
Relating the ��- and �s-Styles of ExpliitSubstitutionsFairouz Kamareddine�and Alejandro R��osyAbstratThe aim of this artile is to ompare two styles of Expliit Substitutions: the ��- and �s-styles. We start by introduing a riterion of adequay to simulate �-redution in aluli ofexpliit substitutions and we apply it to several aluli: ��, ��*, ��, �s, �t and �u. Thelatter is presented here for the �rst time and may be onsidered as an adequate variant of�s. By doing so, we establish that aluli �a la �s are usually more adequate at simulating�-redution than aluli in the ��-style. In fat, we prove that �t is more adequate than ��and that �u is more adequate than ��, ��* and �s. We also give ounterexamples to showthat all other omparisons are impossible aording to our riterion.Our next step onsists in presenting the �! and �!e aluli, the two-sorted (term andsubstitution) versions of the �s (f. [KR95℄) and �se (f. [KR97℄) aluli, respetively.We establish an isomorphism between the �s-alulus and the term restrition of the �!-alulus, whih extends to an isomorphism between �se and the term restrition of �!e.Sine the �! and �!e aluli are given in the style of the ��-alulus (f. [ACCL91℄) theyare bridge aluli between �s and �� and between �se and �� and thus we are able to betterunderstand one alulus in terms of the other. Finally, we present typed versions of all thealuli and hek that the above mentioned isomorphism preserves types.As a onsequene, the �!-alulus is a alulus in the ��-style that has the followingproperties a..g: a) �! simulates one step �-redution, b) �! is onuent (on losed terms),) �! preserves strong normalisation, d) �!'s assoiated alulus of substitutions is SN, e)the simply typed �! alulus is SN, f) the �!-alulus possesses an extension �!e that isonuent on open terms (terms with eventual metavariables of sort term only), and g) thesimply typed �!e alulus is weakly normalising (on open term). As far as we know, the �!-alulus is the �rst alulus in the ��-style that has all those properties a..g. However, theopen problem of the SN of the assoiated alulus of substitution of �!e remains unsolvedand like in the ase of ��, �� and �se, �!e does not have PSN.Keywords: �-alulus, expliit substitutions, ��, �s.IntrodutionThere is no better way to start than by quoting Abelson and Sussman in [AS86℄:Despite the fat that substitution is a \straightforward idea", it turns out to be sur-�Department of Computing and Eletrial Engineering, Heriot-Watt University, Riarton, Edin-burgh EH14 4AS, Sotland, email: fairouz�ee.hw.a.ukyDepartment of Computer Siene, University of Buenos Aires, Pabell�on I - Ciudad Universitaria(1428) Buenos Aires, Argentina, email:rios�d.uba.ar1

prisingly ompliated to give a rigorous mathematial de�nition of the substitutionproess... Indeed, there is a long history of erroneous de�nitions of \substitution" inthe literature of logi and programming semantis.Most literature on the �-alulus treats substitution as an atomi operation andleaves impliit the atual omputational steps neessary to perform substitution. Sub-stitution is usually de�ned with operators whih do not belong to the language of the�-alulus. In any real implementation, the substitution required by �-redution(and similar higher-order operations) must be implemented via less omplex opera-tions. Thus, there is a oneptual gap between the theory of the �-alulus and itsimplementation in programming languages and proof assistants. Expliit substitutionattempts to bridge this gap without abandoning the setting of the �-alulus.By representing substitutions in the struture of terms and by providing (�rst-order) redutions to propagate the substitutions, expliit substitution provides a num-ber of bene�ts. A major bene�t is that expliit substitution allows more exibilityin ordering work. Propagating substitutions through a partiular subterm an waituntil the subterm is the fous of omputation. This allows a hoie among the substi-tutions to be performed, thus improving loality of referene. Obtaining more ontrolover the ordering of work has beome an important issue in funtional programminglanguage implementation (f. [Pey87℄). The exibility provided by expliit substitu-tion also allows postponing unneeded work inde�nitely (i.e., avoiding it ompletely).This an yield pro�ts, sine impliit substitution an be an ineÆient, maybe evenexploding, proess by the many repetitions it auses. Another bene�t is that expliitsubstitution allows formal modeling of the tehniques used in real implementations,e.g., environments. Beause expliit substitution is loser to real implementations,it has the potential to provide a more aurate ost model. (This possibility is par-tiularly interesting in light of the diÆulty enountered in formulating a useful ostmodel in terms of graph redution [LM96, Pey87℄.)Proof assistants may bene�t from expliit substitution, due to the desire to performsubstitutions loally and in a formal manner. Loal substitutions are needed as fol-lows. Given xx[x:=y℄, one may not be interested in having yy as the result of xx[x:=y℄but rather only yx[x:=y℄. In other words, one only substitutes one ourrene of xby y and ontinues the substitution later. Theorem provers like Nuprl [Con86℄ andHOL [GM93℄ implement substitution whih allows the loal replaement of some ab-breviated term. This avoids a size explosion when it is neessary to replae a variableby a huge term only in spei� plaes to prove a ertain theorem.Formalisation helps in studying the termination and onuene properties of sys-tems. Without formalisation, important properties suh as the orretness of substitu-tions often remain un-established, ausing mistrust in the implementation. In fat, itis known that the �rst implementation of substitution in Automath [NGdV94℄ was in-orret, and that most of the bugs in the implementation of LCF ame from lashes ofbound variables in strange situations [Pau90℄. As the implementation of substitutionin many theorem provers is not based on a formal system, it is not lear what prop-erties their underlying substitution has, nor an their implementations be ompared.Thus, it helps to have a hoie of expliit substitution systems whose properties havealready been established. This is witnessed by the reent theorem prover ALF, whihis formally based on Martin-L�of's type theory with expliit substitution [Mag95℄.Another justi�ation for expliit substitution in theorem proving is that some re-2

searhers believe \tatis" an be replaed by the notion of inomplete proofs, whihare believed to need expliit substitutions [Mu~n97, Mu~n96, Mu~n97a, Mu~n98, Mag95℄.Similarly, the area of implementations of funtional and logi languages has witnessedan important researh in expliit substitutions, e.g. [Ben97, NW90, DHK95℄.The last �fteen years have seen an inreasing interest in formalising substitutionexpliitly; various aluli inluding new operators to denote substitution have beenproposed. Amongst these aluli we mention C��� [dB78℄; the aluli of ategorialombinators [Cur86℄; �� [ACCL91℄, ��* [CHL96℄, ��SP [R��o93℄, referred to as the��-family; �� [BBLRD96℄, the aluli of [FKP99℄ and �� [Mu~n97℄, whih are desen-dants of the ��-family; '�BLT [KN93℄, ��-alulus [LRD95℄, �x [BR96℄, �s [KR95℄,�t [KR98℄, �se [KR97℄, and �l [Gui99b, Gui99a℄. All these aluli (exept �x) aredesribed in a de Bruijn setting where natural numbers play the role of variablesand the set of terms � on whih substitution will be made expliit is de�ned by:� ::= IN j (��) j (��). But, why so many varieties of systems of expliit substitu-tions and the searh still ontinues? The following setion attempts to explain:The ��-alulus (f. [ACCL91℄) reets in its hoie of operators and rules thealulus of ategorial ombinators (f. [Cur86℄). The main innovation of the ��-alulus is the division of terms in two sorts: sort term and sort substitution.Caluli �a la �s depart from this style of expliit substitutions in two ways. First,they keep the lassial and unique sort term of the �-alulus. Seond, they do notuse some of the ategorial operators, espeially those whih are not present in thelassial �-alulus. The main reason for doing so, is to remain loser to the �-alulusfrom an intuitive point of view, rather than a ategorial one.But, what properties does one look for in aluli that are to be the basis forprogramming languages? We attempt to list some of those desired properties foraluli of expliit substitutions:1. Termination or Strong Normalisation (SN): For a alulus of expliitsubstitutions �subst, does the underlying alulus of substitutions subst ter-minate? This question is of ourse important. One does not want to inludenon-terminating rules to the �-alulus.2. Conuene (CR): Is the substitution alulus �subst onuent on:(a) Ground terms? (I.e. terms of � above with expliit substitutions)(b) Open terms? It is possible to onsider, besides the lassial variables (nownumbers), real variables (whih orrespond to meta-variables in the las-sial setting). The terms obtained with this extended syntax are alledopen terms and they an be onsidered as ontexts, the new variables or-responding to plae-holders. The interest in studying the aluli on openterms is that they allow, for instane, the representation of inompleteproofs where the plae-holder stands for the still unknown part of theproof. Caluli on open terms have also provided the tools to prune thesearh spae in uni�ation algorithms (f. [DHK95℄).3. Simulation of �-redution: If a evaluates in the �-alulus (using only �-redution) to b, does a evaluate to b in the �subst-alulus (using the �-rule andthe substitutions rules)? 3

