
treat as a subtype of (e, p)).

A third option, and the one we shall adopt, is to give nominal predicatives
the type (e, e). This makes it clear that such expressions do select arguments,
possibly of some proper subtype of e. At the same time, it does not claim
that such expressions can combine with their arguments to make propositions.
Instead, this type remains ‘agnostic’ about the precise nature of the resulting
combination; we know that it is an object, but in the absence of further infor-
mation, can neither affirm nor deny that the result is a proposition.*

As pointed out by Chierchia and Turner [Chierchia and Turner 88], the ob-
servation that propositional functions cannot act directly as arguments appears
to be inadequately captured by first-order theories of properties such as that of
Bealer [Bealer 82] in which propositions only result by virtue of explicitly ap-
plying a property to another object. For example, on such an approach, John
walks would be expressed as (16):

(16) app(walk’:e, john':e)

4This is essentially Aczel’s [Aczel 80] analysis of the Russell property—although the prop-
erty is expressible in his system, the result of applying it to another object, including itself,
is not provably a proposition.

The Fregean view (which Bealer [Bealer 82, Bealer 89] rejects) holds that propo-
sitional functions should not be thought of as objects, but indeed as functions.
This is reflected in our framework, therefore, by the decision to view proposi-
tional functions as elements of PF, not Fy. This has the virtue of providing a
natural explanation for Claim 1.4. For although elements of PF do have indi-
vidual correlates in Fy, they are not themselves objects, and as such are not
potential arguments for other propositional functions.

As we will see, ‘nominal’ types (including predicative nominals) are all con-
structed as subtypes of e. Since, according to what we have just said, proposi-
tional functors are not nominals, they cannot be assigned a nominal type. We
therefore require a new kind of type for such functors, one which is not a sub-
type of e. Expressions whose denotations lie outside the domain F of objects
will be assigned what we call metatypes. Whenever o and 7 are (meta-)types,
(0 — 1) will be a metatype. Note that we will not need to quantify over proposi-
tional functions, nor will we need A-expressions whose domain of interpretation
is the collection of propositional functions—we can use nominalized properties
instead. Hence, variables in our language will never be assigned metatypes.

We shall assume that uninflected (or base form) verb phrases denote objects
rather than propositional functions; for example, walk will be of type (e,e).
When verb phrases receive tense, they are mapped by a predication opera-
tor ¥ into propositional functions, with the metatype (e — p). Thus if nonfinite
walk translates as walk':(e, e), then tensed walks translates as “walk’:(e — p).
Putting the various pieces together, we replace (16) with (17), where the propo-
sitional functor is applied directly to its argument, rather than by the mediation

of app:
(17) [“walk’:(e — p)(john':e)]:p

By way of summary, we give the following tabular presentation of our artic-
ulation of the data. Note that our earlier notion of ‘predicative’ is now divided
into two.

Syntactic Notion Semantic Notion (Meta-)Type Example
propositional functor | function from Fy to propositions (e > p) walks, is fun
nominal predicative subcollection of Fy (e, e) walk, be fun

In this section, we have attempted to present and motivate the general struc-
ture of our approach, and it will be observed that we have followed [Chierchia and Turner 88|
closely in favouring a Fregean analysis over a first order property theory. Nev-
ertheless, our formal framework differs from that of [Chierchia and Turner 88]
in many respects; this will become obvious in the following sections, where we
give a more systematic presentation of the theory.

10

2 The Language L~

2.1 Judgements and Type Containment

In the theory £ developed in this paper, we follow [Aczel 80] in starting from
models of the type-free lambda calculus, on top of which an interpretation for
logical connectives has been constructed; we then construct types within the set
of objects. In place of the domain {0, 1} of truth values, we have a domain PROP
of propositions, included in which is the domain TRUTH of true propositions.
These collections provide values for the types p and ¢ respectively. As mentioned
earlier, there is also a domain Fy of individuals, with associated type e. This
domain turns out to be much richer than one might have expected. Indeed, it
contains PROP (and hence TRUTH) as subcollections. In Section 3, we shall look
in more detail at the intended models; for the time being, however, we present
the type structure.
Following usual practice in type theory (e.g., [Cardelli et al. 85], [Mitchell 88]),

we use a natural deduction format for rules of type inference. A simple example
is the following:

Fop
Faz:o.p:p

The statement Fp:p is an assertion or judgement meaning that we can infer that
 is of type p. The rule as a whole is a logical implication; given the premiss,
we can infer that Jz.¢ is also of type p.

What we have presented is not quite sufficient, however; if ¢ contains occur-
rences of the variable x, the inference that it is of type p may in turn depend
on the type of x; in other words, the judgement is made under the assumption,
or in the context, z:0. Using

I x:0o

to represent a context I' which contains the relevant assumption, we replace our
earlier rule by the following:

I z:obpp
I'Faz:o.@:p

Let us now present these ideas in a more systematic format. A type statement
is a pair, written a:o, consisting of an expression a and a type o, read “a has
type 0”; a is said to be the subject of the statement. A signature X is a finite set
of distinct type statements the subjects of which are constants, while a context
I" is a finite set of distinct type statements, the subjects of which are variables
or sentences. In the latter case, a statement of the form :t indicates that ¢ is a
sentence of the logic whose truth is being assumed in the course of a proof; that
is, we are also using contexts in a sequent calculus style to encode the current
set of assumptions required at each line of a proof.

11

As usual, we can regard signatures and contexts as functions from expres-
sions to types. Thus, dom(X) denotes the set of expressions to which the sig-
nature Y assigns a type, and similarly for contexts. If A is a signature or a
context, we write A, a:o in place of AU {a:0}.

Although the system used here does not use the power of higher-order type
theory (e.g., such as dependent types), we have nevertheless found it convenient
to take as our framework the theory of expressions developed in the Edinburgh
Logical Framework [Harper et al. 87]. As pointed out in the preceding section,
we distinguish types, whose interpretations are constructed within the domain
of objects, from metatypes, which have a disjoint interpretation as collections
of functions and functionals. Types and metatypes are both kinds.

We need three further kinds, or classifications of types: fized point types (fp-
types) well-behaved types (wb-types) and non-propositional types. The latter
have the characteristic that their leftmost type is e, hence we use le-type for
short. All these types are all interpreted within the domain of objects. As we
shall see later, there is a sense in which an fp-type is a complex type which does
not have any proper subtypes.

We will use o and 7 for types, mo for metatypes, and 7,7;,72 to range
over both types and metatypes. We use ¢ for constants (a special instance of
which is 1), z,y for variables, «, 8 for arbitrary object language expressions
and @, 1, x for expressions which denote propositions. We use I' F s to mean
that s is derivable within context I', and 'ty s to mean that s is derivable from
the signature ¥ within context I'. s and Fx s stand respectively for) F s and
fFs s, where) is the empty context.

The syntax of the various sorts of expression can now be specified as follows:

Signatures X u= 0| X, cn

Contexts ' o= §|Naoo|lat

Kinds K == type]| fp-type | le-type | wb-type | metatype

Types o w= el|t|p]{o,T)

Metatypes mo == (1 — n2)

Ezpressions « == c|z|Azio.a| app(a,B) | a(B) | ma| Ya|[aAf]

[[aVB]|[aDf]]|[a=0]]|Veoa]|Izoa

We will omit square brackets around complex sentences except in those cases
where the scope of a typing statement needs to be made explicit.

12

Type theory (cf. [Martin-Lof 79]) provides rules for making judgements of
various forms. The ones which we are concerned with are the following:

Judgements
F X sig Y is a signature
Fv I context I' is a context
Iy K 1 has kind K
'ty o<1 type o is contained in type T
Ity o7 type o is equivalent to type T
'ty ao a has type o

Examples of 'ty n K are: Tty p type
ks (e = p) metatype
ks ((e,e), e) le-type

Note that the & relation between types is the symmetric closure of <, the
containment relation.

We mentioned earlier that the inference rules by which judgements can be
derived are formulated in natural deduction notation. We add glosses to a
representative sample of the rules in order to help readers not familiar with this
mode of presentation.

Valid Signature

(null 519) W

The empty relation is a signature.

FX sig Fesn K

(: sig) S if cg dom (X)

If ny is a kind, and ¥ doesn’t already assign a (meta-)type to the constant
¢, then we can augment ¥ with the statement c:n.

