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Reducibility proofs in the A-calculus

Fairouz Kamareddine, Vincent Rahli and J. B. Wells*

Abstract. Reducibility, despite being quite mysterious and inflexjlthas been used to prove a
number of properties of tha-calculus and is well known to offer general proofs which dsm
applied to a number of instantiations. In this paper, we labtwo related but different results in
A-calculi with intersection types.

1. We show that one such result (which aims at giving redlitsipproofs of Church-Rosser,
standardisation and weak normalisation for the untypexhlculus) faces serious problems
which break the reducibility method. We provide a proposaddrtially repair the method.

2. We consider a second result whose purpose is to use rddydir typed terms in order to
show the Church-Rosser gfdevelopments for the untyped terms (and hence the Church-
Rosser ofs-reduction). In this second result, strong normalisat®nat needed. We extend
the second result to encompass heth and 3n-reduction rather than simply-reduction.
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1. Introduction

Based on realisability semantics [Kle45], the reducipititethod has been developed by Tait [Tai67] in
order to prove the normalisation of some functional theorighe basic idea of reducibility is to interpret
types by sets ok-terms which are closed under some properties. Girard Bpd@veloped the reducibil-
ity method further and used it to prove the strong normadisadf a typedi-calculus by introducing the
candidates of reducibility [Gal90]. Statman [Sta85], Ketes [Kol85], and Mitchell [Mit90, Mit96] also
used reducibility to prove the Church-Rosser propertyo(alsled confluence) of the simply typed
calculus. Furthermore, Krivine [Kri90] uses reducibility prove the strong normalisation of systém
an intersection type system [CDC80, CDCV80, CDCV81]. MermpGallier [Gal97, Gal98] uses some
aspects of Koletsos’s method to prove a number of resultsasithe strong normalisation of theerms
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that are typable in systems lige or D2 [Kri90]. In particular, Gallier states some conditions apperty
needs to satisfy in order to be enjoyed by some typable tenmisrisome restrictions.

Similarly, Ghilezan and Likavec [GL02] state some conditica property has to satisfy in order to
hold for all A-terms typable under some type restrictions in a type sysiese toDf2. Furthermore,
they state a condition that a property has to satisfy in amlstep from the statement Yatermtypable
under some restrictions on typhas the property” to the statementXaerm of the untypecd\-calculus
has the property”. If successful, the method of [GL02] wopldvide an attractive way for establishing
properties such as Church-Rosser for all the untypeerms, by simply showing easier conditions on
typed terms. However, we show in this paper that Ghilezan_ étalec’'s method fails in both the typed
and the untyped settings. We outline the obstacle we facehwhiing to repair the result for the typed
setting and explain how far we have been able to to repairawéver, the result for the untyped setting
seems unrepairable. Ghilezan and Likavec also present kewearsion of their method for a type
system similar to syster®, which allows one to use reducibility to prove propertieshaf terms typable
by this system, namely the strongly normalisable terms.aAs$ we know, this portion of their result is
correct. (They do not actually apply this weaker method tosats of terms.)

In addition to the method proposed by Ghilezan and Likavdudwdoes not actually work for the
full untyped A-calculus), other steps of establishing properties likeir€h-Rosser for typed-terms
and concluding the properties for all the untypederms have been successfully exploited in the lit-
erature. Koletsos and Stavrinos [KS08] use reducibilitystiate that the\-terms that are typable in
systemD satisfies the Church-Rosser property. Using this resultttey with a method based gh
developments [Klo80, Kri90], they show thatdevelopments are Church-Rosser and this in turn will
imply the confluence of the untypedcalculus. Although Klop [Klo80] proves the confluence @&f
developments [BBKV76], his proof is based on strong norsaion whereas the Koletsos and Stavri-
nos’s proof only uses an embedding®btievelopments in the reduction of typabléerms. In this paper,
we apply Koletsos and Stavrinos’s methodstbreduction and then generalise it#g-reduction.

In section 2 we introduce the formal machinery and estald@ine needed lemmas. In section 3
we present the reducibility method used by Ghilezan andvekand show that it fails at a number of
important propositions which makes it inapplicable to thikdintyped\-calculus, although a version of
their method works for the strongly normalisable terms. We gounterexamples where all the con-
ditions stated in Ghilezan and Likavec’s paper are satisfietlthe claimed property does not hold. In
section 4 we indicate the limits of the method, show how tHesis affect its salvation and then we
partially salvage it so that it can be correctly used to distalsonfluence, standardisation and weak head
normal forms but only for restricted sets of lambda terms tgpés (that we believe to be equal to the
set of strongly normalisable terms). We point out some linksveen the work of [GL0O2] and that of
Gallier [Gal98]. In section 5, we give a precise formalisatiof 5-developments where we formally
deal with occurrences of redexes using paths and we adapitidefs from [Kri90] to allow 37- and
Bn-reduction. In section 6, we introduce the reducibility serics for boths/- and srn-reduction and
establish its soundness. Then, we show that all typablestsatisfy the Church-Rosser property. In
section 7 we adapt the Church-Rosser proof of Koletsos aaiSbs [KS08] to3/-reduction. In sec-
tion 8 we non-trivially generalise Koletsos and Stavrisaosethod to handlgn-reduction. We formalise
On-residuals angbn-developments in section 8.1. Then, we compare our notigbneafesiduals with
those of Curry and Feys [CF58] and Klop [Klo80] in section,&&ablishing that we allow less residu-
als than Klop but we believe more residuals than Curry and Heiyally, we establish in section 8.3 the
confluence ofin-developments and hence @f-reduction. We conclude in section 9.
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2. The Formal Machinery

This section provides some known formal machinery and ¢hices new definitions and lemmas that
are necessary for the paper. ketn be metavariables which range over the set of natural nunibets
{0,1,2,...}. We take as convention that if a metavariableanges over a setthen the metavariables
v; such that > 0 and the metavariables, v”, etc. also range oves.

A binary relation is a set of pairs. Let/ range over binary relations. Lébm(rel) = {z | (z,y) €
rel} andran(rel) = {y | (x,y) € rel}. Afunction is a binary relatiorfun such that if{ (x, y), (x, z)} C
fun theny = z. Let fun range over functions. Let— s’ = {fun | dom(fun) C s Aran(fun) C s'}.

Givenn setssy, ..., s, Wheren > 2, s; x --- X s, stands for the set of all the tuples built on the
setssy, ..., sy If x € 51 X --+ X sy, thenz = (z1,...,2,) such thaty; € s; foralli € {1,...,n}.

2.1. Familiar background on A-calculus

This section consists of one long definition of some fam{limostly standard) concepts of thecalculus
and one lemma which deals with the shape of reductions.

Definition 2.1. 1. letz,y, z, etc. range oven/, a countable infinite set of-term variables. The set
of terms of the\-calculus is defined by:

MeA:=x| (M. M) | (M M)

We letM, N, P, Q, etc. range over\. We assume the usual definition of subterms: we wyite
M if N is a subterm of\/. We also assume the usual convention for parenthesis andiwse
when no confusion arises. In particular, we wiite N; ... N,, instead of ...(M Ni) Ns...N,,_1) N,,.

We take terms modula-conversion and use the Barendregt convention (BC) wheredmes of
the bound variables differ from the names of the free onesevo termsV/ and N are equal
(moduloc), we write M = N. We writefv(M) for the set of the free variables of terid.

2. Forn > 0, defineM™(N), by induction on: by: M°(N) = N andM"™ 1 (N) = M(M™(N)).
3. Apath in atermV/ is a pointer to a subterm @f/. The set of paths is defined as follows:
pePath:=0]|1p|2p

We defineM |, by: M|y = M, (Ax.M)|1., = M|, (MN)|1, = M|,, and(MN)|2, = N|p.
We define2™.p by induction o > 0: 2°.p = p and2"t1.p = 27.2.p.

4. The setAl C A, of terms of the\l-calculus is defined by:
e If x € Vthenz € Al

e If M € Alandx € fv(M) then\z.M € Al.
e If M, N € AlthenM N € Al.
5. The substitutionV/[z := N] of N for all free occurrences af in M and the simultaneous substi-

tution M[z; := N;,...,xz, := N,] for 1 <i < n, of N; for all free occurrences af; in M are
defined as usual.
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We define the following four common relations:

e Beta ::= (A\z.M )N, M [z := NJ).

e Betal ::= ((\x.M )N, M|z := NJ), wherezx € fv(M).
e Eta ::= (A\z.Mx, M), wherex & fv(M).

e Betakta = Beta U Eta.

Let (s,r) € {(Beta, 8), (Betal, 5I), (Eta,n), (BetaEta, 5n)}.

We defineR" to be{L | (L, R) € s}. If (L, R) € sthen we callL ar-redex andr ar-contractum
of L (or aL r-contractum). We define the ternary relatief. as follows:

o M L, Mif (M,M') € s o o.M 2 Ne M if M L, M

o MN 5 M'Nif M %, M o NM 23 NM'it M L, M
We define the binary relation:,. (for simplicity we use the same name as for the ternary ceiati
as follows: M —, M’ if there existsp such that 2, M’. We defineR;, = {p | M|, € R"}.

LetM e AandF CA FIM={N|NeFANCM}.

. Let —;3 be the set of pairs of the forf\x;. ... x,.(A\x.Mo) My ... My, Azy. ... xn. Molz =

MMy ... M,,) wheren > 0 andm > 1.

If (L,R) €—ppthenl = Axy....x,.(Ax.My)M; ... M, wheren > 0 andm > 1 and
(Az.My)M; is called thes-head redex of.. We define the binary relatior:;3 as—p3 \ — 3.

. Letr € {—g,—y, =gy, —s1, —ns, —ig}- We use—; to denote the reflexive transitive closure

of —,.. We let~, denote the equivalence relation induced-by. If the r-reduction fromM to N
is in k steps, we writé\/ —F N.

Letr € {8I,6n} andn > 0. A term (Ax.M')N{N;...N] is a directr-reduct of a term
(Az.M)NoNy ... N, iff M —} M"andv¥i € {0,...,n}. N; —* N/

The seNF (of g-normal forms) andVN (of weakly 5-normalisable terms) are defined by:

o NF ={Az1.... Azp.2oNy... Ny, | n,m >0, Ny,..., N, € NF}.
o WN={M€A|3NeNF,M—}N}
Letr € {8, BI, fn}. We say that\/ has the Church-Rosser property fothasr-CR) if whenever
M —} My andM —7* M, then there is aid/3 such thatV/; — ) M3 andMy; — Ms. We define:
e CR" = {M | M hasr-CR}.
e CREy={aM;...M,|n>0NzeVANMEe{L,...,n},M; € CR")}.
e We useCR to denoteCR” andCRy, to denoteCRY}.

e A term is a weak head normal form if it is &abstraction (a term of the formhxz.M) or
if it starts with a variable (a term of the formi/; - -- M,,). A term is weakly head nor-
malising if it reduces to a weak head normal form. Mé¢t = {M € A |3n > 0,3z €
V.3P,Pi,...,P, € A,M —* \z.Por M —* 2P, ... P,}. We useW to denotew”.
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13. We say thaf\/ has the standardisation property if whenevér—7 N then there is a/’ such
thatM —; M'andM’ —* N. LetS = {M € A | M has the standardisation propgtrty

The next lemma deals with the shape of reductions.
Lemma2.2. 1. M % Miff (M g M or M B, M).