4. Preservation of Termination (PSN): If a terminates in the �-alulus, doesit terminate in the �subst-alulus?�� enjoyed properties 1, 2a, and 3 but not 2b. Therefore, ��* [HL89, CHL96℄ wasproposed. ��* is a variant of �� that is onuent on open terms. Nevertheless, 4remained unknown for �� or ��* until Melli�es proved that ��* (as well as both therest of the ��-family and the ategorial ombinators) does not preserve SN [Mel95℄.This led to the reation of �� [Les94℄, �x [BR96℄, �s [KR95℄ and �se [KR97℄ aluli.[BBLRD96℄ and[BR96℄ establish properties 1, 2a, 3 and 4 for �� and �x but the �rstalulus has not been extended on open terms and the seond has been extendedon open terms but it is not lear whih properties hold [LR98℄. [KR97℄ establishesproperties 2 and 3 for �se, but property 1 remains an open problem for �se andGuillaume [Gui99b, Gui99a℄ showed that PSN (property 4) fails for �se. Moreover,[Gui99b, Gui99a℄ proposes a alulus �l that has all the properties 1..4, but with arestrited form of 3. In this paper, we avoid any further disussion of the labelledalulus �l beause it di�ers from aluli �a la �� and �s in that it uses labels and sorelating it to the other styles is not straightforward.��* satis�es 1, 2, and 3, whereas �� ahieves 1, 2a, 3 and 4 by removing theomposition operator. However, [FKP99℄ provides two aluli of expliit substitutionsthat have the omposition operator and still have PSN. Remark that �� and the aluliof [FKP99℄ do not enjoy 2b.The ��-alulus (f. [Mu~n97℄) has been proposed as a alulus whih preservesstrong normalisation and is itself onuent on open terms. In other words, �� satis�es1, 2, and 4. The ��-alulus works with two new appliations that allow the passageof substitutions within lassial appliations only if these appliations have a headvariable. This is done to ut the branh of the ritial pair whih is responsible forthe non-onuene of �� on open terms. Hene, �� preserves strong normalisation andis itself onuent on open terms. Unfortunately, �� is not able to simulate one step�-redution as shown in [Mu~n97℄. Instead, it simulates only a \big step" �-redution.This is our reason for not disussing it further in this paper.Another line of expliiting substitutions has been made in [KN93, KR95, KR97,KRW98℄. In [KN93℄, the �-alulus was rewritten using a notation inuened stronglyby de Bruijn's notation for Automath [NGdV94℄. In that notation [KN93℄, every �-term is simply a sequene of items followed by a variable. This item notation, allowedalso the introdution of so alled substitution items and the inlusion of rules thatexpliit the passage of substitution. Alas however, the alulus of [KN93℄ does notsatisfy 1 nor 2 nor 4. For this reason, [KR95℄ set out to �nd the part of the alulusof [KN93℄ that satis�es as muh of 1 to 4 as possible. The solution was to extendthe �-alulus with expliit substitutions by turning de Bruijn's meta-operators intoobjet-operators. (Mention of a very lose alulus to the �s-alulus an be alreadyfound in [Cur86℄, exerise 1.2.7.2, where referene to previously unpublished notesof Y. Lafont is given.) The resulting alulus �s remains intuitively as lose to the�-alulus as possible for a alulus of expliit substitution. �s (like ��) satis�es allof 1, 2a, 3 and 4. Moreover, �s has an extension �se (f. [KR97℄) that is onuenton open terms (hene �se satis�es 2a and 2b). Also, �se satis�es 3. It is still an openproblem whether �se satis�es 1 and it has been established in [Gui99b, Gui99a℄ thatit does not satisfy 4.The presene of suh varieties of aluli of expliit substitutions, makes it desirable4

to �nd a ommon framework between both styles so that maybe their omplementaryproperties an be ombined.All the above disussion was onerned with the type-free �-alulus extendedwith expliit substitutions. However, type theory is at the heart of the theory andimplementation of programming languages and theorem provers. For this reason,no alulus an really bridge the gap between theory and implementation and be auseful one for programming languages and theorem proving if there was no way toaommodate types.The results onerning typed aluli are the following. �� does not preserve strongnormalisation and the ounterexample given in [Mel95℄ to prove it happens to be avery deent typable term. Therefore, typed �� is not SN. On the other hand, ��preserves strong normalisation and its simply typed version is strongly normalising.The same applies to �s and �x whih, (like ��) preserve strong normalisation and havesimply typed versions that are strongly normalising. [ACCL91℄ had typed versions of�� but only reently, �� (with open terms) has been shown to be weakly normalising[GL97℄. Extending seond and higher order �-alulus with expliit substitutionsremains an ative subjet of researh[Bon99, Blo99, Blo97, Mu~n97b℄.We believe that a omparison between the two styles and a formulation of �s and�se in the ��-style ould be useful to better understand one alulus in terms of theother. Therefore, we start by fousing on ��, ��*, ��, �s, �t and �u. All thesealuli are rewriting systems on a set of terms that ontain the lassial terms of the�-alulus (pure terms). All of them possess a rule to start �-redution (the only ruleof the �-alulus) and a set of rules to ompute the substitution generated by thisstarting rule.Sine aluli with expliit substitutions are intended to extend the lassial �-alulus, it is expeted that �-redution ould be reovered in some way within thesealuli, for instane, if �� is an expliit substitution alulus, we may have for pureterms a; b:1. one step simulation: if a!� b then a!!�� b.2. big step simulation: if a!!� b and b is in �-normal form then a!!�� b.The aluli ��, ��*, ��, �s, �t, �u have the property of one step simulation andwe onentrate in this paper on the adequay of this simulation whih implies thebig step one, leaving the study of the adequay of the latter for future work. Ourriterion of adequay is essentially the following: we say that the alulus ��1 is moreadequate than the alulus ��2 if for every simulation of a lassial �-step in ��2 thereis a shorter simulation in ��1.There are reasons why we do not onsider the other aluli in our study of adequayas de�ned in this paper. For example, �� (the only alulus that) simulates just abig step �-redution (and hene it does not make sense to study its adequay inour sense), whereas �se, '�BLT and ��SP are less interesting beause they are lesswell-behaved aluli of expliit substitutions.In setion 1 we introdue the formal mahinery, reall the various aluli and theirproperties, present the �u-alulus and give the formal statement of the riterion ofadequay to simulate �-redution.In setion 2 we use our riterion to ompare several of the above mentioned aluli.We onlude that �t is more adequate than ��, and that �u is more adequate than�s, �� and ��*. 5

In setion 3 we give ounterexamples to show the aluli that are inomparableaording to our riterion, namely: �t annot be ompared with �u, �s, �� and ��*;�u annot be ompared with �� and �t; �s annot be ompared with �t, ��, ��and ��*. We show also that, surprisingly, no omparison is possible between any twoaluli in the ��-style.In Setion 4, we provide the �! and �!e aluli, whih are two-sorted: sort termand sort substitution, and hene loser to ��. When restriting these aluli to thesort term we obtain aluli whih are isomorphi to �s and �se, respetively.In Setion 5 we give the isomorphisms between �! and �s and between �!e and�se whih enable us to establish that �! (resp. �!e) has the same properties of �s(resp. �se).In Setion 6 we reall the typed versions of �s, �se and �� and introdue thetyped �! and �!e aluli. We prove that the isomorphism introdued in Setion 5preserves types and we onlude by establishing Subjet Redution for our aluli.1 PreliminariesWe assume the reader familiar with de Bruijn indies (f. [dB72℄) and with notionsof redution as in [Bar84℄. In partiular, a = b is used to mean that a and b aresyntatially idential; and for a redution notion R, we denote with =!R the reexivelosure of R , with !!R or just !! the reexive and transitive losure of R and with!!+R or just !!+ or just !+ the transitive losure of R . When a!! b we say thereexists a derivation from a to b . By a!!n b, we mean that the derivation onsists ofn steps of redution and all n the length of the derivation. The following is needed:De�nition 1 Let R be a redution on A . We de�ne (loal) onuene or (W)CR((weakly) Churh Rosser), normal forms and normalisation as follows:1. R is WCR when 8a; b; 2 A 9d 2 A ((a ! b ^ a !)) (b !! d ^ !! d)).2. R is CR when 8a; b; 2 A 9d 2 A ((a !! b ^ a !!)) (b !! d ^ !! d)).3. a 2 A is an R-normal form (R-nf for short) if there is no b 2 A suh thata! b .4. b has a normal form if there exists a nf a suh that b!! a .5. R is strongly normalising (SN) if there is no in�nite sequene (ai)i�0 where8 i � 0 , ai ! ai+1 .Note that onuene of R guarantees uniity of R-normal forms and SN ensures theirexistene. When there exists a unique R-normal form of a term a , it is denoted byR(a) .1.1 The lassial �-alulus in de Bruijn notationWe de�ne �, the set of terms with de Bruijn indies, as follows:� ::= IN j (��) j (��)6

We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural num-bers). Furthermore, we assume the usual onventions about parentheses and avoidthem when no onfusion ours. We say that a redution ! is ompatible on � whenfor all a; b; 2 �, we have a! b implies a ! b , a! b and �a! �b.In order to de�ne �-redution �a la de Bruijn, we must de�ne the substitution of avariable n for a term b in a term a. Therefore, we need to update the term b:De�nition 2 The updating funtions U ik : � ! � for k � 0 and i � 1 are de�nedindutively:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a)) U ik(n) = � n+ i� 1 if n > kn if n � k :Now we de�ne the family of meta-substitution funtions:De�nition 3 The meta-substitution at level j , for j � 1 , of a term b 2 � in a terma 2 � , denoted affj bgg , is de�ned indutively on a as follows:(a1a2)ffj bgg = (a1ffj bgg) (a2ffj bgg)(�a)ffj bgg = �(affj+ 1 bgg) nffj bgg = 8<: n� 1 if n > jU j0 (b) if n = jn if n < jThe following gives the properties of meta-substitution and updating (f. [KR95℄):Lemma 4 Let a; b; 2 �. We have:1. for k < n < k + i : U i�1k (a) = U ik(a)ffn bgg .2. for l � k < l + j : U ik(U jl (a)) = U j+i�1l (a) :3. for k + i � n : U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :4. for i � n : affi bggffn gg = affn+ 1 ggffi bffn� i+ 1 gggg :5. for l + j � k + 1 : U ik(U jl (a)) = U jl (U ik+1�j(a)) .6. for n � k + 1 : U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :De�nition 5 �-redution is the least ompatible redution on � generated by:(�-rule) (�a) b!� aff1 bggThe �-alulus (�a la de Bruijn), is the redution system whose only rewriting rule is�.Theorem 6 The �-alulus �a la de Bruijn is onuent.
7

(Beta) (�a) b �! a [b � id℄(VarId) 1 [id℄ �! 1(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [1 � (s Æ ")℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(ShiftId) " Æ id �! "(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)Figure 1: The ��-rules1.2 Caluli �a la ��In this setion, we introdue the ��-aluli (for � 2 f�; �DB ; �*; �g) whih work on2-sorted terms: (proper) terms and substitutions. The ��-alulus was introduedin [ACCL91℄ and the version presented there uses only the de Bruijn index 1 andthe other de Bruijn indies are oded. We introdue here another version, denoted��DB , whih uses all the de Bruijn indies and hene is at the same level with theother aluli studied in this paper. We introdue ��DB beause it ould be arguedthat the oding of the de Bruijn indies ould hange the status of �� with respetto adequay results. However, we show that �� and ��DB have the same behaviouras far as omparison of adequay with the other aluli studied here is onerned.For every �, we use a; b; ; : : : to range over the set of terms ��t, and s; t; : : : torange over the set of substitutions ��s. We use �� to denote the set of rules of the��-alulus (whih ontains a rule (Beta)) and take the �-alulus to be the aluluswhose rules are ���f(Beta)g. The ��-alulus is the redution system (��;!��),where !�� is the least ompatible (with the orresponding operators) redution on�� generated by the set of rules ��.For every � 2 f�; �*; �g (see [ACCL91, CHL96, BBLRD96℄), the �-alulus is SNand the ��-alulus is onuent on losed terms. Moreover, only the ��*-alulus isonuent on open terms (terms with variables of sort term and substitution) and onlythe ��-alulus satis�es Preservation of Strong Normalisation (PSN) (all the aluliin the ��-family were shown in [Mel95℄ not to possess PSN; the ��-alulus removesthe omposition of substitutions to guarantee PSN).De�nition 7 (The ��-alulus) Terms and substitutions of the ��-alulus are givenby: ��t ::= 1 j ��t��t j ���t j ��t[��s℄ and ��s ::= id j " j ��t ���s j ��s Æ��s.The set of rules �� is given in Figure 1.For every substitution s we de�ne the iteration of the omposition of s indutively8

