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Abstract

Functions play a central role in type theory, logic and computation. We describe how the notions
of functionalisation (the way in which functions can be constructed) and instantiation (the process
of applying a function to an argument) have been developed in the last century. We explain how
both processes were implemented in Frege’s Begriffschrift, Russell’s Ramified Type Theory, and the
λ-calculus (originally introduced by Church) showing that the λ-calculus misses a crucial aspect
of functionalisation. We then pay attention to some special forms of function abstraction that do
not exist in the λ-calculus and we show that various logical constructs (e.g., let expressions and
definitions and the use of parameters in mathematics), can be seen as forms of the missing part of
functionalisation. Our study of the function concept leads to: (a) an extension of the Barendregt cube
[4] with all of definitions, �-reduction and explicit substitutions giving all their advantages in one
system; and (b) a natural refinement of the cube with parameters. We show that in the refined Ba-
rendregt cube, systems like AUTOMATH, LF, and ML, can be described more naturally and accurately
than in the original cube.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Summary

Throughout the last 100 years, many different type systems have been presented. Such
type systems played an important role in the foundation and implementation of mathemat-
ics and computation. Throughout the history, type theory made a heavy use of the notion
of function. In the abstract theory of functions, two constructions (which are inverses of
each other) can be identified:
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• Functionalisation which is the process in which a function is constructed out of an ex-
pression. For example: the construction of the function x �→ x + 3 from the expression
2 + 3. This function is denoted in the λ-calculus by λx.(x + 3).

• Instantiation which is the process in which a function value is calculated when a suitable
argument is assigned to a function. For example: the construction of the term 2 + 3 by
applying the function x �→ x + 3 to the argument 2.

Both functionalisation and instantiation are present in many type theories, logical systems
and programming languages. But different theories/systems focus on different forms of
these processes. For example, Frege [17] uses a different form of functionalisation than
that used by Church in his λ-calculus (see Section 2). In this paper we argue that various
extensions of λ-calculi have been proposed in order to accommodate the missing form of
functionalisation used by Frege.

In Sections 2 and 3 we give a description of functionalisation and instantiation, and
explain to which extent they are present in well-known logical systems and in the λ-calcu-
lus. In doing so, we show that functionalisation and instantiation form the heart of function
theory, and hence also the heart of type theory. In Section 4 we present the formal machin-
ery. In Sections 5 and 6 we show that the use of different forms of function abstraction, ap-
plication, explicit substitutions, let expressions, definitions and parameters in type theory is
based on the more general functionalisation rather than just the λ-abstraction found in the
λ-calculus. In order to overcome the restricted form of functionalisation permitted in the λ-
calculus (via function (or λ-) abstraction), we give two extensions of the Barendregt cube
of [4]. In Section 5 we give an extension of the cube with explicit substitutions, �-reduction
and definitions which brings all the advantages of these functionalisation features in one
system while still guaranteeing all the desirable properties of the cube. In Section 6 we give
a concrete refinement of the cube in which we can go half way as well as all the way in the
functionalisation process. This refinement shows that indeed, we can place systems such as
AUTOMATH and LF on the refined cube, whereas they could not be accurately placed on the
usual cube. Again, we establish all the desirable properties. We conclude in Section 7.

2. Functionalisation

Consider the mathematical expression 2 + 3. We can replace the object 2 by a symbol
that denotes “any natural number”: a variable (say: x). This results in the expression x + 3.
This expression does not denote one specific natural number unless we replace x by a
natural number. This replacement-activity gives rise to an algorithm: We feed a natural
number to the algorithm, the algorithm adds 3 to that natural number, and returns the result
to us. Notice that the algorithm that returns x + 3 whenever we assign a natural number to
x is different from the expression x + 3. Moreover, the expression y + 3 is an expression
that is different from x + 3. But if we construct functions from x + 3 and y + 3 by the
method described above, we obtain the same algorithm.

There are various ways to denote the algorithm in the example above:
• Frege [17] simply wrote x + 3, and did not distinguish the algorithm from the expres-

sion x + 3;1
• Whitehead and Russell [42] wrote x̂ + 3 to distinguish the algorithm from the expres-

sion x + 3;

1 Frege used x̀(x + 3) to denote the course-of-value of this algorithm but not the algorithm itself.
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• Church [12] used λx.(x + 3) where Russell wrote x̂ + 3;
• In the proof checker AUTOMATH ([34], 1968), the notation [x:N](x + 3) is used;
• In explicitly typed λ-calculi (also known as λ-calculi “in Church-style”) one writes

λx:N.(x + 3). The x:N denotes that the algorithm requires “special food” (natural
numbers);

• In many mathematical texts, we find the notation x �→ x + 3.
Thus, the process of constructing a function (Functionalisation) can be split up into two

parts:

Definition 1 (Splitting functionalisation).
• Abstraction from a subexpression. First, we replace a subexpression k in an expression

f by a variable x, at one or more places where k occurs in f . Thus we obtain a new
expression, f ′. For instance, in the expression 2 + 3 we can replace the subexpression
2 by a variable x, thus obtaining x + 3.

• Function construction. Then we construct the function λx.f ′ that assigns the expression
f ′[x:=a] to a value a. Here, f ′[x:=a] denotes f ′, in which a has been substituted
for x.

The first part (abstraction from a subexpression), is present in Frege’s Begriffsschrift:

“If in an expression, [. . . ] a simple or a compound sign has one or more occurrences and
if we regard that sign as replaceable in all or some of these occurrences by something
else (but everywhere by the same thing), then we call the part that remains invariant in
the expression a function, and the replaceable part the argument of the function”.

(Begriffsschrift, Section 9)

Frege, did not employ the second part of functionalisation, the function construction.
However, both parts of the functionalisation process are present in Principia Mathemat-

ica by Whitehead and Russell [42]. The first part is represented by the “vice versa” part of
∗9·14 below, and the combination of the first and the second part is represented by ∗9·15
below:

“∗9 · 14. If ‘ϕx’ is significant, then if x is of the same type as a, ‘ϕa’ is significant,
and vice versa.
∗9 · 15. If, for some a, there is a proposition ϕa, then there is a function ϕx̂, and vice
versa”

(Principia Mathematica, p. 133)

Here, ϕx denotes an expression in which a variable x occurs. Similarly, ϕa denotes the
expression in which a sub-expression a occurs on the place(s) where x occurs in ϕx, and
ϕx̂ denotes the function (algorithm) that assigns the value ϕa to an argument a. Note that
the function φ is not used as a separate entity but always has an argument, be it x, a or
x̂. Indeed, in Laan’s formalisation of propositional functions of Principia Mathematica
(cf. [30, Definition 2.3]), we see that e.g. R(x) and S(x, y) are propositional functions but
R and S alone are not. However, the propositional function R(x) translates into λ-calculus
as λx.Rx, since λ-abstraction is the only abstraction mechanism available, and λx.Rx can
only be typed in λ-calculus if R can be typed on its own.

Remark 2. Both Begriffsschrift and Principia Mathematica exclude constant functions.
A function like λx.3 cannot be constructed in these theories, because the expression 3



68 F. Kamareddine et al. / Journal of Logic and Algebraic Programming 54 (2003) 65–107

does not contain x. This class of functions can be obtained by weakening the procedure of
abstraction of subexpressions of the functionalisation procedure: We can replace an object
in an expression f by a variable x at zero places where this object occurs in f (the object
does not have to occur in f ). If we then apply the second part of the functionalisation
procedure, we can obtain a constant function like λx.3.

Functions of more variables can be constructed by repeatedly applying functionalisa-
tion. This repetition process is often called “currying”after H.B. Curry, and is usually ac-
credited to Schönfinkel ([39], 1924) but some of the ideas behind it are already present in
Frege’s Begriffsschrift (1879):

“If, given a function, we think of a sign2 that was hitherto regarded as not replace-
able as being replaceable at some or all of its occurrences, then by adopting this
conception we obtain a function that has a new argument in addition to those it had
before.”

(Begriffsschrift, Section 9)

The λ-calculus does not have special notation for abstraction from a subexpression. It only
has function construction in the form of λx.a.

But the first step of functionalisation can also be made clear:

Example 3. The term 2 + 3 is β-equivalent to the λ-term (λx.(x + 3))2, which can be
regarded as the term λx.(x + 3) (a function) applied to an argument, viz. 2. More precisely,
(λx.(x + 3))2 is a β-expansion of 2 + 3. In this β-expansion, both the newly introduced
variable, x, and the object that is replaced by x, namely 2, are present. They are linked via
the λ-abstractor. By removing the argument 2 and the ‘head’ λx from (λx.(x + 3))2, we
obtain the term x + 3.

The notion of β-expansion makes it possible to construct more complicated examples.

Example 4. (λz.z23)(λxy.(x + y)) is a β-expansion of 2+3. Removing argument
λxy.(x + y) and head λz results in z23.

More generally, we can construct a function from a λ-term f by first taking a β-expan-
sion (λx.f ′)a of f, and then removing the argument a and the part λx. This leads to the
following definition:

Definition 5 (Translating functionalisation into λ-calculus).
• Abstraction from a subexpression. Let M, N be λ-terms. We say that Ncan be ob-

tained from Mby abstraction from a subexpression if there are x and a, such that
(λx.N)a →β M via head reduction (so M ≡ N[x := a]).

• Function construction. Let f be a λ-term. We say that the term λx.f can be obtained
from the term f by function construction.

• Functionalisation. Let M, P be λ-terms. We say that P can be obtained from M by
functionalisation if there is N such that N can be obtained from M by abstraction from
a subexpression, and P can be obtained from N by function construction.

2 We can now regard a sign that previously was considered replaceable as replaceable also in those places in
which up to this point it was considered fixed (footnote by Frege).
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(We allow both ‘abstraction from a subexpression’ and ‘function construction’ to be
repeatedly applied.) This is a more precise description of functionalisation than that of
Frege.

3. Instantiation

Instantiation is the inverse of functionalisation (cf. Fig. 1). It consists of applying a
function to an argument and calculating the result of this application. As the function is an
algorithm, it is prescribed how this calculation should be made.

Definition 6 (Splitting instantiation).
1. Application construction. Juxtaposing the function f to an argument a; the result is

usually written as f (a) or f a and denotes an intended function application. For in-
stance: applying the function λx.(x + 3) to the argument 2 leads to the intended func-
tion application (λx.(x + 3))2.

2. Concretisation to a subexpression. The result of this intended application is calculated
via β-reduction: if f is a function of the free variable x, then this calculation consists of
the substitution of a for x. In our example: 2 is substituted for x, for every occurrence
of x in x + 3. The result is: 2 + 3.

It is not always that simple. If f is not of the form λx.f ′, then application construction
cannot be followed by the concretisation to a subexpression. For example, f may be the
single variable z. In the λ-calculus, z may be applied to 2, resulting in the expression
z2, but no further calculation is possible. As with functionalisation, instantiation can be
precisely defined in terms of the λ-calculus.

Definition 7 (Translating instantiation into λ-calculus).
• Application construction. We say that a term (λx.f )a can be obtained from λx.f and

a by application construction.

• Concretisation to a subexpression. We say that a term M can be obtained from a term
(λx.f )a if M ≡ f [x := a].

• Instantiation. We say that a term M can be obtained from λx.f and a by instantiation
if M ≡ f [x := a].

In the works of Frege and Russell, we do not find such a precise description of in-
stantiation. The application construction is well-described (for instance in the “vice-versa”

Fig. 1. Functionalisation and instantiation are each others inverse.
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part of ∗9·15 in Principia Mathematica—see the quotation above), but there is no precise
definition of the concretisation to subexpressions by means of substitution. This is not so
very important as long as it is straightforward how the substitution should be carried out.
However, we see in [42] that substitution is not a straightforward procedure in Principia
Mathematica.

The precise definition of substitution in the λ-calculus is due to Curry and Feys [16].
However, we must remark that “precise” is a relative notion here. The presentations of
functionalisation and instantiation that were given by Frege and Russell were very precise
for those days. And the definition of substitution by Curry and Feys in 1958 is not the
last word to be said on the notion of substitution. Currently, there is quite some research
on so-called explicit substitutions (cf. [29] for a summary), which are refinements of the
notion of substitution of Curry and Feys.

4. The formal machinery and the Barendregt cube

Functionalisation and instantiation as used in λ-calculus are quite powerful, but have
some disadvantages. The functionalisation part ‘abstraction from a subexpression’ is miss-
ing. In this paper, we extend λ-calculus and type theory with various forms of this missing
feature. We devote this section to introducing the Barendregt cube which will be used as
basis of our extensions.

In the Barendregt cube of [4], eight well-known type systems are presented in a uniform
way. The weakest systems of the cube is Church’s simply typed λ-calculus λ→ [14], and
the strongest system is the Calculus of Constructions λC [15]. The second order λ-calcu-
lus [19,38] discovered independently by Girard and Reynolds figures on the cube between
λ→ and λC. Moreover, via the Propositions-as-Types principle (see [23]), many logical
systems can be described in the systems of the cube, see [18].

In the cube, we have in addition to the usual λ-abstraction, a type forming operator �.
Briefly, if A is a type, and B is a type possibly containing the variable x, then �x:A.B

is the type of functions that, given a term a : A, output a value of type B[x := a]. Here
a : A expresses that a is of type A, and B[x := a] means the result of the substitution of
a for x in B. If x does not occur in B, then �x:A.B is the type of functions from A to
B, written A → B. To the �-abstraction at the level of types corresponds λ-abstraction
at the level of objects. Roughly speaking, if M is a term of type B (M and B possibly
containing x), then λx:A.M is a term of type �x:A.B. The cube has two sorts ∗ (the set
of types) and � (the set of kinds) with ∗ : �. If A : ∗ (resp. A : �) we say A is a type
(resp. a kind). All systems of the cube have the same typing rules but are distinguished
from one another by the set R of pairs of sorts (s1, s2) allowed in the so-called type-
formation or �-formation rule (�). Each system of the cube has its own set R (which
must contain (∗, ∗)). A �-type can only be formed in a specific system of the cube if
rule (�) is satisfied for some (s1, s2) in the set R of that system. The rule (�) is as
follows:

(�)
� � A : s1 �, x:A � B : s2

� � (�x:A.B) : s2
(s1, s2) ∈ R.

Note that as there are only two sorts, ∗ and �, and as each set R must contain (∗, ∗),

there are only eight possible different systems of the cube (see Fig. 2). The dependencies
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Fig. 2. Different type formation conditions.

Fig. 3. The Barendregt cube.

