
Postponement, Conservation and Preservation ofStrong Normalisation for Generalised RedutionFairouz Kamareddine�AbstratPostponement of �K -ontrations and the onservation theorem do not hold for ordinary �but have been established by de Groote for a mixture of � with another redution relation.In this paper, de Groote's results are generalised for a single redution relation �e whihgeneralises �. We show morever, that �e has the Preservation of Strong Normalisationproperty.Keywords: Generalised �-redution, Postponement of K-ontrations, Gener-alised Conservation, Preservation of Strong Normalisation.1 The �-alulus with generalized redutionIn the term ((�x:�y :N)P)Q, the abstration starting with �x and the argument Pform the redex (�x:�y:N)P . When this redex is ontrated, the abstration startingwith �y and Q will in turn form a redex. It is important to note that Q (or someresidual of Q) is the only argument that the abstration (or some residual of theabstration) starting with �y an ever have. This fat has been exploited by manyresearhers. Redution has been extended so that the impliit redex based on themathing �y and Q is given the same priority as the intervening redex.An initial attempt to generalize the notion of redex might be to de�ne a rule likethe following: (�x:�y:N)PQ! (�x:N [y:=Q℄)PIt quikly beomes evident that this is not suÆient as the following example shows:Example 1 The proposed rule does not allow diretly reduing the binding of y toQ in the term A � (�z :(�x:�y:N)P)RQ.We shall exploit the notion of a well balaned segment (sometimes known as a �-hain), whih is the speial ase of one-hole ontexts given by this grammar:S ::= [�℄ j (S[�x:[�℄℄)M j S[S℄�Department of Computing and Eletrial Engineering, Heriot-Watt University, Riarton, Edin-burgh EH14 4AS, Sotland, email: fairouz�ee.hw.a.uk, fax + 44 141 451 3327.1

Using balaned segments, generalized redution is then given by this rule:S[�x:M ℄N ! S[M [x:=N ℄℄We �nd the above de�nition of well-balaned segments and generalised redutionrather umbersome and believe that a more elegant de�nition an be given. In orderto do so, we hange from the lassial notation to the item notation. Instead ofwriting �x:M , we write [x℄M and instead ofMN we write (N)M .1 Item notation hasmany advantages as shown in [7, 8℄. Let us illustrate here with term A of Example 1,whih we write in item notation as in Figure 1. We see immediately that the redexes
(Q) (R) [z℄ (P) [x℄ [y℄ NFigure 1: Redexes in item notation in term Aoriginate from the ouples (Q)[y℄, (R)[z℄ and (P)[x℄. Moreover, (Q)(R)[z℄(P)[x℄[y℄is a well-balaned segment. This natural mathing was not present in the lassialnotation. We all items of the form (P) and [x℄, appliation and abstration itemsrespetively. With item notation, generalised redution is written as:(M)s[x℄N !g� sfN [x :=M ℄gfor s well-balaned:(Here, f and g are used for grouping purposes so that no onfusion arises.) Forexample: (Q)(R)[z℄(P)[x℄[y℄N !g� (R)[z℄(P)[x℄fN [y := Q℄gSurely this is learer than writing (�z :(�x:�y:N)P)RQ!g� (�z :(�x:N [y := Q℄P)R.2 An overview of generalised redution in the liter-atureGeneralized redution was �rst introdued by Nederpelt in 1973 to aid in proving thestrong normalization of AUTOMATH [19℄. Kamareddine and Nederpelt have shownhow generalised redution makes more redexes visible, allowing exibility in reduinga term [7℄. Bloo, Kamareddine, and Nederpelt show that with generalised redutionone may indeed avoid size explosion without the ost of a longer redution path andthat simultaneously the �-alulus an be elegantly extended with de�nitions whihresult in shorter type derivations [5℄. Generalised redution is strongly normalising [5℄for all systems of the �-ube [3℄.An alternative approah to generalized redution whih has been followed by manyresearhers is to use one of these two loal transformations:(�) (�x:N)PQ! (�x:NQ)P() (�x:�y :N)P ! �y:(�x:N)P1Note that putting the argument before the funtion was �rst introdued by de Bruijn in hisAutomath projet [20℄ and has been used by many researhers sine. For example, Krivine in [17℄also puts the argument before the funtion. 2

These rules transform terms to make more redexes visible to the ordinary notion of�-redution. For example, both the and � rules make sure that �y and Q in the termA of Example 1 an form a redex before the redex based on �x and P is ontrated.That is: (�C) (�x:(�y:N))PQ! (�x:(�y :N)Q)P(C) (�x:�y :N)PQ! (�y :(�x:N)P)QHene both � and put �y next to its mathing argument. The � rule moves theargument next to its mathing � whereas moves the � next to its mathing argument.Obviously, � and are related to generalised redution. In fat, � and trans-form terms in order to make more potential redexes visible and then onventional�-redution an be used to ontrat those newly visible redexes. Generalised redu-tion on the other hand, performs redution on the potential redexes without havingto bother to make them into lassial redexes. The following example illustrates:Example 2 Take again the term A � (�z :(�x:�y:N)P)RQ. With generalised redu-tion we got: (�z :(�x:�y:N)P)RQ !g� (�z :(�x:N [y := Q℄)P)R. We illustrate how �and work:� (�z :(�x:�y :N)P)RQ!� (�z :(�x:�y :N)PQ)R!�(�z :(�x:(�y :N)Q)P)R!� (�z :(�x:N [y := Q℄)P)R (�z :(�x:�y :N)P)RQ! (�z :�y(�x:N)P)RQ!(�y(�z :(�x:N)P)R)Q!� (�z :(�x:N [y := Q℄)P)RNote that in item notation it is easier to desribe � and . We illustrate with �.Example 3 We an reshu�e (Q)(R)[z℄(P)[x℄[y℄N to (R)[z℄(P)[x℄(Q)[y℄N in orderto transform the braketing struture ff gf gg into f gf gf g, where all the redexesorrespond to adjaent `f' and `g'. Figure 1 an be redrawn using the �-redutiontwie in Figure 2. (R) [z℄ (P) [x℄ (Q) [y℄ NFigure 2: �-normal forms in item notation for term AThe � rule an be applied to both expliitly and impliitly typed systems. However,the transfer of to expliitly typed systems is not straightforward, sine in thesesystems the type of y in the term A may be a�eted by the reduible pair of �x andP . For example, it is �ne to write ((�x:�:�y:x:y)z)u !� (�x:�:(�y:x:y)u)z but not towrite ((�x:�:�y:x:y)z)u! (�y:x:(�x:�:y)z)u.2Loal transformations like and � began to appear in the literature during theeighties. (See [15℄ for a summary). Regnier [21℄ introdues the notion of a premierredex whih is similar to the redex based on �y and Q above (whih we all a gen-eralised redex). Later, he uses � and (and alls the ombination �) to show that2An alternative is to apply to the type erasure of the term, whih may be quite ompliated toexpress in terms of the type-annotated term. 3

