
Reviewing the lassial and the de Bruijn notationfor �-alulus and pure type systemsFairouz Kamareddine�February 22, 2001AbstratThis artile is a brief review of the type free �-alulus and its basi rewriting notions, andof the pure type system framework whih generalises many type systems. Both the typefree �-alulus and the pure type systems are presented using variable names and de Bruijnindies. Using the presentation of the �-alulus with de Bruijn indies, we illustrate how aalulus of expliit substitutions an be obtained. In addition, de Bruijn's notation for the�-alulus is introdued and some of its advantages are outlined.Keywords: Types, Rewriting, �-alulus and de Bruijn's notation.1 Introdution to Logis, Types and RewritingLogi existed sine the anient times, really it goes bak to the onsiousness ofhuman beings. However, in the 20th entury, there has been an explosion in thedi�erent logis introdued and in the appliations that depended on logi. This ex-plosion is due to many reasons that we will briey touh on in this paper. Thisexplosion moreover, is not slowing down in the twenty �rst entury. On the on-trary, we will ontinue to see new di�erent logis, extensions of old logis and thestudy of their theory and appliations will be as thrive as it was in the last en-tury. This is not surprising beause the twentieth entury was indeed a entury ofomplexity and this omplexity will be arried to this entury. The following table ex-plains the onsequenes of a single mahine failure both in the years 1900 and in 2000.1900 2000Main way information travels in soiety: paper eletri signals, radioNumber of parts in omplex mahine: 10,000 (loomotive) 1,000,000,000 (CPU)Worst onsequenes of single mahine failure: 100s die end of all life?Likelihood a mahine inludes a omputer: very low very high�Department of Computing and Eletrial Engineering, Heriot-Watt University, Riarton, Edin-burgh EH14 4AS, Sotland, email: fairouz�ee.hw.a.uk1



This omplexity of information and the disastrous onsequenes of failure, lead tothe need for Automation and for establishing Corretness. Modern tehnologialsystems are just too ompliated for humans to reason about unaided, so automationis needed. In addition, beause of the inreasing interdependeny of systems and thefaster and more automati travel of information, failures an have a wide impat. Soestablishing orretness is important. Furthermore, beause modern systems have somany possible states, testing is often impratial. It seems that proofs are needed toover in�nitely many situations. In other words, some kind of formalism is needed toaid in design and to ensure safety.But then, what kind of formalism should one develop? This is not an easy questionto answer. However, a reasoning formalism should at least be:� Corret: Only orret statements an be \proven".� Adequate: Needed properties in the problem domain an be stated and proved.� Feasible: The resoures (money, time) used in stating and proving neededproperties must be within pratial limits.In addition, assuming a minimally aeptable formalism, we would also like it to be:� EÆient: Costs of both the reasoning proess and the thing being reasonedabout should be minimized.� Supportive of reuse: Slight spei�ation hanges should not fore reprovingproperties for an entire system. Libraries of pre-proved statements should bewell supported.� Elegant: The ore of the reasoning formalism should be as simple as possible,to aid in reasoning about the formalism itself.Work on logi in the twentieth entury led to the development of two related yetomplementary areas: types and rewriting. Logis, types, and rewriting have existedin various forms sine the times of the anient Babylonians and Greeks (e.g., Eulid,Aristotle, et.) yet in the twentieth entury, types and rewriting beame expliittheories and started to be developed as branhes of their own. Logis, types, andrewriting are able to be shown orret, are elegant as we an formulate and (automate)lear rules of how they work (e.g., from A and A ! B we an dedue B), and areadequate as we an express a lot in these tiny formalisms.But what are logis? What are proofs? What are types and what is rewriting?Here is an attempt at explaining them. We start with proofs and logi.� A proof is the guarantee of some statement provided by a rigorous expla-nation stated using axioms (statements \for free") and rules for ombiningalready proven statements to obtain more statements.� A logi is a formalism for statements and proofs of statements.� Why do we believe the explanation of a proof? Beause a proved statement isderived step by step from expliit assumptions using a trusted logi.2



The above explanation of logi and proofs an be traed bak to the times of Aristotle(384{322 B.C.) who wanted a set of rules that would be powerful enough for mostintuitively valid proofs. Aristotle orretly stated that proof searh is harder thanproof heking:Given a proof of a statement, one an hek that it is a orret proof.Given a statement, one may not be able to �nd the proof.Aristotle's intuitions on this have been on�rmed by G�odel, Turing, and others inthe twentieth entury. Muh later than Aristotle, Leibniz (1646{1717) oneived ofautomated dedution, i.e., to �nd� a language L in whih arbitrary onepts ould be formulated, and� a mahine to determine the orretness of statements in L.Suh a mahine an not work for every statement aording to Aristotle and (laterresults by) G�odel and Turing.The late 1800s saw the beginnings of serious formalization: Cantor began formal-izing set theory [6, 7℄ and made ontributions to number theory, Peano formalizedarithmeti [39℄, Frege's Begri�sshrift [13℄ (1879) gave the �rst thorough and exten-sive formalisation of logi. Frege's Grundgesetze der Arithmetik [14, 16℄, alled laterby others Naive Set Theory (NST), ould handle elementary arithmeti, set theory,logi, and quanti�ation. Frege's NST allowed a preise de�nition of the vital oneptof the funtion. As a result, NST ould inlude not only funtions that take numbersas arguments and return numbers as results, but also funtions that an take and re-turn other sorts of arguments, inluding funtions. These powerful funtions were thekey to the formalization of logi in NST. Frege was autious: ordinary funtions ouldonly take \objets" as arguments, not other funtions. However, to gain importantexpressive power, he allowed a way to turn a funtion into an objet representingits graph. Unfortunately, this led to a paradox, due to the impliit possibility ofself-appliation of funtions. In 1902, Russell suggested [42℄ and Frege ompletedthe argument [15℄ that a paradox ould our in NST. First, one an de�ne S to be\the set of all sets whih do not ontain themselves". Then, one an prove both ofthese statements in NST:S 2 S , S =2 SThe same paradox ould be enoded in the systems of Cantor and Peano (but not inFrege's weaker Begri�sshrift). As a result, all these systems were inonsistent |not only ould every true statement be proved but also every false one! (Three-valuedlogi an solve this, but is unsatisfatory for other reasons.) Logi was in a risis.In 1908, Russell suggested the use of types to solve the problem [43℄. It is fair tosay that types were (impliitly) used muh earlier than that. For example, Eulid'sElements (ira 325 B.C.) begins with (see page 153 of [12℄):1. A point is that whih has no part.2. A line is breadthless length.... 3



15. A irle is a plane �gure ontained by one line suh that all the straight linesfalling upon it from one point among those lying within the �gure are equal toone another.Although the above seems to merely de�ne points, lines, and irles, it shows more im-portantly that Eulid distinguished between them. Eulid always mentioned to whihlass (points, lines, et.) an objet belonged. By distinguishing lasses of objets,Eulid prevented undesired situations, like onsidering whether two points (instead oftwo lines) are parallel. When onsidering whether two objets were parallel, intuitionfored Eulid to think about the type of the objets. As intuition does not supportthe notion of parallel points, he did not even try to undertake suh a onstrution.In this manner, types have always been present in mathematis, although theywere not notied expliitly until the late 1800s. If you have studied geometry, thenyou have some (impliit) understanding of types. The question that poses itselfthen is what led to the reation of this new disipline (type theory) in the twnetiethentury. Twan Laan in his PhD thesis [33℄ gives an exellent survey of the evolutionof type theory. Here, we briey use his argument to state that starting in the 1800s,mathematial systems beame less intuitive, for several reasons:� Very omplex or abstrat systems.� Formal systems.� Something with less intuition than a human using the systems: a omputer.These situations are paradox threats. An example is Frege's NST. In suh ases,there is not enough intuition to ativate the (impliit) type theory to warn againstan impossible situation. Reasoning proeeds within the impossible situation and thenobtains a result that may be wrong or paradoxial.To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russell pre-sribed avoiding self-referene and self-appliation in his \viious irle priniple":Whatever involves all of a olletion must not be one of the olletion.Russell implemented this in his Rami�ed Theory of Types (RTT) [43℄ whih usedtypes and orders. Self-appliation was prevented by foring funtions of order k tobe applied only to arguments of order less than k. This was arried out further byRussell and Whitehead in the famous Prinipia Mathematia [49℄ (1910-1912), whihfounded mathematis on logi, as far as possible, avoiding paradoxes. For example, inRTT, one an de�ne a funtion \+" whih is restrited to be applied only to integers.Although RTT was orret, unlike NST, the types of RTT have turned out insteadto be too restritive for mathematis and omputer siene where �xed points (tomention one example) play an important role. RTT also fores dupliation of thede�nitions of the number system, the boolean algebra, et., at every level.The exploration of the middle ground between these two extremes has led to manysystems, most of them in the ontext of the �-alulus, the �rst higher-order rewritingsystem. If you have studied algebra, then you know some basis in rewriting. Here isan example of algebrai alulations whih illustrates how rewriting works:4



