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tThe aim of this arti
le is to 
ompare two styles of Expli
it Substitutions: the ��- and �s-styles. We start by introdu
ing a 
riterion of adequa
y to simulate �-redu
tion in 
al
uli ofexpli
it substitutions and we apply it to several 
al
uli: ��, ��*, ��, �s, �t and �u. Thelatter is presented here for the �rst time and may be 
onsidered as an adequate variant of�s. By doing so, we establish that 
al
uli �a la �s are usually more adequate at simulating�-redu
tion than 
al
uli in the ��-style. In fa
t, we prove that �t is more adequate than ��and that �u is more adequate than ��, ��* and �s. We also give 
ounterexamples to showthat all other 
omparisons are impossible a

ording to our 
riterion.Our next step 
onsists in presenting the �! and �!e 
al
uli, the two-sorted (term andsubstitution) versions of the �s (
f. [KR95℄) and �se (
f. [KR97℄) 
al
uli, respe
tively.We establish an isomorphism between the �s-
al
ulus and the term restri
tion of the �!-
al
ulus, whi
h extends to an isomorphism between �se and the term restri
tion of �!e.Sin
e the �! and �!e 
al
uli are given in the style of the ��-
al
ulus (
f. [ACCL91℄) theyare bridge 
al
uli between �s and �� and between �se and �� and thus we are able to betterunderstand one 
al
ulus in terms of the other. Finally, we present typed versions of all the
al
uli and 
he
k that the above mentioned isomorphism preserves types.As a 
onsequen
e, the �!-
al
ulus is a 
al
ulus in the ��-style that has the followingproperties a..g: a) �! simulates one step �-redu
tion, b) �! is 
on
uent (on 
losed terms),
) �! preserves strong normalisation, d) �!'s asso
iated 
al
ulus of substitutions is SN, e)the simply typed �! 
al
ulus is SN, f) the �!-
al
ulus possesses an extension �!e that is
on
uent on open terms (terms with eventual metavariables of sort term only), and g) thesimply typed �!e 
al
ulus is weakly normalising (on open term). As far as we know, the �!-
al
ulus is the �rst 
al
ulus in the ��-style that has all those properties a..g. However, theopen problem of the SN of the asso
iated 
al
ulus of substitution of �!e remains unsolvedand like in the 
ase of ��, �� and �se, �!e does not have PSN.Keywords: �-
al
ulus, expli
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prisingly 
ompli
ated to give a rigorous mathemati
al de�nition of the substitutionpro
ess... Indeed, there is a long history of erroneous de�nitions of \substitution" inthe literature of logi
 and programming semanti
s.Most literature on the �-
al
ulus treats substitution as an atomi
 operation andleaves impli
it the a
tual 
omputational steps ne
essary to perform substitution. Sub-stitution is usually de�ned with operators whi
h do not belong to the language of the�-
al
ulus. In any real implementation, the substitution required by �-redu
tion(and similar higher-order operations) must be implemented via less 
omplex opera-tions. Thus, there is a 
on
eptual gap between the theory of the �-
al
ulus and itsimplementation in programming languages and proof assistants. Expli
it substitutionattempts to bridge this gap without abandoning the setting of the �-
al
ulus.By representing substitutions in the stru
ture of terms and by providing (�rst-order) redu
tions to propagate the substitutions, expli
it substitution provides a num-ber of bene�ts. A major bene�t is that expli
it substitution allows more 
exibilityin ordering work. Propagating substitutions through a parti
ular subterm 
an waituntil the subterm is the fo
us of 
omputation. This allows a 
hoi
e among the substi-tutions to be performed, thus improving lo
ality of referen
e. Obtaining more 
ontrolover the ordering of work has be
ome an important issue in fun
tional programminglanguage implementation (
f. [Pey87℄). The 
exibility provided by expli
it substitu-tion also allows postponing unneeded work inde�nitely (i.e., avoiding it 
ompletely).This 
an yield pro�ts, sin
e impli
it substitution 
an be an ineÆ
ient, maybe evenexploding, pro
ess by the many repetitions it 
auses. Another bene�t is that expli
itsubstitution allows formal modeling of the te
hniques used in real implementations,e.g., environments. Be
ause expli
it substitution is 
loser to real implementations,it has the potential to provide a more a

urate 
ost model. (This possibility is par-ti
ularly interesting in light of the diÆ
ulty en
ountered in formulating a useful 
ostmodel in terms of graph redu
tion [LM96, Pey87℄.)Proof assistants may bene�t from expli
it substitution, due to the desire to performsubstitutions lo
ally and in a formal manner. Lo
al substitutions are needed as fol-lows. Given xx[x:=y℄, one may not be interested in having yy as the result of xx[x:=y℄but rather only yx[x:=y℄. In other words, one only substitutes one o

urren
e of xby y and 
ontinues the substitution later. Theorem provers like Nuprl [Con86℄ andHOL [GM93℄ implement substitution whi
h allows the lo
al repla
ement of some ab-breviated term. This avoids a size explosion when it is ne
essary to repla
e a variableby a huge term only in spe
i�
 pla
es to prove a 
ertain theorem.Formalisation helps in studying the termination and 
on
uen
e properties of sys-tems. Without formalisation, important properties su
h as the 
orre
tness of substitu-tions often remain un-established, 
ausing mistrust in the implementation. In fa
t, itis known that the �rst implementation of substitution in Automath [NGdV94℄ was in-
orre
t, and that most of the bugs in the implementation of LCF 
ame from 
lashes ofbound variables in strange situations [Pau90℄. As the implementation of substitutionin many theorem provers is not based on a formal system, it is not 
lear what prop-erties their underlying substitution has, nor 
an their implementations be 
ompared.Thus, it helps to have a 
hoi
e of expli
it substitution systems whose properties havealready been established. This is witnessed by the re
ent theorem prover ALF, whi
his formally based on Martin-L�of's type theory with expli
it substitution [Mag95℄.Another justi�
ation for expli
it substitution in theorem proving is that some re-2



sear
hers believe \ta
ti
s" 
an be repla
ed by the notion of in
omplete proofs, whi
hare believed to need expli
it substitutions [Mu~n97
, Mu~n96, Mu~n97a, Mu~n98, Mag95℄.Similarly, the area of implementations of fun
tional and logi
 languages has witnessedan important resear
h in expli
it substitutions, e.g. [Ben97, NW90, DHK95℄.The last �fteen years have seen an in
reasing interest in formalising substitutionexpli
itly; various 
al
uli in
luding new operators to denote substitution have beenproposed. Amongst these 
al
uli we mention C��� [dB78℄; the 
al
uli of 
ategori
al
ombinators [Cur86℄; �� [ACCL91℄, ��* [CHL96℄, ��SP [R��o93℄, referred to as the��-family; �� [BBLRD96℄, the 
al
uli of [FKP99℄ and �� [Mu~n97
℄, whi
h are des
en-dants of the ��-family; '�BLT [KN93℄, ��-
al
ulus [LRD95℄, �x [BR96℄, �s [KR95℄,�t [KR98℄, �se [KR97℄, and �l [Gui99b, Gui99a℄. All these 
al
uli (ex
ept �x) aredes
ribed in a de Bruijn setting where natural numbers play the role of variablesand the set of terms � on whi
h substitution will be made expli
it is de�ned by:� ::= IN j (��) j (��). But, why so many varieties of systems of expli
it substitu-tions and the sear
h still 
ontinues? The following se
tion attempts to explain:The ��-
al
ulus (
f. [ACCL91℄) re
e
ts in its 
hoi
e of operators and rules the
al
ulus of 
ategori
al 
ombinators (
f. [Cur86℄). The main innovation of the ��-
al
ulus is the division of terms in two sorts: sort term and sort substitution.Cal
uli �a la �s depart from this style of expli
it substitutions in two ways. First,they keep the 
lassi
al and unique sort term of the �-
al
ulus. Se
ond, they do notuse some of the 
ategori
al operators, espe
ially those whi
h are not present in the
lassi
al �-
al
ulus. The main reason for doing so, is to remain 
loser to the �-
al
ulusfrom an intuitive point of view, rather than a 
ategori
al one.But, what properties does one look for in 
al
uli that are to be the basis forprogramming languages? We attempt to list some of those desired properties for
al
uli of expli
it substitutions:1. Termination or Strong Normalisation (SN): For a 
al
ulus of expli
itsubstitutions �subst, does the underlying 
al
ulus of substitutions subst ter-minate? This question is of 
ourse important. One does not want to in
ludenon-terminating rules to the �-
al
ulus.2. Con
uen
e (CR): Is the substitution 
al
ulus �subst 
on
uent on:(a) Ground terms? (I.e. terms of � above with expli
it substitutions)(b) Open terms? It is possible to 
onsider, besides the 
lassi
al variables (nownumbers), real variables (whi
h 
orrespond to meta-variables in the 
las-si
al setting). The terms obtained with this extended syntax are 
alledopen terms and they 
an be 
onsidered as 
ontexts, the new variables 
or-responding to pla
e-holders. The interest in studying the 
al
uli on openterms is that they allow, for instan
e, the representation of in
ompleteproofs where the pla
e-holder stands for the still unknown part of theproof. Cal
uli on open terms have also provided the tools to prune thesear
h spa
e in uni�
ation algorithms (
f. [DHK95℄).3. Simulation of �-redu
tion: If a evaluates in the �-
al
ulus (using only �-redu
tion) to b, does a evaluate to b in the �subst-
al
ulus (using the �-rule andthe substitutions rules)? 3