2. Ifx e fV(Ml) thenfv(()\a:.Ml)Mg) = fV(M1 [ZC = MQ])
If (A\x.M1)Ms € Al then M [z := Ms] € Al

3. If M —p, M'thentv(M') C fv(M).
4. If M —7%; M’ thenfv(M) = fv(M') and if M € Al then M’ € Al

5. Ax.M B, Piff (p =10/, P = Ae. M’ andM 5, M') or (p = 0, M = Pz andz & fv(P)).
6. If r € {BI,Bn}, n >0, Pis not a direct-reduct of N = (Az.M)Ny ... N, andN —* P, then:

(@) k> 1,and ifk = 1thenP = Mz := Ny|N; ... N,.
(b) There exists a direetreduct(Az.M')N{N7 ... N}, of (Ax.M)Nj ... N,, such that
M'[z := N}]Ny ...N], —f P.

7. Letr € {BI,0n}, n > 0and(Az.M)NyN; ... N, —F P. There exists”’ such thatP —* P’
and if (- = pI andx € fv(M)) orr = BnthenM [z := No|N; ... N,, —F P'.

8. There existd//’ such thatl %, M'iff p € R},
9. If M 5, My andM 5, M, thenM; = M.

Proof: 1) By induction onp.
2) By induction on the structure off;.
3) (resp. 4)) By induction on the length of the reductiah—7, M’ (resp.M —7; M’).

5) =) Let \e. M ﬂgn P. We prove the result by case gn Eitherp = 0 and M = Pz such that
v & fv(P). Orp = 1.p/, P = \e.M’ andM %5, M.

<) If P = z.M’ andM — 4, pM’. So,\e.M ~345, P andAz.M —z, P. It M = Pz andz ¢ fvP
then\z.M = \z.Px g, P, 5o z.M —g, P.

6a) If k = 0thenP = (Ax.M)N1N; ... N, is a directr-reduct of(A\z.M)NyN; ... N, absurd. So
k > 1. Assumek = 1, we proveP = M|z := Ny|N; ... N, by induction onn > 0.
6b) By 6a,k > 1. We prove the statement by induction bn> 1.

7) If Pis a directr-reduct of(Ax.M)Ny ... N, thenP = (Az.M')N| ... N}, such that —; M’ and
Vi € {0,...,n},N; =% N/. SOP —, M'[x := N[|Nj...N] (if r = gI, note thatr € tv(M’') by

lemma 2.2.4) and//[z := Ny|N;...N, —; M'[z := N§INj...N], . If Pisnot a direct--reduct
of (Az.M)Ny ... N, then by lemma 6.6b, there exists a direateduct,(Az.M')N| ... N, such that
M —} M'"andVi € {0,...,n},N; = N/, of (A\z.M)Ny ... N,. We haveM [z := Ny]N; ... N,, —

M'[x := N}]Ny...N} = P.

8) and 9) By induction on the structure pf O
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(ref) T<T

(tr) (M<mATR<T3)=>7 <713

(inr) N7 <7

(ing) T1NTe <7

(—-N) (1 = m)N (1 —13) <71 — (T2 N'T3)
(mon') (M<mAT <) =7 <7NT3
(mon) (M<HAR<STA) =N NT
(= -n) (M<THAR SR =17 > <1 —n0
(€2) T<Q

(Q-lazy) T—-0Q<Q—-Q

(idem) T<TNT

Figure 1. The ordering axioms on types

2.2. Background on Types and Type Systems

This section provides the necessary background for thestygtems used in this paper. The type systems
AN and\n? are used in section 3, and the type systé@randD; are used in section 6.

Definition 2.3. Let: € {1, 2}.

1. LetA be a countably infinite set of type variables, detange overd and let2 ¢ A be a constant
type. The sets of typeBype! ¢ Type? are defined as follows:

aeType1 t=alop — o9 | opNoy
reType’i=a|n —»7n|nNn|Q

2. Letl € B = {{z1 : 01,...,2p : 00} | Vi,j € {1,...,n}. 2; = 2; = o0; = o;} and
DAeB ={{z1:71,...,2n T} | Vi, i €{L,...,n}. 2 =2; = 7, = 75}
Letdom(I") ={z |z :0 €T}.
Whendom(I';) N dom(I'e) = @, we writeI'y, 'y for I'; U Ty, We write', z : o for I', {z : o}
andz : o for {z : c}. We denotd" =z, : oy, ..., 2y : 0, Wheren > m > 0, by (z; : o;)". If
m = 1, we simply denotd” by (x; : 7).
If Ty = (@i Ti)n, (yi = 7" )p @ndl'y = (x; : 7))p, (2 : 7/")q Wherezy, . .., x, are the only shared

KA KA
variables, then leb'y M Ty = (z; : 7 N T)n, (Vi = 77 )p, (20 2 77)g-

Let X C V. We definel’ | X =TI C I wheredom(I'") = dom(T") N X.

Let C be the reflexive transitive closure of the axioms 7 = 7 andm N 7o E 7. If T' = (x5 :
7i)p andIl" = (z; : 7)), thenT' C IV iff forall i € {1,...,n}, 7, C 7/

3. L — Let Vi= {(Tef)v (tT), (inL)v (inR)v (_) -ﬁ), (mon,)v (mon), (_) '77)}'
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(az)

Fx:tkax:7

r:ThHx:T

(az")

'-rM:7mm—m I'EN:m (=) W M:mp—m I'oFN:7 (= p1)
TFMN:m g T NTo - MN 7 Bt
Te:mEM:m (=) '-M:mm TTEM:m ()
F'EXe.M:1— 7 ! PEM:mnNm !
I'EM:m1Nmy I'EM:m N7y
TFMan () TFMam (72
P-M:n n<Vn g @
I'EM:m (=% 'EM:Q

Figure 2. The typing rules

LetVy =V U{(Q), (Y —lazy)}.

LetVp = {(inL), (mR)}

LetVp, = Vp U {(idem)}.

Let TypeV?, TypeV?, andType"V ?r be Type!.
Let Type"V? be Type?.

Let V be a set of axioms from Figure 1. The relatigN is defined on type3ype" and
axiomsV. We use<! instead of<V! and<? instead of<V?2.

The equivalence relation is defined by: ~V 7 <= 7 <V m A1 <V 71. We use
~!instead of~V! and~? instead of~ V2.

e — Let the type systemn! be the type derivability relatior! between the elements of

B, A, andType! generated using the following typing rules of Figure 2z (—E),
(=), (N7) and(<h)).

— Let the type systemn? be the type derivability relation? between the elements 5P,
A, andType? generated using the following typing rules of Figure 2t), (— ), (—1),
(N1), (%) and €).

— Let the type syster® be the type derivability relatior”” between the elements 5,
A, andType' generated using the following typing rules of Figure 2tX (— &), (—1),
(N7) , (Ng1) and (g2). Note that syster® does not use subtyping.

— Let the type systenD; be the type derivability relatior®’ between the elements of
B!, A, andType! generated using the following typing rule of Figure @z{), (—gD),
(—1), ("), (Ng1) and O g2). Moreover, in this type system, we assume thatr = o.
Note that syster®; does not use subtyping.
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3. Problems of Ghilezan and Likavec's reducibility method [GL02]

This section introduces the reducibility method of [GLOBHashows exactly where it fails. Throughout,
we let® = \z.xz.

Definition 3.1. (Type interpretations and the reducibility method of [GLO02])
Leti € {1,2} andP range ovep’.

1. The type interpretatiofi-]° € Type’ — 2% — 2% is defined by:

° [[Oz]]%; =P.
o [rNnnlp=[n]pN[rlp.
° [[Q]]% = A.

[o1 — 2] = {M | VN € [o1]p.MN € [o2]5}-
[ — Tg]]% ={M e P|VN € [[Tl]]%,MN € [[TQ]]%}

2. Avaluation of term variables in is a functionv € ¥V — A. We writev(x := M) for the function
v wherev'(z) = M andv’(y) = v(y) if y # .

3. letr be a valuation of term variables i Then the term interpretatiop-], € A — A is defined
as follows:[M], = M[zy = v(x1),..., Ty := v(z,)], Wwherefv(()M) = {z1,...,zn}.
4. e v EL M:riff [M], € [r]%.
o v ELTff V(z:7) €. v(z) € [r]5.
e TELM:riff weV—oAvELD=vELM: 1.
5. Let X C A. We recall here the variable, saturation, closure, andrisiee under abstraction
predicates defined by Ghilezan and Likavec (see Definitioisidd 3.15 of [GL02]):
e VARYP,X) <= VAR}(P,X) < VCAX.
e SATY(P,X) = (VM € A.Vz € V.YN € P. M[z:= N] € X = (\x.M)N € X).
e SAT}(P,X) <= (VM,N € A.Vx € V. M[z := N] € X = (\z.M)N € X).
e CLOYP,X) <= (VM eA.VzeV. Mz e X = McP).
e CLO*(P,X) <= CLO(P,X) «—= (VM €AYz e V.M c X = \z.M € P).
e VAR(P,X) <—= (Vz € V.Yn e N.YNy,...,N, € P.zN;...N, € X).

o SAT(P,X) <= (VM,N € A.Vz € V.¥YneN.YN,...,N, € P.
Mz := N]Ny...N, € X = (Az.M)NN; ... N, € X).

e INV(P) «<—= (VM €A VzeV.M P < I\x.MeP).
ForR € {VAR’,SAT!, CLO'}, let R(P) <= Vr € Type'. R(P, [7]5).

Lemma 3.2. (Basic lemmas proved in [GL02] and needed for thisection)
1 @ [[M]]V(931:N) = [[M]]l/($::$) [«T = N]
(b) [MN], = [M],[N],.
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© [\a.M], = Az.[M],(3.—g)-

2. If VAR'(P) andCLO! (P) then for allo € Type', [¢]} C P.

3. If VARY(P), CLOY(P), SAT'(P), andl' ! M : o thenl' =L M : 0.

4. If VARY(P), CLOY(P), SAT!(P), andl" - M : o thenM € P.

5. For allr € Type?, if 7 #% Q then[7]% C P.

6. If 71 <? mp then[r1]% C [r2]%.

7. If VAR?(P), SAT?*(P) andCLO?*(P) thenl' -2 M : 7 impliesT" =2 M : 7.

8. If VAR?(P), SAT?(P) andCLO?(P) then for allT € Type?, if 7 #? Q andI’ -2 M : 7 then
M e P.

9. CLO(P,P) = ¥r € Type?. 7 #% Q = CLO*(P, [7]3).

Note that lemma 3.2.3 states that! is sound w.r.t. th¢:}> interpretation, and lemma 3.2.7 states that
AN? is sound w.r.t. thé=% interpretation. Based on these soundness lemmas, Ghitexhhikavec
prove lemmas 3.2.4 and 3.2.8 which are key results in thduaibility method.

