
On automating the extra
tion of programsfrom termination proofs�Fairouz Kamareddiney, Fran�
ois Moninz Mauri
io Ayala-Rin
�onxAbstra
tWe investigate an automated program synthesis system that is based on the paradigmof programming by proofs. To automati
ally extra
t a �-term that
omputes a re
ur-sive fun
tion given by a set of equations the system must �nd a formal proof of thetotality of the given fun
tion. Be
ause of the parti
ular logi
al framework, usually su
happroa
hes make it diÆ
ult to use termination te
hniques su
h as those in rewritingtheory. We over
ome this diÆ
ulty for the automated system that we
onsider byexploiting produ
t types. As a
onsequen
e, this would enable the in
orporation oftermination te
hniques used in other areas while still extra
ting programs.Keywords: Program extra
tion, produ
t types, termination, ProPre system.1 Introdu
tionThe Curry-Howard isomorphism [3℄ that establishes a
orresponden
e between programsand proofs of spe
i�
ations plays a major role in many type systems. Programming meth-ods using the proof as program paradigm ensure some
orre
tness of programs extra
tedfrom a proof of fun
tion totality and provide a logi
al framework for whi
h the behaviour ofprograms
an be analysed. Of these systems whi
h exploit the proof as program paradigm,we mention Se
ond Order Fun
tional Arithmeti
 (AF2,
f. [7, 9℄) and a faithful extensionof AF2
alled Re
ursive Type Theory (TTR,
f. [16℄). Both systems use equations as al-gorithmi
 spe
i�
ations. In AF2 and TTR, the
ompilation phase
orresponds to formaltermination proofs of the spe
i�
ations of fun
tions from whi
h �-terms that
ompute thefun
tions are extra
ted.Using the logi
al framework of TTR, an automated system
alled ProPre, has beendeveloped by P. Manoury and M. Simonot [12, 11℄. The automated termination problemturns out to be a major issue in the development of the system. Alongside the system,where data types and spe
i�
ations of fun
tions are introdu
ed by the user in an ML-style,an algorithm has been designed using strategies to sear
h for formal termination proofs forea
h spe
i�
ation. When the system su

eeds in developing a formal termination proof fora spe
i�
ation, a �-term that
omputes the fun
tion is given.As mentioned in [12℄, the automated termination proofs in this system di�er from theusual te
hniques of rewriting systems be
ause they have to follow several requirements. Theymust be proofs of totality in order to enable the extra
tion of �-terms. In ProPre, one hasto make sure not only that the programs will give an output for any input, but also that�This paper is an extended version of [6℄.yCorresponding author. S
hool of Mathemati
al and Computer S
ien
es, Heriot-Watt University, Edin-burgh, S
otland. fairouz�ma
s.hw.a
.ukzD�epartement d'informatique, Universit�e de Bretagne O

identale, CS 29837, 29238 Brest Cedex 3,Fran
e. monin�univ-brest.frxDepartamento de Matem�ati
a, Universidade de Bras��lia, Bras��lia D.F., Brasil. ayala�mat.unb.br

for any well-typed input the result will also be well-typed. Finally, the proofs must also beexpressed in a formal logi
al framework, namely, the natural dedu
tion style. The �-termsare obtained from the proof trees that are built in a natural dedu
tion style a

ording tothe re
ursive type theory TTR.Therefore enhan
ing automated proofs strategy is a
entral issue in programming lan-guages like AF2 or TTR. While termination methods for fun
tional programing based on or-dinal measures have been developed in [14, 5℄ relating to the formal proofs devised in [12, 13℄,the purpose of this paper is to analyse in some sense the reverse of the question. That is,we analyse the possibility to in
orporate new termination te
hniques for the extra
tion ofprograms in the ProPre or TTR
ontext.In order to simplify the analysis of the formal proofs obtained in the logi
al frameworkof ProPre, we show that the kernel of these formal proofs,
alled formal terminal stateproperty (ftsp),
an be abstra
ted using a simple data stru
ture. This gives rise to a simpletermination property, whi
h we
all abstra
t terminal state property (atsp). The interestof atsp is that on one hand the termination
ondition is suÆ
ient to show the terminationusing the ordinal measures of [5℄ independently of the parti
ular logi
al framework of ProPre,and on the other hand we also prove that we
an automati
ally re
onstru
t a formal proofdire
tly from an atsp so that a lambda term
an be extra
ted. That is to say the �rst resultof this paper is to establish a
orresponden
e between atsp with a
lass of ordinal measuresin a simple
ontext for the termination and the formal proofs built in ProPre.This
orresponden
e implies that the termination proofs of re
ursive fun
tions obtainedin [4℄ do not admit in general a formal proof in ProPre. Indeed the
lass of these fun
tionsis larger than those proved with the
lass of ordinal measures of [14, 5℄. To over
ome thefa
t that there is in general no formal proof in ProPre for these fun
tions, the se
ond resultpresented in this paper allows the synthesis of these fun
tions still making use of the wholeframework of ProPre but in a di�erent way in TTR. A
tually the result turns out to bestronger sin
e it
an be applied for re
ursive fun
tions whose termination is proved by otherautomated methods su
h as te
hniques
oming from rewriting theory (see e.g. [1℄). Theprin
iple
onsists in simulating a semanti
 method. That is, from a well-founded orderingfor whi
h ea
h re
ursive
all is de
reasing, one must be able to build a formal proof by
onsidering general indu
tion on tuples of arguments of the fun
tion. Though the prin
ipleis natural, this approa
h be
omes diÆ
ult when we want in parti
ular to extra
t programsbe
ause we have to take into a

ount the logi
al framework and the stru
tures of the proofsthat we may or may not be able to build.2 Logi
al frameworkWe brie
y present the ProPre system (see [10, 12, 13℄ for details). ProPre relies on theproofs as programs paradigm that exploits the Curry-Howard isomorphism and deals withthe re
ursive type theory TTR [16℄. In ProPre, the user needs to only de�ne data types andfun
tions. �-terms are automati
ally extra
ted from the formal proofs of the terminationstatements of fun
tions whi
h
an be viewed as the
ompilation part.ProPre deals with re
ursive fun
tions. The data types and fun
tions are de�ned in anML like syntax. For instan
e, if N denotes the type of natural numbers, then the list ofnatural numbers is de�ned by: Type Ln : Nil | Cons N Ln;and the append fun
tion is spe
i�ed by:Let append : Ln, Ln -> LnNil y => y | (Cons n x) y => (Cons n (append x y));

On
e a data type is introdu
ed by the user, a se
ond order formula is automati
ally gener-ated. E.g., the following se
ond order formula is automati
ally generated and asso
iated tothe list of natural numbers:Ln(x) := 8X(X(nil)! (8n(N(n)! 8y(X(y)! X(
ons(n; y)))))! X(x)):This formula stands for the least set that
ontains the nil element and is
losed under the
onstru
tor
ons. Ea
h data type will be abbreviated by a unary data symbol, as it is forinstan
e with the symbol N that represents the data type of natural numbers. Further-more, on
e a fun
tion is spe
i�ed in the system, a termination statement is automati
allyprodu
ed [11℄. As an example, the termination statement of the append fun
tion is theformula: 8x(Ln(x)! 8y(Ln(y)! Ln(append(x; y)))):The system then attempts to prove the termination statement of the fun
tion using theset of equations that de�ne the fun
tion. In a su