4. Preservation of Termination (PSN): If a terminates in the �-
al
ulus, doesit terminate in the �subst-
al
ulus?�� enjoyed properties 1, 2a, and 3 but not 2b. Therefore, ��* [HL89, CHL96℄ wasproposed. ��* is a variant of �� that is 
on
uent on open terms. Nevertheless, 4remained unknown for �� or ��* until Melli�es proved that ��* (as well as both therest of the ��-family and the 
ategori
al 
ombinators) does not preserve SN [Mel95℄.This led to the 
reation of �� [Les94℄, �x [BR96℄, �s [KR95℄ and �se [KR97℄ 
al
uli.[BBLRD96℄ and[BR96℄ establish properties 1, 2a, 3 and 4 for �� and �x but the �rst
al
ulus has not been extended on open terms and the se
ond has been extendedon open terms but it is not 
lear whi
h properties hold [LR98℄. [KR97℄ establishesproperties 2 and 3 for �se, but property 1 remains an open problem for �se andGuillaume [Gui99b, Gui99a℄ showed that PSN (property 4) fails for �se. Moreover,[Gui99b, Gui99a℄ proposes a 
al
ulus �l that has all the properties 1..4, but with arestri
ted form of 3. In this paper, we avoid any further dis
ussion of the labelled
al
ulus �l be
ause it di�ers from 
al
uli �a la �� and �s in that it uses labels and sorelating it to the other styles is not straightforward.��* satis�es 1, 2, and 3, whereas �� a
hieves 1, 2a, 3 and 4 by removing the
omposition operator. However, [FKP99℄ provides two 
al
uli of expli
it substitutionsthat have the 
omposition operator and still have PSN. Remark that �� and the 
al
uliof [FKP99℄ do not enjoy 2b.The ��-
al
ulus (
f. [Mu~n97
℄) has been proposed as a 
al
ulus whi
h preservesstrong normalisation and is itself 
on
uent on open terms. In other words, �� satis�es1, 2, and 4. The ��-
al
ulus works with two new appli
ations that allow the passageof substitutions within 
lassi
al appli
ations only if these appli
ations have a headvariable. This is done to 
ut the bran
h of the 
riti
al pair whi
h is responsible forthe non-
on
uen
e of �� on open terms. Hen
e, �� preserves strong normalisation andis itself 
on
uent on open terms. Unfortunately, �� is not able to simulate one step�-redu
tion as shown in [Mu~n97
℄. Instead, it simulates only a \big step" �-redu
tion.This is our reason for not dis
ussing it further in this paper.Another line of expli
iting substitutions has been made in [KN93, KR95, KR97,KRW98℄. In [KN93℄, the �-
al
ulus was rewritten using a notation in
uen
ed stronglyby de Bruijn's notation for Automath [NGdV94℄. In that notation [KN93℄, every �-term is simply a sequen
e of items followed by a variable. This item notation, allowedalso the introdu
tion of so 
alled substitution items and the in
lusion of rules thatexpli
it the passage of substitution. Alas however, the 
al
ulus of [KN93℄ does notsatisfy 1 nor 2 nor 4. For this reason, [KR95℄ set out to �nd the part of the 
al
ulusof [KN93℄ that satis�es as mu
h of 1 to 4 as possible. The solution was to extendthe �-
al
ulus with expli
it substitutions by turning de Bruijn's meta-operators intoobje
t-operators. (Mention of a very 
lose 
al
ulus to the �s-
al
ulus 
an be alreadyfound in [Cur86℄, exer
ise 1.2.7.2, where referen
e to previously unpublished notesof Y. Lafont is given.) The resulting 
al
ulus �s remains intuitively as 
lose to the�-
al
ulus as possible for a 
al
ulus of expli
it substitution. �s (like ��) satis�es allof 1, 2a, 3 and 4. Moreover, �s has an extension �se (
f. [KR97℄) that is 
on
uenton open terms (hen
e �se satis�es 2a and 2b). Also, �se satis�es 3. It is still an openproblem whether �se satis�es 1 and it has been established in [Gui99b, Gui99a℄ thatit does not satisfy 4.The presen
e of su
h varieties of 
al
uli of expli
it substitutions, makes it desirable4



to �nd a 
ommon framework between both styles so that maybe their 
omplementaryproperties 
an be 
ombined.All the above dis
ussion was 
on
erned with the type-free �-
al
ulus extendedwith expli
it substitutions. However, type theory is at the heart of the theory andimplementation of programming languages and theorem provers. For this reason,no 
al
ulus 
an really bridge the gap between theory and implementation and be auseful one for programming languages and theorem proving if there was no way toa

ommodate types.The results 
on
erning typed 
al
uli are the following. �� does not preserve strongnormalisation and the 
ounterexample given in [Mel95℄ to prove it happens to be avery de
ent typable term. Therefore, typed �� is not SN. On the other hand, ��preserves strong normalisation and its simply typed version is strongly normalising.The same applies to �s and �x whi
h, (like ��) preserve strong normalisation and havesimply typed versions that are strongly normalising. [ACCL91℄ had typed versions of�� but only re
ently, �� (with open terms) has been shown to be weakly normalising[GL97℄. Extending se
ond and higher order �-
al
ulus with expli
it substitutionsremains an a
tive subje
t of resear
h[Bon99, Blo99, Blo97, Mu~n97b℄.We believe that a 
omparison between the two styles and a formulation of �s and�se in the ��-style 
ould be useful to better understand one 
al
ulus in terms of theother. Therefore, we start by fo
using on ��, ��*, ��, �s, �t and �u. All these
al
uli are rewriting systems on a set of terms that 
ontain the 
lassi
al terms of the�-
al
ulus (pure terms). All of them possess a rule to start �-redu
tion (the only ruleof the �-
al
ulus) and a set of rules to 
ompute the substitution generated by thisstarting rule.Sin
e 
al
uli with expli
it substitutions are intended to extend the 
lassi
al �-
al
ulus, it is expe
ted that �-redu
tion 
ould be re
overed in some way within these
al
uli, for instan
e, if �� is an expli
it substitution 
al
ulus, we may have for pureterms a; b:1. one step simulation: if a!� b then a!!�� b.2. big step simulation: if a!!� b and b is in �-normal form then a!!�� b.The 
al
uli ��, ��*, ��, �s, �t, �u have the property of one step simulation andwe 
on
entrate in this paper on the adequa
y of this simulation whi
h implies thebig step one, leaving the study of the adequa
y of the latter for future work. Our
riterion of adequa
y is essentially the following: we say that the 
al
ulus ��1 is moreadequate than the 
al
ulus ��2 if for every simulation of a 
lassi
al �-step in ��2 thereis a shorter simulation in ��1.There are reasons why we do not 
onsider the other 
al
uli in our study of adequa
yas de�ned in this paper. For example, �� (the only 
al
ulus that) simulates just abig step �-redu
tion (and hen
e it does not make sense to study its adequa
y inour sense), whereas �se, '�BLT and ��SP are less interesting be
ause they are lesswell-behaved 
al
uli of expli
it substitutions.In se
tion 1 we introdu
e the formal ma
hinery, re
all the various 
al
uli and theirproperties, present the �u-
al
ulus and give the formal statement of the 
riterion ofadequa
y to simulate �-redu
tion.In se
tion 2 we use our 
riterion to 
ompare several of the above mentioned 
al
uli.We 
on
lude that �t is more adequate than ��, and that �u is more adequate than�s, �� and ��*. 5



In se
tion 3 we give 
ounterexamples to show the 
al
uli that are in
omparablea

ording to our 
riterion, namely: �t 
annot be 
ompared with �u, �s, �� and ��*;�u 
annot be 
ompared with �� and �t; �s 
annot be 
ompared with �t, ��, ��and ��*. We show also that, surprisingly, no 
omparison is possible between any two
al
uli in the ��-style.In Se
tion 4, we provide the �! and �!e 
al
uli, whi
h are two-sorted: sort termand sort substitution, and hen
e 
loser to ��. When restri
ting these 
al
uli to thesort term we obtain 
al
uli whi
h are isomorphi
 to �s and �se, respe
tively.In Se
tion 5 we give the isomorphisms between �! and �s and between �!e and�se whi
h enable us to establish that �! (resp. �!e) has the same properties of �s(resp. �se).In Se
tion 6 we re
all the typed versions of �s, �se and �� and introdu
e thetyped �! and �!e 
al
uli. We prove that the isomorphism introdu
ed in Se
tion 5preserves types and we 
on
lude by establishing Subje
t Redu
tion for our 
al
uli.1 PreliminariesWe assume the reader familiar with de Bruijn indi
es (
f. [dB72℄) and with notionsof redu
tion as in [Bar84℄. In parti
ular, a = b is used to mean that a and b aresynta
ti
ally identi
al; and for a redu
tion notion R, we denote with =!R the re
exive
losure of R , with !!R or just !! the re
exive and transitive 
losure of R and with!!+R or just !!+ or just !+ the transitive 
losure of R . When a!! b we say thereexists a derivation from a to b . By a!!n b, we mean that the derivation 
onsists ofn steps of redu
tion and 
all n the length of the derivation. The following is needed:De�nition 1 Let R be a redu
tion on A . We de�ne (lo
al) 
on
uen
e or (W)CR((weakly) Chur
h Rosser), normal forms and normalisation as follows:1. R is WCR when 8a; b; 
 2 A 9d 2 A ((a ! b ^ a ! 
)) (b !! d ^ 
 !! d)).2. R is CR when 8a; b; 
 2 A 9d 2 A ((a !! b ^ a !! 
)) (b !! d ^ 
 !! d)).3. a 2 A is an R-normal form (R-nf for short) if there is no b 2 A su
h thata! b .4. b has a normal form if there exists a nf a su
h that b!! a .5. R is strongly normalising (SN) if there is no in�nite sequen
e (ai)i�0 where8 i � 0 , ai ! ai+1 .Note that 
on
uen
e of R guarantees uni
ity of R-normal forms and SN ensures theirexisten
e. When there exists a unique R-normal form of a term a , it is denoted byR(a) .1.1 The 
lassi
al �-
al
ulus in de Bruijn notationWe de�ne �, the set of terms with de Bruijn indi
es, as follows:� ::= IN j (��) j (��)6