Valid Context

F X sig

1 text) ——————
(null - context) Fss 0 context

Fs ' context 'ty o type

(: context) if c ¢ dom (T)

Fs [, z:0 context

Fs I' context
Fs T, it context

(: truthcontext) if p & dom ()

We mentioned earlier that the type statements in a context have subjects
which are variables or sentences. As far as the former is concerned, it can be seen

13

that (: context) requires o to be a type, not an arbitrary kind; thus, our contexts
will not assign metatypes to any variables. As far as the latter kind of statement
is concerned, we obseve that although we can derive the judgement y:p, we do
not require contexts which contain it; hence (:¢ruth context) is sufficient.

As we pointed out above, the following semantic domains are ordered by
inclusion:

TRUTH C PROP C Fy
SET C Fo

And indeed there are other inclusions in the domains. This structure is reflected
by the containment relation < (in fact, a partial order) which is imposed on the
types. When o < 7, we say that o is contained in, or is a subtype of, 7. 0 <X T
means that any expression which is of type o is also of type 7; moreover, any
object in the model which belongs to the domain Dy associated with ¢ also
belongs to the domain D+ associated with 7. The most salient containments in
our system are the following:

t = p = e

(o,7) =X e

Rules for inferring judgements about containment will be given shortly. Be-
fore that, however, we present the various kinds required.

Kinds, Types and Metatypes

FY sig Fs ' context
I'ks e type

(base types)

FX sig Fv I’ context
ks t type

FX sig Fv I’ context
I'Fx p type

I'ts o type I's 7 type
ks (o, 7) type

(complex types)

FX sig Fv I’ context
'ty e le-type

(le base)

I'ks o le-type I'ks 7 type

l [
(le complex) ks (o, 7) le-type

I'ky 7 le-type I'ky o type ks 7<0

b-t
(wb-types) Ty, (o, 7) wb-type

14

I'ts o type 'y 7=<p
Fl_E <<Ua T>7T> fp_type

(fp-types)
If o is a type and T is contained in p (that is, T =t or p), then ((o,T),T)
is an fp-type.

F"g m K FI—E 72 K
ks (m — n2) metatype

(metatypes)

Here are some examples of le-types: e, (e,e), (e,p), (e, (e, e)), (e, (e, p)),
({e,e),e), {{e,p),e), and so on. We claimed earlier that the ‘leftmost’ type of
such an le-type must be e. The following lemmas show that this property does
indeed follow from the definitions we gave earlier.

Lemma 1 If o is an le-type, then the leftmost type of o, call it leftmost (o), is
e.
Proof By induction on the judgement o le-type.

o If o is basic, then leftmost(o) = o = e.

o If(0,7) is an le-type then by (le-complex), o is an le-type. By hypothesis,
the property holds of o. So leftmost({co, 7)) = leftmost(c) = e. O

As we will see later, A-abstraction will only be permitted when the type of
the resulting abstract is a wb-type. A complex type (o, 7) is a wb-type just in
case the range type 7 is an le-type which is contained in the domain type o. For
example, (e, e), (e, (e,e)), (e, {e,p)) and ((e,p), (e, p)) are wh-types. However,
(e,p) is not a wh-type, because p is not an le-type, while {p, e) is not because e
is not contained in p. A consequence of our condition on A-abstraction is that
we cannot form abstracts such as Az:e.app(a,z) where app(a,x) is provably of
type p. This might seem overly restrictive. However, it turns out that for most
purposes, we need only to consider cases where app(a,), say, is provably of
type e.

The containment relation is governed by the following conditions:®

Containment

'ty o type

<
(ex) 'ty o<e

Objects in the domain Dg of any type o are also in De.

Fs I' context

<
v [1=p

5For a similar proposal, see [Curien et al. 89].

15

Truths are propositions.

Iy 01202
Fl_Z <Uz,6>j<0’1,€>

(Dom=)

Every function (returning arguments in De) defined on a domain Dg, is
also defined on subsets Dy, of Dg,.

I'tx o type I'Fs 1 2m
Iky (o, 11)=(0, T2)

(Ran=x)

Every function with values in the range D, also yields values in supersets

Dr, of Dry .
R
(Trans=<) Iy Ujljl-—z U;:E T=p
(Anti<) = ”?:E _ i? =0
(Fiz<) Iky ((o,7),7) fp-type

Iky ({0, 7), 7)~(0, 7)

We now prove some simple lemmas which help us to establish relationships
between the different categories of types in our system.

Lemma 2 The only judgement e < 7 is: e < e.
Proof By induction on the definition of <.

o The cases (e =), (p <) and (Id <) are obvious.

o Of the recursive clauses, the only relevant one is (Trans <), where o is e
and e < p is derived from e < 7 and T < p. But by induction hypothesis, T
must be e. Now again from the induction hypothesis and e < p we derive
that p must be e. O

As a corollary of the Lemma 2, we obtain the result that e < p is not
derivable.

Lemma 3 If (5,7) =< p, then either p = e or p is a complex type.
Proof By induction on the definition of <.

16

e Case (e <) is obuvious.
e Cases (p %), (Dom =) and (Ran <) do not apply.
o Case (Id <) is obvious.

e Case (Trans <), then

Cky (o, 7)=<p ks p=p’
Tky (o, 7)=p’

By the induction hypothesis, either p = e or p is complex. If p = e, we
have that e < p', but then p' = e, as required. If, on the other hand, p is
complex, then by the induction hypothesis, from p < p', we again conclude
that p' = e or p' is complex.

e Cases (Anti <) and (Fiz <) do not apply. 0

Lemma 4 If o < p, then o is not le-type. (Or conversely, if o is le-type, then

o4 p.)
Proof By induction on the judgement o le-type.

o Case o = e, then we use the corollary of Lemma 2.

o Cases 0 = (01,02), where oy is le-type, then from Lemma 3, (01,02) 4 p,
because (o1,02) <X p only if p = e or p is complex. 0

The axiom (Fiz <) gives us fixed points for type containment. That is, if 7
=< p, then (o, 7) = ((o,7),7) =~ ({{o,7),7),7) While types such as (e,e),
((e,e),e), ({{e,e),e),e), ...are distinct, we need to be more restrictive about
types such as (e,p), ((e,p),p), ...if we are to avoid the paradoxes. According
to (Dom <), since (e,p) = e, we should have (e,p) < ((e,p),p). The intuition
behind calling ({e, p}, p) an fp-type is that this containment is not proper; that
is, we cannot get anything extra by going from (e,p) to {({e,p),p). In other
words, we can only map sets into propositions to the extent that we map those
sets qua objects into propositions.

There is a complementarity between le-types and fp-types, in the follow-
ing sense. Recall that for ((o,7),7) to be an fp-type, we require 7 < p. Now if
ks 7 le-type, we can conclude that Ttfs, ({0, 7),T) fp-type; for example, ({7, €), €)
is not an fp-type. The reason is that if 7 is an le-type, then by Lemma 4, 7
cannot be a subtype of p.

Conversely, from 'y, ({0, 7),7) fp-type, we can conclude that Tty 7 le-type.
This also follows from Lemma 4, since 7< p, and is therefore not le-type. For
example, ((o,p),p) is an fp-type, but p is not an le-type.

17

Note, however, that while fp-types and wh-types are mutually exclusive, le-
types and fp-types are not; for example, ((e,p),p) is both an le-type and an
fp-type.

As already remarked, the containment relation plays a central role in our
approach to polymorphism. In Section 3, we shall show that there are models
of the typing system; that is, we will have functional domains from Dy to Dr
which are included in Deg; moreover, when Dy C PROP, we also have the result
that objects in the function space domain ‘Dg to D7’ are in Dy.

2.2 Type Inference Rules

In the preceding subsection, we gave a definition of the syntax of expressions
occurring in judgements. These definitions were deliberately general, and could
encompass a variety of logical systems. In specifying a particular calculus, such
as L, we need to make explicit how the types of expressions of £« are inferred.
It is to this task that we now turn. N

Not all functions can be mapped down into the collection of objects, and fol-
lowing Aczel [Aczel 80], we shall call these functionals. That is, adopting Frege’s
correlation thesis [Frege 77], we will see that all we need in the formal theory
are objects, functions and functionals and that functions at a higher level than
those three can be mapped down to the lower domains. Among the functionals
we will count the interpretations of determiners and logical connectives—and
indeed, these are expressions which do not admit of nominalization.