(Id) a[id℄ �! a(IdR) s Æ id �! s(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! sFigure 2: The rules added to �� to get ��SPas s1 = s and sn+1 = s Æ sn. We use the onvention s0 = id . Note that the only deBruijn index used is 1 , but we an ode n by the term 1["n�1℄ . By so doing, wehave � � ��t .�-redution of the �-alulus is interpreted in the ��-alulus in two steps. The�rst, obtained by the appliation of (Beta), onsists in generating the substitution.The seond step exeutes the propagation of this substitution, using the set of the�-rules, until the onerned variables are reahed. The reader is invited to hek that(��521)(�31)!!�� �4(�41)1.It is well known that the ��-alulus is not onuent on open terms, furthermoreit is not even loally onuent. To obtain loal onuene four rules must be added,and the alulus thus obtained is alled the ��SP -alulus.De�nition 8 The ��SP -alulus is obtained by adding to �� the rules given in Fig-ure 2 and by deleting the rules (VarId) and (ShiftId), sine both of them are instanesof the new rules.Even the ��SP -alulus is not onuent on open terms (terms whih admit meta-variables of both sorts), as shown in [CHL96℄, but it is onuent when the set of openterms is restrited to those whih admit metavariables of sort term only [R��o93℄.De�nition 9 (The ��DB-alulus) The syntax of the ��DB-alulus is exatly thatof the ��-alulus exept that 1 is replaed by IN. The set, ��DB , of rules of the��DB-alulus is �� where (VarId) is replaed by a[id℄! a plus the three extra rules:n+ 1[a � s℄! n[s℄, n["℄! n+ 1 and n[" Æs℄! n+ 1[s℄.De�nition 10 (The ��-alulus) Terms and substitutions of the ��-alulus aregiven by: ��t ::= IN j ��t��t j ���t j ��t[��s℄ and ��s ::=" j * (��s) j ��t.For a 2 ��t, s 2 ��s, *n (s) is given by: *0 (s)=s, *n+1 (s)=* (*n (s)) and a[s℄i by:a[s℄0=a, a[s℄n+1=(a[s℄n)[s℄. The set of rules �� is given in Figure 3.De�nition 11 (The ��*-alulus) Terms and substitutions of the ��*-alulus aregiven by:��t* ::= IN j ��t*��t* j ���t* j ��t*[��s*℄��s* ::= id j " j * (��s*) j ��t* � ��s* j ��s* Æ ��s*.For s 2 ��s*, sn is given by: s1 = s, sn+1 = s Æ sn and as in De�nition 10, we de�ne*n (s) by: *0 (s)=s, *n+1 (s)=*(*n (s)).The set of rules ��* is given in Figure 4. 9

(Beta) (�a) b �! a [b=℄(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [*(s)℄)(FVar) 1 [a=℄ �! a(RVar) n+ 1 [a=℄ �! n(FVarLift) 1 [*(s)℄ �! 1(RVarLift) n+ 1 [*(s)℄ �! n [s℄ ["℄(VarShift) n ["℄ �! n+ 1Figure 3: The ��-rules1.3 Caluli �a la �sCaluli �a la �s avoid introduing two di�erent sets of entities and insist on remaininglose to the syntax of the �-alulus using de Bruijn indies1. Next to � and ap-pliation, they introdue substitution (�; &) and updating ('; �) operators. We shallintrodue three suh aluli: �s, �t and �u. We let a; b; ; et. range over the sets ofterms �s, �t and �u. A term ontaining neither substitution nor updating operatorsis alled a pure term. For � 2 fs; t; ug, the ��- and �-aluli are de�ned as in theprevious setion (take �- or &-generation instead of Beta) from a set of rules �� or �.The �s-alulus was introdued in [KR95℄ with the aim of providing a alulus thatpreserves strong normalisation and has a onuent extension on open terms [KR97℄.The �t-alulus is a variant of �s that updates partially, as the ��-aluli do. The �u-alulus is introdued here for the �rst time and is only a slight (yet more adequate)variation of �s. In [KR95, KR98℄, we establish the properties of these aluli whihwe list in the following theorem.Theorem 12 For � 2 fs; t; ug, the �-alulus is SN, the ��-alulus is onuent onlosed terms and satis�es PSN. Moreover, the ��-alulus for � 2 fs; ug simulates�-redution, is sound and has a onuent extension on open terms.De�nition 13 (The �s-alulus) Terms of the �s-alulus are given by:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :The set of rules �s is given in Figure 5.De�nition 14 (The �t-alulus) Terms of the �t-alulus are given by:1It an be argued that beause we use de Bruijn indies, we remain lose to de Bruijn's philosophyrather than to the syntax of the �-alulus and that instead it is aluli like �x of [BR96℄ and ��of [LRD95℄ that remain lose to the syntax of the lambda alulus. So, we need to explain here thatby staying with the syntax of the �-alulus we mean that we do not introdue substitutions andother ategorial operators separately as in ��, but that a term for us is either an abstration term,an appliation term, a substitution term or an updating term.10

(Beta) (�a) b �! a [b � id℄(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [*(s)℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(Varshift1) n ["℄ �! n+ 1(Varshift2) n [" Æ s℄ �! n+ 1 [s℄(FVarCons) 1 [a � s℄ �! a(RVarCons) n+ 1 [a � s℄ �! n [s℄(FVarLift1) 1 [*(s)℄ �! 1(FVarLift2) 1 [*(s) Æ t℄ �! 1 [t℄(RVarLift1) n+ 1 [*(s)℄ �! n[s Æ "℄(RVarLift2) n+ 1 [*(s) Æ t℄ �! n[s Æ (" Æ t)℄(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(ShiftCons) " Æ (a � s) �! s(ShiftLift1) " Æ *(s) �! s Æ "(ShiftLift2) " Æ (*(s) Æ t) �! s Æ (" Æ t)(Lift1) *(s)Æ *(t) �! *(s Æ t)(Lift2) *(s) Æ (*(t) Æ u) �! *(s Æ t) Æ u(LiftEnv) *(s) Æ (a � t) �! a � (s Æ t)(IdL) id Æ s �! s(IdR) s Æ id �! s(LiftId) *(id) �! id(Id) a [id℄ �! aFigure 4: The ��*-rules
11

�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destrution n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destrution 'ik n �! � n+ i� 1 if n > kn if n � kFigure 5: The �s-rules�t ::= IN j �t�t j ��t j �t & i�t j �k�t where i � 1 ; k � 0 :For a 2 �t, we de�ne �0ka = a and �i+1k (a) = �k(�ik(a)). The set of rules �t is given inFigure 6.The main di�erene between �t and �s an be summarised as follows: the �t-alulusgenerates a partial updating when a substitution is evaluated on an abstration (i.e.introdues an operator �0 in the &-�-transition rule) whereas the �s-alulus produesa global updating when performing substitutions (i.e. introdues a 'i0 operator in the�-destrution rule, ase n = i). The �t-alulus shares this mehanism of partialupdatings with the ��-auli, �� and �� sine all of them introdue an updatingoperator in their (Abs)-rule.We introdue now an adequate variation on �s where in the �-destrution rule,the ase n = i = 1 is treated in a more adequate way whih does not introdue theoperator '10 sine the omputation '10(b) will �nally evaluate to b.De�nition 15 (The �u-alulus) Terms of the �u-alulus are given by:�u ::= IN j �u�u j ��u j �u�j�u j 'ik�u where i � 2; j � 1; k � 0 :and the set of rules �u is given in Figure 7.1.4 The �se-alulusWe introdue the open terms and the rules that extend �s to obtain the �se-alulus.De�nition 16 The set of open terms, noted �sop is given as follows:�sop ::= V j IN j �sop�sop j ��sop j �sop �j�sop j 'ik�sop where j; i � 1 ; k � 0and where V stands for a set of variables, over whih X , Y , ... range. We take a; b; to range over �sop. Furthermore, losures, pure terms and ompatibility are de�nedas for �s. 12

&-generation (�a) b �! a &1 b&-�-transition (�a) & ib �! �(a & i+1 �0(b))&-app-transition (a1 a2) & ib �! (a1 & ib) (a2 & ib)&-destrution n & ib �! 8<: n� 1 if n > ib if n = in if n < i�-�-transition �k(�a) �! �(�k+1 a)�-app-transition �k(a1 a2) �! (�k a1) (�k a2)�-destrution �k n �! � n+ 1 if n > kn if n � kFigure 6: The �t-rules
�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destrution n�ib �! 8>><>>: n� 1 if n > i'i0 b if n = i > 1b if n = i = 1n if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destrution 'ik n �! � n+ i� 1 if n > kn if n � kFigure 7: The �u-rules

13

�-�-transition (a�ib)�j �! (a�j+1) �i (b �j�i+1) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a�j�i+1 b) if k + i � j'-�-transition 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l+ jFigure 8: The new rules of the �se-alulusWorking with open terms one loses onuene as shown by the following oun-terexample:((�X)Y)�11! (X�1Y)�11 ((�X)Y)�11! ((�X)�11)(Y �11)and (X�1Y)�11 and ((�X)�11)(Y �11) have no ommon redut. Moreover, the aboveexample shows that even loal onuene is lost. But sine ((�X)�11)(Y �11) !!(X�21)�1(Y �11), the solution to the problem seems at hand if one has in mind theproperties of meta-substitutions and updating funtions of the �-alulus in the Bruijnnotation (f. Lemma 4). These properties are equalities whih an be given a suitableorientation and the new rules, thus obtained, added to �s yield a rewriting systemwhih happens to be loally onuent. For instane, the rule orresponding to theMeta-substitution lemma (Lemma 4.4) is the �-�-transition rule. The addition of thisrule solves the ritial pair in our ounterexample, sine now we have (X�1Y)�11!(X�21)�1(Y �11).De�nition 17 The set of rules �se is obtained by adding the rules given in Figure 8to the set �s. The �se-alulus is the redution system (�sop;!�se) where !�se isthe least ompatible redution on �sop generated by the set of rules �se. The alulusof substitutions assoiated with the �se-alulus is the rewriting system generated bythe set of rules se = �se � f�-generationg and we all it se-alulus.In [KR97℄ we proved the following:Theorem 18 (WN and CR of se) The se-alulus is weakly normalising and on-uent.Lemma 19 (Simulation of �-redution) Let a; b 2 �, if a!� b then a!!�se b .Theorem 20 (CR of �se) The �se-alulus is onuent on open terms.Theorem 21 (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .1.5 The riterion of adequayWe give now a formal presentation of the riterion of adequay we use to omparethe di�erent aluli. 14