Ghilezan and Likavec (see Remark 3.9 of [GL02]) note th&tTiO! (P), VAR (P) andSAT!(P)
are true therSNz C P (note that this result does not make any use of the type system

Furthermore, given the notions and statements of definBidrand lemma 3.2, [GL02] states that
the predicate&¥/ AR?(P), SAT?(P) andCLO!(P) for i € {1,2} are sufficient to develop the reducibil-
ity method. However, in order to prove these predicates (foious instances dP), [GL02] states
that one needs stronger and easier to prove induction hgpeth Therefore, Ghilezan and Likavec in-
troduce the following conditionsVAR (P, P), SAT(P,P) and CLO(P, P) (see Definition 3.1 above
or Definition 3.15 of [GL02]). These conditions imply restions of VAR?(P, X), SAT?(P, X), and
CLO?(P,X). However, as we show below, this attempt fails. (They do resetbp the necessary
stronger induction hypotheses for the case when 1, and \n! can only type strongly normalisable
terms, so we will not consider the case- 1 further.)

Our definition 3.4 and lemma 3.5 given below are necessarstédbksh the results of this section (the
failure of the method of [GL02]). In definition 3.4, we use tidlowing fact that the defined preorder
relation is commutative, associative and idempotent:

Remark 3.3. Commutativity, associativity and idempotence w.r.t. theopder relation are given by the
axioms(iny), (ing), (mon'), (tr) and(ref) listed in figure 1.

Proof: e Commutativity: by(ing), 71N <2 7 and by(ing), 71 N7 <? 71 S0 by(mon'), 71Ny <?
72 N 71. By (ing), 2 N1 <? 7 and by(ing), 2 N 71 <2 71 S0 by(mon’), o N 71 <2 71 N 72. Hence,
71 N T2 ~2 T M7y

e Associativity: by (ing), (11 N 1) N3 <? 73, by (ing), (11 N ) N3 <?

< 71 N 79, by (inR),
TN <2 7, by (ing), m N1 <2 71, s0by(tr), (N ) N1 <21 and(ry Nm) N 73 <2 7. By
(mon’), (Tl N 7'2) N 73 SQ 75 N 73 and again b}(mon’), (7‘1 N 7'2) N 73 SQ 71 N (TQ N 7'3). By (inL),
TN (raN73) <2 71, by (ing), 1N (12 N73) <2 N3, bY (ing), oNT3 <2 7o, by (ing), oNT3 <2 73,
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SO by(tr), 71 N (TQ N 7'3) SQ T andm N (TQ N 7'3) SQ 73. By (mon’), 71 N (TQ N 7'3) SQ 71 N 19 and
again by(mon'), 1 N (12 N 13) <2 (11 N72) N 73. Hence,(1y N 7e) N 13 ~2 71 N (12 N 73).
e [dempotence: byiny), 7 N7 <? 7 and by(ref) and(mon’), 7 <?> 7N 7, hencey ~* 7N 7. O

Definition 3.4. Let to € TypeOmega ::= | to1 N tos.

LetinInter(r, 7’) be true iffr = 7/ or 7/ = 71 N 75 and {ulnter(7, 71 ) or inlnter (7, 72)).

By commutativity, associativity, and reflexivity we writg N - - - N 7,,, wheren > 1, instead ofr iff
the following condition holdsinInter(7/, 7) iff there existsi € {1,...,n} such that’ = 7.

Lemma3.5. 1. If r; <? 1, and7; € TypeOmegathenr, € TypeOmega.
2. If 7 <% 7 and7’ #% Qthent £2 Q.
3. Ifrn7 £? Qthent £2 Qor7r’ %% Q.

4. If 7' ~2 Qthenr <2 7N 7.

5. If 7 <2 7/ andinlnter(r; — 72,7') andm, %% Q then there exist > 1 and 7, r{,..., 7., 7
such that for alli € {1,...,n}, inlnter(r] — 7,7) and7/ #? Qandr/N--- N7/ <% 7.
Moreover, ifr; ~2 Q then foralli € {1,...,n}, 7/ ~? Q.

6. Forallr,7 € Type?, o — Q — 7/ 42 Q — 7.

Proof: 1) By induction on the size of the derivation of <? 7, and then by case on the last derivation
rule.
2) Letr <2 7/. Assumer ~2 Q. Then§) <? 7 and by transitivity) <? 7. Moreover, by (), 7’ <2 Q.
Sor’ ~? Q.
3)By (), 7 N7 <2 Q. LetT ~2 Qandr’ ~? Q, soQ <2 7 andQ <? 7’ and by(mon’), 2 <2 7N 7.
4) By (), 7 <? Q and by transitivity,r <2 7/ becaus&? <? 7'. By (ref), 7 <? 7 and by (mon/),
r<?2rnt.
5) By induction on the size of the derivation of<? 7’ and then by case on the last derivation rule.
6) Letr' e Type®. First we prove thafl — 7/ %2 Q. Assume2 — 7/ ~2 Q thenQ <2 Q — 7. By
lemma 3.5.1Q2 — 7’ € TypeOmega which is false. We distinguish the following two cases:

o LetT ~2 Q. Assumen — Q — 7/ ~2 Q — 7thenQ — 7 <? a — Q — 7/. By lemma 3.5.5,

T <2 O — 7/ which is false.
o LetT £2 Q. Assumen — Q — 7/ ~? Q — 7thena — Q — 7/ <2 Q — 7. By lemma 3.5.5,

a ~2 Q) becausd) ~2 Q, which is false.
0

The next lemma establishes the failure of a basic lemma oORkEL

Lemma 3.6. (Lemma 3.16 of [GL02] does not hold)
The following lemma of [GLO2] does not hold:
VAR(P,P) = V7 € Type®. (V7' € Type®. (1 #2 Q — 7') = VAR(P, [7]%)).
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Proof: To show that the above statement is false, we provide a caxat@ple. First, note that
VAR(P, [7]%) implies thaty C [r]%. Letz € V, 7 bea — Q — o andP beWN. By lemma 3.5.6, for
all 7/ e Type?, 7 2 Q — 7. Also VAR(P, P) is trivially true. Now, assum&AR(P, [7]%). By defi-
nition, z € [r]%. Then,z € [a — Q — a]% = [r]%. Becauser € P = [a]% and@® € A = [Q]%
thenzz(®®) € [a]% = P. Butzz(®@®) € P is false, SOVAR(P, [r]%) is false. O

The proof for Lemma 3.18 of [GL02] does not work (because ofeng use of an induction hypoth-
esis) but we have not yet proved or disproved that lemma:

Remark 3.7. (It is not clear that lemma 3.18 of [GL02] holds)
It is not clear whether the following lemma of [GL02] holds:

SAT(P,P) = V7 € Type®. (V7' € Type®. (1 #£% Q — ') = SAT(P, [7]%)).

The proof given in [GLO2] does not go through and we have eeitieen able to prove nor disprove
this lemma. It remains that this lemma is not yet proved amet&eannot be used in further proofs.

Furthermore, Ghilezan and Likavec state a propositiong@sibion 3.21) which is the reducibility
method for typable terms. However, the proof of that prajpmsidepends on two problematic lemmas
(lemma 3.16 which we showed to fail in our lemma 3.6, and len3m& which by remark 3.7 has not
been proved). The following lemma is needed to prove thgbdxition 3.21 of [GLO2] does not hold:

Lemma 3.8. VAR(WN, WN), CLO(WN, WN), INV(WN) andSAT(WN, WN) hold.

Proof: e VAR(WN,WN) holds becaus&x € V,Vn > 0,VNy,...,N, € WN,zN; ... N, € WN.

e CLO(WN,WN) holds because iin,m > 0, 3z¢9 € V, INy,...,N,, € NF such that\/ —%
AT1. ...  \xp. 29Ny ... Ny, thenVy € V, \y.M —>Z AY A1 . Axp. N7 ... Ny € NF.
e INV(WN) holds because iin,m > 0, 3o € V, INy,..., N, € NF such that\z.M —

AL1. ... Axp.xoNy ... Ny, thenxy = x and M —>E ATo. ... Axp.xoN1 ... Npy,. ’
e SAT(WN, WN) holds because since M [z := N|N; ... N, € WN wheren > 0andNy,...,N, €
WN then3P € NF such thatM [z := N|N;... N, —j P. Hence,(Az.M)NN; ... N, —5 Mz :=
NIN; ... N, =% P. O

Lemma 3.9. (Proposition 3.21 of [GL02] does not hold)
AssumeVAR(P,P), SAT(P,P) andCLO(P, P). The following proposition of [GL02] does not hold:
vr € Type®. (1 2 QAT € Type®. (1 £ Q = 7)ATF2 M : 7= M € P).

Proof: LetP beWN. Note that\y.\z.®® ¢ WN and@ 2 \y.\z.@® : a — Q — Q is derivable,
wherea — Q — Q #2 Q and by lemma 3.5.6¢0 — Q — Q 2 Q — 7/, for all 7 € Type?. Since
VAR(WN, WN), CLO(WN, WN) andSAT(WN, WN) hold by lemma 3.8, we get a counterexample for
Proposition 3.21 of [GLOZ2]. O

Finally, Ghilezan and Likavec’s proof method for untypenhis fails too.

Lemma 3.10. (Proposition 3.23 of [GL02] does not hold)
The following proposition of [GL02] does not hold:
If P C Ais invariant under abstraction (i.dNV(P)), VAR (P, P) andSAT (P, P) thenP = A.

Proof: As by lemma 3.8VAR(WN, WN), SAT(WN, WN), andINV(WN) hold, we get a counterex-
ample for Proposition 3.23. Note that the proof in [GL02] elegls on Proposition 3.21 which fails.O
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4. How much of the reducibility method of [GL02] can we salvag@?

This section provides some indications on the limits of tlethnd. We show how these limits affect the
salvation of the method, we partially salvage it, and we stiat the obtained method can correctly be
used to establish confluence, standardisation, and weadknoemal forms but only for restricted sets of
lambda terms and types (that we believe to be equal to thd sebogly normalisable terms). We also
point out some links between the work done by Ghilezan andugk and that of Gallier [Gal98].

Because we proved that Proposition 3.23 of [GL0Z2] is false kmow that the set of properties that
a set of termsP has to satisfy in order to be equal to the set of terms of thgpeict\-calculus cannot
be{INV(P), VAR(P,P),SAT (P, P)}. Therefore, even if one changes the soundness result gptee t
interpretation (the set of realisers) in order to obtainghme result as the one claimed by Ghilezan and
Likavec, one also has to come up with a new set of properties.

Proposition 3.23 of [GL02] states a set of properties chiarming the set of terms of the untyped
A-calculus. The predicat€ AR (A, A) states that the variables (more generally, the terms ofdima f
xN M --- M,,) belong to the untyped-calculus. The predicateNV (A) states among other things that
given a\-term M, the abstraction of a variable ovéf is a -term too. Therefore, to get a full character-
isation of the set of terms of the untypgecalculus, we need predicates that cover the applicatieg,ca
i.e., a predicate, say PP (P), stating tha{ \e. M )N M, --- M,, € P if M, N, M,..., M, € P, needs
to hold. Note that this predicate cannot be equivalent testime of propertie/ AR(P, P), SAT(P, P)
andINV(P) since we saw that the &N satisfies these properties but is not equal toXfelculus.
Hence, these properties are not enough to characterisedaleulus.