Fig. 4. Systems of the Barendregt cube [3,10,14,15,19,20,22,32,37,38].

between these systems is depicted in the Barendregt cube (Fig. 3). Furthermore, the sys-
tems in the cube are related to other type systems as is shown in the overview of Fig. 4 (see
[4]). With the rule (�), an important aspect of the cube is that it provides a factorisation of
the expressive power of the Calculus of Constructions into three features: polymorphism,
type constructors, and dependent types:
• (∗, ∗) is the basic rule that forms types. All type systems of the cube have this rule.
• (�, ∗) is the rule that takes care of polymorphism. Girard’s System (also known as λ2)

is the weakest system on the cube that features this rule.
• (�, �) takes care of type constructors. The system λω is the weakest system on the

cube that features this rule.
• (∗, �) takes care of term dependent types. The system λP is the weakest system on the

cube that features this rule.
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Definition 8 (Terms of the ordinary cube). The set T of terms of the ordinary cube is
defined by the following abstract syntax: T ::= ∗ |� |V | πV:T.T |TT, where π ∈
{λ, �}.

Notations and Conventions 9. Throughout the paper, we take V to be a set of variables
over which, x, y, z, x1, etc. range. We take capital letters A, B, etc. sometimes also in-
dexed by Arabic numerals such as A1, A2, to range over terms. We use FV (A) resp. BV (A)

to denote the free resp. bound variables of A, and A[x := B] to denote the (implicit) sub-
stitution of all the free occurrences of x in A by B. We assume familiarity with the notion
of compatibility. As usual, we take terms to be equivalent up to variable renaming and
let ≡ denote syntactic equality. We also assume the Barendregt convention (BC) where
names of bound variables are always chosen so that they differ from free ones in a term
and where different abstraction operators bind different variables. Hence, we will write
(πy:A.y)x instead of (πx:A.x)x. This convention (BC) will also be assumed for contexts
and typings (for each of the calculi presented) so that for example for the ordinary cube, if
� � λx : A.B : C, then x will not occur in �.

Definition 10 (Declarations, contexts, ⊆′ in the ordinary cube).
1. A declaration d is of the form x :A. We define var(d) ≡ x, type(d) ≡ A and FV (d)≡

FV (A).
2. We let d, d ′, d1, etc. range over declarations.
3. A context � is a (possibly empty) concatenation of declarations d1, d2, . . . , dn such

that if i �= j, then var(di) �≡ var(dj ). We define DOM (�) = {var(d) | d ∈ �}. The
empty context is denoted throughout by 〈〉 or simply by ∅. We use �, �1, �, etc. as
meta-variables for contexts.

4. We define substitutions on contexts by: ∅[x := A] ≡ ∅, and (�, y : B)[x := A] ≡
�[x := A], y : B[x := A].

5. Define ⊆′ between contexts as the least reflexive transitive relation satisfying �, � ⊆′
�, d, � for d a declaration.

Definition 11 (β-reduction in the ordinary cube). The cube uses β-reduction where →β is
defined as the compatible closure of (λx : A.B)C →β B[x := C]. As usual, �β is defined
as the reflexive transitive closure of →β and =β is defined as the equivalence closure of
→β . We write �+

β to denote β-reduction in one or more steps.

Definition 12 (Systems of the Barendregt cube). Let R be a subset of {(∗, ∗), (∗, �), (�, ∗),

(�, �)} such that (∗, ∗) ∈ R. The type system λR describes in which ways judgements
� �R A : B (or � � A : B, if it is clear which R is used) can be derived. � � A : B states
that A has type B in context �. The typing rules are inductively defined as follows (s, s1, s2
∈ {∗, �}):

(axiom) 〈〉 � ∗ : �

(start)
� � A : s

�, x:A � x : A
x �∈ DOM (�)

(weak)
� � A : B � � C : s

�, x:C � A : B
x �∈ DOM (�)
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(�)
� � A : s1 �, x:A � B : s2

� � (�x:A.B) : s2
(s1, s2) ∈ R

(λ)
�, x:A � b : B � � (�x:A.B) : s

� � (λx:A.b) : (�x:A.B)

(appl)
� � F : (�x:A.B) � � a : A

� � F a : B[x:=a]

(conv)
� � A : B � � B ′ : s B =β B ′

� � A : B ′

Definition 13 (Statement, judgement, legal context and term). Let � be a context, A, B, C

∈ T.
1. A : B is called a statement. A and B are its subject and predicate respectively.
2. � � A : B is called a judgement, and � � A : B : C denotes � � A : B ∧ � � B : C.
3. � is called legal if ∃A1, B1 ∈ T such that � � A1 : B1.
4. A is called a ��term if ∃B1 ∈ T[� � A : B1 ∨ � � B1 : A]. A is called legal if

∃�1[A is a �1�term].
5. If d is a declaration, then � � d iff � � var(d) : type(d).

5. Extending the cube with definitions, substitutions and �-reduction

In this section we discuss three extensions of the cube which are all related to the
functionalisation/instantiation process explained in Sections 2 and 3. These extensions are:
definitions, substitution and �-reduction. We also introduce a system which incorporates
these three notions and establish that it has all the desirable meta-theoretical properties.
We show the usefulness of each of the three concepts of functionalisation and claim that
a system with the combination of the three can be advantageous since it combines the
benefits.

5.1. Definitions

In the λ-calculus, the first step in the functionalisation process (the abstraction from a
subexpression) is not carried out. In particular, unlike the systems of Frege and Russell,
the functionalisation process in the λ-calculus does not show from which term (object), the
function has been abstracted.

There are many modern functionalisation processes in which it is essential to remember
the original term from which the function has been abstracted. A good example is the use
of definitions or let expression in functional languages like Haskell and ML and theorem
provers like AUTOMATH and Coq. If k occurs in a text f (such a text can be a single ex-
pression or a list of expressions, for example a book), it is sometimes practical to introduce
an abbreviation for k, for several reasons:
• The syntactical representation of the object k may be long. This makes manipulations

with f a time- and memory-consuming task, in particular when k occurs several times
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in f . Abbreviating k can make manipulations with f easier. This has been exploited in
the theorem prover AUTOMATH where definitions are heavily present. Similarly, pro-
gramming languages make heavy use of such concept (referred to as let expressions)
where examples like

let add2 = (λx.x + 2) in add2(y) + add2(z)

often occur. An important part of such a let expression is the abstraction from a subex-
pression where in (λx.x + 2)y + (λx.x + 2)z, we replace (λx.x + 2) by add2 obtaining
add2(y) + add2(z).

• The object k may represent a structure that is particularly interesting. Abbreviating k

opens the possibility to introduce a significant name for k. This makes the expression
easier to understand for human beings.

Often, it is a combination of reasons which makes it useful to introduce an abbreviation
(i.e. a definition). Abbreviating k can be seen as a functionalisation process: we replace all
the occurrences of k by its definiendum (its name), and then have an unfolding algorithm
that can be used to replace the definiendum by its definiens k when the internal structure
of k is needed in the term f .

The situation can be described precisely in the functionalisation/instantiation format.
Consider the example

let y=S(S0) in y + y.

We write here variable y instead of (the expected) construct 2, since we want to emphasize
the similarity of this let-construct to the term (λy.(y + y))(S(S0)). Now, how can the let-
construct be composed from the original term S(S0) + S(S0)? First, ‘abstraction from a
subexpression’ gives y + y, then ‘function abstraction’ delivers λy.(y + y) and finally,
‘application construction’ gives (λy.(y + y))(S(S0)), which is similar to let y=S(S0) in
y + y.

Storing the definition in a context is usually done for definitions that are used at several
places, in several expressions; storing the definition in front of a term usually takes place
when the definition is important for that term only.

Definitions are not only useful for the above mentioned reasons. They have been es-
sential to restore the well-behavedness to various extensions of type theory. For example,
[9] resp. [24] resp. [8] used definitions to restore subject reduction to the cube extended
with generalised reduction, resp. �-reduction resp. explicit substitutions. In this section,
we present for the first time, a single extension of the cube with all of definitions, ex-
plicit substitutions and �-reduction. We ignore generalised reduction as it needs the item
notation of [27] in order to be described clearly.

5.2. Explicit substitutions

In the λ-calculus, although we could artificially view x + 3 as an abstraction from a
subexpression (say 2 + 3), this is not useful because we cannot apply x + 3 to an argument
(say 2 to get (x + 3)2 = 2 + 3). Hence, x + 3 cannot be treated as a function. The explo-
sion of works in explicit substitutions in the λ-calculus [1,5,7,29] in the past two decades
could be viewed as an attempt to treat expressions like x + 3 as functions and apply them
to arguments. Hence, in these accounts, the following holds in the λ-calculus extended with
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explicit substitutions: (x + 3)[x ← 2] →σ 2 + 3, where (x + 3)[x ← 2] is internal to the
λ-calculus with explicit substitutions rather than being an external (meta-)operation as in
the usual λ-calculus.

In any real implementation of the λ-calculus (without explicit substitution), the substi-
tution required by β-reduction (and similar higher-order operations) must be implemented
via smaller operations. Thus, there is a conceptual gap between the theory of the λ-calculus
and its implementation in programming languages and proof assistants.

By representing substitutions in the structure of terms and by providing (step-wise) re-
ductions to propagate the substitutions, explicit substitution provides a number of benefits:
• Explicit substitution allows more flexibility in ordering work. Propagating substitutions

through a particular subterm can wait until the subterm is the focus of computation. This
allows all of these substitutions to be done at once. Obtaining more control over the
ordering of work has become an important issue in functional programming language
implementation (cf. [35]).

• The flexibility provided by explicit substitution also allows postponing unneeded work
indefinitely (i.e., avoiding it completely). This can yield profits, since implicit substi-
tution can be an inefficient, maybe even exploding, process by the many repetitions it
causes.

• Explicit substitution allows formal modeling of the techniques used in real implementa-
tions, e.g., environments. Because explicit substitution is closer to real implementations,
it has the potential to provide a more accurate cost model.

Again, there is a functionalisation/instantiation process behind explicit substitution.
Consider the example (x + 3)[x ← 2]. This can be constructed as follows from the term
2 + 3: ‘abstraction from a subexpression’ gives x + 3, ‘function construction’ then yields
λx.(x + 3) and ‘application construction’ finally gives the term (λx.(x + 3))2, which is
comparable to the term (x + 3)[x ← 2]. Note, however, that this similarity does not
go as far as that we allow β-reduction. In fact, (x + 3)[x ← 2] reduces in two steps to
2 + 3:

(x + 3)[x ← 2] → x[x ← 2] + 3[x ← 2] → 2 + 3,

and not in one step, as is suggested by the ‘alternative’ notation (λx.(x + 3))2.

5.3. �-reductions

Type theory has almost always been studied without �-conversion (which is the ana-
logue of β-conversion on product type level). That is: (λx : A.b)C →βb[x := C] is always
assumed but not: (�x : A.B)C →�B[x := C]. The exceptions to this are: some AUTO-
MATH-languages (see [34]), the λ-cube extended with �-reduction in [24,26] and the
intermediate language in compilers for source languages as in [36]. Kamareddine et al.
[24] claims that →� is desirable for the following reasons:
1. � is, in a sense, a kind of λ. In higher order type theory, arrow-types of the form

A → B are replaced by dependent products �x:A.B, where x may be free in B, and
thus B depends on x. This means that abstraction can be over types: �x:A.B as well
as over terms: λx:A.b. But, once we allow abstraction over types, it would be nice to
discuss the reduction rules which govern these types. In fact, � is indeed a kind of λ as
regards the abstraction over a variable and hence is eligible for an application.

2. Compatibility. Look at the (λ) and (appl) rules of Definition 12. The (λ) rule may
be regarded as the compatibility property for typing with respect to abstraction. That
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is: b : B implies λx : A.b : �x : A.B. The compatibility property for the typing with
respect to application is lost however. In fact, from the (appl) rule, F : �x : A.B im-
plies F a : B[x := a] instead of F a : (�x : A.B)a. To get compatibility for typing with
respect to application, one needs to add →�-reduction and to change the (appl) rule
to:

(new appl)
� � F : �x : A.B � � a : A

� � F a : (�x : A.B)a
.

Of course, one needs now to incorporate, apart from β-reduction, also �-reduction (see
above).

3. The AUTOMATH experience. One might argue that implicit �-reduction (as is
the case of the ordinary cube with the (appl) rule) is closer to intuition in the
most usual applications. However, experiences with the AUTOMATH-languages [34],
containing explicit �-reduction, demonstrated that there exists no formal or informal
objection against the use of this explicit �-reduction in natural applications of type
systems.

4. Programming languages. In programming language studies, a thriving area is that of
the use of richly-typed intermediate languages in sophisticated compilers for higher-
order, typed source languages. The recently developed language [36] aims at reducing
the number of data types and the volume of code required in the compiler, by avoiding
duplications. To do this, [36] uses the whole λ-cube extended with �-reduction and
gives the following motivation:
• With the old application rule, matters get very complicated when one adds further

expressions (such as let and case).
• In a compiler, �-reduction allows to separate the type finder from the evaluator since

� no longer mentions substitution. One first extracts the type and only then evaluates
it.

�-reduction as described above, also fits in the functionalisation/instantiation format. From
term B we obtain by ‘function construction’ �x : A.B, and then ‘application construction’
gives (�x : A.B)a.

5.4. The extension �DEF-cube

Terms of the cube extended with definitions, substitutions and �-reduction (�σ DEF�
cube) differ from those of the ordinary cube given in Definition 8 by the presence of explicit
substitution terms.

Definition 14 (Terms of the cube extended with definitions, substitutions and �-reduction).
The set Te of terms of the �σ DEF-cube is defined by: Te ::= ∗ |� |V | πV:Te.Te |
TeTe |Te[V ← Te], where π ∈ {�, λ}.

In Notations and Conventions 9, the notions of FV (A) , BV (A) , implicit substitu-
tion A[x := B] and compatibility are extended to take into account the new explicit sub-
stitution terms of the form A[x ← B]. In particular, FV (A[x ← B]) = FV (A) \{x}) ∪
FV (B) and (A[x ← B])[y := C] ≡ (A[y := C])[x ← B[y := C]]. In addition, Barend-
regt’s Convention BC is extended so that a term (πy :A.B)[y ← C] will be automatically
renamed to (πx : A.B[y := x])[y ← C] where x is fresh.
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Contexts � (see Definition 10) are now a list of declarations of the form x : A or of
definitions of the form x = B :A. These latter definitions define x to be B and to have the
type A.