The signature ¥ of £+ contains a finite number of statements c:p which
assign types and metatypes to constants of the language. For now, we are only
concerned with logical constants and functionals:

Signature of £

clhu<>1HF

)
=

W<t >

Two comments on the above are called for. First, it will be noticed that,
for example, = is interpreted as a functional which maps any object in Fy into
another such object; we cannot tell, for a given expression a, whether -« is a

18

proposition unless we have some way of proving that « itself is a proposition.
This will be made explicit in the axioms for type inference given below. Second,
we will use conventional notation for the syntax of the various constants, writing
@ A in place of A(p)(v), app(z,y) in place of app(z)(y), and Vz.p in place of
V(Az.p).

A context I' for £ contains a finite number of statements of the form z:0,
for any type o. Recall however that I' never assigns metatypes to variables.

Before launching into the type inference rules, we first define substitution on
expressions, where we take a[3/z] to be the result of substituting 3 for all free
occurrences of z in a.

z[B/z] = f

z[B/y] =7 ifzZy

clB/z] = ¢

Az.)[B/z] = Az«

Az.)[B/y] = Az.a[8/y] if x # y and x not free in 3

(Az.)[B)y] = Az.a[z/z][B/y] if ¢ Zy and z is free in § and z is not free in
« or

O1(a)[B/z] = ©1(a]f/z]) Wherg O is -,Y,A,V,D,=,app,¥,3, or else

represents functional application.

The other clauses for substitution in logically complex expressions carry on
as usual.
The next definition serves the following functions:

1. It gives rules by which the type of an arbitrary expression of £ can be
inferred. -

2. It exploits the type ¢ of truths to give introduction (/) and elimination
(E) rules for the logical connectives in L.

Definition 1 (Type Inference for £<)

Fs I’ context

(Base) TTryawo where a:o € T
ks 0= 'y a:
(Contain) > U_ljl-—g - Rl

I, z:obs a:7 Cky (o, 7) wb-type
Iky (Azio.q):(o, T)
ks ai{o, 1) Ty, Bio
Fl_E app(aaﬁ):T
ks fi(o — 1) ks Bio
Tk f(B):1

(M)

(app)

(Funct)

19

(D prop)

Cky a:e, e)

Ty Ya:(e = p)

Iky azmy Iky Bine

Ity [a=f6]p

Iky [a = p)it Iky am

I'+s B

I'Fs @:p

Iy —pip

I'ks pip I pitks Lt

Iky —:t
I~y Lt I'ky o

FI—E (p:t

I'ks pip 'ty ¥ip

ks [Ay

I'ky @t Iy it

Tky [A)it

Tty [(p A @ZJ]:t Ty [(p A Q,ZJ]St

FI—E (p:t FI—Z ’l/JZt

Ity oip Iy ¢ip

Ihs [p Vlp

Ihy it Ths ¢p ke oip Thy it

ks [o V)t ks [o V]t

L, pitky xit L, :tky x:t Tky [@ V9]t

ks x:t

L, p:ths ¢ip Iy ¢ip

Iy [p D 4)p
T pitky it I'Fs ip

ks [DY)t

I'ts p:t 'y [90 D ’(/J]Zt

FI—E w:t

I z:obs p:p

I'ky, Vzio.p:p

20

I z:oby pit

(VI) m where x is not free in ¢ or any assumptions in T’
(VE) I'ky Vzio.p:it I'ts aio
ks pla/z):t

I z:obs p:p
3 InkhedaaliRSl o' 8
(3prop) I'ky Jz:0.0:p
an L, z:0by pla/z]:it

'ty Jzio.p:t

(3E) Tky Jz:o.p:t T, ola/x]:ths ¢t

F"g Zﬁ:t

Although most of these clauses are standard, it should perhaps be pointed
out that the definition (Dprop) of implication is the one proposed by [Aczel 80]
to enable him to interpret Martin-Lof’s type theory in a Frege structure; it has
the consequence that if the antecedent ¢ of a conditional is not true, then ¢ D 9
is a proposition whatever object 1 is. For our purposes, it would also be possible
to omit the extra condition on the antecedent.

2.3 Equality Axioms

We now give a set of equality axioms which are similar to those of the A-calculus,
except that we allow self-application and polymorphism. Note however that self-
application is only possible for those expressions which have a complex type;
indeed, this is what is required by clause (app) of the syntax above.

(a) Trs [(Az:0.q) = (A\y:0.aly/z])]:t, where y is not free in a.
(8) Trx [app(Az:0.a,a) = afa/z]]:,
Tky ay:(o,T) Ikx Brio Iky (a1 = as)it Tky [B1 = Bo)it

™ Iks [app(ai, B1) = app(az, B2)]:t
'ty aio

5 —— ==

() Ity [a = at

((—j) F"g [a1 = a2]:t F"z} [011 = Oég]it

FI—Z [042 = a3]:t
(c) I'ts [app(aq, ©) = app(az, z)]:t where z is not free in i, as or
Tky (a1 = ao)it any assumptions in I'.

6This is the axiom of extensionality.

21

2.4 Russell’s and Curry’s Paradoxes

It might be thought that the theory presented above would fall foul of Russell’s
paradox, due to the fact that —app(z,) is a well-formed formula for z of any
type (o, 7); hence by abstracting over —app(z, z), we could obtain the equality

app(a,a) = —~app(a, a)

where a is \x.—app(z,).
For example, given the following proof,

F,.’I}:<€,p>"2 .’L':<€,p>

(Contain)
L, z:(e,p)bs x:(e,p) [, z:(e,p)Fs x:e

(app)
L z:(e,p)ks app(z,x):p

(—prop)
L, z:(e, p)rs —app(z,):p

we might conclude that we can set a equal to the abstraction

Az: (e, p).—app(z, x):({e,p),)

and infer that app(a, a) is of type p, leading to a contradictory proposition from
the above equality.

However, one of the steps necessary to derive this contradiction is incorrect.
That is, even if is of type (e, p), and even though —app(z,x) is a proposition,
Az: (e, p).—app(z, x) is not typable in L. More specifically, it is excluded by
virtue of clause ()) in the definition of type inference, since we cannot derive
ks p le-type, and hence cannot derive that ({e, p),p) is a wh-type.

In fact we have a more general result: the paradox does not arise for z of
any type (o, 7), where 7=t or p. This is a consequence of the following lemma.

Lemma 5 If x is of type (o,7), 7=t or p, then \x:{(o,7).—app(z,x) is not
typable.

Proof According to the definition of type inference for L, it is enough to
show that we cannot derive T'x, p le-type or Tkx t le-type. This is obvious. O

Our manner of avoiding the paradox is somewhat new, we believe. It is
similar to Russell’s own approach in that type constraints are invoked to limit
abstraction, but differs of course with respect to the non-hierarchical nature of
the type system. Unlike Aczel [Aczel 80], we do not take the step of question-
ing the propositionhood of app(a,a); and unlike Turner [Turner 87], we do not
restrict the axiom of 8-conversion.

Let us turn now to the question of Curry’s paradox. Recall the Deduction
Theorem (in fact, our rule (D I)):

[, piths it I'ky @ip
I'x [g@ D) ’(/J]Zt

(DT)

22

If we take a to be the formula
Az:oapp(z,x) D 1],
then by B-conversion we derive
(ID) app(a,a) = [app(a,a) D L].
Now, it holds trivially that
app(a,a):tty; app(a, a):t.
Hence, by (ID) we derive
app(a,a):tky [app(a,a) D L],
and by (D E) we get
app(a,a):tky, L:t.
In order to derive by (DT) that
Fy. [app(a,a) D L]t
we must first be able to show
OFx app(a, a):p,

(where) is the empty context). For we can derive the latter, we can use it in
the following step:

app(a,a):tks L:t 0Fs app(a,a):p
Ok [app(a,a) D L]:t

and also by (ID) and (= E)

(D prop)

OFs app(a,a):t.
Given the last two steps, we can again apply (D E) to get
l_Z 1:t.

The proof only goes through, however, if Ok app(a,a):p is derivable. For
this, we would have to assign the type (o,p) to a, i.e., to Az:o[app(z,x) D L].
How could we show that

(18) Fs Az:o[app(z,x) D L]:(o,p)?

This can only be the last step of an inference involving the rules (A) or (Contain).
We consider the two cases in turn.

23

Case 1: The premisses of the inference must include z:ots [app(z,z) D L]:p,
which in turn is only derivable by (2 prop) from the assumption that z:o
Fs app(z,x):p. However, we can only prove the latter if for some o/, 0 =
(o', p), where (o/,p) <o'. But in this case, we would have to show that
I's p le-type, which is impossible.