We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural num-bers). Furthermore, we assume the usual 
onventions about parentheses and avoidthem when no 
onfusion o

urs. We say that a redu
tion ! is 
ompatible on � whenfor all a; b; 
 2 �, we have a! b implies a 
! b 
, 
 a! 
 b and �a! �b.In order to de�ne �-redu
tion �a la de Bruijn, we must de�ne the substitution of avariable n for a term b in a term a. Therefore, we need to update the term b:De�nition 2 The updating fun
tions U ik : � ! � for k � 0 and i � 1 are de�nedindu
tively:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a)) U ik(n) = � n+ i� 1 if n > kn if n � k :Now we de�ne the family of meta-substitution fun
tions:De�nition 3 The meta-substitution at level j , for j � 1 , of a term b 2 � in a terma 2 � , denoted affj bgg , is de�ned indu
tively on a as follows:(a1a2)ffj bgg = (a1ffj bgg) (a2ffj bgg)(�a)ffj bgg = �(affj+ 1 bgg) nffj bgg = 8<: n� 1 if n > jU j0 (b) if n = jn if n < jThe following gives the properties of meta-substitution and updating (
f. [KR95℄):Lemma 4 Let a; b; 
 2 �. We have:1. for k < n < k + i : U i�1k (a) = U ik(a)ffn bgg .2. for l � k < l + j : U ik(U jl (a)) = U j+i�1l (a) :3. for k + i � n : U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :4. for i � n : affi bggffn 
gg = affn+ 1 
ggffi bffn� i+ 1 
gggg :5. for l + j � k + 1 : U ik(U jl (a)) = U jl (U ik+1�j(a)) .6. for n � k + 1 : U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :De�nition 5 �-redu
tion is the least 
ompatible redu
tion on � generated by:(�-rule) (�a) b!� aff1 bggThe �-
al
ulus (�a la de Bruijn), is the redu
tion system whose only rewriting rule is�.Theorem 6 The �-
al
ulus �a la de Bruijn is 
on
uent.
7



(Beta) (�a) b �! a [b � id℄(VarId) 1 [id℄ �! 1(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [1 � (s Æ ")℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(ShiftId) " Æ id �! "(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)Figure 1: The ��-rules1.2 Cal
uli �a la ��In this se
tion, we introdu
e the ��-
al
uli (for � 2 f�; �DB ; �*; �g) whi
h work on2-sorted terms: (proper) terms and substitutions. The ��-
al
ulus was introdu
edin [ACCL91℄ and the version presented there uses only the de Bruijn index 1 andthe other de Bruijn indi
es are 
oded. We introdu
e here another version, denoted��DB , whi
h uses all the de Bruijn indi
es and hen
e is at the same level with theother 
al
uli studied in this paper. We introdu
e ��DB be
ause it 
ould be arguedthat the 
oding of the de Bruijn indi
es 
ould 
hange the status of �� with respe
tto adequa
y results. However, we show that �� and ��DB have the same behaviouras far as 
omparison of adequa
y with the other 
al
uli studied here is 
on
erned.For every �, we use a; b; 
; : : : to range over the set of terms ��t, and s; t; : : : torange over the set of substitutions ��s. We use �� to denote the set of rules of the��-
al
ulus (whi
h 
ontains a rule (Beta)) and take the �-
al
ulus to be the 
al
uluswhose rules are ���f(Beta)g. The ��-
al
ulus is the redu
tion system (��;!��),where !�� is the least 
ompatible (with the 
orresponding operators) redu
tion on�� generated by the set of rules ��.For every � 2 f�; �*; �g (see [ACCL91, CHL96, BBLRD96℄), the �-
al
ulus is SNand the ��-
al
ulus is 
on
uent on 
losed terms. Moreover, only the ��*-
al
ulus is
on
uent on open terms (terms with variables of sort term and substitution) and onlythe ��-
al
ulus satis�es Preservation of Strong Normalisation (PSN) (all the 
al
uliin the ��-family were shown in [Mel95℄ not to possess PSN; the ��-
al
ulus removesthe 
omposition of substitutions to guarantee PSN).De�nition 7 (The ��-
al
ulus) Terms and substitutions of the ��-
al
ulus are givenby: ��t ::= 1 j ��t��t j ���t j ��t[��s℄ and ��s ::= id j " j ��t ���s j ��s Æ��s.The set of rules �� is given in Figure 1.For every substitution s we de�ne the iteration of the 
omposition of s indu
tively8



(Id) a[id℄ �! a(IdR) s Æ id �! s(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! sFigure 2: The rules added to �� to get ��SPas s1 = s and sn+1 = s Æ sn. We use the 
onvention s0 = id . Note that the only deBruijn index used is 1 , but we 
an 
ode n by the term 1["n�1℄ . By so doing, wehave � � ��t .�-redu
tion of the �-
al
ulus is interpreted in the ��-
al
ulus in two steps. The�rst, obtained by the appli
ation of (Beta), 
onsists in generating the substitution.The se
ond step exe
utes the propagation of this substitution, using the set of the�-rules, until the 
on
erned variables are rea
hed. The reader is invited to 
he
k that(��521)(�31)!!�� �4(�41)1.It is well known that the ��-
al
ulus is not 
on
uent on open terms, furthermoreit is not even lo
ally 
on
uent. To obtain lo
al 
on
uen
e four rules must be added,and the 
al
ulus thus obtained is 
alled the ��SP -
al
ulus.De�nition 8 The ��SP -
al
ulus is obtained by adding to �� the rules given in Fig-ure 2 and by deleting the rules (VarId) and (ShiftId), sin
e both of them are instan
esof the new rules.Even the ��SP -
al
ulus is not 
on
uent on open terms (terms whi
h admit meta-variables of both sorts), as shown in [CHL96℄, but it is 
on
uent when the set of openterms is restri
ted to those whi
h admit metavariables of sort term only [R��o93℄.De�nition 9 (The ��DB-
al
ulus) The syntax of the ��DB-
al
ulus is exa
tly thatof the ��-
al
ulus ex
ept that 1 is repla
ed by IN. The set, ��DB , of rules of the��DB-
al
ulus is �� where (VarId) is repla
ed by a[id℄! a plus the three extra rules:n+ 1[a � s℄! n[s℄, n["℄! n+ 1 and n[" Æs℄! n+ 1[s℄.De�nition 10 (The ��-
al
ulus) Terms and substitutions of the ��-
al
ulus aregiven by: ��t ::= IN j ��t��t j ���t j ��t[��s℄ and ��s ::=" j * (��s) j ��t.For a 2 ��t, s 2 ��s, *n (s) is given by: *0 (s)=s, *n+1 (s)=* (*n (s)) and a[s℄i by:a[s℄0=a, a[s℄n+1=(a[s℄n)[s℄. The set of rules �� is given in Figure 3.De�nition 11 (The ��*-
al
ulus) Terms and substitutions of the ��*-
al
ulus aregiven by:��t* ::= IN j ��t*��t* j ���t* j ��t*[��s*℄��s* ::= id j " j * (��s*) j ��t* � ��s* j ��s* Æ ��s*.For s 2 ��s*, sn is given by: s1 = s, sn+1 = s Æ sn and as in De�nition 10, we de�ne*n (s) by: *0 (s)=s, *n+1 (s)=*(*n (s)).The set of rules ��* is given in Figure 4. 9



(Beta) (�a) b �! a [b=℄(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [*(s)℄)(FVar) 1 [a=℄ �! a(RVar) n+ 1 [a=℄ �! n(FVarLift) 1 [*(s)℄ �! 1(RVarLift) n+ 1 [*(s)℄ �! n [s℄ ["℄(VarShift) n ["℄ �! n+ 1Figure 3: The ��-rules1.3 Cal
uli �a la �sCal
uli �a la �s avoid introdu
ing two di�erent sets of entities and insist on remaining
lose to the syntax of the �-
al
ulus using de Bruijn indi
es1. Next to � and ap-pli
ation, they introdu
e substitution (�; &) and updating ('; �) operators. We shallintrodu
e three su
h 
al
uli: �s, �t and �u. We let a; b; 
; et
. range over the sets ofterms �s, �t and �u. A term 
ontaining neither substitution nor updating operatorsis 
alled a pure term. For � 2 fs; t; ug, the ��- and �-
al
uli are de�ned as in theprevious se
tion (take �- or &-generation instead of Beta) from a set of rules �� or �.The �s-
al
ulus was introdu
ed in [KR95℄ with the aim of providing a 
al
ulus thatpreserves strong normalisation and has a 
on
uent extension on open terms [KR97℄.The �t-
al
ulus is a variant of �s that updates partially, as the ��-
al
uli do. The �u-
al
ulus is introdu
ed here for the �rst time and is only a slight (yet more adequate)variation of �s. In [KR95, KR98℄, we establish the properties of these 
al
uli whi
hwe list in the following theorem.Theorem 12 For � 2 fs; t; ug, the �-
al
ulus is SN, the ��-
al
ulus is 
on
uent on
losed terms and satis�es PSN. Moreover, the ��-
al
ulus for � 2 fs; ug simulates�-redu
tion, is sound and has a 
on
uent extension on open terms.De�nition 13 (The �s-
al
ulus) Terms of the �s-
al
ulus are given by:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :The set of rules �s is given in Figure 5.De�nition 14 (The �t-
al
ulus) Terms of the �t-
al
ulus are given by:1It 
an be argued that be
ause we use de Bruijn indi
es, we remain 
lose to de Bruijn's philosophyrather than to the syntax of the �-
al
ulus and that instead it is 
al
uli like �x of [BR96℄ and ��of [LRD95℄ that remain 
lose to the syntax of the lambda 
al
ulus. So, we need to explain here thatby staying with the syntax of the �-
al
ulus we mean that we do not introdu
e substitutions andother 
ategori
al operators separately as in ��, but that a term for us is either an abstra
tion term,an appli
ation term, a substitution term or an updating term.10



(Beta) (�a) b �! a [b � id℄(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [*(s)℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(Varshift1) n ["℄ �! n+ 1(Varshift2) n [" Æ s℄ �! n+ 1 [s℄(FVarCons) 1 [a � s℄ �! a(RVarCons) n+ 1 [a � s℄ �! n [s℄(FVarLift1) 1 [*(s)℄ �! 1(FVarLift2) 1 [*(s) Æ t℄ �! 1 [t℄(RVarLift1) n+ 1 [*(s)℄ �! n[s Æ "℄(RVarLift2) n+ 1 [*(s) Æ t℄ �! n[s Æ (" Æ t)℄(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(ShiftCons) " Æ (a � s) �! s(ShiftLift1) " Æ *(s) �! s Æ "(ShiftLift2) " Æ (*(s) Æ t) �! s Æ (" Æ t)(Lift1) *(s)Æ *(t) �! *(s Æ t)(Lift2) *(s) Æ (*(t) Æ u) �! *(s Æ t) Æ u(LiftEnv) *(s) Æ (a � t) �! a � (s Æ t)(IdL) id Æ s �! s(IdR) s Æ id �! s(LiftId) *(id) �! id(Id) a [id℄ �! aFigure 4: The ��*-rules
11



�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destru
tion n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destru
tion 'ik n �! � n+ i� 1 if n > kn if n � kFigure 5: The �s-rules�t ::= IN j �t�t j ��t j �t & i�t j �k�t where i � 1 ; k � 0 :For a 2 �t, we de�ne �0ka = a and �i+1k (a) = �k(�ik(a)). The set of rules �t is given inFigure 6.The main di�eren
e between �t and �s 
an be summarised as follows: the �t-
al
ulusgenerates a partial updating when a substitution is evaluated on an abstra
tion (i.e.introdu
es an operator �0 in the &-�-transition rule) whereas the �s-
al
ulus produ
esa global updating when performing substitutions (i.e. introdu
es a 'i0 operator in the�-destru
tion rule, 
ase n = i). The �t-
al
ulus shares this me
hanism of partialupdatings with the ��-
a
uli, �� and �� sin
e all of them introdu
e an updatingoperator in their (Abs)-rule.We introdu
e now an adequate variation on �s where in the �-destru
tion rule,the 
ase n = i = 1 is treated in a more adequate way whi
h does not introdu
e theoperator '10 sin
e the 
omputation '10(b) will �nally evaluate to b.De�nition 15 (The �u-
al
ulus) Terms of the �u-
al
ulus are given by:�u ::= IN j �u�u j ��u j �u�j�u j 'ik�u where i � 2; j � 1; k � 0 :and the set of rules �u is given in Figure 7.1.4 The �se-
al
ulusWe introdu
e the open terms and the rules that extend �s to obtain the �se-
al
ulus.De�nition 16 The set of open terms, noted �sop is given as follows:�sop ::= V j IN j �sop�sop j ��sop j �sop �j�sop j 'ik�sop where j; i � 1 ; k � 0and where V stands for a set of variables, over whi
h X , Y , ... range. We take a; b; 
to range over �sop. Furthermore, 
losures, pure terms and 
ompatibility are de�nedas for �s. 12



&-generation (�a) b �! a &1 b&-�-transition (�a) & ib �! �(a & i+1 �0(b))&-app-transition (a1 a2) & ib �! (a1 & ib) (a2 & ib)&-destru
tion n & ib �! 8<: n� 1 if n > ib if n = in if n < i�-�-transition �k(�a) �! �(�k+1 a)�-app-transition �k(a1 a2) �! (�k a1) (�k a2)�-destru
tion �k n �! � n+ 1 if n > kn if n � kFigure 6: The �t-rules
�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destru
tion n�ib �! 8>><>>: n� 1 if n > i'i0 b if n = i > 1b if n = i = 1n if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destru
tion 'ik n �! � n+ i� 1 if n > kn if n � kFigure 7: The �u-rules
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�-�-transition (a�ib)�j 
 �! (a�j+1 
) �i (b �j�i+1 
) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a�j�i+1 b) if k + i � j'-�-transition 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l+ jFigure 8: The new rules of the �se-
al
ulusWorking with open terms one loses 
on
uen
e as shown by the following 
oun-terexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no 
ommon redu
t. Moreover, the aboveexample shows that even lo
al 
on
uen
e is lost. But sin
e ((�X)�11)(Y �11) !!(X�21)�1(Y �11), the solution to the problem seems at hand if one has in mind theproperties of meta-substitutions and updating fun
tions of the �-
al
ulus in the Bruijnnotation (
f. Lemma 4). These properties are equalities whi
h 
an be given a suitableorientation and the new rules, thus obtained, added to �s yield a rewriting systemwhi
h happens to be lo
ally 
on
uent. For instan
e, the rule 
orresponding to theMeta-substitution lemma (Lemma 4.4) is the �-�-transition rule. The addition of thisrule solves the 
riti
al pair in our 
ounterexample, sin
e now we have (X�1Y )�11!(X�21)�1(Y �11).De�nition 17 The set of rules �se is obtained by adding the rules given in Figure 8to the set �s. The �se-
al
ulus is the redu
tion system (�sop;!�se) where !�se isthe least 
ompatible redu
tion on �sop generated by the set of rules �se. The 
al
ulusof substitutions asso
iated with the �se-
al
ulus is the rewriting system generated bythe set of rules se = �se � f�-generationg and we 
all it se-
al
ulus.In [KR97℄ we proved the following:Theorem 18 (WN and CR of se) The se-
al
ulus is weakly normalising and 
on-
uent.Lemma 19 (Simulation of �-redu
tion) Let a; b 2 �, if a!� b then a!!�se b .Theorem 20 (CR of �se) The �se-
al
ulus is 
on
uent on open terms.Theorem 21 (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .1.5 The 
riterion of adequa
yWe give now a formal presentation of the 
riterion of adequa
y we use to 
omparethe di�erent 
al
uli. 14



De�nition 22 Let a; b 2 � su
h that a !� b. A simulation of this �-redu
tion in�� for � 2 f�; �*; �; s; t; ug is a ��-derivation a!r 
!!� �(
) = b where r is the rulestarting � ((Beta) for the 
al
uli in the ��-style and �- or &-generation for the 
al
uliin the �s-style) applied to the same redex as the redex in a !� b. We say that the��-
al
ulus simulates �-redu
tion if every �-redu
tion a!� b has a simulation in ��.The following was shown for ea
h of the 
al
uli we 
onsider (see the relevant arti
les):Lemma 23 For � 2 f�; �*; �; s; t; ug, �� simulates �-redu
tion.De�nition 24 Let �1; �2 2 f�; �*; �; s; t; ug. The ��1-
al
ulus is more adequate (insimulating one step �-redu
tions) than the ��2-
al
ulus, denoted ��1 � ��2, if1. for every 
lassi
al �-redu
tion a!� b and every ��2-simulation a!!n��2 b thereexists a ��1-simulation a!!m��1 b su
h that m � n.2. there exist a 
lassi
al �-redu
tion a !� b and a ��1-simulation a !!m��1 b su
hthat for every ��2-simulation a!!n��2 b we have m < n.It is easy to verify that � is transitive and asymmetri
.2 Establishing adequa
yIn this se
tion we put the 
riterion at work. The main idea is to de�ne fun
tions(denoted with Q) whi
h evaluate the length of the derivations of 
ertain families ofterms that 
ontain the 
ontra
ta of the (Beta)- rules (eg. a[b=℄ in ��). For �� itis possible to prove that all these derivations have the same length, whereas for ��*our fun
tions 
ompute just the length of the shortest derivation. To de�ne theseQ-fun
tions we need to de�ne another fun
tions (denoted with M) whi
h evaluatethe length of the derivations of updatings. For the s
ope of this se
tion, only theM -fun
tions are needed for �t and �u.2.1 �t is more adequate than ��We introdu
e a set of terms �� � �t on whi
h indu
tion will be used to de�ne M t(a fun
tion that 
omputes the length of derivations of updatings in �t). We aremainly interested in pure terms, whi
h are 
ontained in ��, but the introdu
tion of�� is ne
essary sin
e it provides a strong indu
tion hypothesis to prove the auxiliaryresults needed.De�nition 25 �� ::= IN j���� j��� j�k�� , where k � 0. The length of terms in �� isde�ned by: L�(n) = 1; L�(ab) = L�(a)+L�(b)+1; L�(�a) = L�(�ka) = L�(a)+1 .By indu
tion on a 2 �� we mean indu
tion on L�(a).Remark 26 Let a 2 �� and k � 0, then L�(a) � L�(t(�ka)).Proof By indu
tion on a. The interesting 
ase is when a = �mb. By IH we haveL�(b) � L�(t(�mb)) and sin
e L�(a) > L�(b), we apply again the IH (now to t(�mb)) toobtain L�(t(�mb)) � L�(t(�k(t(�mb)))) = L�(t(�k(�mb))). Hen
e, L�(a) � L�(t(�ka)).15



Remark 27 It is easy to show by indu
tion on a that if a 2 �� and a !t b thenb 2 ��.De�nition 28 We de�ne M t : �� ! IN by indu
tion as follows:M t(n)=1M t(ab)=M t(a)+M t(b)+1M t(�a)=M t(a)+1M t(�ka)=M t(t(�ka))+M t(a)Remark that the previous de�nition is 
orre
t thanks to Remark 26: M t(�ka) 
an beindu
tively de�ned in terms of M t(t(�ka)) be
ause L�(t(�ka)) � L�(a) < L�(�k(a)).Lemma 29 For a 2 ��, every t-derivation of �ka to its t-normal form has lengthM t(a).Proof It is immediate to show that !t has the diamond property on ��, i.e. fora 2 ��, if a !t b and a !t 
 then either b = 
 or there exists d su
h that b !t dand 
 !t d. Therefore it is easy to 
on
lude that all the derivations of a term to itsnormal form have the same length.Now we show that any derivation of �k(a) to its normal form has length M t(a),by indu
tion on a and analyzing just one derivation.� If a = m it is obvious.� If a = b
 we 
on
lude by redu
ing at the root and applying I.H..� If a = �b we 
on
lude as in the previous 
ase.� If a = �k(�m(b)) we �rst redu
e �m(b) to its normal form t(�m(a) in M t(a1)steps by I.H. and then, again by I.H. (whi
h 
an be applied be
ause of Remark26) we take �k(t(�m(a))) into its normal form in M t(t(�n(a)).Corollary 30 For a 2 ��, all the t-derivations of �ika to its t-normal form have thesame length, namely (i� 1)M t(t(a)) +M t(a).Proof Prove �rst by indu
tion on a 2 ��, using Remark 26, that M t(t(a)) =M t(t(�ka)), then use this result to prove, by indu
tion on j � 1, that M t(t(a)) =M t(t(�jka)). Use now De�nition 28 and the two previous results to show, by indu
tionon l � 1, that M t(�lk(a)) = lM t(t(a)) +M t(a). Finally, use Lemma 29 and the lastresult with l = i � 1 to prove the 
orollary. Note that the hypothesis a 2 �� (andhen
e De�nition 25) are essential.Now we are going to prove the 
orresponding results for ��.De�nition 31 �" ::= IN j �"�" j ��" j �"[*k (")℄ , where k � 0. The length ofterms in �" is given by:L"(n) = 1 L"(ab) = L"(a) + L"(b) + 1 L"(�a) = L"(a[*k (")℄) = L"(a) + 1 .Remark 32 Let a 2 �" and k � 0, then L"(a) � L"(�(a[*k (")℄)).Remark 33 If a 2 �" and a!� b then b 2 �".16