(a+ b)� a by rule x+ y = y + x= (b+ a)� a by rule x� y = x+ (�y)= (b+ a) + (�a) by rule (x+ y) + z = x+ (y + z)= b+ (a+ (�a)) by rule x+ (�x) = 0= b+ 0 by rule x+ 0 = x= bRewriting is the ation of replaing a subexpression whih is mathed by an instaneof one side of a rule by the orresponding instane of the other side of the same rule.Important properties of rewriting systems inlude:� Orientation: Usually, most rules an only be used from left to right as inx+0! x. Forward use of the oriented rules represents progress in omputation.Un-oriented rules usually do trivial work as in x+ y = y + x.� Termination: It is desirable to show that rewriting halts, i.e., to avoid in�nitesequenes of the form P ! P1 ! P2 ! � � �.� Conuene: The result of rewriting is independent of the order in whih therules are used. For example, 1 + 2 + 3 should rewrite to 6, no matter how weevaluate it.As for types, omputations (or rewriting) existed sine anient times (e.g., algebra).However, only in the twentieth entury, higher-order rewriting aluli and theorieshave been extensively developed and important themes and problems identi�ed andstudied. In this paper, we are only interested in the development of higher-orderrewriting through the �-alulus whih was highly inuened by Frege's abstrationpriniple of the late 1800s. This priniple states that any expression mentioningsome symbol in zero or more plaes an be turned into a funtion by abstrating overthat symbol. Introdued in the 1930s, Churh's �-alulus made funtion abstrationan operator. For example, (�x:x+5) represents the (unnamed) mathematial funtionwhih takes as input any number and returns as output the result of adding 5 to thatnumber. The �-alulus provides higher-order rewriting, allowing equations like:f((�x: x+ (1=x))5) = f(5 + (1=5)) = f(5 + 0:2) = f(5:2)The type-free �-alulus, whih an be seen as a small programming language, is anexellent theory of funtions | it an represent all omputable funtions. Churhintended the type-free �-alulus with logial operators to provide a foundation formathematis. Unfortunately, Russell's paradox ould also be enoded in the type-free�-alulus, rendering its use for logi inorret. Churh [8℄ and Curry [11℄ introduedthe simply typed �-alulus (STLC) to provide logi while avoiding Russell's paradoxin a manner similar to RTT. Unfortunately, like RTT, the STLC is too restritive.The areas, Logis, Types and Rewriting onverge. Heyting [20℄, Kolmogorov [32℄,Curry and Feys [11℄ (improved by Howard [22℄), and de Bruijn [38℄ all observed the\propositions as types" or \proofs as terms" (PAT) orrespondene. In PAT,logial operators are embedded in the types of �-terms rather than in the proposi-tions and �-terms are viewed as proofs of the propositions represented by their types.5



Advantages of PAT inlude the ability to manipulate proofs, easier support for inde-pendent proof heking, the possibility of the extration of omputer programs fromproofs, and the ability to prove properties of the logi via the termination of therewriting system.In the present time, there is a remarkable revival of �-alulus, espeially in theversions whih use types. Both logiians and omputer sientists have developedseveral branhes of typed and untyped �-alulus. Also mathematis has bene�ttedfrom �-alulus, espeially sine the time (around 1970) where de Bruijn used his�-alulus-based Automath for the analysis and heking of mathematial texts. Inthe rest of this artile, we give a brief introdution, both in the lassial notationof Churh and in the de Bruijn notation, to the �-alulus and to type theory viathe pure type systems framework. Setion 2 deals with the type free �-alulus andSetion 3 deals with pure type systems. In partiular, we introdue in Setion 2.1some basi rewriting notions needed for the �-alulus and in Setion 2.2 we givethe lassial �-alulus (as is usually written) with variable names. In Setion 2.3we present the lassial �-alulus with de Bruijn indies and in Setion 2.4 we turnit into a alulus of expliit substitutions. In Setion 2.5 we present the �-alulususing variable names in de Bruijn's notation rather than in the lassial one. Inthis presentation, alled �-alulus �a la de Bruijn, the argument appears before thefuntion and terms are strutured in a di�erent manner to the lassial �-alulus.The �-alulus �a la de Bruijn an also be written using de Bruijn indies instead ofvariable names, and we refer the reader to [23℄ for further details. In Setion 3.1 wepresent the pure type systems framework in the lassial notation of the �-alulususing variable names. In Setion 3.2 we present the pure type systems in lassialnotation using de Bruijn indies and establish their isomorphism to the version withvariable names. We leave it as an exerise for the reader to write pure type systemsin de Bruijn's notation (using either variable names or de Bruijn indies).2 The Type Free �-alulusIn this setion, we introdue the lassial �-alulus (with variable names and with deBruijn indies) and the �-alulus �a la de Bruijn. Terms of the lassial �-alulus areonstruted via appliation (as in AB) or abstration (as in �v:A if variable names areused, or �A if de Bruijn indies are used). Terms of the �-alulus �a la de Bruijn arealso onstruted using appliation (as in (B)A) or abstration (as in [v℄A if variablenames are used, or [℄A if de Bruijn indies are used). The �-alulus �a la de Bruijn isonly given using variable names, for the version using de Bruijn indies see [23℄.2.1 Rewriting notionsAll the systems of this paper have a ommon feature. First, the syntax (the set ofterms, types, substitutions, et.) is given and then a set of rules that work on thesyntax is presented. Those rules are rewrite rules and are of the form A !R Bor (A;B) 2 R if we prefer to talk of rewrite relations. These rules take a ertainexpression of the syntax (term, type, substitution, et.) that mathes the patternof the left hand side A of the rule and rewrite it in a way that mathes the righthand side B of the rule. This rewriting must take plae inside larger formulas as6



well. For example, assume that A rewrites to B, then we must also be able to rewriteAC to BC. For this reason, an important notion for rewriting relations is that ofompatibility. We introdue this notion here for the lassial �-alulus whose onlyoperators are appliation and abstration (the syntax is given in De�nitions 9 and 39):De�nition 1 (Compatibility for the lassial �-alulus) We say that a binaryrelation R on the lassial �-alulus is ompatible i� for all terms A;B of the �-alulus and variable v, the following holds:(A;B) 2 R(AC;BC) 2 R (A;B) 2 R(CA;CB) 2 R (A;B) 2 R(�v:A; �v:B) 2 R (1) (A;B) 2 R(�A; �B) 2 R (2)(1) is in ase of variable names and (2) is in ase of de Bruijn indies.This notion of ompatibility will be extended aording to the extra operations thatwill be added to the �-alulus. For example, if we add substitution, we will have toadd an extra lause on the ompatibility for the ase of the substitution operator.De�nition 2 (Redution Notations) Let S be a set and R a binary relation onS . We all R a redution notion on S and use the following notations and de�nitions:1. !R is the ompatible losure of R, and (S;!R) is a redution system.2. �!R or just �! , is the reexive losure !R .3. +!!R or just +!! is the transitive losure of !R .4. !!R or just !! is the reexive and transitive losure of !R . When A !! Bwe say there exists a redution sequene from A to B .5. =R is the reexive, symmetri and transitive losure of !R. That is, =R is theleast equivalene relation ontaining !R.6. � is syntati identity, and A � B means A and B are syntatially idential.7. we write A n!!R B or just A n!! B when the redution sequene onsists of n � 0steps of redution. We all n the length of the redution sequene. I.e., if n � 2 ,there exists B1; : : : ; Bn�1 suh that A!R B1 !R � � � !R Bn�1 !R B . Whenn = 1 , A 1!!RB means A!R B . When n = 0 , A 0!!RB means A � B .8. When (A;B) 2 R, we say that A is an R-redex. In many ases, we introdue Ras a set of rewrite rules of the form A!R B.9. A 2 S is an R-normal form (R-nf for short) if A does not ontain any R-redex.10. We say that B is an R-normal form of A or A has the R-normal form B if Bis an R-normal form and A =R B.Expressions an be evaluated in di�erent orders. For example, we ould evaluate2+3+4 by evaluating (2+3)+4 or 2+(3+4). We would like to get the same resulteither way. The following two de�nitions help us desribe this phenomenon:7



De�nition 3 (Diamond property) Let R be a binary relation on S. We say that(S;!R) satis�es the diamond property if for all A;B;C 2 S, if A!R B and A!R C,then there is a D suh that B !!R D and C !!R D. Pitorially this is as follows:B CA���	 ���RR RD��R ��	��R ��	De�nition 4 (Conuene and Churh Rosser) Let R be a notion of redutionon S . We de�ne loal onuene (or Weak Churh Rosser WCR), onuene (orChurh Rosser CR) and strong onuene (or Strong Churh Rosser SCR) as follows:1. WCR: !R satis�es the diamond property. I.e.:8A;B;C 2 S 9D 2 S : (A!R B ^ A!R C)) (B !!R D ^ C !!R D) :2. CR: !!R satis�es the diamond property. I.e.:8A;B;C 2 S 9D 2 S : (A !!R B ^ A !!R C)) (B !!R D ^ C !!R D) :3. SCR: 8A;B;C 2 S 9D 2 S : (A !R B^A !R C)) (B !R D^C !R D) :Lemma 5 Let R be a notion of redution. If !R is SCR then !!R is also SCR.Theorem 6 Let R be a notion of redution that is CR. The following holds:� If A =R B then there is a C suh that A!!R C and B !!R C.1� If A =R B and B is in R-normal form, then A!!R B.� If A =R B then either A and B do not have R-normal forms or A and B havethe same R-normal form.� If A has R-normal forms B and C, then B and C are idential up to variablerenaming. Hene, we speak of the R-normal form of A and denote by R(A).� A =R B, A and B are in R-normal forms then A and B are idential up tovariable renaming.A seond very important onern of redution (or rewrite) systems is that of termi-nation. We are interested in knowing if our rewriting of a partiular expression willterminate or will go inde�nitely. For example, the rule n ! n + 1 applied to 1 willnot terminate. Termination is a ruial property for implementation purposes. If anexpression does not always terminate in a partiular redution system, perhaps it anterminate with some areful order of rules. Those expressions that will never termi-nate are disastrous for omputation. We set the way with the following de�nition.De�nition 7 (Normalisation) Let R be a redution notion on S . We say that:1Sometimes, this is referred to as the onuene property. We have however identi�ed ChurhRosser and Conuene. 8



