Relating the Ao- and As-Styles of Explicit
Substitutions

Fairouz Kamareddine*and Alejandro Rios'

Abstract

The aim of this article is to compare two styles of Explicit Substitutions: the Ao- and As-
styles. We start by introducing a criterion of adequacy to simulate 8-reduction in calculi of
explicit substitutions and we apply it to several calculi: Ao, Aoy, Av, As, At and Au. The
latter is presented here for the first time and may be considered as an adequate variant of
As. By doing so, we establish that calculi a la As are usually more adequate at simulating
B-reduction than calculi in the Ao-style. In fact, we prove that At is more adequate than Av
and that Au is more adequate than Av, Aoy and As. We also give counterexamples to show
that all other comparisons are impossible according to our criterion.

Our next step consists in presenting the Aw and Aw. calculi, the two-sorted (term and
substitution) versions of the As (cf. [KR95]) and As. (cf. [KR97]) calculi, respectively.
We establish an isomorphism between the As-calculus and the term restriction of the Aw-
calculus, which extends to an isomorphism between As. and the term restriction of Awe.
Since the Aw and Aw. calculi are given in the style of the Ao-calculus (cf. [ACCLI1]) they
are bridge calculi between As and Ao and between As. and Ao and thus we are able to better
understand one calculus in terms of the other. Finally, we present typed versions of all the
calculi and check that the above mentioned isomorphism preserves types.

As a consequence, the Aw-calculus is a calculus in the Ao-style that has the following
properties a..g: a) Aw simulates one step B-reduction, b) Aw is confluent (on closed terms),
c) \w preserves strong normalisation, d) Aw’s associated calculus of substitutions is SN, e)
the simply typed Aw calculus is SN, f) the Aw-calculus possesses an extension Aw. that is
confluent on open terms (terms with eventual metavariables of sort term only), and g) the
simply typed Aw, calculus is weakly normalising (on open term). As far as we know, the \w-
calculus is the first calculus in the Ao-style that has all those properties a..g. However, the
open problem of the SN of the associated calculus of substitution of Aw. remains unsolved
and like in the case of Ao, Av and Ase, Aw. does not have PSN.

Keywords: A-calculus, explicit substitutions, Ao, As.

Introduction

There is no better way to start than by quoting Abelson and Sussman in [AS86]:
Despite the fact that substitution is a “straightforward idea”, it turns out to be sur-

*Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edin-
burgh EH14 4AS, Scotland, email: fairouzQcee.hw.ac.uk

tDepartment of Computer Science, University of Buenos Aires, Pabellén I - Ciudad Universitaria
(1428) Buenos Aires, Argentina, email:rios@dc.uba.ar

prisingly complicated to give a rigorous mathematical definition of the substitution
process... Indeed, there is a long history of erroneous definitions of “substitution” in
the literature of logic and programming semantics.

Most literature on the A-calculus treats substitution as an atomic operation and
leaves implicit the actual computational steps necessary to perform substitution. Sub-
stitution is usually defined with operators which do not belong to the language of the
A-calculus. In any real implementation, the substitution required by B-reduction
(and similar higher-order operations) must be implemented via less complex opera-
tions. Thus, there is a conceptual gap between the theory of the A-calculus and its
implementation in programming languages and proof assistants. Explicit substitution
attempts to bridge this gap without abandoning the setting of the A-calculus.

By representing substitutions in the structure of terms and by providing (first-
order) reductions to propagate the substitutions, explicit substitution provides a num-
ber of benefits. A major benefit is that explicit substitution allows more flexibility
in ordering work. Propagating substitutions through a particular subterm can wait
until the subterm is the focus of computation. This allows a choice among the substi-
tutions to be performed, thus improving locality of reference. Obtaining more control
over the ordering of work has become an important issue in functional programming
language implementation (cf. [Pey87]). The flexibility provided by explicit substitu-
tion also allows postponing unneeded work indefinitely (i.e., avoiding it completely).
This can yield profits, since implicit substitution can be an inefficient, maybe even
exploding, process by the many repetitions it causes. Another benefit is that explicit
substitution allows formal modeling of the techniques used in real implementations,
e.g., environments. Because explicit substitution is closer to real implementations,
it has the potential to provide a more accurate cost model. (This possibility is par-
ticularly interesting in light of the difficulty encountered in formulating a useful cost
model in terms of graph reduction [LM96, Pey87].)

Proof assistants may benefit from explicit substitution, due to the desire to perform
substitutions locally and in a formal manner. Local substitutions are needed as fol-
lows. Given zz[z:=y], one may not be interested in having yy as the result of zz[z:=y]
but rather only yz[z:=y]. In other words, one only substitutes one occurrence of
by y and continues the substitution later. Theorem provers like Nuprl [Con86] and
HOL [GM93] implement substitution which allows the local replacement of some ab-
breviated term. This avoids a size explosion when it is necessary to replace a variable
by a huge term only in specific places to prove a certain theorem.

Formalisation helps in studying the termination and confluence properties of sys-
tems. Without formalisation, important properties such as the correctness of substitu-
tions often remain un-established, causing mistrust in the implementation. In fact, it
is known that the first implementation of substitution in Automath [NGdV94] was in-
correct, and that most of the bugs in the implementation of LCF came from clashes of
bound variables in strange situations [Pau90]. As the implementation of substitution
in many theorem provers is not based on a formal system, it is not clear what prop-
erties their underlying substitution has, nor can their implementations be compared.
Thus, it helps to have a choice of explicit substitution systems whose properties have
already been established. This is witnessed by the recent theorem prover ALF, which
is formally based on Martin-Lof’s type theory with explicit substitution [Mag95].
Another justification for explicit substitution in theorem proving is that some re-

searchers believe “tactics” can be replaced by the notion of incomplete proofs, which
are believed to need explicit substitutions [Mun97c, Mun96, Mui97a, Mun98, Mag95].
Similarly, the area of implementations of functional and logic languages has witnessed
an important research in explicit substitutions, e.g. [Ben97, NW90, DHK95].

The last fifteen years have seen an increasing interest in formalising substitution
explicitly; various calculi including new operators to denote substitution have been
proposed. Amongst these calculi we mention CA{¢ [dB78]; the calculi of categorical
combinators [Cur86]; Ao [ACCL9I1], Ao, [CHL96], Aosp [Ri093], referred to as the
Ao-family; Av [BBLRD96], the calculi of [FKP99] and A{ [Muii97c], which are descen-
dants of the Ao-family; oo BLT [KN93], Ax-calculus [LRD95], Ax [BR96], As [KR95],
At [KR98], As. [KR9I7], and A [Gui99b, Gui99a]. All these calculi (except Ax) are
described in a de Bruijn setting where natural numbers play the role of variables
and the set of terms A on which substitution will be made explicit is defined by:
A == IN | (AA) | (AA). But, why so many varieties of systems of explicit substitu-
tions and the search still continues? The following section attempts to explain:

The Ao-calculus (cf. [ACCL91]) reflects in its choice of operators and rules the
calculus of categorical combinators (cf. [Cur86]). The main innovation of the Ao-
calculus is the division of terms in two sorts: sort term and sort substitution.
Calculi & la As depart from this style of explicit substitutions in two ways. First,
they keep the classical and unique sort term of the A-calculus. Second, they do not
use some of the categorical operators, especially those which are not present in the
classical A-calculus. The main reason for doing so, is to remain closer to the A-calculus
from an intuitive point of view, rather than a categorical one.

But, what properties does one look for in calculi that are to be the basis for
programming languages? We attempt to list some of those desired properties for
calculi of explicit substitutions:

1. Termination or Strong Normalisation (SN): For a calculus of explicit
substitutions Asubst, does the underlying calculus of substitutions subst ter-
minate? This question is of course important. One does not want to include
non-terminating rules to the A-calculus.

2. Confluence (CR): Is the substitution calculus Asubst confluent on:

(a) Ground terms? (L.e. terms of A above with explicit substitutions)

(b) Open terms? It is possible to consider, besides the classical variables (now
numbers), real variables (which correspond to meta-variables in the clas-
sical setting). The terms obtained with this extended syntax are called
open terms and they can be considered as contexts, the new variables cor-
responding to place-holders. The interest in studying the calculi on open
terms is that they allow, for instance, the representation of incomplete
proofs where the place-holder stands for the still unknown part of the
proof. Calculi on open terms have also provided the tools to prune the
search space in unification algorithms (cf. [DHK95]).

3. Simulation of S-reduction: If a evaluates in the A-calculus (using only 8-
reduction) to b, does a evaluate to b in the Asubst-calculus (using the S-rule and
the substitutions rules)?

4. Preservation of Termination (PSN): If a terminates in the A-calculus, does
it terminate in the Asubst-calculus?

Ao enjoyed properties 1, 2a, and 3 but not 2b. Therefore, Ao, [HL89, CHL96] was
proposed. Ao, is a variant of Ao that is confluent on open terms. Nevertheless, 4
remained unknown for Ao or Ao, until Mellies proved that Ao, (as well as both the
rest of the Ao-family and the categorical combinators) does not preserve SN [Mel95].
This led to the creation of Av [Les94], Ax [BR96], As [KR95] and As. [KR97] calculi.
[BBLRD96] and[BR96] establish properties 1, 2a, 3 and 4 for Av and Ax but the first
calculus has not been extended on open terms and the second has been extended
on open terms but it is not clear which properties hold [LR98]. [KR97] establishes
properties 2 and 3 for As., but property 1 remains an open problem for As. and
Guillaume [Gui99b, Gui99a] showed that PSN (property 4) fails for As.. Moreover,
[Gui99b, Gui99a] proposes a calculus Al that has all the properties 1..4, but with a
restricted form of 3. In this paper, we avoid any further discussion of the labelled
calculus Al because it differs from calculi a la Ao and As in that it uses labels and so
relating it to the other styles is not straightforward.

Ao, satisfies 1, 2, and 3, whereas Av achieves 1, 2a, 3 and 4 by removing the
composition operator. However, [FKP99] provides two calculi of explicit substitutions
that have the composition operator and still have PSN. Remark that Av and the calculi
of [FKP99] do not enjoy 2b.