the perpetual redution strategy �nds the longest redution path when the term isStrongly Normalising (SN) [22℄. Vidal also introdues similar redutions [25℄. Kfoury,Tiuryn, and Urzyzyn use � (and other redutions) to show that typability in ML isequivalent to ayli semi-uni�ation [12℄. Sabry and Felleisen desribe a relationshipbetween a redution similar to � and a partiular style of CPS [23℄. De Groote [6℄uses � and Kfoury and Wells [14℄ use to redue the problem of �-strong normal-isation to the problem of weak normalisation (WN) for related redutions. Kfouryand Wells use � and to redue typability in the rank-2 restrition of system F tothe problem of ayli semi-uni�ation [13℄. Klop, S�rensen, and Xi [16, 26, 24℄ userelated redutions to redue SN to WN. Finally, Ariola, Felleisen, Maraist, Oderskyand Wadler use � (alled \let-C") in [1℄, as a part of an analysis of how to representsharing in a all-by-need language implementation in a formal alulus.All the researh mentioned above is a living proof for the importane and useful-ness of generalised redution (from now on, �e). For this reason, properties of thisredution must be studied. Conuene of �e is a diret onsequene of the fat thatM =� N ,M =�e N . Subjet redution for �e has been established in [5℄ (with theondition that expliit de�nitions must be added for some systems of the ube). And,as we mentioned earlier, Strong Normalisation of �e has been established for the wholeCube and type derivation paths have been analysed. Other important properties of�e have however remained unanswered. Those properties are:1. Preservation of Strong Normalisation PSN. This property is: if M is stronglynormalising for ordinary �-redution (written M is �-SN), then M remainsstrongly normalising for generalised redution �e (i.e. M is also �e-SN). PSNmakes �e a useful extension of �. This parallels the work on extending �-aluliwith expliit substitutions whih satisfy the PSN property.2. Conservation of �e-redution. This property is: if a term is �eI -normalisable(i.e. �e-normalisable reduing only redexes that don't erase their arguments,so alled I-redexes, or strit redexes), then it is strongly normalisable. This isinteresting in view of the ongoing interest of showing that strong normalisationan be redued to weak normalisation [16, 24, 26℄.3. Postponement of K-redution. Generalised redution allows the postponementof K-redution (whih disards their arguments) after I-redutions (whih usetheir arguments in at least one plae). Hene, generalised redution allowsunneessary K-redexes to be bypassed. From the implementation point of view,this results in exibility in work. Unneessary work an be delayed or evenavoided ompletely.In this paper, we show these three properties for the generalised redution �e. Weuse item notation to be able to write generalised redution in a really general wayand to be able to desribe proofs and proof objets elegantly. We believe that if thispaper was written in lassial notation, then the proofs would have been umbersometo present.
4

3 Contributions of this paper and related workBeause we still have not introdued all the mahinery of item notation, we shall uselassial notation in this setion.Let us reall the three basi redution rules of the �-alulus (FV (M) stands forthe free variables of M):(�) (�x:M)N !M [x := N ℄(�I) (�x:M)N !M [x := N ℄ if x 2 FV (M)(�K) (�x:M)N !M if x 62 FV (M)Redexes based on the �I rule are alled �I - or I-redexes. Similarly, those based onthe �K rule are alled �K- or K-redexes. For any relation r, we write rK and rI forthe orresponding K- and I-redutions.In this paper, we show that the generalised redution �e satis�es PSN, the post-ponement of K-ontrations and onservation. Of ourse the latter two properties failfor ordinary � as shown by the following example:Example 4 (�y :(�x:x))MN !�K (�x:x)N !�I N and it is impossible to �I -redue(�y:(�x:x))MN . Moreover, ((�x:�y:y(�z :zz))u)�z:zz is �I -normalising but not strongly�-normalising.Attempts have been made at establishing some redution relations for whih post-ponement of K-ontrations and onservation hold ([2℄ and [6℄). The piture is asfollows (-N stands for normalising and r 2 f�I ; �Kg where (�) was de�ned earlier):(�K -postponement for r) If M !�K N !r O then 9P suh that M !!+�I�K P !!�K O(Conservation for �I) If M is �I -N then M is �I -SN(Conservation for � + �) If M is �I�K-N then M is �-SNConservation for �I is found in [2℄. Conservation for �+ � and �K-postponement forr 2 f�I ; �Kg are established by de Groote in [6℄. However, de Groote does not produethese results for a single redution relation, but for � in whih another relation (�) isused. This paper establishes �K-postponement and onservation for a single relation�e and is hene the �rst to do so. Moreover, the relation � is more restritive thanthe generalised redution of this paper.Let us now list the postponement and onservation properties for �e:(�eK -postponement for �e) If M !�eK N !�eI O then 9P suh that M !�eI P !!+�eK O(Conservation for �e) If M is �eI -N then M is �e-SNThese two properties are important beause here we have the �rst redution relationwhih generalises � (yet M =� N ,M =�e N) and whih satis�es them.Now we ome to the PSN property whih is as follows:(PSN for �e) M is �-SN , M is �e-SN.PSN not only means that �e does not hange the set of �-SN terms, but also thatwe an atually use �e with expliit substitution. In fat, expliit substitution is animportant topi of researh and PSN is an important property for any �-alulus5