Definition 15 (Declarations, definitions, contexts, ⊆′ in �σ DEF�cube).
1. A declaration d is as in Definition 10.
2. A definition d is of the form x = B : A and defines x of type A to be B. We define

var(d), type(d) and ab(d) to be x, A, and B respectively. We define FV (d) ≡ FV (A)

∪ FV (B).
3. We use d, d ′, d1, . . . to range over declarations and definitions.
4. A context � is a (possibly empty) concatenation of declarations and definitions d1, d2,

. . . , dn such that if i �= j, then var(di) �≡ var(dj ). We define DOM (�) = {var(d) |
d ∈ �}, ��decl={d ∈ � | d is a declaration} and ��abb = {d ∈ � | d is a definition}.
Note that DOM (�) = {var(d) | d ∈ ��decl ∪ ��abb}. We use �, �, �′, �1, �2, . . .

to range over contexts.
5. We define substitutions on contexts by:

∅[x := A] ≡ ∅, (�, y : B)[x := A] ≡ �[x := A], y : B[x := A], and
(�, y = B : C)[x := A] ≡ �[x := A], y = B[x := A] : C[x := A].

6. Define ⊆′ between contexts as the least reflexive transitive relation satisfying:
• �, � ⊆′ �, d, � for d a declaration or a definition.
• �, x : A, � ⊆′ �, x = B : A, �.

Recall that without explicit substitution, �-reduction is defined as the compatible clo-
sure of (�x : A.B)C →� B[x := C]. Similarly to β-reduction, one can define ��, �+

�
and =�. We define β�-reduction as the union of →β and →� and as usual write �β�

and =β� to be the reflexive transitive respectively equivalence closures of →β%. We write
�+

β� to denote β�-reduction in one or more steps. With explicit substitution, β-reduc-
tion and �-reduction will both create substitution terms. The first two rules in the defi-
nition below take this into account. The presence of explicit substitution terms calls for
σ -reduction.

Definition 16 (e-Reduction). e-Reduction →e is defined as the union of →β ′ , →�′ and
→σ which are defined as the compatible closures of, respectively:

(λx : A.B)C →β ′ B[x ← C]
(�x : A.B)C →�′ B[x ← C]
(πy : A.B)[x ← C] →σ πy : A[x ← C].B[x ← C] for � ∈ {λ, �}
(AB)[x ← C] →σ A[x ← C].B[x ← C]
x[x ← C] →σ C

A[x ← C] →σ A if x �∈ FV (A) .

As usual, we define �e resp. =e to be the reflexive, transitive resp. the equivalence closure
of →e. In the usual way we define also �r , �+

r and =r for r ∈ {σ, β ′, β ′�′, �′}.
The λe-calculus represents the calculus with terms Te and e-reduction.

Definition 17. The new typing relation �e is obtained by adding four new rules to the typ-
ing rules of Definition 12: (start-def), (weak-def), (subst) and (def) below, and by replacing
the (conv) and (appl) rules by (new-conv) and (new-appl) as follows:
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(start-def)
� �e A : s � �e B : A

�, x = B:A �e x : A
x �∈ DOM (�)

(weak-def)
� �e A : B � �e C : s � �e D : C

�, x = D:C �e A : B
x �∈ DOM (�)

(subst)
�, x = B:A �e C : D

� �e C[x ← B] : D[x := B]

(def)
�, x = B:A �e C : D

� �e (πx : A.C)B : D[x := B] for π ∈ {λ, �}

(new-conv)
� �e A : B � �e B ′ : s � �e B =def B ′

� �e A : B ′

(new-appl)
� �e F : (�x:A.B) � �e a : A

� �e F a : (�x:A.B)a

In (new-conv), � �e B =def B ′ is defined on Te as the smallest equivalence relation
closed under:
• If B =e B ′, then � �e B =def B ′
• If x = D : C ∈ � and B ′ arises from B by substituting one particular free occurrence

of x in B by D, then � �e B =def B ′.

In Definition 17, (start-def) and (weak-def) are the start and weakening rules that deal
with definitions in the context. The (subst) rule enables to type explicit substitutions where-
as the (def) rule types λ- and �-redexes using definitions in the context. Finally, (new-
conv) accommodates the new reductions while (new-appl) takes advantage of the newly
available �-reduction.

At first sight, it may seem that the rule (def) is not necessary because the rule (subst)
enables us to unfold definitions. However, (def) is necessary in order to guarantee correct-
ness of types Lemma 36 where it is used in proving the (new-appl) case. If we did not
extend the system with �-reduction then we could do without (def). On the other hand, the
(def) rule makes type derivation more efficient, because it permits avoiding the (�) rule.
For example without (def) we have the following type derivation:

0. � ∗ : � axiom
1. α : ∗ � α : ∗ 0, (start)
2. α : ∗, x : α � α : ∗ 1, 1, (weak)

3. α : ∗ � �x : α.α : ∗ 1, 2, (�), (∗, ∗)

4. α : ∗, x : α � x : α 1, (start)
5. α : ∗ � λx : α.x : �x : α.α 4, 3, (λ)

6. α : ∗, y : α � λx : α.x : �x : α.α 5, 1, (weak)

7. α : ∗, y : α � y : α 1, (start)
8. α : ∗, y : α � (λx : α.x)y : (�x : α.α)y 6, 7, (app)

9. α : ∗, y : α � (�x : α.α)y =def α

10. α : ∗, y : α � (λx : α.x)y : α
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Using the (def) rule this type derivation can be shortened as follows:

0. � ∗ : � axiom
1. α : ∗ � α : ∗ 0, (start)
2. α : ∗, y : α � α : ∗ 1, 1, (weak)

3. α : ∗, y : α � y : α 1, (start)
4. α : ∗, y : α, x = y : α � x : α 2, 3, (start-def)
5. α : ∗, y : α � (λx : α.x)y : α[x := y] ≡ α 4, (def)

Another remark concerning the (def) rule is that it may seem unsatisfactory that in this
rule, definitions are being unfolded in D but not in C. However, as λs and �s are not iden-
tified, we cannot from typings like C :D, allow typings like (λx : A.C)B : (λx : A.D)B,

or like (�x :A.C)B : (�x :A.D)B. The only acceptable typings would be (λx : A.C)B :
(�x :A.D)B. Moreover, this latter acceptable case, can be derivable from our (def) rule
for non-topsorts (i.e. for D �≡ �) as is shown by the following lemma:

Lemma 18. The following rule is a derived rule:

(derived def rule)
�, x = B:A �e C : D �, x = B:A �e D : s

� �e (λx : A.C)B : (�x : A.D)B
.

Proof. If �, x = B:A �e C : D, then by (def), � �e (λx : A.C)B : D[x := B]. Also,
if �, x = B:A �e D : s, then by (def) � �e (�x : A.D)B : s. Now by conversion � �e

(λx : A.C)B : (�x : A.D)B since � �e (�x : A.D)B =def D[x := B]. �

If D is a sort, then of course unfolding x = B:A in D makes sense since the definition
x = B:A does not have an effect on D.

Finally, a remark concerning the (subst) rule might be that we did not use explicit sub-
stitution in D. Instead we used D[x := B]. The reason for this is that using D[x ← B]
will lead to problems with the Correctness of types Lemma 36 (cf. [8]).

The following definition extends Definition 13:

Definition 19 (Statements, judgements, legal terms and contexts). Definition 13 is extended
to Te and �e by changing everywhere in Definition 13, T by Te, � by �e and by chang-
ing item 5 to the following:
5. If d is a declaration, then � �e d iff � �e var(d) :type(d). Otherwise, if d is a definition
then � �e d iff � �e var(d) :type(d) ∧ � �e ab(d) :type(d) ∧ � �e var(d) =def ab(d).

5.5. Properties of the �σ DEF�cube

First, following usual techniques [7,8], one can establish that →σ is confluent and
strongly normalising. Hence σ -normal form (σ -nf) exist and are unique. We shall denote
the σ -nf of a term A by σ(A). The following lemma characterizes σ -normal forms.

Lemma 20. The set of σ -normal forms is exactly T of Definition 8.

Proof. Check first by induction on A that A[x ← B] is not in normal form. Then check
by induction on A that if A is a σ -nf, then A ∈ T. Finally observe that every term in T is
in σ -nf. �
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Lemma 21. For all A, B ∈ Te we have:
1. σ(A B) ≡ σ(A)σ(B) and σ(πx : A.B) ≡ πx : σ(A).σ (B) for π ∈ {�, λ}.
2. σ(A[x ← B]) ≡ σ(A)[x := σ(B)].
3. σ(A[x := B]) ≡ σ(A)[x := σ(B)].

Proof.
1. is easy because the →σ -rules do not take abstraction or application terms on the left-

hand side. They only take substitution terms.
2. is by induction on A using 1. and
3. is by induction on A using 1. and 2. �

The next lemma allows us to use the Interpretation Method in order to get confluence
of →e:

Lemma 22. Let A, B ∈ Te, if A →β ′�′ B then σ(A)�β�σ(B) .

Proof. Induction on A using Lemma 21. We only prove the case A ≡ (πx : E.C)D and
B ≡ C[x ← D]. Then σ(A) ≡ (πx : σ(E).σ (C))σ (D) →β� σ(C)[x := σ(D)] =Lem 21

σ(C[x ← D]). �

Now, the following corollaries are immediate.

Corollary 23. Let A, B ∈ Te. If A�eB then σ(A)�β�σ(B).

Corollary 24 (Soundness). Let A, B ∈ T. If A�eB then σ(A)�β�σ(B).

The λe-calculus is powerful enough to simulate β�-reduction.

Lemma 25 (Simulation of β-reduction). Let A, B ∈ T, if A →β� B then A�eB.

Proof. By induction on A. We only prove the case A ≡ (πx : E.C)D and B ≡
C[x :=D]. Then A≡ (πx :E.C)D →β ′�′ C[x ← D]�σ σ (C)[x := σ(D)] ≡
C[x :=D] because C, D ∈ T. �

Theorem 26 (Confluence of →e). If A�eB and A�eC then there exists D such that
B�eD and C�eD.

Proof. We interpret the λe-calculus into the λ-calculus with β�-reduction via σ -normali-
sation.
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The existence of the arrows σ(A)�β�σ(B) and σ(A)�β�σ(C) is guaranteed by Corol-
lary 23. We close the diagram by the confluence of λ-calculus extended with �-reduction
as shown in [26]. Finally Lemma 25 ensures σ(B)�eD and σ(C)�eD proving thus CR
for the λe-calculus. �

Lemma 27 (Free variable Lemma for �e).
1. If d and d ′ are two different elements in a legal context �, then var(d) �≡ var(d ′).
2. If � ≡ �1, d, �2 and � � B : C, then FV (d) ⊆ DOM (�1) and FV (B) , FV (C) ⊆

DOM (�).

Proof. 1. If � is legal then for some B, C, � � B : C. Now use induction on the derivation
of � �e B : C. 2. is by induction on the derivation of � �e B : C. �

Lemma 28 (Substitution Lemma for �e). Let d be x = D : C, �d be �[x := D], Ad be
A[x := D] and Bd be B[x := D]. The following holds:
1. If �, d, � �e A =def B, A and B are �, d, �-legal, then �, �d �e Ad =def Bd.

2. If B is a �, d-legal term, then �, d �e B =def Bd .
3. If �, d, � �e A : B or (�, x : C, � �e A : B and � �e D : C), then

�, �d �e Ad : Bd.

Proof. 1. Induction on the generation of =def. 2. Induction on the structure of B. 3. In-
duction on the derivation rules, using 1., 2. and Lemma 27. We only show the case (subst)
where �, d, � �e A[y ← E] : B[y := E] comes from �, d, �, y = E : F �e A : B.
Then by IH, �, �d , y = E[x := D] : F [x := D] �e Ad : Bd .
Hence by (subst) �, �d �e Ad [y ← E[x := D]] : Bd [y := E[x := D]].
But Ad [y ← E[x := D]] ≡ A[x := D][y ← E[x := D]] ≡ A[y ← E][x := D].
And Bd [y := E[x := D]] ≡ B[x := D][y := E[x := D]] ≡ B[y := E][x := D] as x �≡
y and y �∈ FV (D). Hence finally, �, �d �e (A[y ← E])d : (B[y := E])d . �

Corollary 29. If �, d, � �e A : B where var(d) �∈ FV (A) ∪ FV (B) ∪ FV (�) then �,

� �e A : B.

Lemma 30 (Start Lemma for �e). Let � be a �e-legal context. Then

� �e ∗ : � and ∀d ∈ �[� �e d].

Proof. If � is legal then for some terms B, C: � �e B : C; now use induction on the
derivation of � �e B : C using Corollary 29. �

Lemma 31 (Context Lemma for �e). Let �1, d, �2 be a �e-legal context. Then �1 �e

type(d) : s for some sort s, �1, d �e var(d) : type(d) and if d is a definition then �1 �e

ab(d) : type(d).

Proof. If � is legal then for some terms B, C: � �e B : C; now use induction on the
derivation of � �e B : C. �

Lemma 32 (Thinning Lemma for �e). Let d be either a declaration or a definition and let
�1, d, �2 be a legal context.
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1. If �1, �2 �e A =def B, then �1, d, �2 �e A =def B.
2. If �1, �2 �e A : B, then �1, d, �2 �e A : B.
3. If d is x = D : C and �1, x : C, �2 �e A : B, then �1, d, �2 �e A : B.

Proof. 1. is by induction on the derivation �1, �2 �e A =def B. 2. is by induction on the
derivation �1, �2 �e A : B using the start Lemma 30 for (axiom), the context Lemma 31
for (start) and (weak) and 1. for the conversion rule. 3. is by induction on the derivation
�1, x : C, �2 �e A : B. We only show the (start) case where �1, x : C �e x : C comes
from �1 �e C : s. As �1, x = D : C is legal, by the context Lemma 31, �1 �e D : C and
hence by (weak) �1, x = D : C �e x : C. �

Corollary 33. Let � and � be legal contexts such that � ⊆′ �.
1. If � �e A =def B, then � �e A =def B.
2. If � �e A : B, then � �e A : B.

Lemma 34 (Swap Lemma for �e). Assume each of d1 and d2 is either a declaration or a
definition such that var(d1) �∈ FV (type(d2)) and if d2 is a definition, then also var(d1) �∈
FV (ab(d2)).
1. If �1, d1, d2, �2 �e A =def B, then �1, d2, d1, �2 �e A =def B.
2. If �1, d1, d2, �2 �e A : B, then �1, d2, d1, �2 �e A : B.