essful
ase, a �-term that
omputes thefun
tion is synthesized from the building of a formal proof in a natural dedu
tion style [12℄.Informally, if T is a �-term obtained for the fun
tion append and t1, t2 are �-terms thatrespe
tively model terms u1 of type Ln and u2 of type Ln, then the �-term ((T t1) t2) redu
esto a normal form V that represents the value of append(u1; u2) of type Ln.We refer the reader to [7, 8, 15, 16℄ regarding the theory that allows to derive �-termsfrom termination proofs of the spe
i�
ation in a natural dedu
tion style.2.1 The typing rules of AF2We re
all the typing rules of AF2 whi
h are also part of TTR. We assume a set F of fun
tionsymbols and a
ountable set X of individual variables. The logi
al terms are indu
tivelyde�ned as follows:� individual variables are logi
al terms;� if f is an n-ary fun
tion symbol in F and t1; : : : ; tn are logi
al terms, then f(t1; : : : ; tn)is a logi
al term.We also assume a
ountable set of predi
ate variables. Formulas are indu
tively de�ned asfollows:� if X is an n-ary predi
ate variable and t1; : : : ; tn are logi
al terms, then X(t1; : : : ; tn)is a formula;� if A and B are formulas then A! B is a formula;� if A is a formula and � is a �rst or se
ond order variable, then 8�A is a formula.We will use 8xA ! B to denote 8x(A ! B). For
onvenien
e, a formula of the formF1 ! (F2 ! : : : (Fn�1 ! Fn) : : :) will also be denoted by F1; : : : ; Fn ! F . For instan
e8xD1(x);8yD2(y)! F stands for the formula 8x(D1(x)! 8y(D2(y)! F)).A typing judgment is an expression of the form: \x1 : F1; : : : ; xn : Fn `E t : F", wherex1; : : : ; xn are distin
t �-variables, t is a �-term, F; F1; : : : ; Fn are formulas and E is a set ofequations on logi
al terms. The left-hand side of the judgment is
alled the
ontext. Notethat we
an freely use the same notation for both the �-terms and the logi
al terms whi
ho

ur in the formulas, as the
ontext will
larify whether a term is a �-term or a logi
alterm. In parti
ular, the word \variable" may also refer to a \�-variable". The typing rulesof AF2 are given in Table 1 where E is a set of equations on logi
al terms.

�; x : A `E x : A (ax) � `E t : A[u=y℄ E ` u = v� `E t : A[v=y℄ (eq)�; x : A `E t : B� `E �x:t : A! B (!i) � `E u : A � `E t : A! B� `E (t u) : B (!e)� `E t : A� `E t : 8yA (81i) � `E t : 8yA� `E t : A[�=y℄ (81e)� `E t : A� `E t : 8Y A (82i) � `E t : 8Y A� `E t : A[T=Y ℄ (82e)Table 1: Rules of the Se
ond Order Fun
tional Arithmeti
 (AF2)� `E t : A � `E e� `E t : A � e (�1) � `E t : A � e� `E t : A (�2) � `E t : A � e� `E e (�3)Table 2: Rules of the hiding operator �.In Table 1, � is a
ontext of the form x1 : A1; : : : ; xn : An and may be empty; y (resp.Y) is a �rst (resp. se
ond) order variable not o

urring free in A1; : : : ; An; �; u; v are �rstorder terms and T is a formula. The expression E ` u = v means that the equation u = vis derivable from E in se
ond order logi
. For more explanations we refer to [7℄.The types and formal data types play an important role in AF2 and TTR in relation to anotion of realizability [8℄ that ensures the extra
ted �-terms
ompute the de�ned fun
tions.However, for the sake of
larity, we do not state here the de�nition of formal data types andthe realizability notion whose details
an be found in [7, 8℄. Now, for an n-ary fun
tion f ifwe have the typing judgment:`E t : 8x1 : : :8xn(D1(x1)! (: : :! (Dn(xn)! D(f(x1; : : : ; xn)) : : :)for some �-term t whereD1; : : : ; Dn; D denote formal data types, then the �-term t
omputesthe fun
tion f a

ording to the set E .2.2 Some rules of TTRAs for AF2, we do not state the data types and the realizability notion of TTR. In parti
ularwe do not give the se
ond order least �xed point operator � (see [15℄) whi
h allows one to de-�ne the data types whi
h are represented here by unary data symbols D;D0; : : : ; D1; : : : ; Dn.Furthermore, for the sake of presentation we do not state all the rules (whi
h also in
ludethose of AF2), but only give those needed for our purpose.In TTR, a binary symbol �,
alled hiding operator in [15℄, is added. Its meaning is a
onjun
tion whi
h only keeps the algorithmi

ontents of the left part in order to preventunne
essary algorithmi

ontent of the termination proof to be
arried out in the �-terms(see [16, 12℄). The rules related to the hiding operator are given in Table 2.The hiding operator is used with a relation � where the de�nition of formulas given inse
tion 2.1 is now
ompleted as follows:

If A is a formula, and u; v are terms then A � (u � v) is a formula.If A is a formula where a distinguished variable x o

urs, we abbreviate the formulaA[u=x℄ � (u � v) with the notation Au�v.Among the rules of TTR, several rules are used to reprodu
e, from the programmingpoint of view, the reasoning by indu
tion. The rule below stands in TTR for an externalindu
tion rule where the relation � denotes a well-founded partial ordering on the terms ofthe algebra: � `E t : 8x[8z[Dz�x ! B[z=x℄℄! [D(x)! B℄℄� `E (T t) : 8x[D(x)! B℄ (Ext)In the rule (Ext), the lambda term T is the Turing �xed-point operator, D is a data typeand x is a variable not o

urring in the formula B.>From the (Ext) rule, it is possible to derive the gInd formula:gInd := 8x(Dr(x)! 8X(8y(Dr(y)! 8z(Drz�y ! X(z))! X(y))! X(x))):That is, for ea
h re
ursive data type, there is a �-term ind su
h that: `E ind : gInd forany set E of equations. We say that the term ind witnesses the proof of gInd. This is statedwith Lemma 2.1 below, whi
h is presented with the type of natural numbers in [15℄.Lemma 2.1. For ea
h re
ursive data type, there exists a �-term ind su
h that:`E ind : gInd for any set E of equations.Lemma 2.1
an be proven for E being empty. Then, one
an use the result of [7℄ whi
hstates that if E1 � E2 then `E1 t : P implies `E2 t : P . The proof of Lemma 2.1 in [15℄,given only with the type of natural numbers,
an a
tually also be applied to any datatype. In parti
ular if T is the Turing �xed-point operator, then the lambda term ind =(T �x�y�z((z y) �m((x m) z))), is valid for any data type D. The above Lemma is usefulfor the de�nition of a ma
ro-rule,
alled the Ind-rule, in the ProPre system.2.3 The ProPre systemWe assume that the set of fun
tions F is divided into two disjoint sets, the set F
 of
onstru
tor symbols and the set Fd of de�ned fun
tion symbols also
alled de�ned fun
-tions. Ea
h fun
tion f is supposed to have a type denoted by D1; : : : ; Dn ! D whereD1; : : : ; Dn; D denote data symbols and n denotes the arity of the fun
tion f . We maywrite f : D1; : : : ; Dn ! D to both introdu
e a fun
tion f and its type D1; : : : ; Dn ! D.De�nitions 2.2. [Spe
i�
ation; termination statement; re
ursive
all℄� A spe
i�
ation Ef of a de�ned fun
tion f : D1; : : : ; Dn ! D in Fd is a non overlappingset of left-linear equations f(e1; e01); : : : ; (ep; e0p)g su
h that for all 1 � i � p, ei is of theform f(t1; : : : ; tn) where tj is a
onstru
tor term (i.e. without o

urren
es of de�nedfun
tion symbols) of type Dj , j = 1; : : : ; n; and e0i is a term of type D.� The termination statement of a fun
tion f : D1; : : : ; Dn ! D is the formula8x1(D1(x1)! : : :! 8xn(Dn(xn)! D(f(x1; : : : ; xn)))).� Let Ef a spe
i�
ation of a fun
tion f . A re
ursive
all of f is a pair (t; v) where t is theleft-hand side of an equation (t; u) of Ef and v a subterm of u of the form f(v1; : : : ; vn).An equation (l; r) of a spe
i�
ation may be written l = r (as an equational axiom inTTR). We may also drop the bra
kets to ease the readability.