De�nition 22 Let a; b 2 � suh that a !� b. A simulation of this �-redution in�� for � 2 f�; �*; �; s; t; ug is a ��-derivation a!r !!� �() = b where r is the rulestarting � ((Beta) for the aluli in the ��-style and �- or &-generation for the aluliin the �s-style) applied to the same redex as the redex in a !� b. We say that the��-alulus simulates �-redution if every �-redution a!� b has a simulation in ��.The following was shown for eah of the aluli we onsider (see the relevant artiles):Lemma 23 For � 2 f�; �*; �; s; t; ug, �� simulates �-redution.De�nition 24 Let �1; �2 2 f�; �*; �; s; t; ug. The ��1-alulus is more adequate (insimulating one step �-redutions) than the ��2-alulus, denoted ��1 � ��2, if1. for every lassial �-redution a!� b and every ��2-simulation a!!n��2 b thereexists a ��1-simulation a!!m��1 b suh that m � n.2. there exist a lassial �-redution a !� b and a ��1-simulation a !!m��1 b suhthat for every ��2-simulation a!!n��2 b we have m < n.It is easy to verify that � is transitive and asymmetri.2 Establishing adequayIn this setion we put the riterion at work. The main idea is to de�ne funtions(denoted with Q) whih evaluate the length of the derivations of ertain families ofterms that ontain the ontrata of the (Beta)- rules (eg. a[b=℄ in ��). For �� itis possible to prove that all these derivations have the same length, whereas for ��*our funtions ompute just the length of the shortest derivation. To de�ne theseQ-funtions we need to de�ne another funtions (denoted with M) whih evaluatethe length of the derivations of updatings. For the sope of this setion, only theM -funtions are needed for �t and �u.2.1 �t is more adequate than ��We introdue a set of terms �� � �t on whih indution will be used to de�ne M t(a funtion that omputes the length of derivations of updatings in �t). We aremainly interested in pure terms, whih are ontained in ��, but the introdution of�� is neessary sine it provides a strong indution hypothesis to prove the auxiliaryresults needed.De�nition 25 �� ::= IN j���� j��� j�k�� , where k � 0. The length of terms in �� isde�ned by: L�(n) = 1; L�(ab) = L�(a)+L�(b)+1; L�(�a) = L�(�ka) = L�(a)+1 .By indution on a 2 �� we mean indution on L�(a).Remark 26 Let a 2 �� and k � 0, then L�(a) � L�(t(�ka)).Proof By indution on a. The interesting ase is when a = �mb. By IH we haveL�(b) � L�(t(�mb)) and sine L�(a) > L�(b), we apply again the IH (now to t(�mb)) toobtain L�(t(�mb)) � L�(t(�k(t(�mb)))) = L�(t(�k(�mb))). Hene, L�(a) � L�(t(�ka)).15

Remark 27 It is easy to show by indution on a that if a 2 �� and a !t b thenb 2 ��.De�nition 28 We de�ne M t : �� ! IN by indution as follows:M t(n)=1M t(ab)=M t(a)+M t(b)+1M t(�a)=M t(a)+1M t(�ka)=M t(t(�ka))+M t(a)Remark that the previous de�nition is orret thanks to Remark 26: M t(�ka) an beindutively de�ned in terms of M t(t(�ka)) beause L�(t(�ka)) � L�(a) < L�(�k(a)).Lemma 29 For a 2 ��, every t-derivation of �ka to its t-normal form has lengthM t(a).Proof It is immediate to show that !t has the diamond property on ��, i.e. fora 2 ��, if a !t b and a !t then either b = or there exists d suh that b !t dand !t d. Therefore it is easy to onlude that all the derivations of a term to itsnormal form have the same length.Now we show that any derivation of �k(a) to its normal form has length M t(a),by indution on a and analyzing just one derivation.� If a = m it is obvious.� If a = b we onlude by reduing at the root and applying I.H..� If a = �b we onlude as in the previous ase.� If a = �k(�m(b)) we �rst redue �m(b) to its normal form t(�m(a) in M t(a1)steps by I.H. and then, again by I.H. (whih an be applied beause of Remark26) we take �k(t(�m(a))) into its normal form in M t(t(�n(a)).Corollary 30 For a 2 ��, all the t-derivations of �ika to its t-normal form have thesame length, namely (i� 1)M t(t(a)) +M t(a).Proof Prove �rst by indution on a 2 ��, using Remark 26, that M t(t(a)) =M t(t(�ka)), then use this result to prove, by indution on j � 1, that M t(t(a)) =M t(t(�jka)). Use now De�nition 28 and the two previous results to show, by indutionon l � 1, that M t(�lk(a)) = lM t(t(a)) +M t(a). Finally, use Lemma 29 and the lastresult with l = i � 1 to prove the orollary. Note that the hypothesis a 2 �� (andhene De�nition 25) are essential.Now we are going to prove the orresponding results for ��.De�nition 31 �" ::= IN j �"�" j ��" j �"[*k (")℄ , where k � 0. The length ofterms in �" is given by:L"(n) = 1 L"(ab) = L"(a) + L"(b) + 1 L"(�a) = L"(a[*k (")℄) = L"(a) + 1 .Remark 32 Let a 2 �" and k � 0, then L"(a) � L"(�(a[*k (")℄)).Remark 33 If a 2 �" and a!� b then b 2 �".16

De�nition 34 For k � 0, we de�ne M�k : �� ! IN as follows:M�k (n) = � 2k + 1 if n > k2n� 1 if n � kM�k (ab) =M�k (a) +M�k (b) + 1M�k (�a) =M�k+1(a) + 1M�k (a[*p (")℄) =M�k (�(a[*p (")℄)) +M�p (a)Lemma 35 For a 2 �", all the �-derivations of a[*k (")℄ to its �-nf have lengthM�k (a).Proof Indution (on the weight used in [BBLRD96℄ to show SN for �) and aseanalysis.Corollary 36 For a 2 �", all the �-derivations of a[*k (")℄i to its �-normal formhave the same length, namely (i� 1)M�k (�(a)) +M�k (a).Lemma 37 Let b 2 �, for every derivation b[*k (")℄i !!m� �(b[*k (")℄i) there existsn � m suh that �ipb!!nt t(�ipb).Proof Prove �rst that for every b 2 � and k � 0, Mk(b) � M(b) by indution onb 2 �. Conlude using lemmas 29 and 35.De�nition 38 Let a; b 2 � and i � 0, we de�ne Q�i (a; b) by indution on a:Q�i (n; b) =8<: 2i+ 1 if n > i+ 12n� 1 if n < i+ 1i(1 +M�0 (b)) + 1 if n = i+ 1Q�i (d; b) = Q�i (; b) +Q�i (d; b) + 1Q�i (�; b) = Q�i+1(; b) + 1Lemma 39 Let a; b 2 � and i � 0, all the �-derivations of a[*i (b=)℄ to its �-nf havethe same length, namely Q�i (a; b).Proof Easy indution on a 2 �. Remark that for a = n there is only one derivationwhose length is easy to ompute. When n = i+ 1, use Corollary 36.Lemma 40 Let a; b 2 � and i � 0, there exists a derivation of a& i+1(�i0b) to its t-nfwhose length is less than or equal to Q�i (a; b).Proof By indution on a reduing always at the root. For the ase a = i+ 1 usethe fat that M�0 (b) �M t(b) (indution on b 2 �) and Corollary 30.Theorem 41 �t is more adequate than ��.Proof Show by indution on a that for a 2 �, and a ��-derivation a!B b!!m� �(b),there exists n � m where a!&�gen !!nt t().The interesting ase is a = (�d)e !B d[e=℄ !!m �(d[e=℄). By Lemmas 39 and 40,m = Q�0 (d; e) and there exists a derivation d &1e!!nt t(d &1e) suh that n � Q�0(d; e).17

To hek the seond ondition in De�nition 24 remark that there are an in�nityof ases for whih the inequality is strit. For instane, take (�� : : : �n)a with m �'sand n > m > 1. It is easy to hek, using the funtion Q�m�1 that 3m� 2 redutionsare needed to simulate �-redution in ��, whereas only m+1 redutions are suÆientin �t. Also, for m > n the number of redutions needed in �� is also stritly greaterthan the number needed in �t.2.2 �u is more adequate than ��*De�nition 42 For k � 0 and i � 1, we de�ne M*ki : �! IN by indution as follows:M*ki(n) = � 2n� 1 if n < k + 12(k + i)� 1 if n � k + 1M*ki(ab) =M*ki(a) +M*ki(b) + 1M*ki(�a) =M*k+1 i(a) + 1Lemma 43 For a 2 �, every �*-derivation of a[*k ("i)℄ to its �*-nf has lengthM*ki(a).Proof By indution on a, ontrolling all the possible �*-derivations.De�nition 44 For k � 0 and i � 1, we de�ne Q*k : � � � ! IN by indution asfollows:Q*k(n;) =8>><>>: 2n� 1 if n < k + 1M*0 n�1()+n+1 if n = k + 1; k > 01 if n = 1; k = 02k + 3 if n > k + 1Q*k(ab;) = Q*k(a;) +Q*k(b;) + 1Q*k(�a;) = Q*k+1(a;) + 1Lemma 45 If a; b2�, the shortest �*-derivation of a[*k(b �id)℄ to its �*-nf has lengthQ*k(a; b).Proof By indution on a ontrolling all the possible �*-derivations.De�nition 46 For k � 0 and i � 2, we de�ne Mu : �! IN by indution as follows:Mu(n) = 1 Mu(ab) =Mu(a) +Mu(b) + 1 Mu(�a) =Mu(a) + 1Lemma 47 For a 2 �, every u-derivation of 'ika to its u-normal form has lengthMu(a).Proof By indution on a noting that derivations of 'ika begin with redutions atthe root sine a 2 �.Lemma 48 For every a; b 2 �, k � 0 there exists a u-derivation of a�k+1b to its u-nfwhose length is less than or equal to Q*k(a; b).Proof By indution on a. The interesting ase is a = k+ 1 and the result followsfrom Lemmas 43, 47 and the fatMu(b) �M*0i(b), whih is easily proved by indutionon b. 18