� A term A is strongly R-normalising if there are no in�nite R-redution sequenesstarting at A.� R is strongly normalising (SN) if there is no in�nite sequene (Ai)i�0 in S suhthat Ai !R Ai+1 for all i � 0 . I.e. every A in S strongly R-normalises.� R is weakly normalising (WN) if every A 2 S has an R-normal form.When no onfusion arises, R may be omitted and we speak simply of normal formsor normalisation.Strong normalisation implies weak normalisation and therefore the existene of normalforms. The following lemma is an important onnetion between strong normalisationand onuene (its proof an be found in [3℄, proposition 3.1.25):Lemma 8 (Newman) Every strongly normalising, loally onuent notion of re-dution relation is onuent. In other words, SN + WCR =) CR.2.2 Classial �-alulus with variable namesDe�nition 9 (Syntax of �-terms) The set of lassial �-terms or �-expressionsMis given by: M ::= V j (�V :M) j (MM) where V = fx; y; z; : : :g is an in�nite set ofterm variables. We let v; v0; v00; � � � range over V and A;B;C � � � range overM.Example 10 (�x:x), (�x:(xx)), (�x:(�y:x)), (�x:(�y:(xy))), and ((�x:x)(�x:x)) areall lassial �-expressions.This simple language is surprisingly rih. Its rihness omes from the freedom to reateand apply funtions, espeially higher order funtions to other funtions (and evento themselves). To explain the intuitive meaning of these three sorts of expressions,let us imagine a model where every �-expression denotes an element of that model(whih is a funtion). In partiular, the variables denote a funtion in the modelvia an interpretation funtion or an environment whih maps every variable into aspei� element of the model. Suh a model by the way was not obvious for morethan forty years. In fat, for a domain D to be a model of �-alulus, it requiresthat the set of funtions from D to D be inluded in D. Moreover, as the �-alulusrepresents preisely the reursive funtions, we know from Cantor's theorem that thedomain D is muh smaller than the set of funtions from D to D. Dana Sott wasarmed by this theorem in his attempt to show the non-existene of the models of the�-alulus. To his surprise, he proved the opposite of what he set out to show. Hefound in 1969 a model whih has opened the door to an extensive area of researh inomputer siene. We will not go into the details of these models in this paper.De�nition 11 (Meaning of Terms) Here is now the intuitive meaning of eah ofthe three �-expressions given in the syntax:Variables Funtions denoted by variables are determined by what the variables arebound to in the environment. Binding is done by �-abstration.Funtion appliation If A and B are �-expressions, then so is (AB). This expres-sion denotes the result of applying the funtion denoted by A to the funtiondenoted by B. 9



Abstration If v is a variable and A is an expression whih may or may not ontainourrenes of v, then �v:A denotes the funtion that maps the input value Bto the output value A[v := B℄.Example 12 (�x:x) denotes the identity funtion. (�x:(�y:x)) denotes the funtionwhih takes two arguments and returns the �rst.As parentheses are umbersome, we will use the following notational onvention:De�nition 13 (Notational onvention) We use these notational onventions:1. Funtional appliation assoiates to the left. So ABC denotes ((AB)C).2. The body of a � is anything that omes after it. So, instead of (�v:(A1A2 : : : An)),we write �v:A1A2 : : : An.3. A sequene of �'s is ompressed to one, so �xyz:t denotes �x:(�y:(�z:t)).As a onsequene of these notational onventions we get:1. Parentheses may be dropped: (AB) and (�v:A) are written AB and �v:A.2. Appliation has priority over abstration: �x:yz means �x:(yz) and not (�x:y)z.2.2.1 Variables and SubstitutionWe need to manipulate �-expressions in order to get values. For example, we need toapply (�x:x) to y to obtain y. To do so, we use the �-rule whih says that (�v:A)Bevaluates to the body A where v is substituted by B, written A[v := B℄. However, onehas to be areful. Look at the following example:Example 14 Evaluating (�fx:fx)g to �x:gx is perfetly aeptable but evaluating(�fx:fx)x to �x:xx is not. ByDe�nition 11, �fx:fx and �fy:fy have the same mean-ing and hene (�fx:fx)x and (�fy:fy)y must also have the same meaning. Moreover,their values must have the same meaning. However, if (�fx:fx)x evaluates to �x:xxand (�fy:fy)x evaluates to �y:xy, then we easily see, aording to De�nition 11, that�x:xx and �y:xy have two di�erent meanings. The �rst takes a funtion and appliesit to itself, the seond takes a funtion y and applies x (whatever its value) to y.We de�ne the notions of free and bound variables whih will play an important rolein avoiding the problem above. In fat, the � is a variable binder, just like 8 in logi:De�nition 15 (Free and Bound variables) For a �-term C, the set of free vari-ables FV (C), and the set of bound variablesBV (C), are de�ned indutively as follows:FV (v) =def fvg BV (v) =def ;FV (�v:A) =def FV (A) � fvg BV (�v:A) =def BV (A) [ fvgFV (AB) =def FV (A) [ FV (B) BV (AB) =def BV (A) [ BV (B)
10



An ourrene of a variable v in a �-expression is free if it is not within the sope ofa �v:2, otherwise it is bound. For example, in (�x:yx)(�y:xy), the �rst ourrene ofy is free whereas the seond is bound. Moreover, the �rst ourrene of x is boundwhereas the seond is free. In �y:x(�x:yx) the �rst ourrene of x is free whereasthe seond is bound. A losed term is a �-term in whih all variables are bound.Free and bound variables play an important role in the �-alulus for many reasons:1. Almost all �-aluli identify terms that only di�er in the name of their boundvariables. For example, as �x:x and �y:y have aording to De�nition 11 thesame meaning (the identity funtion), they are usually identi�ed. We will seemore on this when we will introdue �-onversion (f. De�nition 19).2. Substitution has to be handled with are due to the distint roles played bybound and free variables. After substitution, no free variable an beome bound.For example, (�x:fx)[f := x℄ must not return �x:xx, but �y:xy. These twolatter terms have di�erent meanings. �y:xy is obtained by renaming the boundx in �x:fx to y, and then performing the substitution. Thus (�x:fx)[f := x℄ isthe same as (�y:fy)[f := x℄ whih in its turn is the same as �y:xy.3. There is no point in substituting for a bound variable. For example, what is thepoint of turning (�x:x)[x := y℄ into �y:y? Or even more strange (and not allowedsyntatially), replaing x by �y:y due to the substitution (�x:x)[x := �y:y℄.Here is now the de�nition of substitution:De�nition 16 (Substitution) For any A;B; v, we de�ne A[v := B℄ to be the resultof substituting B for every free ourrene of v in A, as follows:v[v := B℄ � Bv0[v := B℄ � v if v 6� v0(AC)[v := B℄ � A[v := B℄C[v := B℄(�v:A)[v := B℄ � �v:A(�v0:A)[v := B℄ � �v0:A[v := B℄if v0 6� v and (v0 62 FV (B) or v 62 FV (A))(�v0:A)[v := B℄ � �v00:[v0 := v00℄[v := A℄if v0 6� v and (v0 2 FV (B) and v 2 FV (A))In the last lause, v00 is hosen to be the �rst variable 62 FV (AB). In the ase whenterms are identi�ed modulo the names of their bound variables, then in the last lauseof the above de�nition, any v00 62 FV (AB) an be taken. In implementation however,this identi�ation is useless and a partiular hoie of v00 has to be made.Example 17 Chek that (�y:yx)[x := z℄ � �y:yz, that (�y:yx)[x := y℄ � �z:zy, andthat (�y:yz)[x := �z:z℄ � �y:yz.Lemma 18 (Substitution for variable names) Let A;B;C 2 M, x; y; 2 V . Forx 6= y and x 62 FV(C), we have that: A[x := B℄[y := C℄ � A[y := C℄[x := B[y := C℄℄.2Notie that the v in �v is not an ourrene of v.11



