
On automating the extration of programsfrom termination proofs�Fairouz Kamareddiney, Fran�ois Moninz Mauriio Ayala-Rin�onxAbstratWe investigate an automated program synthesis system that is based on the paradigmof programming by proofs. To automatially extrat a �-term that omputes a reur-sive funtion given by a set of equations the system must �nd a formal proof of thetotality of the given funtion. Beause of the partiular logial framework, usually suhapproahes make it diÆult to use termination tehniques suh as those in rewritingtheory. We overome this diÆulty for the automated system that we onsider byexploiting produt types. As a onsequene, this would enable the inorporation oftermination tehniques used in other areas while still extrating programs.Keywords: Program extration, produt types, termination, ProPre system.1 IntrodutionThe Curry-Howard isomorphism [3℄ that establishes a orrespondene between programsand proofs of spei�ations plays a major role in many type systems. Programming meth-ods using the proof as program paradigm ensure some orretness of programs extratedfrom a proof of funtion totality and provide a logial framework for whih the behaviour ofprograms an be analysed. Of these systems whih exploit the proof as program paradigm,we mention Seond Order Funtional Arithmeti (AF2, f. [7, 9℄) and a faithful extensionof AF2 alled Reursive Type Theory (TTR, f. [16℄). Both systems use equations as al-gorithmi spei�ations. In AF2 and TTR, the ompilation phase orresponds to formaltermination proofs of the spei�ations of funtions from whih �-terms that ompute thefuntions are extrated.Using the logial framework of TTR, an automated system alled ProPre, has beendeveloped by P. Manoury and M. Simonot [12, 11℄. The automated termination problemturns out to be a major issue in the development of the system. Alongside the system,where data types and spei�ations of funtions are introdued by the user in an ML-style,an algorithm has been designed using strategies to searh for formal termination proofs foreah spei�ation. When the system sueeds in developing a formal termination proof fora spei�ation, a �-term that omputes the funtion is given.As mentioned in [12℄, the automated termination proofs in this system di�er from theusual tehniques of rewriting systems beause they have to follow several requirements. Theymust be proofs of totality in order to enable the extration of �-terms. In ProPre, one hasto make sure not only that the programs will give an output for any input, but also that�This paper is an extended version of [6℄.yCorresponding author. Shool of Mathematial and Computer Sienes, Heriot-Watt University, Edin-burgh, Sotland. fairouz�mas.hw.a.ukzD�epartement d'informatique, Universit�e de Bretagne Oidentale, CS 29837, 29238 Brest Cedex 3,Frane. monin�univ-brest.frxDepartamento de Matem�atia, Universidade de Bras��lia, Bras��lia D.F., Brasil. ayala�mat.unb.br

for any well-typed input the result will also be well-typed. Finally, the proofs must also beexpressed in a formal logial framework, namely, the natural dedution style. The �-termsare obtained from the proof trees that are built in a natural dedution style aording tothe reursive type theory TTR.Therefore enhaning automated proofs strategy is a entral issue in programming lan-guages like AF2 or TTR. While termination methods for funtional programing based on or-dinal measures have been developed in [14, 5℄ relating to the formal proofs devised in [12, 13℄,the purpose of this paper is to analyse in some sense the reverse of the question. That is,we analyse the possibility to inorporate new termination tehniques for the extration ofprograms in the ProPre or TTR ontext.In order to simplify the analysis of the formal proofs obtained in the logial frameworkof ProPre, we show that the kernel of these formal proofs, alled formal terminal stateproperty (ftsp), an be abstrated using a simple data struture. This gives rise to a simpletermination property, whih we all abstrat terminal state property (atsp). The interestof atsp is that on one hand the termination ondition is suÆient to show the terminationusing the ordinal measures of [5℄ independently of the partiular logial framework of ProPre,and on the other hand we also prove that we an automatially reonstrut a formal proofdiretly from an atsp so that a lambda term an be extrated. That is to say the �rst resultof this paper is to establish a orrespondene between atsp with a lass of ordinal measuresin a simple ontext for the termination and the formal proofs built in ProPre.This orrespondene implies that the termination proofs of reursive funtions obtainedin [4℄ do not admit in general a formal proof in ProPre. Indeed the lass of these funtionsis larger than those proved with the lass of ordinal measures of [14, 5℄. To overome thefat that there is in general no formal proof in ProPre for these funtions, the seond resultpresented in this paper allows the synthesis of these funtions still making use of the wholeframework of ProPre but in a di�erent way in TTR. Atually the result turns out to bestronger sine it an be applied for reursive funtions whose termination is proved by otherautomated methods suh as tehniques oming from rewriting theory (see e.g. [1℄). Thepriniple onsists in simulating a semanti method. That is, from a well-founded orderingfor whih eah reursive all is dereasing, one must be able to build a formal proof byonsidering general indution on tuples of arguments of the funtion. Though the prinipleis natural, this approah beomes diÆult when we want in partiular to extrat programsbeause we have to take into aount the logial framework and the strutures of the proofsthat we may or may not be able to build.2 Logial frameworkWe briey present the ProPre system (see [10, 12, 13℄ for details). ProPre relies on theproofs as programs paradigm that exploits the Curry-Howard isomorphism and deals withthe reursive type theory TTR [16℄. In ProPre, the user needs to only de�ne data types andfuntions. �-terms are automatially extrated from the formal proofs of the terminationstatements of funtions whih an be viewed as the ompilation part.ProPre deals with reursive funtions. The data types and funtions are de�ned in anML like syntax. For instane, if N denotes the type of natural numbers, then the list ofnatural numbers is de�ned by: Type Ln : Nil | Cons N Ln;and the append funtion is spei�ed by:Let append : Ln, Ln -> LnNil y => y | (Cons n x) y => (Cons n (append x y));

One a data type is introdued by the user, a seond order formula is automatially gener-ated. E.g., the following seond order formula is automatially generated and assoiated tothe list of natural numbers:Ln(x) := 8X(X(nil)! (8n(N(n)! 8y(X(y)! X(ons(n; y)))))! X(x)):This formula stands for the least set that ontains the nil element and is losed under theonstrutor ons. Eah data type will be abbreviated by a unary data symbol, as it is forinstane with the symbol N that represents the data type of natural numbers. Further-more, one a funtion is spei�ed in the system, a termination statement is automatiallyprodued [11℄. As an example, the termination statement of the append funtion is theformula: 8x(Ln(x)! 8y(Ln(y)! Ln(append(x; y)))):The system then attempts to prove the termination statement of the funtion using theset of equations that de�ne the funtion. In a suessful ase, a �-term that omputes thefuntion is synthesized from the building of a formal proof in a natural dedution style [12℄.Informally, if T is a �-term obtained for the funtion append and t1, t2 are �-terms thatrespetively model terms u1 of type Ln and u2 of type Ln, then the �-term ((T t1) t2) reduesto a normal form V that represents the value of append(u1; u2) of type Ln.We refer the reader to [7, 8, 15, 16℄ regarding the theory that allows to derive �-termsfrom termination proofs of the spei�ation in a natural dedution style.2.1 The typing rules of AF2We reall the typing rules of AF2 whih are also part of TTR. We assume a set F of funtionsymbols and a ountable set X of individual variables. The logial terms are indutivelyde�ned as follows:� individual variables are logial terms;� if f is an n-ary funtion symbol in F and t1; : : : ; tn are logial terms, then f(t1; : : : ; tn)is a logial term.We also assume a ountable set of prediate variables. Formulas are indutively de�ned asfollows:� if X is an n-ary prediate variable and t1; : : : ; tn are logial terms, then X(t1; : : : ; tn)is a formula;� if A and B are formulas then A! B is a formula;� if A is a formula and � is a �rst or seond order variable, then 8�A is a formula.We will use 8xA ! B to denote 8x(A ! B). For onveniene, a formula of the formF1 ! (F2 ! : : : (Fn�1 ! Fn) : : :) will also be denoted by F1; : : : ; Fn ! F . For instane8xD1(x);8yD2(y)! F stands for the formula 8x(D1(x)! 8y(D2(y)! F)).A typing judgment is an expression of the form: \x1 : F1; : : : ; xn : Fn `E t : F", wherex1; : : : ; xn are distint �-variables, t is a �-term, F; F1; : : : ; Fn are formulas and E is a set ofequations on logial terms. The left-hand side of the judgment is alled the ontext. Notethat we an freely use the same notation for both the �-terms and the logial terms whihour in the formulas, as the ontext will larify whether a term is a �-term or a logialterm. In partiular, the word \variable" may also refer to a \�-variable". The typing rulesof AF2 are given in Table 1 where E is a set of equations on logial terms.