The formal proofs of ProPre,
alled I-proofs, are built upon distributing trees, based ontwo main rules derived from the TTR Stru
t rule and the Ind rule in [12℄. The distributingtrees built in ProPre are
hara
terized by a property
alled formal terminal state property.This se
tion presents these two main rules, the distributing trees and the formal terminalstate property. Let us �rst introdu
e some notations.Notation 2.3. If P is the formula F1; : : : ; Fk;8xD0(x); Fk+1; : : : ; Fm ! D(t), then P�D0(x),will denote the formula F1; : : : ; Fk ; Fk+1; : : : ; Fm ! D(t).The above notation is
orre
t as it will be used at the same time when the quanti�edvariable x will be substituted by a term in the formula P�D(x) with respe
t to the
ontext(
f. next two lemmas with Notation 2.4) or when the variable x will be introdu
ed in the
ontext.Notation 2.4. Let C be a
onstru
tor symbol of a type D1; : : : ; Dk ! D. Let x1; : : : ; xk; zbe distin
t variables. Let F (x) be a formula in whi
h the variable x is free and the variablesz; x1; : : : ; xk do not o

ur and let t = C(x1; : : : ; xk). Then �C(F (x)) and 	C(F (x)) will berespe
tively the following formulas:� �C(F (x)) is: 8x1D1(x1); : : : ;8xkDk(xk)! F [t=x℄;� 	C(F (x)) is: 8x1D1(x1); : : : ;8xkDk(xk);8z(Dz�t ! F [z=x℄)! F [t=x℄.The notation may suggest some kind of formulas that are a
tually useful in the
onstru
-tion of I-proofs whi
h are de�ned as follows:De�nitions 2.5. [I-formulas and restri
tive hypothesis℄� A formula F is
alled an I-formula if and only if F is of the form H1; : : : ; Hm !D(f(t1; : : :; tn)) for some:� data type D, de�ned fun
tion f ,� formulas Hi for i = 1; : : : ;m su
h that Hi is of the form 8xD0(x) or of the form8z(D0z�u ! F 0) for some data type D0, I-formula F 0 and term u.� An I-restri
tive hypothesis of an I-formula F of the formH1; : : : ; Hm ! D(f(t1; : : :; tn))is a formula Hi of the form 8z(D0z�u ! F 0). We say that H 0 is a restri
tive hypothesisto an I-restri
tive hypothesis H = 8z(D0z�u ! F 0) if H 0 is an I-restri
tive hypothesisof the I-formula F 0.The de�nition of an I-formula is re
ursive, and an I-formula may have sub-I-formulas.An I-restri
tive hypothesis is not an I-formula and we
an use the term restri
tive hypothesisto also denote I-restri
tive hypothesis. The termination statement of a de�ned fun
tion isan I-formula whi
h has no restri
tive hypothesis.The lemmas below state that one
an use two additional rules,
alled Stru
t rule and Indrule, in TTR as they
an be derived from the other rules of TTR. These rules
orrespond toma
ro-rules, the former one
an be seen as a reasoning by
ases, while the last one standsfor an indu
tion rule.Lemma-De�nition 2.6. [The Ind rule℄Let D be a data type and
onsider all the
onstru
tor fun
tions Ci of type Di1 ; : : : ; Dik ! D,0 � ik, i = 1; : : : ; q. Let P be a formula of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t), and � a
ontext. For 	Ci(P�D(x)) given as in Notation 2.4, the indu
tion Ind ruleon type D is: � `E 	C1(P�D(x)) : : : � `E 	Cq (P�D(x))� `E P Ind(x)

Along with the Ind rule, the Stru
t rule de�ned below, whi
h is also a ma
ro-rule derivedfrom TTR,
an be
onsidered as a reasoning by
ases.Lemma-De�nition 2.7. [The Stru
t rule℄Let D be a data type and
onsider all the
onstru
tor fun
tions Ci of type Di1 ; : : : ; Dik ! D,0 � ik, i = 1; : : : ; q. Let P be a formula of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t), and � a
ontext. For �Ci(P�D(x)) given as in Notation 2.4, the Stru
t rule on typeD is: � `E �C1(P�D(x)) : : : � `E �Cq (P�D(x))� `E P Stru
t(x)Due to these lemmas, two ma
ro-rules
an be added in TTR: the Stru
t-rule (Lemma 2.7)and the Ind-rule (Lemma 2.6). From these rules, distributing trees
an be built in ProPre(see De�nition 2.10).Remark 2.8. I-formulas are preserved by the Stru
t-rule and the Ind-rule. That is, if Pis an I-formula, then so are: �C(P�D(x)) and 	C(P�D(x)).De�nition 2.9. [Heart of formula℄ The heart of a formula of the form F = H1; : : : ; Hm !D(t), where D is a re
ursive data type, will be the term t, denoted by H(F).The distributing trees are de�ned as follows:De�nition 2.10. [Distributing tree℄ Assume Ef is a spe
i�
ation of a fun
tion f :D1; : : : ; Dn ! D: A is a distributing tree for Ef i� A is a proof tree built only with theStru
t rule and Ind rule where:1. the root of A is the termination statement of f with the empty
ontext, i.e.:`Ef 8x1D1(x1); :::;8xnDn(xn)! D(f(x1; :::; xn)).2. if L = f�1 `Ef F1; :::;�q `Ef Fqg is the set of A's leaves, then there exists a one toone appli
ation B: L ,! Ef su
h that B(L) = (t; u) with L = (� `Ef F) in L and theheart of F is H(F) = t.Note that it
an be indu
tively
he
ked, from the root, using remark 2.8, that any formulain a distributing tree is an I-formula.The I-proofs found by the ProPre system are formal termination proofs of terminationstatements of de�ned fun
tions. They are divided into three phases:1. the development of a distributing tree for the spe
i�
ation of a de�ned fun
tion,
har-a
terized by a property,
alled formal terminal state property;2. ea
h leaf of the distributing tree is extended into a new leaf by an appli
ation of an(eq) rule;3. ea
h leaf,
oming from the se
ond step, is extended with a new sub-tree, with the useof rules de�ned in [12℄, whose leaves end with axiom rules.Due to the following fa
t proved in [12℄, it is not ne
essary to
onsider in this paper themiddle and upper parts of proof trees built in the ProPre system:Fa
t 2.11. A distributing tree T
an be (automati
ally) extended into a
omplete prooftree i� T enjoys a property,
alled the formal terminal state property.That is, it is enough to look at distributing trees that have the formal terminal state propertyto be able to
omplete the proof tree and hen
e state the termination of the fun
tion.Therefore it remains for us to state the mentioned property.

De�nition 2.12. We say that an I-formula or a restri
tive hypothesis P
an be appliedto a term t if the heart H(P) of P mat
hes t a

ording to a substitution � where for ea
hvariable x that o

urs free in P we have �(x) = x.The relation � of De�nition 2.5 deals with the measure j : j# on the terms, ranging overnatural numbers, whi
h
ounts the number of subterms of a given term t (in
luding t), andis interpreted as follows:De�nition 2.13. Let Var(t) be the set of variables o

urring in t. Let u; v be terms. Wesay that u � v i�: juj# < jvj#, Var(u) � Var(v), and u is linear.This
learly de�nes a well-founded ordering� on terms. We
an now state the main propertythat a distributing tree must enjoy in the I-proofs of ProPre.De�nition 2.14. [Formal Terminal State Property℄Let Ef be a spe
i�
ation of a fun
tion f and A be a distributing tree for Ef . We saythat A satis�es the formal terminal state property (ftsp) i� for all leaves L = (� `Ef F)of A with the equation e 2 Ef su
h that B(L) = e, where B is the appli
ation given inDe�nition 2.10, and for all re
ursive
alls (t; v) of e, there exists a restri
tive hypothesisP = 8zDz�s; H1; : : : ; Hk ! D(w) of F and a substitution � su
h that P
an be applied tov a