extended with expliit substitution. In fat, lately, muh researh has been arriedout ([4, 9℄) in order to �nd systems of expliit substitution whih are both onuentand have the PSN property (if M is �-SN then M is �s-SN where �s is the lambdaalulus extended with expliit substitution). This is the reason for our interestin PSN of �e (whih is onuent by the way). After all, generalised redutions �ala �e have been extensively used as we saw in Setion 2 for both theoretial andpratial reasons. Furthermore, systems of expliit substitution have been the subjetof muh reent researh. Both generalised redution and expliit substitution areof pratial importane and ombining them both in one system may turn out tobe very useful. The main bene�ts of these onepts are similar: both emphasizeexibility in the ordering of operations. In partiular, both generalized redution andexpliit substitution allow the postponement of work, but in di�erent, omplementaryways. On one side, generalized redution always allows unneessary K-redexes to bebypassed. Expliit substitution will not in general allow this, sine reduing the K-redex might be neessary to expose an essential I-redex. Similarly, on the other side,expliit substitution allows bypassing any work inside a subterm that will be disardedlater. However, generalized redution does not provide any means for performingonly those parts of a substitution that will be used later. Thus, we an see that theirbene�ts are omplementary.We laim that a system with the ombination of generalized redution and expliitsubstitution is more advantageous than a system with eah onept separately. Obvi-ously, if the bene�ts of both are desired simultaneously, it is important to study theombination, a task whih this paper performs. Before the ombination an be safelyused, it must be heked that this ombination is sound and safe exatly like it hasbeen heked that eah of expliit substitutions and generalised redutions separatelyare sound and safe.One PSN is established we an study extending the �-alulus with both ex-pliit substitution and generalised redution. This means that we an ombine theadvantages of the two di�erent extensions in one system [10, 11℄.We had established in [9℄ property (1) below, and in [10, 11℄ property (2) below(��es stands for the lambda alulus extended with expliit substitution and gener-alised redution and for reasons of uniformity, we write �-SN for �-SN and ��e -SNfor �e-SN): (1) M is �-SN , M is �s-SN(2) M is �s-SN , M is ��es-SNThe proofs for (1) and (2) are similar. Now with PSN, we get (3) below and then (4)omes for free. (3) M is �-SN , M is ��e -SN(4) M is ��e -SN , M is ��es-SNHene, one gets: M is �-SN , M is ��e-SN , M is ��es-SN , M is �s-SN.Based on the above disussion, this artile shows �eK postponement (Setion 5),the generalised onservation for �e (Setion 6), and the PSN property for �e (Se-tion 7). 6

4 The formal mahineryWe assume the reader familiar with the �-alulus whose terms are� ::= Vj(��)j(�V :�)We take terms modulo �-onversion and use the variable onvention VC (as in [3℄)whih avoids any lash of variables. We use x, y, z, x1, x2, : : : and M , N , P , Q,A, B, A1, : : : to range over V and � respetively. We assume the usual de�nition ofsubstitution and use FV (M) for the set of free variables of M . Beause we need tosee redexes (ordinary and generalised) we shall write terms in item notation (see [8℄or [7℄). In this notation, �x is written as [x℄ and (MN) is written (N)M (note thatfollowing de Bruijn, we put the argument before the funtion). [x℄ and (N) are alleditems. A sequene of items is alled a segment. We use I; I1; : : : to range over itemsand S; S1; S2; : : : to range over segments. A well-balaned segment (w.b for short) isde�ned as the empty segment or (P)S1[x℄S2 where S1 and S2 are w.b. Note that theonatenation of w.b segments is a well-balaned segment.One partiular advantage of this notation is that redexes are more lear than inthe usual notation. For example, C of Setion 2 beomes:(C) (Q)(P)[x℄[y℄N ! (Q)[y℄(P)[x℄Nwhere it is lear that (P) mathes [x℄ and (Q) mathes [y℄. So, an ordinary redexstarts with a () adjaent to [℄. A generalised redex starts with ()S[℄ where S is w.b.When S = ;, a generalised redex is an ordinary redex. In (Q)(P)[x℄[y℄N , we say that(P), [x℄, (Q) and [y℄ are partnered, (P) is the partner of [x℄ (or [x℄ is the partner of(P)) and (Q) is the partner of [y℄. (P) and [x℄ are also said to be �-partnered whereas(Q) and [y℄ are �e-partnered. In general, we say that (P) (or [x℄) is partnered in Mif: � M � (P)S[x℄N where S is w.b (in this ase (P) and [x℄ are partners), or� M � [y℄N and (P) (or [x℄) is partnered in N , or� M � (N1)N2 and (P) is either partnered in N1 or in N2.We may also talk of �I -, �eI -, �K-, �eK -partnered items with the obvious meaning.Note that if S1(A)S2[x℄S3 is w.b where (A) and [x℄ are partnered then S2 and S1S3are w.b.If an item is not partnered in a term we say that it is bahelor (and may talk of �-,�eI -, �K-, �eK -, �I - and �e-bahelor items). A segment onsisting of bahelor itemsonly is alled bahelor. Note that a term will always be written as I1I2 : : : Inx. EahIi is said to be a main-item in M . A main item an of ourse have items inside it butthese will not be main in M . For example, ((y)[x℄x)[z℄z has the main items ((y)[x℄x)and [z℄. The redex ((y)[x℄x)[z℄z is said to be a main-redex. The other redex (y)[x℄xis not main. The weight of a segment is de�ned to be the number of its main items.We write [x := N ℄M instead of M [x := N ℄ whih stands for substituting N for thefree ourrenes of x in M . 7