The A(-calculus (cf. [Mun97c]) has been proposed as a calculus which preserves
strong normalisation and is itself confluent on open terms. In other words, A(satisfies
1, 2, and 4. The A(-calculus works with two new applications that allow the passage
of substitutions within classical applications only if these applications have a head
variable. This is done to cut the branch of the critical pair which is responsible for
the non-confluence of Av on open terms. Hence, A{ preserves strong normalisation and
is itself confluent on open terms. Unfortunately, A is not able to simulate one step
B-reduction as shown in [Mufi97c]. Instead, it simulates only a “big step” B-reduction.
This is our reason for not discussing it further in this paper.

Another line of expliciting substitutions has been made in [KN93, KR95, KR97,
KRW98]. In [KN93], the A-calculus was rewritten using a notation influenced strongly
by de Bruijn’s notation for Automath [NGdV94]. In that notation [KN93], every A-
term is simply a sequence of items followed by a variable. This item notation, allowed
also the introduction of so called substitution items and the inclusion of rules that
explicit the passage of substitution. Alas however, the calculus of [KN93] does not
satisfy 1 nor 2 nor 4. For this reason, [KR95] set out to find the part of the calculus
of [KN93] that satisfies as much of 1 to 4 as possible. The solution was to extend
the A-calculus with explicit substitutions by turning de Bruijn’s meta-operators into
object-operators. (Mention of a very close calculus to the As-calculus can be already
found in [Cur86], exercise 1.2.7.2, where reference to previously unpublished notes
of Y. Lafont is given.) The resulting calculus As remains intuitively as close to the
A-calculus as possible for a calculus of explicit substitution. As (like Av) satisfies all
of 1, 2a, 3 and 4. Moreover, As has an extension As. (cf. [KR97]) that is confluent
on open terms (hence s, satisfies 2a and 2b). Also, As, satisfies 3. It is still an open
problem whether As. satisfies 1 and it has been established in [Gui99b, Gui99a] that
it does not satisfy 4.

The presence of such varieties of calculi of explicit substitutions, makes it desirable

to find a common framework between both styles so that maybe their complementary
properties can be combined.

All the above discussion was concerned with the type-free A-calculus extended
with explicit substitutions. However, type theory is at the heart of the theory and
implementation of programming languages and theorem provers. For this reason,
no calculus can really bridge the gap between theory and implementation and be a
useful one for programming languages and theorem proving if there was no way to
accommodate types.

The results concerning typed calculi are the following. Ao does not preserve strong
normalisation and the counterexample given in [Mel95] to prove it happens to be a
very decent typable term. Therefore, typed Ao is not SN. On the other hand, Av
preserves strong normalisation and its simply typed version is strongly normalising.
The same applies to As and Az which, (like Av) preserve strong normalisation and have
simply typed versions that are strongly normalising. [ACCL91] had typed versions of
Ao but only recently, Ao (with open terms) has been shown to be weakly normalising
[GL97]. Extending second and higher order A-calculus with explicit substitutions
remains an active subject of research[Bon99, Blo99, Blo97, Muii97b].

We believe that a comparison between the two styles and a formulation of As and
Ase in the Ao-style could be useful to better understand one calculus in terms of the
other. Therefore, we start by focusing on Ao, Ag,, Av, As, At and Au. All these
calculi are rewriting systems on a set of terms that contain the classical terms of the
A-calculus (pure terms). All of them possess a rule to start -reduction (the only rule
of the A-calculus) and a set of rules to compute the substitution generated by this
starting rule.

Since calculi with explicit substitutions are intended to extend the classical \-
calculus, it is expected that -reduction could be recovered in some way within these
calculi, for instance, if A¢ is an explicit substitution calculus, we may have for pure
terms a, b:

1. one step simulation: if a =5 b then a =% ¢ b.

2. big step simulation: if a —»3 b and b is in B-normal form then a —»)¢ b.

The calculi Ao, Aoy, Av, As, At, Au have the property of one step simulation and
we concentrate in this paper on the adequacy of this simulation which implies the
big step one, leaving the study of the adequacy of the latter for future work. Our
criterion of adequacy is essentially the following: we say that the calculus A¢; is more
adequate than the calculus A&, if for every simulation of a classical 3-step in A& there
is a shorter simulation in A&;.

There are reasons why we do not consider the other calculi in our study of adequacy
as defined in this paper. For example, A((the only calculus that) simulates just a
big step B-reduction (and hence it does not make sense to study its adequacy in
our sense), whereas As., po BLT and Aogp are less interesting because they are less
well-behaved calculi of explicit substitutions.

In section 1 we introduce the formal machinery, recall the various calculi and their
properties, present the Au-calculus and give the formal statement of the criterion of
adequacy to simulate J-reduction.

In section 2 we use our criterion to compare several of the above mentioned calculi.
We conclude that At is more adequate than Av, and that Au is more adequate than
As, Av and Ao,.

In section 3 we give counterexamples to show the calculi that are incomparable
according to our criterion, namely: At cannot be compared with Au, As, Ao and Ao,;
Au cannot be compared with Ao and At; As cannot be compared with At, Av, Ao
and Ao,. We show also that, surprisingly, no comparison is possible between any two
calculi in the Ao-style.

In Section 4, we provide the Aw and Aw, calculi, which are two-sorted: sort term
and sort substitution, and hence closer to Ao. When restricting these calculi to the
sort term we obtain calculi which are isomorphic to As and As., respectively.

In Section 5 we give the isomorphisms between Aw and As and between Aw, and
Ase which enable us to establish that Aw (resp. Aw.) has the same properties of As
(resp. Ase).

In Section 6 we recall the typed versions of As, As, and Ao and introduce the
typed Aw and Aw, calculi. We prove that the isomorphism introduced in Section 5
preserves types and we conclude by establishing Subject Reduction for our calculi.

1 Preliminaries

We assume the reader familiar with de Bruijn indices (cf. [dB72]) and with notions
of reduction as in [Bar84]. In particular, a = b is used to mean that a and b are
syntactically identical; and for a reduction notion R, we denote with = the reflexive
closure of R, with — g or just — the reflexive and transitive closure of R and with
—»E or just —»* or just —* the transitive closure of R. When a —% b we say there
exists a derivation from a to b. By a —»™ b, we mean that the derivation consists of
n steps of reduction and call n the length of the derivation. The following is needed:

Definition 1 Let R be a reduction on A. We define (local) confluence or (W)CR
((weakly) Church Rosser), normal forms and normalisation as follows:

1. R is WCR when Va,b,c€ A dde€ A((a > bAa = ¢)= (b = dAc —» d)).
2. R is CR when Va,b,ce A 3d€e A((a » bAa —»c)= b —» dAc—» d).

3. a € A is an R-normal form (R-nf for short) if there is no b € A such that
a—b.

4. b has a normal form if there exists a nf a such that b —» a.

5. R is strongly normalising (SN) if there is no infinite sequence (a;);,~, where
ViZO,ai—HziH. B

Note that confluence of R guarantees unicity of R-normal forms and SN ensures their
existence. When there exists a unique R-normal form of a term a, it is denoted by
R(a).

1.1 The classical A-calculus in de Bruijn notation

We define A, the set of terms with de Bruijn indices, as follows:

Az=N | (AA) | (\A)

We use a,b, ... to range over A and m,n,... to range over N (positive natural num-
bers). Furthermore, we assume the usual conventions about parentheses and avoid
them when no confusion occurs. We say that a reduction — is compatible on A when
for all a, b, c € A, we have a — b implies ac — be¢, ca — ¢b and Aa — Ab.

In order to define B-reduction & la de Bruijn, we must define the substitution of a
variable n for a term b in a term a. Therefore, we need to update the term b:

Definition 2 The updating functions U} : A — A for k > 0 and i > 1 are defined
inductively:

Ui (ab) = Uf(a) UL (b) n+i—1 if n>k

' Ui(n) = { .
Ui(Aa) = MU (a) . sk
Now we define the family of meta-substitution functions:

Definition 3 The meta-substitution at level j, for 7 > 1, of a term b € A in a term
a € A, denoted a{{j < b}, is defined inductively on a as follows:

(ara2){j < b} = (a1 {j < b}) (a2{j < 0}) n—1 ifn>j
n{j« b} = Ugb) if n=yj
(Aa)fi < b} = Aa{j +1 <« b}) n if n<j

The following gives the properties of meta-substitution and updating (cf. [KR95]):
Lemma 4 Let a, b, c € A. We have:
L for k<n<k+i: U (a)=Uji(a){n <+ b}.
2. for [<k<l+j:UiU/(a)) =U/T" " a).
for k+i<n:Ul(a){n+ b} =Uj(afn—i+1+«b}).
for i<n:afi+btffnecl=afn+1cl{itfn-i+1+c}}.
for I +j < k+1: UL(U}(a)) = U} (U}l,,_;(a)).

orok W

6. for n <k+1: Ui(afn < b})=U} (a)fn < Ui ., (b)}.
Definition 5 S-reduction is the least compatible reduction on A generated by:
(B-rule) (Aa)b =g af{l <+ b}

The A-calculus (a la de Bruijn), is the reduction system whose only rewriting rule is

8.

Theorem 6 The A-calculus a la de Bruijn is confluent.

(Beta) (Ma)b — alb-id]
(Varld) 1fidf — 1
(VarCons) lla-s] — a

(App) (@b)[s] — (als]) (b]s])
(4bs) (a)ls] — Aalt-(so 1)
(Clos) (a[s])[t] — a[sot]
(1dL) tdos — s

(Shiftld) toid — 1
(ShiftCons) to(a-s) — s

(Map) (a-s)ot —> alt]-(sot)
(Ass) (sot)ou — so(tou)

Figure 1: The Ao-rules

1.2 Calculi a la \o

In this section, we introduce the A¢-calculi (for ¢ € {o,0pB,0,,v}) which work on
2-sorted terms: (proper) terms and substitutions. The Ao-calculus was introduced
in [ACCL91] and the version presented there uses only the de Bruijn index 1 and
the other de Bruijn indices are coded. We introduce here another version, denoted
Aopp, which uses all the de Bruijn indices and hence is at the same level with the
other calculi studied in this paper. We introduce Aopp because it could be argued
that the coding of the de Bruijn indices could change the status of Ao with respect
to adequacy results. However, we show that Ao and Aopp have the same behaviour
as far as comparison of adequacy with the other calculi studied here is concerned.

For every &, we use a,b,c,... to range over the set of terms A¢f, and s,t,... to
range over the set of substitutions A¢%. We use A€ to denote the set of rules of the
Aé-calculus (which contains a rule (Beta)) and take the &-calculus to be the calculus
whose rules are A{ — {(Beta)}. The Aé-calculus is the reduction system (A&, —xg),
where —,¢ is the least compatible (with the corresponding operators) reduction on
A¢ generated by the set of rules AE.

