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1.1.1 Ontology, concepts, predicates, properties and setsAccording to Quine in [Quine 1969], page 1, \the notion of a class is such that there issupposed to be, to the various things of which that sentence is true, a further thing which isthe class having each of those things and no others as member." As an example we take thesentence being an x such that the colour of x is red. We have in our universe various thingsof which this sentence is true; but perhaps we can also say that the class of all those thingswhich are red also exists in our universe. I say perhaps because it will be shown shortlythat if we let any open sentence determine an object which is the class of all those things ofwhich the sentence is true, we run into di�culties. To see this clearly it is important that thereader bear in mind the following four notions: the Comprehension Principle, Quanti�cation,Interpretation and Russell's Paradox. I shall comment here on how each such notion is to beunderstood in the present context.The Comprehension Principle This is the principle which decides which open sentencein our theory determines a class (or set) of precisely those entities that satisfy it.Quanti�cation Take a class which stands for an open sentence (i.e. the class of all thoseobjects which when substituted for the free variables in the open sentence returns true). Doesthis class act exactly like any other object in our universe? If so, should we be able to quantifyover it?Interpretation Should we keep to a full classical interpretation or use a non-classicalone? If we keep to a full classical interpretation, and assume that the comprehension principleapplies to each open sentence and that we have full quanti�cation, we will fall foul of Russell'sparadox.1Russell's paradox The paradox derives from assumptions similar to the following: LetS be the set of all sets that do not contain themselves. Such an assumption is contradictoryfor we can deduce from it that S is in S i� S is not in S.The important point to concentrate on is how these four notions interact, and in particularto note that an assumption of full comprehension (i.e. every open sentence determines a class)and of full quanti�cation (i.e every class acts exactly like any object and can be quanti�edover) will, under some interpretations, lead to Russell's paradox. This point will be presentedin more detail in the following section. We will now describe the four main conceptions ofuniversals, all of which will have to face up to this sort of problem.1. Realistic conception (Platonism) Platonists take concepts to be real properties.That is, concepts are language/observer independent entities. Platonists also subscribeto an unrestricted (or full) comprehension principle, i.e. to each well de�ned condition,there exists a set (or class) of all entities satisfying the condition. Moreover, this setis an entity in its own right and can be quanti�ed over. According to this conception,interpretation is much more important than language and therefore it seems obligatoryto use the referential (and not the substitutional) interpretation where a substitutionalinterpretation of the quanti�ers [[ ]]S;g involves truth clauses of the following kind:[[9x�]]S;g is true , for some name a in the language, [[�[a=x]]]S;g is true.[[8x�]]S;g is true , for every name a in the language, [[�[a=x]]]S;g is true.By contrast, Referential interpretation [[]]R;g treats quanti�ers as follows:[[9x�]]R;g is true , for some object a in the model, [[�[a=x]]]R;g is true.[[8x�]]R;g is true , for every object a in the model, [[�[a=x]]]R;g is true.1It should be noted that the paradox occurs even in intuitionistic theories.2



2. Formalist conception (Nominalism) Formalists, of whom Hilbert was the father,insist on the paramount importance of language. Hilbert's program, as it is well known,consisted of separating signs and meaning and only allowing �nitary arguments in theproof theory. Had the program worked, it would have made it easy to prove things aboutthe theory inside the theory itself. G�odel's result made apparent the impossibility ofcarrying out this aim | and as has been said by Quine ([Quine 1969]): \G�odel's proofis beyond doubt, we can philosophise about it but we can not philosophise it away". Ac-cording to the formalists, concepts are predicate expressions which do not exist beyondour linguistic expressions. Open sentences are excluded from standing for concepts,and furthermore the comprehension principle is restricted. As language is the mostimportant thing for them, interpretation is secondary. Thus it seems that the obvioussemantics should be based on a substitutional interpretation.3. Conceptualism Borrowing a sentence from Fraenkel (at the end of [Fraenkel 1973],page 336): Conceptualists are \attracted neither by the luscious jungle ora of platon-ism nor by the ascetic desert landscape of neo-nominalism". Concepts here are neitherpredicate expressions nor real properties. They are not objects but unsaturated entities,the saturation of which results in a mental act and not necessarily a truth value. Someconceptualists are constructive and construct only those sets that correspond to predica-tive conditions; some others accept an unrestricted comprehension principle. Howeverall of them care for interpretation, and in a semantics for a conceptualistic theory oneshould consider a referential interpretation where the meaning of a concept applied toan object does not necessarily have to be a truth value.4. Fregean conception It might be said that Frege is both a realist and a conceptualistbut; he is anti-formalist and tends to lean towards conceptualism. The ontology assumedby Frege of concepts was that they are functions of one argument whose values arealways truth-values. Concepts, according to him, are unsaturated, and the behaviour ofa concept is predicative even if something is being asserted about it. The unsaturationof a concept comes from the fact that concepts can never themselves be objects and onlyby applying the concept to an object can we obtain a saturated element (an object whichis a truth-value). Assertions that are made about concepts do not apply to objects: forexample, existence is a property of concepts and not of objects. However, the way weattach properties to concepts consists in predicating the property not of the conceptbut of the concept-correlate. This concept-correlate is the extension of the concept,according to Frege, and is an object. We said that concepts here are functions: thusthe graphs of functions are objects even though functions themselves are not. This isexactly the case with concepts and their extensions. The extensions are objects butthe concepts themselves are not. The extension of a concept does not fully determinethe concept, for we can have two extensions which are the same while the conceptsthemselves are not. Frege always warned against confusing a concept with its extensionand de�ned sets and classes to be the extensions of the concepts, not the conceptsthemselves: \sets and classes are objects whereas concepts are anything but objects".Something falls under a concept and the grammatical predicate stands for this concept.A name of an object is incapable of being used as a grammatical predicate. For Frege,the saturation of a concept results in a truth-value and according to him each opensentence denotes a class. Those classes are objects and can be quanti�ed over. Being3



an anti-formalist he insisted on interpretation, but as is well known he paid a high pricefor these relaxed conditions: his theory, known as the naive theory, was found to besubject to Russell's paradox, since the concept the set of all those things that do notbelong to themselves has an extension K which is a proper object. Thus his theory iscontradictory.To avoid inconsistency, some people restricted their comprehension principle but stillallowed unlimited quanti�cation; others restricted both quanti�cation and comprehension.Let us here examine in detail how the Russell paradox can threaten theories of nominalisation;and then we shall meet some solutions to the problem.1.1.2 A language of nominalisationIf we are going to assume a �rst order language of nominalisation and we are going to let anyopen well-formed formula stand for a concept, then we might fall into the paradox. This isshown as follows: take a �rst order calculus and add to it a new primitive relation 2 and theaxiom:Comprehension For each open well-formed formula �, 9y8x[(x 2 y) , �(x)] where y isnot free in �(x).This theory is obviously inconsistent, for take �(x) to be :(x 2 x). Then we get:9y8x[(x 2 y), :(x 2 x)] =) 8x[(x 2 y), :(x 2 x)] =) [(y 2 y), :(y 2 y)].In this theory of nominalisation, we assumed that each open well-formed expression deter-mines a concept whose extension exists and is the set of all those elements which satisfy theconcept. We could restrict our comprehension principle so that �(x) stands for everythingexcept :(x 2 x), but this will not save us from paradox. To see this let �(x) stand for:(x 22 x) where (x 22 y) abbreviates (9z)((x 2 z)^ (z 2 y)). Again, ruling out this instanceis not enough for we will still get the paradox if we take �(x) to be :(x 23 y). This processcontinues ad in�nitum. We could rule out all such instances |but the problem will persist,for take a sentence �(x) like: :(9z1; z2; : : :)[: : : (z3 2 z2) ^ (z2 2 z1) ^ (z1 2 x)] and let y bethe class obtained from the comprehension axiom for �(x).� If (y 2 y) then :(9z1; z2; :::)[::: 2 z2) ^ (z2 2 z1) ^ (z1 2 y)]. But we can take z1 = z2 =::: = y, and get a contradiction.� If :(y 2 y) then (9z1; z2; :::) [::: 2 z2)^ (z2 2 z1)^ (z1 2 y)]. But as (z1 2 y) then �(y);however we have that :�(y). Contradiction.We have assumed above a �rst order language of nominalisation but we do not take astandpoint on whether we need higher order languages.2 We shall hence show that we alsoface the problem with higher order languages. For this I shall use a second order theory dueto Cocchiarella's formulation of second order logic with nominalised predicates which appearsin [Cocchiarella 1984]. This language essentially embodies Frege's conceptions of conceptsand objects summarised above, according to which we need to quantify over our predicates.2We will however, remark en passant that it seems we do not need to go higher than second order languagesfor the semantics of nominalisation. In fact, according to Frege's conception, we stop at second level concepts,but these can be mapped into �rst order concepts which in turn can be mapped into objects. So when wecome to quantify over properties, we really quantify over their extensions which are objects.4