Case 2: We have to find some type 7 such that 7 <(o, p) and z:0Fx Ax:o[app(z,z) D
L]:7. The only applicable derivation rule is (Ran <), setting 7 to be (o, t).
However, the judgement ty, Az:olapp(z,x) D L]:(o,t) is not derivable, for
the same reasons as those given in Case 1 above, since we cannot show
that T'ty p le-type.

3 Models of Ej

3.1 Frege Structures

As pointed out earlier, our models are constructed using the notion of a Frege
structure as defined by Aczel [Aczel 80]. We begin with a collection Fy of ob-
jects, and for each natural number n > 1, we define F,, as {f : Fo"—=Fo},

n times

where Fo™ = 3’-‘0 X Fo X ---.7-'(;. In particular, F; is the set of all unary func-
tions from Fg to Fy. Within Fy we pick out PROP, the collection of propositions,
and TRUTH, the collection of all true propositions. (Thus, Aczel makes a crucial
departure from Frege in denying that all true propositions can be identified with
the True).

So far, then our Frege structures contain objects, functions, propositions
and truths. To these, we need to add functionals, logical connectives, and some
closure conditions. We now show how they are supplied.

Two functionals are required in order to provide a model for the lambda
calculus:”

A .7:1'—).7:0
app : Fo X Fo—=Fo

These obey a comprehension principle such that whenever f is a function in F1,
then

app(Az.f(z),a) = f(a).

Let PF be the collection of unary propositional functions in a Frege structure,
i.e., those functions f in /7 which map their arguments into PROP:

pF = {f € Fi|for all inFy, f(z) is in PROP}

"We adopt the notational convention of using boldface terms to denote elements of the
model, reserving italics for expressions of the object language. For example, app is a functional
in the model which corresponds to the functor app in the language.

24

We can now identify a further subcollection of Fj, namely SET, as the indi-
vidual correlates of propositional functions under A:

Definition 2 (Sets) An object is in SET iff it is Af for some f in PF.

The distinguishing characteristic of sets (i.e. elements of SET) is that they
can be predicated of any object in Fy to yield a proposition:

Definition 3 (Predication) If @ is in SET, then app(a,b) is in PROP, for
any object b in Fy.

Comprehension can be restated as follows:

Definition 4 (Comprehension) If f is in PF, then Af is a set a such that
for any object b, app(a, b) is in PROP, and app(a, b) is in TRUTH iff f(b) is
1n TRUTH.

The notions that we have introduced so far—objects, functions, PROP, TRUTH,
SET, comprehension and predication—are based on a model of the A-calculus.
In order to ensure that they have the properties we want, our models should
also contain a logic. We know that such a construction is not straightforward;
for instance, logic cannot be built in a simple way on the top of Scott domains
(cf. [Scott 76]). The construction provided by Aczel inductively increases the
two basic collections of propositions and truths, and the fixed point theorem is
then applied to provide the limit of these newly obtained collections, resulting
in PROP and TRUTH. Hence PROP is closed under all the logical connectives
A,V, ... (more strictly, the functionals corresponding to these connectives)
and TRUTH is the collection of all true propositions. The organization of Fy
and F; in a Frege structure is illustrated in Figure 1.

We now need to ensure that we have full abstraction. That is, if {[z1, Z2, . . ., 4]
is an expression formed out of objects, functions, functionals and variables (rang-
ing over objects in a Frege structure), where x1, s, ..., %, are free variables of
&, then there is a function f in the Frege structure such that f(a1,as,...,a,) =
¢lar/x1,as/xa, ..., an/z,], where the substition of objects for variables is si-
multaneous. This is called ezplicit substitution.

We assume our construction is based on the model E., of the untyped A-
calculus [Scott 76]. We then take

B, ={0,1} C Fo = Eo.

We next construct the logical constants so that PROP is the smallest set con-
taining By which is closed under the relevant clauses for connectives presented
in Definition 1. Here, we give just two examples.

(A schema) If ¢ is in PROP and % is in PROP, then ¢ A 1) is in PROP, and
@ A1 is in TRUTH iff ¢ is in TRUTH and % is in TRUTH.

25

Figure 1: The functional A

26

(V schema) For all n-ary functions f, if f(x1,x2,...,%,) is in PROP for all
(L1, T2y...,&n) € Fo", then Vf is in PrROP, and Vf is in TRUTH iff
f(ai,az2,...,ay) isin TRUTH for all (a1,az2,...,an) € Fo".

Whenever ¢ is a wif open in z, we understand (p|z) to be the function f in
Fy such that for any a in Fy, f(a) = ¢[a/z]. Since we have full abstraction,
we can assume that f exists. Now, we take | |: Fo—=F1 to be the functional
such that

la| = (app(a,z) | z).
In general, we define | |, :Fo—F, such that
| @ |n= (app,(a,) | &)

where app, = app and appn+1(a,b,6) = appn(app(a,b),g), and :E',E are
sequences of n variables or elements of Fy. Now,

A FosFpym > n

is defined inductively, for @ = aq,...,a, as
ATH@) = Af(d) |)
AA@) = AT

In particular, A{ nominalizes an n-ary function f returning Aj f in Fo.
We take

SET = {A{ f|f is any propositional function }.

Definition 5 A Frege Structure is a triple F = (Fo, PROP, SET) constructed as
above.

It might be unclear why we have only included Fy, PROP, and SET in the
structure and ignored functions in general (though not functionals). The reason
for this is that the principle of extensionality holds in F., and hence we have a
bijection between Fo and F,, for n < 1. In fact, we can show that A(la|) = a.

Lemma 6 The functional X : F1—Fq is bijective.
Proof

1. X is injective, because

Af =XAg implies Va(app(Af,a)=app(Ag,a))
implies Va(f(a) =g(a))
implies f =g.

27

2. X is surjective, because if @ is in Fo then (a | x) is in F1 and for any b
in Fo, @ # b implies (a | x) # (b | x) O

Hence we have sufficient structure within ¢ to do everything we want with-
out having to consider F;.

Up until now, we have not said anything about the interpretation of the pred-
ication operator “. It will be recalled that, by virtue of (¥ I), whenever « is an
expression of type (e, e}, “a is of type (e = p). If a denotes the nominalization
Af of a propositional function f, then we want “« to denote (app(Af,) |).
However, the functional corresponding to “ must carry any object in Fy into an
appropriate value in F;. What happens if a denotes an object a not in SET?
In this case, (app(a,x) |) will not be a propositional function; that is, for
any argument b, app(a, b) will just denote an arbitrary object in Fy. We take
this to be an acceptable alternative to the approach used in [Partee 84] where
Y is interpreted as a partial function, defined only on objects in SET. Hence, we
always let “a denote (app([«a],x) |), where [«] is the interpretation of «.

We shall now show how to construct domains inside Fy such that the types
described earlier can be mapped into them.

3.2 Domains

We distinguish between two kinds of domains, Dom; and Doms. We use X7,
Y7 to range over Domy, X2, Y2 to range over Doms, and X, Y to range over
both domains. We also assume that * is a distinguished element in F which
will be used to give functions a undefined value.

Dom; := Fo|X1=>Y:
Doma := PROP|TRUTH | X=X

Dom interprets those le-types which are not fp-types. It is appropriate for
le-types because the leftmost type of an le-type will always be in Fy. It does
not interpret fp-types because VX € Domy, X Z PROP. However, fp-types will
be interpreted by Dom.

Definition 6 (= Function Space)
X=Y ={z € Fy: forals' € X[app(z,z') € Y]}

Definition 7 (— Function Space)
XY ={zeX: foralld[if 2’ € X then app(z,z') € Y], else app(z,z') =

We shall write ‘f is true’ as an alternative for ‘f is in TRUTH’. Similarly we
use ‘f is false’ for ‘f is in PROP-TRUTH’. We also assume the presence of two
special elements of the Frege structure, 1 in TRUTH and 0 in PROP—-TRUTH. Of
course, 1 is not the only truth in the model.

28

Definition 8 (Internal Definability) We say that a collection C is internally
definable in a Frege structure if the following holds: there is some f in PF such
that for all © in Fo, f(x) is true iff x is in C. In this case, f is the characteristic
function of C.