For every ¢ € {o,0,,v} (see [ACCL91, CHL96, BBLRDY96]), the {-calculus is SN
and the A¢-calculus is confluent on closed terms. Moreover, only the Ao, -calculus is
confluent on open terms (terms with variables of sort term and substitution) and only
the Av-calculus satisfies Preservation of Strong Normalisation (PSN) (all the calculi
in the Ao-family were shown in [Mel95] not to possess PSN; the Av-calculus removes
the composition of substitutions to guarantee PSN).

Definition 7 (The Ao-calculus) Terms and substitutions of the Ao -calculus are given
by: Aot :=1| AotAct | AMo? | Aot[Ac®] and Ao® =:=id | T | Aot -Ao® | Ao® o Ao®.
The set of rules Ao is given in Figure 1.

For every substitution s we define the iteration of the composition of s inductively

(1d) alidf — a
(IdR) soid — s
(VarShift) -1 — id
(SCons) 1[s]- (tos) — s

Figure 2: The rules added to Ao to get Aosp

as s' = s and s"T! = 50 s®. We use the convention s = id. Note that the only de
Bruijn index used is 1, but we can code n by the term 1[t""!]. By so doing, we
have A C Aot.

[B-reduction of the A-calculus is interpreted in the Ao-calculus in two steps. The
first, obtained by the application of (Beta), consists in generating the substitution.
The second step executes the propagation of this substitution, using the set of the
o-rules, until the concerned variables are reached. The reader is invited to check that
(AX521)(A31) —»x, A4(A41)1.

It is well known that the Ao-calculus is not confluent on open terms, furthermore
it is not even locally confluent. To obtain local confluence four rules must be added,
and the calculus thus obtained is called the Aogp-calculus.

Definition 8 The Aogp-calculus is obtained by adding to Ao the rules given in Fig-
ure 2 and by deleting the rules (Varld) and (Shiftld), since both of them are instances
of the new rules.

Even the Aogp-calculus is not confluent on open terms (terms which admit meta-
variables of both sorts), as shown in [CHL96], but it is confluent when the set of open
terms is restricted to those which admit metavariables of sort term only [Ri093].

Definition 9 (The A\opp-calculus) The syntax of the Aopp-calculus is exactly that
of the Ao-calculus except that 1 is replaced by N. The set, Aopp, of rules of the
Aopp-calculus is Ao where (Varld) is replaced by a[id] — a plus the three extra rules:
n+ 1[a-s] = n[s], n[f] = n+ 1 and n[f os] = n + 1[s].

Definition 10 (The Av-calculus) Terms and substitutions of the Av-calculus are
given by: Avt = IN | AvtAvt | AMAo! | Avt[Av®] and Av® ==1 | 1 (Av®) | At
For a € Avt, s € Av®, 17 (s) is given by: 110 (s) =s, 7T (s) = (1" (s)) and a[s]’ by:
a[s]®=a, a[s]" ™! =(a[s]")[s]. The set of rules \v is given in Figure 3.

Definition 11 (The Ao,-calculus) Terms and substitutions of the Ao,-calculus are
given by:

Aot =N | Aot Aol | Aot | Aot[Ao?]

Aot z=id | 1 | 1+ (Aof) | Aot - Aof | Ao o Aos.
For s € Ao}, s™ is given by: st = s, s = 505" and as in Definition 10, we define
17" (s) by: #1%(s)=s, 2" (s) = (1" (5)).

The set of rules Ao, is given in Figure 4.

(Beta) Aa)b — a[b/]

(App) @bls] — (als) (B3]
(Abs) ()l — Al ()
(FVar) 1la/] — a

(RVar) n+1fa/] — n
(FVarLift) 1M(s)] — 1
(RVarLift) n+1[t(s)] — nls][1]
(VarShift) n[f] — n+1

Figure 3: The Av-rules

1.3 Calculi a la \s

Calculi a la As avoid introducing two different sets of entities and insist on remaining
close to the syntax of the A-calculus using de Bruijn indices'. Next to A and ap-
plication, they introduce substitution (o,¢) and updating (p,) operators. We shall
introduce three such calculi: As, A\t and Au. We let a, b, ¢, etc. range over the sets of
terms As, At and Au. A term containing neither substitution nor updating operators
is called a pure term. For £ € {s,t,u}, the A&~ and E-calculi are defined as in the
previous section (take o- or ¢-generation instead of Beta) from a set of rules A¢ or &.

The As-calculus was introduced in [KR95] with the aim of providing a calculus that
preserves strong normalisation and has a confluent extension on open terms [KR97].
The At-calculus is a variant of As that updates partially, as the Ao-calculi do. The Au-
calculus is introduced here for the first time and is only a slight (yet more adequate)
variation of As. In [KR95, KR98], we establish the properties of these calculi which
we list in the following theorem.

Theorem 12 For ¢ € {s,t,u}, the {-calculus is SN, the A¢-calculus is confluent on
closed terms and satisfies PSN. Moreover, the A¢-calculus for & € {s,u} simulates
[B-reduction, is sound and has a confluent extension on open terms.

Definition 13 (The As-calculus) Terms of the As-calculus are given by:
As =N | AsAs | Ms | Aso'As | piAs where i>1, k>0.

The set of rules As is given in Figure 5.

Definition 14 (The At-calculus) Terms of the A¢-calculus are given by:

Tt can be argued that because we use de Bruijn indices, we remain close to de Bruijn’s philosophy
rather than to the syntax of the A-calculus and that instead it is calculi like Az of [BR96] and Ax
of [LRD95] that remain close to the syntax of the lambda calculus. So, we need to explain here that
by staying with the syntax of the A-calculus we mean that we do not introduce substitutions and
other categorical operators separately as in Ao, but that a term for us is either an abstraction term,
an application term, a substitution term or an updating term.

10

(Beta)
(App)
(Abs)
(Clos)
(Varshift1)
(Varshift2)
(F'VarCons)
(RVarCons)
(F'VarLift1)
(F'VarLift2)
(RVarLift1)
(RVarLift2)
(Map)
(Ass)
(ShiftCons)
(ShiftLift1)
(ShiftLift2)
(Lift1)
(Lift2)
(LiftEnv)
(1dL)
(IdR)
(Liftld)
(1d)

L

alb-id]
(as]) (bs])
At (5))
alsot]
n+1

n+ 1][s]

Figure 4: The Ao, -rules

11

o-generation (Aa)b — aolb
o-A-transition (Aa) o't — A aoitlb)
o-app-transition (a1 as)o’b — (a1 0'b) (az o'b)

n—1 if n>i
o-destruction nolb — ohb if n=i

n if n<i
p-A-transition ot(Aa) —> A(¢2+1 a)
p-app-transition <,0fc (a1az) — (4,02 ar) (902 as)

)) i n+i—1 if n>k

p-destruction YL { o if <k

Figure 5: The As-rules

At =N | AtAt | AAt | At¢'At | OpAt where i>1, k>0.
For a € At, we define #0a = a and 05" (a) = 0;,(0%(a)). The set of rules At is given in
Figure 6.

The main difference between At and As can be summarised as follows: the At-calculus
generates a partial updating when a substitution is evaluated on an abstraction (i.e.
introduces an operator 6y in the ¢-A-transition rule) whereas the As-calculus produces
a global updating when performing substitutions (i.e. introduces a } operator in the
o-destruction rule, case n = i). The A¢-calculus shares this mechanism of partial
updatings with the Ao-caculi, Av and A since all of them introduce an updating
operator in their (Abs)-rule.

We introduce now an adequate variation on As where in the o-destruction rule,
the case n = ¢ = 1 is treated in a more adequate way which does not introduce the
operator ¢} since the computation §(b) will finally evaluate to b.

Definition 15 (The Au-calculus) Terms of the Au-calculus are given by:
Auz=N | Aulu | Mu | Auo?Au | piAu where i >2,5>1,k>0.
and the set of rules Au is given in Figure 7.

1.4 The As.-calculus

We introduce the open terms and the rules that extend As to obtain the As.-calculus.
Definition 16 The set of open terms, noted As,, is given as follows:
Asop := V| IN | AsopAsop | AMsop | Asop0iAs,y | 0iAs,, — where j,i>1, k>0

and where V stands for a set of variables, over which X, Y, ... range. We take a, b, ¢
to range over As,,. Furthermore, closures, pure terms and compatibility are defined
as for As.

12

s-generation Aa)b — ac'd
G-A-transition (Aa)s’b — AaciTt6y(b))
c-app-transition (a1 a2)stb — (a1<'b) (az<ih)
n—1 if n>i
g-destruction n¢h —s b if n=x1
n if n<i
0-A-transition Or(Aa) — A(Ory10)
0-app-transition Or(araz) — (O ar) (B az)
) n+1 if n>k
0-destruction O n { N it n <k
Figure 6: The At-rules
o-generation Aa)b — actb
o-\-transition (Aa) o't — A aoitlb)
o-app-transition (a1 az) oc’b — (aj o'b) (az o'b)
n—1 if n>i
i . s
o-destruction nolb — o b }f n=i>l
b it n=1=1
n it n<i
p-A-transition ei(Aa) — Aphy a)
p-app-transition ohlaraz) — (phar) (¢l a2)
i . i n+i—1 if n>k
p-destruction YL { 0 it n <k

Figure 7: The Au-rules

13

o-o-transition (ad’b)oic — (ad®™) ot (ba?™) if i<
o-p-transition 1 (pLa)o’b — piTla if kE<ji<k+:
o-p-transition 2 (pha)olb — @i(ac?TTLh) if k+:i<j
p-o-transition eilac?b) — (Phy1a)0? (g1 ;b) if j<k+1
p-p-transition 1 o (pla) — ¢l (Phr1ja) if 1+j<k
p-p-transition 2 ok (cpg a) — np{“_l a if I<k<l+y

Figure 8: The new rules of the As.-calculus

Working with open terms one loses confluence as shown by the following coun-
terexample:

(AX)Y)o'l = (Xo'V)olt ((AX)Y)oll = (AX)o'1)(Yo'1)

and (Xo'Y)o'1 and (A\X)o'1)(Yo!1) have no common reduct. Moreover, the above
example shows that even local confluence is lost. But since ((AX)o!'1)(Yol1l) —»
(Xo21)o! (Yo'1), the solution to the problem seems at hand if one has in mind the
properties of meta-substitutions and updating functions of the A-calculus in the Bruijn
notation (cf. Lemma 4). These properties are equalities which can be given a suitable
orientation and the new rules, thus obtained, added to As yield a rewriting system
which happens to be locally confluent. For instance, the rule corresponding to the
Meta-substitution lemma (Lemma 4.4) is the o-o-transition rule. The addition of this

rule solves the critical pair in our counterexample, since now we have (Xo!'Y)ol1 —
(Xo?1)o! (Yo'1).