Theorem 49 �u is more adequate than ��*.Proof Show that for a 2 �, and a ��*-derivation a !Beta b !!m�* �*(b) thereexists n � m where a !��gen !!nu u() by indution on a. The interesting ase isa = (�d)e !Beta d[e � id℄!!m �*(d[e � id℄). By Lemmas 45 and 48, m � Q*0(d; e) andthere exists a derivation d �1e!!nu u(d �1e) where n � Q*0(d; e).Now, to hek the seond ondition in De�nition 24, it is easy to ompute to 6the length of the shortest simulation in ��* (there are only 2 suh simulations) of the�-redution (��2)1 ! �2, whereas the only simulation of this redution in �u haslength 4.2.3 �u is more adequate than ��We use the funtions de�ned in Setions 2.1 and 2.2 to show �u is more adequatethan ��.Lemma 50 For every a; b 2 �, i � 0 there exists a u-derivation of a�i+1b to its u-nfwhose length is less than or equal to Q�i (a; b).Proof By indution on a. The interesting ase is a = i+ 1 and the result followsfrom Corollary 36, Lemma 47 and the fatMu(b) � i(1+M�0 (b)), proved by indutionon b.Theorem 51 �u is more adequate than ��.Proof We prove that for every a 2 � and every ��-derivation a !Beta b !!m� �(b)there exists n � m suh that a !��gen !!nu u() by indution on a. The proof isanalogous to the proof of Theorem 49. For the seond ondition, use again the �-redution (��2)1! �2 (see Theorem 49). It is easy to hek that the only simulationof this in �� has length 5.2.4 �u is more adequate than �sThe proof of adequay in this setion is simpler than the previous ones sine �u and�s are losely related. We need �rst a lemma whose proof is by an easy indution onb:Lemma 52 For i � 2 and b 2 � every s-derivation of 'i0(b) to its s-nf is also au-derivation.Lemma 53 For every a; b 2 �, i � 1 and s-derivation of a �ib to its s-nf of lengthm, there exists an u-derivation of a �ib to its u-nf whose length is less than or equalto m.Proof By indution on a. The interesting ase is i > 1 and a = i. Note that theinequality is strit when i = 1 and a = i. The result follows from Lemma 52 whihgives a u-derivation of the same length.Theorem 54 �u is more adequate than �s.19

Proof Show, as in Theorem 49, that 8a 2 � and 8�s-derivation a !��gen b !!mss(b), there exists n � m where a!��gen b!!nu u(). To hek the seond ondition,take (�1)1 ! 1. There is only one simulation in �s with length 4 and only onesimulation in �u with length 3.3 Non-omparable aluliTo show that two aluli, say ��1 and ��2 annot be ompared with our riterion itis enough to �nd two lassial �-redutions a!� b and !� d suh that1. There is a shorter simulation a!!��1 b than the shortest simulation a!!��2 b.2. There is a shorter simulation !!��2 d than the shortest simulation !!��1 d.If this is the ase we say that ��1 and ��2 are inomparable, and we write ��1 6����2.Sine �� works in a more \atomized" way (the *-operator of ��* and �� may bedeomposed in �� as * (s) = 1 � (s Æ ") and the =-operator of �� may be deomposedin �� as a= = a � id) it is tempting to assume that ��, even its version with unodedde Bruijn indies, would be less adequate than �� and ��*. However this is not thease. As a matter of fat there is an in�nite family of terms for whih �� performsbetter than �� and ��*, and furthermore, for these terms, �� also performs betterthan �s and �u.The terms we are going to onsider are (��(2 2))1n, where an is de�ned by in-dution on n as a1 = a, an+1 = a an. There is only one �-redex at the root and(��(2 2))1n !� �(2n2n). We study now the simulation of this �-redution in thedi�erent aluli.Lemma 55 There is a ��-derivation of (��(2 2))1n to its ��-nf whose length is n+9and a ��DB-derivation whose length is 2n+ 7.Proof Here is the derivation in ��:(��(2 2))1n = (��(1["℄ 1["℄))1n ! (�(1["℄ 1["℄))[1n � id℄! �((1["℄ 1["℄)[1 � ((1n � id)Æ ")℄)!�((1["℄ 1["℄)[1 � (1n["℄ � (idÆ "))℄)!!n�1 �((1["℄ 1["℄)[1 � ((1["℄)n � (idÆ "))℄)!�((1["℄[1�(1["℄)n �(idÆ")℄) (1["℄[1�(1["℄)n �(idÆ")℄))!�((1[" Æ(1�(1["℄)n �(idÆ"))℄) (1["℄[1�(1["℄)n �(idÆ")℄))!�((1[(1["℄)n � (idÆ ")℄) (1["℄[1 � ((1["℄)n � (idÆ "))℄))! �((1["℄)n (1["℄[1 � ((1["℄)n � (idÆ "))℄))!!3�((1["℄)n(1["℄)n) = �(2n2n)Here is the derivation in ��DB :(��(2 2))1n ! (�(2 2))[1n �id℄! �((2 2)[1�((1n �id)Æ ")℄)! �((2 2)[1�(1n["℄�(idÆ "))℄)!!n�1�((2 2)[1 � ((1["℄)n � (idÆ "))℄)!!n �((2 2)[1 � (2n � (idÆ "))℄)!�((2[1 � (2n � (idÆ "))℄) (2[1 � (2n � (idÆ "))℄))!�((1[2n � (idÆ ")℄) (2[1 � (2n � (idÆ "))℄))! �(2n (2[1 � (2n � (idÆ "))℄))!!2 �(2n2n)Lemma 56 Every ��-derivation of (��(2 2))1n to its ��-nf has length 4n+ 5.Proof Every derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n=℄! �((2 2)[* (1n=)℄)! �((2[* (1n=)℄) (2[* (1n=)℄))The two ourrenes of 2[* (1n=)℄ annot interat sine no abstration will appear inthe �rst ourrene. Hene it is enough to show that every derivation of 2[* (1n=)℄has length 2n+1. This follows from M�0 (1n) = 2n� 1 (easily shown by indution onn) and Lemma 39. 20

Lemma 57 Every �u-derivation of (��(2 2))1n to its �u-nf has length 4n+ 3.Proof Every �u-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))�11n ! �((2 2)�21n)! �((2�21n) (2�21n))The two ourrenes of 2�21n annot interat and hene it is enough to show thatall derivations of 2�21n have length 2n. There is only one redex in 2�21n, whoseontration gives '20(1n) and by Lemma 47 every derivation of '20(1n) has lengthMu(1n) whih is easily omputable to 2n� 1 by indution on n.Lemma 58 For a 2 �, every s-derivation of 'ika to its s-normal form has lengthMu(a).Proof By indution on a. Idential to the proof of Lemma 47.Lemma 59 Every �s-derivation of (��(2 2))1n to its �s-nf has length 4n+ 3.Proof Analogous to the proof of Lemma 57, using Lemma 58.Lemma 60 There is a �t-derivation of (��(2 2))1n to its �t-nf whose length is 2n+4.Proof Here is the derivation in �t:(��(2 2))1n ! (�(2 2))�11n ! �((2 2)&2�0(1n))!!n�1�((2 2)&2(�01)n)!!n �((2 2)&22n)! �((2&22n) (2&22n))!!2 �(2n2n)Lemma 61 The shortest ��*-derivation of (��(2 2))1n to its ��*-nf has length 4n+7.Proof Every ��*-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n � id℄! �((2 2)[* (1n � id)℄)! �((2[* (1n � id)℄) (2[* (1n � id)℄))Now, the two ourrenes of 2[* (1n � id)℄ annot interat and therefore, it is enoughto verify that the shortest derivation of 2[* (1n � id)℄ to its ��*-nf has length 2n+ 2.This is easily done using Lemma 45 and the fat that M*01(1n) = 2n� 1, proved byindution on n.3.1 �u and �t are inomparableLemmas 57 and 60 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 1 show�u 6� �t.On the other hand, (���3)1 ! ��3 shows that �t 6� �u. In fat, it is easy to hekthat every simulation (there are 5) in �t of (���3)1 ! ��3 has length 6, whereas in�u the unique simulation of this �-redution has length 5.3.2 �u and �� are inomparableLemmas 57 and 55 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 3 show�u 6� �� and �u 6� ��DB . On the other hand, it is easy to show that (�2)1! 1 hasunique simulations in �u, �� and ��DB with respetive lengths 2, 4 and 3. Hene,�� 6� �u and ��DB 6� �u. 21

3.3 �t and �s are inomparableLemmas 59 and 60 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 1 show�s 6� �t.On the other hand, (���3)1! ��3 shows that �t 6� �s. In fat, as in Setion 3.1it is easy to hek that every simulation of this �-redution in �s has length 5.3.4 �t and �� are inomparableThe simulation in �t of (�2)1 ! 1 requires only 2 steps and hene (see Setion 3.2)�� 6� �t and ��DB 6� �t. To show �t 6� ��DB , take the �-redution at the root of(����4)((�1)(�1)). It is possible to ahieve the simulation in 19 steps in ��DB (lets = ((�1)(�1))�id):(����4)((�1)(�1))! (���4)[s℄!!3 ���(4[1�((1�((1�(sÆ"))Æ"))Æ")℄) !���(3[(1�((1�(sÆ"))Æ"))Æ"℄) ! ���(3[1["℄�(((1�(sÆ"))Æ")Æ")℄) !���(2[((1�(sÆ"))Æ")Æ"℄)!!2 ���(2[1["℄["℄�(((sÆ")Æ")Æ")℄) !���(1[((sÆ")Æ")Æ"℄)!!2 ���(1[sÆ"3℄)! ���(1[((�1)(�1))["3℄�(idÆ"3)℄)!���(((�1)(�1))["3℄)! ���(((�1)["3℄)((�1)["3℄))!!2���((�(1[1�("3 Æ")℄)) (�(1[1�("3 Æ")℄)))!!2 ���((�1)(�1))We must prove now that no simulation in �t of this �-redution an be ahieved inless than 19 steps. To do this we are going to prove a general result about �t. InSetion 2.1 we have begun to study �t in order to ompare it with ��. Remark theanalogy between Lemma 29 and Lemma 35 we aim now to a lemma whih shouldorrespond to Lemma 39, i.e. a result whih will enable us to alulate the length ofthe t-derivations of a & ib. Unfortunately, not all the derivations have the same lengthas for ��. Furthermore, there is no easy way to ompute the length of the shortestderivation as for ��* (see Lemma 45). Hene, it does not seem easy to obtain suha general result. However, the shortest derivation of a & ib an always be alulatedwhen a does not ontain appliations (like our example) and we proeed now to showit. The notions used here were introdued in Setion 2.1.De�nition 62 We de�ne N : �� ! IN reursively as follows:N(n) = 0 N(ab) = N(a) +N(b) N(�a) = N(a) N(�ka) =M t(a)Lemma 63 For a 2 ��, every t-derivation of a to its t-nf has length N(a).Proof By indution on the weight P (b) used to prove SN for the t-alulus and aseanalysis. The proof is analogous to the proof of Lemma 29.De�nition 64 Let �� ::= IN j ��� , i.e. �� is the set of �-terms whih do notontain appliations. For i � 1, we de�ne Qti : �� ��� ! IN by indution as follows:Qti(n; b) = � 1 if n 6= iN(b) + 1 if n = iQti(�a; b) = Qti+1(a; �0b) + 1Lemma 65 For a 2 ��, b 2 �� and i � 1 the shortest derivation of a & ib to its t-nfhas length Qti(a; b). 22