The problem with these properties is that if one tries toagdvGhilezan and Likavec’s reducibility
method, the propertie§AR(P, P) and CLO(P, P) impose a restriction on the arrow types for which
the interpretation is ifP (the realisers of arrow types) as we can see below in the aymsvcase of the
proofs of lemmas 4.4.5 and 4.5. We show at the end of thisosetitat even if the obtained result when
considering these restrictions is an improvement of th&lifezan and Likavec using the type system
AN!, it is not possible to salvage their method. (Note that thigtien does not introduce a new set of
predicates. Instead it constrains further the type systeed in the method.)

The non-trivial types introduced by Gallier [Gal98] (seddwd are not much help in this case,
because of the precise restriction imposedViByR (P, P). One might also want to consider the sets
of properties stated by Gallier [Gal98], but they are unfoately not easy to prove f&R (Church-
Rosser), because they require a proat df € CR for all M € A. Moreover, if one succeeds in proving
that the variables are included in the interpretation offandd set of types containing — «, wheref)
is interpreted ag\ anda asP, then one has proved that\/ € P, which in the casé® = CR means
M € CR (this gives the intuition as why the arrow types@Type® defined below are of the form
p — @, wherep cannot be thé) type).

It is worth pointing out that part of the work done by Galli€&dl98] could be adapted to the type
system\nZ2. Gallier defines the non-trivial types as follows (where Type?):

v € NonTrivial :=a |7 — ¢ | TNy |YNT

Note thatNonTrivial C Type®. Types inType? are then interpreted as followga]pr = P, [ N 7]p =
[rYlp = [rlp N [W]p, [7]» = Aif 7 ¢ NonTrivial and[r — ¢]p = {M € P | VN €
[7]p- MN € [4]p}. One can easily prove that#f <?  then[r]p C [2]». Hence, considering the
type system\n? instead ofDS2, Gallier's method provides a set of predicates which whéisfgad by a
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set of termsP implies that the set of terms typable in the systen? by a non-trivial type is a subset of
‘P. Gallier proved that the set of head-normalisixgerms satisfies each of the given predicates.

Using a method similar to Ghilezan and Likavec’s method/i€&adlso proved that the set of weakly
head-normalising termsA() is equal to the set of terms typable by a weakly non-triwaktin the type
systemDS2. The set of weakly non-trivial types is defined as follows:

1 € WeaklyNonTrivial :=a |7 = ¢ | Q= Q| 7Ny [N T

As explained above and inspired by Gallier's method, we caw try to salvage Ghilezan and
Likavec’'s method by first restricting the set of realisersewliefining the interpretation of the set of
types inType?. The different restrictions lead us to the definitionNdoFType® (where “NT” stands for
non trivial sinceNTType® = NonTrivial) and the following type interpretation:

Definition 4.1. We defineNTType® by:
peNTType :=a |7 —p|pn7|TNp
Note thatNTType® c Type?. We define a new interpretation of the typedype? as follows:
° [[a]]% =P.
o [N 7'2]}5;’) = [[7'1]]% N [[7'2]]%, if 7 N7 e NTType®.
o [7]% = A, if 7 ¢ NTType®.
o [ =]l ={MecP|YNec[nlh MN € [n]b},if 1 — m € NTType®.

In order to prove the relation between the stronger indachtigpotheses\(AR, SAT, and CLO)
and those depending on type interpretatioia g2, SAT?, and CLO?), and in order to be able to use
these stronger induction hypotheses in the soundness lemenlaave to impose other restrictions (we
especially need these restrictions to prove lemma 4.4dwbehich itself uses lemma 4.4.2 and the fact
that arrowOType® types defined below are of the restricted fgsm- ).

Definition 4.2. We define the seédType® (where “O” stands foomega as follows:
goEOType?’ =a|Qlp—oelent|TNe

Note thatOType® c Type?.

LetI' € B3 = {{z1 : o1,...,@n : o} | Vi,j € {1,...;nb 2 = 2 = ¢ = @}, i.e,
environments i3 are built from types irOType®.

Let -3 be-? where3? is replaced by3?, and let\n? be the type system based lefh

Let =% be the relatior=% where[r]3 is replaced by[7]3.

Note that-, A\n?, and}=%, are still built onType®.

Due to the saturation predicate and its uses, we could imfpageer restrictions on the type system.
Alternatively, we slightly modify this predicate (for sirigity of notation, we keep the same name):

Definition 4.3. SAT(P, X) <= (VM,N € A.Vz € V.¥n € N.YNy,..., N, € A.
Mlz := N]N;y... Ny € X = (Ae.M)NNy ... N, € X).
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We can prove that iP € {CR, S, W}, whereCR is the Church-Rosser proper®y,is the standardi-
sation property, an@V is the weak head normalisation property, ti3eXil' (P, P) holds.
The next lemma (and the relation between the old/new indidtypothesis) is useful for soundness.

Lemmad.4. 1. [rNnld=[n]bN [n]b.
2. [pl3 C P.

. If <2 7 andm € NTType® thenr, € NTType®.

3

4. If 1y <? 5 then[n]3 C [ra].

5. If VAR(P, P) then for allp € OType®, VAR(P, [¢]3).
6

. If SAT(P, P) then for allr € Type?, SAT(P, [7]3).

Proof: 1) If 1 N7 € NTType® then it is done by definition. Otherwise, » ¢ NTType®.
Hence[r N3 = A = ANA = [n]3 N [r2]3.

2) By induction on the structure ot

3) By induction on the size of the derivation af <? 7, and then by case on the last step.

4) By induction on the size of the derivation of <? 7, and then by case on the last step.

5) By induction on the structure qf.

6) By induction on the structure of. O

We now state the following soundness lemma:
Lemma 4.5. If VAR(P, P), SAT(P,P), CLO(P,P) andl' -* M : 7 thenl' =3, M : 7.

Proof: By induction on the size of the derivation Bf-3 M : 7 and then by case on the last rule used
in the derivation. Cases dealing with¢ NTType® are trivial since[r]% = A. The intersection case is
also trivial by IH. So we only consider € NTType® wherer is not an intersection type.

e (az): Letv =4 Tz : p thenv(z) € [¢]3.

e (—g)ByIH ' =* M : 7 — nandl E* N : 7, so by lemma 3.2.10] =3, MN : 7
(because if, € NTType® thenr; — 75 € NTType?).

e (=) ByIH, Iz :7m =L M : 7. Letv =5 T'andN € [r]h. Thenv(z := N) =5 T
sincez ¢ dom(T') andv(z := N) =5 « : 7y sinceN € [r]}. Thereforev(z := N) =5
M : 7y, ie. [M],.=n) € [2]3. Hence, by lemma 3.2.14M],,.—p) [z := N| € [r]3.
SinceSAT(P,P) holds, we can apply lemma 4.4.6 to obtdixw.[M],(,.—,))N € [r]%. By
lemma 3.2.1¢([Az.M],)N € [r2]%. Hence[Az.M], € {M | VN € [n]%. MN € [r]3}.
Sincer; € OType® and becaus&AR(P, P) holds, then by lemma 4.4.5, [m1]%. Hence, by
the same argument as above we obfaif],,.—,) € [[72]}5,’3. Sincer; — 7 € NTType® then

5 € NTType®. BecauseCLO(P,P) holds, then by lemma 4.4.27.[M],(z.—s) € P, and by
lemma 3.2.1c[Az.M], € P. Hence, we conclude thfhz.M], € [r1 — 2]%.
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e (<3): We conclude by IH and lemma 4.4.4.

e (Q): This case is trivial because ¢ NTType®.
0

The next lemma states that a set of terms satisfying the GHrosser, the standardisation, or the
weak head normalisation properties, also satisfies thablarisaturation and closure predicates.

Lemma4.6. LetP € {CR,S,W}. ThenVAR(P, P), SAT(P,P), andCLO(P, P).

Proof:  Straightforward using the relevant property and predicataitions. O
We obtain the following proof method which is our attemptaltzaging the method of [GL02].

Proposition 4.7. If T'F3 M : pthenM € CR, M € S, andM € W.

Proof: Bylemma 4.6, lemma 4.4.2 and lemma 4.5 O

We conjecture that the set of terms typable in our type systéis no more than the set of strongly
normalisable terms.

5. Formalising the background on developments

In this section we go through some needed background froi@(Kon developments and we precisely
formalise and establish all the necessary properties.ubimaut the paper, we takdo be a metavariable
ranging oven). As far as we know, this is the first precise formalisation @f@lopments. Our definition
of developments is similar to Koletsos and Stavrinos’s [B]S@ major difference is that Koletsos and
Stavrinos [KS08] deal informally with occurrences of reglexvhile the current paper deal with them
formally using paths (see definition 2.1.3 above).

The next definition adapta. of [Kri90] to deal with 51- and #n-reduction. Al. is A. where in the
abstraction construction rule (R1).2, we restrict abstvado Al. In An. we introduce the new rule (R4)
and replace the abstraction rule/of by (R1).3 and (R1).4.

Definition 5.1. (An., Al )
1. We letM. range over\r,., Al . defined as follows (note thatl. C Al):
(R1) If z is a variable distinct frona then
1. ze M..
2. If M € Al.andz € fv(M) then\z.M € Al..
3. If M € An. then\z.M [z := c(cx)] € Ane.
4. If Nx € An. such thatr & fv(N) andN # cthen\z.Nz € An..
(R2) f M, N € M.thencM N € M..
(R3) If M, N € M. andM is a\-abstraction thed/ N € M..
(R4) If M € An.thencM € An..
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As standard in lambda calculi, the next lemma gives necggs@mrmation on terms of\1...

Lemma 5.2. (Generation)
1. Mz = c¢(cx)] # « and for anyN, M [z := c(cx)] # Nz.

2. Letx ¢ fv(M). Then, M|y := c(cx)] # = and for anyN, M|y := c¢(cz)] # Nz.
3. If M € M.thenM # c.

4. If M,N € M thenM|[z := N] # c.

5. LetMN € M.. ThenN € M. and either:

e M = cM’' whereM'’ € M, or
e M =candM, = An.or
e M = \z.Pisin M,.

6. If (M) € M.thenM € M..
7. If M € An. andn > 0 thenc™ (M) € An.
8. If \z.P € An. thenz # ¢ and either:

e P = Nz whereN, Nz € An,, z ¢ fv(N) andN # cor
e P = N[z :=c(cx))] whereN € An..

9. If \x.P € Al thenz # ¢, x € fv(P) andP € Al..
10. If M,N € M. andz # cthenM [z := N] € M..

11. Lety & {x,c}. Then:

o If Mz :=c(cx)] =ythenM = y.
o If M|z :=c(cx)] = PythenM = Ny andP = N[z := ¢(cz)].
o If M|z :=c(cx)] = \y.PthenM = \y.N andP = N[z := c(cx)].

o If Mz := ¢(cx)] = PQ then eitherM = z, P = cand@ = cx or M = P'Q" and
P = P'[z := c(cz)] and@ = Q'[z := c(cx)].