ording to � with:1. �(z) � s and2. for all restri
tive hypothesis H of P of the form 8yD0y�s0 ! K there is a restri
tivehypothesis H0 of F of the form 8yD0y�s0 ! K with �(s0) � s0.So, ProPre establishes the termination of a fun
tion f by showing that the distributing treeof the spe
i�
ation of f (whi
h is a partial tree whose root is the termination statement off) has the formal terminal state property (and hen
e
an be extended into a
omplete prooftree of the termination statement of f).3 The abstra
t terminal state propertyProof stru
tures
an often be heavy and diÆ
ult to work with. However, in the
onstru
tiveframework of the Curry-Howard isomorphism,
ompiling a re
ursive algorithm
orrespondsto establishing a formal proof of its totality. In ProPre, termination proofs play an importantrole as they make it possible to obtain �-terms that
ompute programs. We set out tosimplify the termination te
hniques developed in ProPre by showing that its automatedformal proofs
an be abstra
ted giving rise to a simpler property whi
h respe
ts termination.Instead of dealing with formulas, we will use the simpler
on
ept of fun
tions. Also, insteadof data symbols, we will use sorts and assume that there is a
orresponden
e between thedata types of ProPre and our sorts. Instead of the
omplex
on
ept of distributing treesused in ProPre (De�nition 2.10), we will use the mu
h simpler notion of term distributingtrees of [14℄. By living in the easier framework, we will introdu
e the new abstra
t terminalstate property whi
h will play for term distributing trees a similar role to that played bythe formal terminal state property for distributing trees. In this se
tion we present a datastru
ture for whi
h we will be able to introdu
e a new termination property.We
onsider a
ountable set X of individual variables and we assume that ea
h variable ofX has a unique sort and that for ea
h sort s there is a
ountable number of variables in Xof sort s. For sort s, F subset of F , and X subset of X , T (F;X)s denotes the set of termsof sort s built from F and X . In
ase X is empty we will also use the notation T (F)s.We re
all the de�nition of term distributing trees of [14℄. A term distributing tree ismu
h simpler than the distributing tree of ProPre given in De�nition 2.10. The novelty of

� `Ef PJJJJJJJ

`Ef FF : termination statementDistributing Tree
H - H(P)JJJJJJJ

H(F)Term Distributing TreeFigure 1: The operator Hthis se
tion will be a term distributing tree equipped with abstra
t terminal state property(De�nition 3.5 below).De�nition 3.1. [Term distributing tree℄ Let Ef be a spe
i�
ation of a fun
tion f :s1; : : : ; sn ! s. T is a term distributing tree for Ef i� it is a tree where:1. its root is of the form f(x1; : : : ; xn) where xi is a variable of sort si, i � n;2. ea
h of its leafs is a left-hand side of an equation of Ef (up to variable renaming); and3. ea
h node f(t1; : : : ; tn) of T admits one variable x0 of a sort s0 su
h that the setof
hildren of the node is ff(t1; : : : tn)[C(x01; : : : x0r)=x0℄; where x01; : : : ; x0r are not int1; : : : tn and C : s01; : : : ; s0r ! s0 2 F
g.A term distributing tree
an bee seen as a skeleton form of a distributing tree T by takingthe heart of the formulas in the nodes of T , whi
h gives rise to an operator H illustrated byFigure 1.Therefore we have the following proposition:Proposition 3.2. If there is a distributing tree for a spe
i�
ation Ef of a fun
tion f thenthere is also a term distributing tree for the spe
i�
ation Ef .A term distributing tree is easier to handle than a distributing tree. But, in both parts ofFigure 1, term distributing trees and distributing trees may have no termination property.However, we know by Fa
t 2.11 that a fun
tion terminates if we have a distributing treethat satis�es a right terminal state property. What we want is to de�ne a notion on theterm distributing trees that also ensures the termination of fun
tions. We �rst give somenotations and remarks.Notations 3.3. Let T be a term distributing tree with root �1.� A bran
h b from �1 to a leaf �k is denoted by (�1; y1); : : : ; (�k�1; yk�1); �k where forea
h i � k � 1, yi
orresponds to the variable x0 for the node �i in the third
lause ofDe�nition 3.1. We use Lb to denote the leaf of the bran
h b.� If a node � mat
hes a term u of a re
ursive
all (t; u) then the substitution will bedenoted by ��;u (in parti
ular in De�nition 3.5).� For a term t of a left-hand side of an equation, b(t) will denote the bran
h in the termdistributing tree that leads to t (se
ond
lause of De�nition 3.1).Remarks 3.4.

� Let f : s1; : : : ; sn ! s be a fun
tion and Ef be a spe
i�
ation of f . Let T be a termdistributing tree of Ef . Then for ea
h (w1; : : : ; wn) of T (F
)s1 � : : : � T (F
)sn thereis one and only one leaf � of T and a ground
onstru
tor substitution ' su
h that'(�) = f(w1; : : : ; wn).� Let T be a term distributing tree for a spe
i�
ation and let b be a bran
h from theroot �1 of T to a leaf �k with b = (�1; x1); : : : ; (�k�1; xk�1); �k. Then for ea
h node�i; �j with 1 � i � j � k, there exists a
onstru
tor substitution, denoted ��j ;�i , su
hthat ��j ;�i(�i) = �j .Now, we give the abstra
t terminal state property for term distributing trees:De�nition 3.5. [Abstra
t terminal state property℄Let T be a term distributing tree for a spe
i�
ation. We say that T has the abstra
tterminal state property (atsp) if there is an appli
ation � : T ! f0; 1g on the nodes of Tsu
h that if L is a leaf, �(L) = 0, and for every re
ursive
all (t; u), there is a node (�; x)in the bran
h b(t) with �(�) = 1 su
h that � mat
hes u with ��;u(x) � �Lb(t);�(x) (
f.Notations 3.3 and Remark 3.4) and for all an
estors (�0; x0) of � in b(t) with �(�0) = 1, wehave ��0;u(x0) � �Lb(t);�0(x0).Note that similarly to term distributing trees, no formula is mentioned in the de�nition ofatsp and hen
e atsp is easier to handle than ftsp (De�nition 2.14) be
ause atsp only usesrelations of substitutions where all proposition informations have been abstra
ted. However,it is not obvious that a term distributing tree that satis�es atsp implies the termination ofthe given fun
tion. A way to prove this fa
t would be to infer some parti
ular measuresfrom su
h distributing trees and to show that these measures have the de
reasing propertythrough the re
ursive
alls of the given fun
tion so that the fun
tion terminates.We will not follow this way be
ause we want to prove a stronger result: we will showin the next se
tion that from a term distributing tree that has the atsp we
an re
onstru
tan I-proof, whi
h implies that the given fun
tion terminates and also enables a �-term that
omputes the fun
tion to be extra
ted.4 Building formal proofs from skeleton formsThe aim of this se
tion is �rst to show that the atsp
an be viewed as an abstra
t form ofthe the ftsp. This is formally stated with Theorem 4.2 below. Se
ondly, Theorem 4.5 statesthat the atsp is a suÆ
ient
ondition to
onstru
t a distributing tree with the ftsp from aterm distributing tree (skeleton form). This
an be illustrated with the pi
ture below.Distributing trees inFormal terminal proofswith (skeleton)- Term distributing treeswithFormal terminal state propertyTheorem 4.2-�Theorem 4.5 Abstra
t terminal state propertyWe start by extending the appli
ation H (Figure 1) into a new operator H0 from a distribut-ing tree A to the term distributing tree H(A) whi
h is now equipped with an appli
ation� : H(A) ! f0; 1g de�ned on the node of H(A), so that H0(A) will be (H(A); �). A termdistributing tree equipped with an appli
ation � will also be
alled a �-term distributingtree.