We assume the reader familiar with the basi mahinery of redution ([2℄, p. 50-59). In partiular, if R is a binary relation � � � �, and (M;N) 2 R, we all Mthe R-redex and N the ontratum of M . Given R � � � �, we de�ne !R to bethe least ompatible relation ontaining R, !!R to be its reexive transitive losureand =R to be its reexive, symmetri and transitive losure. A term M is said to bein R-normal form (R-nf) i� there is no N suh that M !R N . M is said to havea R-nf, i� there is N in R-nf suh that M !!R N . We say M is R-normalising oris R-N i� M has a R-nf. We say that M is strongly R-normalising and write M isR-SN i� there is no in�nite R-redution path starting at M . We may use M !!+R Nto indiate the existene of one or more steps from M to N and M !!nR N to meanthat there are n redution steps. Ordinary �-, �I - and �K-redution are de�ned asthe redution relations generated by the orresponding rules below:(�) (N)[x℄M ! [x := N ℄M(�I) (N)[x℄M ! [x := N ℄M if x 2 FV (M)(�K) (N)[x℄M !M if x 62 FV (M)As explained in Example 4, postponement of K-ontrations and onservation do nothold for �. De Groote in [6℄ introdues di�erent redution relations for whih heestablishes these properties. First, [6℄ uses(�K) (O)(N)[x℄M ! (N)[x℄(O)M if x 62 FV (M)Note that by VC, in �K , x 62 FV (O). Then, de Groote moves (O) to the right of(N)[x℄ so that it an eventually our adjaent to its partner in M if it exists. DeGroote establishes the following two results (r 2 f�I ; �Kg):(�K -postponement for r) If M !�K N !r O then 9P suh that M !!+�I�K P !!�K O(Conservation for � + �) If M is �I�K-N then M is �-SN:In this paper, we will improve both results. We will de�ne a �e-redution relation(see De�nition 5) whose �eI and �eK stand for its I and K-redutions. We shall showthat:(�eK -postponement for �e) If M !�eK N !�eI O then 9P suh that M !�eI P !!+�eK O(Conservation for �e) If M is �eI -N then M is �e-SN:De�nition 5 (Generalised �-redution �e) We generalise �, �I and �K to the redu-tion relations generated by the orresponding rules of what follows:(�e) (N)S[x℄M ! S[x := N ℄M if S is w.b(�eI) (N)S[x℄M ! S[x := N ℄M if S is w.b and x 2 FV (M)(�eK) (N)S[x℄M ! SM if S is w.b and x 62 FV (M)Note that �e is more generalised than the redution relation introdued by om-bining de Groote's � + �K . In fat, �e is not restrited to K-redexes and oneunique step an do the work of many in Groote's sense. For example, if S �(A1)[x1℄(A2)[x2℄ : : : (An)[xn℄ and all the redexes starting with (A1); (A2); : : : (An)are K-redexes in S[x℄M , then (N)S[x℄M !�e S[x := N ℄M i� (N)S[x℄M !!n�KS(N)[x℄M !� S[x := N ℄M .Now, here is a basi lemma about terms:8

Lemma 61. Let r 2 f�e; �eI ; �eKg. If (A) is r-bahelor in (A)M then (B) is also r-bahelorin (B)(A)M .2. IfM is in �-nf, thenM � [x1℄[x2℄ : : : [xn℄(A1)(A2) : : : (Am)z where n � 0, m � 0and 8i, 1 � i � m) Ai is in �-nf.3. If A !r A0 then SA !r SA0 for any segment S and any redution relationr 2 f�; �I ; �K ; �e; �eI ; �eKg.Proof1. If (B) was r-partnered, then (B)(A)M � (B)(A)S[x℄N where (A)S is w.b (andhene (A)S � (A)S1[y℄S2 where S1; S2 are w.b) ontraditing the fat that (A)is r-bahelor.2. By indution on the struture of M .3. By indution on the weight of S.In order to show the Preservation of Strong Normalisation for �e, we need a redutionstrategy where a �K-redex (M)[x℄N is ontrated only if M is in �-nf. This strategyis atually the perpetual strategy (see [2℄ and [22℄):De�nition 7 We de�ne the perpetual strategy F as follows:F ([x℄M) = F (M)F ((M)N) = F (N) if N 6� [x℄P and N is not in �-nfF ((M)N) = F (M) if N 6� [x℄P and N is in �-nfF ((M)[x℄N) = (M)[x℄N if x 2 FV (N) or M is in �-nfF ((M)[x℄N) = F (M) if x 62 FV (N) and M is not in �-nfWe all perpetual redution the redution assoiated with this strategy. When M�-redues to N by ontrating F (M), we write, M !F N . This strategy has beenshown in [22℄ to give the longest path for a SN term. It was moreover, shown in [2℄that M is �-SN i� its perpetual redution terminates. With the result of this paper,it will also be the ase that M is �e-SN i� its perpetual path terminates.The following lemma is informative about where F -redution takes plae in a termin the ase of K-redexes:Lemma 8 If M !F N where F (M) is a �K-redex, then one of the following holds:1. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)Pwhere x 62 FV (P), A is in �-nf, n � 0 and m � 0.2. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)[x℄Pwhere x 62 FV (P), A is not in �-nf, A!F A0, n � 0 and m � 0.9

3. M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)(B1)(B2) : : : (Br)z andN � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)(B1)(B2) : : : (Br)z andA is not in �-nf, A !F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in�-nf.Proof By indution on M !F N where F (M) is a �K-redex.5 Postponement of �eK-redutionIn this setion, we establish in lemma 10 the postponement of �eK -redution. Theproof of postponement is similar to that of de Groote. For us, however, we an getaway with only one step �eI redution in the postponement lemma (Lemma 10). DeGroote, had to have many steps in order to aommodate the slow proess of movingan item () next to its mathing [℄ (see for example his proof of Lemma 11, () ii). Weould also in Lemma 10, replae �eK with ordinary �K in P !!+�eK O but we won'tbother doing so in this paper as it is not needed.The following lemma establishes that substitution preserves �eK -redution.Lemma 9 If M !�eK N then the following hold:1. [x :=M ℄P !!�eK [x := N ℄P .2. If x 2 FV (P) then [x :=M ℄P !!+�eK [x := N ℄P .3. [x := P ℄M !�eK [x := P ℄N .Proof Use indution on the struture of P for 1 and 2, and on the derivation ofM !�eK N for 3.Now we ome to the postponement lemma. Note that in this lemma, P !!+�eK O andnot P !!�eK O nor P !�eK O. This is due to Lemma 9.Lemma 10 If M !�eK N !�eI O then 9P suh that M !�eI P !!+�eK O.Proof By indution on the derivation of M !�eK N .� Case (A)S[x℄B !�eK SB, S w.b, x 62 FV (B), hek where in SB the �eI -redexappears (note that if S1S2S3 and S2 are w.b, then S1S3 is w.b).We only treat the ase where S � S1(A1)S2[y℄S3 with S2 w.b andS1(A1)S2[y℄S3B !�eI S1S2f[y := A1℄S3g[y := A1℄B.Then (A)S1(A1)S2[y℄S3[x℄B !�eI (A)S1S2f[y := A1℄S3g[x℄f[y := A1℄Bg !�eKS1S2f[y := A1℄S3gf[y := A1℄Bg as x 62 FV ([y := A1℄B) due to VC.� Case [x℄M !�eK [x℄N !�eI O, then O � [x℄Q. Use IH on M !�eK N !�eI Q.� Case (A)B !�eK (A0)B !�eI O, investigate how (A0)B !�eI O. We only treatthe ase where (A0)B � (A0)S[x℄B1 !�eI S[x := A0℄B1. Then(A)B � (A)S[x℄B1 !�eI S[x := A℄B1 !!+�eK S[x := A0℄B1 by Lemma 9.10