Moreover, predicate quanti�ers have a referential signi�cance, even though predicates them-selves are not singular terms. I shall start by writing down the axioms and rules of a secondorder language which will accommodate nominalised predicates. If this language is to allowus to talk about nominalisation, it should have a device which can turn any open w� (wellformed formula) or predicate into a singular term. For example, we should turn run into torun, the sun is grey into that the sun is grey and so on. Clauses (1), (8) and (9) below willsee to this.The typing of the language is as follows:0 represents the type of all singular terms,1 represents the type of propositions,n+1 represents the type of n-place predicates, for n > 0.For each n > 0 assume the existence of denumerably many variables. I shall use thefollowing metavariables:x; y; : : : refer to individual variablesu; : : : refer to both individual and predicate variablesFn; Gn : : : refer to n-place predicate variables. We can get rid of the subscript when noconfusion occursx; y; z; w; : : : refer to individual variables.a; b; : : : refer to singular terms.The primitive symbols of the language are: );:;=;8; �. The others are de�ned in themetalanguage. The meaningful expressions of any type n, MEn are de�ned recursively as:1. Every individual variable (or constant) is inME0 and every n-place predicate is in bothME0 and MEn+1, for n > 0.2. For a; b in ME0, (a = b) is in ME1.3. If � is in MEn+1, and a1; : : : ; an are in ME0 then �(a1; : : : ; an) is in ME1.4. If � is inME1 and x1; ::; xn are pairwise distinct variables, where n � 1, then [�x1; : : : ; xnF ]is in MEn+1.5. If � in ME1 then :� is in ME1.6. If �;	 are in ME1 then (�) 	) is in ME1.7. If � is in ME1, u is an individual or a predicate variable then 8u� is in ME1.8. If � is in ME1 then [��] is in ME0.9. For all n > 1, MEn is included in ME0. (9 does not follow from 1.)Axioms:� (A0*) All tautologous (classical) well formed formulae.� (A1*) 8u(�) 	)) (8u�) 8u	), for u an individual or a predicate variable.� (A2*) �) 8u� , for u an individual or a predicate variable not free in �.� (A3*) 9x(a = x), for a singular term in which x is not free.5



� (�*) (a = b)) (�, 	) where a, b are singular terms and 	 comes from � by replacingone or more free occurrences of b by free occurrences of a.� (CP*) 9Fn8x1; ::; xn[Fn(x1; ::; xn), �] where Fn does not occur free in � and x1; ::; xnare distinct individual variables.� (�-CONV*) [�x1; : : : ; xn�](a1; : : : ; an), �(a1=x1; : : : ; an=xn) where a1; : : : ; an are sin-gular terms and each ai is free for xi in �.� (ID �*) [�x1; : : : ; xnR(x1; ::; xn)] = R for R an n-place predicate variable or constant.Inference Rules: The two inference rules are MP and UG, where� MP is: infer from �) 	 and � that 	.� UG is: infer from � that 8u� where u is an individual or a predicate variable.The system (just described) is subject to Russell's paradox, for take the special instanceof (CP*): 9F8x[F (x), 9G[x = G^:G(x)]]. The presence however of (CP*) is necessary forsecond-order logics with nominalised predicates and the problem comes from (CP*) togetherwith (A3*) under various logical laws.From our above discussion, it seems that set theory is very basic to nominalisation. Letus hence, comment on the ontological status of sets and on the nature of Russell's paradox,as the solutions depend on both issues.1.1.3 The ontological status of setsThere are two main views of sets: the mathematical conception of set and the logical concep-tion. According to the mathematical conception, a set is determined by the elements thatbelong to it. E.g. f1,2,3g is the set of the numbers 1, 2 and 3. The logical conception, onthe other hand, regards sets as existing according to their de�ning concepts, and not theirconstituent objects; so here f1,2,3g might be the set of positive integers less than 4. Frege'sconception of set was a logical one, and is known in the literature as the naive conception ofset. According to this view, any predicate has an extension and sets are extensions of pred-icates. However, under the classical laws of logic and especially the law of excluded middle(LEM) and non-free logic (where not necessarily each element denotes), this notion of set issubject to Russell's paradox. However, the paradox holds even in minimal logic and othernon-classical logics, e.g. we can derive the paradox without the use of LEM which means thatthe paradox is intuitionistically derivable. I shall illustrate the occurrence of the paradox byassuming both LEM and that every predicate has an extension. Now, if one chooses P (x) tobe :(x 2 x), then fx : :(x 2 x)g is an r to which LEM applies. So we have either (r 2 r) or:(r 2 r). In both cases we get a contradiction.After Frege's naive set theory was shown to be inconsistent, set theorists were anxiousto solve the problem, and many directions were followed to overcome the paradox. Fregehimself had something to say about the paradox. He stated that if one abandoned the naiveconception and the use of full comprehension, it would not be obvious how to de�ne numbers(see [Frege 1970], Frege on Russell's paradox). This follows because the essential de�nition ofnumbers in Frege's theory was based on the existence of extensions of concepts | thus theparadox shook Frege's whole theory. Frege suggested that the solution lay in either banishing6



LEM for classes, or forbiding some concepts from having extensions. He was not satis�ed withthe �rst solution because he wanted classes to be full objects - and full objects obey LEM.If classes are to be considered as improper objects then this will create an in�nite numberof types in the theory, for we are going to have functions that apply to proper, improper ormixed arguments. Frege was not in favour of that solution, and preferred to acknowledge theexistence of concepts that have no extensions. This would a�ect axiom (V) and in particular(Vb) where (V) and (Vb) are as follows:(V) z0f(z) = z0g(z)() 8x(f(x), g(x)), where z0f(z) is the extension of f(Vb) z0f(z) = z0g(z) =) 8x(f(x), g(x)).This axiom states that if two concepts are equal in extension then whatever falls underone falls under the other (see [Frege 1970], pages 214-224 ). Frege made only general remarksabout the inconsistency and did not pin down what caused the problem. He sometimes feltthe problem lay in (Vb) and at other times thought that the assumption of the existence ofan extension to each concept was to blame. However, (Va) the opposite direction of (Vb),is acceptable as it takes us from equality that holds in general to an equality that holds ofgraphs (or extensions). But according to Frege (in [Frege 1970] page 219), \We cannot ingeneral take the words `the function �(c) has the same graph as the function 	(c)' to meanthe same thing as the words `the functions �(c) and 	(c) always have the same value for thesame argument'; and we must take into account the possibility that there are concepts withno extension (: : :)". This is true; however, Frege did not realise that his domain of conceptswas far too big. Concepts are propositional functions but according to Frege's conception,there are far more propositions than there should be. For each object a, {a (the content ofa) is a proposition even though a was not. Thus Frege has far too many concepts and someparadoxical sentences stand for concepts when they should not do. Accordingly, a way ofruling out the paradox might be to restrict the number of concepts. Let us look again atthe paradoxical sentence: the set of all things that do not belong to themselves. Under therestriction strategy, we cannot tell whether this sentence stands for a concept or not, as wedo not know if this is a propositional function or not so we cannot think of its extension. Wecould say that there were two ways of reformulating set theory. One is to abandon Frege'sde�nition of set and use the mathematical notion instead. The second is to keep to thelogical de�nition of set and try to make it consistent. To conclude this section, it is worthdrawing attention to the role self reference plays in these set theoretic paradoxes. Paradoxesinvolving self reference are well known in the literature, and are of two kinds: logical andsemantical paradoxes. Russell's paradox has been classi�ed under the logical category, ashave the barber's paradox and Cantor's paradox. Of the semantical paradoxes, we mentionthe Grelling's 3 and The liar's paradoxes.1.2 The problem of the existence of modelsThe theory discussed in 1.1 is inconsistent, so it does not have models. But even in the caseof a theory whose consistency we are sure of, we still sometimes cannot imagine what themodels look like. This section describes what a model of nominalisation should be, and whatthe di�culties of constructing such models are.3Some adjectives possess the proeprty that they denote (e.g. English, Polysyllabic) and some do not (e.g.French). Call the second type heterological; then heterological is heterological i� heterological is not heterological.Another example of this paradox is: A concept is predicable if it can be predicated of itself, otherwise it isimpredicable. Hence impredicable is impredicable i� impredicable is not impredicable.7