�; x : A `E x : A (ax) � `E t : A[u=y℄ E ` u = v� `E t : A[v=y℄ (eq)�; x : A `E t : B� `E �x:t : A! B (!i) � `E u : A � `E t : A! B� `E (t u) : B (!e)� `E t : A� `E t : 8yA (81i) � `E t : 8yA� `E t : A[�=y℄ (81e)� `E t : A� `E t : 8Y A (82i) � `E t : 8Y A� `E t : A[T=Y ℄ (82e)Table 1: Rules of the Seond Order Funtional Arithmeti (AF2)� `E t : A � `E e� `E t : A � e (�1) � `E t : A � e� `E t : A (�2) � `E t : A � e� `E e (�3)Table 2: Rules of the hiding operator �.In Table 1, � is a ontext of the form x1 : A1; : : : ; xn : An and may be empty; y (resp.Y) is a �rst (resp. seond) order variable not ourring free in A1; : : : ; An; �; u; v are �rstorder terms and T is a formula. The expression E ` u = v means that the equation u = vis derivable from E in seond order logi. For more explanations we refer to [7℄.The types and formal data types play an important role in AF2 and TTR in relation to anotion of realizability [8℄ that ensures the extrated �-terms ompute the de�ned funtions.However, for the sake of larity, we do not state here the de�nition of formal data types andthe realizability notion whose details an be found in [7, 8℄. Now, for an n-ary funtion f ifwe have the typing judgment:`E t : 8x1 : : :8xn(D1(x1)! (: : :! (Dn(xn)! D(f(x1; : : : ; xn)) : : :)for some �-term t whereD1; : : : ; Dn; D denote formal data types, then the �-term t omputesthe funtion f aording to the set E .2.2 Some rules of TTRAs for AF2, we do not state the data types and the realizability notion of TTR. In partiularwe do not give the seond order least �xed point operator � (see [15℄) whih allows one to de-�ne the data types whih are represented here by unary data symbols D;D0; : : : ; D1; : : : ; Dn.Furthermore, for the sake of presentation we do not state all the rules (whih also inludethose of AF2), but only give those needed for our purpose.In TTR, a binary symbol �, alled hiding operator in [15℄, is added. Its meaning is aonjuntion whih only keeps the algorithmi ontents of the left part in order to preventunneessary algorithmi ontent of the termination proof to be arried out in the �-terms(see [16, 12℄). The rules related to the hiding operator are given in Table 2.The hiding operator is used with a relation � where the de�nition of formulas given insetion 2.1 is now ompleted as follows:

If A is a formula, and u; v are terms then A � (u � v) is a formula.If A is a formula where a distinguished variable x ours, we abbreviate the formulaA[u=x℄ � (u � v) with the notation Au�v.Among the rules of TTR, several rules are used to reprodue, from the programmingpoint of view, the reasoning by indution. The rule below stands in TTR for an externalindution rule where the relation � denotes a well-founded partial ordering on the terms ofthe algebra: � `E t : 8x[8z[Dz�x ! B[z=x℄℄! [D(x)! B℄℄� `E (T t) : 8x[D(x)! B℄ (Ext)In the rule (Ext), the lambda term T is the Turing �xed-point operator, D is a data typeand x is a variable not ourring in the formula B.>From the (Ext) rule, it is possible to derive the gInd formula:gInd := 8x(Dr(x)! 8X(8y(Dr(y)! 8z(Drz�y ! X(z))! X(y))! X(x))):That is, for eah reursive data type, there is a �-term ind suh that: `E ind : gInd forany set E of equations. We say that the term ind witnesses the proof of gInd. This is statedwith Lemma 2.1 below, whih is presented with the type of natural numbers in [15℄.Lemma 2.1. For eah reursive data type, there exists a �-term ind suh that:`E ind : gInd for any set E of equations.Lemma 2.1 an be proven for E being empty. Then, one an use the result of [7℄ whihstates that if E1 � E2 then `E1 t : P implies `E2 t : P . The proof of Lemma 2.1 in [15℄,given only with the type of natural numbers, an atually also be applied to any datatype. In partiular if T is the Turing �xed-point operator, then the lambda term ind =(T �x�y�z((z y) �m((x m) z))), is valid for any data type D. The above Lemma is usefulfor the de�nition of a maro-rule, alled the Ind-rule, in the ProPre system.2.3 The ProPre systemWe assume that the set of funtions F is divided into two disjoint sets, the set F ofonstrutor symbols and the set Fd of de�ned funtion symbols also alled de�ned fun-tions. Eah funtion f is supposed to have a type denoted by D1; : : : ; Dn ! D whereD1; : : : ; Dn; D denote data symbols and n denotes the arity of the funtion f . We maywrite f : D1; : : : ; Dn ! D to both introdue a funtion f and its type D1; : : : ; Dn ! D.De�nitions 2.2. [Spei�ation; termination statement; reursive all℄� A spei�ation Ef of a de�ned funtion f : D1; : : : ; Dn ! D in Fd is a non overlappingset of left-linear equations f(e1; e01); : : : ; (ep; e0p)g suh that for all 1 � i � p, ei is of theform f(t1; : : : ; tn) where tj is a onstrutor term (i.e. without ourrenes of de�nedfuntion symbols) of type Dj , j = 1; : : : ; n; and e0i is a term of type D.� The termination statement of a funtion f : D1; : : : ; Dn ! D is the formula8x1(D1(x1)! : : :! 8xn(Dn(xn)! D(f(x1; : : : ; xn)))).� Let Ef a spei�ation of a funtion f . A reursive all of f is a pair (t; v) where t is theleft-hand side of an equation (t; u) of Ef and v a subterm of u of the form f(v1; : : : ; vn).An equation (l; r) of a spei�ation may be written l = r (as an equational axiom inTTR). We may also drop the brakets to ease the readability.