Proof. 1. is by induction on the derivation �1, d1, d2, �2 �e A =def B. 2. is by induction
on the derivation �1, d1, d2, �2 �e A : B. We only show three cases: (start), (weak-def)
and (def).
• (start): We only consider the case where d2 is x : A and �1, d1, d2 �e x : A comes

from x �∈ DOM (�1, d1) and �1, d1 �e A : s. As var(d1) �∈ FV (A) , then by Substitu-
tion Lemma 28, �1 �e A : s and hence by (start), �1, x : A �e x : A.
But as �1, d1 is legal, then by Context Lemma 31, �1 �e type(d1) : s for some sort s,

�1 �e var(d1) : type(d1) and if d1 is a definition then �1 �e ab(d1) : type(d1).
Hence we can now apply the corresponding (weak) or (weak-def) rule on

�1, x : A �e x : A to get �1, x : A, d1 �e x : A.

• (weak-def): We only consider the case where d2 is x = B : A and �1, d1, d2 �e C : D

comes from x �∈ DOM (�1, d1) , �1, d1 �e C : D, �1, d1 �e A : s and �1, d1 �e B : A.
As var(d1) �∈ FV (A) ∪ FV (B) , then by Substitution Lemma 28, �1 �e A : s and �1 �e

B : A and hence by (start-def), �1, x = B : A �e x : A as x �∈ DOM (�).
As �1, d1 is legal, then by Context Lemma 31, �1 �e type(d1) : s for some sort s,

�1 �e var(d1) : type(d1) and if d1 is a definition then �1 �e ab(d1) : type(d1).
Hence we can now apply the Thinning Lemma 32 (as �1, x = B : A is legal) and
then the corresponding (weak) or (weak-def) rule on �1, x = B : A �e x : A to get
�1, x = B : A, d1 �e x : A. Hence �1, x = B : A, d1 is legal.
Now apply Thinning Lemma 32 to �1, d1 �e C : D to obtain

�1, x = B : A, d1 �e C : D.

• (def): just apply the induction hypothesis. �

Lemma 35 (Generation Lemma for �e).
1. If � �e s : C, then s ≡ ∗ and � �e C =def �, furthermore if C �≡ �, then � �e C :

s′ for some sort s′.
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2. If � �e x : A, then for some d ∈ �, x ≡ var(d), � �e A =def type(d) and � �e A : s

for some sort s.
3. If � �e λx : A.B : C, then for some D and sort s we have: �, x : A �e B : D, � �e

�x : A.D : s, � �e �x : A.D =def C and if �x : A.D �≡ C, then � �e C : s′ for some
sort s′.

4. If � �e �x:A.B : C, then for some sorts s1, s2: � �e A : s1, �, x : A �e B : s2, (s1, s2)

is a rule, � �e C =def s2 and if s2 �≡ C, then � �e C : s for some sort s.
5. If � �e F a : C, F �≡ πx : A.B, then for some D, E: � �e a : D, � �e F : �x : D.E,

� �e (�x : D.E)a =def C and if (�x : D.E)a �≡ C, then � �e C : s for some s.
6. If � �e (πx : A.D)B : C, then �, x = B : A �e D : C.
7. If � �e A[x ← B] : C, then for some term D we have �, x = B : D �e A : C.

Proof
1. By induction on the derivation of � �e s : C.
2. By induction on the derivation of � �e x : A.
3. By induction on the derivation of � �e λx : A.B : C.
4. By induction on the derivation of � �e �x:A.B : C.
5. By induction on the derivation of � �e F a : C.
6. By induction on the derivation of � �e (πx : A.D)B : C.
7. By induction on the derivation of � �e A[x ← B] : C. �

Lemma 36 (Correctness of types for �e). If � �e A : B then (B ≡ � or � �e B : s for
some sort s).

Proof. By induction on the derivation rules. We only show (subst), (def) and (new-appl).
• (subst): If � �e A[x ← B] : C[x := B], where �, x = B : D �e A : C, then by IH,

C ≡ � or ∃s, �, x = B : D �e C : s. If C ≡ �, then C[x := B] ≡ �; else, by Sub-
stitution Lemma 28 � �e C[x := B] : s[x := B] ≡ s.

• (def): If � �e (πx : A.D)B : C[x := B] where �, x = B : A �e D : C, then by IH,
C ≡ � or ∃s, �, x = B : A �e C : s. If C ≡ � then C[x := B] ≡ �; else, by Substi-
tution Lemma 28 � �e C[x := B] : s[x := B] ≡ s.

• (new-appl): If � �e F a : (�x : A.B)a, where � �e F : �x : A.B and � �e a : A, then
by IH, ∃s, � �e �x : A.B : s. By Generation Lemma 35 �, x : A �e B : s. By Thin-
ning Lemma 32 �, x = a : A �e B : s and by (def) � �e (�x : A.B)a : s[x := a]
≡ s. �

Lemma 37 (Subject reduction for contexts). If � �e A =def B and �′ results from con-
tracting one of the terms in the declarations and definitions of � by a one step e-reduction,

then �′ �e A =def B.

Proof. By induction on the derivation rules � �e A =def B. �

Lemma 38 (Subject reduction SR, for �e). If � �e A : B and A�eA′, then � �e A′ : B.

Proof. We only prove the above lemma for →e. We prove by simultaneous induction on
the derivation rules:
1. If � �e A : B and � →e �′ (i.e., �′ results from contracting one of the terms in the

declarations and definitions of � by a one step e-reduction), then �′ �e A : B.
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2. If � �e A : B and A →e A′ then � �e A′ : B.
• (axiom), (start), (weak), (�), (λ) are easy.
• (start-def) where �, x = B : A �e x : A comes from � �e A : s, � �e B : A and x �∈

DOM (�). We only show the case for A →e A′. By induction hypothesis (IH) on � �e

A : s, we have � �e A′ : s. Hence by (new-conv) as � �e A =def A′ we get from � �e

B : A that � �e B : A′. Now use (start-def) on � �e A′ : s and � �e B : A′ to derive
�, x = B : A′ �e x : A′.
Finally, as �, x = B : A′ is legal, � �e A : s and � �e A =def A′, by Thinning
Lemma 32, �, x = B : A′ �e A : s and �, x = B : A′ �e A =def A′. Hence, by (new-
conv) �, x = B : A′ �e x : A′ gives �, x = B : A′ �e x : A.

• (weak-def) Assume �, y = D : C �e A : B comes from � �e A : B, � �e C : s, � �e

D : C and x �∈ DOM (�). If A →e A′, D →e D′ or � →e �′ then simply use IH. Else,
if C →e C′ then by IH on � �e C : s we have � �e C′ : s and as � �e C =def C′ then
by (new-conv) � �e D : C′. Now use (weak-def) to conclude �, y = D : C′ �e A : B.

• (subst) Take � �e C[x ← B] : D[x := B], where �, x = B : A �e C : D.
• If � →e �′ or C →e C′, then easy use of IH.
• If B →e B ′ then by IH on �, x = B : A �e C : D we get �, x = B ′ : A �e C : D.

Hence by (subst) � �e C[x ← B ′] : D[x := B ′]. By Type Correctness Lemma 36 on
�, x = B : A �e C : D we get either D ≡ � or for some s �, x = B : A �e D : s.
If D ≡ �, then D[x := B ′] ≡ D[x := B] and we are done. If �, x = B : A �e D :
s, then by Substitution Lemma 28 � �e D[x := B] : s and hence as � �e D[x :=
B] =def D[x := B ′] we get by (new-conv) � �e C[x ← B ′] : D[x := B].

• If x �∈ FV (C) , then C[x ← B] →σ C. Now use Substitution Lemma 28 on �, x =
B : A �e C : D to get � �e C : D[x := B].

• If C≡x then C[x ← B] →σ B. As �, x=B : A is legal, then by Context Lemma
31 � �e B : A. As �, x = B : A �e x : D then by Generation Lemma 35, we have
�, x = B : A �e D : s and �, x = B : A �e D =def A. So by Substitution Lemma
28 � �e D[x := B] : s and � �e D[x := B] =def A[x := B]. But by Free Variable
Lemma 27 x �∈ FV (A). Now use (new-conv) to derive � �e B : D[x := B].

• If C ≡ EF where C[x ← B] →σ E[x ← B]F [x ← B] then we check the case
where E �≡ πz : M.N and leave the case where E ≡ πz : M.N to the reader. First
note that D[x := B] �≡ � and hence by Type Correctness Lemma 36 we have � �e

D[x := B] : s for some s. Now by Generation Lemma 35 we have for some H, G

that �, x = B : A �e E : �y : H.G, �, x = B : A �e F : H and �, x = B : A �e

(�y : H.G)F =def D. Hence by (subst) � �e E[x ← B] : (�y : H.G)[x := B] and
� �e F [x ← B] : H [x := B] and by (new-appl) � �e E[x ← B]F [x ← B] : (�y :
H [x := B].G[x := B])F [x ← B]. Also, by Substitution Lemma 28 � �e ((�y :
H.G)F )[x := B] =def D[x := B]. But it is easy to show that � �e ((�y : H.G)F )

[x := B] =def (�y : H [x := B].G[x := B])F [x ← B]. Hence, apply (new-conv) to
get � �e E[x ← B]F [x ← B] : D[x := B].

• Case C ≡ πy : E.F and C[x ← B] →σ πy : E[x ← B]F [x ← B] is left to the
reader.

• (def) Assume � �e (πx : A.C)B : D[x := B] comes from �, x = B : A �e C : D.
• The cases � →e �′ or C →e C′ or A →e A′ are easy.
• If B →e B ′ then by IH �, x = B ′ : A �e C : D hence by (def) � �e (πx : A.C)B ′ :

D[x := B ′]. But as �, x = B : A �e C : D then by Correctness of types Lemma 36
either D ≡ � or for some s �, x = B : A �e D : s. If D ≡ � then D[x := B ′] ≡
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D[x :=B] and we are done. If �, x=B : A �e D : s then by Substitution Lemma 28
� �e D[x := B] : s and hence as � �e D[x := B] =def D[x := B ′] we get by (new-
conv) � �e (πx : A.C)B ′ : D[x := B].

• If (πx : A.C)B →e C[x ← B] then use �, x = B : A �e C : D to get by (subst)
� �e C[x ← B] : D[x := B].

• (new-conv) is an easy application of IH and Lemma 37.

• (new-appl) If � �e F a : (�x : A.B)a where � �e F : �x:A.B and � �e a : A, then the
cases where � →e �′ or F →e F ′ or a →e a′ are an easy use of IH. The interesting
case is when F ≡ (λy:E.F ), F a →β ′ F [y ← a]. Then by Generation Lemma 35 on
� �e λy:E.F : �x:A.B we have for some D, s: �, y : E �e F : D, � �e (�y:E.D) :
s, � �e (�y:E.D) =def �x : A.B, and if �y:E.D �≡ �x : A.B then � �e �x : A.B :
s′ for some s′. As � �e (�y:E.D) =def �x:A.B, we get x ≡ y, � �e E =def A and
� �e D =def B. Hence, � �e D[y := a] =def (�x : A.B)a.
We now establish that �, y = a : E is legal: as � �e E =def A, � �e a : A and
� �e E : s′ then � �e a : E, hence by (start) �, y = a : E �e y : E. Hence by
Thinning Lemma 32 as �, y : E �e F : D, we get �, y = a : E �e F : D. Now use
(subst) to get � �e F [y ← a] : D[y := a].
We only need now that � �e (�x : A.B)a : s′′ for some sort s′′ in order to apply (new-
conv) and get the desired result: � �e F [y ← a] : (�x : A.B)a. But we have � �e

(�y:E.D) : s and if �y:E.D �≡ �x : A.B then � �e �x : A.B : s′ for some s′. Hence,
in all cases, � �e �x : A.B : s′′ for some sort s′′ and so by Generation Lemma 35 �, x :
A �e B : s′′. Now establish that �, x = a : A is legal and use Thinning Lemma 32 to
get �, x = a : A �e B : s′′. Finally use (def) to get: � �e (�x : A.B)a : s′′. �

Lemma 39 (Uniqueness of Types for �e).

1. If � �e A : B1 and � �e A : B2, then � �e B1 =def B2.

2. If � �e A1 : B1 and � �e A2 : B2 and A1 =e A2, then � �e B1 =def B2.

Proof. 1. is by induction on the structure of A using the Generation Lemma 35. 2. Assume
� �e A1 :B1 and � �e A2 :B2 and A1=e A2. By Church Rosser (corollary of Theorem 26)
we have for some A, A1�eA and A2�eA. Now use Subject Reduction Lemma 38 to get
� �e A :B1 and � �e A :B2 and apply 1. above to get � �e B1 =def B2. �

In order to prove the strong normalisation of �e-legal terms with respect to e-reduction,
we will restrict our attention to two simpler type systems where the (new-appl) rule is
returned to the (appl) rule. In both systems, we also remove �-reduction. In one of those
systems, we also remove explicit substitution terms and σ -reduction. These new systems
are defined as follows:

Definition 40 (e′-reduction, �e′ , �e′′).

• Te′ is the same as Te. e′-reduction on Te′ is defined as in Definition 16 but where
→�′ is removed.

• �e′ on Te′ is defined as in Definition 17 but where (new-appl) is replaced by (appl) of
Definition 12 and � �e′ A =def B is defined as � �e A =def B but where =e is replaced
by =e′ . I.e. the rules of �e′ are (axiom), (start), (weak), (�), (λ), (appl), (start-def),
(subst), (weak-def), (def) restricted to λ, and (new-conv).

• Te′′ is the same as T. e′′-reduction on Te′′ is simply β-reduction.
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• �e′′ on Te′′ is defined as in Definition 17 but where (subst) is removed, (new-appl) is
replaced by (appl) of Definition 12 and � �e′′ A =def B is defined as � �e A =def B

but where =e is replaced by =β . I.e. the rules of �e′′ are (axiom), (start), (weak), (�),
(λ), (appl), (start-def), (weak-def), (def) restricted to λ, and (new-conv).

Similar to the above proofs for �e and e-reduction, one can establish the desirable prop-
erties for �e′ with e′-reduction and for �e′′ with β-reduction. In particular, �e′ and �e′′
satisfy Thinning (see Lemma 32), Subject Reduction (see Lemma 38) and Correctness of
Types (see Lemma 36) with respect to e′-reduction resp. β-reduction.

�e′′ with β-reduction appears in [9] where its strong normalisation has been established.

Theorem 41 (Strong Normalisation with respect to �e′′ and→β, see [9]). If A is�e′′ -legal,
then SN�β (A); i.e. A is strongly normalising with respect to →β .

For a context � of Te, we define σ(�) by σ(∅) ≡ ∅, σ (�, x : A) ≡ σ(�), x : σ(A)

and σ(�, x = B : A) ≡ σ(�), x = σ(B) : σ(A).
In order to establish strong normalisation for �e′ with respect to →e′ we need the fol-

lowing:

Lemma 42
1. If � �e′ A =def B, then σ(�) �e′′ σ(A) =def σ(B).