If Mz := c(cz)] = (\y.P)Q thenM = (\y.P")Q' andP = P'[x := ¢(cx)] and@ =
Q' [z := c(cx)].

12. LetM € An,.

(@) If M = \x.PthenP € An..
(b) If M = Azx.PxthenPz, P € An., x ¢ tv(P) U {c} andP # c.

13. (a) Letr # c. Mz := c(cx)] Lg, M'iff M' = N[z := c(cx)] andM L, N.
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(b) Letn > 0. If (M) ign M’ thenp = 2".p" and there exist&v € An,. such thatM’ =
¢(N) andM 5, N.

Proof: 1) and 2) By induction on the structure df.
3) By cases on the derivation 8f € M..

4) By cases on the structure &f using 3).

5) By cases on the derivation 8f N € M..

6) By induction onn.

7) Easy.

8) By cases on the derivation af:. P € An,.

9) By cases on the derivation af. P € Al..

10) By induction on the structure aff € M..

11) By case on the structure 6f.

12a) By definitionz # c. By 8), P = Nz whereNz € An. or P = N[z := ¢(cx)] whereN € An,. In
the second case since by (Rf}z) € An., we get by 10) thalV [z := c(cz)] € An,.

12b) By 1) and 8).
13a) Both=-) and<«) are by induction on the structure pf
13b) By induction om. O

As the formalisation of developments is basic to our worle, tiext lemma is about sets/paths of
redexes.

Lemma5.3. Letr € {1, fn} andF C R),.
o If M € VthenR), = g andF = @.
o If M =Xx.NthenF ={p|1lpeF} C R} and:

—if M e R"thenR}, = {0} U{l.p |p e Ry}andF\ {0} ={l.p | p e F'}.
—elseR), ={l.p|pe Ry }andF ={l.p | p € F'}.

o If M =PQthenF ={p|[lpeF} CRp Fo={p|2p€F}CRGand

— if M e R"thenR}, ={0}U{l.p [p e Rp}U{2.p|p e RGtandF \ {0} ={l.p[p €
Fiyu{2.p|p e R}

—elseRy, ={lp|p e RptU{2p|peRGandF ={1.p |p e Fi}U{2.p|p € Fo}.

Proof: The part related t&’), is by case on the structure 8f. The part related t& is also by case
on the structure ol and uses the first part. O

The next lemma shows the role of redexes w.r.t. substitstiovolving c.

Lemma5.4. Letr € {fn, I} andz # c.
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1. M € RAiff Mz := c(cx)] € RPN

2. If p e RV thenM[z := c(cx)]|, = M|p|z := c(cx)).
3.pe ng.M[ﬁC(mﬂ iff p=1.p' andp’ € Rﬁ}/?[x::c(w)}.
4. R%x::c(cx)] = R%]-

5. Rff](M) ={2"p|pe€ Rg/’;}

Proof: 1) and 2) By induction on the structure &f.

3=)Letp € RfZ.M[ﬁzcmﬂ. By lemma 5.2.1\z. M|z := c(cx)] € R so by lemma 5.3p = 1.p’

such thaty’ € Rfj

8 B
<) Letp € Ry, o BYlemmab3lp € RYT ooy

[z:=c(cx)]"

4)=) Letp € R/]G\;[x::c(cx)]' We prove the statement by induction on the structurg/of

<) Letp € R%,. Then by definitionM|, € RP". By 1), M|,[x := c(cx)] € RP". By 2), M[z :=
c(ex)]|, € RPN, Sop € Rf}
5) By induction onn > 0. O

[x:=c(cx)]"

The next lemma shows that any elemékt. P)Q of Al. (resp.An.) is aBI- (resp.5n-) redex, that
Al (resp.An.) contains thedI-redexes (respin-redexes) of all its terms and generalises a lemma given
in [Kri90] (and used in [KS08]) stating thakn. (resp.Al.) is closed undef- g, - (resp.— r-) reduction.

Lemmab5.5. 1. Let(M,,r) € {(Al.,BI),(An., Bn)} andM € M..

(@) If M = (A\z.P)QthenM € R".
(b) If p € R}, thendM|, € M..

2. (a) IfM € An.andM —g, M’ thenM’ € An,.
(b) If M € Al.andM —p; M’ thenM’ € Al...

Proof: 1a) By case om.
1b) By induction on the structure af.

2a) LetM € An. andM —g, M’. Then there existg such that\/ ﬂgn M'. We prove thatVl’ € An,
by induction on the structure of

2b) By induction onM — gy M’. O
The next definition, taken from [Kri90], erases all #iefrom an M _-term. We extend it to paths.

Definition 5.6. (| — |)
We define| M |© and|(M, p)|¢ inductively as follows:
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ozl =1x o [ \z.N|¢= Ax.|N|%ifz#c
e |cP|° = |P|° e [INP|°=|N|°|P|°If N # ¢
o [(M,0)|°=0 o |(Ax.M,1.p)|¢ =1.|(M,p)|¢, if z # ¢
o [(eM,2.p)[* = [(M, p)[* o (NM,2.p)|* = 2.[(M, p)|*, if N # ¢

o [(MN,1.p)|* = 1.[(M, p)|°
Let F C Path then we define(M, F)|© = {|(M, p)|° | p € F}.

Now, ¢ is indeed erased frofa™ (M )|¢ and from|c™(N)|© for anyc™(N') subterm ofM.

Lemmab5.7. 1. Letn > 0then|c"(M)|¢ = |M|°.

2. [(e" (M), R )| = (ML RED

3. [{c"(M),2".p)|* = [(M, p)|°.
4. Let|M|° = P.

e If P € Vthendn > 0 such that\V/ = ¢"(P).
o If P = )\z.QQ thendn > 0 such thatM = ¢"(Az.N) and|N|¢ = Q.
e If P = PP, thendn > 0suchthatM = Cn(MlMQ), My 75 C, ‘M1|C =P and|M2|C =P

Proof: 1), 2) and 3) By induction on.
4) Each case is by induction on the structuré\bf O

The next lemma shows that: if theerasures of two paths @/ are equal, then these paths are
also equal and inside a term; substitutingy c(cz) is undone bye-erasurey is definitely erased from
the free variables ofM/|¢; erasure propagates through substitutions; @adasing a\l.-term returns a
Al-term.

Lemmab5.8. 1. Letr € {8I,0n}. If p,p’ € Ry, and|(M, p)|¢ = [(M, p')| thenp = p’.
2. Letx # c. Then,|M [z := c(cx)]|® = |M]°.
3. Letz # candp € R57. Then,|(M [z := c(cz)], p)|¢ = [(M, p)|°.

If M € M. thenfv(M)\ {c} = tv(|M]°).

If M, N € M.andz # cthen|M[z := N]|® = |[M|[z := | N|°].

If M € Al then|M|¢ € Al

A -

Let(./\/lc,’l”) € {(Alcaﬁj)> (AT/CaﬁT/)} andM> M1>N17M27N2 S Mc-

@) Ifp € Ry, andM B, M’ then|M|® %, | M| such thay’ = |(M, p)|°.

(b) Lete # ¢, [(My, Ry, )l C [(Ma, Ry, )% [(N1, R )| C [(Noy R, ), [My[° = | Moo
and|N; |° = |Na|e. Then,[(Mi[z == NiJ, R,y )| C [(Malz = Nol Ry e,
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(©) Let|(My, Ry, )| € [(Ma, Ry, )| and [My|© = [My[°. If M, B, My, My B, M} such

that|(My, p1)|© = [(Ma, p2)|© then| (M7, Ry, )| € [(Ma, Ry )|

Proof: 1)... 6) By induction on the structure 6f.
7a) By induction on the structure pf
7b) and 7¢) By induction on the structure faf; . O

6. Reducibility method for the CR proofs w.r.t. 37- and n-reductions

In this section, we introduce the reducibility semantiastfoth 37- and Gn-reductions and establish its
soundness (lemma 6.4). Then, we show that all terms typaleliéhierD; or D satisfy the Church-Rosser
property, and that all terms dfl. (resp.An.) are typable in syster®?; (resp.D).

The next definition introduces a reducibility semanticsTigpe' types.

Definition 6.1. 1. Letr € {31, 3n}. We define the type interpretatidn-]” : Type! — 2% by:

e [a]" = CR", wherea € A.
o [ont]" =[o]" N[r]".
e [c—7]"={MeCR"|VN € [o]". MN € [r]"}.

2. AsetX C Ais saturated ifffn > 0. VM, N, My,..., M, € A.Vr € V.
Mz := N|M;...M, € X = Dz.M)NM, ... M, € X.

3. AsetX C Alis I-saturated iffyn > 0. VM, N, M, ..., M, € A.Vr € V.
xefv(M)= M[z:=N|M;...M, € X = (M. M)NM,...M, € X.

The next background lemma is familiar to many type systems.

Lemma6.2. 1. IfT'F°1 M :othenM € Al andfv(M) = dom(I").
2. Letl’ 9" M : 0. Thenfy(M) C dom(T") and ifT" C T thenI” 57 M : o.

3. Letr e {BI,0n}. fTH" M : 0,0 C o’ andl” C T thenI” " M : o',

Proof: 1) By induction onl’ H%/ M : o.
2) By induction onl’ F57 M : o.

3) First prove: ifl’' =" M : o, ando C ¢’ thenI' =" M : ¢’ by induction ono C ¢’. Then, do the proof
of 3. by induction on” " M : o. O

The next lemma states that the interpretations of types attgated and only contain terms that
are Church-Rosser. Krivine [Kri90] proved a similar redoit » = 5 and whereCR{; andCR" were
replaced by the corresponding sets of strongly normaligings. Koletsos and Stavrinos [KS08] adapted
Krivine’s lemma for Church-Rosser w.rfg-reduction instead of strong normalisation. Here, we adapt
the result to31 andSn.
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Lemma 6.3. Letr € {51, Gn}.
1. Vo € Type'. CR}, C [o]" C CR".
2. CRP is I-saturated.
3. CR™ is saturated.
4, Yo € Type'. [¢]? is |-saturated.
5. Vo € Type'. [0]”" is saturated.

Proof: WhenM —! N andM — P, we writeM —} {N, P}.

1) By induction onw € Type!.

2) Let M[z := N]N;...N, € CRY wheren > 0, z € fv(M) and (\z.M)NN;... N, —%,
{M1, M>}. By lemma 2.2.7, there exidt/; andMj such that\, —7, My, Mz := NNy ... N, —7;

M{, My —%; My andM(z := NNy ... N, —%; M}. Then, usingM [z := N]N; ... N, € CR™,

3) Let M[z := N]N;...N, € CR” wheren > 0 and(Az.M)NN; ... N, —% {M;, My}. By
lemma 2.2.7, there exist/; and A5 such thathl; —7, M{, M[z := NNy ... N, —5 Mj, My —7,
MjandM |z := NINy ... N, —%, Mj. Then we conclude usindy/[z := N]N; ... N, € CR™".

4) and 5) By induction om. O

Next, it is straightforward to adapt (and prove) the sousdiemma of [Kri90] to bott-?! and-~7.

Lemma6.4. Letr € {BI,0n}. If 21 :01,...,2p :0p F" M : candVi € {1,...,n}, N; € [o;]" then
M[(x; := Ni)7] € [o]".