The formal proofs of ProPre, alled I-proofs, are built upon distributing trees, based ontwo main rules derived from the TTR Strut rule and the Ind rule in [12℄. The distributingtrees built in ProPre are haraterized by a property alled formal terminal state property.This setion presents these two main rules, the distributing trees and the formal terminalstate property. Let us �rst introdue some notations.Notation 2.3. If P is the formula F1; : : : ; Fk;8xD0(x); Fk+1; : : : ; Fm ! D(t), then P�D0(x),will denote the formula F1; : : : ; Fk ; Fk+1; : : : ; Fm ! D(t).The above notation is orret as it will be used at the same time when the quanti�edvariable x will be substituted by a term in the formula P�D(x) with respet to the ontext(f. next two lemmas with Notation 2.4) or when the variable x will be introdued in theontext.Notation 2.4. Let C be a onstrutor symbol of a type D1; : : : ; Dk ! D. Let x1; : : : ; xk; zbe distint variables. Let F (x) be a formula in whih the variable x is free and the variablesz; x1; : : : ; xk do not our and let t = C(x1; : : : ; xk). Then �C(F (x)) and 	C(F (x)) will berespetively the following formulas:� �C(F (x)) is: 8x1D1(x1); : : : ;8xkDk(xk)! F [t=x℄;� 	C(F (x)) is: 8x1D1(x1); : : : ;8xkDk(xk);8z(Dz�t ! F [z=x℄)! F [t=x℄.The notation may suggest some kind of formulas that are atually useful in the onstru-tion of I-proofs whih are de�ned as follows:De�nitions 2.5. [I-formulas and restritive hypothesis℄� A formula F is alled an I-formula if and only if F is of the form H1; : : : ; Hm !D(f(t1; : : :; tn)) for some:� data type D, de�ned funtion f ,� formulas Hi for i = 1; : : : ;m suh that Hi is of the form 8xD0(x) or of the form8z(D0z�u ! F 0) for some data type D0, I-formula F 0 and term u.� An I-restritive hypothesis of an I-formula F of the formH1; : : : ; Hm ! D(f(t1; : : :; tn))is a formula Hi of the form 8z(D0z�u ! F 0). We say that H 0 is a restritive hypothesisto an I-restritive hypothesis H = 8z(D0z�u ! F 0) if H 0 is an I-restritive hypothesisof the I-formula F 0.The de�nition of an I-formula is reursive, and an I-formula may have sub-I-formulas.An I-restritive hypothesis is not an I-formula and we an use the term restritive hypothesisto also denote I-restritive hypothesis. The termination statement of a de�ned funtion isan I-formula whih has no restritive hypothesis.The lemmas below state that one an use two additional rules, alled Strut rule and Indrule, in TTR as they an be derived from the other rules of TTR. These rules orrespond tomaro-rules, the former one an be seen as a reasoning by ases, while the last one standsfor an indution rule.Lemma-De�nition 2.6. [The Ind rule℄Let D be a data type and onsider all the onstrutor funtions Ci of type Di1 ; : : : ; Dik ! D,0 � ik, i = 1; : : : ; q. Let P be a formula of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t), and � a ontext. For 	Ci(P�D(x)) given as in Notation 2.4, the indution Ind ruleon type D is: � `E 	C1(P�D(x)) : : : � `E 	Cq (P�D(x))� `E P Ind(x)

Along with the Ind rule, the Strut rule de�ned below, whih is also a maro-rule derivedfrom TTR, an be onsidered as a reasoning by ases.Lemma-De�nition 2.7. [The Strut rule℄Let D be a data type and onsider all the onstrutor funtions Ci of type Di1 ; : : : ; Dik ! D,0 � ik, i = 1; : : : ; q. Let P be a formula of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t), and � a ontext. For �Ci(P�D(x)) given as in Notation 2.4, the Strut rule on typeD is: � `E �C1(P�D(x)) : : : � `E �Cq (P�D(x))� `E P Strut(x)Due to these lemmas, two maro-rules an be added in TTR: the Strut-rule (Lemma 2.7)and the Ind-rule (Lemma 2.6). From these rules, distributing trees an be built in ProPre(see De�nition 2.10).Remark 2.8. I-formulas are preserved by the Strut-rule and the Ind-rule. That is, if Pis an I-formula, then so are: �C(P�D(x)) and 	C(P�D(x)).De�nition 2.9. [Heart of formula℄ The heart of a formula of the form F = H1; : : : ; Hm !D(t), where D is a reursive data type, will be the term t, denoted by H(F).The distributing trees are de�ned as follows:De�nition 2.10. [Distributing tree℄ Assume Ef is a spei�ation of a funtion f :D1; : : : ; Dn ! D: A is a distributing tree for Ef i� A is a proof tree built only with theStrut rule and Ind rule where:1. the root of A is the termination statement of f with the empty ontext, i.e.:`Ef 8x1D1(x1); :::;8xnDn(xn)! D(f(x1; :::; xn)).2. if L = f�1 `Ef F1; :::;�q `Ef Fqg is the set of A's leaves, then there exists a one toone appliation B: L ,! Ef suh that B(L) = (t; u) with L = (� `Ef F) in L and theheart of F is H(F) = t.Note that it an be indutively heked, from the root, using remark 2.8, that any formulain a distributing tree is an I-formula.The I-proofs found by the ProPre system are formal termination proofs of terminationstatements of de�ned funtions. They are divided into three phases:1. the development of a distributing tree for the spei�ation of a de�ned funtion, har-aterized by a property, alled formal terminal state property;2. eah leaf of the distributing tree is extended into a new leaf by an appliation of an(eq) rule;3. eah leaf, oming from the seond step, is extended with a new sub-tree, with the useof rules de�ned in [12℄, whose leaves end with axiom rules.Due to the following fat proved in [12℄, it is not neessary to onsider in this paper themiddle and upper parts of proof trees built in the ProPre system:Fat 2.11. A distributing tree T an be (automatially) extended into a omplete prooftree i� T enjoys a property, alled the formal terminal state property.That is, it is enough to look at distributing trees that have the formal terminal state propertyto be able to omplete the proof tree and hene state the termination of the funtion.Therefore it remains for us to state the mentioned property.

De�nition 2.12. We say that an I-formula or a restritive hypothesis P an be appliedto a term t if the heart H(P) of P mathes t aording to a substitution � where for eahvariable x that ours free in P we have �(x) = x.The relation � of De�nition 2.5 deals with the measure j : j# on the terms, ranging overnatural numbers, whih ounts the number of subterms of a given term t (inluding t), andis interpreted as follows:De�nition 2.13. Let Var(t) be the set of variables ourring in t. Let u; v be terms. Wesay that u � v i�: juj# < jvj#, Var(u) � Var(v), and u is linear.This learly de�nes a well-founded ordering� on terms. We an now state the main propertythat a distributing tree must enjoy in the I-proofs of ProPre.De�nition 2.14. [Formal Terminal State Property℄Let Ef be a spei�ation of a funtion f and A be a distributing tree for Ef . We saythat A satis�es the formal terminal state property (ftsp) i� for all leaves L = (� `Ef F)of A with the equation e 2 Ef suh that B(L) = e, where B is the appliation given inDe�nition 2.10, and for all reursive alls (t; v) of e, there exists a restritive hypothesisP = 8zDz�s; H1; : : : ; Hk ! D(w) of F and a substitution � suh that P an be applied tov aording to � with:1. �(z) � s and2. for all restritive hypothesis H of P of the form 8yD0y�s0 ! K there is a restritivehypothesis H0 of F of the form 8yD0y�s0 ! K with �(s0) � s0.So, ProPre establishes the termination of a funtion f by showing that the distributing treeof the spei�ation of f (whih is a partial tree whose root is the termination statement off) has the formal terminal state property (and hene an be extended into a omplete prooftree of the termination statement of f).3 The abstrat terminal state propertyProof strutures an often be heavy and diÆult to work with. However, in the onstrutiveframework of the Curry-Howard isomorphism, ompiling a reursive algorithm orrespondsto establishing a formal proof of its totality. In ProPre, termination proofs play an importantrole as they make it possible to obtain �-terms that ompute programs. We set out tosimplify the termination tehniques developed in ProPre by showing that its automatedformal proofs an be abstrated giving rise to a simpler property whih respets termination.Instead of dealing with formulas, we will use the simpler onept of funtions. Also, insteadof data symbols, we will use sorts and assume that there is a orrespondene between thedata types of ProPre and our sorts. Instead of the omplex onept of distributing treesused in ProPre (De�nition 2.10), we will use the muh simpler notion of term distributingtrees of [14℄. By living in the easier framework, we will introdue the new abstrat terminalstate property whih will play for term distributing trees a similar role to that played bythe formal terminal state property for distributing trees. In this setion we present a datastruture for whih we will be able to introdue a new termination property.We onsider a ountable set X of individual variables and we assume that eah variable ofX has a unique sort and that for eah sort s there is a ountable number of variables in Xof sort s. For sort s, F subset of F , and X subset of X , T (F;X)s denotes the set of termsof sort s built from F and X . In ase X is empty we will also use the notation T (F)s.We reall the de�nition of term distributing trees of [14℄. A term distributing tree ismuh simpler than the distributing tree of ProPre given in De�nition 2.10. The novelty of