2. If � �e′ A : B, then σ(�) �e′′ σ(A) : σ(B).

Proof
1. is by induction on the derivation � �e′ A =def B.
2. is by induction on the derivation � �e′ A :B using 1. We only show (subst) where

� �e′ C[x ← B] :D[x := B] comes from �, x = B : A �e′ C : D.
Then by IH, σ(�), x = σ(B) : σ(A) �e′′ σ(C) : σ(D).
Hence by (def) σ(�) �e′′ (λx : σ(A).σ (C))σ (B) : σ(D)[x := σ(B)]. Now by Subject
Reduction for �e′′ and →β, σ (�) �e′′ σ(C)[x := σ(B)] : σ(D)[x := σ(B)]. Finally, by
Lemma 21, σ(�) �e′′ σ(C[x ← B]) : σ(D[x := B]). �

Theorem 43 (Strong Normalisation with respect to �e′ and with respect to →e′). If A is
�e′-legal, then SN→e′ (A); i.e. A is strongly normalising with respect to →e′ .

Proof. By correctness of types for �e′ , we only show that if A is typable, then SN→e′ (A).
Assume � �e′ A : B then by Lemma 42 σ(�) �e′′ σ(A) =def σ(B). Hence by Theorem 41
σ(A) is SN→β (A). Now, one can use the well-established techniques for showing preser-
vation of strong normalisation of calculi of explicit substitutions (as in [5,7,28]) in order to
show that SN→e′ (A). �

In order to establish the strong normalisation of �e-terms, we change �-redexes into
λ-redexes.

Definition 44
• For all terms A we define Ã to be the term A where in all �-redexes the �-symbol has

been changed into a λ-symbol, creating a λ-redex instead.

• For a context � ≡ d1, . . . , dn we define �̃ to be d̃1, . . . , d̃n, where 〈̃x : A〉 ≡ 〈x : Ã〉
and ˜x = B : A ≡ x = B̃ : Ã.
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Lemma 45. If � �e A : B then �̃ �e′ Ã : B̃.

Proof. By induction on the rules of �e. All rules except the (new- appl) are trivial since
they are also rules in �e′ . If � �e F a : (�x : A.B)a results from � �e F : �x : A.B and
� �e a : A. Then by IH �̃ �e′ F̃ : �x : Ã.B̃ and �̃ �e′ ã : Ã, so by (appl) of �e′ , �̃ �e′
F̃ ã : B̃[x := ã]. As �̃ �e′ F̃ : �x : Ã.B̃, then by Correctness of types for �e′ , for some
sort s, �̃ �e′ �x : Ã.B̃ : s. Now by Generation for �e′ , for some sort s′, �̃, x : Ã �e′ B̃ : s

and �̃ �e′ Ã : s′. Hence by (weak-def) �̃, x = ã : Ã �e′ x : Ã and hence, �̃, x = ã : Ã is
legal. Now by Thinning for�e′ , �̃, x = ã : Ã �e′ B̃ : s and by (def) �̃ �e′ (λx : Ã.B̃)̃a : s,

so by conversion �̃ �e′ F̃ ã : (λx : Ã.B̃)̃a. Finally we need to show that F̃ ã ≡ F̃ a, i.e., F

is not a �-term. Assume that F is a �-term, then by Generation Lemma 35 on � �e F :
�x : A.B, � �e �x : A.B =def s for some sort s. This is a contradiction. �

Theorem 46 (Strong Normalisation with respect to �e and →e). If A is �e-legal, then
SN→e (A); i.e. A is strongly normalising with respect to →e.

Proof. Assume A is �e-legal then by Lemma 45 Ã is �e′-legal and hence SN→e′ (Ã).
But, by induction on the derivations one can show that if � �e′ B : C, then B is free of
�-redexes (hence by Correctness of types one can also conclude that C too is free of �-
redexes). Hence, by Subject Reduction of �e′ , no �-redexes can be created in the course
of →e′-reduction of Ã. Therefore SN→e′ (Ã) implies SN→e (A) because otherwise, if there
is an infinite e-reduction sequence starting at A then one can create an infinite e′-reduction
sequence starting at Ã. �

6. Refining the Barendregt cube with parameters

6.1. Low- versus high-level approach to functions via parameters: going only half way in
the abstraction process

As said before, in the λ-calculus, it is not possible to go only half way in the abstrac-
tion process. That is, we cannot express abstractions from 2+3 to x + 3. We have to use
the ‘full λ-abstraction power’, since we abstract from 2+3 to x + 3 via the β-expansion
(λx.(x + 3))2. This going half way versus going all the way in the functionalisation pro-
cess represents a distinction in the functional world between low-level versus high-level
functions.

In the nowadays accepted view on functions, they are ‘first class citizens’, being enti-
ties on their own which act on a par with sets, elements of sets and other basic objects.
Historically, however, functions have long been treated as a kind of meta-objects. It is true,
function values have always been important, but abstract functions as such have not been
recognised in their own right until the middle of the previous century. In order to make
clear what we are talking about, we distinguish between the following two approaches to
the notion of function:
1. In the low level approach there are no functions as such, but only function values. Given

a set A and an ‘arbitrary’ element a in A, then f (a) is defined as an element of, say,
set B. This is the operational view on functions. It is unimportant what the function
is, as long as we know how it works: for each x of A we must be able to find a value
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f (x). That’s all there is to say. In this view, the sine-function, for example, is always
expressed together with a value: sin(π), sin(x), etc. This gives formulas like sin(2x) =
2 sin(x) cos(x). (Note that it has long been usual to call f (x)—and not f —the function
as is the case in many mathematics courses.)

2. In the high level approach, however, functions are objects in their own right. Given sets
A and B, there are ‘abstract’ functions f ‘from’ A ‘to’ B, which are objects of the
function space BA (also written as A → B). These functions can be indefinite (named
by a variable name, like f ), or definite (i.e. uniquely defined, like sin).
In this approach, a function f of type A → B can be treated just as any other object. It
can even be the value of another function. For example, if f is a bijective function from
A to B, then inverse(f ) is a function from B to A. Hence, inverse is a function of type
(A → B) → (B → A), taking functions of type (A → B) as arguments.

Convention 47. In concurrence with the usual terminology, we speak about functions with
parameters when referring to functions with variable values in the low-level approach. So
in this approach, the x in f (x) is a parameter. In the high-level approach, such an x is
called a (variable) argument of the (‘abstract’) function f .

This shows that an important difference between the low-level and high-level approach
is whether functions are ‘spectators’ in the world under consideration which can be called
upon for services but do not join the ongoing play, or ‘participants’ standing on stage
just like the other players. This has important consequences for the theory in which func-
tions participate. In the low-level approach, the corresponding theory can be of lower
order than in the high-level case, e.g. first-order with parameters versus second-order
without [31]. This makes it possible to fine-tune a theory by using parameters for some
classes of functions. An advantage can be, as we show in the induction axiom example
below and in Section 6, that some desirable properties of the lower order theory (think
of decidability, easiness of calculations, typability) can be maintained, without losing the
flexibility of the higher-order aspects. In fact, using parameters is a natural thing to do in
many logical and mathematical applications and in programming languages and software
construction.

Therefore, using the more elaborate view of instantiation and functionalisation, we stand
up for a re-evaluation of the low-level approach, which has been lost sight of in the modern,
Bourbaki-inspired style of doing mathematics. The low-level approach corresponds in an
obvious manner to ‘abstraction from a subexpression’, as discussed in Section 2. The high-
level approach is required for ‘function construction’ and the full ‘functionalisation’. This
more elaborate view of instantiation and functionalisation is still worthwhile for many
exact disciplines. In fact, both in logic and in computer science it has certainly not been
wiped out, and for good reasons.

In order to illustrate how parameters (see Convention 47) are used in the low-level ap-
proach, opposing it to the use of abstract functions in the high-level approach, we consider
the different attitudes of logicians and mathematicians towards the induction axiom for
natural numbers. A logician is someone developing this axiom (or studying its properties),
whilst the mathematician is usually only interested in applying (using) the axiom. Hence,
the logician describes the axiom as a function which takes one argument: a predicate on
natural numbers P:

λP.P0 → ∀n[Pn → P(Sn)] → ∀n[Pn]. (1)
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A mathematician usually is not interested in the axiom presented in the above formulation.
Often he is interested in instantiations of the axiom only. Therefore, a mathematician may
prefer the induction axiom in the form of an axiom scheme, depending on a parameter for
the predicate P:

P0 → ∀n[Pn → P(Sn)] → ∀n[Pn]. (2)

The scheme itself is not part of the formal language, but all the instantiations of the
scheme are. As the scheme itself is not part of the language, this “parametric” presentation
of the induction axiom is not as strong as the presentation with the λ-term: The latter
is part of the formal language, so it is possible to discuss the axiom within the formal
language.

The advantage of not going all the way obtaining the λ-abstraction of (1) but simply
using Schema (2) if you are a mathematician, can be obtained by noticing that the λ-
abstraction in (1) needs a higher type system (λP 2 of Section 4), when actually a lower
system (λP of Section 4) is sufficient for the mathematician’s purposes. This can be seen
as follows:

Assuming a variable N (the type of natural numbers) of type ∗, a variable 0 (repre-
senting the natural number zero) of type N and a variable S (an implementation of the
successor function: Snm holds if and only if m is the successor of n) of type N → N → ∗,

the induction axiom can be described in the system of the cube whose �-formation rules
are (∗, ∗), (∗, �), (�, ∗), by the type (let’s call it: Ind) abstracting over the variable p (a
proposition ranging over the naturals):

Ind = �p:(N→∗).p0→(�n:N.�m:N.pn→Snm→pm)→�n:N.pn. (3)

With this type Ind one can introduce a variable ind of type Ind that may serve as a proof
term for any application of the induction axiom. This is the logician’s approach.

For a mathematician, who only applies the induction axiom and does not need to know
the proof-theoretical backgrounds, this interpretation is too strong. Translating the mathe-
matician’s conduct to this setting, we may express this as follows: The mathematician uses
the term ind only in combination with terms P : N→∗, Q : P 0 and R : �n:N.�m:N.

P n→Snm→P m to form a term indP QR of type �n:N.P n. In other words: the math-
ematician is only interested in the application of the induction axiom, and treats it as an
induction scheme in which values P, Q, R have to be substituted to use it. The use of
the induction axiom by the mathematician is therefore better described by the following,
parametric, scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(�n:N.�m:N.pn→Snm→pm)) : �n:N.pn. (4)

If now P : N→∗, Q : P 0 and R : �n:N.�m:N.P n→Snm→P m, then one can form
the term ind(P, Q, R) of type �n:N.P n. The types that occur in this scheme can all be
constructed using the �-formation rules (∗, ∗), (∗, �), hence the rule (�, ∗) is not needed
(in the logician’s approach, this rule was needed to form the �-abstraction �p:(N →
∗) · · ·).

Consequently, the type system that is used to describe the mathematician’s use of the
induction axiom can be weaker than the one for the logician. Nevertheless, the parame-
ter mechanism as in (4) gives the mathematician limited (but for his purposes sufficient)
access to the induction scheme. Without parameter mechanism, this would not have been
possible.
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6.2. Other uses of parameters

Many well-known type systems, like AUTOMATH [34], LF [20], and ML [33] can be
more or less related to one of the systems of the cube. However, the relations between
systems from “practice”, and systems of the cube are not always perfect. Here are some
examples illustrating this point:

Example 48 (AUTOMATH). It is interesting to note that the first tool for mechanical
representation and verification of mathematical proofs, AUTOMATH, has a parameter mech-
anism and was developed from the viewpoint of mathematicians (see [11]). The represen-
tation of a mathematical text in AUTOMATH consists of a finite list of lines where every
line has the format:

x1 : A1, . . . , xn : An � g(x1, . . . , xn) = t : T

Here g is a new name, an abbreviation for the expression t of type T (t may exceptionally
be the symbol PN, for primitive notion; such as an axiom) and x1, . . . , xn are the para-
meters of g, with respective types A1, . . . , An. (In shorthand, the above AUTOMATH-line
is written (�; g; t; T ).) We see that parameters (and definitions such as g(x1, . . . , xn) = t)
are a very substantial part of AUTOMATH since each line introduces a new definition which
is inherently parametrised by the variables occurring in the context needed for it.

Actual development of ordinary mathematical theory in the AUTOMATH system by e.g.
van Benthem Jutting (cf. [6]) revealed that this combined definition and parameter mech-
anism is vital for keeping proofs manageable and sufficiently readable for humans.

All the AUTOMATH systems have a restricted typed λ-calculus. But they are more ex-
pressive than their λ-calculus suggests at first sight. This is due to a strong parameter
mechanism. Even if one removes the typed λ-calculus from AUTOMATH, a quite expressive
system “PAL”, fully based on parameters, remains (cf. [34]). On the other hand, both AUT-
68 and AUT-QE have been related to the cube. But the corresponding cube-systems are
too weak to properly describe these AUTOMATH-systems (see below). We will be able to
place both AUT-68 and AUT-QE on our refined cube with parameters.

Example 49 (LF). The system LF (see [20]) is often described as the system λP of the
Barendregt cube. However, Geuvers [18] shows that the use of the �-formation rule (∗, �)

is very restricted in the practical use of LF. We will see that this use is in fact based on a
parametric construct rather than on a �-formation rule. Here again, we will be able to find
a more precise position of LF on the cube which will be the center of the line whose ends
are λ→ and λP .

Example 50 (ML). In ML (see [33]), types are written implicitly à la Curry. For example,
instead of writing λx:A.B, one writes λx.B and the type checker in ML looks for the
type. It is well-known however from [4] that the implicit and explicit type schemes can be
related. For the purposes of our paper, we only consider an explicit version of a subset of
ML. Furthermore, we do not treat recursive types nor the Y combinator. In ML, one can
define the polymorphic identity by:

Id(α:∗) = (λx:α.x) : (α → α). (5)

But in ML, it is not possible to make an explicit λ-abstraction over α : ∗ by

Id = (λα: ∗ .λx:α.x) : (�α: ∗ .α → α). (6)
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Those familiar with ML know that the type �α: ∗ .α → α does not belong to the language
of ML and hence the λ-abstraction of equation (6) is not possible in ML. Therefore, we can
state that ML does not have a �-formation rule (�, ∗). Nevertheless, it clearly has some
parameter mechanism (α acting as parameter of Id) and hence ML has limited access to
the rule (�, ∗) enabling Eq. (5) to be defined. This means that ML’s type system is none of
those of the eight systems of the cube. We will find a place for the type system of ML on
our refined cube. That place will be the intersection of the diagonals of the square (of the
Barendregt cube) whose corners are λ→, λ2, λω, and λω (cf. Fig. 6).