The domain Domj can be understood as the collection of objects which
provide interpretations for types not involving p and ¢. All the domains of
Dom, are internally definable. This can be proved by induction as follows:

Lemma 7

1. Fo is internally definable, by taking the function f : Fo—PROP, where
flz)=1, for allz € Fy

2. Assume Xq, Y7 are internally definable by the propositional functions f
and g respectively. Then we want to show that the collection X7 = Y7 is
also internally definable.

f:Fo—PROP where

. true for all x € X4
f(w) 1s { false otherwise

g:Fo—PROP where
. true for ally € Y
g(y) is { false otherwise

Let h : Fy—=PROP, where

h(z) = Vz[f(z) D g(app(z, v))]
Now,

(a) h is a propositional function because f and g are, and
(b) we have to prove that z € X1= Y1 iff h(z) is true.

i. Assume z € X1= Y1. Let © € Xy; then f(x) € PROP because
f € PF and app(z,z) € Y1 because z € X1= Y1. g(app(z,z))
is true because g internally defines Yi. Hence f(x) € PROP and
f(x) € TRUTH implies g(app(z,z)) € TRUTH. Hence f(x) D
g(app(z,)) is true. But this holds for every x, hence Vx[f(x) D
g(app(z,x))] is true. Hence h(z) is true.

it. Assume h(z) is true. z € Fo, of course. Let x € X, then
f(z) D g(app(z,x)) is true. But f(z) is true because x € Xy.
So g(app(z,x)) is true, and app(z,z) € Y1, since g internally
defines Y. Hence z € X1=Y7.

29

Hence z € X1=Y1 < h(z) is true. 0

Now that we know Dom; is the domain of internally definable collections,
we can write X=Y using fx and fy, the characteristic functions of X and Y:

X=Y ={z € Fo: foral 2'[fx(z') D fy(app(z,))]}

Dom, on the other hand, involves domains which are not internally defin-
able. For example, the two basic domains PROP and TRUTH cannot be internally
defined. In fact, according to Tarski’s theorem on the undefinability of truth,
we cannot have a propositional function in the object language which internally
defines truth; this implies that we cannot have a propositional function which
internally defines propositions; see [Aczel 80] for discussion.

It might be asked whether the existence of judgements like 'ty a:t means
that we have in effect committed ourselves to the internal definability of truth.
The first point to note is that typing statements are not propositions in £,
but judgements about the language. Second, we have no way of telling for an
arbitrary expression a whether the judgement I'x « : t holds. In particular,
since contexts [' are finite, they will not necessarily determine the type of an
arbitrary variable.

Recall that app is the functional in the Frege structure which corresponds
to app in the language of L. We saw that in a standard Frege structure,
F1 ={f : FoFo} is the collection of all functions from Fy to Fy, and contains
a subcollection PF of unary propositional functions. We also saw earlier that A is
a bijective map from F; to Fy. What we now have to check is that, as a special
case of Definition 6, there is an appropriate domain Fy<—PROP inside Fo which
will contain the nominals of propositional functions. In fact (Fo<—PROP) = SET
(easy to prove).

Our next lemma illustrates the fact that the domains constructed above do
indeed model the types in our language.

Lemma 8 If X;, Y; are any domains in Domy, then (X1=Y1)CFy.
The proof is trivial. 0O

In other words, every function in Dom is an object. This enables us to inter-
pret self-application and nominalization.

Lemma 9 If X is any domain and Yz is in Domy then (X—Y2)CX.
The proof is trivial. 0

Lemma 10 If X1,Y1,Y1' arein Domg, then Y1 CY;' implies (X1=Y1)C(X1=Y7').
Proof If z € X;1=Y1, then Vz' € X,,app(z,z’) € Y1, by Definition 6.

Since Y1CY1', it follows that for all z' € X,,app(z,2') € Y1’ and so z €

X1:>Y1I. 0

30

Lemma 11 If X,Y5,Y>' are domains such that Y2,Y>' are in Doms, then
Y>CY> ' implies (X—Y2)C(X—Y2').
Proof Same as above. O

Lemma 12 If X;, X' and Yy are in Domy, then X1 C X' implies (X1'=Y1)C(X1=Y1).
Proof If v € (X1'=Y1), then by Definition 6, for all ' € X,', app(z,2') €

Y:1. Since X1CX,', then for all ' € X1,app(z,2’) € Y1. Therefore © €

X1=Y:. O

A model for L4 is a 6-tuple M = (F,=,—,Z,D, g), where
1. F is a Frege Structure ,
2. = and < are defined as above,

3. 7 is an interpretation function which takes any constant of kind 7 to an
object in D, and takes L to the element 0 in PROP,

4. D is a function which maps types into domains of M as follows:

(a) D, = Fo
(b) D, = PROP
(¢) Dy = TRUTH
(@ D< _ { Dg— DT,‘ if Dr € Domg
0,T) Dg= Dr if Dy € Domq and D € Dom,
(e) D(a)= {f : f is an F-functional such that for all z € Dg, f(z) €
Dr},

5. g is an assignment function which takes any variable of type o to an object
in DU .

Note that Domj N Dom is empty and that Dom, will interpret le-types
which are not fp-types, among others. Domg will interpret the fp-types, among
others.

Since we do not allow variables to range over F-functionals, the interpreta-
tion function 7 is sufficient to determine the denotation of functors.

We now define a valuation function [| which given an expression o and an
assignment g yields a value in Dom; U Dom,.

1. [[c]]th :I(C)

2. [alpr, = 9(a)

w

- [app(a, B)I p,, = aPP(ld A 40 [BI A ,)

o~

- NaB@Imy = [a8,

31

5 [P,y =1l |

6. [Az:0.¢0]rg, = ASf, where f € Fy and f(a) = [[‘P]]M,g[a/x] foralla €
Do

7 el , = —lel v,

8. [o A, = [Pl m AT M,

9. [o Vel = lelm VI¥IM,
10. [> ¢l = [Pl , DI,

11. [[Vx:a.(p]]Mﬂ = Vf, where f € F; and f(a) = [[(p]]Mﬂ[a/z] foralla €
Dg

12. [Fz:0.9]pq, = 3f, where f € F1 and f(a) = [[‘P]]M,g[a/z] foralla €

Do

It will be observed that these valuation clauses depend on the existence of the
appropriate functionals (e.g., app, =1, A, V, V, 3) in the Frege structure. It would
be straightforward to convert the clauses for propositions into truth-theoretic
definitions, along the following lines:

8" [¢ D ¥]pm, € TRUTH <= [¥]rg, € TRUTH whenever [p] o, €
TRUTH

9" [Vz:op] pg , € TRUTH <= [@l A 40 € TRUTH for all @ € Do

Lemma 13 D<U 7y = (Dg= D7)C D¢ if Dg,D+ € Dom,
Proof Obvious by Lemma 8. O

Lemma 14 D(a T>QDU if D € Domg
Proof If Dy € Doms, then D(cr 7= (Dg— D7)CDg by Lemma 9.

Lemma 15 For any type o, Dg is either in Domy or in Doma.
Proof By induction on the construction of types.

o Ifo=p, t, or e, then obvious.

o If o = (01,02), where the property holds for o1 and oo, then also obm'ouri1

Lemma 16 DyCDe for any type o.8
Proof By induction on o.

80f course, the domain for (71 — 72) is not contained in De; but this follows from the fact
that (71 — 72) is not a type but a metatype.

32

e o is base type (i.e., e,t or p). Obvious.
e Assume o0 = (01,02), where Dg, CDe and DgyCDe.
Case 1 Dg = Dg,—=Dg,. Then DgCDg, by Lemma 14. Since Dg, CDe,
by induction hypothesis, we have DgCDe.
Case 2 Dg = Dg,=Dg,. Then DgCDe by Lemma 13.

Lemma 17 If o< 7, then Dg C Dr.
Proof

(e X) Case o= e.
Dg C De always holds, by Lemma 16.

(p X) Caset =< p.
Dy C Dp, since TRUTH C PROP.

(Ran =) Case 11 = To.

1. If D7y, Dy, € Domsg then use Lemma 11.
2. If Dy, D7, € Dom then use Lemma 10.
3. It cannot be the case that Dry € Domy and Dy, € Doms.

4. If Dr; € Domgy and Dz, € Dom;y then D<U,T1> = (Dg— Dry)
and D<U,T2> = (Dg= Dr,). It is easy to check (Dg— Dr) C
(Dg= D).

(Id =, Trans <, Anti <) Obvious.

(Prop) 7 < p implies D(a, 7) C Dy. This holds since D(a, 7y = (Dg— D7)C Dy,
by Lemma 9.