2.2.2 RedutionThree notions of redution will be studied in this setion. The �rst is �-redutionwhih identi�es terms up to variable renaming. The seond is �-redution evaluates�-terms. The third is �-redution whih is used to identify funtions that return thesame values for the same arguments (extensionality). �-redution is used in every�-alulus, whereas �-redution and �-redution may or may not be used.De�nition 19 (Alpha redution) !� is de�ned to be the least ompatible rela-tion losed under the axiom:(�) �v:A!� �v0:A[v := v0℄ where v0 62 FV (A)Example 20 �x:x!��y:y but it is not the ase that �x:xy!��y:yy.Moreover, �z:(�x:x)x!!��z:(�y:y)x.Reall that �x:x 6� �y:y even though they represent the same funtion. They areatually idential modulo �-onversion. I.e. �x:x =� �y:y.De�nition 21 (Beta redution) !� is de�ned to be the least ompatible relationlosed under the axiom: (�) (�v:A)B!�A[v := B℄Example 22 Chek that (�x:x)(�z:z)!��z:z, that (�y:(�x:x)(�z:z))xy!!�y, andthat both �z:z and y are �-normal forms.Here is a lemma about the interation of �-redution and substitution:Lemma 23 Let A;B;C;D 2M.1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof By indution on the struture of A for 1, on the derivation A!� B for 2.De�nition 24 (Eta redution and �-normal forms) !� is de�ned to be the leastompatible relation losed under the axiom:(�) �v:Av!�A for v 62 FV (A)Example 25 �x:(�z:z)x!��z:z but it is not the ase that �x:xx!�x.Moreover �y:(�x:(�z:z)x)y!!��z:z.We use !!�� and =�� when both � and � are used. �-onversion equates two termsthat have the same behaviour as funtions and implies extensionality.Lemma 26 (Extensionality) For v not free in A or B, if Av =�� Bv then A =�� B.Proof Let Av =�� Bv. By ompatibility, �v:Av =�� �v:Bv. Hene A =�� B by �.12



2.2.3 Meta TheoryExample 27 below shows that not all expressions have normal forms (1), one mayredue terms using di�erent redution orders (2), the order of redution will a�etour reahing a normal form (3), and reduing a �-expression may even result in abigger expression rather than a smaller one (4). We underline the ontrated redexes:Example 271. (�x:xx)(�x:xx) is not normalising (and hene is not strongly normalising).Hene, we know that this term does not have a normal form.2. We an redue in di�erent orders:(�y:(�x:x)(�z:z))xy!�(�y:�z:z)xy!�(�z:z)y!�y and(�y:(�x:x)(�z:z))xy!�((�x:x)(�z:z))y!�(�z:z)y!�y3. A term may be normalising but not strongly normalising:(�y:z)((�x:xx)(�x:xx))!�z yet(�y:z)((�x:xx)(�x:xx))!�(�y:z)((�x:xx)(�x:xx))!� : : :4. A term may grow after redution:(�x:xxx)(�x:xxx) !� (�x:xxx)(�x:xxx)(�x:xxx)!� (�x:xxx)(�x:xxx)(�x:xxx)(�x:xxx)!� : : :Over expressions whose evaluation does not terminate, there is little we an do, solet us restrit our attention to those expressions whose evaluation terminates. �-and �-redution an be seen as de�ning the steps that an be used for evaluatingexpressions to values. The values are intended to be themselves terms that annot beredued any further. Lukily, all orders lead to the same value (or normal form) of theexpression for R-redution where R 2 f�; ��g. That is, if an expression R-redues intwo di�erent ways to two values, then those values, if they are in R-normal form arethe same (up to �-onversion).Example 28 Here are some ways to redue (�xyz:xz(yz))(�x:x)(�x:x). In all ases,the same �nal answer is obtained.1. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!�(�yz:z(yz))(�x:x)!��z:z((�x:x)z)!��z:zz.2. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!��z:(�x:x)z((�x:x)z)!��z:z((�x:x)z)!��z:zz.3. (�xyz:xz(yz))(�x:x)(�x:x)!�(�yz:(�x:x)z(yz))(�x:x)!��z:(�x:x)z((�x:x)z)!��z:(�x:x)zz!��z:zz.We would like that if A �- or ��-redues to B and to C, then B and C �- or ��-redueto the same term D. Lukily, the �-alulus satis�es this property:Theorem 29 (�- and ��-redution are Churh Rosser) For R 2 f�; ��g, wehave: 8A;B;C 2 M 9D 2M : (A !!R B ^A !!R C)) (B !!R D^C !!R D) :13



Proof Various people have provided proofs of this theorem separately but Currygave the �rst proof in [10℄. [3℄ provides various proofs of this theorem. A shorter andnew proof an be found in [46℄.Due to this theorem (whih says that the results of redutions do not depend on theorder in whih they are done), we may evaluate separate redexes in parallel.Theorem 30 (�-alulus is onsistent) There are A;B suh that A 6=�(�) B.Proof If �xy:x =� �xy:y, then by Theorems 6 and 29, �xy:x =� �xy:y, but this isnot the ase. Hene �xy:x 6=� �xy:y.So far we have answered two important questions.1. Terms evaluate to unique values.2. The �-alulus is not trivial in the sense that it has more than one element.Let us reall however from Example 27 that a term may have a normal form yetthe evaluation order we use may not �nd this normal form. Hene the question nowis: given a term that has a normal form, an we �nd this normal form? This isan important question beause to be able to ompute with the �-alulus, we mustbe able to �nd the normal form of a term if it exists. Lukily we have a positiveresult to this question. That is, if a term has a normal form then there is a redutionstrategy that �nds this normal form. The positive result is given by the normalisationtheorem (Theorem 36) whih tells us that blind alleys in a redution an be avoidedby reduing the leftmost � or �-redex. That is, by reduing the redex whose beginning� is as far to the left as possible. First, we need two sorts of redexes:De�nition 31 (Left-most outermost redex) The leftmost outermost redex of aterm is the redex whose � is the leftmost � of the term. More preisely:� lmo(AB) =def AB if AB is a �-redex� lmo(AB) =def lmo(A) if AB is not a �-redex� lmo(�v:A) =def lmo(A)De�nition 32 (Right-most innermost redex) The rightmost innermost redex ofa term is the redex whose � is the rightmost � of the term. More preisely:� rmi(AB) =def rmi(B) if rmi(B) is de�ned� rmi(AB) =def AB if rmi(B) is not de�ned� rmi(�v:A) =def rmi(A)Example 331. The leftmost outermost redex of (�y:z)((�x:xx)(�x:xx)) is the whole term itselfand not ((�x:xx)(�x:xx)).2. The rightmost innermost redex of (�y:z)((�x:xx)(�x:xx)) is ((�x:xx)(�x:xx)).14



3. Inner and outer refer to the nesting of expressions. For example, the entireexpression is the outermost redex in (�yz:(�x:x)z(yz))(�x:x) whereas the in-nermost redex is the subterm (�x:x)z.De�nition 34 (Normal-order redution) A redution sequene is normal orderor all by name if the leftmost redex is always redued.De�nition 35 (Appliative-order redution) A redution sequene is applia-tive order or all by value if the rightmost redex is always redued.Aording to the all by value strategy, an argument is alled only if it is a value (anormal form). Aording to the all by name strategy, an argument is alled without�rst omputing its value. Normal order redution is guaranteed to reah a normalform if it exists. Appliative order however, might get stuk forever evaluating a termthat is not strongly normalising (but may be normalising). For example, if normalorder is used, (�y:z)((�x:xx)(�x:xx)) will yield z; it will never terminate on the otherhand, if appliative order is used. Appliative order however an reah a normal formfaster than normal order. For example, take (�x:xx)((�y:y)(�z:z)).1. Appliative: (�x:xx)((�y:y)(�z:z))!� (�x:xx)(�z:z)!�(�z:z)(�z:z)!��z:z.2. Normal: (�x:xx)((�y:y)(�z:z))!� ((�y:y)(�z:z))((�y:y)(�z:z))!�(�z:z)((�y:y)(�z:z))!�(�y:y)(�z:z)!��z:z.The normalisation theorem (f. [3℄) states that if a term has a normal form then itis found by the leftmost outermost redution strategy (whih is not the most eÆient):Theorem 36 (Normalisation theorem) If A has a normal form, then iteratedontration of the leftmost redex leads to that normal form.2.3 Classial �-alulus with de Bruijn indiesAs we have seen in the previous setion, substitution an be a umbersome operationdue to variable manipulation and renaming. There are some approahes used to avoideither the problem or variables themselves. We mention three methods:� The use of ombinatory logi whih is equivalent to the �-alulus but does notuse variable names. For example, in ombinatory logi, the identity funtion�x:x is written as I where Ia redues to a. In fat, every term is a ombinatorand no variables need to be introdued. It is however less intuitive to understandwhat the ombinators are doing espeially in really large terms. We will nottouh ombinators in this paper. The interested reader an refer to [21℄.� The use of the Barendregt Variable Convention (VC) whih makes it possible torewrite substitution in a way whih does not deal with renaming variables. (VC)assumes that if at some plae we disuss the terms A1; A2; : : : ; An, then all thebound variables in these terms are di�erent from the free ones and that never�v : : : �v is used; rather, one uses �v : : : �v0. For example, instead of writing(�x:�y:xy)x, we write (�z:�y:zy)x. 15