The above examples show that the Barendregt cube of [4] cannot accommodate well-
known and practical type systems in a precise manner. We will refine the Barendregt cube
by extending it with a parameter mechanism. Such a mechanism allows the construction
of terms of the form c(b1, . . . , bn), where c is a constant and b1, . . . , bn are terms. In
traditional typed λ-calculus such a term would be written as cb1 . . . bn. This last term is
constructed step by step. First, c gets typed, then it is applied to b1, then the result is applied
to b2, and so on. This means that c, cb1, cb1b2, . . . , cb1 . . . bn are all legal terms of the
system. Hence, the attempt to internalise the parameter mechanism into typed λ-calculus
as described above, is going too far. In the parametric situation, only c(b1, . . . , bn) is a
term. Partial constructions of this term like c(b1, . . . , bi) (for i < n) are not a part of the
syntax.

Adding parameters is an extension, and a useful one, since parametric constructs occur
in many practical systems.

Example 51. As explained in Example 48, AUTOMATH has a parametric system.

Example 52. First-order predicate logic has no λ-calculus. It only has parametric con-
structs. Laan and Frunssen [31] shows that parametric constructs make it possible to give
a more accurate description of first-order predicate logic in type theory than that given in
the traditional approach of typed λ-calculus.

Example 53. Parameters occur in many parts of computer science. For example, look at
the following Pascal fragment P with the function double:

function double(z:integer):integer;
begin
double := z + z
end;

P could be represented by the definition

double = (λz:Int.(z+z)) : (Int → Int). (7)

Of course, this declaration can imitate the behaviour of the function perfectly well. But the
construction has the following disadvantages:
• The declaration has as subterm the type Int → Int. This subterm does not occur in P

itself. More general, Pascal does not have a mechanism to construct types of the form
A → B. Hence, the representation contains terms that do not occur in Pascal;

• double itself is not a separate expression in Pascal: you canot write x := double in a
program body. One may only use the expression double in a program, if one specifies
a parameter p that serves as an argument of double.
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We conclude that the translation of P as given above is not fully to the point. A parameter
mechanism allows us to translate P in the parametric form

double(z : Int) = (z + z) : Int. (8)

This declaration in (8) does not have the disadvantages of (7) described above.

Example 54. Parameters are also useful in Inductive Type Systems. For example, Stefa-
nova [41], uses parameters of three different forms:
1. Parametric types of the form X(x1 : T1, . . . , xn : Tn), where X is a type with X(x1 :

T1, . . . , xn : Tn) : s (s is a sort). Parametric types are useful when extending a PTS with
families of inductive types.

2. Parametric elements of the form c(a1 : A1, . . . , an : An). In [41] , these are only used
for constructors of inductive types. For example: s(x : Nat) : Nat is a parameterized ver-
sion of the successor function.

3. Implicit parameterization. This refers to terms which are parameterized over some of
their free variables, to be used in the elimination rules for inductive types.

So for an optimal description of practical systems it may be an advantage to study the
“mild” extension with parametric constructs only (cf. [25]). In Section 6.3, we extend the
syntax of the cube with parametric constructs, and propose type systems that can type
these new constructs. In Section 6.4 we establish the meta-theoretical properties of this
extension. In Section 6.5 we show that this extension in fact leads to a refinement of the
Barendregt cube: it is split into eight smaller cubes. Section 6.6 places systems like LF,
ML, and AUTOMATH in the Refined Barendregt cube.

6.3. The extension with parameters

We extend the eight systems of the Barendregt cube with parametric constructs. Para-
metric constructs are of the form c(b1, . . . , bn), where b1, . . . , bn are terms of certain
prescribed types. Just as we can allow several kinds of �-constructs (via the set R) in the
Barendregt cube, we can also allow several kinds of parametric constructs. This is indicated
by a set P, consisting of tuples (s1, s2), where s1, s2 ∈ {∗, �}. (s1, s2) ∈ P means that we
allow parametric constructs c(b1, . . . , bn) : A where b1, . . . , bn have types B1, . . . , Bn of
sort s1, and A is of type s2. However, if both (∗, s2) ∈ P and (�, s2) ∈ P, then combina-
tions of parameters are possible. For example, it is allowed that B1 has type ∗, whilst B2
has type �.

Definition 8 is changed to deal with parametric terms as follows:

Definition 55 (Terms of the cube extended with parameters). The set TP of parametric
terms is defined together with the set LT of lists of terms as follows:

TP ::= ∗ | � | V | C(LT ) | TPTP | πV:TP .TP ; (where π ∈ {λ, �})
LT ::= ∅ | LT ,TP .

V is the set of variables and C (over which c, c′, . . . range) is a set of constants dis-
joint from V. In a parametric term c(b1, . . . , bn), the subterms b1, . . . , bn are called the
parameters of the term.
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In Notations and Conventions 9, Barendregt Convention’s BC is extended in the
obvious way to include parametric terms. The notions of FV (A) , BV (A) , implicit sub-
stitution A[x := B] and compatibility are also extended to take into account the new para-
metric terms of the form c(b1, . . . , bn). In particular, FV (c(a1, . . . , an)) = ⋃n

i=1 FV (ai)

and c(b1, . . . , bn)[x:=A] ≡ c(b1[x:=A], . . . , bn[x:=A]).
Similarly, compatibility of β-reduction is extended to parametric terms in the obvious

way:
if bi →β b′i then c(b1, . . . , bi, . . . , bn) →β c(b1, . . . , b′i , . . . , bn) for 1 � i � n.
This is the only way in which β-reduction on TP differs from β-reduction on T.

Definition 56 (Constants of terms). Let A ∈ TP . Define CONS (A) , the set of constants
of A by

CONS (∗) = CONS (�) = CONS (x) = ∅;

CONS (c(a1, . . . , an)) = {c} ∪
n⋃

i=1

CONS (ai) ;

CONS (AB) = CONS (λx:A.B) = CONS (�x:A.B) = CONS (A) ∪ CONS (B) ;

The definition of declarations of a context is now extended to deal with constant decla-
rations:

Definition 57 (declarations, contexts, ⊆′). Let A, B1, . . . , Bn ∈ TP , x, x1, . . . , xn ∈ V
and c ∈ C.

• A variable declaration d is of the form x : A. We define var(d) ≡ x, type(d) ≡ A,

FV (d) ≡ FV (A) and CONS (d) ≡ CONS (A).

• A constant declaration d is of the form c(x1:B1, . . . , xn:Bn):A. We define type(d) ≡
A and dec�cons (d) ≡ c. c is called a primitive constant (cf. the primitive notions in
AUTOMATH). x1, . . . , xn are the parameters of d . We define FV (d) to be FV (A) ∪
FV (B1) . . . ∪ FV (Bn) and CONS (d) to be CONS (A) ∪ CONS (B1) . . . ∪ CONS (Bn).

• We let d, d ′, d1, etc. range over declarations (both variable and constant declarations).

• We define the set CP of parametric contexts (which we denote by �, �′, . . .) and the set
LV of lists of variable declarations as follows:

CP ::= ∅ | CP ,V:TP | CP ,C(LV ):TP LV ::= ∅ | LV ,V:TP .

Notice that LV ⊆ CP (all lists of variable declarations are contexts, as well).

• We use DOM (�) to denote the set {var(d) | d is a variable declaration in �}.
We define CONS (�) to denote the set {dec�cons (d) | d is a constant declaration in �}.

• We define substitutions on contexts by: ∅[x := A] ≡ ∅, (�, y : B)[x := A] ≡ �[x :=
A], y : B[x := A], and (�, c(x1 : A1, . . . , xn : An) : C)[x := A] ≡ �[x := A], c(x1 :
A1[x := A], . . . , xn : An[x := A]) : C[x := A].

• ⊆′ between contexts is defined in a similar way to that of Definition 10.

In the ordinary cube we have that, for a legal term A in a legal context �, FV (A) ⊆
DOM (�). In our cube extended with parameters we have: FV (A) ⊆ DOM (�) and CONS (A)

⊆ CONS (�).
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Now we extend the typing rules of the cube as follows:

Definition 58 (The Barendregt cube with parametric constants). Let R be as in Defini-
tion 12 and let P be a subset of {(∗, ∗), (∗, �), (�, ∗), (�, �)}, such that (∗, ∗) ∈ P. The
judgements that are derivable in λRP are determined by the rules for λR of Definition 12
and the following two rules where � ≡ x1:B1, . . . , xn:Bn and �i ≡ x1:B1, . . . , xi−1:Bi−1
(the new relation is called �p):

(
→
C −weak)

� �p b : B �, �i �p Bi : si �, � �p A : s

�, c(�) : A �p b : B
(si, s) ∈ P, c �∈ CONS (�)

�1, c(�):A, �2 �p bi :Bi[xj :=bj ]i−1
j=1(i = 1, . . . , n)

(
→
C −app)

�1, c(�):A, �2 �p A : s (if n = 0)

�1, c(�):A, �2 �p c(b1, . . . , bn) : A[xj :=bj ]nj=1

At first sight one might miss a
→
C-introduction rule. Such a rule, however, is not necessary,

as c (on its own) is not a term. c can only be (part of) a term in the form c(b1, . . . , bn), and

such terms can be typed by the (
→
C-app) rule.

Constant weakening (
→
C-weak) explains how we can introduce a declaration of a para-

metric constant in the context. The context � indicates the arity of the parametric constants
(the number of declarations in �), and of which type each parameter must be (xj : Bj in �
means the j th parameter must be of type Bj ).

The extra condition �1, c(�):A, �2 �p A : s in the (
→
C-app) for n = 0 is necessary to

prevent an empty list of premises. Such an empty list of premises would make it possible
to have almost arbitrary contexts in the conclusion. The extra condition is needed to assure
that the context in the conclusion is legal.

Definition 59 (Statements, judgements, legal terms and contexts). Definition 13 is extend-
ed to TP and �p by changing everywhere in Definition 13, T by TP , � by �p and by
changing item 5 to:
5. If d is a variable declaration, then � �p d is defined as � �p var(d) : type(d).
If d ≡ c(x1 : B1, . . . , xn : Bn):A and n = 0, then � �p d is defined as � �p c : A.
If d ≡ c(x1 : B1, . . . , xn : Bn):A and n �= 0, then � �p d is defined as � �p c(b1, . . . , bn):
A[xj :=bj ]nj=1 whenever � �p bi : Bi[xj :=bj ]i−1

j=1 for 1 � i � n.

Now we illustrate the difference between the cube without and with parameters.

Example 60
• In the cube system λ→ (with one �-formation rule (∗, ∗)) we could introduce a type

variable N : ∗ and a variable o : N when we want to work with natural numbers. N

represents the type of natural numbers and o represents the natural number zero;
• Though the representation of objects like the type of natural numbers and the natural

number zero as a variable works fine in practice, there is a philosophical problem with
such a representation. We do not consider the set N and the number 0 ∈ N to be vari-
ables, because these objects ‘do not vary’. If we have a derivation of N :∗, o:N �p t : N
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for some term t, it is technically possible to make a λ-abstraction over the variable
o and obtain N :∗ �p λo:N.t : N → N . This is permitted since o is introduced as a
variable, but it is probably not what we had in mind. In systems with parameters, we
can distinguish between constants and variables. If o is introduced as a constant, it is
not possible to form a λ-abstraction λo:N.t;

• In some cases, we may need to introduce for each proposition � the type proof(�) of
proofs of �. This cannot be done in the cube system λ→ extended with (unparametrised)
constants: such a constant proof should be of type prop → type and this type cannot
be constructed in λ→ (notice that type ≡ ∗, so the construction of prop → type would
involve the �-formation rule (∗, �)).
However, the term proof will hardly ever be used on its own. It is usually used when
applied to a proposition �. With parameters, it is possible to introduce a parametric
version of proof by the following context declaration: proof(p:prop) : type.

This does not involve the construction of a type prop → type. Nevertheless it is possi-
ble to construct the term prop(P ) for any term P : prop. We obtain a form of polymor-
phism without using the polymorphism of λ-calculus.
A disadvantage may be that we cannot speak about the term proof ‘as it is’. When using
proof in the syntax, it must always be applied to a parameter T : prop.
However, an advantage is that we can restrict ourselves to a much more simple type
system. In the situation above we remain within the types of the system λ→. We do
not need to use types of the system λP . This may have advantages in implementa-
tions of type systems. For instance, the system λ→ does not involve the conversion
rule

� � A : B � � B : s B =β B ′

� � A : B ′

while λP does involve such a rule. The conversion rule involves β-equality of terms,
and though it is decidable whether two λ-terms of λP are β-equal or not, it may take a lot
of time and/or memory to establish such a fact. This may cause serious problems when
implementing certain type systems. Using parameters whenever possible may therefore
simplify implementations.

6.4. Properties of the cube with parameters

We now establish the meta-theoretical properties of the parametric type system of Def-
inition 58.

Lemma 61 (Free variable Lemma for �p).
1. If d and d ′ are different variable declarations in a legal context �, then var(d) �≡

var(d ′).
2. If d and d ′ are different constant declarations in a legal context �, then dec�cons (d) �≡

dec�cons(d ′).
3. If � ≡ �1, d, �2 and � � B : C, then

• CONS (d) ⊆ CONS (�1) ,

• FV (d) ⊆
{

DOM (�1) if d is a variable declaration
DOM (�1, x1:B1, . . . , xn:Bn) if d ≡ c(x1:B1, . . . , xn:Bn):A

• FV (B) , FV (C) ⊆ DOM (�) and CONS (B) , CONS (C) ⊆ CONS (�).
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Proof. In 1. and 2. as � is legal, � �e B : C for some B, C. Now, each of 1. and 2.
is by induction on the derivation of � �e B : C. 3. is by induction on the derivation of
� �e B : C. �

Lemma 62 (Substitution Lemma for �p). If �1, x : C, �2 �p A : B and �1 �p D : C,

then �1, �2[x := D] �p A[x := D] : B[x := D].