Proof Analogous to the proof of Lemma 29 using Lemma 63 for the ase a = i.Now, sine our simulation starts as (����4)((�1)(�1)) ! (���4)&1((�1)(�1)), we usethe previous lemma to onlude that every simulation of the �-redution at the roothas length 20. Therefore, �t 6� ��DB .3.5 �t and ��* are inomparableThe simulation in ��* of (�2)1 ! 1 requires 4 steps and hene (see Setion 3.4)��* 6� �t.To show �t 6� ��* we use the results of the previous subsetion and the fat thatthere is a simulation in ��* of the �-redution at the root in (����4)((�1)(�1)) whoselength is 14. Here it is (we denote again s = ((�1)(�1)) � id):(����4)((�1)(�1))! (���4)[s℄!!3 ���(4[*3 (s)℄!!3 ���(1[s Æ "3℄)!���(1[((�1)(�1))["3℄ � (idÆ "3)℄)! ���(((�1)(�1))["3℄)!���(((�1)["3℄)((�1)["3℄))!!2 ���((�(1[* ("3)℄)) (�(1[* ("3)℄)))!!2 ���((�1)(�1))3.6 �s and �� are inomparableLemmas 59 and 55 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 3 show�s 6� �� and �s 6� ��DB . On the other hand, it is immediate to verify that (�2)1! 1has a unique simulation in �s of length 2 and hene (see Setion 3.2) �� 6� �s and��DB 6� �s.3.7 �s and ��* are inomparableIt is immediate to verify that (�1)1 ! 1 has unique simulations in �s and ��* ofrespetive lengths 3 and 2. Therefore, �s 6� ��*. On the other hand, the simulationsin �s and ��* of (�2)1! 1 (see Setions 3.5 and 3.6) show that ��* 6� �s.3.8 �s and �� are inomparableThe redution (��2)1! �2 has unique simulations in �s and �� of respetive lengths4 and 5. Therefore, �� 6� �s. On the other hand, (�1)1! 1 has a unique simulationin �� of length 2 and hene (see Setion 3.7) �s 6� ��.3.9 �� and �� are inomparableLemmas 56 and 55 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 2 show�� 6� �� and �� 6� ��DB . On the other hand, it is easy to verify that the shortestsimulation in �� (there are only 9), resp. ��DB (there are only 5), of (��2)1 ! �2has length 7, resp. 6, and hene (see Setion 3.8) �� 6� �� and ��DB 6� ��.3.10 �� and ��* are inomparableLemmas 61 and 55 prove that the redutions (��(2 2))1n ! �(2n2n) with n � 1 show��* 6� �� and ��* 6� ��DB . On the other hand, there is a simulation in ��* of(��3)1! �2 of length 7: 23

(��3)1! (�3)[1�id℄ ! �(3[*(1�id)℄)! �(2[(1�id)Æ"℄) !�(2[1["℄�(idÆ")℄) ! �(1[idÆ"℄)! �(1["℄)! �2whereas it is easy to hek that every simulation (there are only 14) in �� of this�-redution has length 8. Therefore, �� 6� ��*.Unfortunately, the previous example does not work to show ��DB 6� ��*. It iseasy to �nd a simulation in ��* of (���3)1 ! ��3 of length 9. However, in ��DBevery simulation of this �-redution has length at least 11. This an be heked byhand or a simple program an do the work.3.11 ��* and �� are inomparableThe shortest simulation (there are only 2) in ��* of (��2)1 ! �2 has length 6 andhene (see Setion 3.8) ��* 6� ��. On the other hand, there is a ��*-simulation of(����4)(1 1)! ���(4 4) of length 16:(����4)(1 1)! (���4)[(1 1) � id℄!!3 ���(4[*3 ((1 1) � id)℄)!!3 ���(1[((1 1) � id)Æ "3℄)!���(1[(1 1)["3℄ � (idÆ "3)℄)! ���((1 1)["3℄)! ���(1["3℄ 1["3℄)!!6 ���(4 4)whereas the length of every simulation in �� an be easily evaluated to 17: in fat,every derivation must start as: (����4)(1 1) ! (���4)[(1 1)=℄ and then apply Lemma39 with i = 0. Therefore, �� 6� ��*.We summarize in the following table the results obtained so far. The table mustbe entered from the left, thus the information given, for instane, in position (1; 3) isto be read as �u � �s, whereas the information in position (3; 1) is �s � �u.�u �t �s �� �� ��*�u = 6�� � � 6�� ��t 6�� = 6�� � 6�� 6���s � 6�� = 6�� 6�� 6���� � � 6�� = 6�� 6���� 6�� 6�� 6�� 6�� = 6����* � 6�� 6�� 6�� 6�� =4 The bridging aluli4.1 The �!-alulusIn order to express �s-terms in the ��-style we are going to split the losure operatorof �� (denoted in a semi-in�x notation as �[�℄) in a family of losures operators thatshall be denoted also with a semi-in�x notation as �[�℄i, where i ranges on the setof natural numbers.We will admit as basi operators the iterations of " and therefore we will have aountable set of basi substitutions "n, where n ranges on the set of natural numbers.By doing so, the updating operators of �s are available in our new syntax as �["n℄i.24

�-generation (�a) b �! a [b=℄1�-app-transition (a b)[s℄j �! (a [s℄j) (b [s℄j)�-�-transition (�a)[s℄j �! �(a[s℄j+1)�-=-destrution n[a=℄j �! 8<: n� 1 if n > ja["j�1℄1 if n = jn if n < j�-"-destrution n["i℄j �! � n+ i if n � jn if n < jFigure 9: The �!-alulusFinally, we introdue a slash operator of sort term! substitution whih trans-form a term a into a substitution a=. This operator may be onsidered as onsingwith id (in the ��-jargon) and has been exploited in the ��-alulus (f. [BBLRD96℄).Here is the formalisation of this syntax and the rewriting rules of �!:De�nition 66 The set of terms of the �!-alulus, noted �!, is de�ned as �!t[�!s,where �!t and �!s are de�ned by the following mutual reursion:Terms �!t ::= IN j �!t�!t j ��!t j �!t[�!s℄jSubstitutions �!s ::= "i j �!t=where j � 1 and i � 0. The set, denoted �!, of rules of the �!-alulus is given inFigure 9.The set of rules of the !-alulus is �! � f��generationg . We use a; b; ; : : : torange over �!t and s; t; : : : to range over �!s.As we said before, the =-operator is present in ��. Furthermore, the onstantsubstitutions "i are exploited in the alulus of Mu~noz [Mu~n97b℄ ��. This alulusis so designed to avoid the non left linear rule (SCons) of ��SP . Moreover, ourindexed substitutions are reminisent of the substitutions of the ��-alulus withlevels onsidered in [LRD95℄.However, there is an essential di�erene between �! and ��: in �� the terms(whih are desribed with variable names) are strati�ed in levels whereas this is notthe ase for the �!-terms. There is also an essential di�erene between �� and �!onerning the substitutions: omposition is a basi operator in �� but it does notexist in �!.It is interesting to realize that the iterations "i as basi operators as well as theindexed substitutions are features whih are embodied in �s sine, as we shall provein the next setion, �! and �s are isomorphi.25

�-=-transition a [b=℄k[s℄j �! a [s℄j+1[b[s℄j�k+1=℄k if k � j=-"-transition a ["i℄k[b=℄j �! (a[b=℄j�i["i℄k if k + i � ja["i�1℄k if k � j < k + i"-"-transition a ["i℄k["l℄j �! (a["l℄j�i["i℄k if k + i < ja["i+l℄k if k � j � k + iFigure 10: The new rules of the �!e-alulus4.2 The �!e-alulusAs we pointed out in Setion 1.3 the �s-alulus is not even loally onuent on openterms. The same negative result an be easily transferred to the �!-alulus.By open terms in this new syntax we mean terms whih admit variables (usuallyalled metavariables) of sort term but not metavariables of sort substitution. Inthe ��-jargon they are often referred as semi-losed or pure terms (f. [R��o93℄).Now, we de�ne formally what we mean by open terms in our new syntax and givethe �!e-rules:De�nition 67 The set of open terms, noted �!op is de�ned as �!top [�!sop, where�!top and �!sop are de�ned by the following mutual reursion:Open Terms �!top ::= V j IN j �!top�!top j ��!top j �!top[�!sop℄jSubstitutions �!sop ::= "i j �!top=where j � 1 and i � 0, and where V stands for a set of variables, over whih X , Y , ...range. We take a; b; to range over �!top and s; t; : : : over �!sop. The set, denoted�!e, of rules of the �!e-alulus is obtained by adding to the set of rules �! the newrules of Figure 10.The set of rules of the !e-alulus is �!e � f��generationg .Remark that the rule shemes =-" and "-" an be merged into the single shemea ["i℄k[s℄j ! a[s℄j�i["i℄k for k + i < jbut they must be kept distint for the ase k+ i = j if SN is to be preserved. In fat,the "-"-sheme, if admitted in the ase k + i = j, may generate an in�nite loop byitself (take for instane i = k = l = 1 and j = 2).5 The isomorphismsWe de�ne in this setion two funtions, that are inverse of eah other, and that estab-lish an isomorphism between �se and �!e. Furthermore, their restrition to ground26