1.2.1 What a model should look likeA model of nominalisation will be roughly as follows: M = (U;P; f) where U is the domain ofobjects, P is the domain of functions from U into f0; 1g and f is the nominalisation functionwhich is needed for nominalisation as predicates should be turned to objects in order thatthey can be applied to themselves. f is a function from P into U which should be injective.This implies that P is a subset of U up to an isomorphism. Let me describe in more detailwhat this means. In trying to build our semantic function which maps each syntactic entityinto a semantic one, we should do the following:(1) Map individual variables and singular terms into objects in U .(2) Map the predicates into P , the domain of the �rst order properties. The nominaliseditems are singular terms and they are mapped into U . The function f acts as a nominalisationfunction, assigning to each element p of P , an element in U called the correlate of p. Thiscorrelate is the denotation of the nominalised item that corresponds to the predicate.f : P �! f(P ) is an isomorphism because:� f is well de�ned: We assume that each property has a single correlate.� f is injective: We assume that each two distinct properties in P have distinct correlatesin f(P ).� f is surjective: Because every element in f(P ) corresponds to an element in P .So in constructing a model of nominalisation, we should construct three domains suchas U;P and f(P ) satisfying the condition that P (or f(P )) is a subset of U . According toCantor's diagonal theorem, we cannot take P to be the set of all functions from U to f0; 1g.We have to restrict P , but we should not restrict it too much, for we would like to obtain thenominal of all the desired items.1.2.2 Di�culties with such modelsCantor's Theorem will pose a di�culty to any theory which aims to make functions play therole of objects. According to Cantor's theorem which states that if S is any set, then thepower set of S has a greater cardinality than S, the cardinality of a function space is biggerthan the cardinality of the domain itself.1.2.3 Existence of modelsThe above shows that we are going to have problems constructing models of nominalisation|recall that we previously wanted P to be a subset of U , but by Cantor's theorem thecardinality of P is greater than that of U . In essence, we need to �nd ways of restrictingP without either lapsing into triviality or running foul of Cantor's theorem. That is, weare looking for interesting restrictions |restrictions which leave us with enough functions fornominalisation. We must break the ties created by the old tradition and build somewhat moreoriginal models. We shall in the following paragraph talk about di�erent ways of proving theexistence of non-trivial models which are not susceptible to Cantor's argument. Those modelswill contain denotations for all nominalised items. Scott models and Frege structures bothpossess this property; but as we shall see, the former have a di�culty regarding quanti�cation,while the latter do not. Non well founded sets on the other hand are a third kind of modelthat should be looked at from a di�erent angle.8



2 The di�erent solutions to the theoretical problemWe said that the theoretical problem is mainly a problem of set theory and of predicationtheory. The following is a summary of various set theories and their application to thedevelopment of theories of nominalisation.2.1 Notes on set theory2.1.1 Altering the languageSince Russell's letter to Frege, concerning the inconsistency of Frege's system, there havebeen many attempts at overcoming the paradox. The �rst two accounts of avoiding theparadox by restricting the language were due to Russell and Poincar�e. They both disallowedimpredicative speci�cation: only predicative speci�cation (as will be de�ned below) was to bepermitted. Russell's own solution (in [Russell 1908]) was to adopt the vicious circle principlewhich can be roughly stated as follows: \No entity determined by a condition that refers toa certain totality should belong to this totality". Poincar�e (in [Poincar�e 1900]) took refuge inbanning \les d�e�nitions non pr�edicatives" which were taken by him to be: De�nitions by arelation between the object to be de�ned and all individuals of a kind of which either the objectitself to be de�ned is supposed to be a part or other things that cannot be themselves de�nedexcept by the object to be de�ned. So both Russell and Poincar�e required only predicative setsto be considered, where A = fx : �(x)g is predicative i� � contains no variable which cantake A as a value. This helps because it is otherwise very easy to get a vicious circle fallacy ifwe let the arguments of a certain propositional function (or the elements of a set) presupposethe function (or the set) itself. Russell's and Poincar�e's solution was to use predicativecomprehension, instances of which start with individuals, then generate sets, then new setsand so on as in the following example: Take 0 at level 0; f0; f0gg at level 1; f0; ff0gg; f0; f0gggat level 2 and so on. Russell's simple theory of types in Principia Mathematica applied thevicious circle principle, assuming all the elements of the set before constructing it. This theoryobviously overcomes the paradox for the sentence � denoting :(y 2 y) is not strati�ed. Letus recall that the concept of strati�cation for it is going to form an important step in ourdiscussion and assessment of our theory in terms of the others. There are two types ofstrati�cation: homogeneous strati�cation and heterogeneous one. A well formed formula � issaid to be heterogeneously strati�ed if there is a function f from the variables and constantsof � to the natural numbers such that for each atomic well formed formula F (x1; :::; xn) of�; f(F ) = 1+max[f(xi)]. � is said to be homogeneously strati�ed if the function f is furtherrestricted so that f(xi) = f(xj) for 0 � i; j � n.This approach (of Russell and Poincar�e) is rather unsatisfactory from the point of viewof nominalisation, for the following reasons:1. We need formulas which are not strati�ed (i.e. where we have impredicativity), such asthe sentence it is nice to be nice. In fact sentences that involve self application or selfreference are not there because they are not strati�ed. However self application and selfreference are fundamental to nominalisation.2. A class can have members only of uniform type. Also, sets here can neither belong tothemselves, nor contain other sets from the same level. Hence again no self reference.9