Proof: By inductiononzy : 01,..., 2, : 0y F" M : 0. O

Finally, we adapt a corollary from [KS08] to show that evesynh of A typable in systenD; (resp.
D) has the3! (resp.5n) Church-Rosser property.

Corollary 6.5. Letr € {BI,5n}. f T +" M : o thenM € CR".

Proof: LetI' = (z;: 0;),. Bylemma6.3¥i € {1,...,n},x; € [o;]", so by lemma 6.4 and again by
lemma 6.3 € [o]" C CR". O

To accommodate& /- and Sn-reduction, the next lemma generalises a lemma given ifXrfand
used in [KS08]). This lemma states that every term\bf (resp.A7.) is typable in syster®; (resp.D).

Lemma 6.6. Letfv(M) \ {c} = {z1,...,z,} C dom(I") wherec ¢ dom(I").

1. If M € Al then forl” =T | fv(M), 3o, 7 € Type' such that
if ¢ € fv(M) thenT’,c: o F31 M : 7, and ifc & fv(M) thenI =57 M : 7.

2. If M € An. thendo, T € Type! such thaf’,c: o H°7 M : 7.

Proof: By induction onM . Note that by Lemma 5.2\f # c. O
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7. Adapting Koletsos and Stavrinos’s method [KS08] tg3/-developments

Koletsos and Stavrinos [KS08] gave a proof of Church-Ro&sef-reduction for the intersection type
systemD of Definition 2.3 (studied in detail by Krivine in [Kri90]) ahshowed that this can be used
to establish confluence gkdevelopments without using strong normalisation. In fgistion, we adapt
their proof to3I. First, we adapt and formalise a number of definitions andramgiven by Krivine

in [Kri90] in order to make them applicable t&Y-developments. Then, we adapt [KS08] to establish the
confluence ofiI-developments and hence @f-reduction.

7.1. FormalisingI-developments

The next definition, taken from [Kri90] (and used in [KS08Beas the variable to “freeze” thesI-
redexes of\/ which are not in the sef of 51-redex occurrences i/, and to neutralise applications so
that they cannot be transformed into redexes aftereduction. For example, ia(A\z.z)y, c is used to
freeze the3-redex(\z.x)y.

Definition 7.1. (®¢(—, —))
Let M € Al, such that ¢ fv(M) andF C Rfj

1. If M =z thenF = @ and®‘(x, F) =z

2. If M = Xx.N such thatz # candF = {p | 1.p € F} C Rf{f then ®¢(\z. N, F) =
Az.®¢(N, F).

3. MM =NP,Fi={p|lpeF} CR andF, = {p | 2.p € F} C RS then

(N, F) (P, Fo) f0¢F

P°(NP,F) =
( ) { O°(N, F1)®@¢(P, F2) otherwise.

The next lemma is an adapted version of a lemma which appef£S08] and which in turns adapts
a lemma from [Kri9Q].

Lemma7.2. 1. IfM e Al,c¢gfv(M),andF C Rgfj then

(@) tv(M) = tv(@°(M, F)) \ {c}.
(b) @¢(M,F) € Al..

(c) [®°(M, F)|° = M.

(d) |<(I)C(M7F)>Rg£(]w7]:)>|c :‘7:

2. LetM e Al..

(@) |(M, Ry € Ry andM = &<(|M %, [(M, RID)[).

(b) (|M]¢, (M, R§f>|c> is the one and only paitV, F) such thatV € Al, ¢ & ftv(N), F C R]%I
and®¢(N,F) = M.
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Proof: Allitems of 1) are by induction on the structure bf € Al. Note that 1b) uses 1a) and that 1d)
uses 1b).

2a) By induction on the construction 8f € Al.. Note that by lemma M |¢ € Al.

2b) By lemma 6/M|° € Al. By lemma 4,c ¢ fv(|M|). By 2a,|(M,R}})|° € R{}. and M =
Oe(|M|°, (M, Rﬁ%\c). To show unicity, let{N’, 7') be another such pair. We ha® C Rﬁ,j, and
M = ®(N',F'). Then,|M|* = [®(N', F)|* ='* N" and F' =!* [(B(N', F'), Ry. s 5 =
(M, RAI 0

The next lemma is needed to defifié-developments.

Lemma 7.3. Let M € Al, such that ¢ fv(M), F C R, p € FandM 5, M'. Then, there exists
a unique sef’ C R% such thatb®(M, F) ig[ O¢(M', F') and[(®°(M, F), p")|¢ = p.

Proof: Bylemma 7.2.1c and lemma 5.8.5.8.1, there exists a urpd&eRg{(Mf), such that

\(Rgﬁ(M f),p’ﬂc = p. By lemma 2.2.8, there exisf3 such thatb“(M, F) ig[ P. Bylemma5.8.7a,

M =721 |oe(M, F)|c Bg;p [P, such thaﬂ(Rgﬁ(Mf),p’Hc = po. S0p = pog and by lemma 2.2.9,
M' = |P|c. LetF = |[(P,R})|°. Because®‘(M,F) %5; P, by lemma 2 and lemma 7.2.1b,
P € Al.. Bylemma 7.2.2aP = ®¢(M', F') andF’' C R%. By lemma 7.2.2bF" is unique. O

We follow [Kri90] and define the set gi/-residuals of a set of/-redexesF relative to a sequence
of gI-redexes. First, we give the definition relative to one redex

Definition 7.4. Let M € Al, such that & fv(M), F C Rﬁ, p e FandM im M'. By lemma 7.3,

there exists a uniqué” C R% such thad*(M, F) % 5; @¢(M’, F') and|(®(M, F), p')|° = p. We
call 7’ the set ofgI-residuals in M’ of the set of 3I-redexesF in M relative to p.

Definition 7.5. (31-development)
Let M € Al wherec ¢ fv(M) and F C Rfj A one-stepiI-development of( M, F), denoted

(M, F) =14 (M', F'), is apI-reductionM % 5; M’ wherep € F andF" is the set of3I-residuals in
M’ of the set of3I-redexesF in M relative top. A 3I-developmentis the transitive closure of a one-
stepI-development. We write alsb/ ig[d M, for the 5I-development M, F) —%d (M, Fp).

7.2. Confluence ofs/-developments hence of /-reduction

The next lemma is informative abogt/-developments. It relates/-reductions of frozen terms {6!-
developments, and it states that givefiladevelopment, one can always define a new development that
allows at least the same reductions.

Lemma7.6. 1. LetM € Al, suchthat ¢ fv(M)andF C R’fj Then:(M, F) =5y (M, F') <=
(M, F) —%, (M, F).
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2. LetM € Al, such thate ¢ fv(M) andF, C Fy C Rfj If (M,F1) —pra (M',F]) then there
existsF; C R% such thatF] C F; and(M, Fo) —gra (M, Fy).

Proof: 1) It sufficient to prove{M, F) —grq (M',F') <= ®(M,F) —p; (M, F').

o =) Let(M,F) —pgrq (M',F'). By definition 7.53p € F whereM 5y M’ andF' is the set of
pI-residuals inM' of the set of redexe$ in M relative top. By definition 7.4,&°(M, F) — g1
(M, F').

o <) Let (M, F) —pr ®¢(M',F'). By lemma 2.2. SHqu)C(M}-) such thatbe(M, F) L s;
o°(M’', F'). Because, by lemma 7.2.18¢(M, F) € Al., by lemma 5.8.7a and lemma 7.2.1c,
M = |®¢(M, F)|c Bgp |@¢(M', F')|© = M’ such tha{(®¢(M, F), po)|® = p. By definition 7.4,
F'is the set ofsI-residuals inM’ of the set of redexe& in M relative top,. By definition 7.5,
(M, F) —gq (M',F").

2) By lemma 7.2.1b®¢(M, F), (M, F2) € Al.. By lemma 7.2.1c|®¢(M, F1)|¢ = |®(M, F2)lc.
By lemma 7.2.1d|(®(M, F1), Rk, ) |° = Fi © Fo = [(@°(M, ), R 1 )"
If (M, Fy) —>ﬁ1d (M', F7) then by Iemma l<1>C(M Fi) —pr (M, F}). By lemma 2.2.8, there

existsp; € chc(Mf) such thatdc(M, Fy) Bgr @M, F}). Letpy = |(R§£<Mﬁ),p1>lc, so by

lemma 7.2.1dpy € F;. By lemma 5.8.7a and lemma 7.2. i, 2 —>BI M.

By lemma 7.3 there exists a unique st C RM,, such that®¢(M, J-'l) —/m (M’ F') and
|(<I>C(M, F1),p)|¢ = po. By lemma 2.2.8p’ € wa(Mf) Sincep’, p; € wa(Mf) by lemma 5.8.1,
p’ = m. So, by lemma 2.2.99p¢(M', ') = ®°(M',F]). By lemma 7.2.1d,f" = F| and F| =
(@M, F1), Rige apr 1))

By lemma 7.3 there exists a unique s&t C Rfj,, such thatd(M, F») Zg; @¢(M’', F3) and
‘(QC(M7FQ)7PQ>|C:])O' ;
By lemma 2.2.8p; € ®¢(M, F»). By lemma 7.2.1dF} = [(®¢(M', F3), RgC(M, f,)>|c.

Hence, by lemma 5.8.7¢] C F, and by lemma L(M, F2) —pgrq (M', F5). 0

The next lemma adapts the main theorem in [KS08] where asfaredknow it first appeared.

Lemma 7.7. (Confluence of the3!- develogments)
Let M € Al, such thate ¢ fv(M). If M —Wd M; and M —Wd Mo, then there exisf] C Rfjl,

].'
Fi C R% andMs € Al such thathy —Wd M;z andMy = grq M.

Proof: If M ﬂﬁld M, andM Qﬁld Mo, then there existg7', 7 such that M, F1) — 5, (M1, FY)
and (M, F2) —7%14 (Ma, Fy). By definitions 7.4 and 7.5F C Rfjl and 7y C R%. Note that by
definition 7.5 and lemma 2.2.4/,, M> € Al. By lemma 8.6.2, there exist]” C R% and Fy’ C

R4, such that(M, F1 U %) —h1a (M, Fy U F"y and (M, Fy U Fa) —%;y (Mo, F§ U FY'). By
lemma 7.6.11" —%; T1 andT —7; T> whereT = (M, F1 U F), Ty = O¢(My, F{ U F{") and
Ty = ®¢( Mo, F5) UFY') . Since by Iemma 7.2.18; € Al. and by lemma 6.6.17 is typable in the type
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systemDy, soT € CRA! by corollary 6.5. So, by lemma 2.2b, there exigise Al., such thatl; —hr
T5 andTy —%; Ts. Let F3 = (T3, RED[ andM3 |T5|%, then by lemma 7.2. 2tT3 = (Mg,fg)
Hence, by lemma 7.6.XM;, F}' U ]—"”> —hq (M3, F3) and (Mo, 75 U F3") —5, (M3, Fs), |

]_'//U]_-/// ]:// ]:///
M, — gId MsandMy “— gId Ms. |

We follow [Bar84] and [KS08] and define the following reductirelation:

Definition 7.8. Let M, M’ € Al, such thatc ¢ fv(M). We define the following one step reduction:
M =iy M <= 3F,F (M, F) —pq (M, F).