terms also establishes an isomorphism between �s and �!. These isomorphisms trans-late all the properties of �s and �se to �! and �!e, respetively. We remark that thesets of terms �s and �sop orrespond with the sets of terms �!t and �!top, respe-tively, rather than �! and �!op. Thus, it is only the sort term that is involved inthe isomorphism.De�nition 68 The funtions T : �sop ! �!top and S : �!top ! �sop are de�nedindutively by:T (X) = X S(X) = XT (n) = n S(n) = nT (a b) = T (a)T (b) S(a b) = S(a)S(b)T (�a) = �T (a) S(�a) = �S(a)T (a �jb) = T (a)[T (b)=℄j S(a [b=℄j) = S(a)�jS(b)T ('ika) = T (a)["i�1℄k+1 S(a ["i℄k) = 'i+1k�1(S(a))We make an \abus de notation" and use the same names T and S for the restritionsof these funtions to ground terms. The ontext will be always lear enough in orderto avoid ambiguities.Lemma 69 The following hold:1. For all a; b 2 �s, if a!s b then T (a)!! T (b) .2. For all a; b 2 �s, if a!�s b then T (a)!�! T (b) .3. For all a; b 2 �sop, if a!se b then T (a)!!e T (b) .4. For all a; b 2 �sop, if a!�se b then T (a)!�!e T (b) .Proof By indution on a: if the redution is internal, the IH applies; otherwise, thetheorem must be manually heked for eah rule.Lemma 70 The following hold:1. For all a; b 2 �!t, if a!! b then S(a)!s S(b) .2. For all a; b 2 �!t, if a!�! b then S(a)!�s S(b) .3. For all a; b 2 �!top, if a!!e b then S(a)!se S(b) .4. For all a; b 2 �!top, if a!�!e b then S(a)!�se S(b) .Proof By indution on a: if the redution is internal, the IH applies; otherwise, thetheorem must be manually heked for eah rule.We verify �nally that T and S are in fat inverse of eah other.Lemma 71 The following hold:1. For all a 2 �!t, we have T (S(a)) = a .2. For all a 2 �!top, we have T (S(a)) = a .27

3. For all a 2 �s, we have S(T (a)) = a .4. For all a 2 �sop, we have S(T (a)) = a .Proof By an easy indution on a.Now that the aluli have been proved isomorphi, all the results of setions 1.3and 1.4 onerning �s and �se translate into orresponding results for the sort termto �! and �!e.Lemma 72 The following hold:1. The !-alulus is SN and onuent on �!t.2. Let a; b 2 � , if a!!�! b then a!!� b .3. Let a; b 2 �, if a!� b then a!!�! b .4. The �!-alulus is onuent on �!t.5. Pure terms whih are SN in the �-alulus are also SN in the �!-alulus.Proof Use the isomorphism and the orresponding results for �s summarized inTheorem 12.Lemma 73 The following hold:1. The !e-alulus is weakly normalising and onuent.2. The �!e-alulus is onuent on open terms.3. Let a; b 2 � , if a!!�!e b then a!!� b .4. Let a; b 2 �, if a!� b then a!!�!e b .Proof Use the isomorphism, Lemma 19 and Theorems 18, 20 and 21.Remark that the shemes �-�-tr. and '-�-tr. of �se both translate in the samesheme of �!e, namely �-=-transition.6 Typed aluliWe begin with a brief survey of the typed versions of �s and ��. From the point ofview of syntax the only di�erene is that the abstrations are marked with types. Wehave thus �A:a where A is a simple type, that is a type obtained from a set of basitypes using the only binary in�x onstrutor of types !. In the ase of �� we alsohave the onses marked with types: a : A � s.We reall that environments in de Bruijn's setting are simply lists of types andin the ase of ��, substitutions reeive environments as types. We introdue thefollowing notation onerning environments. If E is the environment E1; E2; : : : ; En,we shall use the notation E�i for the environment Ei; Ei+1; : : : ; En, analogously E�istands for E1; : : : ; Ei, et.The rewriting rules of the orresponding typed aluli are exatly the same (exeptthat rules involving abstrations are now typed).28

6.1 The typing rulesWe onentrate now on the typing rules of these aluli. We begin by realling thetyping rules for the simply typed �-alulus in de Bruijn's notation. We all thetyping system L1:(L1� var) A;E ` 1 : A (L1� �) A;E ` b : BE ` �A:b : A! B(L1� varn) E ` n : BA;E ` n+ 1 : B (L1� app) E ` b : A! B E ` a : AE ` b a : BWe reall now the typing rules for �s and �se. The typing system Ls1 is de�nedas follows:The rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app are exatly the same as L1-var,L1-varn, L1-� and L1-app, respetively. The new rules are:(Ls1� �) E�i ` b : B E<i; B;E�i ` a : AE ` a �ib : A (Ls1� ') E�k; E�k+i ` a : AE ` 'ika : AIn order that the reader ould ompare with the typing system L�1 of ��, wereall L�1:The rules L�1-var, L�1-� and L�1-app are exatly the same as L1-var, L1-� andL1-app, respetively. The new rules are:(L�1� los) E ` s . E0 E0 ` a : AE ` a[s℄ : A (L�1� id) E ` id . E(L�1� ons) E ` a : A E ` s . E0E ` a : A � s . A;E0 (L�1� shift) A;E `" .E(L�1� omp) E ` s00 . E00 E00 ` s0 . E0E ` s0 Æ s00 . E0 (L�1�Mtv) EX ` X : AXThe last rule is added to type open terms and should be understood as follows:for every metavariable X , there exists an environment EX and a type AX suh thatthe rule holds.We introdue now the typing rules for �! and �!e. The typing system is alledL!1. The rules L!1-var, L!1-varn, L!1-� and L!1-app are exatly the same asL1-var, L1-varn, L1-� and L1-app, respetively. The new rules are:(L!1� id) E ` "0 .E (L!1� slash) E ` a : AE ` a= : A;E(L!1� shift) E ` "i .E0A;E ` "i+1: E0 (L!1�Mtv) EX ` X : AX(L!1� los) E�j ` s . E0 E<j ; E01; E�j ` a : AE ` a[s℄j : A29

We prove now that the isomorphism de�ned in Setion 3 preserves typing. Forthe de�nition of T and S in the next theorem we refer to Setion 3.Theorem 74 The following hold:1. For a 2 �s, if E ` a : A then E ` T (a) : A .2. For a 2 �sop, if E ` a : A then E ` T (a) : A .3. For a 2 �!t, if E ` a : A then E ` S(a) : A .4. For a 2 �!top, if E ` a : A then E ` S(a) : A .Proof The four items are proved by an easy indution on the inferene of E ` a : A.6.2 Subjet RedutionThis setion is devoted to establish Subjet Redution for our four aluli. We prove�rst subjet redution for �! and �!e and then we use the isomorphisms given in theprevious setion to obtain Subjet Redution for �s and �se.Theorem 75 (Subjet Redution for �!) Let a; b 2 �!t and s; t 2 �!s.1. If E ` a : A and a!�! b then E ` b : A.2. If E ` s . F and s!�! t then E ` t . F .Proof By simultaneous indution on the struture of a and s. If the redution isinternal it is enough to apply the indutive hypothesis. If the redution is at the rootthen eah rule must be examined. We hek for instane the rule �-/-destrution forthe ase n = j.Let us assume E ` n[a=℄j : A. Therefore there exists an environment E0 suh thatE�j ` a= . E0 and E<j ; E01; E�j ` n : A. Hene the n-th type in the environmentE<j ; E01; E�j is A.From E�j ` a= . E0 we dedue E�j ` a : E01 and, sine A = (E<j ; E01; E�j)n andn = j, we have A = E01. Therefore, E�j ` a : A and, beause E `"j�1 .E�j , we anapply the los-rule (remember E = E�1 and, by onvention, E<1 = nil) to obtainE ` a["j�1℄1 : A.Theorem 76 (Subjet Redution for �!e) Let a; b 2 �!top and s; t 2 �!sop.1. If E ` a : A and a!�!e b then E ` b : A.2. If E ` s . F and s!�!e t then E ` t . F .Proof By simultaneous indution on the struture of a and s. The proof is analogousto the previous proof, only the new rules must be heked now. As an example westudy the rule � � =-transition.Assume E ` a[b=℄k[s℄j : A and k � j. Therefore, there exists an environment E0suh that E�j ` s . E0 (1)and E<j ; E01; E�j ` a[b=℄k : A. From this last equation we dedue the existene of anenvironment E00 suh thatE<k; E001 ; Ek; : : : ; Ej�1; E01; E�j ` a : A (2)30

and Ek; : : : ; Ej�1; E01; E�j ` b= . E00. Therefore,Ek; : : : ; Ej�1; E01; E�j ` b : E001 (3)Applying the los rule, from equations 1 and 2 we getE<k; E001 ; E�k ` a[s℄j+1 : A (4)and from equations 1 and 3, E�k ` b[s℄j�k+1 : E001 , and a further appliation of slashgives E�k ` b[s℄j�k+1= : E001 ; E�k (5)Finally, applying los to equations 4 and 5, we onludeE ` a[s℄j+1[b[s℄j�k+1=℄k : AWe use now the translations to prove Subjet Redution for �s and �se.Theorem 77 (Subjet Redution for �s and �se) Let a; b 2 �s and ; d 2 �sop.1. If E ` a : A and a!�s b then E ` b : A.2. If E ` : A and !�se d then E ` d : A.Proof We just hek the �rst item (the seond is analogous).If E ` a : A then, by Lemma 74.1, E ` T (a) : A. On the other hand, if a !�s bthen, by Lemma 69.2, T (a) !�! T (b). Now, by Theprem 75.1, E ` T (b) : A, andby Lemma 74.2, we get E ` S(T (b)) : A, and we are done beause S(T (b)) = b, byLemma 71.3.Finally, we mention that in [KRW98℄, we showed that every well typed term in the �s-alulus is strongly normalising. This implies due to the above isomorphism that everywell typed term in the �!-alulus is strongly normalising. Also, in [KR99℄ we showthat every well typed term in the simply typed �!e-alulus is weakly normalising.This again implies that every well typed term in the simply typed �se-alulus isweakly normalising.ConlusionsIn this paper, we attempted to bridge and ompare the two styles of expliit substi-tutions: those �a la �� and those �a la �s. We did this in two steps:1. We introdued a riterion of adequay to simulate �-redution in aluli ofexpliit substitutions and we applied it to several aluli: ��, ��*, ��, �s, �tand �u. The latter is presented here for the �rst time and may be onsidered asan adequate variant of �s. By doing so, we established that aluli �a la �s areusually more adequate at simulating �-redution than aluli in the ��-style.We showed that �t is more adequate than �� and that �u is more adequate than��, ��* and �s and gave ounterexamples to show that all other omparisonsare impossible. We are aware that our riterion is a very basi one, and itwould be interesting to study the relation among the di�erent aluli in termsof omplexity of the length of redutions (linear, exponential). However, weonsider our results as a �rst step in the study of adequay.31