3. Also most of our structures get reproduced at each level. For instance, universal classes,numbers and Boolean algebras. There is however, another approach which falls underthis category, that of Cocchiarella's �HST* in [Cocchiarella 1986]. �HST* uses homoge-neous strati�cation where the paradox is avoided by disallowing problematic �-abstractsfrom being well-formed. �HST* however, allows for formulas such as Nice(Nice) to beexpressed and to be provable. This approach though, is rather di�erent from that ofRussell's type theory. Predicates are not typed in this system as part of the objectlanguage the way they are in Russell's type theory.2.1.2 Altering the axioms� Iterative sets We can avoid the paradox by altering not the language but the axioms ofthe theory. The most straightforward such theory is ZF (Zermelo-Fraenkel) where theaxioms are made to �t the limitation of size doctrine; that is, sets are not allowed toget too big too quickly. Take the system of �rst order logic provided in 1.1, and altercomprehension to the following axiom which is known as the separation axiom:For each open well formed formula �;9x8y[(y 2 x) , (y 2 z) ^ �] where x does notoccur in �.It is exactly this new axiom which is responsible for the elimination of the paradoxes.Take Russell's paradox: to prove the existence of fx : :(x 2 x)g we need a z big enoughso that fx : :(x 2 x)g is included in z. But we cannot show the existence of such a z.More precisely Russell's paradox is restricted in ZF as follows:Take �(z) to be :(z 2 z),take x = fy : (y 2 z) ^ :(y 2 y)g{ If (x 2 x) =) (x 2 z) and :(x 2 x) contradiction,{ If :(x 2 x) =)� if (x 2 z) =) (x 2 x) contradiction,� if:(x 2 z) then we are �ne.So the limitation of size doctrine exempli�ed by the above axiom is how we avoid theparadox. Note however that we still have sets which belong to themselves, for if wetake �(x) to be x 2 x then 9z8x[(x 2 z) , (x 2 � ^ x 2 x)], yet those sets have tobelong to some already existing sets. Throughout the development of ZF, it was feltthat the following foundation axiom (which is independent of and consistent with allother axioms of ZF) has to be added:(FA) (9x)(x 2 a)) (9x 2 a)(8y 2 x):(y 2 a)As a corollary of (FA), we have that there is no set a which has itself as its only element,for if there was then take x = a in (FA) above and you get (9x 2 a)(8y 2 x):(y 2 a),which is absurd. In fact, it is easy to prove the following corollaries of (FA):1. No solution for a = f: : : fag : : :g exists, where f: : : fn times for n > 0.2. No solution for a = fa; bg; b 6= a exists.3. No solution for a = fb; fagg exists.10



4. No solution for a = ffbg; fa; bgg (i.e. a = (b; a)) exists.5. No solution for a 2i a for i � 1, where x 2i y , (9z1; : : : ; zi�1)(x 2 zi�1 2 : : : 2z1 2 y).It is worth pointing out that although very di�erent conceptually, both the simpletheory of types and ZF which of course includes (FA), give rise to an iterative conceptof set. That is, both require the elements of a set be present before a new set can beconstructed [Boolos 1971]. This implies that ZF is not adequate for nominalisation.� 2 non iterative sets, NF and ML ZF is not the only axiomatic approach aimed atrestricting the paradoxes. In NF (New Foundations), Quine restricts the axiom ofcomprehension of 1.1.2, to obtain the following:(SCP) 9x8y[(y 2 x), �(y)] where x is not free in �(y) and �(y) is strati�ed.Thus it applies only to strati�ed formulae and now the only concepts that are allowedto have extensions are the concepts that correspond to these strati�ed formulae. In ZF,we did not have a universal set whereas in NF we do, for take x = x, this is a strati�edformula and hence NF can have nominalisation. Moreover, NF has only one universalset, one complement of each set, and one null set. Furthermore, Cantor's theorem doesnot hold in NF (the universal set is equinumerous to its power set). However, NF isweak for mathematical induction and the axiom of choice is not compatible with NF.We cannot prove Peano's axiom [s(n) = s(m) ) n = m] in it, unless we assume theexistence of a class with m+1 elements. Also, NF is said to lack motivation because itsaxiom of comprehension is justi�ed only on technical grounds and one's mental image ofset theory does not lead to such an axiom. To overcome some of the di�culties, Quineadopted similar measures to B-G (Bernays-G�odel) set theory. Like B-G, ML containsa bifurcation of classes into elements and non-elements. Sets can enjoy the propertyof being full objects whereas classes cannot. ML was obtained from NF by replacing(SCP) by two axioms, one for class existence and one for elementhood. The rule of classexistence provides for the existence of the classes of all elements satisfying any condition�, strati�ed or not. The rule of elementhood is such as to provide the elementhood ofjust those classes which exist for NF. Therefore, the two axioms of comprehension ofML are The axiom of comprehension by a set:(1) 9y8x(x 2 y , �(x)), where �(x) is a strati�ed formula with set variablesonly in which y does not occur free.The axiom of impredicative comprehension by a class:(2) 9y8x(x 2 y , �(x)), where �(x) is any formula in which y does not occurfree.ML was liked both for the manipulative convenience we regain in it and the symmetricaluniverse it furnishes. It was however proved subject to the Burali-Forti paradox | Thewell ordered set 
 of all ordinals has an ordinal which is greater than any member of
 and hence is greater than 
. Our description above of Russell's type theory, ZF settheory and Quine's NF and ML, has been brief, but should su�ce to convince the readerof the need to have as many sets as one can. It has been argued by those who favourthe iterative conception of set that we do not need self-application ([Boolos 1971]). Butwe have seen the necessity of type-free theories and the development of many type free11



systems such as Feferman's (in [Feferman 1979] and [Feferman' 1984]). Kripke's workon the theory of Truth [Kripke 1975] is further evidence that we should not rule out selfreferential statements and that we must look for a theory which allows for it. G�odel'swork and especially his proof of the incompleteness theorems, showed that self-referentialstatements are as legitimate as arithmetic. Natural language is full of self-reference andself-application like: There is nothing more beautiful than beauty. All this points to theneed for as many sets as possible, including sets that belong to themselves. All theabove set theories reject the impredicative speci�cations and assumptions of classes andclass existence, except ML which assumes impredicative clauses due to axiom (2) above.Also, from above, iterative sets are well founded, but NF and ML are non well founded.where a set a is non well founded i� (9a0; a1; : : :)(: : : 2 an+1 2 an 2 a1 2 a0 2 a). Nowone can prove that (FA) implies the existence of only well founded sets.� Non well founded sets Can we exchange (FA) for another which allows non well foundedsets? Would this axiom remain consistent with or independent of other axioms? The an-swer is yes and many people have worked on various Anti Foundation Axioms ([Aczel 1984]).But what is the (AFA)? In his account, Aczel looks at sets in terms of pictures, wherea picture of a set is an apg (accessible, pointed graph) with a decoration d such thatd (the node) = the set itself and d: Nodes ! sets where d(n) = fdn0 : n ! n0g. Forexample, 
� is an apg and is a decoration of 
 = f
g. 
 will exist due to the antifoundation axiom, where(AFA) Every graph has a unique decoration.As a corollary of (AFA), one can prove that non well founded sets exist. In fact with(AFA), all possible non well founded sets exist. (AFA) is consistent with ZF, and we donot get the paradoxes with it. This is because it is not (FA) which was responsible foravoiding contradictions but it was the separation axiom. In fact, here the same proofas above will hold for the avoidance of Russell's paradox in ZF, and we have seen whenwe explained how Russell's paradox is avoided in ZF (section 2.1.2), that we only usedthe separation axiom and no mention was made for (FA) or (AFA).2.1.3 Altering the logic� Rejection of the law of excluded middle The paradox we faced was of the form:(x 2 x) , :(x 2 x). Clearly the paradox can be avoided by dropping the assumptionof LEM that any one place predicate either applies to a given object or does not. Notethat here we can stick to two valued logics and that this system is not necessarilyintuitionistic. If we go back to the example of impredicative speci�cation given at thebeginning of this section, according to this approach we can assume the existence of R,the set of all elements which do not contain themselves. What we cannot do though isassume that we have either (R 2 R) or :(R 2 R).� Many valued logics (x 2 x) , :(x 2 x) would not be contradictory if a consistentset of truth values was chosen. Consider as an illustration a three valued logic wherethe truth values are 0 (truth), 1(false) and u(unde�ned). The above sentence is notcontradictory for we associate with (x 2 x) the value u and we de�ne in the semanticsthat the negation of u is u. Therefore u, :u is not contradictory and the paradox isavoided. Note here that there are many three valued interpretations and that the status12