To de�ne the operator H0, the appli
ation � is given as follows: Let A be a distributing treeand (� `Ef P) be a node of A. If (� `Ef P) is a leaf, we take �(H(P)) = 0. If not, we
onsider �(H(P)) = 1 if the rule applied on (� `Ef P) in A is the Ind rule and �(H(P)) = 0otherwise.Note that H is not inje
tive: there is at least two distin
t distributing trees A and A0 su
hthat H(A) = H(A0). However, H0 is inje
tive. A
tually if we
onsider term distributingtrees equipped with a �-appli
ation, then H0 be
omes bije
tive and the inverse operator ofH0
an be stated with the de�nition below.Lemma-De�nition 4.1. [D, the inverse of H0℄ Let Ef be a spe
i�
ation of a fun
tionf : s1; : : : ; sn ! s, and let (T; �) be a term distributing tree for Ef (equipped with a �appli
ation). There is one and only one distributing tree A for Ef su
h that H0(A) = (T; �).This one
an be automati
ally obtained from (T; �) and we de�ne the appli
ation D withD(T; �) = A.Proof: Let F = 8x1D1(x1); : : : ;8xnDn(xn) ! D(f(x1; : : : ; xn)) be the termination state-ment of f . We
an indu
tively build a distributing tree A of the same size as T by takingthe root of A to be `Ef F and assuming the existen
e of a node (� `Ef P) of A, for P is anI-formula, su
h that:i) P is of the form: F1; : : : ; Fr;8xD0(x); Fr+1; : : : ; Fp ! D(f(t1; : : : ; tn)) where D andD0 are data symbols, and variables in the heart of P are bound,ii) T admits a level, the same as those (� `Ef P) in A, su
h that the node � at this level isdistin
t from a leaf, with � = f(t1; : : : ; tn) whose variable a

ording to De�nition 3.1.3is the variable x of sort s0 asso
iated to D0.>From above, we build the
hildren nodes of (� `Ef P) in A as follows:� If �(�) = 0, the node (� `Ef P) is extended by the Stru
t rule on x in P .� If �(�) = 1, the node (� `Ef P) is extended using the Ind rule on x in P .In both
ases, sin
e P is an I-formula, if P 0j denotes either 	Cj (P�D(x)) or �Cj (P�D(x)) ofDe�nitions 2.6 and 2.7 as a
hildren node of P , then P 0j is an I-formula. As the variablesthat o

ur in P are bound, by
onstru
tion of its
hildren, the variables o

urring in theheart of P 0j are bound too. Now, due to the de�nitions of the term distributing trees and theInd and Stru
t rules, it is easy to see that there is a
hild node �j of � su
h that C(P 0j) = �0j .Therefore, the above pro
ess allows the property ii) to be held by ea
h
hild of (� `Ef P)ex
ept if the
orresponding node in T is a leaf. By de�nition of A, C0(A) = (T; �) and itsuniqueness results from inje
tivity of C0. This gives the asso
iated tree A = D(T) of T withC0(D(T; �)) = (T; �). Hen
e we dedu
e, be
ause C0 is inje
tive, that D(C0(A)) = A for ea
hdistributing tree. 2This means that for any distributing tree A and term distributing tree (T; �), we have:D(H0(A)) = A and H0(D(T; �)) = (T; �). We
an illustrate D with Figure 2.However there is still no warranty on the termination of fun
tions using �-term distribut-ing trees. The �rst theorem below shows that the atsp of �-term distributing trees stands insome sense for the ftsp from whi
h all proposition informations are abstra
ted in a simpler
ontext.Theorem 4.2. Let Ef be a spe
i�
ation of a fun
tion f and A be a distributing tree forEf . If A has the formal terminal state property then the term distributing tree H0(A) hasthe abstra
t terminal state property.Proof: Similar to the proof of Theorem 4.5 below. 2Before giving the opposite of Theorem 4.2, Theorem 4.5, we need to introdu
e the followingtwo de�nitions:

D(�0)JJJJJJJ

`Ef FF : termination statementDistributing Tree
D -�0JJJJJJJ

�Term Distributing TreeFigure 2: The reverse operator of H0De�nition 4.3. [Nr(Q;P)℄ Let P be an I-formula and Q a restri
tive hypothesis of P .Nr(Q;P) is the number of restri
tive hypotheses of P that appear between the outermostrestri
tive hypothesis of P . E.g., if Q is the outermost restri
tive hypothesis of P , thenNr(Q;P) = 1. Ni(P) is the number of restri
tive hypothesis of P .De�nition 4.4. [Trj;kb (Q)℄ Let A be a distributing tree for a spe
i�
ation Ef . Let b bea bran
h and P a node in b at a level i from the root. We de�ne Tri+1;ib (Q), where Q isa restri
tive hypothesis of P , as the restri
tive hypothesis Q0 in the
hild P 0 of P in b asfollows depending on whether the rule applied on P is:� Stru
t: Q0 is the restri
tive hypothesis where Nr(Q0; P 0) = Nr(Q;P).� Ind: Q0 is su
h that Nr(Q0; P 0) = Nr(Q;P) + 1.We also de�ne Trj;kb (Q) with j > k as the restri
tive hypothesis of the node P 00 at level jin b de�ned by: Trj;kb (Q) = Trj;j�1b Æ : : : Æ Trk+2;k+1b Æ Trk+1;kb (Q).Finally Tri;ib will denote the identity on P .The next theorem is the opposite of Theorem 4.2 and shows that we
an automati
allyrebuild a distributing tree that has the ftsp from a skeleton form that has the atsp. Asa
onsequen
e, a

ording to Se
tion 2.3, we
an also build an I-proof and thus extra
t a�-term that
omputes the given fun
tion.Theorem 4.5. Let Ef be a spe
i�
ation of a fun
tion f and (T; �) be a �-term distributingtree for Ef . If (T; �) has the abstra
t terminal state property then the distributing treeD(T; �) has the formal terminal state property.Proof: Let (T; �) be a term distributing tree for Ef whi
h has the Atsp. We want to showthat D(T; �) has the ftsp. Take a re
ursive
all (t; v) of an equation of Ef . We have to �nd arestri
tive hypothesis R = 8zDz�s; F1; : : : ; Fk ! D(w) in L of D(T; �) with B(L) = (t; v),where B is the appli
ation of De�nition 2.10, su
h that
lauses 1. and 2. of De�nition 2.14hold. Let B be the
orresponding bran
h in D(T; �) of b(t) in T , and let (�; x) be the nodein b(t) given in De�nition 3.5. Consider (� `Ef P) in D(T; �) that is at the same level of(�; x) in T . As �(�) = 1, by
onstru
tion of D(T; �), a new restri
tive hypothesis of the formQ = 8z(Dz�s ! P�D(x)[z=x℄) is
reated in the
hild P 0 of P in B. Consider R = Trj;iB (Q)the restri
tive hypothesis in B where i and j are respe
tively the level of P 0 and the leaf ofB. We
an write R = 8z(Dz�s0 ! P�D(x)[z=x℄) for some term s0 be
ause:1) The free variables in Q are those of the term s, and the applied Ind/Stru
t rule isdone on a variable in P 0 whi
h is out of the s
ope of Q.

2) As 1) �rst holds for Q0=Tri+1;iB (Q), next holds for Tri+2;iB (Q)=Tri+2;i+1B (Q0), . . . , wehave that: R = Trj;iB (Q) = 8z(Dz�s0 ! P�D(x)[z=x℄) where the variables of C(R) are
losed in R.Clause 1 We know that � mat
hes v with a substitution ��;v, but C(P) = �, so R
an beapplied to v a