Before establishing the main result of this section we nbeddllowing lemma that, among other
things, relategi/-developments t@/-reductions (lemma 7.9.5).

Lemma7.9. 1. Letc ¢ fv(M). Then, R

oe(M,z) = 9D

2. Letc & fv(MN) andz # c. Then,R2!

o (M,2)[z:=¢(N,2)] — 2

3. Letc & fv(M). If p € R and®c(M, {p}) —4r M’ thenR:], =

4. LetM € Al such thate ¢ fv(M). If M 25, M then(M, {p}) —s14 (M, D).

5. _%I:_)TI'
Proof: 1), 2) and 3) By induction on the structure iof.
4)Bylemma2.2.8p € Rm Bylemma 7.3, there is a unique €t C Rﬁ,, such thatb®(M, {p}) —sr
o¢(M’, F'). By lemma 7.9. 37%@ wrFy = s so[(®(M', F'), Rgf(M/ 1) )¢ = @ andF = @ by
lemma 7.2.1d. Finally, by Iemma 7.6\, {p}) —p1a (M', ).
5) It is obvious that—} 1S5 We prove—j, C—7; by induction on the length of/ =51 M. O

Finally, we achieve what we started to do: the confluencél/efeduction onAl.
Lemma 7.10. Al C CR?.

Proof: Let M € Al andc be a variable such that ¢ fv(M). Let M —3; My andM —3; Mo.
By lemma 5,M —};, M; andM —j; M,. We prove the statement by |nduct|on on the length of
M —7; M. O

8. Generalising Koletsos and Stavrinos’s method [KS08] tGn-developments

In this section, we generalise the method of [KS08] to hapbleeduction. This generalisation is not
trivial since we needed to define developments involvjfrgduction and to establish the important result
of the closure undef-reduction of a defined set of frozen terms. These were the reasons that led us
to extend the various definitions related to developments.ekample, clause (R4) of the definition of
An. in definition 5.1 aims to ensure closure ungeareduction. The definition od. in [Kri90] excluded
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such a rule and hence we lose closure ungezduction as can be seen by the following example: Let
M = Az.cNxz € A, wherex & fv(IN) andN € A., thenM —, cN & A..

First, we formalisedn-residuals angin-developments in section 8.1. Then, we compare our notion
of pn-residuals with those of Curry and Feys [CF58] and Klop [KIp# section 8.2, establishing
that we allow less residuals than Klop but we believe moreluaés than Curry and Feys. Finally, we
establish in section 8.3 the confluencesgfdevelopments and hence @i-reduction.

8.1. Formalising3n-developments

The next definition adapts definition 7.1 to deal with-reduction. The variable is used to 1) freeze
the Gn-redexes of\/ which are not in the sef of 5n-redex occurrences it/ ; 2) neutralise applications
so that they cannot be transformed into redexes d@ftereduction; and 3) neutralise bound variables
so A-abstraction cannot be transformed into redexes aftereduction. For example, inz.y(c(cz))

(z # ), cis used to freeze theredexx.yz.

Definition 8.1. (T¢(—, —), U§(—, —))
Lete ¢ fv(M) andF € RYY.

P1) If M € V\ {c} andF ='¢M-5-35 then:
(

VM, F)={c"(M)|n >0} UG(M, F) ={M}

(P2) fM = Xz.N,z # ¢, andF = {p | 1.p € F} clem 5'37?,?\,77 then:

WE(M, F) = {"(A\&.N'[z :=c(cx)]) In>0AN € U¢(N,F)} ifO¢F
’ {"\z.N")|n>0AN € U§(N,F')} otherwise
WE(M, F) = {A\e.N'[x :=c(cx)] | N' € U¢(N,F")} if0¢gF
O A N | N € WE(N, F)) otherwise
(P3) IfM = NP, Fi = {p|1.p c F} C®M 53R andF, = {p | 2.p € F} C'®M-53R0 then:
SO, F) = {¢"(eN'P") |n>0AN € U(N,F}) AP € U¢(P,F,)} f0¢gF

’ {¢"(N'P") |n>0AN'€ US(N,Fy) AP € U¢(P,F,)} otherwise

M, F) = {¢cN'P'|N' € U¢(N, Fy\) AP € UE(P, Fo)} if0¢F
O (NP N € WE(N, Fy) AP € WE(P,F,)  otherwise

The next lemma is needed to defifie-developments and relates the freezing and erasure apesati

Lemma8.2. 1. Letc ¢ fv(M)andF C Rﬁ} We have:

(@) W5(M,F) C We(M, F).
(b) VN € T¢(M, F). fv(M) = fv(N) \ {c}.
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(€) WM, F) C An.

(d) LetM = Nz wherex ¢ fv(N) U {c} andP € W§(M,F). Then,R}" , = {0} U {1.p |
P E R?J"}.

(e) LetM = Nu. If Pz € ¥¢(Nx, F) thenPx € U§(Nx, F).

(f) VN € U¢(M,F).Vn > 0. "(N) € U¢(M, F).

(@) YN € U¢(M, F). [N| = M.

(h) YN € U¢(M, F). F = [(N, R

2. LetM € An.. We have:

(@) [(M, RAE € R andM € we(|Me, [(M, RET)[°).

(b) (| MIe,[(M,REM|) is the unique(N, F) wherec ¢ fv(N), F C R andM € WE(N, F).

3. LetM € A, wherec ¢ fv(M), F C Rfj p e FandM ﬂgn M'. Then,3 a uniqueF’ C Rf},
whereVN € U¢(M, F) there areN’ € v¢(M',F') andp’ € R]ﬁ\,” such thatv ign N’ and
(N, p')|* = p.

Proof: 1a), 1b.), 1c), 1g) and 1h) By induction on the structuréaf

1d) and 1e) By case on the belongingidh F.

1f) By case on the structure éf and induction om.

2a) By induction on the construction of.

2b) By lemmas 5.8.4 and 8.2.2a¢ fv(|M %), [(M, R3])|° € R{}),. and M € We(|M %, [(M, RG])[).

If (N’,F") is another such pair thef’ C R]ﬁv’i andM € U¢(N', ') and by lemmas 8.2.1g and 8.2.1h,
|M|° = N" andF' = (M, R57)|e, 0

Definition 8.3. (6n-development)
1. LetM e A, F C R, p e FandM L, M. By lemma 8.2.33 a uniqueF’ C RY7,

such thatYN € (M, F), there areN’ € W¢(M’', F') andp’ € R]ﬁ\,” where N iﬂn N’ and
|(N,p)|° = p. We call ' the set ofgn-residuals in M’ of the set of gn-redexesF in M
relative to p.

2. Let M € A, wherec ¢ fv(M), andF C Rfj A one-stepgn-development of M, F), de-
noted (M, F) —gnq (M',F'), is afn-reduction M ign M' wherep € F andF' is the set
of Bn-residuals inM’ of the set of3n-redexesF in M relative top. A (n-developmentis the
transitive closure of a one-step)-development. We writéd/ ignd M’ for the Bn-development
(M, F) —ppq (M, F').
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8.2. Comparison with Curry and Feys [CF58] and Klop [Kl080]

A common definition of &n-residual is given by Curry and Feys [CF58] (p. 117, 118). theo defini-
tion of Bn-residual (called\-residual) is presented by Klop [KIo80] (definition 2.4, 543. Klop shows
that these definitions allow one to prove different progsrof developments. Following the definition
of a gn-residual given by Curry and Feys [CF58] (and as pointed mJ€F58, Klo80, BBKV76)), if
the n-redexA\z.(A\y.M )z, wherex ¢ fv(\y.M), is reduced in the tern? = (Ax.(A\y.M)x)N to give
the term@ = (A\y.M)N, then( is not agn-residual of P in P (note that following the definition of a
A-residual given by [Klo80]( is a A-residual of the redex\y.M )z in P since the\ of the redexQ is
the same as the of the redex(\y.M )z in P). Moreover, if theG-redex(\y.My)z, wherey & fv(M),

is reduced in the tern? = Az.(A\y.My)x to give the term@ = A\z.Mz, then@ is not agn-residual
of P in P (note that following the definition of a-residual given by [Klo80]( is a A-residual of the
redexP in P since the\ of the redex( is the same as the of the redexP in P). Our definition 8.3.1
differs from the common one stated by Curry and Feys [CF58fheycases illustrated in the follow-
ing example:¥¢((Az.(Ay.M)z)N,{0,1.0,1.1.0}) = {"(A\z.(Ay.Ply := c(cy)))x)Q) [ n >0A P €
Ue(M,2)AQ € ¥¢(N, @)}, wherer & fv(\y.M). Letp = 1.0 then(\z.(\y.M)z)N L5, (\y.M)N.

Moreover, Py = ¢"((Az.(A\y.Ply = c(cy)])x)Q) iﬁn "((A\y.Ply = c(cy)])@) such thatn > 0,
P e UM, o), Q € ¥¢(N,2), and|(Py, p')|¢ = [(Py, 2".1.0)| = p, andc™((A\y.Ply := c(cy)))Q) €
Ue((Ay.M)N,{0}).

Let us now compare our definition gfy-residuals to the\-residuals given by Klop [Klo80]. We
believe that we accept more redexes as residuals of a seti@fa® than Curry and Feys [CF58] (as
shown by the examples of this section) and less than Klop.

We introduce the two calcult and A, which are labelled versions of the calciliand A7,.:

t e A n= x| Mgt | tite

v € ABS. = \z.wz | \Z.ulz:=c(cz)], wherez & fv(w)
w € APP., = wv|cu

u €  An n= T|v|wulcu

wherez, j € V \ {c}. Note thatABS,. C APP, C A7, C A.

The labels enable to distinguish two different occurrerafes\.

Since these two calculi are only labelled versiona @&ndA., let us assume in this section that the
work done so far holds wheh ansA,. are replaced by andAr,.

Klop [Klo80] defines his\-residuals as follows:

“Let R = My — My — ... — M, — ... be aBn-reduction,R, a redex inMy and Ry,
a redex inM}, such that the head-of R, descends from that dg,.
Regardless whethédky, Ry, are- or n-redexes Ry, is called a\-residual ofR, viaR.”

We define the head-of a gn-redex by:headlam((A,x.t1)t2) = (1,n) andheadlam(\,z.tgz) =
(2,n), if x & fv(ty). If F C Rf” we defineheadlamred(t, F) to be{(i,n) | Ip € F. headlam(t|,) =
(i,m)}. We definehlr(¢) to beheadlamred(t, an)

The following lemma states the equality between the héadf a setF of 3n-redexes of a term
and the headv's of the Gn-redexes of any term in the application of the functio@ to ¢t and F:

Lemma 8.4. Letc ¢ fv(t) andF C Rf”. If uw e U¢(t, F) thenhlr(u) = headlamred(t, F).
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Proof: By induction on the structure of O

The following lemma states that if a term in A7, reduces to a term’ then the set of head's of
the sn-redexes of/ is included in the set of healis of the 37-redexes ofu;.