� `Ef PJJJJJJJ

`Ef FF : termination statementDistributing Tree
H - H(P)JJJJJJJ

H(F)Term Distributing TreeFigure 1: The operator Hthis setion will be a term distributing tree equipped with abstrat terminal state property(De�nition 3.5 below).De�nition 3.1. [Term distributing tree℄ Let Ef be a spei�ation of a funtion f :s1; : : : ; sn ! s. T is a term distributing tree for Ef i� it is a tree where:1. its root is of the form f(x1; : : : ; xn) where xi is a variable of sort si, i � n;2. eah of its leafs is a left-hand side of an equation of Ef (up to variable renaming); and3. eah node f(t1; : : : ; tn) of T admits one variable x0 of a sort s0 suh that the setof hildren of the node is ff(t1; : : : tn)[C(x01; : : : x0r)=x0℄; where x01; : : : ; x0r are not int1; : : : tn and C : s01; : : : ; s0r ! s0 2 Fg.A term distributing tree an bee seen as a skeleton form of a distributing tree T by takingthe heart of the formulas in the nodes of T , whih gives rise to an operator H illustrated byFigure 1.Therefore we have the following proposition:Proposition 3.2. If there is a distributing tree for a spei�ation Ef of a funtion f thenthere is also a term distributing tree for the spei�ation Ef .A term distributing tree is easier to handle than a distributing tree. But, in both parts ofFigure 1, term distributing trees and distributing trees may have no termination property.However, we know by Fat 2.11 that a funtion terminates if we have a distributing treethat satis�es a right terminal state property. What we want is to de�ne a notion on theterm distributing trees that also ensures the termination of funtions. We �rst give somenotations and remarks.Notations 3.3. Let T be a term distributing tree with root �1.� A branh b from �1 to a leaf �k is denoted by (�1; y1); : : : ; (�k�1; yk�1); �k where foreah i � k � 1, yi orresponds to the variable x0 for the node �i in the third lause ofDe�nition 3.1. We use Lb to denote the leaf of the branh b.� If a node � mathes a term u of a reursive all (t; u) then the substitution will bedenoted by ��;u (in partiular in De�nition 3.5).� For a term t of a left-hand side of an equation, b(t) will denote the branh in the termdistributing tree that leads to t (seond lause of De�nition 3.1).Remarks 3.4.

� Let f : s1; : : : ; sn ! s be a funtion and Ef be a spei�ation of f . Let T be a termdistributing tree of Ef . Then for eah (w1; : : : ; wn) of T (F)s1 � : : : � T (F)sn thereis one and only one leaf � of T and a ground onstrutor substitution ' suh that'(�) = f(w1; : : : ; wn).� Let T be a term distributing tree for a spei�ation and let b be a branh from theroot �1 of T to a leaf �k with b = (�1; x1); : : : ; (�k�1; xk�1); �k. Then for eah node�i; �j with 1 � i � j � k, there exists a onstrutor substitution, denoted ��j ;�i , suhthat ��j ;�i(�i) = �j .Now, we give the abstrat terminal state property for term distributing trees:De�nition 3.5. [Abstrat terminal state property℄Let T be a term distributing tree for a spei�ation. We say that T has the abstratterminal state property (atsp) if there is an appliation � : T ! f0; 1g on the nodes of Tsuh that if L is a leaf, �(L) = 0, and for every reursive all (t; u), there is a node (�; x)in the branh b(t) with �(�) = 1 suh that � mathes u with ��;u(x) � �Lb(t);�(x) (f.Notations 3.3 and Remark 3.4) and for all anestors (�0; x0) of � in b(t) with �(�0) = 1, wehave ��0;u(x0) � �Lb(t);�0(x0).Note that similarly to term distributing trees, no formula is mentioned in the de�nition ofatsp and hene atsp is easier to handle than ftsp (De�nition 2.14) beause atsp only usesrelations of substitutions where all proposition informations have been abstrated. However,it is not obvious that a term distributing tree that satis�es atsp implies the termination ofthe given funtion. A way to prove this fat would be to infer some partiular measuresfrom suh distributing trees and to show that these measures have the dereasing propertythrough the reursive alls of the given funtion so that the funtion terminates.We will not follow this way beause we want to prove a stronger result: we will showin the next setion that from a term distributing tree that has the atsp we an reonstrutan I-proof, whih implies that the given funtion terminates and also enables a �-term thatomputes the funtion to be extrated.4 Building formal proofs from skeleton formsThe aim of this setion is �rst to show that the atsp an be viewed as an abstrat form ofthe the ftsp. This is formally stated with Theorem 4.2 below. Seondly, Theorem 4.5 statesthat the atsp is a suÆient ondition to onstrut a distributing tree with the ftsp from aterm distributing tree (skeleton form). This an be illustrated with the piture below.Distributing trees inFormal terminal proofswith (skeleton)- Term distributing treeswithFormal terminal state propertyTheorem 4.2-�Theorem 4.5 Abstrat terminal state propertyWe start by extending the appliation H (Figure 1) into a new operator H0 from a distribut-ing tree A to the term distributing tree H(A) whih is now equipped with an appliation� : H(A) ! f0; 1g de�ned on the node of H(A), so that H0(A) will be (H(A); �). A termdistributing tree equipped with an appliation � will also be alled a �-term distributingtree.