of u varies from one interpretation to another. For some, u acts as not yet known, forothers it is unde�ned. If we take the view that u is not yet known then we can orderour models according to the state of our knowledge. Knowledge is cumulative whereasignorance is not. What we know up to a stage, will always remain known after thatstage, but we will also know more things. Domains looked at in this way are orderedand the �xed point theorem is applicable; this enables the construction of the limitmodel which is a model of the limit of our knowledge.� Frege structures Frege structures are not only solutions to the problem of model exis-tence, but are also systems of set theory in their own right: they single out that part ofFrege's theory which is consistent. Frege structures could be classi�ed as a restriction oflogic, and they free Frege's notion of set from the paradox in the following way: the log-ical constants can apply to any object, but the result will never be a truth value unlessthe object itself was a proposition. The condition x 2 x is not necessarily a propositionand so (x 2 x), :(x 2 x) is not contradictory. In fact, the axioms of a Frege structureonly enable one to derive propositions from previously known ones. x here is howeverarbitrary and so no deduction will give us x 2 x to be a proposition. The logic is weakin this way: the logical constants still apply to any object as with Frege but the resultis a truth-value only if the object itself is one. With Frege this was not the case; he hadthe operator { (which stands for content) and which gives the content of each object.So {A is always a truth value whether or not the object A itself was a truth value. Allthe other logical constants in Frege's theory were applied to the content of the objectand so always resulted in a truth-value. So in particular -k- A (not A) is always a truthvalue whether or not A was. Realising this about Frege's theory, Aczel reduced the logicto a weaker one where the logical constants only give truth values for truth values. InAczel's Frege structures, the axiom (Vb) is not rejected. In fact the whole of axiom (V)is proven as a theorem in Frege structures and does not need to be asserted as an axiomas with Frege. Also, each concept has an extension, and decidable sets (the extensionsof decidable concepts) are objects to which LEM applies. In a Frege structure you canprove that a set belongs to itself, (take R = fx : (x = x)g) and so it seems quite con-venient to think of Frege structures as models for nominalisation. Before we move on,we give a summary of the work that was carried out by Feferman in the foundationsof set theory. This is because Feferman's work investigates all of these restrictions (i.e.restricting the axioms, the logic or the language) and plays a crucial role in the area ofnominalisation.2.1.4 Feferman and the foundational issuesFeferman, in many of his papers, has worked on the question of the paradoxes and the possiblesolutions. He investigated for instance in [Feferman' 1984] the strategies of restricting theaxioms, the logic or the language. He also investigated in [Feferman 1979] a theory T0 whichI believe is worth more attention than it has received. Feferman's T0 was a formulationof Bishop's constructive mathematics, as are the theories of Martin-L�of's and Myhill. YetMartin-L�of's is the theory which has been mostly used by Computer Scientists because it ismore related to notions such as computation, program speci�cations and constructive proofs.Maybe it is the presence of canonical/noncanonical elements in Martin-L�of's theory and thenotion of types which are very attractive to computer scientists. Yet I believe that Feferman's13



theory is simpler mainly because it is more exible so that we do not commit ourselves toparticular typing as we do with Martin-L�of's type theory. Of course here there is no roomto discuss either T0 or any other of Feferman's theories which avoid the paradoxes by variousmeans. We must still however introduce the comprehension principles that Feferman uses intwo of his theories. In T0, the comprehension principle is restricted to elementary formulaewhere a formula is elementary if it is both strati�ed and has no bound class variables. Hencethe principle looks like:(ECA) (9X)(fx : �(x; y; z)g = X ^8x(x 2 X , �(x; y; z))), where �(x; y; z) canonly be an elementary formula.T0 was a constructive theory. Feferman, before T0 had investigated the use of full classicallogic. Yet the paradox is avoided by having positive and negative formulae. The membershiprelation is now split into two partial predicates 2 and 20 with the axiom:Dis(2;20) :(x 2 fu : �(u; y1; : : : ; yn)g) ^ x 20 fu : �(u; y1; : : : ; yn)g)The comprehension principle is then divided into two comprehension principles: one forthe positive formulas and the other is for the negative formulas as follows:(CA)(+/-)� x 2 fu : �(u; y1; : : : ; yn)g , �+(x; y1; : : : ; yn)� x 20 fu : �(u; y1; : : : ; yn)g , ��(x; y1; : : : ; yn)Now of course Russell's paradox is avoided here because if we take R = fx : :x 2 xg, thenR 2 R, (:R 2 R)+ = (R 2 R)� = R 20 R.These are two of the ways that Feferman uses to avoid the paradoxes. However none ofthem as we see has a full comprehension principle, whereas Frege structures provide us witha full one.2.2 E�ects of set theory on nominalisation2.2.1 Language and nominalisationThe reform of set theory by following the route of altering the language was based on thevicious circle principle, and resulted in Russell's theory of types. The language here becomestyped and the ladder of types has to be climbed step by step. Russell's theory of typeswas made simpler by Church and this is essentially the language used by Montague (in[Thomason 1974]) as an application to natural language. However, Montague did not himselfdeal with nominalisation and his account is very problematic from the nominalisation pointof view. There have been few attempts at dealing with nominalisation within the Montaguetradition. Examples are Carlson's work and Parson's oating types (in [Parsons 1979]). Themain problem with Montague semantics is the typing constraints and the existence of thefunction f which has to associate once and for all the syntactic type of each syntactic category.This could be dealt with by changing the function f , but the approach is cumbersome andleads to di�culties.2.2.2 Axioms and nominalisationIn ZF, we cannot have a set that contains itself and hence ZF is not suitable for nominalisation.NF or ML contain sets that belong to themselves, and so they should be promising candidatesfor the semantics of nominalisation. In fact they have already been applied by Cocchiarella14



who altered the system of non-standard second order logic shown in 1.1 to obtain two systemswhich he proved to be equivalent to NF and ML respectively ([Cocchiarella 1986]). The twosystems are as follows:1. Altering (CP*) Here, the paradox is avoided by restricting the formulae in (CP*) tostrati�ed formulae (see previous section). In (CP*), Cocchiarella does not take Fn tobe simply free in F , but imposes in addition the constraint that the whole bivalence bestrati�ed. To return to our example, [F (x) , 9G[x = G ^ :G(x)]] is not a strati�edformula and so the comprehension principle cannot assure us of the existence of thepredicate F , and hence there is no contradiction.2. Altering (A*) Instead of altering (CP*), we alter (A3*) to (A3**) where(A3**) 8x9y(x = y).We then have to add (a = a) as an axiom and replace (�-CONV*) to:(E/�-CONV*) [�x1; : : : xn�](a1; : : : ; an) , 9x1; :::xn(a1 = x1) ^ : : : ^ (an =xn) ^ �) where no xi occurs free in any aj, for 1 � i, j � n.Note here that because of the elimination of (A3*), we can no longer prove the theorem8x�) �(a=x). Therefore, we cannot substitute F for x in the special instance of (CP*)and so we cannot derive the paradox. The disadvantages of Cocchiarella's two systemsare that the models are not easy to imagine.2.2.3 Logic and nominalisationThe last category is the use of non-standard logics. Take for instance the use of a three-valuedlogic, rather than the classical two-valued one. F (F ) , :F (F ) would not be inconsistentany more, for we can give F (F ) the value u (unde�ned) and in the interpretation of : and,,we take: :u, u. This solution has been applied to nominalisation by Turner ([Turner 1984,1987]). Turner used three valued logics and this allowed him to have an untyped languagewhich could deal with nominalisation without falling into the paradox. This approach hasbeen successful as far as predication is concerned, for one can nominalise all formulae. Howeverit has a problem with quanti�cation, since it is only to quantify over ideal elements (i.e. thelimits of the �nite ones as we shall see in part II). We have talked about the set theoreticalapproaches that have been o�ered. We looked at the theory of types and nominalisation andalthough we did not claim it was impossible to work out a theory of nominalisation based onMontague's semantics, we did say that it was di�cult and cumbersome. We recall here thatRussell's theory of types was unsatisfactory and so other theories came into being. The sameapplies to nominalisation, for Turner's and Cocchiarella's systems are less problematic thanMontague's approach, because systems like NF and ML, or logics which are non-standard,were better attempts to provide a system without paradox than Russell's theory of types. Ourcriticism of Cocchiarella is that his models are di�cult to imagine. It seems therefore that allthe theories of nominalisation that have been worked out so far face some problems. Therestill are many solutions for set theory that have not hitherto been applied to the semantics ofnominalisation, two of these being the notions of Frege structures and non well founded sets.It seems at this stage that most of the disadvantages of the theories that have been worked outso far can be circumvented by the use of these two notions. The use of Frege structures willallow us to keep to two-valued logic; also we can quantify over all our nominalised items, which15