(Fiz <) 7 < pimplies D<<U 1) = D<U) We need to show that (Dg— Dr)— Dr

= Dg— Dr. From the proof of (Prop <) above, it follows that D((a 7) T>§ D(a)
The reverse inclusion is established as follows. Let © € (Dg— Dr). This

implies that for all ' € (Dg— D7)C Dg, app(x,z') € Dr. Hence

S (DUL) DT)L) Dr.

(Dom =) 01 =X o2 implies D<02 By the induction hypothesis,

)= Plore)
012 0y implies Dg, C Dg,. D, is in Domy and as we restrict types so

that a domain type is never strictly less than the range type, then Dg,

33

and Dg, must be in Domy. Hence by definition, D<U2 e) = Dgy= D..
Let x € D<02 e)- Hence ¢ € (Dgy=D.). So x € Fy and for all ' €
Dg,,app(x,z’') € D. and D(01 e) = Dg,= D.. Since Dg;, C Dg,,
it follows that @ € Fy and for all *' € Dg,,app(z,x') € D.. Hence
T € DUl :>De. O
Theorem 1 If I'a:o, where Dg € Domy then [[a]]M s € Dy

Proof

e If a is a constant c or variable x, this is obvious from the definition of T
and g.

o Let us assume the property holds for expressions a, 3, and show that it
holds for app(c, B). Trapp(a, B):7 iff Tkax(o,7) and THB:0. So [a] pmg g €

Dig 7y Blm, € Do, and [app(a, lpg, = app([ad g 40 1810 ,)-
The latter belongs to D, as D(a 7y = Dy = Dr.

o Let us prove [Az:0.a] \g g € D(a Ty’ where ks 7 le-type, T’ fso <7,
and by induction hypothesis [a] 4 slajq) € Dt for all x:0.

Since D<U 7) s tn Domq then D<J 7) =Dg =Dr. Hence [[)\:U:U.a]]M s €

Fo, and for all a € Dg, app([Az:0.0] \(,,a) = app(Af,a) = f(a),
where f(a) = [a] \f yiq/q € Dr- Hence [Az:0.a] pq , € Do=Dr. 0

4 A Fragment of English

The English fragment that we consider is intentionally simple,” and will focus
attention on issues of polymorphism and self-application. One possible way of
setting up the grammar would be to follow Montague in using the standard frac-
tional notation of categorial grammar, together with a homomorphism which
maps the categories into semantic types. However, for our purposes, it would
be preferable to build the syntactic categories directly on top of the types. Con-
sequently, the categories of the grammar will consist of decorated types and
metatypes of L; that is, types and metatypes annotated with phrase struc-
ture labels. The latter will provide us with the power to draw somewhat finer
distinctions of the kind required for English syntax. For example, (untensed) in-
transitive verbs, adjectives and common nouns will all belong to the type (e, e);
however, this type will be annotated as (e,e)", (e,e)4, or (e, e), respectively.

91n particular, we do not treat quantified noun phrases. It would be straightforward to
implement [Chierchia and Turner 88]’s treatment of type-shifting for quantifier arguments. It
is unclear to us, however, what the appropriate analysis of scope would be in the current
setting. Promising approaches include [Pereira 91] and [Emms 91].

34

The list of admissible labels is the following: S (sentences), V (verbs), N (nouns),
CN (common nouns), A (adjectives), P (prepositions), Adv (adverbials).

In some cases, we extend these labels with feature specifications along the
lines of [Gazdar et al 85]. For example, we use ‘P[to]” as the label for prepo-
sitional phrases whose head is the word to, and ‘VFORM’ to specify the inflec-
tional status of a verb or verb phrase. Thus V[VFORM BSE|, V[VFORM FIN],
V[vFORM PsP] indicate verbal categories in, respectively, base form (e.g., be),
finite form (e.g., is), and present participial form (e.g., being). We use X as
an underspecified category label; this will be useful when we want to give a
maximally general decoration to a type.

Whenever 7 is a kind, and C is a category label, then ¢ is a decorated kind.
The rules given previously for constructing a complex kind can be generalized in
the obvious way to decorated kind. We use the symbols ‘s, ¢, 7’ as metavariables
ranging over decorated kinds. It is obvious that we can simply strip the labels
off a decorated kind s to recover our original kind. We use ‘°s’ to denote the
stripped-down version of s, where °(s,)¢ = (°s,°t), and °(s —)¢ = (°s — °t).

An English grammar object will be a triple

(w, s,)

where w is a phonological (in practice, orthographic) form, s is a decorated kind,
« is an expression of £, and moreover I'Fx; a:°s, with ¥ as specified before.

As a typographical convenience, we shall also employ the following vertical
format for these triples:

w

V)

(07

For example, the representations of the words John and kiss can be stated as:

(19) John kiss
e (€N, (e.e)") v
john’ kiss’

Thus, kiss has the type of a verbal expression which will combine with
something of type e’V to make something of type (e,e)V. The decorated type
therefore combines standard categorial information, which would usually be
notated VP/NP (i.e., a functor which combines with an NP to make VP),
together with the semantic type that such a category would be mapped into.

The rules of type inference are like those for £ with some provisos which
we will come to shortly. N

It will be noticed that the type assigned to kiss, namely,

(20) (N, (e,)"}V,

35

appears redundant in the sense that not only is the type as whole specified to be
V, but the result type, (e,e)", is also so specified. Yet inasmuch as kiss is the
head of verb phrase, it should be predictable that the result type has the same
category decoration as the whole complex type. In response to this observation,
we adopt the convention that if the result type lacks a decoration, then it can
be inferred from the decoration of the enclosing decorated type; in other words,
a type like (21) is shorthand for (20).

21) (M, (e,e))V

We can make this more explicit by means of a modified inference rule of the
following sort (where o is restricted to undecorated types):

a:(s,o)¢ B:s

(22 app(a, §):0¢

Our grammar for English is non-directional, in the sense that we do not
encode whether a functor seeks its argument to the left or to the right. Modifying
the notation to allow this would be trivial, but would add an extra degree of
complexity which would detract from the main thrust of the exposition. For
convenience, we shall simply write the premisses of a type inference rule in the
correct left-to-right order, and stipulate that the string in the conclusion is the
right of concatenating the strings of the premisses. This is shown in the following
schema for type inference in the fragment, (where “~’ indicates concatenation):

Definition 9 (Concatenation Schema for English)

(W1,81,a1) (UJQ,SQ,(IQ)
(wi ws, 53, 13)

(Concat)

is valid only if the corresponding inference

Fl_Z a1:°81 F"Z 0422082

F"g 0133083

is derivable for the undecorated types °s1, °s2, and °ss3.

4.1 Verb-Object Combination

Whether a verb is tensed affects its ability to combine with a subject, but not
its ability to combine with object arguments and complements:

(23) a. to kiss Mary/kissed Mary
b. *John to kiss Mary/John kissed Mary

36

Now, in the semantic framework we have developed there are two distinct
ways in which a syntactic functor can combine semantically with an argument:
either via the app relation, or by normal functional application. Moreover,
app is invoked for functors which we earlier called ‘nominal predicatives’, i.e.,
expressions which denote objects in the Frege structure domain Fy; by contrast,
expressions which denote propositional functions live outside Fy and therefore
cannot act as nominal arguments of app. In this section, we examine how app
comes into play when we combine verbs with their objects.

Let us start by looking at transitive and intransitive verbs. The base, or
nontensed, form of an intransitive verb like run is translated as a constant run’
of type (e, e)V; as we observed in Section 1, such constants denote (a special sort
of) nominal objects, not propositional functions. Similarly, the base form of a
transitive verb such as kiss is translated as a constant kiss' of type (eV, (e, e))V,
which also denotes a sort of nominal object.

The schema in Definition 9 licenses derivations like the following:

kiss Mary
<6N, <€N, e>>V[VFORM BSE] eN
kiss' mary’
(24) Kiss Mary (Concat)

(eN,e)VIVFORM BSE]
app(kiss’, mary’)
The same approach extends to verbs which combine with more than one

complement. Before considering such a case, let us introduce some new notation
to indicate the iterated application of a functor « to a series of arguments:

Definition 10 (Multiple Application)
[aaxla s 7$n] —df app(' - (app(aaxl)a -)7xn)

Assuming give’ to be of type (efl*°l (elV, (e, e)))V, we have the following
semantic translation for give the cat to Mary:

(25) [give', mary’, (the cat)']:(e,e) = app(app(give’, mary’), (the cat)’)
The last step in the derivation of (25) is:'°

give to Mary the cat
(e, (e,e))V eV
(26) [give', mary’| the cat’
give the cat to Mary
(e.e)V

[give’, mary’, (the cat)’]

10As presented, this derivation would require a wrapping operation to produce the conclu-
sion, rather than just string concatenation; cf. [Dowty 82] for some arguments in favour of this
approach. Alternatively, we could have combined give the cat with to Mary after making
appropriate modifications to the type of give.