Due to (VC), the two lauses of De�nition 16 get replaed by the single lause:(�v0:A)[v := B℄ � �v0:A[v := B℄ if v0 6� v(VC) hides the problem rather than solving it. All the alulations and variablerenaming have to be done. But (VC) assumes there is some magial stik whihdoes all this work. Of ourse, we annot use suh an assumption when we doreal work with our terms espeially when we are implementing them.� The use of de Bruijn indies whih avoid lashes of variable names and thereforeneither �-onversion nor Barendregt's onvention are needed. This is explainedin detail in this setion.2.3.1 SyntaxDe Bruijn noted that due to the fat that terms as �x:x and �y:y are the \same",one an �nd a �-notation modulo �-onversion. That is, following de Bruijn, onean abandon variables and use indies instead. The idea of de Bruijn indies is toremove all the variable indies of the �'s and to replae their ourrenes in the bodyof the term by the number whih represents how many �'s one has to ross beforeone reahes the � binding the partiular ourrene at hand.Example 371. �x:x is replaed by �1. That is, x is removed, and the x of the body x is replaedby 1 to indiate the � it refers to.2. �x:�y:xy is replaed by ��21. That is, the x and y of �x and �y are removedwhereas the x and y of the body xy are replaed by 2 and 1 respetively in orderto refer bak to the �s that bind them.3. Similarly, �z:(�y:y(�x:x))(�x:xz) is replaed by �(�1(�1))(�12).Note that the above terms are all losed. What do we do if we had a term that hasfree variables? For example, how do we write �x:xz using de Bruijn's indies?In the presene of free variables, a free variable list whih orders the variablesmust be assumed. For example, assume we take x; y; z; : : : to be the free variable listwhere x omes before y whih is before z, et. Then, in order to write terms usingde Bruijn indies, we use the same proedure above for all the bound variables. Fora free variable however, say z, we ount as far as possible the �'s in whose sope z is,and then we ontinue ounting in the free variable list using the order assumed. Thefollowing example demonstrates:Example 38 �x:xz, (�x:xz)y and (�x:xz)x translate respetively into �14, (�14)2and (�14)1.Now we are ready to de�ne the lassial �-alulus with de Bruijn indies.De�nition 39 We de�ne �, the set of terms with de Bruijn indies, as follows:� ::= IN j (��) j (��)As for M, we use A;B; : : : to range over �. We also use m;n; : : : to range over IN(positive natural numbers). Conventions 1 and 2 of De�nition 13 are used (withoutthe dots of ourse) and the onsequenes of that de�nition also hold here.16



2.3.2 Updating and SubstitutionIn the lassial �-alulus with de Bruijn indies, variables are represented by deBruijn indies (natural numbers). In order to de�ne �-redution, we must de�ne thesubstitution of a variable by a term B in a term A. Therefore, we must identifyamongst the numbers of a term A those that orrespond to the variable that is beingsubstituted for and we need to update the term to be substituted in order to preservethe orret bindings of its variables.Example 40 Writing (�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u using de Bruijn indies,one gets (��521)(�31) !� �4(�41)1. The body of ��521 is �521 and the variablebound by the �rst � of ��521 is the 2. Hene, we need to replae in �521 the 2 by�31. But if we simply replae 2 in �521 by �31 we get �5(�31)1, whih is not orret.We needed to derease 5 as one � disappeared and to inrement the free variables of�31 as they our within the sope of one more �.In order to de�ne �-redution (�A)B !�? using de Bruijn indies. We must:� �nd in A the ourrenes n1; : : : nk of the variable bound by the � of �A.� derease the variables of A to reet the disappearane of the � from �A.� replae the ourrenes n1; : : : nk in A by updated versions of B whih take intoaount that variables in B may appear within the sope of extra �s in A.It will take some work to do this. Let us, in order to simplify things say that the�-rule is (�A)B !� Aff1 Bgg and let us de�ne Aff1 Bgg in a way that all thework of 1 : : : 3 above is arried out. We need ounters desribed informally as follows:1. We start traversing A (here �521) with a unique ounter initialised at 1.2. In arriving at an appliation node, we reate a opy of the ounter in order tohave one ounter for eah branh.3. In arriving at an abstration node, we inrement the ounter.4. In arriving at a leaf (i.e. a number):(a) If it is superior to the ounter, we derease it by 1, beause there will be a�-less between this number and the � that binds it.(b) If the number is equal to the ounter, say n, it must be replaed by B whihwill be found now under n� 1 �'s. We must therefore adjust the numbersof B so that we an modify the binding relations inside B. For this weuse another family of funtions that we all meta-updating funtions.() If the number is inferior to the value of the ounter, then it is bound by a� whih is inside A, and hene the number must not be modi�ed.Let us de�ne the meta-updating funtions.
17



De�nition 41 The meta-updating funtions U ik : � ! � for k � 0 and i � 1 arede�ned indutively as follows:U ik(AB) � U ik(A)U ik(B)U ik(�A) � �(U ik+1(A)) U ik(n) � � n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i� 1 is thevalue by whih a variable, if free, must be inremented.Now we de�ne the family of meta-substitution funtions:De�nition 42 The meta-substitutions at level i , for i � 1 , of a term B 2 � in aterm A 2 � , denoted Affi Bgg , is de�ned indutively on a as follows:(A1A2)ffi Bgg � (A1ffi Bgg) (A2ffi Bgg)(�A)ffi Bgg � �(Affi+ 1 Bgg) nffi Bgg � 8<: n� 1 if n > iU i0(B) if n = in if n < i :The �rst two equalities propagate the substitution through appliations and abstra-tions and the last one arries out the substitution of the intended variable (whenn = i) by the updated term. If the variable is not the intended one it must be de-reased by 1 if it is free (ase n > i) beause one � has disappeared, whereas if it isbound (ase n < i) it must remain unaltered. It is easy to hek for example that(�521)ff1 (�31)gg � �4(�41)1 and hene (��521)(�31)!� �4(�41)1.The following lemma establishes the properties of the meta-substitutions andmeta-updating funtions. The proof of this lemma is obtained by indution on aand an be found in [26℄ (the proof of 3 requires 2 with p = 0; the proof of 4 uses 1and 3 both with k = 0; �nally, 5 with p = 0 is needed to prove 6).Lemma 431. For k < n � k + i we have: U ik(A) � U i+1k (A)ffn Bgg .2. For p � k < j + p we have: U ik(U jp (A)) � U j+i�1p (A) :3. For i � n� k we have: U ik(A)ffn Bgg � U ik(Affn� i+ 1 Bgg) :4. [Meta-substitution lemma℄ For 1 � i � n we have:Affi Bggffn Cgg � Affn+ 1 Cggffi Bffn� i+ 1 Cgggg.5. For m � k + 1 we have: U ik+p(Ump (A)) � Ump (U ik+p+1�m(A)) .6. [Distribution lemma℄For n � k + 1 we have: U ik(Affn Bgg) � U ik+1(A)ffn U ik�n+1(B)gg :Case 4 is the version of Lemma 18 using de Bruijn indies.2.3.3 RedutionDe�nition 44 �-redution is the least ompatible relation on � generated by:(�-rule) (�A)B !� Aff1 BggThe lassial �-alulus with de Bruijn indies, is the redution system generated bythe only rewriting rule �. 18



We say that the �-aluli with variable names and with de Bruijn indies are iso-morphi is there are translation funtions between M and � whih are inverses ofeah other and whih preserve �-redutions. The following theorem establishes theisomorphism of the �-aluli with variable names and de Bruijn indies (f. [35℄ for aproof). We will disuss a similar isomorphism in setion 3.2.Theorem 45 The lassial �-alulus with de Bruijn indies and the lassial �-alulus with variable names are isomorphi.Theorem 46 The lassial �-alulus with de Bruijn indies is onuent.Proof By the isomorphism stated in Theorem 45, the onuene of the lassial�-alulus with variable names (f. [3℄ thm. 3.2.8) is transportable to the lassial�-alulus �a la de Bruijn.Finally, here is the version of Lemma 23 for de Bruijn indies. Note that we neednot only to ensure the good passage of the �-rule through the meta-substitutions butalso through the U ik.Lemma 47 Let A; B; C; D 2 �.1. If C !� D then i) U ik(C)!� U ik(D) and ii)Affi Cgg !!� Affi Dgg .2. If A!� B then Affi Cgg !� Bffi Cgg .Proof 1. Case i) is by indution on C using Lemma 43.6. Case ii) is by indutionon A using i). 2. Is by indution on A using Lemma 43.4.2.4 From the lassial �-alulus with de Bruijn indies to asubstitution alulusHaving seen in Setion 2.3 the meta-updating and meta-substitution operators, anapproah to introdue expliit substitution to the �-alulus with de Bruijn indiesis to extend the syntax of De�nition 39 to inlude new operators that internaliseupdating and substitution. This is done as follows:De�nition 48 (Syntax of the �s-alulus) Terms of the �s-alulus are given by:�s ::= IN j (�s�s) j (��s) j (�s �i�s) j ('ik�s) where i � 1 ; k � 0 :We use the notational onventions de�ned earlier to get rid of unneessary parenthesis.Now, we need to inlude redution rules that operate on the new terms built withupdating and substitutions. De�nitions 41 and 42 suggest these rules. The resultingalulus is the expliit substitution alulus �s of [26℄ whose set of rules is given inFigure 1. Note that these rules are nothing more than � written now as �-generation,together with the rules of De�nitions 41 and 42 oriented as expeted.De�nition 49 The set of rules �s is given in Figure 1. The �s-alulus is the redu-tion system (�s;!�s) where !�s is the least ompatible redution on �s generatedby the set of rules �s. 19