De�nition 34 For k � 0, we de�ne M�k : �� ! IN as follows:M�k (n) = � 2k + 1 if n > k2n� 1 if n � kM�k (ab) =M�k (a) +M�k (b) + 1M�k (�a) =M�k+1(a) + 1M�k (a[*p (")℄) =M�k (�(a[*p (")℄)) +M�p (a)Lemma 35 For a 2 �", all the �-derivations of a[*k (")℄ to its �-nf have lengthM�k (a).Proof Indu
tion (on the weight used in [BBLRD96℄ to show SN for �) and 
aseanalysis.Corollary 36 For a 2 �", all the �-derivations of a[*k (")℄i to its �-normal formhave the same length, namely (i� 1)M�k (�(a)) +M�k (a).Lemma 37 Let b 2 �, for every derivation b[*k (")℄i !!m� �(b[*k (")℄i) there existsn � m su
h that �ipb!!nt t(�ipb).Proof Prove �rst that for every b 2 � and k � 0, Mk(b) � M(b) by indu
tion onb 2 �. Con
lude using lemmas 29 and 35.De�nition 38 Let a; b 2 � and i � 0, we de�ne Q�i (a; b) by indu
tion on a:Q�i (n; b) =8<: 2i+ 1 if n > i+ 12n� 1 if n < i+ 1i(1 +M�0 (b)) + 1 if n = i+ 1Q�i (
d; b) = Q�i (
; b) +Q�i (d; b) + 1Q�i (�
; b) = Q�i+1(
; b) + 1Lemma 39 Let a; b 2 � and i � 0, all the �-derivations of a[*i (b=)℄ to its �-nf havethe same length, namely Q�i (a; b).Proof Easy indu
tion on a 2 �. Remark that for a = n there is only one derivationwhose length is easy to 
ompute. When n = i+ 1, use Corollary 36.Lemma 40 Let a; b 2 � and i � 0, there exists a derivation of a& i+1(�i0b) to its t-nfwhose length is less than or equal to Q�i (a; b).Proof By indu
tion on a redu
ing always at the root. For the 
ase a = i+ 1 usethe fa
t that M�0 (b) �M t(b) (indu
tion on b 2 �) and Corollary 30.Theorem 41 �t is more adequate than ��.Proof Show by indu
tion on a that for a 2 �, and a ��-derivation a!B b!!m� �(b),there exists n � m where a!&�gen 
!!nt t(
).The interesting 
ase is a = (�d)e !B d[e=℄ !!m �(d[e=℄). By Lemmas 39 and 40,m = Q�0 (d; e) and there exists a derivation d &1e!!nt t(d &1e) su
h that n � Q�0(d; e).17



To 
he
k the se
ond 
ondition in De�nition 24 remark that there are an in�nityof 
ases for whi
h the inequality is stri
t. For instan
e, take (�� : : : �n)a with m �'sand n > m > 1. It is easy to 
he
k, using the fun
tion Q�m�1 that 3m� 2 redu
tionsare needed to simulate �-redu
tion in ��, whereas only m+1 redu
tions are suÆ
ientin �t. Also, for m > n the number of redu
tions needed in �� is also stri
tly greaterthan the number needed in �t.2.2 �u is more adequate than ��*De�nition 42 For k � 0 and i � 1, we de�ne M*ki : �! IN by indu
tion as follows:M*ki(n) = � 2n� 1 if n < k + 12(k + i)� 1 if n � k + 1M*ki(ab) =M*ki(a) +M*ki(b) + 1M*ki(�a) =M*k+1 i(a) + 1Lemma 43 For a 2 �, every �*-derivation of a[*k ("i)℄ to its �*-nf has lengthM*ki(a).Proof By indu
tion on a, 
ontrolling all the possible �*-derivations.De�nition 44 For k � 0 and i � 1, we de�ne Q*k : � � � ! IN by indu
tion asfollows:Q*k(n; 
) =8>><>>: 2n� 1 if n < k + 1M*0 n�1(
)+n+1 if n = k + 1; k > 01 if n = 1; k = 02k + 3 if n > k + 1Q*k(ab; 
) = Q*k(a; 
) +Q*k(b; 
) + 1Q*k(�a; 
) = Q*k+1(a; 
) + 1Lemma 45 If a; b2�, the shortest �*-derivation of a[*k(b �id)℄ to its �*-nf has lengthQ*k(a; b).Proof By indu
tion on a 
ontrolling all the possible �*-derivations.De�nition 46 For k � 0 and i � 2, we de�ne Mu : �! IN by indu
tion as follows:Mu(n) = 1 Mu(ab) =Mu(a) +Mu(b) + 1 Mu(�a) =Mu(a) + 1Lemma 47 For a 2 �, every u-derivation of 'ika to its u-normal form has lengthMu(a).Proof By indu
tion on a noting that derivations of 'ika begin with redu
tions atthe root sin
e a 2 �.Lemma 48 For every a; b 2 �, k � 0 there exists a u-derivation of a�k+1b to its u-nfwhose length is less than or equal to Q*k(a; b).Proof By indu
tion on a. The interesting 
ase is a = k+ 1 and the result followsfrom Lemmas 43, 47 and the fa
tMu(b) �M*0i(b), whi
h is easily proved by indu
tionon b. 18



Theorem 49 �u is more adequate than ��*.Proof Show that for a 2 �, and a ��*-derivation a !Beta b !!m�* �*(b) thereexists n � m where a !��gen 
 !!nu u(
) by indu
tion on a. The interesting 
ase isa = (�d)e !Beta d[e � id℄!!m �*(d[e � id℄). By Lemmas 45 and 48, m � Q*0(d; e) andthere exists a derivation d �1e!!nu u(d �1e) where n � Q*0(d; e).Now, to 
he
k the se
ond 
ondition in De�nition 24, it is easy to 
ompute to 6the length of the shortest simulation in ��* (there are only 2 su
h simulations) of the�-redu
tion (��2)1 ! �2, whereas the only simulation of this redu
tion in �u haslength 4.2.3 �u is more adequate than ��We use the fun
tions de�ned in Se
tions 2.1 and 2.2 to show �u is more adequatethan ��.Lemma 50 For every a; b 2 �, i � 0 there exists a u-derivation of a�i+1b to its u-nfwhose length is less than or equal to Q�i (a; b).Proof By indu
tion on a. The interesting 
ase is a = i+ 1 and the result followsfrom Corollary 36, Lemma 47 and the fa
tMu(b) � i(1+M�0 (b)), proved by indu
tionon b.Theorem 51 �u is more adequate than ��.Proof We prove that for every a 2 � and every ��-derivation a !Beta b !!m� �(b)there exists n � m su
h that a !��gen 
 !!nu u(
) by indu
tion on a. The proof isanalogous to the proof of Theorem 49. For the se
ond 
ondition, use again the �-redu
tion (��2)1! �2 (see Theorem 49). It is easy to 
he
k that the only simulationof this in �� has length 5.2.4 �u is more adequate than �sThe proof of adequa
y in this se
tion is simpler than the previous ones sin
e �u and�s are 
losely related. We need �rst a lemma whose proof is by an easy indu
tion onb:Lemma 52 For i � 2 and b 2 � every s-derivation of 'i0(b) to its s-nf is also au-derivation.Lemma 53 For every a; b 2 �, i � 1 and s-derivation of a �ib to its s-nf of lengthm, there exists an u-derivation of a �ib to its u-nf whose length is less than or equalto m.Proof By indu
tion on a. The interesting 
ase is i > 1 and a = i. Note that theinequality is stri
t when i = 1 and a = i. The result follows from Lemma 52 whi
hgives a u-derivation of the same length.Theorem 54 �u is more adequate than �s.19



Proof Show, as in Theorem 49, that 8a 2 � and 8�s-derivation a !��gen b !!mss(b), there exists n � m where a!��gen b!!nu u(
). To 
he
k the se
ond 
ondition,take (�1)1 ! 1. There is only one simulation in �s with length 4 and only onesimulation in �u with length 3.3 Non-
omparable 
al
uliTo show that two 
al
uli, say ��1 and ��2 
annot be 
ompared with our 
riterion itis enough to �nd two 
lassi
al �-redu
tions a!� b and 
!� d su
h that1. There is a shorter simulation a!!��1 b than the shortest simulation a!!��2 b.2. There is a shorter simulation 
!!��2 d than the shortest simulation 
!!��1 d.If this is the 
ase we say that ��1 and ��2 are in
omparable, and we write ��1 6����2.Sin
e �� works in a more \atomized" way (the *-operator of ��* and �� may bede
omposed in �� as * (s) = 1 � (s Æ ") and the =-operator of �� may be de
omposedin �� as a= = a � id) it is tempting to assume that ��, even its version with un
odedde Bruijn indi
es, would be less adequate than �� and ��*. However this is not the
ase. As a matter of fa
t there is an in�nite family of terms for whi
h �� performsbetter than �� and ��*, and furthermore, for these terms, �� also performs betterthan �s and �u.The terms we are going to 
onsider are (��(2 2))1n, where an is de�ned by in-du
tion on n as a1 = a, an+1 = a an. There is only one �-redex at the root and(��(2 2))1n !� �(2n2n). We study now the simulation of this �-redu
tion in thedi�erent 
al
uli.Lemma 55 There is a ��-derivation of (��(2 2))1n to its ��-nf whose length is n+9and a ��DB-derivation whose length is 2n+ 7.Proof Here is the derivation in ��:(��(2 2))1n = (��(1["℄ 1["℄))1n ! (�(1["℄ 1["℄))[1n � id℄! �((1["℄ 1["℄)[1 � ((1n � id)Æ ")℄)!�((1["℄ 1["℄)[1 � (1n["℄ � (idÆ "))℄)!!n�1 �((1["℄ 1["℄)[1 � ((1["℄)n � (idÆ "))℄)!�((1["℄[1�(1["℄)n �(idÆ")℄) (1["℄[1�(1["℄)n �(idÆ")℄))!�((1[" Æ(1�(1["℄)n �(idÆ"))℄) (1["℄[1�(1["℄)n �(idÆ")℄))!�((1[(1["℄)n � (idÆ ")℄) (1["℄[1 � ((1["℄)n � (idÆ "))℄))! �((1["℄)n (1["℄[1 � ((1["℄)n � (idÆ "))℄))!!3�((1["℄)n(1["℄)n) = �(2n2n)Here is the derivation in ��DB :(��(2 2))1n ! (�(2 2))[1n �id℄! �((2 2)[1�((1n �id)Æ ")℄)! �((2 2)[1�(1n["℄�(idÆ "))℄)!!n�1�((2 2)[1 � ((1["℄)n � (idÆ "))℄)!!n �((2 2)[1 � (2n � (idÆ "))℄)!�((2[1 � (2n � (idÆ "))℄) (2[1 � (2n � (idÆ "))℄))!�((1[2n � (idÆ ")℄) (2[1 � (2n � (idÆ "))℄))! �(2n (2[1 � (2n � (idÆ "))℄))!!2 �(2n2n)Lemma 56 Every ��-derivation of (��(2 2))1n to its ��-nf has length 4n+ 5.Proof Every derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n=℄! �((2 2)[* (1n=)℄)! �((2[* (1n=)℄) (2[* (1n=)℄))The two o