37

4.2 Verb-Subject Combination

In our discussion of predication in Section 1, we argued that untensed verb
phrases should be assigned the type (e,e). Let us consider how this type enters
into our English fragment, taking the string *John walk as an example.!’ As
the following derivation shows, we can infer a type for the string, namely e:

John walk
oN (e, e)V[VFORM BSE]
john’ walk’
(27) John walk (Concat)

¢V[VFORM BSE]

app(walk’, john')

But John walk comes out as anomalous qua sentence. That is, since it does
not have the type p, it does not have the semantic value which we would expect
a sentence to bear. And although we know that John walk does denote some
object in the semantic domain, our type rules give us no means of inferring the
more specific conclusion that it expresses a proposition. Similar reasoning will
label as deviant strings like *John to run.

What we must do now is make explicit the way in which tense is intro-
duced. From a semantic point of view, it is easiest map untensed verb phrases
into tensed ones.'? That is, we require a rule which will convert a phrase like
give the cat to Mary into gives the cat to Mary. We accomplish this by
means of an inference schema like the following (where C' is a metavariable over
categories):

Definition 11 (Tense Introduction)
(w, <e(77 e>V[VFORM BSE], a)

Tense
() (INFL(w), (€€ — p)VIVFORM FIN] Uy

The type change in this rule is closely coupled with the introduction of
the predication operator in the semantics. That is, given an expression w which
combines with an e(in effect, any nominalizable expression) to yield an e, we can
infer that INFL(w) will combine with that same argument to yield a proposition.
And whereas w denoted some object in Fy, INFL(w) denotes a function from
Fo to PROP.

INFL is intended to be a morphological operation which assigns appropriate
inflections to the verbal head(s) of its argument. In a more detailed treat-
ment, the operation would need to be parameterized for person, number, and
case. Moreover, in addition to denominalizing the interpretation of « via “,
the semantic correlates of, say, past tense would need to be accommodated. To

L1\We are ignoring the analysis under which walk is present tense, but not third person.
12This has been the standard approach in most Montagovian approaches, and is also the
one adopted by [Chierchia and Turner 88].

38

simplify exposition, however, we shall confine our attention to one instance of
INFL, namely third person singular present.
This inference rule is illustrated in (28) and (29) below.

be fun
(eX, ¢)VIVFORM BSE]
[be', fun’]

is fun
(eX — p)VIVFORM FIN]

Y[be’, fun’]

(28)

(Tense)

Notice that be places no restrictions on the syntactic decoration of its subject
argument, requiring only that it be of type e. By contrast, walk is subcatego-
rized to take a nominal subject:

walk
(€N, e)VIVFORM BSE]
walk’

walks
(eN N p)V[VFORM FIN]

Ywalk’

(29)

(Tense)

As a further illustration, we show how a tensed intransitive verb combines
with a subject noun phrase:

John walks
eN (eN — pS) Vv
john' “walk'
(30) John walks (Funct)
pS

“walk’(john')

Table 1 summarizes the assignment of categories to expressions of English in
our fragment. A major distinction is drawn between those expressions which re-
ceive ordinary types, and are therefore open to nominalization, and those which
receive metatypes, and can never be nominalized. The notion of ‘predicative’,
which we appealed to at the beginning of this paper, cuts across this distinc-
tion. That is, it was intended to cover expressions with type (e, e), which can
be nominalized, and expressions with metatype (o — 7), which cannot.

It will be observed that there is a broad correspondence between our type
‘(e,e)’ and the [Chierchia and Turner 88] sort ‘nf’, standing for nominalized
functions, and to this extent the two fragments are quite similar.

Note in passing that we have chosen to analyse fun as a mass noun rather
than an adjective, on the grounds that collocations involving noun modifiers,

as (31la), seem significantly better than those involving adjectival modifiers, as
(31b):

39

Informal Name | Type | Basic Expressions
Nominalizable Expressions

NP eV John, Mary
CNeount (e, e)¢N dog, man, woman, park
CNinass (e,e)V water, gold, fun
ADJ (e, e)d happy, drunk, old
PP {{e,e)X, (e, e)X)F)
TV (eN, (eV,e))V kiss, seek

(eX, (N, e))V believe, know

((e, e) VIVFORM INF] (N o))V seem, try, want

(e, e (X, o)) be
TTV (ePltel (eN (eN e)))V give, send

((e, e) VIVFORM INF] (0N (0N o)WV | force, believe
1AY (eN,e)V run, walk, talk
S p°)
g pSICOMP] 0
Ivinf <6, e>V[VFORM INF] w

Non-nominalizable Expressions

Det ((e,e)ON — eN)Det the, a, every
VP (eX = p%) 0
AdSent (p® — p%)Adv necessarily, possibly
AdVerb ((e,e)V — (e,e)V)Adv almost, slowly
P (€N = ({e,e)™, (e,e)X)P in, with, to
AdNom ({e,e)N —= (e,e)M)A former, alleged
COMP ((e,e)V — (e, e)VIVFORM INF]) to

(pS — pSICOMP THAT]) that

Table 1: Categories and expressions in the fragment
(31) a. It wasn’t much/a lot of fun.

b. 7It was extremely/very fun.

Nothing crucial hangs on this decision. Nevertheless, it follows on our account
that all mass nouns can occur as nominal arguments. They can also occur as
predicative complements by virtue of the polymorphic type assigned to be.

4.3 Nominalization and Polymorphism

As we indicated at the beginning of this paper, we do not employ a rule of nomi-
nalization as such. Rather, some expressions—the ones categorised as ‘nominal-
izable’ in Table 1—have kinds which are contained in the type e of individuals.

40

Then type containment is invoked to derive the more general type.
Let us take the following strings to illustrate the mechanisms:

(32) a. Mary is fun.
b. Fun is fun.

Running is fun.

I

d. For us to run is fun.

We start, off by considering how the untensed phrase be fun is derived:!?

be fun
(e ey (o
be fun
(33) be fun (Concat)
(eX,e)V

app(be’, fun’)

This in turn will constitute a premise for the inference (30) which derives
the string is fun. The latter can be predicated of any string whose category is
a possible argument for the type (eX — p%)V, that is, any string for which the
category e can be inferred. Recall the axiom we presented earlier for deriving
type containments:

Ity o<1 I'ts a:o
I'ts a:r

(Contain)

As we showed in preceding sections, this gives us an account of inclusion
polymorphism for the typed language £~. In order to deal with polymorphism
in the English fragment, we need to extend containment to our decorated types.
To do this, we supplement < over types with a new partial order <* over
category labels. In the following definition s, ¢ are decorated types, while C, D
are category decorations:

Definition 12 (Containment of decorated types)
1. s¢ < tP iff°s < °t and C=<*D.
2. <* is reflexive, transitive and antisymmetric.

3. Cat 2*X, where Cat ::= { N, P, V, S }, and where V is not specified as
VFORM FIN.

13 As we will shortly explain, the type (e, e)X can be inferred for fun by a modified contain-
ment axiom.

41

This now gives rise to a modified Containment rule:
sC=< P (w,s%, a)

(Contain*™) @.1P,a)

The following example shows how the rule is invoked for the subject of (32b).

fun
(e,e)
fun’

fun
X

fun

(34) (Contain*)

!

The inference works in a completely parallel fashion for the other two cases:

(35) running
(e, e)VIVFORM PSP]
run’

(36) for mary to run
S

for' (app(run’, mary’)

After the (Contain*) inference, fun can combine with is fun as shown in
(37):

fun is fun
eX (eX — pS)V
fun’ Y[be’, fun’]
(37) fun is fun (Funct)
pS

Y[be’, fun’|(fun’)

We also need to show that certain expressions cannot act as nominal argu-
ments. Consider for example

(38) *Runs is fun.