Proof. Induction on the derivations �, x : C, �2 �p A : B. We only show the (
→
C-weak)

case. Assume � is x1 : B1, . . . , xn : Bn and �1, x : C, �2, c(�) : E �p A : B comes from
(si, s) ∈ P, c �∈ CONS (�1, x : C, �2) , �1, x : C, �2 �p A : B, �1, x : C, �2, �i �p Bi :
si and �1, x : C, �2, � �p E : s. By IH, �1, �2[x := D] �p A[x := D] : B[x := D], �1,

�2[x := D], �i[x := D] �p Bi[x := D] : si and �1, �2[x := D], �[x := D] �p E[x :=
D] : s. Hence by (

→
C-weak) �1, �2[x := D], c(�[x := D]) : E[x := D] �p A[x := D] :

B[x := D]. �

Lemma 63 (Context Lemma for �p). Let � be a �p-legal context. Then � �p ∗ : � and if
� ≡ �1, d, �2, then
• If d ≡ x : A, then �1, x : A �p x : A and �1 �p A : s for some sort s.
• If d ≡ c(x1 : B1, . . . , xn : Bn):A, then for some sort s, �1, x1 : B1, . . . , xn : Bn �p A :

s and for some sorts si, for 1 � i � n where (si , s) ∈ P, we have �1, x1 : B1, . . . , xi−1 :
Bi−1 �p Bi : si .

Proof. If � is legal, then for some terms B, C: � �e B : C; now use induction on the
derivation of � �e B : C to show that � �p ∗ : �.
If � ≡ �1, d, �2 is legal, then for some terms B, C we have �1, d, �2 �e B : C; now use
induction on the derivation of �1, d, �2 �e B : C. �

Lemma 64 (Thinning Lemma for �p). Let �1, d, �2 be a legal context. If �1, �2 �p A :
B, then �1, d, �2 �p A : B.

Proof. By induction on the derivation �1, �2 �e A : B. We only show the two interesting

cases of (
→
C-weak) where �′ ≡ x′1:B ′

1, . . . , x′m:B ′
m, � ≡ x1:B1, . . . , xn:Bn, d ≡ c(�) : A,

�, c′(�′) : A′ �p b : B comes from � �p b : B, �, �′
i �p B ′

i : s′i , �, �′ �p A′ : s′, (s′i , s′)
∈ P and c′ �∈ CONS (�) and
• either �, c′(�′) : A′, c(�) : A is legal then by Context Lemma 63, for some sorts si, s

where (si, s) ∈ P, �, c′(�′) : A′, � �p A : s and �, c′(�′) : A′, �i �p Bi : si . Hence,

by (
→
C-weak) �, c′(�′) : A′, c(�) : A �p b : B.

• or �, c(�) : A, c′(�′) : A′ is legal then by IH (because by Context Lemma 63, �, c(�) :
A, �, c(�) : A, �′ and �, c(�) : A, �′

i are legal) we have: �, c(�) : A �p b : B, �,

c(�) : A, �′ �p A′ : s′ and �, c(�) : A, �′
i �p B ′

i : s′i . Hence, by (
→
C-weak) �, c(�) :

A, c′(�′) : A′ �p b : B. �

Corollary 65. Let � and � be legal contexts such that � ⊆′ �. If � �e A : B, then � �e

A : B.

Lemma 66 (Generation Lemma for �p).
1. If � �p s : C, then s ≡ ∗, C =β � and if C �≡ �, then � �p C : s′ for some sort s′.
2. If � �p x : C, then there is s ∈ S and B =β C such that � �p B : s and (x:B) ∈ �;
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3. If � �p (�x:A.B) : C, then there is (s1, s2) ∈ R such that � �p A : s1, �, x:A �p B :
s2 and C =β s2;

4. If � �p (λx:A.b) : C, then there is s ∈ S and B such that � �p (�x:A.B) : s; �, x:A
�p b : B; and C =β (�x:A.B);

5. If � �p F a : C, then there are A, B such that � �p F : (�x:A.B), � �p a : A and
C =β B[x:=a].

6. If � �p c(b1, . . . , bn) :D, then there exist s, � ≡ x1 :B1, . . . , xn :Bn and A such
that D =β A[xj :=bj ]nj=1, and � �p bi :Bi[xj :=bj ]i−1

j=1. Moreover, � ≡ �1, c(�) :
A, �2 and �1, � �p A : s. Finally, there are si ∈ S such that �1, �i �p Bi :si and
(si, s)∈P.

Proof
1. By induction on the derivation � �p s : C.
2. By induction on the derivation � �p x : C.
3. By induction on the derivation � �p (�x:A.B) : C using Thinning Lemma 64.
4. By induction on the derivation � �p (λx:A.b) : C using Thinning Lemma 64 and 3.

above. We only show the case (
→
C-weak) where �, c(�) : E �p (λx:A.b) : C comes

from � �p (λx:A.b) : C, �, �i �p Bi : si, �, � �p E : s for (si , s) ∈ P and c �∈
CONS (�). By IH on � �p (λx:A.b) : C, for some s′, B, we have � �p (�x:A.B) :
s′, �, x : A �p b : B and (�x:A.B) =β C. Hence, by (

→
C-weak) we have �, c(�) :

E �p (�x:A.b) : s′. Using the above case 3, we get �, c(�) : E �p A : s′′. Hence, �,

c(�) : E, x : A �p x : A and so �, c(�) : E, x : A is legal. Now using Thinning
Lemma 64 on �, x : A �p b : B we get �, c(�) : E, x : A �p b : B.

5. By induction on the derivation � �p F a : C.
6. By induction on the derivation � �p c(b1, . . . , bn) : D using Context Lemma 63 in the

(
→
C-app) case. We only show the (

→
C-app) case. Assume �1, c(�):A, �2 �p c(b1, . . . ,

bn) : A[xj :=bj ]nj=1 comes from �1, c(�):A, �2 �p bi :Bi[xj :=bj ]i−1
j=1 i = 1, . . . , n, if

n �= 0 and from �1, c(�):A, �2 �p A : s if n = 0. Then obviously all goals hold except
the last two. But, as �1, c(�):A, �2 is legal then by Context Lemma 63 there are s, si

such that (si, s) ∈ P, �1, � �p A : s and �1, �i �p Bi : si . �

Lemma 67 (Correctness of types for �p). If � �p A : B, then (B ≡ � or � �p B : s for
some sort s).

Proof. By induction on the derivation � �p A : B. We only show (appl) and (
→
C-app).

• (appl): If � � F a : B[x:=a] comes from � �p F : (�x:A.B) and � �p a : A then by
IH, � �p (�x:A.B) : s (it cannot be �). By Generation Lemma 66, �, x : A �p B : s.
As � � a : A, use Substitution Lemma 62 to get � �p B[x := a] : s.

• (
→
C-app): Assume �1, c(�):A, �2 �p c(b1, . . . , bn) : A[xj :=bj ]nj=1 comes from �1,

c(�):A, �2 �p bi :Bi[xj :=bj ]i−1
j=1 i = 1, . . . , n, if n �= 0 and from �1, c(�):A, �2 �p

A : s if n = 0. If n = 0, then obviously �1, c(�):A, �2 �p A[xj :=bj ]nj=1 : s. Else,
if n �= 0, then: by Generation Lemma 66 we have �1, � �p A : s. It is easy to show
that all of �1, c(�):A, �2�, and �1, c(�):A, �2�i for i = 1, . . . , n are legal contexts.
Hence, we can use Thinning Lemma 64 on �1, � �p A : s and �1, c(�):A, �2 �p
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bi :Bi[xj :=bj ]i−1
j=1 to get for �′ ∈ {�, �1, . . . , �n}, any of �1, c(�):A, �2�′ �p bi :Bi

[xj :=bj ]i−1
j=1 and �1, c(�):A, �2�′ �p A : s. Now, use Substitution Lemma 62 to get

�1, c(�):A, �2 �p A[xj :=bj ]nj=1 : s. �

Lemma 68 (Subterm Lemma for �p). If A is legal and A′ is a subterm of A, then A′ is
legal.

Proof. If A is legal then for some �, B we have either � �p A : B or � �p B : A. By
Correctness of Types Lemma 67, if � �p B : A then A ≡ � or � �p A : s for some s.
Hence, it is enough to show that if � �p A : B and if A′ is a subterm of A then for some
�′, B ′, �′ �p A′ : B ′. We do this by induction on the structure of A using Generation
Lemma 66. �

Lemma 69 (Subject Reduction for �p). If � �p A : B and A�βA′ then � �p A′ : B.

Proof. We only prove the above lemma for →β . We prove by simultaneous induction on
the derivation rules:
• If � �p A : B and A →β A′ then � �p A′ : B.
• If � �p A : B and � →β �′ then �′ �p A : B where � →β �′ iff � = d1, . . . , di, . . .

dn, �′ = d1, . . . , d ′i , . . . dn and

• di = x : A, d ′i = x : A′ and A →β A′ or

• di = c(�) : A and ((d ′i = c(�′) : A where � →β �′) or (d ′i = c(�) : A′ where A →β

A′)).
We will only show (

→
C-app). Assume �1, c(�):A, �2 �p c(b1, . . . , bn) : A[xj :=bj ]nj=1

comes from:
• n = 0 and �1, c(�):A, �2 �p A : s. If �1 →β �′

1 or �2 →β �′
2 use IH. If A →β A′

then by IH, �1, c() : A′, �2 �p A : s. Hence by Context Lemma 63 �1 �p A′ : s′ for

some s′. By Thinning Lemma 64 �1, c() : A′, �2 �p A′ : s′. Now use (
→
C-app) to get

�1, c() : A′, �2 �p c() : A′ and then use (conv) to get �1, c() : A′, �2 �p c() : A.
• n �= 0 and �1, c(�):A, �2 �p bi :Bi[xj :=bj ]i−1

j=1 for i = 1, . . . , n. If �1 →β �′
1 or �2

→β �′
2 use IH. If A1 →β A′ then by IH �1, c(�):A′, �2 �p bi :Bi[xj :=bj ]i−1

j=1 for i =
1, . . . , n and hence by (

→
C-app) �1, c(�):A′, �2 �p c(b1, . . . , bn) : A′[xj :=bj ]nj=1. But

A′[xj :=bj ]nj=1 =β A[xj :=bj ]nj=1. Morevover, by Correctness of types Lemma 67 �1,

c(�):A′, �2 �p A[xj :=bj ]nj=1 : s. Now use (conv) to get �1, c(�):A′, �2 �p c(b1, . . . ,

bn) : A[xj :=bj ]nj=1.

If Br →β B ′
r for some 1 � r � n then by IH, �1, c(�′):A, �2 �p bi :Bi[xj :=bj ]i−1

j=1
for i = 1, . . . , n. (Note that �i ≡ �′

i for 1 � i � r). By Context Lemma 63, �1, �′
r �p

B ′
r : sr for some sort sr . We can easily show that �1, c(�′):A, �2, �′

r is legal and hence
by Thinning Lemma 64 �1, c(�′):A, �2, �′

r �p B ′
r : sr . Now by Substitution Lemma 62

�1, c(�′):A, �2 �p B ′
r [xj :=bj ]r−1

j=1 : sr . But B ′
r [xj :=bj ]r−1

j=1 = Br [xj :=bj ]r−1
j=1 and �1,

c(�′):A, �2 �p br :Br [xj :=bj ]r−1
j=1 hence by (conv) �1, c(�′):A, �2 �p br :B ′

r [xj :=
bj ]r−1

j=1. Finally, by (
→
C-app) �1, c(�′):A, �2 �p c(b1, . . . , bn) : A[xj :=bj ]nj=1. �
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Lemma 70 (Uniqueness of Types for �p).
1. If � �p A : B1 and � �p A : B2, then B1 =β B2.
2. If A1 = βA2, � �p A1 : B1 and � �p A2 : B2, then B1 =β B2.

Proof. 1. is by induction on the structure of A using the Generation Lemma 66. 2. As-
sume � �p A1 : B1 and � �p A2 : B2 and A1 =β A2. By Church Rosser we have for some
A, A1�eA and A2�eA. Now use Subject Reduction Lemma 69 to get � �e A : B1 and
� �e A : B2 and apply 1. above to get � �e B1 =def B2. �

Theorem 71 (Strong Normalisation with respect to �p and →p). If A is �p-legal, then
SN→β (A); i.e. A is strongly normalising with respect to →β .

Proof. In [30], a type system �βδ was presented which accommodates definitions both
in the contexts and in the terms, and where parameters were also present and intertwined
with definitions (unlike the system of this section where we studied the advantages of
parameters on their own right). In the system of [30], reduction was not only β-reduction
but also included δ-reduction which unfolds the definitions inside the terms step by step.
We call the reduction relation of [30] βδ-reduction. Obviously, terms in TP are also terms
of the system of [30]. Moreover, as →β⊂→βδ then if SN→βδ (A) then SN→β (A). Fur-
thermore, we can establish by induction on the derivations that if A is �p-legal then A is
�βδ-legal.

Now assume A is �p-legal, then by above, A is �βδ-legal. But by Strong Normalisation
for�βδ with respect to βδ-reduction (see [30]) we have SN→βδ (A). As we discussed above,
because SN→βδ (A) then SN→β (A) and we are done. �

6.5. The refined Barendregt cube

The systems of Definition 58 have six degrees of freedom: three for the possible choices
of (∗, �), (�, ∗) and (�, �) ∈ R and three for the possible choices of (∗, �), (�, ∗), and
(�, �) ∈ P. However, these choices are not independent since constructs that can be made
with P-rule (s1, s2) can be imitated in a typed λ-calculus with R-rule (s1, s2). This means
that the parameter-free type system with R = {(∗, ∗), (∗, �)} is at least as strong as the
type system with parameters with the same set R, but with P = {(∗, ∗), (∗, �)}. We make
this precise in Theorem 77.

The insight of Theorem 77 can be expressed by depicting the systems with parame-
ters of Definition 58 as a refinement of the Barendregt cube. As in the Barendregt cube,
we start with the system λ→, which has R = {(∗, ∗)} and P = {(∗, ∗)}. Adding an extra
element (s1, s2) to R still corresponds to moving in one dimension in the cube. Now we
add the possibility of moving in one dimension in the cube but stopping half-way. We
let this movement correspond to extending P with (s1, s2). This “going only half-way” is
in line with the intuition that �-formation with (s1, s2) can imitate the construction of a
parametric construct with (s1, s2). In other words, the system obtained by “going all the
way” is at least as strong as the system obtained by “going only half-way”. This refinement
of the Barendregt cube is depicted in Fig. 5.

We now make the above intuition that “R can imitate P” precise.

Definition 72. Consider the system λRP. We call this system parametrically conservative
if (s1, s2) ∈ P implies (s1, s2) ∈ R.
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Fig. 5. The refined Barendregt cube.

Let λRP be parametrically conservative. In order to show that the parameter-free system
λR is at least as powerful as λRP, we need to remove the parameters from the syntax of
λRP. To do so, we replace the parametric application in a term c(b1, . . . , bn) by function
application cb1 . . . bn:

Definition 73. Define the parameter-free translation {A} of a term A ∈ TP by:

{A}≡A if A ≡ x or A ≡ s;
{c(b1, . . . , bn)}≡c {b1} · · · {bn} ;

{AB}≡{A} {B} ;
{πx:A.B}≡πx: {A} . {B} if π is λ or �.