2. We introdued two new aluli �! and �!e that an bridge the two stylesof aluli of expliit substitutions. Our motivation for doing so omes fromthe fat that the two di�erent styles of substitutions provide omplementaryproperties and so it is interesting to understand one style in terms of the other.Another reason is that, the �s-style still has one puzzling open problem: thetermination of the substitution alulus se. Although, the �! and �!e-aluliare aluli in the ��-style, their strati�ed substitutions are more �s-style than��-style. The main new feature towards the ��-style is the introdution of "iand hene the availability of the updated term 'ik(a) as a["i�1℄k+1. Hene thestrati�ed substitutions play a double role: as real substitutions as in a[b=℄k andas updatings as in a["i℄k. We believe that this two-sorted presentation of �s maybe useful to gain a new insight on the open problem for this alulus, mainlythe strong normalisation of se.Apart from their role as bridging aluli between the ��- and �s-styles of ex-pliit substitutions, the �!- and �!e-aluli are interesting on their own for thefollowing reasons:(a) �! is onuent on losed terms and preserves strong normalisation,(b) the assoiated alulus of substitutions of �! is SN,() the simply typed version of �! is SN,(d) �! possesses an extension �!e that is onuent on open terms, simulates�-redution, and whose simply typed version is weakly normalising (onopen term).As far as we know, the �!-alulus is the �rst alulus in the ��-style that hasall those properties. However, the preservation of strong normalisation doesnot hold for �!e and the SN of the assoiated alulus of substitution of �!eremains unsolved.AknowledgementsThe authors are grateful for useful feedbak and disussions with Roel Bloo, JanWillem Klop and Pierre Lesanne. This work is supported by EPSRC grants numberGR/L15685 and GR/L36963.Referenes[ACCL91℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit Substitutions.Journal of Funtional Programming, 1(4):375{416, 1991.[AS86℄ H. Abelson and G. Sussman. Struture and Interpretation of Computer Pro-grams. MIT Press, 1986.[Bar84℄ H. Barendregt. The Lambda Calulus : Its Syntax and Semantis (revisededition). North Holland, 1984. 32

[BBLRD96℄ Z. Benaissa, D. Briaud, P. Lesanne, and J. Rouyer-Degli. ��, a Calu-lus of Expliit Substitutions whih Preserves Strong Normalization. Journal ofFuntional Programming, 6(5):699{722, 1996.[Ben97℄ Z. Benaissa. Les aluls de substitutions expliites omme fondement del'implantation des langages fontionnels. PhD thesis, Univ. Henri Poinare,Nany, 1997.[Blo97℄ R. Bloo. Preservation of Strong Normalisation for Expliit Substitution. PhDthesis, Department of Mathematis and Computing Siene, Eindhoven Univer-sity of Tehnology, 1997.[Blo99℄ R. Bloo. Pure type systems with expliit substitutions. In proeedings ofFLOC'99 workshop WESTAPP'99, pages 45{58, 1999.[Bon99℄ E. Bonelli. The polymorphi lambda alulus with expliit substitutions. Inproeedings of FLOC'99 workshop WESTAPP'99, pages 59{74, 1999.[BR96℄ R. Bloo and K. Rose. Combinatory Redution Systems with Expliit Sub-stitution that Preserve Strong Normalisation. Proeedings of RTA '96, LetureNotes in Computer Siene, 1103, 1996.[CHL96℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene properties of weak andstrong aluli of expliit substitutions. Journal of the ACM, 43(2):362{397, 1996.[Con86℄ R. Constable et al. Implementing Mathematis with the NUPRL Develop-ment System. Prentie-Hall, 1986.[Cur86℄ P.-L. Curien. Categorial Combinators, Sequential Algorithms and FuntionalProgramming. Pitman, 1986. Revised edition : Birkh�auser (1993).[dB72℄ N. G. de Bruijn. Lambda-Calulus notation with nameless dummies, a toolfor automati formula manipulation, with appliation to the Churh-Rosser The-orem. Indag. Mat., 34(5):381{392, 1972.[dB78℄ N. G. de Bruijn. A namefree lambda alulus with failities for internal def-inition of expressions and segments. Tehnial Report TH-Report 78-WSK-03,Department of Mathematis, Eindhoven University of Tehnology, 1978.[DHK95℄ G. Dowek, T. Hardin, and C. Kirhner. Higher order uni�ation via ex-pliit substitutions (extended abstrat). In Proeedings, Tenth Annual IEEESymposium on Logi in Computer Siene, San Diego, pages 366{374, 1995.[FKP99℄ Maria C. F. Ferreira, Delia Kesner, and Laurene Puel. �-aluli with ex-pliit substitutions preserving strong normalization. Appliable Algebra in Engi-neering, Communiation and Computation, 9(4):333{371, 1999.[GL97℄ Jean Goubault-Larreq. A proof of weak termination of the simply typed��-alulus. Tehnial report, INRIA, January 1997.[GM93℄ M.J.C. Gordon and T.F. Melham. Introdution to HOL: A Theorem ProvingEnvironment for Higher Order Logi. Cambridge University Press, 1993.33

[Gui99a℄ B. Guillaume. The �l-alulus. In proeedings of FLOC'99 workshop WEST-APP'99, pages 2{13, 1999.[Gui99b℄ B. Guillaume. Un alul des substitutions ave etiquettes. PhD thesis, Uni-versit�e de Savoie, Chamb�ery, 1999.[HL89℄ T. Hardin and J.-J. L�evy. A Conuent Calulus of Substitutions. Frane-Japan Arti�ial Intelligene and Computer Siene Symposium, Deember 1989.[KN93℄ F. Kamareddine and R. P. Nederpelt. On stepwise expliit substitution. In-ternational Journal of Foundations of Computer Siene, 4(3):197{240, 1993.[KR95℄ F. Kamareddine and A. R��os. A �-alulus �a la de Bruijn with expliit sub-stitutions. In Proeedings of Programming Languages Implementation and theLogi of Programs PLILP'95, volume 982 of Leture Notes in Computer Siene,pages 45{62. Springer-Verlag, 1995.[KR97℄ F. Kamareddine and A. R��os. Extending a �-alulus with Expliit Substi-tution whih preserves Strong Normalisation into a Conuent Calulus on OpenTerms. Journal of Funtional Programming, 7(4):395{420, 1997.[KR98℄ F. Kamareddine and A. R��os. Bridging de Bruijn indies and variable namesin expliit substitutions aluli. The Logi Journal of the Interest Group of Pureand Applied Logi, IGPL, 6(6):843{874, 1998.[KR99℄ F. Kamareddine and A. R�ios. Weak normalisation of the simply typed �se-alulus. Tehnial report, Heriot-Watt University, 1999. In preparation.[KRW98℄ F. Kamareddine, A. R��os, and J.B. Wells. Caluli of generalised �e-redution and expliit substitution: Type free and simply typed versions. Journalof Funtional and Logi Programming, pages 1 { 44, 1998.[Les94℄ P. Lesanne. From �� to ��, a journey through aluli of expliit substitu-tions. In Hans Boehm, editor, Proeedings of the 21st Annual ACM Symposiumon Priniples Of Programming Languages, Portland (Or., USA), pages 60{69.ACM, 1994.[LM96℄ J. L. Lawall and H. Mairson. Optimality and ineÆieny: What isn't a ostmodel of the lambda alulus? Pro. 1996 ACM SIGPLAN Int'l Conf. FuntionalProgramming, pages 92{101, 1996.[LR98℄ F. Lang and K. Rose. Two aluli of expliit substitution with onueneon metaterms and preservation of strong normalisation. In proeedings of RTAworkshop WESTAPP'98, 1998.[LRD95℄ P. Lesanne and J. Rouyer-Degli. Expliit substitutions with de Bruijn'slevels. In J. Hsiang, editor, Proeedings 6th Conferene on Rewriting Tehniquesand Appliations, Kaiserslautern (Germany), volume 914 of Leture Notes inComputer Siene, pages 294{308. Springer-Verlag, 1995.[Mag95℄ Magnusson. The implementation of ALF - a proof editor based on MartinL�of 's Type Theory with expliit substitutions. PhD thesis, Chalmers, 1995.34

[Mel95℄ P.-A. Melli�es. Typed �-aluli with expliit substitutions may not terminate.In Proeedings of Typed Lambda Caluli and Appliation: TLCA'95, volume 902of Leture Notes in Computer Siene. Springer-Verlag, 1995.[Mu~n96℄ C. Mu~noz. Proof representation in type theory: State of the art. In Pro-eedings of the XXII Latin-Amerian Conferene of Informatis CLEI Panel 96,Santaf�e de Bogot�a, Colombia, June 1996.[Mu~n97a℄ C. Mu~noz. A alulus of substitutions for inomplete-proof representa-tion in type theory. Tehnial Report RR-3309, Unit�e de reherhe INRIA-Roquenourt, Novembre 1997.[Mu~n97b℄ C. Mu~noz. Dependent types with expliit substitutions: A meta-theoretialdevelopment. In Types for Proofs and Programs, Proeedings of the InternationalWorkshop TYPES'96, volume 1512 of Leture Notes in Computer Siene, pages294{316, 1997.[Mu~n97℄ C. Mu~noz. Un alul de substitutions pour la repr�esentation de preuvespartielles en th�eorie de types. Th�ese de dotorat, Universit�e Paris 7, 1997. Englishversion is available as an INRIA researh report number RR-3309.[Mu~n98℄ C. Mu~noz. Proof synthesis via expliit substitutions on open terms. InPro. International Workshop on Expliit Substitutions, Theory and Applia-tions, WESTAPP 98, Tsukuba (Japan), April 1998.[NGdV94℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Seleted papers onAutomath. North-Holland, Amsterdam, 1994.[NW90℄ G. Nadathur and D. Wilson. A representation of lambda terms suitable foroperations on their intentions. Proeedings of the 1990 ACM Conferene on Lispand Funtional Programming, pages 341{348, 1990.[Pau90℄ L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,Logi and Computer Siene, pages 361{386. Aademi Press, 1990.[Pey87℄ S.L. Peyton-Jones. The Implementation of Funtional Programming Lan-guages. Prentie-Hall, 1987.[R��o93℄ A. R��os. Contribution �a l'�etude des �-aluls ave substitutions expliites.PhD thesis, Universit�e de Paris 7, 1993.

35