urren
es of 2[* (1n=)℄ 
annot intera
t sin
e no abstra
tion will appear inthe �rst o

urren
e. Hen
e it is enough to show that every derivation of 2[* (1n=)℄has length 2n+1. This follows from M�0 (1n) = 2n� 1 (easily shown by indu
tion onn) and Lemma 39. 20



Lemma 57 Every �u-derivation of (��(2 2))1n to its �u-nf has length 4n+ 3.Proof Every �u-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))�11n ! �((2 2)�21n)! �((2�21n) (2�21n))The two o

urren
es of 2�21n 
annot intera
t and hen
e it is enough to show thatall derivations of 2�21n have length 2n. There is only one redex in 2�21n, whose
ontra
tion gives '20(1n) and by Lemma 47 every derivation of '20(1n) has lengthMu(1n) whi
h is easily 
omputable to 2n� 1 by indu
tion on n.Lemma 58 For a 2 �, every s-derivation of 'ika to its s-normal form has lengthMu(a).Proof By indu
tion on a. Identi
al to the proof of Lemma 47.Lemma 59 Every �s-derivation of (��(2 2))1n to its �s-nf has length 4n+ 3.Proof Analogous to the proof of Lemma 57, using Lemma 58.Lemma 60 There is a �t-derivation of (��(2 2))1n to its �t-nf whose length is 2n+4.Proof Here is the derivation in �t:(��(2 2))1n ! (�(2 2))�11n ! �((2 2)&2�0(1n))!!n�1�((2 2)&2(�01)n)!!n �((2 2)&22n)! �((2&22n) (2&22n))!!2 �(2n2n)Lemma 61 The shortest ��*-derivation of (��(2 2))1n to its ��*-nf has length 4n+7.Proof Every ��*-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n � id℄! �((2 2)[* (1n � id)℄)! �((2[* (1n � id)℄) (2[* (1n � id)℄))Now, the two o

urren
es of 2[* (1n � id)℄ 
annot intera
t and therefore, it is enoughto verify that the shortest derivation of 2[* (1n � id)℄ to its ��*-nf has length 2n+ 2.This is easily done using Lemma 45 and the fa
t that M*01(1n) = 2n� 1, proved byindu
tion on n.3.1 �u and �t are in
omparableLemmas 57 and 60 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 1 show�u 6� �t.On the other hand, (���3)1 ! ��3 shows that �t 6� �u. In fa
t, it is easy to 
he
kthat every simulation (there are 5) in �t of (���3)1 ! ��3 has length 6, whereas in�u the unique simulation of this �-redu
tion has length 5.3.2 �u and �� are in
omparableLemmas 57 and 55 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 3 show�u 6� �� and �u 6� ��DB . On the other hand, it is easy to show that (�2)1! 1 hasunique simulations in �u, �� and ��DB with respe
tive lengths 2, 4 and 3. Hen
e,�� 6� �u and ��DB 6� �u. 21



3.3 �t and �s are in
omparableLemmas 59 and 60 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 1 show�s 6� �t.On the other hand, (���3)1! ��3 shows that �t 6� �s. In fa
t, as in Se
tion 3.1it is easy to 
he
k that every simulation of this �-redu
tion in �s has length 5.3.4 �t and �� are in
omparableThe simulation in �t of (�2)1 ! 1 requires only 2 steps and hen
e (see Se
tion 3.2)�� 6� �t and ��DB 6� �t. To show �t 6� ��DB , take the �-redu
tion at the root of(����4)((�1)(�1)). It is possible to a
hieve the simulation in 19 steps in ��DB (lets = ((�1)(�1))�id):(����4)((�1)(�1))! (���4)[s℄!!3 ���(4[1�((1�((1�(sÆ"))Æ"))Æ")℄) !���(3[(1�((1�(sÆ"))Æ"))Æ"℄) ! ���(3[1["℄�(((1�(sÆ"))Æ")Æ")℄) !���(2[((1�(sÆ"))Æ")Æ"℄)!!2 ���(2[1["℄["℄�(((sÆ")Æ")Æ")℄) !���(1[((sÆ")Æ")Æ"℄)!!2 ���(1[sÆ"3℄)! ���(1[((�1)(�1))["3℄�(idÆ"3)℄)!���(((�1)(�1))["3℄)! ���(((�1)["3℄)((�1)["3℄))!!2���((�(1[1�("3 Æ")℄)) (�(1[1�("3 Æ")℄)))!!2 ���((�1)(�1))We must prove now that no simulation in �t of this �-redu
tion 
an be a
hieved inless than 19 steps. To do this we are going to prove a general result about �t. InSe
tion 2.1 we have begun to study �t in order to 
ompare it with ��. Remark theanalogy between Lemma 29 and Lemma 35 we aim now to a lemma whi
h should
orrespond to Lemma 39, i.e. a result whi
h will enable us to 
al
ulate the length ofthe t-derivations of a & ib. Unfortunately, not all the derivations have the same lengthas for ��. Furthermore, there is no easy way to 
ompute the length of the shortestderivation as for ��* (see Lemma 45). Hen
e, it does not seem easy to obtain su
ha general result. However, the shortest derivation of a & ib 
an always be 
al
ulatedwhen a does not 
ontain appli
ations (like our example) and we pro
eed now to showit. The notions used here were introdu
ed in Se
tion 2.1.De�nition 62 We de�ne N : �� ! IN re
ursively as follows:N(n) = 0 N(ab) = N(a) +N(b) N(�a) = N(a) N(�ka) =M t(a)Lemma 63 For a 2 ��, every t-derivation of a to its t-nf has length N(a).Proof By indu
tion on the weight P (b) used to prove SN for the t-
al
ulus and 
aseanalysis. The proof is analogous to the proof of Lemma 29.De�nition 64 Let �� ::= IN j ��� , i.e. �� is the set of �-terms whi
h do not
ontain appli
ations. For i � 1, we de�ne Qti : �� ��� ! IN by indu
tion as follows:Qti(n; b) = � 1 if n 6= iN(b) + 1 if n = iQti(�a; b) = Qti+1(a; �0b) + 1Lemma 65 For a 2 ��, b 2 �� and i � 1 the shortest derivation of a & ib to its t-nfhas length Qti(a; b). 22



Proof Analogous to the proof of Lemma 29 using Lemma 63 for the 
ase a = i.Now, sin
e our simulation starts as (����4)((�1)(�1)) ! (���4)&1((�1)(�1)), we usethe previous lemma to 
on
lude that every simulation of the �-redu
tion at the roothas length 20. Therefore, �t 6� ��DB .3.5 �t and ��* are in
omparableThe simulation in ��* of (�2)1 ! 1 requires 4 steps and hen
e (see Se
tion 3.4)��* 6� �t.To show �t 6� ��* we use the results of the previous subse
tion and the fa
t thatthere is a simulation in ��* of the �-redu
tion at the root in (����4)((�1)(�1)) whoselength is 14. Here it is (we denote again s = ((�1)(�1)) � id):(����4)((�1)(�1))! (���4)[s℄!!3 ���(4[*3 (s)℄!!3 ���(1[s Æ "3℄)!���(1[((�1)(�1))["3℄ � (idÆ "3)℄)! ���(((�1)(�1))["3℄)!���(((�1)["3℄)((�1)["3℄))!!2 ���((�(1[* ("3)℄)) (�(1[* ("3)℄)))!!2 ���((�1)(�1))3.6 �s and �� are in
omparableLemmas 59 and 55 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 3 show�s 6� �� and �s 6� ��DB . On the other hand, it is immediate to verify that (�2)1! 1has a unique simulation in �s of length 2 and hen
e (see Se
tion 3.2) �� 6� �s and��DB 6� �s.3.7 �s and ��* are in
omparableIt is immediate to verify that (�1)1 ! 1 has unique simulations in �s and ��* ofrespe
tive lengths 3 and 2. Therefore, �s 6� ��*. On the other hand, the simulationsin �s and ��* of (�2)1! 1 (see Se
tions 3.5 and 3.6) show that ��* 6� �s.3.8 �s and �� are in
omparableThe redu
tion (��2)1! �2 has unique simulations in �s and �� of respe
tive lengths4 and 5. Therefore, �� 6� �s. On the other hand, (�1)1! 1 has a unique simulationin �� of length 2 and hen
e (see Se
tion 3.7) �s 6� ��.3.9 �� and �� are in
omparableLemmas 56 and 55 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 2 show�� 6� �� and �� 6� ��DB . On the other hand, it is easy to verify that the shortestsimulation in �� (there are only 9), resp. ��DB (there are only 5), of (��2)1 ! �2has length 7, resp. 6, and hen
e (see Se
tion 3.8) �� 6� �� and ��DB 6� ��.3.10 �� and ��* are in
omparableLemmas 61 and 55 prove that the redu
tions (��(2 2))1n ! �(2n2n) with n � 1 show��* 6� �� and ��* 6� ��DB . On the other hand, there is a simulation in ��* of(��3)1! �2 of length 7: 23