To de�ne the operator H0, the appliation � is given as follows: Let A be a distributing treeand (� `Ef P) be a node of A. If (� `Ef P) is a leaf, we take �(H(P)) = 0. If not, weonsider �(H(P)) = 1 if the rule applied on (� `Ef P) in A is the Ind rule and �(H(P)) = 0otherwise.Note that H is not injetive: there is at least two distint distributing trees A and A0 suhthat H(A) = H(A0). However, H0 is injetive. Atually if we onsider term distributingtrees equipped with a �-appliation, then H0 beomes bijetive and the inverse operator ofH0 an be stated with the de�nition below.Lemma-De�nition 4.1. [D, the inverse of H0℄ Let Ef be a spei�ation of a funtionf : s1; : : : ; sn ! s, and let (T; �) be a term distributing tree for Ef (equipped with a �appliation). There is one and only one distributing tree A for Ef suh that H0(A) = (T; �).This one an be automatially obtained from (T; �) and we de�ne the appliation D withD(T; �) = A.Proof: Let F = 8x1D1(x1); : : : ;8xnDn(xn) ! D(f(x1; : : : ; xn)) be the termination state-ment of f . We an indutively build a distributing tree A of the same size as T by takingthe root of A to be `Ef F and assuming the existene of a node (� `Ef P) of A, for P is anI-formula, suh that:i) P is of the form: F1; : : : ; Fr;8xD0(x); Fr+1; : : : ; Fp ! D(f(t1; : : : ; tn)) where D andD0 are data symbols, and variables in the heart of P are bound,ii) T admits a level, the same as those (� `Ef P) in A, suh that the node � at this level isdistint from a leaf, with � = f(t1; : : : ; tn) whose variable aording to De�nition 3.1.3is the variable x of sort s0 assoiated to D0.>From above, we build the hildren nodes of (� `Ef P) in A as follows:� If �(�) = 0, the node (� `Ef P) is extended by the Strut rule on x in P .� If �(�) = 1, the node (� `Ef P) is extended using the Ind rule on x in P .In both ases, sine P is an I-formula, if P 0j denotes either 	Cj (P�D(x)) or �Cj (P�D(x)) ofDe�nitions 2.6 and 2.7 as a hildren node of P , then P 0j is an I-formula. As the variablesthat our in P are bound, by onstrution of its hildren, the variables ourring in theheart of P 0j are bound too. Now, due to the de�nitions of the term distributing trees and theInd and Strut rules, it is easy to see that there is a hild node �j of � suh that C(P 0j) = �0j .Therefore, the above proess allows the property ii) to be held by eah hild of (� `Ef P)exept if the orresponding node in T is a leaf. By de�nition of A, C0(A) = (T; �) and itsuniqueness results from injetivity of C0. This gives the assoiated tree A = D(T) of T withC0(D(T; �)) = (T; �). Hene we dedue, beause C0 is injetive, that D(C0(A)) = A for eahdistributing tree. 2This means that for any distributing tree A and term distributing tree (T; �), we have:D(H0(A)) = A and H0(D(T; �)) = (T; �). We an illustrate D with Figure 2.However there is still no warranty on the termination of funtions using �-term distribut-ing trees. The �rst theorem below shows that the atsp of �-term distributing trees stands insome sense for the ftsp from whih all proposition informations are abstrated in a simplerontext.Theorem 4.2. Let Ef be a spei�ation of a funtion f and A be a distributing tree forEf . If A has the formal terminal state property then the term distributing tree H0(A) hasthe abstrat terminal state property.Proof: Similar to the proof of Theorem 4.5 below. 2Before giving the opposite of Theorem 4.2, Theorem 4.5, we need to introdue the followingtwo de�nitions:

D(�0)JJJJJJJ

`Ef FF : termination statementDistributing Tree
D -�0JJJJJJJ

�Term Distributing TreeFigure 2: The reverse operator of H0De�nition 4.3. [Nr(Q;P)℄ Let P be an I-formula and Q a restritive hypothesis of P .Nr(Q;P) is the number of restritive hypotheses of P that appear between the outermostrestritive hypothesis of P . E.g., if Q is the outermost restritive hypothesis of P , thenNr(Q;P) = 1. Ni(P) is the number of restritive hypothesis of P .De�nition 4.4. [Trj;kb (Q)℄ Let A be a distributing tree for a spei�ation Ef . Let b bea branh and P a node in b at a level i from the root. We de�ne Tri+1;ib (Q), where Q isa restritive hypothesis of P , as the restritive hypothesis Q0 in the hild P 0 of P in b asfollows depending on whether the rule applied on P is:� Strut: Q0 is the restritive hypothesis where Nr(Q0; P 0) = Nr(Q;P).� Ind: Q0 is suh that Nr(Q0; P 0) = Nr(Q;P) + 1.We also de�ne Trj;kb (Q) with j > k as the restritive hypothesis of the node P 00 at level jin b de�ned by: Trj;kb (Q) = Trj;j�1b Æ : : : Æ Trk+2;k+1b Æ Trk+1;kb (Q).Finally Tri;ib will denote the identity on P .The next theorem is the opposite of Theorem 4.2 and shows that we an automatiallyrebuild a distributing tree that has the ftsp from a skeleton form that has the atsp. Asa onsequene, aording to Setion 2.3, we an also build an I-proof and thus extrat a�-term that omputes the given funtion.Theorem 4.5. Let Ef be a spei�ation of a funtion f and (T; �) be a �-term distributingtree for Ef . If (T; �) has the abstrat terminal state property then the distributing treeD(T; �) has the formal terminal state property.Proof: Let (T; �) be a term distributing tree for Ef whih has the Atsp. We want to showthat D(T; �) has the ftsp. Take a reursive all (t; v) of an equation of Ef . We have to �nd arestritive hypothesis R = 8zDz�s; F1; : : : ; Fk ! D(w) in L of D(T; �) with B(L) = (t; v),where B is the appliation of De�nition 2.10, suh that lauses 1. and 2. of De�nition 2.14hold. Let B be the orresponding branh in D(T; �) of b(t) in T , and let (�; x) be the nodein b(t) given in De�nition 3.5. Consider (� `Ef P) in D(T; �) that is at the same level of(�; x) in T . As �(�) = 1, by onstrution of D(T; �), a new restritive hypothesis of the formQ = 8z(Dz�s ! P�D(x)[z=x℄) is reated in the hild P 0 of P in B. Consider R = Trj;iB (Q)the restritive hypothesis in B where i and j are respetively the level of P 0 and the leaf ofB. We an write R = 8z(Dz�s0 ! P�D(x)[z=x℄) for some term s0 beause:1) The free variables in Q are those of the term s, and the applied Ind/Strut rule isdone on a variable in P 0 whih is out of the sope of Q.