Definition 17 The set of rules As. is obtained by adding the rules given in Figure 8
to the set As. The As.-calculus is the reduction system (As,p, —xs,) Where — 5, is
the least compatible reduction on As,, generated by the set of rules As.. The calculus
of substitutions associated with the As.-calculus is the rewriting system generated by
the set of rules s, = As, — {o-generation} and we call it s¢-calculus.

In [KR97] we proved the following:

Theorem 18 (WN and CR of s.) The s.-calculus is weakly normalising and con-
fluent.

Lemma 19 (Simulation of S-reduction) Let a, b € A, if a =3 b then a —»)s_ b.
Theorem 20 (CR of As.) The As.-calculus is confluent on open terms.

Theorem 21 (Soundness) Let a, b€ A, if a —»ys, b then a —»3b.

1.5 The criterion of adequacy

We give now a formal presentation of the criterion of adequacy we use to compare
the different calculi.

14

Definition 22 Let a,b € A such that a =3 b. A simulation of this 8-reduction in
X for € € {o,04,v,s,t,u} is a A{-derivation a =, ¢ —»¢ &(c) = b where r is the rule
starting 3 ((Beta) for the calculi in the Ao-style and o- or ¢-generation for the calculi
in the As-style) applied to the same redex as the redex in @ —3 b. We say that the
A¢-calculus simulates B-reduction if every B-reduction a —g b has a simulation in A&.

The following was shown for each of the calculi we consider (see the relevant articles):
Lemma 23 For € € {0,0,,v,s,t,u}, A{ simulates S-reduction.

Definition 24 Let &1,& € {0,0,,v,s,t,u}. The A& -calculus is more adequate (in
simulating one step B-reductions) than the A&>-calculus, denoted A& < A&, if

1. for every classical S-reduction a —3 b and every A&;-simulation a —*3e, b there
exists a A¢;-simulation a —»Xg b such that m <n.

2. there exist a classical S-reduction a —g b and a A& -simulation a e b such
that for every A\&;-simulation a —*3e, b we have m <n.

It is easy to verify that < is transitive and asymmetric.

2 [Establishing adequacy

In this section we put the criterion at work. The main idea is to define functions
(denoted with @) which evaluate the length of the derivations of certain families of
terms that contain the contracta of the (Beta)- rules (eg. a[b/] in Av). For Av it
is possible to prove that all these derivations have the same length, whereas for Ao,
our functions compute just the length of the shortest derivation. To define these
Q-functions we need to define another functions (denoted with M) which evaluate
the length of the derivations of updatings. For the scope of this section, only the
M-functions are needed for At and Au.

2.1 Mt is more adequate than \v

We introduce a set of terms Ay C At on which induction will be used to define M?
(a function that computes the length of derivations of updatings in At). We are
mainly interested in pure terms, which are contained in Ay, but the introduction of
Ay is necessary since it provides a strong induction hypothesis to prove the auxiliary
results needed.

Definition 25 Ag ::= IN|AgAg | AAg |0 Ag , where k > 0. The length of terms in Ay is
defined by: Lg (n) = 1, Lg(ab) = Lg (a) +L9(b) +]., Lg()\a) = Lg(&ka) = Lg (a) +1.
By induction on @ € Ay we mean induction on Lg(a).

Remark 26 Let a € Ay and k > 0, then Ly(a) > Ly(t(6ra)).
Proof By induction on a. The interesting case is when a = 6,,b. By IH we have

Ly(b) > Ly(t(0,,b)) and since Ly(a) > Ly(b), we apply again the ITH (now to ¢(6,,b)) to
obtain Lo (t(6mb)) > Lo (t(0r(t(0mb)))) = Le(¢(6k(0m))). Hence, Lo(a) > Ly(t(0ra)).

15

Remark 27 It is easy to show by induction on a that if a € Ay and a —; b then

be Ag.

Definition 28 We define M? : Ay — IN by induction as follows:
M(n)=
Mt(ab) Mfa)+Mt()+
M(Xa)= ()+

Mt(eka) (t(@ka +M‘(a

Remark that the previous definition is correct thanks to Remark 26: M%8a) can be
inductively defined in terms of M¥t(6ra)) because Lg(t(0ra)) < Lg(a) < LO(Bk(a)).

Lemma 29 For a € Ay, every t-derivation of fa to its t-normal form has length
Mt(a).

Proof It is immediate to show that —; has the diamond property on Ay, i.e. for
a € A0, if a —¢ b and a —; ¢ then either b = ¢ or there exists d such that b —; d
and ¢ —¢ d. Therefore it is easy to conclude that all the derivations of a term to its
normal form have the same length.

Now we show that any derivation of j(a) to its normal form has length M?(a),
by induction on a and analyzing just one derivation.

e If ¢ = m it is obvious.
e If ¢ = bc we conclude by reducing at the root and applying I.H..
e If a = Ab we conclude as in the previous case.

o If a = 04(6,,(b)) we first reduce 6,,(b) to its normal form #(6,,(a) in Mt(a,)
steps by I.H. and then, again by I.H. (which can be applied because of Remark
26) we take 0 (t(0,,(a))) into its normal form in M?¢(¢(0,(a)).

Corollary 30 For a € Ay, all the ¢t-derivations of #ia to its t-normal form have the
same length, namely (i — 1)M*(t(a)) + M(a).

Proof Prove first by induction on a € Ay, using Remark 26, that M!(t(a)) =
M*(t(6xa)), then use this result to prove, by induction on j > 1, that M'(t(a)) =
M*(t(#;.a)). Use now Definition 28 and the two previous results to show, by induction
on [> 1, that M!(6 (a)) = IM*(t(a)) + M'(a). Finally, use Lemma 29 and the last
result with [= i — 1 to prove the corollary. Note that the hypothesis a € Ay (and
hence Definition 25) are essential.

Now we are going to prove the corresponding results for Av.

Definition 31 Ay m= N | AjAr | Mt | A% (1)] , where & > 0. The length of
terms in A4 is given by:
LT(D) =1 LT(ab) = LT((Z) + LT(b) +1 LT()\(J,) = LT(a[ﬂk (T)]) = LT((J,) +1.

Remark 32 Let a € Ay and k > 0, then Ly(a) > Ly(v(a[t* (1)]))-

Remark 33 If a € Ay and a =, b then b € A4.

16

Definition 34 For k > 0, we define M} : Ag — N as follows:

vy) 2k+1 if n>k
Agmy_{2n—1ifn§k

Mk“(ab) = Mk“(a) + Mk“(b) +1
My (Aa) = Mg, (a) + 1
My (a[t? (1)]) = My (v(a[f? (1)])) + M (a)

Lemma 35 For a € A4, all the v-derivations of a[ft* (1)] to its v-nf have length
M{(a).

Proof Induction (on the weight used in [BBLRD96] to show SN for v) and case
analysis.

Corollary 36 For a € A4, all the v-derivations of a[ft* (1)]* to its v-normal form
have the same length, namely (¢ — 1) M} (v(a)) + M (a).

Lemma 37 Let b € A, for every derivation b[ft* (1)]* =™ v(b[ft* (1)]) there exists
n < m such that 056 —7* £(63b).

Proof Prove first that for every b € A and k > 0, My (b) > M (b) by induction on
b € A. Conclude using lemmas 29 and 35.

Definition 38 Let a, b € A and i > 0, we define Q¥ (a,b) by induction on a:
2i+1 if n>i+1
Qi(n,b) =4 2n—1 if n<i+1
i1+ MPB) +1 if n=i+1
Q7 (cd,b) = Qi (¢,b) + Q7 (d,b) + 1
Q%)(AC, b) = Qf—i—l (Ca b) +1

Lemma 39 Let a, b € A and i > 0, all the v-derivations of a[ft? (b/)] to its v-nf have
the same length, namely QY (a,b).

Proof Easy induction on a € A. Remark that for a = n there is only one derivation
whose length is easy to compute. When n =i + 1, use Corollary 36.

Lemma 40 Let a, b € A and i > 0, there exists a derivation of as’™!(6ib) to its t-nf
whose length is less than or equal to QY (a,b).

Proof By induction on a reducing always at the root. For the case a = i 4+ 1 use
the fact that M (b) > M!(b) (induction on b € A) and Corollary 30.

Theorem 41 At is more adequate than Av.

Proof Show by induction on a that for @ € A, and a Av-derivation a =g b =" v(b),
there exists n < m where a —¢_gen ¢ 7 t(c).

The interesting case is a = (Ad)e —p dle/] =™ v(d[e/]). By Lemmas 39 and 40,
m = Qy(d,e) and there exists a derivation dsle = t(dcle) such that n < Q¥(d,e).

17

To check the second condition in Definition 24 remark that there are an infinity
of cases for which the inequality is strict. For instance, take (AX...An)a with m X’s
and n > m > 1. It is easy to check, using the function @},_; that 3m — 2 reductions
are needed to simulate S-reduction in \v, whereas only m + 1 reductions are sufficient
in At. Also, for m > n the number of reductions needed in Av is also strictly greater
than the number needed in At.

2.2)\u is more adequate than Ao,

Definition 42 For k > 0 and i > 1, we define M}, : A — IN by induction as follows:

2n—1 if n<k+1
T _
Mki(n)—{ Gk+i)—1 if n>k+1

M (ab) = My;(a) + M (b) + 1

M} (Aa) = M}, | ;(a) +1
Lemma 43 For a € A, every o,-derivation of a[t* (1%)] to its o,-nf has length
M} (a).
Proof By induction on a, controlling all the possible o,-derivations.