Definition 74. We extend the definition of {_} to contexts:

{〈〉}≡〈〉;
{�, x:A}≡{�} , x: {A} ;

{�, c(�):A}≡{�} , c():
{∏

�.A
}

.

Here, � ≡ x1 : B1, . . . , xn : Bn, and
∏

�.A is shorthand for
∏n

i=1 xn : Bi.A.

To demonstrate the behaviour of {_} under β-reduction, we need a lemma that shows
how to manipulate with substitutions and {_}.

Lemma 75. For A, B ∈ TP : {A[x:=B]} ≡ {A} [x:= {B}].
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Proof. The proof is straightforward, using induction on the structure of A. �

The mapping {_} maintains β-reduction:

Lemma 76. A →β A′ if and only if {A} →β

{
A′}.

Proof. Follows easily by induction on the structure of A, and Lemma 75. �

Now we show that {_} embeds the parametrically conservative λRP in the parameter-
free λR:

Theorem 77. Let λRP be parametrically conservative. If � �p
RP A : B then {�} �R {A} :

{B} .

Proof. Induction on the derivation of � �p
RP A : B. By Lemma 75, all cases are easy

except for (
→
C-weak). So: assume the last step of the derivation was

� �RP b : B �, �i �RP Bi : si �, � �RP A : s

�, c(�):A �RP b : B
(si, s) ∈ P.

By the induction hypothesis, we have:

{�} �R {b} : {B} ; (9)

{�, �i} �R {Bi} : si; (10)

{�, �} �R {A} : s. (11)

λRP is parametrically conservative, so (si , s) ∈ R for i = 1, . . . , n. Therefore, we can re-
peatedly use the �-formation rule, starting with (11) and (10), obtaining

{�} �R

n∏
i=1

xi : {Bi} . {A} : s. (12)

Notice that
∏n

i=1 xi : {Bi} . {A} ≡ {∏
�.A

}
. Using (

→
C-weak) on (9) and (12) gives

{�} , c(): {∏�.A
} �R {b} : {B} . �

Theorem 77 has important consequences. The mapping {_} is fairly simple. It only
translates some parametric abstractions and applications into λ-calculus style abstractions
and applications. Hence a system of the cube with parametric specification having �-
formation rules R and no parametric formation rules, can be extended with any set of
parametric rules without extending its logical power, as long as the parametric specification
obtained remains parametrically conservative.

Let us, for example, have a look at the following parametric specifications

R1 = {(∗, ∗), (∗, �)}, P1 = ∅;
R2 = {(∗, ∗), (∗, �)}, P2 = {(∗, ∗)};
R3 = {(∗, ∗), (∗, �)}, P3 = {(∗, �)};
R4 = {(∗, ∗), (∗, �)}, P4 = {(∗, ∗), (∗, �)}.

According to Theorem 77, the systems λRiPi for 1 � i � 4 with the above specifications
are all equal in power.
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Now look at the parametric specification R5 = {(∗, ∗)}, P5 = {(∗, ∗), (∗, �)}. The sys-
tem λR5P5 is clearly stronger than the system λ→, as in λR5P5 it is possible (in a restricted
way) to talk about predicates. For instance, we can have the following context:

α : ∗,

eq(x:α, y:α) : ∗,

refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),

trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

This context introduces an equality predicate eq on objects of type α, and axioms refl,

symm, trans for the reflexivity, symmetry and transitivity of eq. It is not possible to intro-
duce such a predicate eq in the cube system λ→ without any parameter mechanism. On
the other hand, λR5P5 is weaker than the cube system λP. In fact, in λP we can construct
the type �x:α.�y:α.∗, which allows us to introduce variables eq of type �x:α.�y:α.∗.
This makes it possible to speak about any binary predicate, instead of one fixed predicate
eq. It also gives us the possibility to speak about the term eq without the need to apply two
terms of type α to it.

This puts the parametric system λR5P5 clearly between the cube systems λ→ and λP.

6.6. Systems in the Refined Barendregt cube

In this section, we show that the Refined Barendregt cube enables us to compare some
well-known type systems with systems from the Barendregt cube. In particular, we show
that AUT-68, and AUT-QE, LF, and ML, can be seen as systems in the Refined Barendregt
cube. This is depicted in Fig. 6, and motivated in the three subsections below.

AUTOMATH: The AUTOMATH-systems (see [34]) all heavily rely on parametric constructs.
1. AUT-68: The typed λ-calculus of one of the most elementary systems of AUTOMATH,
AUT-68, is relatively simple and corresponds to λ→: it has only (∗, ∗) as a �-formation
rule. This should suggest that AUT-68 has comparable expressiveness to λ→. But for the
parametrical constructions there are no limitations in AUT-68 whose parameter mechanism
has the following features:
• A line (�; k;P N; type) in a book is nothing more than the declaration of a parametric

constant k(�):∗. There are no demands on the context �, and this means that for a dec-
laration x:A ∈ � we can have either A ≡ type (in cube-terminology: A ≡ ∗, so A : �)
or A:type (in cube-terminology: A : ∗). We conclude that AUT-68 has the parameter
rules (∗, �) and (�, �);

• Similarly, lines of the form (�; k;P N;�2) where �2:type, represent parametric con-
stants that are constructed using the parameter rules (∗, ∗) and (�, ∗).

This suggests that AUT-68 can be represented by the parametric system with R = {(∗, ∗)}
and P = {∗, �} × {∗, �}. The AUT-68 system can be found in the exact middle of the
refined cube.
2. AUT-QE: Something similar holds for the more extensive system AUT-QE. This system
has an extra �-formation rule: (∗, �) additionally to the rules of AUT-68. This means
that for representing this system, we need the �-formation rules R = {(∗, ∗), (∗, �)}, and
parametric rules (s1, s2) for s1, s2 ∈ {∗, �}. This system is located in the middle of the
right side of the Refined Barendregt cube, exactly in between λC and λP.
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3. PAL: It should be noted that the AUTOMATH languages are all based on two concepts:
typed λ-calculus and a parameter/definition mechanism. Both concepts can be isolated: it
is possible to study λ-calculus without a parameter/definition mechanism (for instance via
the format of Pure Type Systems or the Barendregt cube of [4]), but one can also isolate
the parameter/definition mechanism from AUTOMATH. One then obtains a language that
is called PAL, the “Primitive AUTOMATH Language”. It cannot be described within the
Refined Barendregt cube (as all the systems in that cube have at least some basic λ-calculus
in it), but it can be described as a system with the following parametric specification:
R = ∅;P = {(∗, ∗), (∗, �), (�, ∗), (�, �)}.

This parametric specification corresponds to the parametric specifications that were
given for the AUTOMATH systems above, from which the �-formation rules are removed.

LF: Geuvers [18] initially describes the system LF (see [20]) as the system λP of the
cube. However, the use of the �-formation rule (∗, �) is quite restrictive in most applica-
tions of LF. Geuvers splits the λ-formation rule in two:

(λ0)
�, x:A � M : B � � �x:A.B : ∗

� � λ0x:A.M : �x:A.B
;

(λP )
�, x:A � M : B � � �x:A.B : �

� � λP x:A.M : �x:A.B
.

System LF without rule (λP ) is called LF−. β-reduction is split into β0-reduction and
βP -reduction:

(λ0x:A.M)N →β0 M[x:=N];
(λP x:A.M)N →βP

M[x:=N].
Geuvers then shows that
• If M : ∗ or M : A : ∗ in LF, then the βP -normal form of M contains no λP ;
• If � �LF M : A, and �, M, A do not contain a λP , then � �−LF M : A;
• If � � M : A(: ∗), all in βP -normal form, then � �−LF M : A(: ∗).
This means that the only real need for a type �x:A.B : � is to be able to declare a variable
in it. The only point at which this is really done is where the bool-style implementation
of the Propositions-As-Types principle PAT is made: the construction of the type of the
operator Prf (in an unparameterised form) has to be made as follows:

prop:∗ � prop: ∗ prop:∗, α:prop � ∗:�
prop:∗ � (�α:prop.∗) : � .

In the practical use of LF, this is the only point where the �-formation rule (∗, �) is used.
No λP -abstractions are used, either, and the term Prf is only used when it is applied to a
term p:prop. This means that the practical use of LF would not be restricted if we intro-
duced Prf in a parametric form, and replaced the �-formation rule (∗, �) by a parameter
rule (∗, �). This puts (the practical applications of) LF in between the systems λ→ and λP
in the Refined Barendregt cube.

ML: In ML (cf. [33]) one can define the polymorphic identity by (we use the notation
of this paper, whereas in ML, the types and the parameters are left implicit):

Id(α:∗) = (λx:α.x) : (α → α).
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Fig. 6. LF, ML, AUT-68, and AUT-QE in the refined Barendregt cube.

But we cannot make an explicit λ-abstraction over α:∗. That is, the expression

Id = (λα: ∗ .λx:α.x) : (�α: ∗ .α → α)

cannot be constructed in ML, as the type �α:∗.α → α does not belong to the language of
ML. Therefore, we can state that ML does not have a �-formation rule (�, ∗), but that it
does have the parametric rule (�, ∗).

Similarly, one can introduce the type of lists and some operations by:
List(α:∗) : ∗;
nil(α:∗) : List(α);
cons(α:∗) : α → List(α) → List(α),

but the expression �α:∗.∗ does not belong to ML, so introducing List by

List : �α:∗.∗
is not possible in ML. We conclude that ML does not have a �-formation rule (�, �), but
only the parametric rule (�, �). Together with the fact that ML has a �-formation rule
(∗, ∗), this places ML in the middle of the left side of the refined Barendregt cube, exactly
in between λ→ and λω.

7. Conclusions

In this paper, we presented a detailed description of two important notions in logic, type
theory and computation: functionalisation and instantiation. Both processes were split into
two sub-processes. Functionalisation consists of abstraction from a subexpression followed
by function construction, and instantiation consists of application construction followed by
concretisation to a subexpression. Moreover, abstraction from a subexpression and concret-
isation to a subexpression are each others inverses, and so are function construction and
application construction.

We concluded that functionalisation and instantiation can indeed be called “the heart of
logic and computation”. Our conclusions are strengthened by the fact that functionalisation
and instantiation are not only the basic construction principles in the earliest systems (the
systems of Frege and Russell), but can also be translated to the notions of β-reduction,
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β-expansion and function application, which play a central role in the λ-calculus. However,
the part of functionalisation which is the abstraction from a subexpression is missing in the
λ-calculus. We argue that this missing part of abstraction from a subexpression was behind
various extensions in type theory in order to avoid the disadvantages. We concentrated
on the extensions of features that are present heavily in programming languages and the-
orem provers and that may get confused with the λ-calculus notion of functionalisation
(λ-abstraction) but are in fact abstraction from a subexpression which is not present in the
λ-calculus. In particular, we discussed the following implications of not having abstraction
from a subexpression in the λ-calculus:
• In the λ-calculus, it is not straightforward to identify the original term from which a

function has been abstracted. In Section 5.1, we saw that definitions and let expressions
have been introduced in programming languages and theorem provers in order to avoid
this disadvantage.

• In the λ-calculus, it is not possible to go only half way in the abstraction process. That is,
we cannot express abstractions from 2 + 3 to x + 3. We have to use the ‘full λ-abstrac-
tion power’, since we abstract from 2 + 3 to x + 3 via the β-expansion (λx.(x + 3))2.
In Sections 6.1 and 6.3 we discussed that going half way only, without intermediate β-
expansion, results in various advantages and that this going half way is a useful feature,
incorporated in programming languages and theorem provers.

• In the λ-calculus, although we could artificially view x + 3 as an abstraction from a
subexpression (say 2 + 3), this is not useful because we cannot apply x + 3 to an ar-
gument (say 2 to get (x + 3)2 = 2 + 3). Hence, x + 3 cannot be treated as a function.
The explosion of works in explicit substitutions in the λ-calculus in the past two de-
cades could be viewed as an attempt to treat expressions like x + 3 as functions and
apply them to arguments. Hence, in these accounts, the following holds in the λ-calculus
extended with explicit substitutions: (x + 3)[x := 2] →σ 2 + 3 where (x + 3)[x := 2]
is internal to the λ-calculus with explicit substitutions rather than being an external
(meta-) operation as in the usual λ-calculus. In Section 5.2 we argued that it is useful
to add the explicit substitutions form of functionalisations and to combine it with an-
other form of functionalisation (the �-reduction) and with the definitions described in
Section 5.1.

Armed with the disadvantages of functionalisation in the ordinary λ-calculus and type
theory, we set out to create two extensions of the Barendregt Cube with combinations of
the above mentioned missing features of the λ-calculus. The first extension accommodates
in one framework, the three notions of explicit substitutions, definitions and �-reductions.
All of these notions are forms of functionalisation and there has been much interest in
each of them in the last decade. We argued that these features carry out complementary
advantages and hence combining them in one system brings about all of their advanta-
ges together. We established that the cube extended with all of these notions satisfies the
desirable meta-properties including Subject Reduction and Strong Normalisation.

Our second extension concentrated on the parameter aspect that is found in AUTOMATH.
We observed that many existing type systems do not fit exactly in the Barendregt cube.
In particular, we explained that previous attempts to describe LF and AUTOMATH were
not very successful. We noted that AUTOMATH uses parameters heavily, and that there are
some types that are only used in special situations by LF and that those types and situations
could be covered by parameters. In addition, we considered an explicitly typed version of
ML and noted that there too, ML cannot occupy any of the corners of the cube. The reason
being that, ML (as well as LF and AUTOMATH) allows �-types, but not all of them. In any
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corner of the cube, as soon as an abstraction of a sort is allowed, all abstractions of that
sort are allowed too.

Our above reasoning led us to propose a refinement of the cube where not only the
eight corners can be inhabited, but also points half way between these corners. This way,
AUTOMATH, LF, and ML find more accurate locations on the cube to represent their typ-
ing systems. We described an extension of the Barendregt cube with parameters. This is
more a refinement than an extension, as new systems that are introduced can be depict-
ed by dividing the traditional Barendregt cube into eight sub-cubes. This is due to the
fact that parametric constructs can be imitated by constructions of typed λ-calculus (see
Theorem 77) but not the other way around.

We showed that our refinement makes it possible to:
• Give a better description of practical type systems like LF and ML than those of the

cube.
• Position systems that could not be placed in the usual cube (several AUTOMATH-

systems).
This allows a more detailed comparison between the expressiveness of several type sys-
tems.
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