ording to a substitution � de�ned with �(z) = ��;v(x) and �(y) = ��;v(y) fory 6= z. We have to show that �(z) � s0. This
an be easily proved, by indu
tion on k � i,that if Trk;iB (Q) = 8z(Dz�sk ! P�D(x)[z=x℄) for some term sk, then sk = �k;i�1(x) wherethe node � mat
hes the node at level k in T with the substitution �k;i�1. By de�nition ofj, �j;i�1 = �LB ;�, so ��;v(x) � �j;i�1(x) by De�nition 3.5, and we
an now dedu
e that�(z) � s0 sin
e s0 = sj . Therefore
lause 1. of De�nition 2.14 holds.Clause 2 Consider a restri
tive hypothesis H = 8zD0z�r ! K in R; we have to �nd arestri
tive hypothesis H0 in P of the form 8zD0z�r0 ! K su
h that �(r) � r0. As H isa restri
tive hypothesis of Trj;iB (Q), H is also a restri
tive hypothesis of Q. Hen
e, oneasso
iates to H a restri
tive hypothesis H 0 inP 0 = 8xi1Di1(xi1); : : : ;8xikDik (xik);8z(Dz�si ! P�D(x)[z=x℄)| {z }Q ! P�D(x)[si=x℄,where H and H 0 respe
tively appear in P�D(x)[z=x℄ and P�D(x)[si=x℄. As H is of theform 8zD0z�r ! K then H 0 is of the form 8zD0z�r0 ! K sin
e only the variables in theterm r are free in H . Now
onsider the node (� `Ef N) in B at a level l su
h that 1)a new restri
tive hypothesis M is
reated in the
hild N 0 of N in B, namely, Ni(N 0) =Ni(N) + 1 and Nr(M;N 0) = 1, and 2) Tri;lB (M) = H 0. Let (�0; x0) be the
orrespondingnode in T of (� `Ef N) in A. It is
lear that �0 is an an
estor of � in T sin
e l < jin D(T; �). Furthermore as Ni(N 0) = Ni(N) + 1, we have �(�0) = 1. By De�nition 3.5we have the relation ��0;v(x0) � �Lb(t) ;�0(x0). Let us now
hoose H0 = Trj;l+1B (M) as therestri
tive hypothesis in P 0. Using the same property of
lause 1 as we did with Trj;iB (Q),we know that r0 is �j;l(x0) = �Lb(t);�0(x0). Let us show that �(r) = ��0;v(x0). We notethat i� 1 � l + 1 sin
e i � 1 and l are respe
tively the level of P and N that are distin
t.We have Tri�1;l+1B (M) = 8z(D0z��i�1;l(x0) ! K) in P , where �i�1;l is by de�nition thesubstitution ��;�0 . So, a

ording to the restri
tive hypothesis Q in P 0, the term r in His ��;�0(x0)[z=x℄. Now, by de�nition of � in
lause 1 of De�nition 2.14, we have �(r) =��;v fz!xg(��;�0(x0)[z=x℄) = ��;v(��;�0(x0)). But the relation of substitutions gives us ��0;v =��;v Æ ��;�0 . So we �nally obtain �(r) = ��0;v(x0), and we
an dedu
e from the above andDe�nition 3.5 that �(r) � r0. Hen
e,
lause 2. of De�nition 2.14 holds. 2In [5℄, measures were related to given fun
tions whose de
reasing property through there
ursive
alls were dependent on the ftsp enjoyed by distributing trees. We
laim that it ispossible to infer measures dire
tly from term distributing trees whose de
reasing propertythrough the re
ursive
alls of the
onsidered fun
tions now rely only on atsp. We do not statethe measures for la
k of spa
e but just remark that this is a straightforward
onsequen
e ofthe results of this se
tion with the previous one and [5℄.Following distributing tree with atsp makes the analysis of the I-proofs easier. In par-ti
ular there are no measures from [5℄ asso
iated to the quot fun
tion (de�ned in the nextse
tion) that have the de
reasing property (see [4℄). As a
onsequen
e of the above resultsof this se
tion, there are no I-proofs for su
h fun
tion. The aim of the following se
tion isto show that the framework of ProPre
an a
tually be applied to new fun
tions (e.g. quotfun
tion) provided an automated termination pro
edure (e.g. [4, 1, 2℄) is used.5 Synthesizing programs from termination te
hniquesAs noted in Se
tion 2, if we
an prove, in TTR, a formula that states the totality of afun
tion then it is possible, in term of programs, to obtain a �-term as the
ode of the

A new relation �Formal Proof of Totality of ~f Termination Proof of f givenwith an automated pro
edureProdu
t Types� -Lemma 5.4 Formal Proof of Totality of fFigure 3: A formal proof of totality of the fun
tion f .fun
tion. As earlier mentioned, this formula is
alled termination statement in ProPre (Def-inition 2.2). More pre
isely, assume that Ef1 ; : : : ; Efm are spe
i�
ations of de�ned fun
tionsalready proved in the ProPre system. Let f be a new de�ned fun
tion with a spe
i�
ationEf . We put E = tj=nj=1Efj , and E1f = Ef t E . In order to obtain a lambda term F that
omputes the new fun
tion f , ProPre needs to establish `E1f F : Tf in TTR.Now
onsider the following spe
i�
ation fun
tion :Example 5.1. Let quot : nat; nat; nat! nat be a de�ned fun
tion with spe
i�
ation Equotgiven by the equations:quot(x; 0; 0) = 0 quot(s(x); s(y); z) = quot(x; y; z)quot(0; s(y); z) = 0 quot(x; 0; s(z)) = s(quot(x; s(z); s(z))The value quot(x; y; z)
orresponds to 1 + bx�yz
 when z 6= 0 and y � x, that is to sayquot(x; y; y)
omputes bxy
. Its spe
i�
ation does not admit an I-proof and therefore no�-term
an be asso
iated by the ProPre system.To
ir
umvent this drawba
k, we show,
onsidering the framework of ProPre and TTR,that it is possible to add other automated termination pro
edures than the one of ProPreregarding the automation of the extra
tion of �-terms.When ProPre builds a formal proof of a spe
i�
ation, it needs to
he
k at di�erent stepsthat some subterm in one argument of the equations de
reases in the re
ursive
alls a

ordingto the relation devised in De�nition 2.13. These informations are given by a terminationalgorithm designed in ProPre. Said informally, to
onvey the termination informations inthe formal proof in ProPre, it is used with the relation � in
luded in formulas of the formA[u=x℄ � (u � v) due to Table 2.Now assume, for a given fun
tion that terminates, the equations admit only one argu-ment. This provides a natural (partial) relation on the data type on whi
h the fun
tion isspe
i�ed so that ea
h re
ursive
all de
reases. Also assume that an automated pro
edureensures the termination of this fun
tion. Then this one
an be used as the termination al-gorithm of ProPre, but we now
onsider the new relation instead of the earlier relation � ofProPre. Due to the hiding rules of the operator � we
an develop a parti
ular formal proof,as an I-Proof, for the
onsidered fun
tion but where in parti
ular the sequent �`E (u� v)in the rule (�1) with e=(u� v)
an be obtained with the new termination pro
edure thatprovides the new relation �.In
ase the fun
tion admits several arguments, we would like to
luster the argumentsof the equations of the spe
i�
ation into one argument. To do so, we show that the use ofun
urry�
ation forms of fun
tions is harmless in TTR (also in AF2) in the sense given byLemma 5.4 by
onsidering the produ
t types. As a
onsequen
e this enables us to followthe prin
iple illustrated in Figure 3 where ~f stands for an un
urry�
ation form of a givenfun
tion f . The left part of Figure 3 is obtained with Theorem 5.7.We will now
ome into more details to get the synthesis of a fun
tion
on
erning theabove prin
iple.

5.1 Produ
t typesWe introdu
e parti
ular spe
i�
ations that
orrespond in some sense to un
urry�
ationforms of earlier spe
i�
ations. To do so, we will
onsider a produ
t type asso
iated to afun
tion. As we have not stated the data types of TTR with the operator � (
f. beginningof Se
tion 2.2), for the sake of presentation, we present below the produ
t types in the
ontext of AF2. This presentation in De�nition 5.2 is harmless be
ause Lemma 5.4 belowand its proof hold both in AF2 and TTR.De�nition 5.2. [Produ
t type of a fun
tion℄Let f : D1; : : : ; Dn ! D be a de�ned fun
tion,
p 2 F
 be a new
onstru
tor of arity n andtake the termination statement of f :Tf = 8x1 : : :8xn(D1(x1); : : : ; Dn(xn)! D(f(x1; : : : ; xn))). The data type K(x) de�ned bythe formula: 8X8y1 : : :8ynD1(y1); : : : ; Dn(yn) ! X(
p(y1; : : : ; yn)) ! X(x) is
alled theprodu
t type of D1; : : : ; Dn, and is denoted by (D1 � : : :�Dn)(x).Starting from the spe
i�
ation of a de�ned fun
tion f it is possible to asso
iate anotherde�ned fun
tion ~f whose spe
i�
ation E ~f takes into a