Definition 44 For k > 0 and ¢ > 1, we define Q] : A x A = N by induction as
follows:

2 — 1 if n<k+1

M, _(e)+n+1 if n=k+1, k>0
Qi) =9 1°"" if n=1k=0

2k + 3 if n>k+1

Qp(ab,c) = Qp(a,c) + Qh(b,c) + 1

Qr(\a,c) = Qpq(a,c) +1
Lemma 45 If a,b€ A, the shortest o,-derivation of a[{*(b-id)] to its o,-nf has length
Qr(a,b).
Proof By induction on a controlling all the possible o,-derivations.

Definition 46 For k > 0 and 7 > 2, we define M* : A — N by induction as follows:
M¥@n)=1 M%¥ab) = M¥(a) + M¥(b)+1 M¥(A\a) = M¥(a) + 1

Lemma 47 For a € A, every u-derivation of pia to its u-normal form has length
M"(a).

Proof By induction on a noting that derivations of p§a begin with reductions at
the root since a € A.

Lemma 48 For every a,b € A, k > 0 there exists a u-derivation of ag**'b to its u-nf
whose length is less than or equal to Q}.(a,b).

Proof By induction on a. The interesting case is a = k + 1 and the result follows
from Lemmas 43, 47 and the fact M“(b) < MJ;(b), which is easily proved by induction
on b.

18

Theorem 49 Au is more adequate than Aoy.

Proof Show that for @ € A, and a Aoy-derivation @ —peta b —»7, 04(b) there
exists n < m where a —,_gen, ¢ =1 u(c) by induction on a. The interesting case is
a = (Ad)e = geyq dle - id] ™ o, (d[e - id]). By Lemmas 45 and 48, m > Q?(d, e) and
there exists a derivation dole " u(do'e) where n < Qfi(d,e).

Now, to check the second condition in Definition 24, it is easy to compute to 6
the length of the shortest simulation in Ao, (there are only 2 such simulations) of the
B-reduction (AN2)1 — A2, whereas the only simulation of this reduction in Au has
length 4.

2.3 J\u is more adequate than \v

We use the functions defined in Sections 2.1 and 2.2 to show Au is more adequate
than A\v.

Lemma 50 For every a,b € A, i > 0 there exists a u-derivation of ao*'b to its u-nf
whose length is less than or equal to Q¥ (a,b).

Proof By induction on a. The interesting case is a = 1 + 1 and the result follows
from Corollary 36, Lemma 47 and the fact M *(b) < i(1+ M (b)), proved by induction
on b.

Theorem 51 Au is more adequate than Av.

Proof We prove that for every a € A and every Av-derivation a — petq b =1 v(b)
there exists n < m such that a =, _g4en ¢ =7 u(c) by induction on a. The proof is
analogous to the proof of Theorem 49. For the second condition, use again the (-
reduction (AA2)1 — A2 (see Theorem 49). It is easy to check that the only simulation
of this in Av has length 5.

2.4)u is more adequate than \s

The proof of adequacy in this section is simpler than the previous ones since Au and
As are closely related. We need first a lemma whose proof is by an easy induction on
b:

Lemma 52 For i > 2 and b € A every s-derivation of §(b) to its s-nf is also a
u-derivation.

Lemma 53 For every a,b € A, i > 1 and s-derivation of ao'b to its s-nf of length
m, there exists an u-derivation of ao'b to its u-nf whose length is less than or equal
to m.

Proof By induction on a. The interesting case is ¢ > 1 and a = i. Note that the
inequality is strict when i = 1 and a = i. The result follows from Lemma 52 which
gives a u-derivation of the same length.

Theorem 54 Au is more adequate than As.

19

Proof Show, as in Theorem 49, that Va € A and VAs-derivation a —5_gen b —»}"
s(b), there exists n < m where @ =,_gen, b =7 u(c). To check the second condition,
take (A1)1 — 1. There is only one simulation in As with length 4 and only one
simulation in Au with length 3.

3 Non-comparable calculi

To show that two calculi, say Aé; and A& cannot be compared with our criterion it
is enough to find two classical 3-reductions a =g b and ¢ —3 d such that

1. There is a shorter simulation a —% ¢, b than the shortest simulation a —% ¢, 0.

2. There is a shorter simulation ¢ —#)¢, d than the shortest simulation ¢ —)¢, d.
If this is the case we say that A& and A& are incomparable, and we write A& <4 AEs.

Since Ao works in a more “atomized” way (the ff-operator of Ao, and Av may be
decomposed in Ao as {} (s) = 1-(so 1) and the /-operator of Av may be decomposed
in Ao as a/ = a-id) it is tempting to assume that Ao, even its version with uncoded
de Bruijn indices, would be less adequate than Av and Ao,. However this is not the
case. As a matter of fact there is an infinite family of terms for which Ao performs
better than Av and Ao,, and furthermore, for these terms, Ao also performs better
than As and Au.

The terms we are going to consider are (AA(22))1", where a” is defined by in-
duction on n as a' = a, a®t! = aa™. There is only one B-redex at the root and
(AA(22))1™ —p5 A(2™2"). We study now the simulation of this f-reduction in the
different calculi.

Lemma 55 There is a Ao-derivation of (AA(22))1" to its Ao-nf whose length is n+9
and a Aopp-derivation whose length is 2n + 7.

Proof Here is the derivation in Ao:

(AA(22))1" = (AT L]))L" = AQT L)L - id] = AL LD - (A" - id)o 1)]) —
AT ADIL - (A7[1] - (ido 1)]) =" A((2 [T]l[T])[(@[tD™ - (ido 1))]) —

1HL-(A[D™ - Gdo D)) (L[1][1-(A[t])" - (ido 1)])) —

1t o(1-(1[1])" - (ido1))]) (1[][L-(2[t])™ - (ido 1)])) —

AN - (Gdo 1)) AL (D™ - (ido D)) = A(QMD™ ALH[L- (L))" - (ido 1))])) —°
1) A[D™) = A(2"2")

Here is the derivation in Aoppg:

A((
A((
A((
A((

(AAM(22))1" = (A(22))[1" -id] — A((2 2)[1- (1" -id)o 1)]) = A(22)[1- (1" [t]-(ido 1))]) "
A(22)[1- ((A[tD™ - (ido 1))]) =" A((22)[1 - (2" - (ido 1))]) =

A((2[L - (2" - (ido 1))]) (21 - (2" - (ido T))])) —

A((1[2" - (ido 1)]) (2[1 - (2" - (ido 1))])) = A(2" (2[1 - (2" - (ido 1))])) 7 A(2"2")

Lemma 56 Every \v-derivation of (AA(22))1" to its Av-nf has length 4n + 5.

Proof Every derivation of (AA(22))1™ must begin as follows:

(AA(22)1" = (A(22))[1"/] = A((22)[1 (1" /)]) = AL (1)) 2 (1"/)])
The two occurrences of 2[f} (1"/)] cannot interact since no abstraction will appear in
the first occurrence. Hence it is enough to show that every derivation of 2[f} (1"/)]
has length 2n + 1. This follows from M{ (1") = 2n — 1 (easily shown by induction on
n) and Lemma 39.

20

Lemma 57 Every Au-derivation of (AA(22))1™ to its Au-nf has length 4n + 3.

Proof Every Au-derivation of (AA(22))1™ must begin as follows:

(AA(22)1" = (M(22))0'1™ = A((22)021") = A((2021") (20%1™))
The two occurrences of 2021™ cannot interact and hence it is enough to show that
all derivations of 2021™ have length 2n. There is only one redex in 20%1", whose
contraction gives ¢2(1") and by Lemma 47 every derivation of 3(1") has length
M™(1™) which is easily computable to 2n — 1 by induction on n.

Lemma 58 For a € A, every s-derivation of pia to its s-normal form has length
M¥(a).

Proof By induction on a. Identical to the proof of Lemma 47.

Lemma 59 Every As-derivation of (A(22))1™ to its As-nf has length 4n + 3.
Proof Analogous to the proof of Lemma 57, using Lemma 58.

Lemma 60 There is a At-derivation of (AA(22))1" to its A¢-nf whose length is 2n+4.

Proof Here is the derivation in At:
(AA(22))1" = (A(22))a 1™ — A((22)s%0p(17)) —»" 1
A((22)s%(801)™) =™ A((22)s22™) = A((2622") (26%2™)) —»2 A(2"2")

Lemma 61 The shortest Ao, -derivation of (AX(22))1™ to its Ao, -nf has length 4n+7.

Proof Every Ao,-derivation of (AA(22))1" must begin as follows:

(AA(22))1" = (A(22))[1" - id] — A((22)[(1" - id)]) = A([(1" id)]) ([fr (17 id)]))
Now, the two occurrences of 2[{} (1" - id)] cannot interact and therefore, it is enough
to verify that the shortest derivation of 2[{} (1" id)] to its Ao,-nf has length 2n + 2.

This is easily done using Lemma 45 and the fact that M, (1) = 2n — 1, proved by
induction on n.

3.1 Ju and M\t are incomparable

Lemmas 57 and 60 prove that the reductions (AA(22))1™ — A(272") with n > 1 show
Au £ At

On the other hand, (AAA3)1 — AA3 shows that At £ Au. In fact, it is easy to check
that every simulation (there are 5) in A\t of (AAA3)1 — AA3 has length 6, whereas in
Au the unique simulation of this J-reduction has length 5.

3.2 J\u and Mo are incomparable

Lemmas 57 and 55 prove that the reductions (AA(22))1™ — A(2"2") with n > 3 show
Au £ Ao and Au £ Aopp. On the other hand, it is easy to show that (A2)1 — 1 has

unique simulations in Au, Ao and Aopp with respective lengths 2, 4 and 3. Hence,
Ao £ A and Aopp £ Au.

21

3.3 At and A\s are incomparable

Lemmas 59 and 60 prove that the reductions (AA(22))1™ — A(2"2") with n > 1 show
As A At.

On the other hand, (AAA3)1 — AA3 shows that At £ As. In fact, as in Section 3.1
it is easy to check that every simulation of this S-reduction in As has length 5.