In order to derive a type for this, we would have to deduce that the type of
runs, namely (e — p)V[VFORM FINliq contained in eX. But (e — p)V[VFORM FIN]
is a metatype, not a proper type, and therefore not a subtype of e. Hence the
(Contain*) step which would be required for (38) in fact fails. The same reason-
ing shows that types cannot be derived for strings like (39) where an expression
with a metatype is filling an argument role:*

MExamples like Slowly would be fun seem relatively acceptable. One conclusion could
be that manner adverbs should have (at least) the type (e, p), perhaps as predicates of events.
Alternatively, such examples might involve ellipsis of a modified verb phrase; cf. Jogging fast
would be a pain, but slowly would be fun.

42

(39) *The/possibly/almost /to is fun.

In Section 1.3, we noted that certain verbs, such as seem, required a pred-
icative rather than a nominal complement. This is witnessed by the following
contrast:

(40) a. John seems to annoy Mary.

b. *John seems the boy.

In Table 1, we categorized seem as (e, e)V[VFORM INF] (o \o\\V' that is, it re-
quires an expression of type (e, e)V[VFORM INF] g aroument.'® This, of course,
is the type which would be assigned to to annoy Mary. But definite noun
phrases such as the boy are of type e?V. Could we use the (Contain*) rule to
infer that the boy is also of type (e, e)? No, because the only type 7 such that
e < 7 is e itself. Hence (40b) will not be well-typed.

There is an interesting difference between our approach and that of [Chierchia and Turner 88]
when nominalizations of verbs are considered. For Chierchia and Turner, only
expressions of type nf are nominals. Since their nominalization operator is ex-
clusively defined for expressions of type (e, e)!%, and they do not have any kind
of type containment for functional types, they do not allow transitive verbs like
love and ditransitives like give to be nominalised. Yet examples such as (41a)
(from [Partee 86]) and (41b) show that untensed transitive verbs enter into the
same nominal patterns as intransitives:

(41) a. To love is to exalt.

b. To give is better than to receive.

By contrast, we have (eV, (eV, e))VIVFORM INF] < ¢X and can thus accom-

modate such data straightforwardly.

5 Acknowledgements

We are grateful to David Beaver, Inge Bethke, Max Cresswell, Lex Holt, Uwe
Moénnich and an anonymous referee for their comments on previous versions of
this paper.

151n fact, this needs to be generalized, since it excludes John seems happy. However,
this would have to form part of a more comprehensive analysis of syntactic containments in
English.

16This type corresponds to our metatype (e — e).

43

References

[Aczel 80] Aczel, P. (1980) ‘Frege Structures and the Notions of Proposition,
Truth and Set.” In Barwise, J., Keisler, H. J. and Kunen, K. (eds.) The
Kleene Symposium, pp31-59. Amsterdam: North Holland.

[Bach 79] Bach, E. (1979) ‘Control in Montague Grammar.’ Linguistic Inquiry
10, 515-531.

[Bealer 82] Bealer, G. (1982) Quality and Concept. Oxford: Clarendon Press.

[Bealer 89] Bealer, G. (1989) ‘On the Identification of Properties and Proposi-
tional Functions.” Linguistics and Philosophy 12, 1-14.

[Cardelli et al. 85] Cardelli, L. and P. Wegner (1985) ‘On understanding types,
data abstraction and polymorphism.” Computing Surveys 17, 471-522.

[Chierchia 84] Chierchia, G. (1984) Topics in the Syntaz and Semantics of In-
finitives and Gerunds. Unpublished PhD Thesis, University of Massachusetts.

[Chierchia 85] Chierchia, G. (1985) ‘Formal Semantics and the Grammar of
Predication.” Linguistic Inquiry 16, pp.417-443.

[Chierchia and Turner 88] Chierchia, G. and R. Turner (1988) ‘Semantics and
Property Theory.” Linguistics and Philosophy 11, pp.261-302.

[Curien et al. 89] Curien, P.-L. and G. Ghelli (1989) ‘Coherence of Subsump-
tion.” Unpublished ms, Liens (CNRsS), Paris.

Dowty 82] Dowty, D. (1982) ‘Grammatical Relations and Montague Grammar,
[g
pp. 79-130 in The Nature of Syntactic Representation, P. Jacobson and G.
K. Pullum, eds., Dordrecht: Reidel.

[Emms 91] Emms, M. (1991) ‘Polymorphic Quantifiers’, pp. 65-112 in Studies
in Categorial Grammar, G. Barry and G. Morrill, eds., Edinburgh: Centre
for Cognitive Science, U of Edinburgh.

[Frege 77] Frege, G. (1977) Translations from the Philosophical Writings of Got-
tlob Frege. Geach, P. and Black, M. (eds.), 3rd Edition, pp56-78. Oxford: Basil
Blackwell.

[Gazdar et al 85] Gazdar, G., Klein, E., Pullum G.K., and I.A. Sag (1985) Gen-
eralized Phrase Structure Grammar. Oxford: Basil Blackwell.

[Harper et al. 87] Harper, R., Honsell, F., and G. Plotkin (1987) ‘A Frame-
work for Defining Logics.” Second Annual Symposium on Logic in Computer
Science, IEEE, pp.194-204.

44

[Jacobson 90] Jacobson, P. (1990) ‘Raising as Function Composition.” Linguis-
tics and Philosophy 13, pp.423-475.

[Martin-Lof 79] Martin-Lof, P. (1978) ‘Constructive Mathematics and Com-
puter Programming.” In Logic, Methodology and Philosophy of Science, VI,
1979, pp.153-175, North-Holland.

[Milner 78] Milner, R. (1978) ‘A Theory of Type Polymorphism in Program-
ming.” Journal of Computer and System Sciences 17, pp.348-375.

[Mitchell 88] Mitchell, J. C. (1988) ‘Polymorphic Type Inference and Contain-
ment.” Information and Computation 76, pp.211-249.

[Montague 73] Montague, R. (1973) ‘The proper treatment of quantification
in ordinary English.” In Hintikka, J., Moravcsik, J. M. E. and Suppes, P.
(eds.) Approaches to Natural Language. Dordrecht: D. Reidel. Reprinted in
R. H. Thomason (ed.) (1974), Formal Philosophy: Selected Papers of Richard
Montague, pp247-270. Yale University Press: New Haven, Conn.

[Parsons 79] Parsons, T. (1979) ‘The theory of types and ordinary language.’
In S. Davies and M. Mithun (eds.) Linguistics, Philosophy and Montague
Grammar, University of Texas Press, Austin.

[Partee et al. 83] Partee, B. H. and M. Rooth (1983) ‘Generalized conjunction
and type ambiguity.” In R. Béuerle, C. Schwarze, and A. von Stechow (eds.)
Meaning, Use, and Interpretation of Language, De Gruyter.

[Partee 84] Partee, B. H. (1984) ‘Compositionality.’ In F. Landman and F. Velt-
man (eds.) Varieties of Formal Semantics: Proceedings of The Fourth Ams-
terdam Colloquium, Sept 1982 Foris Press, Dordrecht.

[Partee 86] Partee, B. H. (1986) ‘Ambiguous pseudo-clefts with ambiguous be.’
In S. Berman, J. Choe and J. McDonough (eds.) Proceedings of the Sizteenth
Annual Meeting of the North Eastern Linguistic Society, University of Mas-
sachusetts, Amherst.

[Pereira 91] Pereira, F. (1991) ‘Deductive Interpretation’, pp. 117-133 in Nat-
wral Language and Speech, E. Klein and F. Veltman, eds., Berlin: Springer-
Verlag.

[Pollard et al. 87] Pollard, C. and I. A. Sag (1987) Information-Based Syntax
and Semantics, Vol. 1. csLI Lecture Notes, No. 13.

[Rooth et al. 82] Rooth, M. and B. H. Partee Mats Rooth ‘Conjunction, type
ambiguity, and wide scope ‘or’.” In M. Barlow, D. Flickinger and M. Westcoat
(eds.) Proceedings of the Second West Coast Conference on Formal Linguis-
tics, pp353-362.

45

[Scott 76] Scott, D. (1976) ‘Data Types as Lattices.” STAM Journal of Comput-
ing, 5, 522-587.

[Thomason 76] Thomason, R. H. (1976) ‘On the Semantic Interpretation of
the Thomason 1972 Fragment’. Distributed by Indiana University Linguistics
Club, Bloomington, Indiana.

[Turner 87] Turner, R. (1987) ‘A Theory of Properties.” Journal of Symbolic
Logic 52, 63-86.

46