ount the produ
t type of f .De�nition 5.3. Let f : D1; : : : ; Dn ! D be a de�ned fun
tion with a spe
i�
ation Ef .Let ~f be a new de�ned symbol in Fd, whi
h is
alled the twin fun
tion of f . To de�ne thespe
i�
ation E ~f of ~f , we de�ne ea
h equation ~f(
p(t1; : : : ; tn)) = v of E ~f from ea
h equationf(t1; : : : ; tn) = v of Ef where
p is the
onstru
tor symbol of the produ
t type asso
iated tof . The term v is re
ursively de�ned from v as follows:� (i) if v is a variable or a
onstant then v = v,� (ii) if v = g(u1; : : : ; um) with g a
onstru
tor or a symbol fun
tion distin
t from f ,then v = g(u1; : : : ; um),� (iii) if v = f(u1; : : : ; un) then v = ~f(
p(u1; : : : ; un)).Note that this
learly de�nes the spe
i�
ation E ~f of the de�ned fun
tion ~f asso
iated to f ,and that the termination statement of ~f is:T ~f = 8x((D1 � : : :�Dn)(x)! D(~f(x))).Let us
onsider the spe
i�
ation Ef of a fun
tion and the set of equations E 0f = Ef [ff(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn))g. The set E 0f is not a spe
i�
ation a

ording to De�ni-tion 2.2 in ProPre, but we
an still reason in TTR. Assume the termination statement of ~fproved in TTR with E ~f and the set E of the spe
i�
ations already proved. Now we
an addthe equations of E ~f in the set E before proving the termination statement Tf . Due to theform of the spe
i�
ations E ~f and Ef , the equation f(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn)) doesnot add any
ontradi
tion in the set of the equational axioms Ef tE . Therefore we
an nowuse the new set E 0f t E to prove the termination statement Tf in TTR. So, the equationf(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn)) provides the
onne
tion between Ef and E ~f from the log-i
al point of view and the proof of T ~f provides the
omputational aspe
t of the fun
tion f .More pre
isely we have the following lemma.Lemma 5.4. Let f : D1; : : : ; Dn ! D be a de�ned fun
tion with a spe
i�
ation Ef , and E ~fthe spe
i�
ation of the twin fun
tion ~f . Let E1; : : : ; En be the spe
i�
ations of the de�nedfun
tions already proved (in AF2 or TTR), E = ti=ni=1Ei. Let us note E1~f = E ~f t E andE2~f = E 0~f t E1~f with E 0f = Ef [ff(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn))g. If there is a �-term eFsu
h that `E1~f eF : T ~f , then there is a �-term F su
h that `E2~f F : Tf .

Proof: This lemma holds both in AF2 and TTR, (using the rules in Table 1). We assumefamiliarity with AF2 and only give steps without naming the rules. Let K = (D1� : : :�Dn)be the produ
t type of f with
p the asso
iated
onstru
tor symbol. By de�nition of thedata type K, we get in TTR:a1 : D1(x1); : : : ; an : Dn(xn)`Ef �k(: : : ((k a1) a2) : : : an) :K(
p(x1; : : : ; xn)).Hen
e: a1 : D1(x1); : : : ; an : Dn(xn)`E1~f (eF �k(: : : ((k a1) a2) : : : an)) :D(~f(
p(x1; : : : ; xn))).Be
ause E1~f � E2~f we have:a1 : D1(x1); : : : ; an : Dn(xn)`E2~f (eF �k(: : : ((k a1) a2) : : : an)) :D(~f(
p(x1; : : : ; xn))).Now, we have the equation f(t1; : : : ; tm) = ~f(
p(t1; : : : ; tm)) in E2~f .Hen
e: a1 : D1(x1); : : : ; an : Dn(xn)`E2~f (eF �k(: : : ((k a1) a2) : : : an)) :D(f(x1; : : : ; xn)).Finally: `E2~f F : Tf , with F = �a1 : : : �an(eF �k(: : : ((k a1) a2) : : : an)). 2We are now going to show that the spe
i�
ation of the twin of a fun
tion admits aparti
ular I-proof in our new
ontext a

ording to the fa
t that its termination is provedwith an automated pro
edure.5.2 Canoni
al I-proofsLet f : D1; : : : ; Dn ! D be a de�ned fun
tion, with a spe
i�
ation Ef , whi
h is terminatingwith an automated pro
edure. As mentioned earlier, instead of using the ordering of theterms given in De�nition 2.13, we de�ne a new ordering for the symbol relation � by
onsidering the ordering given with the re
ursive
alls of the equations of the spe
i�
ation E ~f .As in the ProPre system, we will assume that we have a subset F?d of Fd of de�ned fun
tionswhose spe
i�
ation admits a proof of totality in TTR (the fun
tions already introdu
ed bythe user) so that the de�ned fun
tions o

urring in the spe
i�
ation of the fun
tion f forwhi
h we want to prove the termination statement, are in F?d [ffg.Now, let t be a term in T (F ;X)s0 , for some sort s0 (see Se
tion 3), su
h that all thede�ned fun
tions o

urring in t admit a spe
i�
ation and are terminating. Then, for ea
hground sorted substitution �, we
an de�ne the ground term pp�(t)qq as the term in T (F
)sthat
orresponds to the normal form of �(t). The de�nition of pp�(t)qq makes sense as thefun
tions o

urring in the spe
i�
ation f are terminating whi
h gives the existen
e of thenormal form while the de�nition of the spe
i�
ations (De�nition 2.2) gives the uniquenessof the normal form. Therefore, we
an state formally the relation � ~f below.De�nition 5.5. Let E ~f be a spe
i�
ation of the twin fun
tion of a de�ned fun
tionf su
h that the fun
tions o

urring in the spe
i�
ation E ~f admit a spe
i�
ation and areterminating. We also assume the fun
tion f to be terminating. Let K be the produ
t type(D1� : : :�Dn) asso
iated to f and
p the
onstru
tor asso
iated to K. We de�ne a relation� ~f on K su
h that for ea
h re
ursive
all (f(
p(t1; :::; tn)); f(
p(v1; : : : ; vn))) of E ~f , we have
p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(
p(t1; : : : ; tn)) for any ground sorted substitution �.Hen
e, we get the straightforward but useful following fa
t.Fa
t 5.6. The above relation � ~f is a well-founded ordering on K.The next theorem says that if a fun
tion f is terminating and if we have a distributingtree for the spe
i�
ation E ~f of the twin fun
tion f , having or la
king the formal terminalstate property, it is then possible to get a new one having the ftsp. The prin
iple mainly
onsists of
hanging, in the initial distributing tree, the Stru
t and Ind rules in su
h waythat we now have a new tree with ftsp whi
h
an be
alled a
anoni
al distributing tree. Itmeans that the formal proofs we are going to build will depend on the ability of building

a distributing tree whatever its properties and on the ability of showing the termination ofthe fun
tion.Theorem 5.7. Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn ! D su
hthat the de�ned symbols that o

ur on the right-hand side of the equations of Ef are inF?d [ffg. Let A be a distributing tree for the spe
i�
ation E ~f of the twin fun
tion ~f .Assume the fun
tion f is proved terminating by a termination pro
edure. Then there is adistributing tree A0 for E ~f , whi
h
an be automati
ally obtained from A, that satis�es theformal terminal state property with the relation � ~f .Proof: Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn ! s su
h that thede�ned symbols that o

ur in the right-hand side of the equations of Ef are in F?d [ffg.Let A be a distributing tree for the spe
i�
ation E ~f of the twin fun
tion ~f . We assumef is proved terminating by a termination pro
edure. Sin
e we know that the fun
tion isterminating given by an automated pro
edure we
an introdu
e the ordering � ~f . From theterm distributing tree A we
an asso
iate a new distributing tree A0 with the ordering � ~f ,illustrated with Figure 4, whi
h
an be
alled the
anoni
al distributing tree of A.A0JJJJJJJ

`E ~f T ~fDistributing Tree for E ~f withformal terminal state property
g Stru
tInd(x)-AJJJJJJJ