3.4 Mt and Ao are incomparable

The simulation in At of (A2)1 — 1 requires only 2 steps and hence (see Section 3.2)
Ao £ At and Aopp £ At. To show At £ Aopp, take the B-reduction at the root of

()\)\)\)\4)((1)(A1)). It is possible to achieve the simulation in 19 steps in Aopp (let
= ((A1)(A1))-id):

(>v\>v\4)((1)(A1)) = (AAD)[s] =2 AN(4[L-((1-((1-(so1))o1))oD)]) =

AAA(3[(1-((1-(so1))o 1))]) = AMAB[L[1]-(((2-(so1))oT)o1)]) —

(1)
A[((1-(so))o)o]) = AA(2[[][1]- (((so D)o))]) —
A(L[((sot)o)o]) =7 ANA(1]so17]) = AAA(L[((A)(Al))[Tgl (ido1?)]) —
AM(AD D)) = AN FD(A) 7)) —
AAAAL- (17 o D)D) (AL (17 o)) =7 AAM(AD)(AL))

We must prove now that no simulation in At of this g-reduction can be achieved in
less than 19 steps. To do this we are going to prove a general result about At. In
Section 2.1 we have begun to study At in order to compare it with Av. Remark the
analogy between Lemma 29 and Lemma 35 we aim now to a lemma which should
correspond to Lemma 39, i.e. a result which will enable us to calculate the length of
the t-derivations of ac’b. Unfortunately, not all the derivations have the same length
as for Av. Furthermore, there is no easy way to compute the length of the shortest
derivation as for Ao, (see Lemma 45). Hence, it does not seem easy to obtain such
a general result. However, the shortest derivation of a¢'b can always be calculated
when a does not contain applications (like our example) and we proceed now to show
it. The notions used here were introduced in Section 2.1.

Definition 62 We define N : Ay — IN recursively as follows:
N(@m)=0 N(ab)=N(a)+ N(®b) N(a)=N(a) N(Ora)= M!(a)

Lemma 63 For a € Ay, every t-derivation of a to its ¢t-nf has length N(a).

Proof By induction on the weight P(b) used to prove SN for the t-calculus and case
analysis. The proof is analogous to the proof of Lemma 29.

Definition 64 Let A~ ::= N | AA~, ie. A~ is the set of A-terms which do not
contain applications. For i > 1, we define Q! : A= x Ay — N by induction as follows:

! if i
Qﬁ(nab)—{ Nb)+1 if n=i

Qz(/\aa b) = 7z;Jrl (a7 00b) +1

Lemma 65 For a € A—, b € Ay and i > 1 the shortest derivation of ac'b to its ¢-nf
has length Q%(a,b).

22

Proof Analogous to the proof of Lemma 29 using Lemma 63 for the case a = 1.

Now, since our simulation starts as (AAMA)((A1)(A1)) — (AAX4)st((A1)(A1)), we use
the previous lemma to conclude that every simulation of the 8-reduction at the root
has length 20. Therefore, A\t £ Aopp.

3.5 At and Ao, are incomparable

The simulation in Ao, of (A2)1 — 1 requires 4 steps and hence (see Section 3.4)
Ao, £ At.

TrTo show At £ Ao, we use the results of the previous subsection and the fact that
there is a simulation in Ao, of the f-reduction at the root in (AAAA4)((A1)(A1)) whose
length is 14. Here it is (we denote again s = ((A1)(A1)) -id):

AL (A1) (A1) = (AAAR)[s] =2 AMA(A[N® ()] =2 AM(L[s0 %)) —
AL AL)[°] - (ido 12)]) = AAA(((AD)(AD))[1?]) —
MDD ADT])) = AN (1)) AA (1)]))) =7 AMAA(A1)(AL1))

3.6 \s and Ao are incomparable

Lemmas 59 and 55 prove that the reductions (AA(22))1" — A(2"2") with n > 3 show
As £ Ao and As £ Aopp. On the other hand, it is immediate to verify that (A2)1 — 1
has a unique simulation in As of length 2 and hence (see Section 3.2) Ao £ As and
)\UDB 74 AS.

3.7 s and Ao, are incomparable

It is immediate to verify that (A1)1 — 1 has unique simulations in As and Ao, of
respective lengths 3 and 2. Therefore, As A Ao,;. On the other hand, the simulations
in As and Ao, of (A2)1 — 1 (see Sections 3.5 and 3.6) show that Ao, £ As.

3.8 JAs and A\v are incomparable

The reduction (AA2)1 — A2 has unique simulations in As and Av of respective lengths
4 and 5. Therefore, A\v A As. On the other hand, (A1)1 — 1 has a unique simulation
in Av of length 2 and hence (see Section 3.7) As £ Av.

3.9 Mo and \v are incomparable

Lemmas 56 and 55 prove that the reductions (AA(22))1™ — A(272™) with n > 2 show
Av £ Ao and Av £ Aopp. On the other hand, it is easy to verify that the shortest
simulation in Ao (there are only 9), resp. Aopp (there are only 5), of (AA2)1 — A2
has length 7, resp. 6, and hence (see Section 3.8) Ao £ Av and Aopp £ \v.

3.10 J\o and Ao, are incomparable

Lemmas 61 and 55 prove that the reductions (AA(22))1™ — A(272") with n > 1 show
Aoy A Ao and Ao, A Aopp. On the other hand, there is a simulation in Ao, of
(AA3)1 — A2 of length 7:

23

(AX3)1 — (A3)[1-id] — A(3[Mr(L-id)]) = A(2[(1-id)o1]) —

A[L[]-(ido1)]) = A(1[ido]) = A(1[T]) = A2

whereas it is easy to check that every simulation (there are only 14) in Ao of this
B-reduction has length 8. Therefore, Ao £ Ao,.

Unfortunately, the previous example does not work to show Aopp £ Ao,. It is
easy to find a simulation in Ao, of (AAA3)1 — AA3 of length 9. However, in Aopp
every simulation of this B-reduction has length at least 11. This can be checked by
hand or a simple program can do the work.

3.11 \o, and \v are incomparable

The shortest simulation (there are only 2) in Ao, of (AA2)1 — A2 has length 6 and
hence (see Section 3.8) Ao, A Av. On the other hand, there is a Ao,-simulation of
(AAAAE)(11) — AAA(44) of length 16:

AAAL)(11) = (AAD)[(L1) - dd] =2 AN ((11) - id)]) =2 MAAQL[((11) - id)o 13]) —
AMAAA D[] - (ido 1)]) = AMX((L D)) = MAAFTTL[]) = AAA(44)

whereas the length of every simulation in Av can be easily evaluated to 17: in fact,
every derivation must start as: (AAAA4)(11) — (AAA4)[(11)/] and then apply Lemma
39 with ¢ = 0. Therefore, Av £ Ao,.

We summarize in the following table the results obtained so far. The table must
be entered from the left, thus the information given, for instance, in position (1, 3) is
to be read as Au < As, whereas the information in position (3, 1) is As > Au.

Au | At | As | Av | Ao | Aoy,
Au | = || < | < || <
Al | =4 | < |¥+ |+
As || = |# | = |#F | #F | #F
Av - = || = || %
Ao ||+ |# |+ |F#F | = | #
Aoy || = |# |+ |F#F | F | =

4 The bridging calculi

4.1 The \w-calculus

In order to express As-terms in the Ao-style we are going to split the closure operator
of Ao (denoted in a semi-infix notation as —[—]) in a family of closures operators that
shall be denoted also with a semi-infix notation as —[—];, where ¢ ranges on the set
of natural numbers.

We will admit as basic operators the iterations of 1 and therefore we will have a
countable set of basic substitutions 1", where n ranges on the set of natural numbers.
By doing so, the updating operators of As are available in our new syntax as —[1"];.

24

o-generation A)b — alb/]y
o-app-transition (ab)[s]; — (a[s];) (b]s];)
o-\-transition (Aa)[s];, — Aa[s]j+1)
n—1 if n>j
o-/-destruction nfa/]; — alti 1 if n=j
n if n<j
. i n+i if n>j
o-1-destruction n[t’; — { 0 if n <

Figure 9: The Aw-calculus

Finally, we introduce a slash operator of sort term — substitution which trans-
form a term a into a substitution a/. This operator may be considered as consing
with id (in the Ao-jargon) and has been exploited in the Av-calculus (cf. [BBLRD96]).

Here is the formalisation of this syntax and the rewriting rules of \w:

Definition 66 The set of terms of the Aw-calculus, noted Aw, is defined as Aw! UAw?,
where Aw? and Aw? are defined by the following mutual recursion:

Terms Awt =N | AwlAw® | MW | Aw![Aw?];
Substitutions Aw® ==1% | Aw?/

where 7 > 1 and ¢ > 0. The set, denoted Aw, of rules of the Aw-calculus is given in
Figure 9.

The set of rules of the w-calculus is Aw — {o—generation}. We use a,b,c,... to
range over Aw’ and s,t,... to range over Aw?®.

As we said before, the /-operator is present in Av. Furthermore, the constant
substitutions 1¢ are exploited in the calculus of Mufioz [Mufi97b] A¢. This calculus
is so designed to avoid the non left linear rule (SCons) of Aosp. Moreover, our
indexed substitutions are reminiscent of the substitutions of the Ay-calculus with
levels considered in [LRD95].

However, there is an essential difference between Aw and Ax: in Ay the terms
(which are described with variable names) are stratified in levels whereas this is not
the case for the Aw-terms. There is also an essential difference between A¢ and Aw
concerning the substitutions: composition is a basic operator in A¢ but it does not
exist in Aw.

It is interesting to realize that the iterations 1% as basic operators as well as the
indexed substitutions are features which are embodied in As since, as we shall prove
in the next section, Aw and As are isomorphic.

25

o-/-transition a[b/lx[s]; — als]j+1[b[s]j—k+1/]x if kK<

3 ; b/l i ki<

[-t-transition a[1*]x[b/]; { a[ti= 1 if k<j<k+i
st - alt il i k4T <

t-t-transition a [}]x[1']; { a[ti+], if k<j<k+i

Figure 10: The new rules of the Aw-calculus

4.2 The A\w.-calculus

As we pointed out in Section 1.3 the As-calculus is not even locally confluent on open
terms. The same negative result can be easily transferred to the Aw-calculus.

By open terms in this new syntax we mean terms which admit variables (usually
called metavariables) of sort term but not metavariables of sort substitution. In
the Ao-jargon they are often referred as semi-closed or pure terms (cf. [Rio93]).

Now, we define formally what we mean by open terms in our new syntax and give
the Aw,-rules:

S

op» Where

Definition 67 The set of open terms, noted Aw,, is defined as Awf,p UAw
Aw}, and Awj, are defined by the following mutual recursion:

Open Terms Aw, ==V | N | Awl Awl, | M), | Aw,[Awg,];
Substitutions Awj, :=1" | Awl,/

where 7 > 1 and 7 > 0, and where V stands for a set of variables, over which X, Y, ...
range. We take a, b, c to range over Awf)p and s, t, ... over Aw;,. The set, denoted
Awe, of rules of the Aw,-calculus is obtained by adding to the set of rules Aw the new
rules of Figure 10.