is another advantage. The use of non well founded sets on the other hand, seems to be naturalin the sense that they model the self reference that might be involved in nominalisation. Forexample, we might consider nice to be a solution to the equation x = fxg and hence we getnice is nice to be true.3 Solution to model existenceThe problem discussed in 1.2 is not speci�c to nominalisation. It is the problem of �ndingmodels of the �-calculus. Therefore I shall start by describing some of those models, and thenI shall discuss how they have been used for the semantics of nominalisation.3.1 �-calculus and its modelsWe can forget about the formal axiomatisation of the �-calculus with logic on the top of itand just remember that the �-calculus with logic is a formal system which has 2 importantoperations: abstraction and application together with �-conversion. Until recently, modelsof the �-calculus have been problematic: do they really exist, and what are they like? Oneanswer can be that the model itself is a structure which has two operations (abstraction andapplication); but this is an unsatisfactory answer. First, we could abstract the formula :P (x)and then apply the abstract to itself which would yield Russell's paradox. Second, not everystructure which has the two operations can be a model of the �-calculus. Take for instanceany combinatory algebra (which has K;S and ':'). We could prove in a combinatory algebrathat the axiom of abstraction (9F )(8y1); : : : ; (8yn)[F (y1; : : : ; yn) = A] holds, but that doesnot mean that the combinatory algebra is a model of the �-calculus. It will be if we considerthe extensional �-calculus, but in the absence of extensionality we will have many choices forthe function F in the axiom of abstraction and so the structure cannot be a model. Whatwe should really require from the model is that if two w�s are equivalent or convertible inthe �-calculus then their values in the model must be the same. The other problem withde�ning models of the �-calculus is that some �-terms denote functions and so they haveto take the elements of the structure M itself as argument. But again they themselves areterms and must take elements of M as values. We could take term models as models of the �-calculus. Term models are just trivial formulations because all they do is translate the syntaxstep by step. Two other formulations of models are environment models and combinatorymodels. The environment models include in them two embedding functions � and 	 whichbelong to D �! [D �! D] and [D �! D] �! D respectively. [D �! D] is not the setof all functions and it usually is the case that certain mathematical properties play a rolein choosing [D �! D]. Usually, [D �! D] is the set of all the continuous functions andis closed under the standard operations (such as composition, abstraction, application, . . . ).The combinatory model is exactly the combinatory algebra we talked about above but withthe very important element " which obeys some axioms. What " does is to single out thefunctional part of every element. In the presence of extensionality we do not need " and thatis why in the case of extensionality, combinatory algebras are models of the �-calculus. Bothenvironment models and combinatory models are equivalent to each other and for a proof ofthis, the reader is referred to [Meyer 1981]. These are not the only kinds of models providedfor the �-calculus. The two kinds of models cited above together with the term models arealgebraic, there are others which have a built-in structure. (It is easy to work with such16



models as one does not get involved with the cumbersome syntax). The two main modelsthat I shall talk about throughout are: Scott domains and Frege structures.3.2 Scott domainsWe will be concerned with Scott domains4 built as semantic domains where a semantic domainis a domain D with a binary relation � such that(i) D has a bottom element u satisfying (8x 2 D)[u � x].(ii) � is a partial ordering on D(iii) every !-sequence has a least upper bound in D where1. An !-sequence is a sequence (xn)n2! of elements of D such that (8n � 0)[xn � xn+1].2. An element d in D is the least upper bound of a subset X of D, i�� (8d0 2 X)[d0 � d].� (8d0 2 D)[(8x 2 X)[x � d0] =) d � d0]We denote the least upper bound of (xn)n2! by [n2!xn and when no confusion occurs, wewrite [xn. Basic to Scott domains is the notion of a continuous function where a functionf from a semantic domain D into another semantic domain D0 is continuous i� (for each!-sequence (dn)n 2 D)[f([dn) = [f(dn)]5New domains are built out of old ones using the following three notions: Let (D1;�1) and(D2;� 2) be two semantic domains1. De�ne D1 +D2 = f(di; i) such that di 2 Di�g [ fug where (u 62 D1 [D2),and (8d = (di; i); d0 = (d0j ; j) 2 D1 +D2)[d � d0 () (d = u or (i = j and di �i d0j))].2. De�ne D = D1 �D2 = f< d1; d2 > where d1 2 D1 and d2 2 D2gand (8 < d10; d20 >;< d11; d21 >2 D1 �D2),[< d10; d20 >�< d11; d21 >() d10 �1 d11 and d20 �2 d21]3. Let [D1 �! D2] be the set of continuous functions from the domain (D1;�1) to thedomain (D2;�2). De�ne a binary relation on [D1 �! D2] as follows:(8f; g in [D1 �! D2])[f � g () (8d 2 D)[f(d) �2 g(d)]].Lemma 3.1 (D1 +D2;�); (D1 �D2;�) and ([D1 �! D2];�) are semantic domains.We are interested in domains E which satisfy an equation of the form: E � [E �! E]. Wede�ne B the set of truth values, i.e. B = f0; 1; u0g where u0 � 1 and u0 � 0 (B is a semanticdomain). We build our domain E by building a sequence of domains (by induction). Westart with E0 = B and build En+1 = B + [En �! En] for n � 0 such that for all n;En isa semantic domain. We would like, however, to relate all those domains with an orderingrelation and �nd the limit of such a sequence. This limit is going to be the required E. Westart with some de�nitions:4see [Barendregt 1981] and [Barendregt' 1981]5From now on, we will use D� to denote D � fug.17



De�nition 3.2 A projection pair of D1 on D2 is a pair < �;	 > such that: � : D1 �! D2,	 : D2 �! D1 and� �;	 are both continuous,� (8x 2 D1)[	(�(x)) = x]� (8x 2 D2)[�(	(x)) �2 x]For each n � 0, we de�ne a projection pair <  n;�n >. The aim of each �n is to embedEn into En+1, whereas 	n is a surjection from En+1 to En. Our construction of (�n)n2! isdone by induction as follows:�0 : E0 �! E1 such that �0(x) = x 2 B� ,! x; u16	0 : E1 �! E0 such that 	0(x) = x 2 B� ,! x; u0Assume that �n and 	n have been de�ned such that < �n;	n > is a projection pair ofEn on En+1, we build �n+1 and 	n+1 as follows:�n+1 : En+1 �! En+2 so that �n+1(x) = x 2 B� ,! x; (x = un+1 ,! un+2;�n � x �	n)	n+1 : En+2 �! En+1 so that 	n+1(x) = x 2 B� ,! x; (x = un+2 ,! un+1;	n � x � �n)One can easily prove that < �n+1;	n+1 > is a projection pair of En+1 on En+2. Now weconstruct a domain E1 which will contain all the En for n 2 !.E1 = f< fn >: fn 2 En and 	n(fn+1) = fng.The � on E1 is:(8 < fn >;< gn >2 E1)[< fn >n2!�< gn >n2!() (8n 2 !)[fn �n gn]]Lemma 3.3 (E1;�) is a semantic domain.Now we de�ne application in E1. Let f; e be in E1 and de�ne f � e = [fn+1(en). Again thefollowing proofs are left to the reader.Lemma 3.4 � : E1 �E1 �! E1 is continuous.Theorem 3.5 (8f 2 [E1 �! E1])(9Xf 2 E1)[(8e 2 E1) [f(e) = Xf � e]].Theorem 3.6 E1 � [E1 �! E1]7.3.3 Frege structuresBefore launching into this section, let us introduce some convenient notation:Notation 3.7 If f is a function of 2 arguments then we will sometimes write afb for f(a; b).For example, we write a ^ b for ^(a; b).Until we give the exact de�nition of an F-functional, let us understand it to be a functionwhich takes functions as arguments and returns functions as values.Notation 3.8 Fn0 stands for: F0 � F0 � : : :� F0; n times.6The notation b ,! a1; a2 is to be understood as: If b then a1 else a2.7Actually E1 is the least upper bound of the sequence of domains (En)n.18