2) As 1) �rst holds for Q0=Tri+1;iB (Q), next holds for Tri+2;iB (Q)=Tri+2;i+1B (Q0), . . . , wehave that: R = Trj;iB (Q) = 8z(Dz�s0 ! P�D(x)[z=x℄) where the variables of C(R) arelosed in R.Clause 1 We know that � mathes v with a substitution ��;v, but C(P) = �, so R an beapplied to v aording to a substitution � de�ned with �(z) = ��;v(x) and �(y) = ��;v(y) fory 6= z. We have to show that �(z) � s0. This an be easily proved, by indution on k � i,that if Trk;iB (Q) = 8z(Dz�sk ! P�D(x)[z=x℄) for some term sk, then sk = �k;i�1(x) wherethe node � mathes the node at level k in T with the substitution �k;i�1. By de�nition ofj, �j;i�1 = �LB ;�, so ��;v(x) � �j;i�1(x) by De�nition 3.5, and we an now dedue that�(z) � s0 sine s0 = sj . Therefore lause 1. of De�nition 2.14 holds.Clause 2 Consider a restritive hypothesis H = 8zD0z�r ! K in R; we have to �nd arestritive hypothesis H0 in P of the form 8zD0z�r0 ! K suh that �(r) � r0. As H isa restritive hypothesis of Trj;iB (Q), H is also a restritive hypothesis of Q. Hene, oneassoiates to H a restritive hypothesis H 0 inP 0 = 8xi1Di1(xi1); : : : ;8xikDik (xik);8z(Dz�si ! P�D(x)[z=x℄)| {z }Q ! P�D(x)[si=x℄,where H and H 0 respetively appear in P�D(x)[z=x℄ and P�D(x)[si=x℄. As H is of theform 8zD0z�r ! K then H 0 is of the form 8zD0z�r0 ! K sine only the variables in theterm r are free in H . Now onsider the node (� `Ef N) in B at a level l suh that 1)a new restritive hypothesis M is reated in the hild N 0 of N in B, namely, Ni(N 0) =Ni(N) + 1 and Nr(M;N 0) = 1, and 2) Tri;lB (M) = H 0. Let (�0; x0) be the orrespondingnode in T of (� `Ef N) in A. It is lear that �0 is an anestor of � in T sine l < jin D(T; �). Furthermore as Ni(N 0) = Ni(N) + 1, we have �(�0) = 1. By De�nition 3.5we have the relation ��0;v(x0) � �Lb(t) ;�0(x0). Let us now hoose H0 = Trj;l+1B (M) as therestritive hypothesis in P 0. Using the same property of lause 1 as we did with Trj;iB (Q),we know that r0 is �j;l(x0) = �Lb(t);�0(x0). Let us show that �(r) = ��0;v(x0). We notethat i� 1 � l + 1 sine i � 1 and l are respetively the level of P and N that are distint.We have Tri�1;l+1B (M) = 8z(D0z��i�1;l(x0) ! K) in P , where �i�1;l is by de�nition thesubstitution ��;�0 . So, aording to the restritive hypothesis Q in P 0, the term r in His ��;�0(x0)[z=x℄. Now, by de�nition of � in lause 1 of De�nition 2.14, we have �(r) =��;v fz!xg(��;�0(x0)[z=x℄) = ��;v(��;�0(x0)). But the relation of substitutions gives us ��0;v =��;v Æ ��;�0 . So we �nally obtain �(r) = ��0;v(x0), and we an dedue from the above andDe�nition 3.5 that �(r) � r0. Hene, lause 2. of De�nition 2.14 holds. 2In [5℄, measures were related to given funtions whose dereasing property through thereursive alls were dependent on the ftsp enjoyed by distributing trees. We laim that it ispossible to infer measures diretly from term distributing trees whose dereasing propertythrough the reursive alls of the onsidered funtions now rely only on atsp. We do not statethe measures for lak of spae but just remark that this is a straightforward onsequene ofthe results of this setion with the previous one and [5℄.Following distributing tree with atsp makes the analysis of the I-proofs easier. In par-tiular there are no measures from [5℄ assoiated to the quot funtion (de�ned in the nextsetion) that have the dereasing property (see [4℄). As a onsequene of the above resultsof this setion, there are no I-proofs for suh funtion. The aim of the following setion isto show that the framework of ProPre an atually be applied to new funtions (e.g. quotfuntion) provided an automated termination proedure (e.g. [4, 1, 2℄) is used.5 Synthesizing programs from termination tehniquesAs noted in Setion 2, if we an prove, in TTR, a formula that states the totality of afuntion then it is possible, in term of programs, to obtain a �-term as the ode of the

A new relation �Formal Proof of Totality of ~f Termination Proof of f givenwith an automated proedureProdut Types� -Lemma 5.4 Formal Proof of Totality of fFigure 3: A formal proof of totality of the funtion f .funtion. As earlier mentioned, this formula is alled termination statement in ProPre (Def-inition 2.2). More preisely, assume that Ef1 ; : : : ; Efm are spei�ations of de�ned funtionsalready proved in the ProPre system. Let f be a new de�ned funtion with a spei�ationEf . We put E = tj=nj=1Efj , and E1f = Ef t E . In order to obtain a lambda term F thatomputes the new funtion f , ProPre needs to establish `E1f F : Tf in TTR.Now onsider the following spei�ation funtion :Example 5.1. Let quot : nat; nat; nat! nat be a de�ned funtion with spei�ation Equotgiven by the equations:quot(x; 0; 0) = 0 quot(s(x); s(y); z) = quot(x; y; z)quot(0; s(y); z) = 0 quot(x; 0; s(z)) = s(quot(x; s(z); s(z))The value quot(x; y; z) orresponds to 1 + bx�yz when z 6= 0 and y � x, that is to sayquot(x; y; y) omputes bxy . Its spei�ation does not admit an I-proof and therefore no�-term an be assoiated by the ProPre system.To irumvent this drawbak, we show, onsidering the framework of ProPre and TTR,that it is possible to add other automated termination proedures than the one of ProPreregarding the automation of the extration of �-terms.When ProPre builds a formal proof of a spei�ation, it needs to hek at di�erent stepsthat some subterm in one argument of the equations dereases in the reursive alls aordingto the relation devised in De�nition 2.13. These informations are given by a terminationalgorithm designed in ProPre. Said informally, to onvey the termination informations inthe formal proof in ProPre, it is used with the relation � inluded in formulas of the formA[u=x℄ � (u � v) due to Table 2.Now assume, for a given funtion that terminates, the equations admit only one argu-ment. This provides a natural (partial) relation on the data type on whih the funtion isspei�ed so that eah reursive all dereases. Also assume that an automated proedureensures the termination of this funtion. Then this one an be used as the termination al-gorithm of ProPre, but we now onsider the new relation instead of the earlier relation � ofProPre. Due to the hiding rules of the operator � we an develop a partiular formal proof,as an I-Proof, for the onsidered funtion but where in partiular the sequent �`E (u� v)in the rule (�1) with e=(u� v) an be obtained with the new termination proedure thatprovides the new relation �.In ase the funtion admits several arguments, we would like to luster the argumentsof the equations of the spei�ation into one argument. To do so, we show that the use ofunurry�ation forms of funtions is harmless in TTR (also in AF2) in the sense given byLemma 5.4 by onsidering the produt types. As a onsequene this enables us to followthe priniple illustrated in Figure 3 where ~f stands for an unurry�ation form of a givenfuntion f . The left part of Figure 3 is obtained with Theorem 5.7.We will now ome into more details to get the synthesis of a funtion onerning theabove priniple.