�-generation (�A)B �! A�1 B�-�-transition (�A)�iB �! �(A�i+1 B)�-app-transition (A1 A2)�iB �! (A1 �iB) (A2 �iB)�-destrution n�iB �! 8<: n� 1 if n > i'i0B if n = in if n < i'-�-transition 'ik(�A) �! �('ik+1 A)'-app-transition 'ik(A1 A2) �! ('ik A1) ('ik A2)'-destrution 'ik n �! � n+ i� 1 if n > kn if n � kFigure 1: The �s-rules�-�-transition (A�iB)�j C �! (A�j+1 C) �i (B �j�i+1 C) if i � j�-'-transition 1 ('ik A)�j B �! 'i�1k A if k < j < k + i�-'-transition 2 ('ik A)�j B �! 'ik(A�j�i+1B) if k + i � j'-�-transition 'ik(A�j B) �! ('ik+1A)�j ('ik+1�j B) if j � k + 1'-'-transition 1 'ik ('jl A) �! 'jl ('ik+1�j A) if l+ j � k'-'-transition 2 'ik ('jl A) �! 'j+i�1l A if l � k < l+ jFigure 2: The new rules of the �se-alulus[26℄ establishes that the s-alulus (i.e., the redution system whose rules arethose of Figure 1 exluding �-generation) is strongly normalising, that the �s-alulusis onuent, simulates �-redution and has the property of preservation of strongnormalisation PSN (i.e., if a term terminates in the alulus with de Bruijn indiespresented in Setion 2.3, then it terminates in the �s-alulus). If the �s-alulusis extended with open terms (variables that range over terms), then the redutionrules need also to be extended to guarantee onuene. This extension is essentialfor implementations, see [34, 36, 37℄. Adding the 6 items of Lemma 43 as orientedrewriting rules results in the alulus �se whih is onuent on open terms [28℄. Like�� of [1℄, this alulus does not satisfy PSN [18℄.De�nition 50 (The �se-alulus) Terms of the �se-alulus are given by:�sop ::= VjIN j(�sop�sop)j(��sop)j(�sop �j�sop)j('ik�sop) where j; i � 1 ; k � 0and where V stands for a set of variables, over whih X , Y , ... range.The set of rules �se is obtained by adding the rules given in Figure 2 to the set�s of Figure 1. The �se-alulus is the redution system (�sop;!�se) where !�se isthe least ompatible redution on �sop generated by the set of rules �se.20



�(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D) zFigure 3: Redexes in de Bruijn's notation2.5 The �-alulus �a la de BruijnDe Bruijn departed from the lassial notation of the �-alulus that we saw so far.Instead, he wrote the argument before the funtion and often used [x℄ instead of �x.Here is the translation from lassial notation into de Bruijn's notation via I.I(v) =def v; I(�v:B) =def [v℄I(B); I(AB) =def (I(B))I(A)De Bruijn alled items of the form (A) and [v℄ appliator wagon respetively ab-strator wagon, or simply wagon.Example 51 I((�x:(�y:xy))z) = (z)[x℄[y℄(y)x. The wagons are (z), [x℄, [y℄ and (y).In de Bruijn's notation, the �-rule (�v:A)B !� A[v := B℄ beomes:(B)[v℄A !� [v := B℄ANote that the appliator wagon (B) and the abstrator wagon [v℄ our NEXT toeah other. Here is an example whih ompares �-redution in both the lassial andde Bruijn's notation. Wagons that have the same symbol on top, are mathed.Classial Notation De Bruijn's Notation( Æ�x :( +�y : ��z :zD) +C) ÆB) �A �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z#� #�(( +�y : ��z :zD) +C) �A �(A) +(C) +[y℄ �[z℄ (D)z#� #�( ��z :zD) �A �(A) �[z℄(D)z#� #�AD (D)AThe mathing redexes in de Bruijn's notation are easily seen in the Figure 3.The braketing struture in lassial notation of (( Æ�x :( +�y : ��z :zD) +C) ÆB) �A), isÆf1 +f2 �f3 +g2 Æg1 �g3, where fi and gi math. Whereas �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z has thesimpler braketing struture �fÆf Æg+f +g�g in de Bruijn's notation. An appliator (A) andan abstrator [v℄ are partners when they math like f and g. Non-partnered wagonsare bahelors. A sequene of wagons is alled a segment. A segment is well balanedwhen it ontains only partnered wagons. 21



Example 52 In �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ (D)z, the wagons (A), (B), [x℄, (C), [y℄, and [z℄are partnered and the wagon (D) is a bahelor. The segment �(A) Æ(B) Æ[x℄ +(C) +[y℄ �[z℄ iswell balaned.The �-alulus �a la de Bruijn has many advantages over the lassial �-alulus. Someof these advantages are summarised in [25℄. In what follows we mention some.A. Struture of terms Eah non-empty segment s has a unique partitioning intosub-segments s = s0s1 � � � sn suh that� For even i, the segment si is well balaned. For odd i, the segment si is abahelor segment, i.e., it ontains only bahelor main items.� All well balaned segments after s0 and all bahelor segments are non-empty.� If si = [v1℄ � � � [vm℄ (only abstrator wagons) and sj = (a1) � � � (ap) (only appli-ator wagons), then i < j, i.e., si preedes sj in s.Example 53 s � [x℄[y℄(A)[z℄[x0℄(B)(C)(D)[y0℄[z0℄(E), has the following partitioning:well-balaned segment s0 � ;, bahelor segment s1 � [x℄[y℄, well-balaned seg-ment s2 � (A)[z℄, bahelor segment s3 � [x0℄(B), well-balaned segment s4 �(C)(D)[y0℄[z0℄, bahelor segment s5 � (E).B. Generalised Redution Looking at Figure 3, one sees that either (A) an bemoved to the right to our next to its partner [z℄ or [z℄ an be moved to the left toappear next to (A). One an instead generalise �-redution so that the (extended)redex based on (A) and [z℄ is �red before the other redexes. All these steps happenvia rules like those listed in Figure 4. These rules have been studied by many re-searhers [24, 2, 17, 29, 30, 31, 44, 40, 48, 45, 50, 38℄. De Bruijn's notation makesit learer to desribe generalised redution as Figure 4 illustrates, where we assumeBarendregt's variable onventions (see page 15).C. Properties are easier to state in de Bruijn's notation We illustrate thispoint with the example of desribing the se-normal forms where the se-alulus is theredution system (�sop;!se) where !se is the least ompatible redution on �sopgenerated by the set of rules of Figures 1 and 2 exluding �-generation. Theorem 54gives the se-normal forms in lassial notation. Theorem 55 gives them in de Bruijn'snotation. These theorems are taken from [28℄.Theorem 54 A term A 2 �sop is an se-normal form i� one of the following holds:� A 2 V [ IN , i.e. A is a variable or a de Bruijn number.� A � BC, where B and C are se-normal forms.� A � �B, where B is an se-normal form.� A � B �jC, where C is an se-nf and B is an se-nf of the form X , or D�iE withj < i, or 'ikd with j � k.� A � 'ikB, where B is an se-nf of the form X , or C �jd with j > k + 1, or 'jlCwith k < l. 22



Name In Classial Notation In de Bruijn's Notation(( ��x : +C) �B) +A +(A) �(B) �[x℄+C(�) # #( ��x : +C+A) �B �(B) �[x℄ +(A)+C( +�x :�y:C) +B +(B) +[x℄ [y℄C() # #�y:( +�x :C) +B [y℄ +(B) +[x℄ C(( ��x : +�y :C) �B) +A +(A) �(B) �[x℄ +[y℄ C(g) # #( ��x :C[y := A℄) �B �(B) �[x℄ [y := A℄C(( +�x : ��y :C) +B) �A �(A) +(B) +[x℄ �[y℄ C(C) # #( ��y :( +�x :C) +B) �A �(A) �[y℄ +(B) +[x℄ CFigure 4: Generalised RedutionProof By analysing the struture of A.There is a simple way to desribe the se-nf's using de Bruijn's notation. First, notethat in de Bruijn's notation A�iB and 'ikA are written respetively as: (B �i)Aand ('ik)A. The parts (B �i) and ('ik) are alled �- and '-wagons respetively. Thesubterms B and A are the bodies of these respetive wagons.A normal �'-segment s is a sequene of �- and '-wagons suh that every pair ofadjaent wagons in s is of the form:('ik)('jl ) and k < l ('ik)(B �j) and k < j � 1(B �i)(C �j) and i < j (B �j)('ik) and j � kE.g., ('23)('14)('67)(B�9)(C�11)('211)('516) and (B�1)(C�3)(D�4)('25)('16)('47)(A�10)are normal �'-segments.Theorem 55 The se-nf's an be desribed by the following syntax:NF ::= V j IN j (NF )NF j [ ℄NF j sVwhere s is a normal �'-segment whose bodies belong to NF .3 Pure Type SystemsWe have seen so far the type free �-alulus. Types however, aid in writing orretand terminating programs. Another inuential role that types play is in their iden-ti�ations with propositions in the paradigm of propositions-as-types due to Curry,Howard and de Bruijn. Under this paradigm, the problem of proof heking an beredued to the problem of type heking in a programming language.23