� Case (A)B !�eK (A)B0 !�eI O, we only treat the ase where B0 � S[x℄C, Sis w.b, and O � S[x := A℄C. I.e. (A)B !�eK (A)S[x℄C !�eI S[x := A℄C (notethat it annot our that B � (Q)S[x℄[y℄C !�eK S[x℄([y := Q℄C)). Then oneof the following holds:{ Case B � S[x℄C1 and C1 !�eK C, then(A)S[x℄C1 !�eI S[x := A℄C1 !�eK S[x := A℄C by Lemma 9, ase 3.{ Case B � S1[x℄C and the �eK-redex is in S1, i.e.(A)S1[x℄C !�eK (A)S[x℄C !�eI S[x := A℄C, then(A)S1[x℄C !�eI S1[x := A℄C !�eK S[x := A℄C by VC.6 The generalised onservation for �eIn this setion, we establish in Theorem 28, the generalised onservation for �e, thesame relation for whih we established in the previous setion, the postponementof its K-redution. This is an extension of de Groote's work whih established thepostponement and onservation properties for two di�erent relations. We start byde�ning the set of labelled terms whih will help us in establishing the generalisedonservation. Labels will used as ounters to reord the number of ontrated redexeswhen reduing a term.De�nition 11 The set IN� of labelled �-terms is indutively de�ned as follows:1. n 2 IN; x 2 V) nx 2 IN�.2. n 2 IN; x 2 V ;M 2 IN�) n[x℄M 2 IN�.3. n 2 IN;M;N 2 IN�) n(M)N 2 IN�We take M;N;O;A;B; : : : to range over labelled �-terms. We use nM to stress thatthe outermost label of a �-term M is n. Hene, M and nM stand for the samelabelled �-term. We write +mM for the labelled �-term obtained by adding m to theoutermost label of a labelled �-term M . Hene if the outermost label of M is n then+mM denotes n+mM .ForM 2 IN�, we write jM j for the (unlabelled) �-term in � obtained by erasing alllabels in M . Moreover, if M 2 �, we identify M with M 0 in IN� suh that jM 0j �Mand all labels in M 0 are 0. Hene, � � IN�.We use in this setion, the notations and tehniques of de Groote adapted howeverto our generalised redution. Basially the idea is as follows:1. Churh Rosser CR: We introdue a labelled redution relation !�+eI whihwe prove Churh Rosser. !�+eI is shown CR by showing that a related redutionrelation !1 is CR. Hene, if a labelled term M has a �+eI -nf, it must be unique.2. Inreasing property In: We then introdue the weight of a term M , �[M ℄,whih is used to limit the length of �+eI -redutions starting at normalising terms.That is, the length of any sequene of �+eI -redutions starting at a normalisingterm M is bounded by �[M 0℄ � �[M ℄ where M 0 is the (unique) �+eI -nf of M .This implies that any �+eI -N term is �+eI -SN. This will be extended to �eI byshowing that any �eI -N term is �eI -SN.11

3. Weak Normalisation) Strong Normalisation (WN) SN) Next weshow that if M is �eI -N then it is �e-SN by using the fat that M is �eI -SN,postponement and that there an only be a �nite �eK -redexes. This establishesthe generalised onservation.Note that the struture of our proof an be seen as: CR+In+WN) SN. This isas we said a generalisation of the proof of de Groote. One ould however use Corollary5.19 in Klop's thesis [16℄ whih states that WCR+In+WN) SN & CR where WCRis Weak Churh Rosser. We leave this alternative to the reader to establish.Here is the de�nition of substitution on labelled terms:De�nition 12 Let M;N 2 IN�. [x := N ℄M is de�ned as follows:[x := nN ℄mx � n+mN[x := nN ℄my � my if x 6� y[x := nN ℄m(P)Q � m([x := nN ℄P)[x := nN ℄Q[x := nN ℄m[y℄M � m[y℄[x := nN ℄MNow we de�ne !�+eI whih will be used to show onservation.De�nition 13 M !�+eI N is de�ned indutively as follows:1. n(iN)So[x℄jM !�+eI +n+o+1S[x := iN ℄jM if x 2 FV (M); S, w.b.2. If M !�+eI N then n[x℄M !�+eI n[x℄N , n(M)P !�+eI n(N)P andn(P)M !�+eI n(P)N!!�+eI is de�ned as the transitive reexive losure of !�+eI .We de�ne !1 for whih CR is easier to show than for !�+eI .De�nition 14 M !1 N is de�ned indutively as follows:1. M !1 M2. If M !1 N then n[x℄M !1 n[x℄N3. If M !1 O and N !1 P then n(M)N !1 n(O)P4. If Sp[x℄M !1 S0q [x℄O, N !1 P , S; S0 w.b, and x 2 FV (M) thenn(N)Sp[x℄M !1 +n+q+1S0[x := P ℄O.!!1 is de�ned as the transitive reexive losure of !1.The following lemma shows that labels an be inreased for both !1 and !�+eI .Lemma 15 Let M;N 2 IN� and r 2 f1; �+eIg. If M !r N then +nM !r +nN .Proof By indution on the derivation M !r N .The following lemma shows that !1 and !�+eI are losed under substitution.12