The set of rules of the we-calculus is A\w, — {o—generation} .

Remark that the rule schemes /-1 and 1-1 can be merged into the single scheme
a[tk[s]; — als]j—i[1] fork+i<yj
but they must be kept distinct for the case k+i = j if SN is to be preserved. In fact,
the t-1-scheme, if admitted in the case k + ¢ = j, may generate an infinite loop by
itself (take for instance i =k =1=1 and j = 2).
5 The isomorphisms

We define in this section two functions, that are inverse of each other, and that estab-
lish an isomorphism between As. and Aw.. Furthermore, their restriction to ground

26

terms also establishes an isomorphism between As and Aw. These isomorphisms trans-
late all the properties of As and As, to Aw and Awe, respectively. We remark that the
sets of terms As and As,, correspond with the sets of terms Aw’ and Aw], respec-
tively, rather than Aw and Aw,p. Thus, it is only the sort term that is involved in
the isomorphism.

Definition 68 The functions 7' : As,, — Aw!, and S : Aw!, — As,, are defined
inductively by:

T(X) =X S(X) =X

T(n)=n S(n)=n

T(ab) =T (a)T(b) S(ab) = S(a)S(b)
T(Aa) = AT (a) S(Aa) = AS(a)
T(a0%b) = T(@)[T (1)) S(alb/];) = S(a) o7 S()
T(ppa) = T(a)[1* et S(a[tlk) = ¢71 (S(a))

We make an “abus de notation” and use the same names T and S for the restrictions
of these functions to ground terms. The context will be always clear enough in order
to avoid ambiguities.

Lemma 69 The following hold:
1. For all a, b € As, if a — b then T'(a) —,, T(b) .
2. For all a, b € As, if a =5 b then T'(a) =, T'(b) .
3. For all a, b € Asep, if a =5, b then T'(a) —,,. T(b) .
4. For all a, b € As,p, if @ =2, b then T'(a) —x,, T'(b) .

Proof By induction on a: if the reduction is internal, the ITH applies; otherwise, the
theorem must be manually checked for each rule.

Lemma 70 The following hold:

1. For all a, b € Aw', if a —,, b then S(a) =5 S(b) .
For all a, b € Aw?, if a =, b then S(a) —xs S(b) .
For all a, b € Aw?_, if a —,,_ b then S(a) —,. S(b) .

op?

Ll

For all a, b € Aw!), if @ =, b then S(a) —xs, S(b) .

op?

Proof By induction on a: if the reduction is internal, the ITH applies; otherwise, the
theorem must be manually checked for each rule.

We verify finally that 7" and S are in fact inverse of each other.
Lemma 71 The following hold:
1. For all a € Aw?, we have T'(S(a)) = a .

2. Forall a € AW,

we have T'(S(a)) = a .

27

3. For all a € As, we have S(T'(a)) =a .
4. For all a € As,p, we have S(T'(a)) =a .
Proof By an easy induction on a.

Now that the calculi have been proved isomorphic, all the results of sections 1.3
and 1.4 concerning As and As. translate into corresponding results for the sort term
to Aw and Awe.

Lemma 72 The following hold:
1. The w-calculus is SN and confluent on Aw?.
2. Let a,be A, if a5, b then a 0.
3. Let a,be A, if a -3 b then a =5, b.
4. The Mw-calculus is confluent on Aw?.
5. Pure terms which are SN in the A-calculus are also SN in the Aw-calculus.

Proof Use the isomorphism and the corresponding results for As summarized in
Theorem 12.

Lemma 73 The following hold:
1. The we-calculus is weakly normalising and confluent.
2. The Awe-calculus is confluent on open terms.
3. Let a,be A, if a =), b then a —»3b.
4. Leta, b€ A, if a =3 b then a =y, b.
Proof Use the isomorphism, Lemma 19 and Theorems 18, 20 and 21.

Remark that the schemes o-o-tr. and ¢-o-tr. of As. both translate in the same
scheme of \we, namely o-/-transition.

6 Typed calculi

We begin with a brief survey of the typed versions of As and Ao. From the point of
view of syntax the only difference is that the abstractions are marked with types. We
have thus AA.a where A is a simple type, that is a type obtained from a set of basic
types using the only binary infix constructor of types —. In the case of Ao we also
have the conses marked with types: a: A - s.

We recall that environments in de Bruijn’s setting are simply lists of types and
in the case of Ao, substitutions receive environments as types. We introduce the
following notation concerning environments. If E is the environment Ey, Es, ..., E,,
we shall use the notation E>; for the environment E;, E;11,. .., E,, analogously F<;
stands for Ei,..., E;, etc.

The rewriting rules of the corresponding typed calculi are exactly the same (except
that rules involving abstractions are now typed).

28

6.1 The typing rules

We concentrate now on the typing rules of these calculi. We begin by recalling the
typing rules for the simply typed A-calculus in de Bruijn’s notation. We call the
typing system L1:

AEFb:B
(L1 —var) AEF1:4 (L1 =) EFAD: A B
(L1 — varn) Ern:D (L1 — app) Brbiao b Zheid

AJEFn+1:B Etrba:B

We recall now the typing rules for As and As.. The typing system Ls1 is defined
as follows:

The rules Ls1-var, Ls1-varn, Ls1-\ and Ls1-app are exactly the same as L1-var,
L1-varn, L1-)\ and L1-app, respectively. The new rules are:

E§k7E2k+i Fa:A
Etgia: A

EZZI—I)B E<i,B,E2il—a:A

(Lsl —0) EtFacib: A

(Lsl — o)

In order that the reader could compare with the typing system Lol of Ao, we
recall Lol:

The rules Lo1-var, Lo1-\ and Lol-app are exactly the same as L1-var, L1-)\ and
L1-app, respectively. The new rules are:

EFs>E Ela:A

Lol — Lol — Erid> E
(Lol — clos) BTl 4 (Lol — id) id >
Eta:A EFs>FE)
(Lol — cons) FFra A so AR (Lol — shift) A,EFt>E
E '_ " EII EII '_ ! EI
(Lol — comp) il il (Lol — Mtv) Ex b X :Ax

EFsos'">E

The last rule is added to type open terms and should be understood as follows:
for every metavariable X, there exists an environment Ex and a type Ax such that
the rule holds.

We introduce now the typing rules for A\w and Aw.. The typing system is called
Lwl. The rules Lwl-var, Lwl-varn, Lwl-A and Lwl-app are exactly the same as
L1-var, L1-varn, L1-\ and L1-app, respectively. The new rules are:

Eta:A

— 0 _ _— T

(Lwl — id) E-1'pE (Lwl — slash) Eta/ AE
, EF1isE

Lwl — - Lwl — M Ex+-X:A

Lol—shif) [T (Lel-Mw) By kXA

Ezjl—SDE’ E<]~,E{,E2jl—a:A
Elals];j: A

(Lwl — clos)

29

We prove now that the isomorphism defined in Section 3 preserves typing. For
the definition of 7" and S in the next theorem we refer to Section 3.

Theorem 74 The following hold:
1. Forae€As,ift EFa: Athen EFT(a): A .
2. Fora€ Aspp, if EFa: Athen EFT(a): A .
3. Forae Aw',if EFa:Athen EF S(a): A .
4.

¢
For a € Aw,),

if EFa:Athen EF S(a): A .

Proof The four items are proved by an easy induction on the inference of E' - a : A.

6.2 Subject Reduction

This section is devoted to establish Subject Reduction for our four calculi. We prove
first subject reduction for Aw and Aw, and then we use the isomorphisms given in the
previous section to obtain Subject Reduction for As and As..

Theorem 75 (Subject Reduction for \w) Let a,b € Aw! and s,t € Aw?®.
1. IfEta:Aanda—y, bthen EFb: A.
2.If E- s> F and s =), t then EF¢t> F.

Proof By simultaneous induction on the structure of a and s. If the reduction is
internal it is enough to apply the inductive hypothesis. If the reduction is at the root
then each rule must be examined. We check for instance the rule o-/-destruction for
the case n = j.

Let us assume E - nf[a/]; : A. Therefore there exists an environment E' such that
EsjtFa/>E and Ecj,E],E>; F n: A Hence the n-th type in the environment
E<]’, ELEZ]' is A.

From E>; - a/ > E' we deduce E>; b a: E] and, since A = (E.j, B}, E>;), and
n = j, we have A = E}. Therefore, E>; - a : A and, because E F1~! pE5 ;. we can
apply the closrule (remember E = E>; and, by convention, E<; = nil) to obtain
EFa[ti71; @ A

Theorem 76 (Subject Reduction for Aw.) Let a,b € Aw, and s,t € Aw},.
1. fEFa:Aanda—y,, bthen EFb: A
2. EF s> Fand s =), tthen EFtp> F.

Proof By simultaneous induction on the structure of @ and s. The proof is analogous
to the previous proof, only the new rules must be checked now. As an example we
study the rule o — /-transition.
Assume E - a[b/][s]; : A and k < j. Therefore, there exists an environment E’
such that
EsjFs>FE (1)

and E.;, E{, E>; F a[b/] : A. From this last equation we deduce the existence of an
environment E' such that

E<k,E1I,Ek,...,Ej_l,Ei,EZj'—a:A (2)

30

and Ey,...,E;_1,EB],E>; b/ > E". Therefore,
Ey,...,E;_1,E{,E>; Fb: E/ (3)
Applying the clos rule, from equations 1 and 2 we get
Eck, By, Exi ©afs]jta - A (4)

and from equations 1 and 3, E>y F b[s]j—x+1 : £7, and a further application of slash
gives
Esy F[s]j—rt1/ : EY, B>y (5)

Finally, applying clos to equations 4 and 5, we conclude
E 't als]jy1[bls]j—k+1/]k - A
We use now the translations to prove Subject Reduction for As and As.

Theorem 77 (Subject Reduction for A\s and \As.) Leta,b € Asandc,d € As,p.
1.IfEFa:Aanda—y, bthen EFb: A.
22IfEFc:Aand ¢ —»ys, dthen EFd: A.

Proof We just check the first item (the second is analogous).