(��3)1! (�3)[1�id℄ ! �(3[*(1�id)℄)! �(2[(1�id)Æ"℄) !�(2[1["℄�(idÆ")℄) ! �(1[idÆ"℄)! �(1["℄)! �2whereas it is easy to 
he
k that every simulation (there are only 14) in �� of this�-redu
tion has length 8. Therefore, �� 6� ��*.Unfortunately, the previous example does not work to show ��DB 6� ��*. It iseasy to �nd a simulation in ��* of (���3)1 ! ��3 of length 9. However, in ��DBevery simulation of this �-redu
tion has length at least 11. This 
an be 
he
ked byhand or a simple program 
an do the work.3.11 ��* and �� are in
omparableThe shortest simulation (there are only 2) in ��* of (��2)1 ! �2 has length 6 andhen
e (see Se
tion 3.8) ��* 6� ��. On the other hand, there is a ��*-simulation of(����4)(1 1)! ���(4 4) of length 16:(����4)(1 1)! (���4)[(1 1) � id℄!!3 ���(4[*3 ((1 1) � id)℄)!!3 ���(1[((1 1) � id)Æ "3℄)!���(1[(1 1)["3℄ � (idÆ "3)℄)! ���((1 1)["3℄)! ���(1["3℄ 1["3℄)!!6 ���(4 4)whereas the length of every simulation in �� 
an be easily evaluated to 17: in fa
t,every derivation must start as: (����4)(1 1) ! (���4)[(1 1)=℄ and then apply Lemma39 with i = 0. Therefore, �� 6� ��*.We summarize in the following table the results obtained so far. The table mustbe entered from the left, thus the information given, for instan
e, in position (1; 3) isto be read as �u � �s, whereas the information in position (3; 1) is �s � �u.�u �t �s �� �� ��*�u = 6�� � � 6�� ��t 6�� = 6�� � 6�� 6���s � 6�� = 6�� 6�� 6���� � � 6�� = 6�� 6���� 6�� 6�� 6�� 6�� = 6����* � 6�� 6�� 6�� 6�� =4 The bridging 
al
uli4.1 The �!-
al
ulusIn order to express �s-terms in the ��-style we are going to split the 
losure operatorof �� (denoted in a semi-in�x notation as �[�℄) in a family of 
losures operators thatshall be denoted also with a semi-in�x notation as �[�℄i, where i ranges on the setof natural numbers.We will admit as basi
 operators the iterations of " and therefore we will have a
ountable set of basi
 substitutions "n, where n ranges on the set of natural numbers.By doing so, the updating operators of �s are available in our new syntax as �["n℄i.24



�-generation (�a) b �! a [b=℄1�-app-transition (a b)[s℄j �! (a [s℄j) (b [s℄j)�-�-transition (�a)[s℄j �! �(a[s℄j+1)�-=-destru
tion n[a=℄j �! 8<: n� 1 if n > ja["j�1℄1 if n = jn if n < j�-"-destru
tion n["i℄j �! � n+ i if n � jn if n < jFigure 9: The �!-
al
ulusFinally, we introdu
e a slash operator of sort term! substitution whi
h trans-form a term a into a substitution a=. This operator may be 
onsidered as 
onsingwith id (in the ��-jargon) and has been exploited in the ��-
al
ulus (
f. [BBLRD96℄).Here is the formalisation of this syntax and the rewriting rules of �!:De�nition 66 The set of terms of the �!-
al
ulus, noted �!, is de�ned as �!t[�!s,where �!t and �!s are de�ned by the following mutual re
ursion:Terms �!t ::= IN j �!t�!t j ��!t j �!t[�!s℄jSubstitutions �!s ::= "i j �!t=where j � 1 and i � 0. The set, denoted �!, of rules of the �!-
al
ulus is given inFigure 9.The set of rules of the !-
al
ulus is �! � f��generationg . We use a; b; 
; : : : torange over �!t and s; t; : : : to range over �!s.As we said before, the =-operator is present in ��. Furthermore, the 
onstantsubstitutions "i are exploited in the 
al
ulus of Mu~noz [Mu~n97b℄ ��. This 
al
ulusis so designed to avoid the non left linear rule (SCons) of ��SP . Moreover, ourindexed substitutions are reminis
ent of the substitutions of the ��-
al
ulus withlevels 
onsidered in [LRD95℄.However, there is an essential di�eren
e between �! and ��: in �� the terms(whi
h are des
ribed with variable names) are strati�ed in levels whereas this is notthe 
ase for the �!-terms. There is also an essential di�eren
e between �� and �!
on
erning the substitutions: 
omposition is a basi
 operator in �� but it does notexist in �!.It is interesting to realize that the iterations "i as basi
 operators as well as theindexed substitutions are features whi
h are embodied in �s sin
e, as we shall provein the next se
tion, �! and �s are isomorphi
.25



�-=-transition a [b=℄k[s℄j �! a [s℄j+1[b[s℄j�k+1=℄k if k � j=-"-transition a ["i℄k[b=℄j �! ( a[b=℄j�i["i℄k if k + i � ja["i�1℄k if k � j < k + i"-"-transition a ["i℄k["l℄j �! ( a["l℄j�i["i℄k if k + i < ja["i+l℄k if k � j � k + iFigure 10: The new rules of the �!e-
al
ulus4.2 The �!e-
al
ulusAs we pointed out in Se
tion 1.3 the �s-
al
ulus is not even lo
ally 
on
uent on openterms. The same negative result 
an be easily transferred to the �!-
al
ulus.By open terms in this new syntax we mean terms whi
h admit variables (usually
alled metavariables) of sort term but not metavariables of sort substitution. Inthe ��-jargon they are often referred as semi-
losed or pure terms (
f. [R��o93℄).Now, we de�ne formally what we mean by open terms in our new syntax and givethe �!e-rules:De�nition 67 The set of open terms, noted �!op is de�ned as �!top [ �!sop, where�!top and �!sop are de�ned by the following mutual re
ursion:Open Terms �!top ::= V j IN j �!top�!top j ��!top j �!top[�!sop℄jSubstitutions �!sop ::= "i j �!top=where j � 1 and i � 0, and where V stands for a set of variables, over whi
h X , Y , ...range. We take a; b; 
 to range over �!top and s; t; : : : over �!sop. The set, denoted�!e, of rules of the �!e-
al
ulus is obtained by adding to the set of rules �! the newrules of Figure 10.The set of rules of the !e-
al
ulus is �!e � f��generationg .Remark that the rule s
hemes =-" and "-" 
an be merged into the single s
hemea ["i℄k[s℄j ! a[s℄j�i["i℄k for k + i < jbut they must be kept distin
t for the 
ase k+ i = j if SN is to be preserved. In fa
t,the "-"-s
heme, if admitted in the 
ase k + i = j, may generate an in�nite loop byitself (take for instan
e i = k = l = 1 and j = 2).5 The isomorphismsWe de�ne in this se
tion two fun
tions, that are inverse of ea
h other, and that estab-lish an isomorphism between �se and �!e. Furthermore, their restri
tion to ground26



terms also establishes an isomorphism between �s and �!. These isomorphisms trans-late all the properties of �s and �se to �! and �!e, respe
tively. We remark that thesets of terms �s and �sop 
orrespond with the sets of terms �!t and �!top, respe
-tively, rather than �! and �!op. Thus, it is only the sort term that is involved inthe isomorphism.De�nition 68 The fun
tions T : �sop ! �!top and S : �!top ! �sop are de�nedindu
tively by:T (X) = X S(X) = XT (n) = n S(n) = nT (a b) = T (a)T (b) S(a b) = S(a)S(b)T (�a) = �T (a) S(�a) = �S(a)T (a �jb) = T (a)[T (b)=℄j S(a [b=℄j) = S(a)�jS(b)T ('ika) = T (a)["i�1℄k+1 S(a ["i℄k) = 'i+1k�1(S(a))We make an \abus de notation" and use the same names T and S for the restri
tionsof these fun
tions to ground terms. The 
ontext will be always 
lear enough in orderto avoid ambiguities.Lemma 69 The following hold:1. For all a; b 2 �s, if a!s b then T (a)!! T (b) .2. For all a; b 2 �s, if a!�s b then T (a)!�! T (b) .3. For all a; b 2 �sop, if a!se b then T (a)!!e T (b) .4. For all a; b 2 �sop, if a!�se b then T (a)!�!e T (b) .Proof By indu
tion on a: if the redu
tion is internal, the IH applies; otherwise, thetheorem must be manually 
he
ked for ea
h rule.Lemma 70 The following hold:1. For all a; b 2 �!t, if a!! b then S(a)!s S(b) .2. For all a; b 2 �!t, if a!�! b then S(a)!�s S(b) .3. For all a; b 2 �!top, if a!!e b then S(a)!se S(b) .4. For all a; b 2 �!top, if a!�!e b then S(a)!�se S(b) .Proof By indu
tion on a: if the redu
tion is internal, the IH applies; otherwise, thetheorem must be manually 
he
ked for ea
h rule.We verify �nally that T and S are in fa
t inverse of ea
h other.Lemma 71 The following hold:1. For all a 2 �!t, we have T (S(a)) = a .2. For all a 2 �!top, we have T (S(a)) = a .27



3. For all a 2 �s, we have S(T (a)) = a .4. For all a 2 �sop, we have S(T (a)) = a .Proof By an easy indu
tion on a.Now that the 
al
uli have been proved isomorphi
, all the results of se
tions 1.3and 1.4 
on
erning �s and �se translate into 
orresponding results for the sort termto �! and �!e.Lemma 72 The following hold:1. The !-
al
ulus is SN and 
on
uent on �!t.2. Let a; b 2 � , if a!!�! b then a!!� b .3. Let a; b 2 �, if a!� b then a!!�! b .4. The �!-
al
ulus is 
on
uent on �!t.5. Pure terms whi
h are SN in the �-
al
ulus are also SN in the �!-
al
ulus.Proof Use the isomorphism and the 
orresponding results for �s summarized inTheorem 12.Lemma 73 The following hold:1. The !e-
al
ulus is weakly normalising and 
on
uent.2. The �!e-
al
ulus is 
on
uent on open terms.3. Let a; b 2 � , if a!!�!e b then a!!� b .4. Let a; b 2 �, if a!� b then a!!�!e b .Proof Use the isomorphism, Lemma 19 and Theorems 18, 20 and 21.Remark that the s
hemes �-�-tr. and '-�-tr. of �se both translate in the sames
heme of �!e, namely �-=-transition.6 Typed 
al
uliWe begin with a brief survey of the typed versions of �s and ��. From the point ofview of syntax the only di�eren
e is that the abstra
tions are marked with types. Wehave thus �A:a where A is a simple type, that is a type obtained from a set of basi
types using the only binary in�x 
onstru
tor of types !. In the 
ase of �� we alsohave the 
onses marked with types: a : A � s.We re
all that environments in de Bruijn's setting are simply lists of types andin the 
ase of ��, substitutions re
eive environments as types. We introdu
e thefollowing notation 
on
erning environments. If E is the environment E1; E2; : : : ; En,we shall use the notation E�i for the environment Ei; Ei+1; : : : ; En, analogously E�istands for E1; : : : ; Ei, et
.The rewriting rules of the 
orresponding typed 
al
uli are exa
tly the same (ex
eptthat rules involving abstra
tions are now typed).28