Notation 3.9 (Metalanguage abstraction) For every expression e[x1; : : : ; xn] of the meta-language built up in the usual way from variables ranging over F0 and constants rangingover [nFn, the expression < e[x1; : : : ; xn]=x1; : : : ; xn > denotes the n-place function f :F0 � : : : � F0 �! F0 such that for each ai in F0, 1 � i � n; f(a1; : : : ; an) is the valueof e[a1; : : : ; an], the expression e in which xi has been replaced by ai for i = 1; : : : ; n. For eachexpression e[�1; �2; : : : ; �n] of the metalanguage built in the usual way out of variables (rang-ing over Fn for n � 0) and constants (ranging over Fn for n � 0 and over F-functionals),the expression < e[�1; �2; : : : ; �n]=�1; �2; : : : ; �n > denotes the n-place function obtained byabstracting �1; �2; ::; �n in e.Notation 3.10 (Def*) If F is a 1-place F-functional and < e[x]=x > is in the domain of F ,we write Fxe[x] for F (< e[x]=x >).For example, 8 : F1 �! F0 and � : F1 �! F0 are F-functionals; we write 8 < f(x)=x > and� < f(x)=x > as 8xf(x) and �xf(x) respectively.It should be noted here that � does not represent implication in logic. For implicationwe have another sign which is unrelated to �. Furthermore, even though � and 8 have thesame functional space, they are di�erent. The �rst has the property that if we apply �f toa, we get f(a), whereas the second satis�es that if f is a propositional function then 8f isa proposition. (Here we understand a propositional function, to be a function of the Fregestructure which takes propositions as values, i.e. f(x) is a proposition for every x.) In fact,app(�f; a) makes sense but app(8f; a) does not. Moreover, if f is a propositional functionthan �f is a set and not a proposition. Furthermore, we will only work with models wherethe collection of sets and the collection of propositions are disjoint.3.3.1 Informal introductionThe existing models of the �-calculus did not deal with logic added on top of the �-calculus,since once logic is added, consistency might be threatened. Also, if one constructs a theorywhich will have logic, �-abstraction and predication, then one has to show the existence ofthe models of this theory. This is the work we �nd with Feferman for instance, yet his modelsare not tidy and clear. Hence one would like to have a clear idea of a model of the �-calculuswith logic on it, and Frege structure is such a model. However, such a construction was notobvious for a long time. It was initiated by Scott in [Scott 1975] yet the work was incompleteand hence such a model was not achieved. Then came the construction of Frege structureswhere simply the idea is to start from any model of the �-calculus and build logic on top byinductively constructing two collections (of the possible propositions and the possible truths)and taking the limit of these two collections which actually draw the logic we now have onthe top of the initially considered model of the �-calculus. As it sounds, the process is quitesimple, yet it depends on having a clear idea of the structure and on proving some theoremswhich will ensure the existence of the various logical connectives in the model considered.Now that logic has been constructed on the top of a model of the �-calculus, we can considerthe structure only in terms of its objects and functions. The objects include propositions andtruths and the functions obey the condition that propositional functions can be projected inthe domain of objects (i.e. as sets). Those sets can be applied to any object (hence we nowhave not only functional application such as f(x)8, but also the application of one object to8Note here that f(x) means `f applied to x' and that if one wanted to write `f is an expression whichdepends on x', one would use f [x]. See Def* and the de�nition of metalanguage abstraction, especially the19



another as in app(a; b)), and set application to an object results in a proposition. This is thesimple idea of a Frege structure. Next, the reader �nds the various steps used to construct aFrege structure.A Frege structure consists of a denumerably in�nite number of collections (Fn)n�0 suchthat:1. F0 is a collection of objects which has three very important subcollections PROP,TRUTH and SET where, PROP is a subcollection of F0 which can be thought of asthe collection of propositions and TRUTH is a subcollection of PROP which can bethought of as the collection of true propositions. SET is a subcollection of F0 which canbe thought of as the collection of objects which are nominals of propositional functions.2. For each n > 0, Fn is a collection of n-ary functions which take all their arguments inF0.3. There is a set of F-functionals that operate over (Fn)n�0 and which ensure importantclosure properties on (Fn)n�0. For example:8 : F1 �! F0 is a functional such that: If f in F1 is a propositional function then 8fis in PROP and 8f is in TRUTH i� f(a) is in TRUTH for each a in F0� : F1 �! F0 and app : F0 � F0 �! F0 are two other functionals which possess thevery important property: app(�f; a) = f(a) for every a in F0 and every f in F1. Notehere that app is di�erent from real application. In fact, app : F0�F0 �! F0 whereasreal application: F1 � F0 �! F0. Still, app and real application are related in thatapp(�f; a) = f(a). app is really introduced to capture that when turning a function finto an object �f , we preserve the information of f 's functionality. That is �f appliesto an object a and gives the same result as applying f to a.4. (Fn)n�0 is super explicitly closed: i.e. for each expression e[�1; �2; ::; �n] of the metalan-guage built in the usual way out of variables (ranging over Fn for n � 0) and constants(ranging over Fn for n � 0 and over F-functionals), the n-place function denoted by< e[�1; �2; : : : ; �n]=�1; �2; : : : ; �n > is an F-functional9.Now that we have some idea of the structures' form, let us try to give an intuitive picture.A Frege structure is a collection of both objects and functions (which are distinct) where wecan map any function f into an object a and this object will preserve some of the propertiesof the function. For instance if the function f is a propositional function, then the nominalof the function, �f , is an object which belongs to the category SET (recall here that 8f isan object which belongs to the category PROP and that we will be interested in modelswhere PROP \ SET = ;). Moreover SET contains only those objects which are nominalsof propositional functions. Thus, if a is in SET then there must be a k-ary propositionalfunction f such that a = �n0f , where: �10 is � and maps 1-ary functions into objects (i.e.into F0); �20 maps 2-ary functions into objects;... �n0 maps n-ary functions into objects. Byinduction, we can de�ne �nm which maps n-ary functions into Fm.It is natural to ask whether the intersection of SET and PROP is empty or not; someelements of PROP are elements of elements of SET, yet the intersection between SET andnotation e[�1; �2; : : : ; �n] and < e[�1; �2; : : : ; �n]=�1; �2; : : : ; �n >.9This means that Frege structures are closed under composition, projection, etc.20