Lemma 16 Let M;N;P;O 2 IN�. The following hold:1. If M !1 N , then [x :=M ℄mO !1 [x := N ℄mO.2. If M !�+eI N , then [x :=M ℄mO !!�+eI [x := N ℄mO.3. If M !1 N and O !1 P then [x := O℄M !1 [x := P ℄N .4. If M !�+eI N and O !�+eI P then [x := O℄M !!�+eI [x := P ℄N .Proof 1 and 2 are similar and are by indution on the struture of O. 3 and 4 areby indution on the derivation M !r N where r is the orresponding redution.Here is the relationship between !1 and !�+eI :Lemma 17 M !!1 N i� M !!�+eI N .Proof)) By indution on the derivation of M !1 N show that:M !1 N) M !!�+eI N .() By indution on the derivation M !�+eI N , show that M !�+eI N)M !1 N .The following two lemmas enable us to establish that !1 is CR.Lemma 18 If S; S0 w.b, none of the binding variables of S[x℄ ours free in N , noneof the binding variables of S0[x℄ ours free in P , none of the binding variables of Nare free inM and none of the binding variables of P are free in O, Sp[x℄M !1 S0q[x℄Oand N !1 P then +pS[x := N ℄M !1 +qS0[x := P ℄O.Proof Note that if weight(S) = weight(S0) then p = q, M !1 O and if (Ai) and(A0i) are the ith main appliation items of S and S0 respetively, then Ai !1 A0i.Hene the result is shown by Lemmas 15 and 16 and the def. of !1.If weight(S) > weight(S0), then we prove the lemma by indution on weight(S).Lemma 19 Let M;N;O 2 IN� suh that M !1 N and M !1 O then 9P 2 IN�suh that N !1 P and O !1 P .Proof By indution on the derivation of M !1 N .Now we have the Churh Rosser property for !1:Corollary 20 (Churh Rosser of !1) Let M;N;O 2 IN� suh that M !!1 Nand M !!1 O then 9P 2 IN� suh that N !!1 P and O !!1 P .Hene, the �rst part of this setion (CR of !�+eI) is done:Lemma 21 (Churh Rosser of !�+eI) Let M;N;O 2 IN� suh that M !!�+eI Nand M !!�+eI O then 9P 2 IN� suh that N !!�+eI P and O !!�+eI P .Proof By Corollary 20 and Lemma 17.In order to show Lemma 25, we introdue the following de�nition:13

De�nition 22 The weight �[M ℄ of a labelled �-term M is de�ned as follows:�[nx℄ = n�[n[y℄M ℄ = n+�[M ℄�[n(M)N ℄ = n+�[M ℄ + �[N ℄The following two lemmas enable us to establish that the weight as we de�ned willhelp us to measure terminating redutions:Lemma 23 If x 2 FV (M) then �[[x := N ℄M ℄ � �[M ℄ + �[N ℄.Proof By indution on the struture ofM showing �rst that �[+mM ℄ = m+�[M ℄.Lemma 24 Let M;N 2 IN� and M !!+�+eI N then �[M ℄ < �[N ℄.Proof By indution on the derivation M !!+�+eI N using Lemma 23.Now, �+eI -N and �+eI -SN are the same:Lemma 25 If M is �+eI -N then M is �+eI -SN.Proof Sine M is �+eI -N, and sine �+eI is Churh Rosser by Lemma 21, then Mhas a unique �+eI -nf M 0. Aording to Lemma 24, the length of any sequene of�+eI -redution starting at M is bounded by �[M 0℄��[M ℄.Here is the relationship between !�eIand !�+eI :Lemma 26 Let M;N 2 � suh that M !�eI N , then there exist M 0; N 0 2 IN� suhthat jM 0j �M; jN 0j � N and M 0 !�+eI N 0. Furthermore, if N is in �eI -nf then N 0 isin �+eI -nf.Proof Easy. Put the right labels onM and N obtainingM 0; N 0 whereM 0 !�+eI N 0.Now, we generalise Lemma 25 to !�eI .Theorem 27 If M is �eI -N then M is �eI -SN.Proof M �eI -N)Lemma 26 M�+eI -N)Lemma 25 M�+eI -SN)M�eI -SN (otherwisethere exists an in�nite �+eI -path).Finally, from the above theorem and postponement of K-ontrations, we an estab-lish onservation:Theorem 28 (Conservation) If M is �eI -N then M is �e-SN.Proof If M is not �e-SN then there is an in�nite �e-path starting at M . But bypostponement of �eK redexes, and by the fat that there an only be a �nite �eK -ontrations, there must be an in�nite �eI -path. But M is �eI -N and so it is �eI -SNby Theorem 27. Contradition. 14

7 Preservation of Strong NormalisationTo show PSN, we show that ifM !!F N (using the perpetual strategy of De�nition 7)and if N is �eI -N then M is �eI -N. Now, we takeM whih is �-SN, and its perpetualpath to its normal formN . AsN is �eI -N, thenM is �eI -N and hene by onservation,M is �e-SN. It is possible however to show PSN in many di�erent ways and withoutusing onservation. For example, one may use a result of Regnier in [22℄ whih statesthat the length of the longest redution of a term is invariant by �-equivalene notingthat the �-redution modulo �-equivalene is isomorphi to the �e-redution.3In this setion, we will use the already available onservation theorem and followingTheorem 27, we interhange �eI -SN and �eI -N at liberty. We shall show PSN of �e.Note that the derivation:M �-SN) M �-N) M �eI -N) M �e-SNis inorret beause M �-N 6) M �eI -N. For example, (�x:y)
 is �-N but not �eI -Nfor
 � (�z :zz)(�z:zz). To show PSN, we takeM that is �-SN. ThenM !!F N whereN is the �-nf ofM and!!F is the perpetual strategy. As N is in �-nf, then N is �eI -N. But the inverse of !!F preserves �eI -N. Hene, M is �eI -N and by onservation,M is �e-SN.In order to establish that the inverse of !!F preserves �eI -normalisation (Theo-rem 33), we need the following three lemmas whih will be ombined with the threeforms of perpetual redution for K-redexes as in Lemma 8.Lemma 29 If (A1) : : : (An)(A)[x℄P has �eI -nf, x 62 FV (P), then its �eI -nf is of theform (B1) : : : (Bj)(A0)[x℄Q where A0 is the �eI -nf of A, 0 � j � n, Bj is the �eI -nf ofsome Ai for 1 � i � n. Moreover, (A1) : : : (An)P has (B1) : : : (Bj)Q as its �eI -nf.Proof By indution on n � 0.� n = 0, the �eI -nf is (A0)[x℄Q where Q is the �eI -nf of P .� Assume the property holds for n � 0.As (A1) : : : (An)(An+1)(A)[x℄P has �eI -nf, then it is �eI -SN and so(A2) : : : (An)(An+1)(A)[x℄P and A1 have �eI -nf. Call the �eI -nf of A1, A01.Now, by IH, (B1) : : : (Bj)(A0)[x℄Q is the �eI -nf of (A2) : : : (An)(An+1)(A)[x℄Pand (B1) : : : (Bj)Q is the �eI -nf of (A2) : : : (An)(An+1)P .{ If (A01) is �eI -bahelor in (A01)(B1) : : : (Bj)(A0)[x℄Q (and hene it is bah-elor in (A01)(B1) : : : (Bj)Q), then:(A01)(B1) : : : (Bj)(A0)[x℄Q and (A01)(B1) : : : (Bj)Q are the �eI -nfs required.{ If (A01) is �eI -partnered in (A01)(B1) : : : (Bj)(A0)[x℄Q then all (B1); : : : (Bj)start �eK -redexes and Q � [xj ℄ : : : [x1℄[y℄R. Now, for B the �eI -nf of[y := A01℄R we have:(A1) : : : (An)(An+1)(A)[x℄P !!�eI(A01)(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y := A01℄R!!�eI3Thanks for an anonymous referee who drew my attention to this point.15