There are two type disiplines: the impliit and the expliit. The impliit style,also known as typing �a la Curry, does not annotate variables with types. For example,the identity funtion is written as in the type-free ase, as �x:x. The type of termshowever is found using the typing rules of the system in use. The expliit style,also known as typing �a la Churh, does annotate variables and the identity funtionmay be written as �x : Bool:x to represent identity over booleans. In this paper,we onsider typing �a la Churh. We present what is known as Pure Type Systemsor PTSs. Important type systems that are PTSs inlude Churh's simply typed�-alulus [8℄ and the alulus of onstrutions [9℄ whih are also systems of theBarendregt ube [4℄. Berardi [5℄ and Terlouw [47℄ have independently generalisedthe method of generating type systems into the pure type systems framework. Thisgeneralisation has many advantages. First, it enables one to introdue eight logialsystems that are in lose orrespondene with the systems of the Barendregt ube.Those eight logial systems an eah be desribed as a PTS in suh a way that thepropositions-as-types interpretation obtains a anonial system form [4℄. Seond, thegeneral setting of the PTSs makes it easier to write various proofs about the systemsof the ube.In the following of the present paper we will briey review the lassial PTS withvariable names and those with de Bruijn indies, essentially to state their isomor-phism. This is a result of [27℄ to whih we refer for all omitted proofs.3.1 Classial Pure Type Systems with variable namesDe�nition 56 The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T ) j (�V : T :T ) j (�V : T :T ), where V is the in�nite set of variablesfx; y; z; : : :g and C a set of onstants over whih, ; 1; : : : range. We use A;B; : : : torange over T and v; v0; v00; : : : to range over V . Throughout, we take � 2 f�;�g.De�nition 57 (Free and Bound variables) The free and bound variables in termsare de�ned similarly to those of De�nition 15 with the exeption that FV () =defBV () =def ; and in the ase of abstration, FV (�v : A:B) =def (FV (B) n fvg) [FV (A) and BV (�v : A:B) =def BV (A) [ BV (B) [ fvg.We write A[x := B℄ to denote the term where all the free ourrenes of x in A havebeen replaed by B. Furthermore, we take terms to be equivalent up to variable re-naming. We assume moreover, the Barendregt variable onvention (already disussedon page 15) whih is formally stated as follows:Convention 58 (V C: Barendregt's Convention) Names of bound variables will al-ways be hosen suh that they di�er from the free ones in a term. Moreover, di�erent�'s have di�erent variables as subsript. Hene, we will not have (�x : A:x)x, but(�y : A:y)x instead.The de�nition of ompatibility of a redution relation for PTSs is that of the type-freealulus (given in De�nition 1) but where the ase of abstration is replaed by:(A1; A2) 2 R(�x : A1:B; �x : A2:B) 2 R (B1; B2) 2 R(�x : A:B1; �x : A:B2) 2 R24



De�nition 59 �-redution is the least ompatible relation on T generated by(�) (�x : A:B)C ! B[x := C℄Now, we de�ne some mahinery needed for typing:De�nition 601. A statement is of the form A : B with A;B 2 T . We all A is the subjet andB is the prediate of A : B.2. A delaration is of the form x : A with A 2 T and x 2 V .3. A pseudo-ontext is a �nite ordered sequene of delarations, all with distintsubjets. We use �;�;�0;�1;�2; : : : to range over pseudo-ontexts. The emptyontext is denoted by either <> or nothing at all.4. If � = x1 : A1: : : : :xn : An then �:x : B = x1 : A1: : : : :xn : An:x : B and dom(�) =fx1; : : : ; xng.De�nition 61 A type assignment relation is a relation between a pseudo-ontext andtwo pseudo-terms written as � ` A : B. The rules of type assignment establish whihjudgments � ` A : B an be derived. A judgement � ` A : B states that A : B anbe derived from the pseudo-ontext �.De�nition 62 Let � be a pseudo-ontext, A be a pseudo-term and ` be a typeassignment relation.1. � is alled legal if 9A;B 2 T suh that � ` A : B.2. A 2 T is alled a �-term if 9B 2 T suh that � ` A : B or � ` B : A.We take �-terms = fA 2 T suh that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is alled legal if 9� suh that A 2 �-terms.De�nition 63 The spei�ation of a PTS is a triple S = (S;A;R), where S is asubset of C, alled the sorts. A is a set of axioms of the form  : s with  2 C ands 2 S and R is a set of rules of the form (s1; s2; s3) with s1; s2; s3 2 S.De�nition 64 The notion of type derivation, denoted � `�S A : B (or simply � `A : B), in a PTS whose spei�ation is S = (S;A;R), is axiomatised by the axiomsand rules of Figure 5.Eah of the eight systems of the ube is obtained by taking S = f�;�g, A = f�;�g,and R to be a set of rules of the form (s1; s2; s2) for s1; s2 2 f�;�g. We de-note rules of the form (s1; s2; s2) by (s1; s2). This means that the only possible(s1; s2) rules in the set R (in the ase of the ube) are elements of the following set:f(�; �); (�;�); (�; �); (�;�)g. The basi system is the one where (s1; s2) = (�; �) isthe only possible hoie. All other systems have this version of the formation rules,plus one or more other ombinations of (�;�), (�; �) and (�;�) for (s1; s2). SeeFigures 6 and 7.Now, we list some of the properties of PTSs with variable names (see [4℄ for proofs).In Setion 3.2, we will establish these properties for PTSs with de Bruijn indies.25



(axioms) `  : s if  : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 �(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 �(produt) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appliation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstration) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 5: PTSs with variables names
�! (�; �)�2 (�; �) (�; �)�P (�; �) (�;�)�P2 (�; �) (�; �) (�;�)�! (�; �) (�;�)�! (�; �) (�; �) (�;�)�P! (�; �) (�;�) (�;�)�P! = �C (�; �) (�; �) (�;�) (�;�)Figure 6: Di�erent type formation ondition

26



t t
t t

-
-6 6t t

t t
-
-6 6

�����
�����

�����
�����

�!
�2

�P
�P2�! �P!

�! �C
Figure 7: The ubeLemma 65 let A;B 2 T . If A!� B then FV (B) � FV (A).Theorem 66 (The Churh Rosser Theorem for PTSs with variable names)If A!!� B and A!!� C then there exists D suh that B !!� D and C !!� D.Lemma 67 (Free variable lemma) Let � = x1 : A1; : : : ; xn : An suh that� ` B : C. The following hold (proof is by indution on the derivation � ` B : C):1. The x1; : : : ; xn are all distint.2. FV (B); FV (C) � fx1; : : : ; xng.3. FV (Ai) � fx1; : : : ; xi�1g for 1 � i � n.Theorem 68 (Subjet Redution SR, for PTSs with variable names)If � ` A : B and A!!� A0 then � ` A0 : B.3.2 Classial Pure Type Systems with de Bruijn indiesIn this setion, we will introdue pure type systems with de Bruijn indies and estab-lish the isomorphism between them and those with variable names. All this setionis taken from [27℄ where all the proofs an be found in detail.De�nition 69 We de�ne T , the set of pseudo-terms with de Bruijn indies, by thesyntax: T ::= IN j C j (T T ) j (�T:T ) j (�T:T ), where C is a set of onstants overwhih ; 1; : : : range. We use A;B; : : : to range over T and m;n; : : : to range over IN(positive natural numbers). Again, we take � 2 f�; �g.De�nition 70 The updating funtions U ik : T ! T for k � 0 and i � 1 are de�nedas in De�nition 41 for the ase of the type free �-alulus, but with the addition of alause for onstants and the replaement of the abstration rule as follows:U ik() �  for  2 C and U ik(�A:B) � �U ik(A):(U ik+1(B))De�nition 71 The meta-substitutions at level j , for j � 1 , of a term B 2 T in aterm A 2 T , denoted Affj Bgg , is de�ned indutively on A as in De�nition 42 forthe ase of the type free �-alulus, but with the addition of a lause for onstantsand the replaement of the abstration rule as follows:ffj Bgg �  for  2 C and (�A:C)ffj Bgg � �Affj Bgg):(Cffj+ 1 Bgg)27