5.1 Produt typesWe introdue partiular spei�ations that orrespond in some sense to unurry�ationforms of earlier spei�ations. To do so, we will onsider a produt type assoiated to afuntion. As we have not stated the data types of TTR with the operator � (f. beginningof Setion 2.2), for the sake of presentation, we present below the produt types in theontext of AF2. This presentation in De�nition 5.2 is harmless beause Lemma 5.4 belowand its proof hold both in AF2 and TTR.De�nition 5.2. [Produt type of a funtion℄Let f : D1; : : : ; Dn ! D be a de�ned funtion, p 2 F be a new onstrutor of arity n andtake the termination statement of f :Tf = 8x1 : : :8xn(D1(x1); : : : ; Dn(xn)! D(f(x1; : : : ; xn))). The data type K(x) de�ned bythe formula: 8X8y1 : : :8ynD1(y1); : : : ; Dn(yn) ! X(p(y1; : : : ; yn)) ! X(x) is alled theprodut type of D1; : : : ; Dn, and is denoted by (D1 � : : :�Dn)(x).Starting from the spei�ation of a de�ned funtion f it is possible to assoiate anotherde�ned funtion ~f whose spei�ation E ~f takes into aount the produt type of f .De�nition 5.3. Let f : D1; : : : ; Dn ! D be a de�ned funtion with a spei�ation Ef .Let ~f be a new de�ned symbol in Fd, whih is alled the twin funtion of f . To de�ne thespei�ation E ~f of ~f , we de�ne eah equation ~f(p(t1; : : : ; tn)) = v of E ~f from eah equationf(t1; : : : ; tn) = v of Ef where p is the onstrutor symbol of the produt type assoiated tof . The term v is reursively de�ned from v as follows:� (i) if v is a variable or a onstant then v = v,� (ii) if v = g(u1; : : : ; um) with g a onstrutor or a symbol funtion distint from f ,then v = g(u1; : : : ; um),� (iii) if v = f(u1; : : : ; un) then v = ~f(p(u1; : : : ; un)).Note that this learly de�nes the spei�ation E ~f of the de�ned funtion ~f assoiated to f ,and that the termination statement of ~f is:T ~f = 8x((D1 � : : :�Dn)(x)! D(~f(x))).Let us onsider the spei�ation Ef of a funtion and the set of equations E 0f = Ef [ff(x1; : : : ; xn) = ~f(p(x1; : : : ; xn))g. The set E 0f is not a spei�ation aording to De�ni-tion 2.2 in ProPre, but we an still reason in TTR. Assume the termination statement of ~fproved in TTR with E ~f and the set E of the spei�ations already proved. Now we an addthe equations of E ~f in the set E before proving the termination statement Tf . Due to theform of the spei�ations E ~f and Ef , the equation f(x1; : : : ; xn) = ~f(p(x1; : : : ; xn)) doesnot add any ontradition in the set of the equational axioms Ef tE . Therefore we an nowuse the new set E 0f t E to prove the termination statement Tf in TTR. So, the equationf(x1; : : : ; xn) = ~f(p(x1; : : : ; xn)) provides the onnetion between Ef and E ~f from the log-ial point of view and the proof of T ~f provides the omputational aspet of the funtion f .More preisely we have the following lemma.Lemma 5.4. Let f : D1; : : : ; Dn ! D be a de�ned funtion with a spei�ation Ef , and E ~fthe spei�ation of the twin funtion ~f . Let E1; : : : ; En be the spei�ations of the de�nedfuntions already proved (in AF2 or TTR), E = ti=ni=1Ei. Let us note E1~f = E ~f t E andE2~f = E 0~f t E1~f with E 0f = Ef [ff(x1; : : : ; xn) = ~f(p(x1; : : : ; xn))g. If there is a �-term eFsuh that `E1~f eF : T ~f , then there is a �-term F suh that `E2~f F : Tf .

Proof: This lemma holds both in AF2 and TTR, (using the rules in Table 1). We assumefamiliarity with AF2 and only give steps without naming the rules. Let K = (D1� : : :�Dn)be the produt type of f with p the assoiated onstrutor symbol. By de�nition of thedata type K, we get in TTR:a1 : D1(x1); : : : ; an : Dn(xn)`Ef �k(: : : ((k a1) a2) : : : an) :K(p(x1; : : : ; xn)).Hene: a1 : D1(x1); : : : ; an : Dn(xn)`E1~f (eF �k(: : : ((k a1) a2) : : : an)) :D(~f(p(x1; : : : ; xn))).Beause E1~f � E2~f we have:a1 : D1(x1); : : : ; an : Dn(xn)`E2~f (eF �k(: : : ((k a1) a2) : : : an)) :D(~f(p(x1; : : : ; xn))).Now, we have the equation f(t1; : : : ; tm) = ~f(p(t1; : : : ; tm)) in E2~f .Hene: a1 : D1(x1); : : : ; an : Dn(xn)`E2~f (eF �k(: : : ((k a1) a2) : : : an)) :D(f(x1; : : : ; xn)).Finally: `E2~f F : Tf , with F = �a1 : : : �an(eF �k(: : : ((k a1) a2) : : : an)). 2We are now going to show that the spei�ation of the twin of a funtion admits apartiular I-proof in our new ontext aording to the fat that its termination is provedwith an automated proedure.5.2 Canonial I-proofsLet f : D1; : : : ; Dn ! D be a de�ned funtion, with a spei�ation Ef , whih is terminatingwith an automated proedure. As mentioned earlier, instead of using the ordering of theterms given in De�nition 2.13, we de�ne a new ordering for the symbol relation � byonsidering the ordering given with the reursive alls of the equations of the spei�ation E ~f .As in the ProPre system, we will assume that we have a subset F?d of Fd of de�ned funtionswhose spei�ation admits a proof of totality in TTR (the funtions already introdued bythe user) so that the de�ned funtions ourring in the spei�ation of the funtion f forwhih we want to prove the termination statement, are in F?d [ffg.Now, let t be a term in T (F ;X)s0 , for some sort s0 (see Setion 3), suh that all thede�ned funtions ourring in t admit a spei�ation and are terminating. Then, for eahground sorted substitution �, we an de�ne the ground term pp�(t)qq as the term in T (F)sthat orresponds to the normal form of �(t). The de�nition of pp�(t)qq makes sense as thefuntions ourring in the spei�ation f are terminating whih gives the existene of thenormal form while the de�nition of the spei�ations (De�nition 2.2) gives the uniquenessof the normal form. Therefore, we an state formally the relation � ~f below.De�nition 5.5. Let E ~f be a spei�ation of the twin funtion of a de�ned funtionf suh that the funtions ourring in the spei�ation E ~f admit a spei�ation and areterminating. We also assume the funtion f to be terminating. Let K be the produt type(D1� : : :�Dn) assoiated to f and p the onstrutor assoiated to K. We de�ne a relation� ~f on K suh that for eah reursive all (f(p(t1; :::; tn)); f(p(v1; : : : ; vn))) of E ~f , we havep(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(p(t1; : : : ; tn)) for any ground sorted substitution �.Hene, we get the straightforward but useful following fat.Fat 5.6. The above relation � ~f is a well-founded ordering on K.The next theorem says that if a funtion f is terminating and if we have a distributingtree for the spei�ation E ~f of the twin funtion f , having or laking the formal terminalstate property, it is then possible to get a new one having the ftsp. The priniple mainlyonsists of hanging, in the initial distributing tree, the Strut and Ind rules in suh waythat we now have a new tree with ftsp whih an be alled a anonial distributing tree. Itmeans that the formal proofs we are going to build will depend on the ability of building

a distributing tree whatever its properties and on the ability of showing the termination ofthe funtion.Theorem 5.7. Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn ! D suhthat the de�ned symbols that our on the right-hand side of the equations of Ef are inF?d [ffg. Let A be a distributing tree for the spei�ation E ~f of the twin funtion ~f .Assume the funtion f is proved terminating by a termination proedure. Then there is adistributing tree A0 for E ~f , whih an be automatially obtained from A, that satis�es theformal terminal state property with the relation � ~f .Proof: Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn ! s suh that thede�ned symbols that our in the right-hand side of the equations of Ef are in F?d [ffg.Let A be a distributing tree for the spei�ation E ~f of the twin funtion ~f . We assumef is proved terminating by a termination proedure. Sine we know that the funtion isterminating given by an automated proedure we an introdue the ordering � ~f . From theterm distributing tree A we an assoiate a new distributing tree A0 with the ordering � ~f ,illustrated with Figure 4, whih an be alled the anonial distributing tree of A.A0JJJJJJJ