(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄B.Moreover, (A1) : : : (An)(An+1)P !!�eI (A01)(B1) : : : (Bj)[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)[xj ℄ : : : [x1℄[y := A01℄R !!�eI (B1) : : : (Bj)[xj ℄ : : : [x1℄B. Now,we are done (note that B1; : : : Bj start �eK -redexes).Lemma 30 If (A1) : : : (An)P and A have �eI -nf, x 62 FV ((A1) : : : (An)(A)P), then:(A1) : : : (An)(A)[x℄P has �eI -nf.Proof By indution on n � 0.� Case n = 0, P and A have P 0 and A0 as �eI -nfs, then (A)[x℄P has (A0)[x℄P 0 as�eI -nf.� Assume the property holds for n � 0. Let (A1) : : : (An)(An+1)P have �eI -nf,hene it is �eI -SN and so (A2) : : : (An+1)P has �eI -nf and A1 has A01 as �eI -nf. By IH, (A2) : : : (An+1)(A)[x℄P has �eI -nf whih is by Lemma 29, M �(B1) : : : (Bj)(A0)[x℄Q and (A2) : : : (An+1)P has (B1) : : : (Bj)Q as its �eI -nf.{ If (A01) is �eI -bahelor in (A01)M then(A01)M is the �eI -nf of (A1) : : : (An+1)(A)[x℄P .{ If (A01) is �eI -partnered in (A01)M then Q � [xj ℄ : : : [x1℄[y℄R. Now,(A1) : : : (An)(An+1)P !!�eI (A01)(B1) : : : (Bj)[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)[xj ℄ : : : [x1℄[y := A01℄R.Hene [y := A01℄R is �eI -SN as (A1) : : : (An+1)P is.Let B be the �eI -nf of [y := A01℄R. Now,(A1) : : : (An+1)(A)[x℄P !!�eI (A01)(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄[y := A01℄R!�eI(B1) : : : (Bj)(A0)[x℄[xj ℄ : : : [x1℄B whih is in �eI -nf.Lemma 31 If Ai !�K Bi, (A1) : : : (Ai�1)(Bi)(Ai+1) : : : (An)z and Ai have �eI -nfthen (A1) : : : (Ai�1)(Ai)(Ai+1) : : : (An)z has �eI -nf.Proof A1; : : : Ai�1; Ai; Ai+1; : : : An all have �eI -nf, A01; : : : A0i�1; A0i; A0i+1; : : : A0n.Hene, (A1) : : : (Ai�1)(Ai)(Ai+1) : : : (An)z !!�eI (A01) : : : (A0i�1)(A0i)(A0i+1) : : : (A0n)zwhih is in �eI -nf.Lemma 32 If M !F N using a �K-redex, and N has a �eI -nf, then M has �eI -nf.Proof By indution on the depth of the F -redex (following Lemma 8).� If M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P , where x 62 FV (P), A is in�-nf and m � 0, and if N � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)P where n � 0,use Lemma 30 (A in �-nf) A in �eI -nf).� Let S � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An). If M � S(A)[x℄P , N � S(A0)[x℄Pwhere x 62 FV (P), A is not in �-nf, A!F A0, n � 0 and m � 0. Use IH to de-due thatA has �eI -nf. AsN has �eI -nf, then [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)Phas �eI -nf by Lemma 29. Hene, [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)[x℄P has�eI -nf by Lemma 30. 16

� If M � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A)(B1)(B2) : : : (Br)z,N � [x1℄[x2℄ : : : [xm℄(A1)(A2) : : : (An)(A0)(B1)(B2) : : : (Br)z whereA is not in �-nf, A !F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in�-nf. As N has �eI -nf, so does A0 and by IH, so does A. By Lemma 31, M has�eI -nf.Now, here is the key theorem to PSN:Theorem 33 (The inverse of !!F preserves �eI-N)If M !!F N and N is �eI -N, then M is �eI -N.Proof We show it for M !F N . Note that if M !F N and F (M) is a �I -redex,then the theorem is obvious as a �I -redex is a �eI -redex. Hene, we only need toprove the theorem for the ase when F (M) is a �K-redex. But this is already donein Lemma 32.Finally, here is the PSN result.Corollary 34 (Preservation of Strong Normalisation)If M is �-SN then M is �e-SN.Proof AsM is �-SN, the perpetual strategy ofM terminates. LetM !!F N whereN is in �-nf. As N has no �-redexes, N is �eI -N. Hene, by Theorem 33, M is �eI -N.So, by Theorem 28 M is �e-SN.8 ConlusionIn this paper, we established that there is indeed a redution relation whih satis�esboth postponement of K-ontrations and onservation. This redution relation isa generalisation of the ordinary �-redution and has been extensively used sine '73for theoretial and pratial reasons (see Setion 2). We showed moreover that thisgeneralised redution (alled �e) is indeed a desirable generalisation of �-redutionby showing that �e preserves strong normalisation in the sense that if M is �-SNthen M is �e-SN. Preservation of Strong Normalisation (PSN) is a property that hasto be established for any extension of a redution relation in the sense that: if aterm is strongly normalising for a redution relation, then it must remain stronglynormalising for its extension. For example, a lot of researh has been arried outlately to establish PSN for �-redution extended with expliit substitution (see [4℄,[9℄ and [18℄). The results of this paper establish that �e is indeed a safe extension of�. It is worth noting that we used item notation in this paper in order to reah theresults desired. There is a reason for this. In the usual notation, generalised redexesare not easily visible whereas they are in item notation (see [8℄). For example, in()()[℄()[℄[℄, we an learly see that the leftmost () mathes the rightmost[℄. Usingitem notation enables us to write the proofs learly. Compare with [6℄ who used amore restrited generalised redution but it was still hard to disuss where generalisedredexes ours in a term. For more information on the simpliity and usefulness ofitem notation, the reader is referred to [8℄. It should be noted moreover, that using17