De�nition 72 �-redution is the least ompatible redution on T generated by:(�) (�A:C)B !� Cff1 BggRemark that we use !� to denote both, �-redution on T and �-redution on T .The ontext will always be lear enough to determine the intended redution.We now de�ne the set of free variables of a term with de Bruijn indies. We writeN n k to mean fn� k : n 2 N;n > kg.De�nition 73 The set of free variables of a term with de Bruijn indies is de�nedby indution as follows:FV () =def � for  2 C FV (AB) =def FV (A) [ FV (B)FV (n) =def fng FV (�A:C) =def FV (A) [ (FV (C) n 1) for � 2 f�;�gThe following lemma on T orresponds to Lemma 65 on T .Lemma 74 Let A;B 2 T . If A!� B then FV (B) � FV (A).De�nition 60 for PTSs with variable names hanges when de Bruijn indies areused as follows:A (de Bruijn) pseudo-ontext � beomes a �nite ordered sequene of de Bruijnterms. We write it simply as � = A1; : : : ; An. Statements, subjet and prediateremain unhanged, and delarations disappear.De�nitions 61, 62 and 63 are the same for de Bruijn indies (exept that T hangesto T ). Now, we an give the de�nition of PTSs using de Bruijn indies:De�nition 75 The notion of type derivation, denoted � `�S A : B (or simply � `A : B), in a PTS whose spei�ation is S = (S;A;R), is axiomatised by the axiomsand rules of Figure 8.Remark that in the rules (start), (weakening), (produt), (abstration) the positionof A with respet to � is reversed with respet to its position in the orrespondingrules of the lassial setting. However, we have hosen this presentation following thetradition of type systems in de Bruijn notation (f. [1, 41℄).Remark also the role played by the updating U20 in the rules (start), (weaken-ing). This funtion inreases with 1 the de Bruijn indies whih orrespond to freevariables and its ourrene in these two rules is reasonable sine the orrespondingenvironments have been augmented by the addition of a new omponent. For ex-ample, � ` 1 : �. Hene, 1; � ` 1 : 2. Moreover, 1; � ` 1 : 2 and � ` 1 : �, hene�; 1; � ` 2 = U20 (1) : 3 = U20 (2).The following lemma (f. [27℄) is the equivalent for de Bruijn indies, of Lemma 67.Lemma 76 Let A1; : : : ; An ` B : C then FV (B); FV (C) � f1; : : : ; ng and, for0 � i � n� 1, FV (An�i) � f1; : : : ; ig.In the rest of this paper, we present the isomorphism between PTSs written usingvariable names and PTSs written using de Bruijn indies. The method is as follows:28



(axioms) `  : s if  : s 2 A(start) � ` A : sA;� ` 1 : U20 (A)(weakening) � ` B : C � ` A : sA;� ` U20 (B) : U20 (C)(produt) � ` A : s1 A;� ` B : s2� ` (�A:B) : s3 if (s1; s2; s3) 2 R(appliation) � ` F : (�A:B) � ` C : A� ` F C : Bff1 Cgg(abstration) A;� ` C : B � ` (�A:B) : s� ` (�A:C) : (�A:B)(onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 8: PTSs with de Bruijn indies1. We translate eah term A and eah environment � written using variable names,into a term t1(A) and an environment t(�) written with de Bruijn indies. Wethen prove that these translations preserve �-redution (if in T , A !� B thenin T , t1(A) !� t1(B)) and type assignment (if in T , � ` A : B then in T ,t(�) ` t1(A) : t1(B)).2. We de�ne translations u1 and u in the other sense and also prove preservationof �-redution and type assignment.3. We prove that these translations are inverses of eah other.In the rest of this paper, [x1; : : : ; xn℄ stands for the ordered list of x1; : : : ; xn.3.2.1 Translating T to TDe�nition 77 (The translation t) For every term A 2 T suh that FV (A) �fx1; : : : ; xng we de�ne t[x1;:::;xn℄(A) by indution on A as follows:t[x1;:::;xn℄() =def  for  2 Ct[x1;:::;xn℄(vi) =def minfj suh that vi = xjgt[x1;:::;xn℄(AB) =def t[x1;:::;xn℄(A)t[x1;:::;xn℄(B)t[x1;:::;xn℄(�x : B:A) =def �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(A) for � 2 f�; �g29



Let � = x1 : A1; : : : ; xn : An be a legal ontext. We de�ne:t(�) =def t[xn�1;:::;x1℄(An); t[xn�2;:::;x1℄(An�1); : : : ; t[x1℄(A2); t[ ℄(A1).Remark that De�nition 77 is a good de�nition thanks to Lemma 67.Lemma 78 Let A;B 2 T suh that FV (A) � fx1; : : : xng and A!� B.Then t[x1;:::;xn℄(A)!� t[x1;:::;xn℄(B).Theorem 79 Let � = x1 : A1; : : : ; xn : An suh that � ` A : B.Then t(�) ` t[xn;:::;x1℄(A) : t[xn;:::;x1℄(B).3.2.2 Translating T to TDe�nition 80 (The translation u) Let A 2 T suh that FV (A) � f1; : : : ; ng andlet x1; : : : ; xn be distint variables of V . We de�ne u[xn;:::;x1℄(A) by indution on A:u[xn;:::;x1℄() =def  for  2 C u[xn;:::;x1℄(i) =def xiu[xn;:::;x1℄(AB) =def u[xn;:::;x1℄(A)u[xn;:::;x1℄(B)u[xn;:::;x1℄(�B:A) =def �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(A) with x 62 fx1; : : : ; xngRemark that De�nition 80 is orret sine FV (�B:A)�f1; : : : ; ng implies FV (A) �f1; : : : ; n+1g. Furthermore, [27℄ proves that the de�nition for abstrations and prod-uts does not depend on the hoie of the variable x.De�nition 81 Let � = A1; : : : ; An be a legal ontext. We de�ne:u(�) = v1 : u[ ℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)De�nition 81 is orret thanks to Lemma 76.Lemma 82 Let A;B 2 T suh that FV (A) � f1; : : : ng and A!� B.Then u[xn;:::;x1℄(A)!� u[xn;:::;x1℄(B).Theorem 83 Let � = A1; : : : ; An suh that � ` A : B.Then u(�) ` u[v1;:::;vn℄(A) : u[v1;:::;vn℄(B).3.2.3 t and u are inversesWe need to hek that in some sense t Æ u = Id and u Æ t = Id. We begin by studyingt Æ u, whih as expeted is exatly the identity. We prove �rst the following lemma:Lemma 84 Let A 2 T suh that FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distintvariables. Then t[x1;:::;xn℄(u[xn;:::;x1℄(A)) � A.Proposition 85 Let � = A1; : : : ; An suh that � ` A : B. Then the derivations� ` A : B and t(u(�)) ` t[vn;:::;v1℄(u[v1;:::;vn℄(A)) : t[vn;:::;v1℄(u[v1;:::;vn℄(B)) are exatlythe same.We study now u Æ t. We annot expet to have exatly the identity now, sinewhen we translate de Bruijn derivations we hoose the variables in the delarationsof the ontext in a determined way: v1, v2, et. Therefore we are going to end upwith a derivation whih di�ers from the original one in the hoie of these variables.We say that these derivations are equivalent and this notion of equivalene is de�nedpreisely as follows: 30



De�nition 86 For any ontext � and any term A 2 T we de�ne ��:A, for � 2 f�; �gby indution on the length of the ontext as follows:� <> :A =def A and �(�; x : B):A =def ��:�x : B:AWe say that the derivations � ` A : B and �0 ` A0 : B0 are equivalent when��:A � ��0:A0 and ��:B � ��0:B0.Lemma 87 Let A 2 T suh that FV (A) � fx1; : : : ; xng and x1; : : : ; xn are distintvariables. Then u[xn;:::;x1℄(t[x1;:::;xn℄(A)) � A.Proposition 88 Let � = x1 : A1; : : : ; xn : An and A; B 2 T . The derivations� ` A : B and u(t(�)) ` u[v1;:::;vn℄(t[xn;:::;x1℄(A)) : u[v1;:::;vn℄(t[xn;:::;x1℄(B)) are equiva-lent in the sense of De�nition 86.With the above isomorphism, we an now establish Theorems 66 and 68 for PTSswith de Bruijn indies.Theorem 89 (The Churh Rosser Theorem for PTSs with de Bruijn indies)In T , if A!!� B and A!!� C then there exists D suh that B !!� D and C !!� D.Proof Assume FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distint variables of V .By Lemma 82, u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(B) and u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(C).Hene, by Theorem 66, 9D suh that u[xn;:::;x1℄(B) !!� D and u[xn;:::;x1℄(C) !!� D. Note that FV (u[xn;:::;x1℄(�)) � fx1; : : : ; xng for � 2 fB;Cg and hene byLemma 78 we get t[x1;:::;xn℄(u[xn;:::;x1℄(�)) !!� t[x1;:::;xn℄(D) for � 2 fB;Cg. Then,Lemma 74 sorts out the free variable ondition for Lemma 84, and the latter gives�!!� t[x1;:::;xn℄(D) for � 2 fB;Cg.Theorem 90 (Subjet Redution SR, for PTSs with de Bruijn indies)In T , if � ` A : B and A!!� A0 then � ` A0 : B.Proof First, we use Theorem 83 and Lemma 82 to obtain the onditions of Theo-rem 68 in T . Then, we use Theorem 79 and Proposition 85 to obtain SR in T .AknowledgementsWithout the thorough reading and editing of Mariangiola Dezani, this review wouldnot have been what it is now. I am extremely grateful for her work on this artileand for her exellent reommendations. I am also very grateful for Joe Wells for hisextensive and invaluable ontributions to Setion 1 of this review. The inuene ofthe work of Henk Barendregt, N.G. de Bruijn and Jan Willem Klop is evident in thisreview; their high standards and deent and warm personalities make this shool ofthought a very hallenging and enjoyable plae. I would like to warmly thank RobNederpelt and Alejandro R��os for the valuable ollaboration I've had with them. Thisollaboration is evident in this review. This work was partially supported by EPSRCgrant numbers GR/L36963 and GR/L15685.
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