If EF a: A then, by Lemma 74.1, E + T'(a) : A. On the other hand, if a =5 b
then, by Lemma 69.2, T'(a) —x, T(b). Now, by Theprem 75.1, E F T'(b) : A, and
by Lemma 74.2, we get E + S(T'(b)) : A, and we are done because S(T'(b)) = b, by
Lemma 71.3.

Finally, we mention that in [KRW98], we showed that every well typed term in the As-
calculus is strongly normalising. This implies due to the above isomorphism that every
well typed term in the Aw-calculus is strongly normalising. Also, in [KR99] we show
that every well typed term in the simply typed Awe-calculus is weakly normalising.
This again implies that every well typed term in the simply typed As.-calculus is
weakly normalising.

Conclusions

In this paper, we attempted to bridge and compare the two styles of explicit substi-
tutions: those a la Ao and those a la As. We did this in two steps:

1. We introduced a criterion of adequacy to simulate [-reduction in calculi of
explicit substitutions and we applied it to several calculi: Ao, Ao, Av, As, At
and Au. The latter is presented here for the first time and may be considered as
an adequate variant of As. By doing so, we established that calculi & la As are
usually more adequate at simulating (-reduction than calculi in the Ao-style.
We showed that At is more adequate than Av and that Au is more adequate than
Av, Ao, and As and gave counterexamples to show that all other comparisons
are impossible. We are aware that our criterion is a very basic one, and it
would be interesting to study the relation among the different calculi in terms
of complexity of the length of reductions (linear, exponential). However, we
consider our results as a first step in the study of adequacy.

31

2. We introduced two new calculi Aw and Aw. that can bridge the two styles
of calculi of explicit substitutions. Our motivation for doing so comes from
the fact that the two different styles of substitutions provide complementary
properties and so it is interesting to understand one style in terms of the other.
Another reason is that, the As-style still has one puzzling open problem: the
termination of the substitution calculus s.. Although, the Aw and Aw,-calculi
are calculi in the Ao-style, their stratified substitutions are more As-style than
Ao-style. The main new feature towards the Ao-style is the introduction of 1?
and hence the availability of the updated term ¢ (a) as a[t*~];41. Hence the
stratified substitutions play a double role: as real substitutions as in a[b/]; and
as updatings as in a[1?];. We believe that this two-sorted presentation of As may
be useful to gain a new insight on the open problem for this calculus, mainly
the strong normalisation of s..

Apart from their role as bridging calculi between the Ao- and As-styles of ex-
plicit substitutions, the Aw- and Aw,-calculi are interesting on their own for the
following reasons:

Aw is confluent on closed terms and preserves strong normalisation,

the associated calculus of substitutions of Aw is SN,

B-reduction, and whose simply typed version is weakly normalising (on
open term).

As far as we know, the Aw-calculus is the first calculus in the Ao-style that has
all those properties. However, the preservation of strong normalisation does
not hold for Aw, and the SN of the associated calculus of substitution of Aw,
remains unsolved.

Acknowledgements

The authors are grateful for useful feedback and discussions with Roel Bloo, Jan
Willem Klop and Pierre Lescanne. This work is supported by EPSRC grants number
GR/L15685 and GR/L36963.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions.
Journal of Functional Programming, 1(4):375-416, 1991.

[AS86] H. Abelson and G. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, 1986.

[Bar84] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics (revised
edition). North Holland, 1984.

32

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a Calcu-
lus of Explicit Substitutions which Preserves Strong Normalization. Journal of
Functional Programming, 6(5):699-722, 1996.

[Ben97] Z. Benaissa. Les calculs de substitutions explicites comme fondement de
Uimplantation des langages fonctionnels. PhD thesis, Univ. Henri Poincare,
Nancy, 1997.

[Blo97] R. Bloo. Preservation of Strong Normalisation for Ezplicit Substitution. PhD
thesis, Department of Mathematics and Computing Science, Eindhoven Univer-
sity of Technology, 1997.

[Blo99] R. Bloo. Pure type systems with explicit substitutions. In proceedings of
FLOC’99 workshop WESTAPP’99, pages 45-58, 1999.

[Bon99] E. Bonelli. The polymorphic lambda calculus with explicit substitutions. In
proceedings of FLOC’99 workshop WESTAPP’99, pages 59-74, 1999.

[BR96] R. Bloo and K. Rose. Combinatory Reduction Systems with Explicit Sub-
stitution that Preserve Strong Normalisation. Proceedings of RTA 96, Lecture
Notes in Computer Science, 1103, 1996.

[CHL96] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and
strong calculi of explicit substitutions. Journal of the ACM, 43(2):362-397, 1996.

[Con86] R. Constable et al. Implementing Mathematics with the NUPRL Develop-
ment System. Prentice-Hall, 1986.

[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional
Programming. Pitman, 1986. Revised edition : Birkhduser (1993).

[dB72] N. G. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser The-
orem. Indag. Mat., 34(5):381-392, 1972.

[dB78] N. G. de Bruijn. A namefree lambda calculus with facilities for internal def-
inition of expressions and segments. Technical Report TH-Report 78-WSK-03,
Department of Mathematics, Eindhoven University of Technology, 1978.

[DHK95] G. Dowek, T. Hardin, and C. Kirchner. Higher order unification via ex-
plicit substitutions (extended abstract). In Proceedings, Tenth Annual IEEE
Symposium on Logic in Computer Science, San Diego, pages 366374, 1995.

[FKP99] Maria C. F. Ferreira, Delia Kesner, and Laurence Puel. A-calculi with ex-
plicit substitutions preserving strong normalization. Applicable Algebra in Engi-
neering, Communication and Computation, 9(4):333-371, 1999.

[GL97] Jean Goubault-Larrecq. A proof of weak termination of the simply typed
Ao-calculus. Technical report, INRIA, January 1997.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

33

[Gui99a] B. Guillaume. The A\;-calculus. In proceedings of FLOC’99 workshop WEST-
APP’99, pages 2-13, 1999.

[Gui99b] B. Guillaume. Un calcul des substitutions avec etiquettes. PhD thesis, Uni-
versité de Savoie, Chambéry, 1999.

[HL89] T. Hardin and J.-J. Lévy. A Confluent Calculus of Substitutions. France-
Japan Artificial Intelligence and Computer Science Symposium, December 1989.

[KN93] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. In-
ternational Journal of Foundations of Computer Science, 4(3):197-240, 1993.

[KR95] F. Kamareddine and A. Rios. A A-calculus a la de Bruijn with explicit sub-
stitutions. In Proceedings of Programming Languages Implementation and the
Logic of Programs PLILP’95, volume 982 of Lecture Notes in Computer Science,
pages 45—62. Springer-Verlag, 1995.

[KR97] F. Kamareddine and A. Rios. Extending a A-calculus with Explicit Substi-
tution which preserves Strong Normalisation into a Confluent Calculus on Open
Terms. Journal of Functional Programming, 7(4):395-420, 1997.

[KRI8] F. Kamareddine and A. Rios. Bridging de Bruijn indices and variable names
in explicit substitutions calculi. The Logic Journal of the Interest Group of Pure
and Applied Logic, IGPL, 6(6):843-874, 1998.

[KR99] F. Kamareddine and A. Rios. Weak normalisation of the simply typed As.-
calculus. Technical report, Heriot-Watt University, 1999. In preparation.

[KRW98] F. Kamareddine, A. Rios, and J.B. Wells. Calculi of generalised f,-
reduction and explicit substitution: Type free and simply typed versions. Journal
of Functional and Logic Programming, pages 1 — 44, 1998.

[Les94] P. Lescanne. From Ao to A\v, a journey through calculi of explicit substitu-
tions. In Hans Boehm, editor, Proceedings of the 21st Annual ACM Symposium
on Principles Of Programming Languages, Portland (Or., USA), pages 60-69.
ACM, 1994.

[LM96] J. L. Lawall and H. Mairson. Optimality and inefficiency: What isn’t a cost
model of the lambda calculus? Proc. 1996 ACM SIGPLAN Int’l Conf. Functional
Programming, pages 92-101, 1996.

[LRO8] F. Lang and K. Rose. Two calculi of explicit substitution with confluence
on metaterms and preservation of strong normalisation. In proceedings of RTA
workshop WESTAPP’98, 1998.

[LRD95] P. Lescanne and J. Rouyer-Degli. Explicit substitutions with de Bruijn’s
levels. In J. Hsiang, editor, Proceedings 6th Conference on Rewriting Techniques
and Applications, Kaiserslautern (Germany), volume 914 of Lecture Notes in
Computer Science, pages 294-308. Springer-Verlag, 1995.

[Mag95] Magnusson. The implementation of ALF - a proof editor based on Martin
Léf’s Type Theory with explicit substitutions. PhD thesis, Chalmers, 1995.

34

[Mel95] P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate.
In Proceedings of Typed Lambda Calculi and Application: TLCA’95, volume 902
of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[Mu1i96] C. Muiioz. Proof representation in type theory: State of the art. In Pro-
ceedings of the XXII Latin-American Conference of Informatics CLEI Panel 96,
Santafé de Bogotd, Colombia, June 1996.

[Mufi97a] C. Mufioz. A calculus of substitutions for incomplete-proof representa-
tion in type theory. Technical Report RR-3309, Unité de recherche INRIA-
Rocquencourt, Novembre 1997.

[Mun97b] C. Muiioz. Dependent types with explicit substitutions: A meta-theoretical
development. In Types for Proofs and Programs, Proceedings of the International
Workshop TYPES’96, volume 1512 of Lecture Notes in Computer Science, pages
294-316, 1997.

[Muii97c] C. Muifioz. Un calcul de substitutions pour la représentation de preuves
partielles en théorie de types. These de doctorat, Université Paris 7, 1997. English
version is available as an INRIA research report number RR-3309.

[Mun98] C. Muifioz. Proof synthesis via explicit substitutions on open terms. In
Proc. International Workshop on FExplicit Substitutions, Theory and Applica-
tions, WESTAPP 98, Tsukuba (Japan), April 1998.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on
Awutomath. North-Holland, Amsterdam, 1994.

[NW90] G. Nadathur and D. Wilson. A representation of lambda terms suitable for
operations on their intentions. Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, pages 341-348, 1990.

[Pau90] L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361-386. Academic Press, 1990.

[Pey87] S.L. Peyton-Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

[Ri093] A. Rios. Contribution a létude des A-calculs avec substitutions explicites.
PhD thesis, Université de Paris 7, 1993.

35