`E ~f T ~fDistributing Tree for E ~f withformal terminal state property
g StrutInd(x)-AJJJJJJJ

`E ~f Termination statement of ~fA Distributing Tree of E ~fFigure 4: The anonial distributing tree A0 of ANote that A0 an be built automatially from A. We show that A0 satis�es the formalterminal state property. The root of A0 is `E ~f T ~f , with T ~f = 8x(K(x) ! D(~f(x))) thetermination statement of ~f where K denotes the produt type (D1 � : : : �Dn) and p itsassoiated onstrutor.Let L = (� `E ~f P) be a leaf of A0 and e = (t; u) be the equation of E ~f with H(P) = t. Let(t; v) be a reursive all of e. Aording to the de�nition of a spei�ation and a reursiveall, the terms t and v are respetively of the form f(p(t1; : : : ; tn)) and f(p(v1; : : : ; vn)).Beause of the onstrution of the anonial distributing tree A0 that uses a partiular orderof the appliation rules Strut and Ind (also illustrated with Figure 4), P is of the form:8x0i1D0i1(x0i1); : : : ;8x0imD0im(x0im);8z(Kz�p(h1;:::;hn) ! K(f(z)))! K(f(p(h1; : : : ; hn))).As the heart of P is H(P) = t, we have hj = tj for any 1 � j � n.Now, let Q be the restritive hypothesis 8z(Kz�p(t1;:::;tn) ! K(f(z))) of P . Let us showthat Q an be applied to the term v aording to a substitution. By the de�nition of Q,we have H(Q) = f(z), so we an take a substitution � with �(z) = p(v1; : : : ; vn). We alsotake the value �(y) = y for any free variable y in Q, that is any variable y in p(t1; : : : ; tn).Hene Q an be applied to v aording to the above substitution �. We now have to showthe two items of De�nition 2.14. As we are in the onditions of De�nition 5.5, we know thatp(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(p(t1; : : : ; tn)) for any ground sorted substitution �. But�(z) = p(v1; : : : ; vn), thus we get the �rst item. The seond item beomes straightforward:

beause of the form of Q, the set of restritive hypotheses of Q is empty. Hene, we onludethat the anonial distributing tree A0 satis�es the formal terminal state property. 2The next theorem (and its proof) expresses Figure 3. It tells that if we know that afuntion f is terminating, and if we have already a proof of totality of eah de�ned funtionthat ours in the spei�ation of f (apart from f), and if we have a term distributing treeassoiated to the spei�ation of f , then we are able to get a �-term that omputes thefuntion f in the sense of TTR.Theorem 5.8. Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn ! D and Dbe a given distributing tree for the spei�ation Ef suh that the de�ned symbols that ouron the right-hand side of the equations of Ef are in F?d [ffg. Assume the termination ofthe funtion f given by an automated proedure. Then there is a proof of totality of f inTTR that an be found automatially.Proof: Let ~f be the twin funtion of f and E ~f its spei�ation given in De�nition 5.3. ByDe�nition 5.3, a distributing tree A assoiated to E ~f an be automatially obtained fromD. Hene, with Theorem 5.7, we now have a (anonial) distributing tree A0 assoiated toE ~f whih has the ftsp with � ~f as the ordering relation. As Fat 2.11 still holds with thenew ordering relation, we get an I-proof of E ~f that an be alled anonial proof. Thus weobtain a formal proof of the termination statement T ~f in TTR. Hene, by Lemma 5.4 we�nally obtain a proof of totality of f in TTR. 2Let us now go bak to Example 5.1. It was shown in [1, 4℄ that the termination of thespei�ation Equot an be proven with automated termination methods. So if we onsidersuh methods in the right upper part of Figure 3, we then obtain a new ordering relation� for the spei�ation Egquot of the assoiated funtion gquot. Together with our setting, thisprovides a formal proof of totality of gquot as expressed in the left part of Figure 3. Finally,using this latter result, and thanks to Lemma 5.4, we obtain a formal proof of totality ofthe funtion quot whih was not previously possible in the ProPre system .6 ConlusionAn important part of the programming paradigms using logis as is done in ProPre, is theCurry-Howard isomorphism where a �-term is extrated from the proof. However beauseof the logial framework, it is often diÆult to make use of termination tehniques fromdi�erent areas. The study of this paper has shown that, for the automated system ProPre,the extration part of �-terms an be released from the termination analysis, using thesetting of ProPre, so that other automated termination tehniques (like those of [1, 2, 4℄)an now be inluded in this framework modulo distributing trees.Referenes[1℄ T. Arts and J. Giesl. Automatially proving termination where simpli�ation orderingsfail. In Proeedings of Theory and Pratie of Software Development TAPSOFT'97,volume 1214 of LNCS, pages 261{272, 1997.[2℄ J. Giesl. Termination of nested and mutually reursive algorithms. J. of AutomatedReasoning, 19:1{29, 1997.[3℄ W. A. Howard. The formul�-as types notion of onstrution. In J. Hindley and J. Seldin,editors, To H.B. Curry: Essays on ombinatory logi, lambda-alulus and formalism,pages 479{490. Aademi Press, 1980.

[4℄ F. Kamareddine and F. Monin. On automating indutive and non-indutive terminationmethods. In Proeedings of the 5th Asian Computing Siene Conferene, volume 1742of LNCS, pages 177{189, 1999.[5℄ F. Kamareddine and F. Monin. On formalised proofs of termination of reursive fun-tions. In Proeedings of the Int. Conf. on Priniples and Pratie of Delarative Pro-gramming, volume 1702 of LNCS, pages 29{46, 1999.[6℄ F. Kamareddine, F. Monin and M. Ayala-Rin�on. On automating the extration ofprograms from proofs using produt types. In Proeedings of the 9th Workshop onLogi, Language, Information and Computation, WoLLIC'2002, Volume 67 of ENTCS,20 pages, 2002.[7℄ J. L. Krivine. Lambda-alulus, Types and Models. Computers and Their Appliations.Ellis Horwood, 1993.[8℄ J. L. Krivine and M. Parigot. Programming with proofs. J. Inf. Proess Cybern,26(3):149{167, 1990.[9℄ D. Leivant. Typing and omputational properties of lambda expression. TheoretialComputer Siene, 44:51{68, 1986.[10℄ P. Manoury. A user's friendly syntax to de�ne reursive funtions as typed lambda-terms. In Proeedings of Type for Proofs and Programs TYPES'94, volume 996 ofLNCS, pages 83{100, 1994.[11℄ P. Manoury, M. Parigot, and M. Simonot. ProPre, a programming language with proofs.In Proeedings of Logi Programming and Automated Reasoning, volume 624 of LNCS,pages 484{486, 1992.[12℄ P. Manoury and M. Simonot. Des preuves de totalit�e de fontions omme synth�ese deprogrammes. PhD thesis, University Paris 7, 1992.[13℄ P. Manoury and M. Simonot. Automatizing termination proofs of reursively de�nedfuntions. Theoretial Computer Siene, 135(2):319{343, 1994.[14℄ F. Monin and M. Simonot. An ordinal measure based proedure for termination offuntions. Theoretial Computer Siene, 254(1-2):63{94, 2001.[15℄ M. Parigot. Reursive programming with proofs: a seond type theory. In Proeedingsof the European Symposium on Programming ESOP'88, volume 300 of LNCS, pages145{159, 1988.[16℄ M. Parigot. Reursive programming with proofs. Theoretial Computer Siene,94(2):335{356, 1992.