item notation is not restritive and that the results of this paper would still hold ifwe used the lassial notation. Only the proofs will be umbersome to write as thelassial notation annot easily enable us to express generalised redexes.The following is an itemised summary of this paper:1. Postponement and onservation are shown for the same redution relation �e.2. This redution relation is a generalisation of that presented in de Groote's artileand of many of the existing generalisations of �-redution. Beause of this, itenables greater exibility in the ordering of evaluation.3. The fat that this redution relation preserves strong normalisation and en-ables the postponement of some work allowing unneessary K-redexes to bebypassed, means that one an investigate a programming language evaluationstrategy based on this redution together with expliit substitutions (whih al-low bypassing any work inside a subterm that will be disarded later). Thismeans that one an ombine the advantages of the omplementary ways ofpostponing work due to both expliit substitutions and generalised redution.Hene, one an ahieve an even greater exibility in the order of redution andevaluation, something very welome in the implementation and ompilation ofprogramming languages.4. The syntax of this paper may well be the answer to the existene of a syntaxthat realises Regnier's �-redution. We leave this for future explorations.5. It is our belief that automating proofs written in this fashion may be moreeÆient than automating the proofs written using �-equivalene (whih wassaid to need a good syntax to desribe it in [22℄).AknowledgementsI am grateful to Joe Wells and the anonymous referees for for their omments on thepaper. This work is supported by EPSRC grants number GR/L15685 and GR/L36963.Anonymous referees provided useful omments for whih I am grateful.Referenes[1℄ Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky and P. Wadler. A all by needlambda alulus. ACM Symposium on Priniples of Programming Languages,1995.[2℄ H. Barendregt. Lambda Calulus: its Syntax and Semantis. North-Holland,1984.[3℄ H. Barendregt. Lambda aluli with types. Handbook of Logi in ComputerSiene, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., OxfordUniversity Press, 1992. 18

[4℄ Z. Benaissa, D. Briaud, P. Lesanne and J. Rouyer-Degli. T ��, a alulus ofexpliit substitutions whih preserves strong normalisation. Funtional Program-ming, 6(5):699-722, September 1996.[5℄ R. Bloo, F. Kamareddine and R. Nederpelt. The Barendregt Cube with De�ni-tions and Generalised Redution. Information and Computation 126(2), 123-143,1996.[6℄ P. de Groote. The onservation theorem revisited. International Confereneon Typed Lambda Caluli and Appliations. Leture Notes in Computer SieneLNCS 664, 163-178, Springer-Verlag, 1993.[7℄ F. Kamareddine and R.P. Nederpelt. Generalising redution in the �-alulus.Journal of Funtional Programming 5 (4), 637-651, 1995.[8℄ F. Kamareddine and R.P. Nederpelt. A useful �-notation. Theoretial ComputerSiene 155, 85-109, 1996.[9℄ F. Kamareddine and A. R��os, �-alulus �a la de Bruijn & expliit substitution.Leture Notes in Computer Siene 982, 7th international symposium on Pro-gramming Languages: Implementations, Logis and Programs, PLILP '95, 45-62,Springer-Verlag, 1995.[10℄ F. Kamareddine and A. R��os, Generalised �e-redution and expliit substitu-tion. Leture Notes in Computer Siene 1140, 8th international symposium onProgramming Languages: Implementations, Logis and Programs, PLILP '96,378-392, Springer-Verlag, 1996.[11℄ F. Kamareddine, A. R��os, and J.B. Wells. Caluli of Generalised �-Redutionand Expliit Substitutions: The Type free and Simply Typed Versions. Journalof Funtional and Logi Programming, Volume 1998, ISSN 1080-5230, MIT Press[12℄ A.J. Kfoury, J. Tiuryn and P. Urzyzyn. An analysis of ML typability. Journalof the ACM 41(2), 368-398, 1994.[13℄ A.J. Kfoury and J.B. Wells. A diret algorithm for type inferene in the rank-2fragment of the seond order �-alulus. Proeedings of the 1994 ACM Confereneon LISP in Funtional Programming, 1994.[14℄ A.J. Kfoury and J.B. Wells. New notions of redutions and non-semanti proofsof �-strong normalisation in typed �-aluli. IEEE Logi In Computer Siene,1995.[15℄ A.J. Kfoury and J.B. Wells. Addendum to new notions of redution and non-semanti proofs of �-strong normalisation in typed �-aluli. Tehnial report,Boston University.[16℄ J.W. Klop. Combinatory Redution Systems. Number 127 in MathematialCentre Trats. Mathematish Centrum, Amsterdam, 1980.[17℄ J.L. Krivine. Lambda-alul, types et mod�eles. Masson, 1990.19

[18℄ C. Mu~noz. Conuene and preservation of strong normalisation in an expliitsubstitution alulus. Rapport de Reherhe No 2762, INRIA.[19℄ R.P. Nederpelt. Strong normalisation in a typed lambda alulus with lambdastrutured types. Ph.D. thesis, Eindhoven University of Tehnology, Departmentof Mathematis and Computer Siene, 1973. Also appears in [20℄.[20℄ R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer, eds., Seleted Papers on Au-tomath. North Holland, 1994.[21℄ L. Regnier. Lambda alul et r�eseaux. Th�ese de dotorat de l'universit�e Paris 7,1992.[22℄ L. Regnier. Une �equivalene sur les lambda termes. Theoretial Computer Siene126, 281-292, 1994.[23℄ A. Sabry, and M. Felleisen. Reasoning about programs in ontinuation-passingstyle. Pro. 1992 ACM Conf. LISP Funt. Program., 288-298, 1992.[24℄ M.H. S�rensen. Strong normalization from weak normalization in typed �-aluli.Journal of Information and Comuptation 133(1), 35-71, 1997.[25℄ D. Vidal. Nouvelles notions de r�edution en lambda alul. Th�ese de dotorat,Universit�e de Nany 1, 1989.[26℄ H. Xi. On weak and strong normalizations. Tehnial Report 96-187, CarnegieMellon University, 1996.

20