6.1 The typing rulesWe 
on
entrate now on the typing rules of these 
al
uli. We begin by re
alling thetyping rules for the simply typed �-
al
ulus in de Bruijn's notation. We 
all thetyping system L1:(L1� var ) A;E ` 1 : A (L1� �) A;E ` b : BE ` �A:b : A! B(L1� varn) E ` n : BA;E ` n+ 1 : B (L1� app) E ` b : A! B E ` a : AE ` b a : BWe re
all now the typing rules for �s and �se. The typing system Ls1 is de�nedas follows:The rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app are exa
tly the same as L1-var,L1-varn, L1-� and L1-app, respe
tively. The new rules are:(Ls1� �) E�i ` b : B E<i; B;E�i ` a : AE ` a �ib : A (Ls1� ') E�k; E�k+i ` a : AE ` 'ika : AIn order that the reader 
ould 
ompare with the typing system L�1 of ��, were
all L�1:The rules L�1-var, L�1-� and L�1-app are exa
tly the same as L1-var, L1-� andL1-app, respe
tively. The new rules are:(L�1� 
los) E ` s . E0 E0 ` a : AE ` a[s℄ : A (L�1� id) E ` id . E(L�1� 
ons) E ` a : A E ` s . E0E ` a : A � s . A;E0 (L�1� shift) A;E `" .E(L�1� 
omp) E ` s00 . E00 E00 ` s0 . E0E ` s0 Æ s00 . E0 (L�1�Mtv) EX ` X : AXThe last rule is added to type open terms and should be understood as follows:for every metavariable X , there exists an environment EX and a type AX su
h thatthe rule holds.We introdu
e now the typing rules for �! and �!e. The typing system is 
alledL!1. The rules L!1-var, L!1-varn, L!1-� and L!1-app are exa
tly the same asL1-var, L1-varn, L1-� and L1-app, respe
tively. The new rules are:(L!1� id ) E ` "0 .E (L!1� slash) E ` a : AE ` a= : A;E(L!1� shift) E ` "i .E0A;E ` "i+1: E0 (L!1�Mtv) EX ` X : AX(L!1� 
los) E�j ` s . E0 E<j ; E01; E�j ` a : AE ` a[s℄j : A29



We prove now that the isomorphism de�ned in Se
tion 3 preserves typing. Forthe de�nition of T and S in the next theorem we refer to Se
tion 3.Theorem 74 The following hold:1. For a 2 �s, if E ` a : A then E ` T (a) : A .2. For a 2 �sop, if E ` a : A then E ` T (a) : A .3. For a 2 �!t, if E ` a : A then E ` S(a) : A .4. For a 2 �!top, if E ` a : A then E ` S(a) : A .Proof The four items are proved by an easy indu
tion on the inferen
e of E ` a : A.6.2 Subje
t Redu
tionThis se
tion is devoted to establish Subje
t Redu
tion for our four 
al
uli. We prove�rst subje
t redu
tion for �! and �!e and then we use the isomorphisms given in theprevious se
tion to obtain Subje
t Redu
tion for �s and �se.Theorem 75 (Subje
t Redu
tion for �!) Let a; b 2 �!t and s; t 2 �!s.1. If E ` a : A and a!�! b then E ` b : A.2. If E ` s . F and s!�! t then E ` t . F .Proof By simultaneous indu
tion on the stru
ture of a and s. If the redu
tion isinternal it is enough to apply the indu
tive hypothesis. If the redu
tion is at the rootthen ea
h rule must be examined. We 
he
k for instan
e the rule �-/-destru
tion forthe 
ase n = j.Let us assume E ` n[a=℄j : A. Therefore there exists an environment E0 su
h thatE�j ` a= . E0 and E<j ; E01; E�j ` n : A. Hen
e the n-th type in the environmentE<j ; E01; E�j is A.From E�j ` a= . E0 we dedu
e E�j ` a : E01 and, sin
e A = (E<j ; E01; E�j)n andn = j, we have A = E01. Therefore, E�j ` a : A and, be
ause E `"j�1 .E�j , we 
anapply the 
los-rule (remember E = E�1 and, by 
onvention, E<1 = nil) to obtainE ` a["j�1℄1 : A.Theorem 76 (Subje
t Redu
tion for �!e) Let a; b 2 �!top and s; t 2 �!sop.1. If E ` a : A and a!�!e b then E ` b : A.2. If E ` s . F and s!�!e t then E ` t . F .Proof By simultaneous indu
tion on the stru
ture of a and s. The proof is analogousto the previous proof, only the new rules must be 
he
ked now. As an example westudy the rule � � =-transition.Assume E ` a[b=℄k[s℄j : A and k � j. Therefore, there exists an environment E0su
h that E�j ` s . E0 (1)and E<j ; E01; E�j ` a[b=℄k : A. From this last equation we dedu
e the existen
e of anenvironment E00 su
h thatE<k; E001 ; Ek; : : : ; Ej�1; E01; E�j ` a : A (2)30



and Ek; : : : ; Ej�1; E01; E�j ` b= . E00. Therefore,Ek; : : : ; Ej�1; E01; E�j ` b : E001 (3)Applying the 
los rule, from equations 1 and 2 we getE<k; E001 ; E�k ` a[s℄j+1 : A (4)and from equations 1 and 3, E�k ` b[s℄j�k+1 : E001 , and a further appli
ation of slashgives E�k ` b[s℄j�k+1= : E001 ; E�k (5)Finally, applying 
los to equations 4 and 5, we 
on
ludeE ` a[s℄j+1[b[s℄j�k+1=℄k : AWe use now the translations to prove Subje
t Redu
tion for �s and �se.Theorem 77 (Subje
t Redu
tion for �s and �se) Let a; b 2 �s and 
; d 2 �sop.1. If E ` a : A and a!�s b then E ` b : A.2. If E ` 
 : A and 
!�se d then E ` d : A.Proof We just 
he
k the �rst item (the se
ond is analogous).If E ` a : A then, by Lemma 74.1, E ` T (a) : A. On the other hand, if a !�s bthen, by Lemma 69.2, T (a) !�! T (b). Now, by Theprem 75.1, E ` T (b) : A, andby Lemma 74.2, we get E ` S(T (b)) : A, and we are done be
ause S(T (b)) = b, byLemma 71.3.Finally, we mention that in [KRW98℄, we showed that every well typed term in the �s-
al
ulus is strongly normalising. This implies due to the above isomorphism that everywell typed term in the �!-
al
ulus is strongly normalising. Also, in [KR99℄ we showthat every well typed term in the simply typed �!e-
al
ulus is weakly normalising.This again implies that every well typed term in the simply typed �se-
al
ulus isweakly normalising.Con
lusionsIn this paper, we attempted to bridge and 
ompare the two styles of expli
it substi-tutions: those �a la �� and those �a la �s. We did this in two steps:1. We introdu
ed a 
riterion of adequa
y to simulate �-redu
tion in 
al
uli ofexpli
it substitutions and we applied it to several 
al
uli: ��, ��*, ��, �s, �tand �u. The latter is presented here for the �rst time and may be 
onsidered asan adequate variant of �s. By doing so, we established that 
al
uli �a la �s areusually more adequate at simulating �-redu
tion than 
al
uli in the ��-style.We showed that �t is more adequate than �� and that �u is more adequate than��, ��* and �s and gave 
ounterexamples to show that all other 
omparisonsare impossible. We are aware that our 
riterion is a very basi
 one, and itwould be interesting to study the relation among the di�erent 
al
uli in termsof 
omplexity of the length of redu
tions (linear, exponential). However, we
onsider our results as a �rst step in the study of adequa
y.31



2. We introdu
ed two new 
al
uli �! and �!e that 
an bridge the two stylesof 
al
uli of expli
it substitutions. Our motivation for doing so 
omes fromthe fa
t that the two di�erent styles of substitutions provide 
omplementaryproperties and so it is interesting to understand one style in terms of the other.Another reason is that, the �s-style still has one puzzling open problem: thetermination of the substitution 
al
ulus se. Although, the �! and �!e-
al
uliare 
al
uli in the ��-style, their strati�ed substitutions are more �s-style than��-style. The main new feature towards the ��-style is the introdu
tion of "iand hen
e the availability of the updated term 'ik(a) as a["i�1℄k+1. Hen
e thestrati�ed substitutions play a double role: as real substitutions as in a[b=℄k andas updatings as in a["i℄k. We believe that this two-sorted presentation of �s maybe useful to gain a new insight on the open problem for this 
al
ulus, mainlythe strong normalisation of se.Apart from their role as bridging 
al
uli between the ��- and �s-styles of ex-pli
it substitutions, the �!- and �!e-
al
uli are interesting on their own for thefollowing reasons:(a) �! is 
on
uent on 
losed terms and preserves strong normalisation,(b) the asso
iated 
al
ulus of substitutions of �! is SN,(
) the simply typed version of �! is SN,(d) �! possesses an extension �!e that is 
on
uent on open terms, simulates�-redu
tion, and whose simply typed version is weakly normalising (onopen term).As far as we know, the �!-
al
ulus is the �rst 
al
ulus in the ��-style that hasall those properties. However, the preservation of strong normalisation doesnot hold for �!e and the SN of the asso
iated 
al
ulus of substitution of �!eremains unsolved.A
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