PROP is not certain to be empty. Take for example an element a of PROP and consider bto be the set fx : (x = a)g. Obviously b is in SET because < (x = a)=x > is a propositionalfunction, and we have a is in b. SET and PROP are not necessarily disjoint. Take forexample, a in PROP and assume the following principle:8x(app(t; x) = app(t0; x))) t = t0.De�ne moreover k k: to be the counterpart of �. That is kak(x) = app(a; x). Then�kak = a can be seen as follows:8x;app(�kak; x) = kak(x) = app(a; x).Therefore 8xapp(�kak; x) = app(a; x) and hence a = �kak. Now, if k�ak is a propo-sitional function, then SET \ PROP is not empty. The question here is whether kak is apropositional function when a is a proposition. We do not need to answer this question hereand independently of whether SET and PROP are disjoint, there is an important relationbetween them which is the following; they both have strong links with propositional functions.Let us consider 1-ary functions to illustrate the argument and take a propositional function f .For any object a, f(a) is a proposition (i.e. is in PROP). �f is a set and app(�f; a) = f(a).We can always jump from propositional functions to sets (and from sets to propositions).But we can also jump from sets to propositional functions. Take the operation k k1 de�nedas: For each object a of the Frege structure, kak1 =< app(a; x)=x >. Obviously for eacha; kak1 is in F1 and if, in particular, we take a to be in SET (say a is �f) then we havethat kak1 = k�fk1 = f . Therefore we have an equivalence between sets and propositionalfunctions; each set corresponds to a propositional function and each propositional functioncorresponds to a set. This is important and it is this strong link that I am trying to empha-sise between SET and propositional functions. Note that for each n, this bivalent path holdsbetween PFn and SET, through �n0 and k kn where again we have appn(�n0f; â) = f(â), forâ in Fn0 , and f in Fn. The functionals �n0 , appn and the operation k kn (the counterpart of�n0) could be de�ned recursively as follows:Take kakn =< appn(a; x); x >, and (�n+1n f)(â) = �(< f(â; x)=x >), and assume �n+mn f hasbeen de�ned. Then take �n+m+1n f = �n+1n (�n+m+1n+1 f).appn is also de�ned by recursion where: app1 = app and assume we have de�ned up toappn. Then appn+1(a; b; b0) = appn(app(a; b); b0). One can prove that appn(�n0f; â) = f(â)for each n in ! and â in F0n.So in a Frege structure, like in any (Fregean) calculus of functions and objects which hasvariable-binding (and application) through abstraction (resp. application) operators one cantake functions into objects. In short, we do not lose information by mapping the functioninto an object. We can switch back from objects to functions using k kn, the inverse operatorof �n0 where we have the following theorem: k�n0fkn = f for any n-ary propositional functionf . The ability to switch back and forth between objects and functions is not the only im-portant aspect of the program; the presence of PROP, TRUTH and of a logic in a Fregestructure is also crucial. The logic is built in a way that allows us to talk about truths andpropositions without falling into any contradictions. There are other accounts which can dothis of course such as Martin-L�of's type theory with his judgements: A type and a : A. Thedi�erence here is that in a Frege structure, we have combined both the elegance of a simplestructure (objects and functions without the typing strategies) together with the presence ofa consistent logic. 21



3.3.2 Frege structures as models and comparison with Scott domains�-structures are models of the �-calculus in an obvious way. For just take the interpretationof terms as follows over a de�ned Frege structure F, where g is an assignment function whichtakes variables into objects of F0:[[x]]g;F = g(x)[[MN ]]g;F = app([[M ]]g;F ; [[N ]]g;F )[[�xM ]]g;F = � < [[M ]]g[a=x]; F=a >.Now it is easy to show that this interpretation has the property that:� `M = N =) [[M ]]g;F = [[N ]]g;F .Therefore, Frege structures are models of the �-calculus and in turn we know that theysolve the second problem. For the remainder of this section, we shall concentrate on thecomparison between both Scott domains and Frege structures as models, and hence helpjustify our claim that Frege structures are better candidates for the semantics of naturallanguages than Scott domains. On Scott domains, one has a topology (Scott topology basedon a partial ordering relation) and two special elements Top and Bottom. (Bottom is lessthan all the other elements and Top is greater than all of them.) We shall see in Part IIthat this ordering relation, together with the existence of Bottom and the requirement thatthe functions be continuous, make Scott domains problematic for the semantics of naturallanguages. On Frege structures, however, we have no ordering and no requirement on thecontinuity of functions.What we have in a Frege structure is a collection of objects F0 together with, for each n, acollection Fn of n-ary functions which take elements of F0 as arguments and return elementsof F0 as values. But although we do not consider all possible functions to be elements ofthe Frege structure, we still consider only structures which are explicitly closed. This explicitclosure imposes the existence of some necessary functions such as projections, constants, etc,and requires the closure of our structure under some important functional operations such ascomposition. We have both constants and variables for functions, but the functionality on aFrege structure does not stop at those �rst order functions; we also have functionals. However,whereas for functions our language contains both variables and constants, for functionals itonly contains constants.One should bear in mind that none of the collections PROP, TRUTH or SET is inter-nally de�nable. Intuitively, we say that a collection � of objects is internally de�nable if wecan talk about it through the object language and not just the metalanguage. An exampleof a collection which is not internally de�nable is the collection of truths in a theory whichcontains names for its w�s. If this collection was internally de�nable, then there must be apredicate T such that for any object a, T (a) is true i� a is true. But according to Tarski, atheory cannot contain its own truth predicate (in the object language) without falling intoinconsistency and therefore T is a predicate of the metalanguage. Now if we want to talkabout truth in this metalanguage then again we have to have a truth predicate T 0 in themeta-metalanguage and this process iterates. Just as T is not an element of the object lan-guage in Tarski's approach, so inside a Frege structure the collection of truths is not internallyde�nable. Aczel gives a more formal de�nition of internal de�nability and considers a col-lection � of objects in F0 to be internally de�nable in the Frege structure i� there exists apropositional function C in F1 such that the following holds:(**) For any object a in F0; C(a) is in TRUTH i� a is in �.It might be clearer if we set FALSE = PROP nTRUTH, and then replace (**) by the22



following:(***) For any object a in F0; C(a) is in TRUTH i� a is in � and C(a) is in FALSEotherwise.Some might �nd it easier to draw a contrast with the following schematic de�nition, whereC is not a propositional function:(****) For any object a in F0, C(a) is in TRUTH i� a is in � and C(a) is in F0 otherwise.(***) makes � decidable, while (****) only makes semi-decidable. It may seem unfor-tunate that the collection of TRUTHs is not internally de�nable, but it is essentially thisthat provides Frege structures with consistency. Notice that since elements of SET are thenominalisations of propositional functions, we have no way of talking about the nominaliseditems internally and SET is not internally de�nable. Moreover it may also seem that wewill encounter a problem in de�ning second order quanti�ers. I hope that it will becomeclear throughout the work that the inability to internally de�ne quanti�ers does not have anyserious e�ects. On the contrary, we keep to simplicity while being able to formalise manyconcepts within the theory. The unde�nability of PROP and of SET is due to the unde�n-ability of TRUTH. The collection of propositions is not internally de�nable, for if it were(through a predicate P ) we would �nd that TRUTH is also internally de�nable (through thepropositional function < P (x) ^ (P (x) ! x)=x >, which stands for a function in F1). ThatPROP is not internally de�nable implies that SET is not either. This is because if S werea propositional function in F1 internally de�ning SET then < S(y=x)=x > is a propositionalfunction in F1 internally de�ning the collection of propositions. Note also that, for each n,PFn (the collection of n-ary propositional functions) is not internally de�nable. For if itwere, we would get that the collection of propositions would also be. The proof here needsan extension of the de�nition of internal de�nability so that instead of having a function wehave a functional. Let us return to the comparison of Frege structures with Scott domains.Frege structures do not have any ordering or continuity problems and their restricted logicwould allow us to solve the problems of Scott domains (and of Cocchiarella). But of coursethe solving part is not going to be easy. We have to do something about the non-internalde�nability of SET. There are a few ways to go here: we have to either see how the functiondomains (as with Scott) could be built inside Frege structures, or else show that we do notneed second level quanti�ers and therefore the problem does not arise. Now the word insidebrings an uncomfortable feeling | especially after we pointed out that all the interestingcollections are not internally de�nable. I assure the reader however that this di�culty is onlytemporary and that we can always �nd solutions to the problem. It is important for thereader to know that a Frege structure can be built on the top of a model where continuityand ordering play a very important role (such as E1). However the way quanti�ers are con-structed on a Frege structure using the �xed point, is not based on the ordering relation,and so the problem that faced Turner in his work based on E1 (where quanti�ers dependedon the ordering relation - see Part II) is not faced by the quanti�er treatment on a Fregestructure. The fact that functions, but not functionals, can be mapped into F0 in a Fregestructure is not a disadvantage, indeed it may even be seen as a virtue, since there appears tobe no justi�cation in natural language semantics for nominalizing expressions | for exampledeterminers | which would require a formalisation as functionals. Also, in Frege structureswe have more possible elements than we do in Scott domains. We have propositions, truthsand sets which are all legitimate elements of the Frege structure. We could not talk aboutthem internally but that is how it should be. Tarski's unde�nability of Truth and G�odel'sfamous result make it impossible for us to be able to internally de�ne any of these collections.23
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