`E ~f Termination statement of ~fA Distributing Tree of E ~fFigure 4: The
anoni
al distributing tree A0 of ANote that A0
an be built automati
ally from A. We show that A0 satis�es the formalterminal state property. The root of A0 is `E ~f T ~f , with T ~f = 8x(K(x) ! D(~f(x))) thetermination statement of ~f where K denotes the produ
t type (D1 � : : : �Dn) and
p itsasso
iated
onstru
tor.Let L = (� `E ~f P) be a leaf of A0 and e = (t; u) be the equation of E ~f with H(P) = t. Let(t; v) be a re
ursive
all of e. A

ording to the de�nition of a spe
i�
ation and a re
ursive
all, the terms t and v are respe
tively of the form f(
p(t1; : : : ; tn)) and f(
p(v1; : : : ; vn)).Be
ause of the
onstru
tion of the
anoni
al distributing tree A0 that uses a parti
ular orderof the appli
ation rules Stru
t and Ind (also illustrated with Figure 4), P is of the form:8x0i1D0i1(x0i1); : : : ;8x0imD0im(x0im);8z(Kz�
p(h1;:::;hn) ! K(f(z)))! K(f(
p(h1; : : : ; hn))).As the heart of P is H(P) = t, we have hj = tj for any 1 � j � n.Now, let Q be the restri
tive hypothesis 8z(Kz�
p(t1;:::;tn) ! K(f(z))) of P . Let us showthat Q
an be applied to the term v a

ording to a substitution. By the de�nition of Q,we have H(Q) = f(z), so we
an take a substitution � with �(z) =
p(v1; : : : ; vn). We alsotake the value �(y) = y for any free variable y in Q, that is any variable y in
p(t1; : : : ; tn).Hen
e Q
an be applied to v a

ording to the above substitution �. We now have to showthe two items of De�nition 2.14. As we are in the
onditions of De�nition 5.5, we know that
p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(
p(t1; : : : ; tn)) for any ground sorted substitution �. But�(z) =
p(v1; : : : ; vn), thus we get the �rst item. The se
ond item be
omes straightforward:

be
ause of the form of Q, the set of restri
tive hypotheses of Q is empty. Hen
e, we
on
ludethat the
anoni
al distributing tree A0 satis�es the formal terminal state property. 2The next theorem (and its proof) expresses Figure 3. It tells that if we know that afun
tion f is terminating, and if we have already a proof of totality of ea
h de�ned fun
tionthat o

urs in the spe
i�
ation of f (apart from f), and if we have a term distributing treeasso
iated to the spe
i�
ation of f , then we are able to get a �-term that
omputes thefun
tion f in the sense of TTR.Theorem 5.8. Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn ! D and Dbe a given distributing tree for the spe
i�
ation Ef su
h that the de�ned symbols that o

uron the right-hand side of the equations of Ef are in F?d [ffg. Assume the termination ofthe fun
tion f given by an automated pro
edure. Then there is a proof of totality of f inTTR that
an be found automati
ally.Proof: Let ~f be the twin fun
tion of f and E ~f its spe
i�
ation given in De�nition 5.3. ByDe�nition 5.3, a distributing tree A asso
iated to E ~f
an be automati
ally obtained fromD. Hen
e, with Theorem 5.7, we now have a (
anoni
al) distributing tree A0 asso
iated toE ~f whi
h has the ftsp with � ~f as the ordering relation. As Fa
t 2.11 still holds with thenew ordering relation, we get an I-proof of E ~f that
an be
alled
anoni
al proof. Thus weobtain a formal proof of the termination statement T ~f in TTR. Hen
e, by Lemma 5.4 we�nally obtain a proof of totality of f in TTR. 2Let us now go ba
k to Example 5.1. It was shown in [1, 4℄ that the termination of thespe
i�
ation Equot
an be proven with automated termination methods. So if we
onsidersu
h methods in the right upper part of Figure 3, we then obtain a new ordering relation� for the spe
i�
ation Egquot of the asso
iated fun
tion gquot. Together with our setting, thisprovides a formal proof of totality of gquot as expressed in the left part of Figure 3. Finally,using this latter result, and thanks to Lemma 5.4, we obtain a formal proof of totality ofthe fun
tion quot whi
h was not previously possible in the ProPre system .6 Con
lusionAn important part of the programming paradigms using logi
s as is done in ProPre, is theCurry-Howard isomorphism where a �-term is extra
ted from the proof. However be
auseof the logi
al framework, it is often diÆ
ult to make use of termination te
hniques fromdi�erent areas. The study of this paper has shown that, for the automated system ProPre,the extra
tion part of �-terms
an be released from the termination analysis, using thesetting of ProPre, so that other automated termination te
hniques (like those of [1, 2, 4℄)
an now be in
luded in this framework modulo distributing trees.Referen
es[1℄ T. Arts and J. Giesl. Automati
ally proving termination where simpli�
ation orderingsfail. In Pro
eedings of Theory and Pra
ti
e of Software Development TAPSOFT'97,volume 1214 of LNCS, pages 261{272, 1997.[2℄ J. Giesl. Termination of nested and mutually re
ursive algorithms. J. of AutomatedReasoning, 19:1{29, 1997.[3℄ W. A. Howard. The formul�-as types notion of
onstru
tion. In J. Hindley and J. Seldin,editors, To H.B. Curry: Essays on
ombinatory logi
, lambda-
al
ulus and formalism,pages 479{490. A
ademi
 Press, 1980.

[4℄ F. Kamareddine and F. Monin. On automating indu
tive and non-indu
tive terminationmethods. In Pro
eedings of the 5th Asian Computing S
ien
e Conferen
e, volume 1742of LNCS, pages 177{189, 1999.[5℄ F. Kamareddine and F. Monin. On formalised proofs of termination of re
ursive fun
-tions. In Pro
eedings of the Int. Conf. on Prin
iples and Pra
ti
e of De
larative Pro-gramming, volume 1702 of LNCS, pages 29{46, 1999.[6℄ F. Kamareddine, F. Monin and M. Ayala-Rin
�on. On automating the extra
tion ofprograms from proofs using produ
t types. In Pro
eedings of the 9th Workshop onLogi
, Language, Information and Computation, WoLLIC'2002, Volume 67 of ENTCS,20 pages, 2002.[7℄ J. L. Krivine. Lambda-
al
ulus, Types and Models. Computers and Their Appli
ations.Ellis Horwood, 1993.[8℄ J. L. Krivine and M. Parigot. Programming with proofs. J. Inf. Pro
ess Cybern,26(3):149{167, 1990.[9℄ D. Leivant. Typing and
omputational properties of lambda expression. Theoreti
alComputer S
ien
e, 44:51{68, 1986.[10℄ P. Manoury. A user's friendly syntax to de�ne re
ursive fun
tions as typed lambda-terms. In Pro
eedings of Type for Proofs and Programs TYPES'94, volume 996 ofLNCS, pages 83{100, 1994.[11℄ P. Manoury, M. Parigot, and M. Simonot. ProPre, a programming language with proofs.In Pro
eedings of Logi
 Programming and Automated Reasoning, volume 624 of LNCS,pages 484{486, 1992.[12℄ P. Manoury and M. Simonot. Des preuves de totalit�e de fon
tions
omme synth�ese deprogrammes. PhD thesis, University Paris 7, 1992.[13℄ P. Manoury and M. Simonot. Automatizing termination proofs of re
ursively de�nedfun
tions. Theoreti
al Computer S
ien
e, 135(2):319{343, 1994.[14℄ F. Monin and M. Simonot. An ordinal measure based pro
edure for termination offun
tions. Theoreti
al Computer S
ien
e, 254(1-2):63{94, 2001.[15℄ M. Parigot. Re
ursive programming with proofs: a se
ond type theory. In Pro
eedingsof the European Symposium on Programming ESOP'88, volume 300 of LNCS, pages145{159, 1988.[16℄ M. Parigot. Re
ursive programming with proofs. Theoreti
al Computer S
ien
e,94(2):335{356, 1992.