Lemma 8.5. If u; € An. andu; g, ' thenhlr(u’) C hlr(uy).
Proof: By induction on the size aof; and then by case on the structureugf O

Let us now prove that, following our definition, the set of theés of the Sn-residuals of a set of
Bn-redexes in a term is included in the set of heéxlef the considered set gin-redexes.

Letc ¢ fv(t), F C RP" andt L5, t' then by definition 8.3.1, there exists a unigie C Rﬁ",
such that for all, € We(¢, F) (by lemma 8.2.1cy € A7), there exist/ € Ue(t, F') andp’ € R
such thatu iﬁn o and|{u, p’)|® = p. The setF’ is the set of3n-residuals in’ of the set of redexes
Fin t relative top. By lemma 2.2.3¢ ¢ fv(t'). By definition U¢(¢, F) is not empty. Letu € Ue(t, F)
then there exist/ € We(¢/, ') andp’ € R4 such thatu ign v and|(u, p’)| = p. By lemma 8.5,
hir(u') C hir(u). So, by lemma 8.4yeadlamred(t', F') C headlamred(t, F).

However, this is not enough to match Klop’s definitionefesiduals. As a matter of fact, as we
show below, we can find and F such that, following Klop’s definitionp, < Rﬁ” and pg is a \-
residual of F via p but py ¢ F'. Lett = (Agz.zy)(A12.y2) gﬁn (Mzyz)y = ¢ and letF =
{0,2.0}. ThenUe(t, F) = {c™((Aox.c"2(c*(x)y)) (" (M\12.c" T (y)2))) | n1,n9,n3,n4 > 0}. Let
u € Ue(t, F), thenu = c™ ((Aoz.c™2(c3(z)y)) (" (M1 2.¢ L (y)2))) such thatuy, na, n3,ngy > 0. We
obtainu = ™ ((Agz.c™2(2(x)y)) (™ (A\12.c T (y)2))) E’ﬁn 2 (e t3 (N 2.t (y)2)y) = o
such thapy = 2"1.0. ThenF’ = {1.0} is the set of3n-residuals in’ of the set of redexe# in ¢ relative
to p. But0 is a\-residual ofF via 0 and0 ¢ F.

It turns out that, though oysn-residuals are\-residuals, the opposite does not hold. For example:
t = MZ.-Am3.20)T =25 AZ.2% = ' and0 € RE", butu = A\, Z.(An.c2(c(cy)))z € We(t,{0,1.0})
andu = \,Z.(Apy.cz(c(cy)))x 5)@77 AnZ.cz(c(cz)) = v and0 ¢ 7?,5,77.

8.3. Confluence ofsn-developments and hence gfn-reduction

The next lemma relateSn-reductions of frozen terms t6n-developments, and states that givefira
development, one can always define a new development thaisadit least the same reductions.

Lemma8.6. 1. LetM € A, wherec & fv(M), andF C Rﬁ} Then:
(M, F) =%, (M',F') <= 3N € (M, F).IN' € W4(M', F'). N =3, N’

2. LetM € A, such that ¢ fv(M) andF; C F, C Rﬁ? If (M,F1) —pna (M',F}) then there
existsF, C R, such thatF] C F} and (M, Fa) —pgpa (M, Fy).

Proof: 1) Note that¥'“(M, F) # @. Then, it is sufficient to prove:

o (M,F) _>Z’nd (M',F'y = VN € ¥¢(M,F). IN' € O¢(M',F'). N —>Z,n N’ by induction on
the reduction M, F) —%, , (M', F').
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e 3N € UM, F). IN' € U¢(M', F'). N —%, N' = (M,F) —%_, (M', ') by induction on
the reductionV —7%, N’ such thatV € U¢(M, F) andN' € Ue(M’, F').

2) By lemma 8.2.1c¥W (M, F), V¢(M, Fo) C An.. Forall Ny € W¢(M, F;) andNy € V¢(M, Fy),
by lemma 8.2.1g|N1|° = | N2|* and by lemma 8.2.1H(N1, R/ )[¢ = F1 € Fy = [(Na, R,

If (M, F1) —pgga (M',F) then by 1), there exis¥; € W¢(M, F;) andN; € w¢(M’, F7) such that
Ny —g3, Ni. By definition, there existg; such that\V, ﬂgn Ni, and by lemma 2.2.§), € R]ﬁv’i Let
po = |(N1, p1)|¢, so by lemma 8.2.1hy, € F;. By lemma 5.8.7a and lemma 8.2.1¢, % 5, M'.

By lemma 8.2.3 there exists a unique $étC Rf}, such that for allP, € ¥¢(M, F;) there exist
P} € Ue(M', F') andp’ € R such thatP, L5, P| and|(Py, p')[* = po.

Because N, € W¢(M,F;), there existP] € ¥<(M',F') andp’ € R]ﬁv’i such thatV, iﬁn P/
and|(Ny,p)|¢ = po. Sincep’,p; € R%, by lemma 1,p" = p;, so by lemma 2.2.9P] = N|. By
lemma 8.2.1hF’ = \(N{,Rf\,”{ﬂc = F.

By lemma 8.2.3 there exists a unique $&tC Rﬁ}, such that for allP, € (M, F») there exist
Py € U¢(M', ) andpy € R} such that?, %5, P} and|(P,, pa)|° = po.

SinceVe(M, F,) # @, let Ny € U¢(M, F»). So, there exisiV}, € W¢(M’, F)) andp, € Rﬁg such
that Ny 225, Nj and|(Na, pa)|° = po. By lemma 8.2.1hFj = |(N§,R]ﬁvz>|c.

Hence, by lemma 5.8.7¢] C F; and by lemma 8.6.1,M, F5) —gnq (M', F3). O

Lemma 8.7. (Confluence of the@n-develgpments) -
Let M € A such thate ¢ fv(M). If M =3,g My andM 34,4 M, then there exist] C Ry,

F! F}
e R% andMs € A such thatM; =g, M3 andMy = g,4 Ms.

Proof: If M ﬂﬁnd My and M Qﬁnd M, then there exisFy', FY such that M, F;) = Bnd (M, F{)
and (M, ) —%,, (My, 73). By definitions 8.3.1 and 8.3.2F) C R}/ andFy C Rj]. By
lemma 8.6.2, there exist}” C Rfjl andFy’ C R% such that(M, Fy U Fa) —5, 4 (My, F U F")
and (M, F; U Fo) — fnd (Mo, FY U FY'). By lemma 7.6.1 there exit € We(M,F, U F), Th €
Ue(My, F{ UF") andTy € ¥¢(Msy, FY U FY') such thatl’ =75, Th andT — 7y To.

Because by lemma 8.2.1¢, € An. and by lemma 6.6.2]" is typable in the type syste®, soT €
CR"n by corollary 6.5. So, by lemma 2.2a, there exiBjs= An., such thafl} _)Z}n T3 andTy —%7 Ts.
Let F3 = |<T3,R§;7>\C and M3 = |T3|%7, then by lemma 8.2.2aF; C R% andTs € ¥¢(Ms, F3).
Hencs, b}// lemma 8.6.J<M1,: ]:{,/,,U F") —hoa (Ms, F3) and (Mo, 75 U F)') —5 ) (M3, F3), i.e.
My flifl Bnd Mz and M, ]:2237:2 Bnd M. O
Definition 8.8. Letc ¢ fv(M). We define the following one step reduction:

M — M' = 3F, F (M, F) =54 (M, F')

The next lemma is needed for the main proof of this sectioe: Ghurch-Rosser property of the
untyped\-calculus w.r.t3n-reduction and relate8n-developments t@n-reductions (lemma 8.9.5).
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Lemma8.9. 1. Letc ¢ fv(M). VP € U¢(M, ). Ry = @.

2. Lete & fv(M) U fv(N) andz # c. VP € U¢(M, @). YQ € UE(N, ). R2"

Plz:=Q)] =4a.

3. Lete & fv(M). If p € Ry, P € U(M, {p}) andP —4, Q thenRY) = o.

4. Lete ¢ fv(M). If M L5, M’ then(M, {p}) —p,a (M, D).

Proof: 1), 2) and 3) By induction on the structure iof.

4) By lemma 2.2.8p € Rﬁ}. By lemma 8.2.3, there exists a unique $&tC Rﬁ?, such that for all
N € ¥¢(M,{p}), there existsV' € w¢(M’, ') such thatN — 3, N'. Note thatV“(M, {p}) # @. Let
N € ¥¢(M,{p}) then there exist&V" € w¢(M’, F') such thatN' — g, N'. By lemma S,R]ﬁv’i = &, S0
|(N/,R]’iﬂ>|c = @ and by lemma 8.2.11%" = @. Finally, by lemma 8.6.1(M, {p}) —pnq (M', @).

5) By definitiona*l‘g—%n. We prove by induction o/ —%7 M’ that—>gng—>’{. O
Finally, the next lemma is the main result of this section.
Lemma 8.10. A C CR"".

Proof: LetM € A and letc € V such thatc ¢ fv(M). LetM —j, M; andM —7, M,. Then by
lemma 5M —7 M; andM —7 M,. We prove the statement by induction &h —7 M. O

9. Conclusion

Reducibility is a powerful concept which has been appliegriave a number of properties of the
calculus (Church-Rosser, strong normalisation, etc.)ngusi single method. This paper studied two
reducibility methods which exploit the passage from typeadag intersection type system) to untyped
terms. We showed that the first method given by Ghilezan akaviec [GL02] fails in its aim and we
have only been able to provide a partial solution. We adaitedsecond method given by Koletsos
and Stavrinos [KS08] fronp to f1-reduction and we generalised it f)-reduction. There are dif-
ferences in the type systems chosen and the methods of béilyicised by Ghilezan and Likavec on
one hand and by Koletsos and Stavrinos on the other. KolatsdsStavrinos use systef [Kri90],
which has elimination rules for intersection types whei@agezan and Likavec uskn and AN with
subtyping. Moreover, Koletsos and Stavrinos’s method dép@n the inclusion of typable-terms in
the set ofA-terms possessing the Church-Rosser property, whereasvttking part of) Ghilezan and
Likavec’s method aims to prove the inclusion of typable teiman arbitrary subset of the untypae
calculus closed by some properties. Moreover, GhilezanLétaec consider th&’AR(P), SAT(P),
andCLO(P) predicates whereas Koletsos and Stavrinos use standardbi#ity methods through satu-
rated sets. Koletsos and Stavrinos prove the confluencevefagenents using the confluence of typable
A-terms in systenD (the authors prove that even a simple type system is suffjcighe advantage of
Koletsos and Stavrinos’s proof of confluence of developsenthat strong normalisation is not needed.
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A. Proofs of section 2

Proof(Lemma 2.2)
1 We prove the lemma by induction gn

— Letp = 0.
Let M ggn M’ then eitherM = (A\z.P)Q andM' = Pz := @] and soM gﬁ M'. Or
M = Ax.M'x such that: ¢ fv(M') and soM gn M.
Let M —, OM' thenM = Az.M'z such that: ¢ fv(M') and soM ggn M.
Let M —3 0M' thenM = (Az.P)Q andM’ = P[z := Q] and soM gﬁn M.

— Letp =1.p.
Let M 24, M then eithetM = Az.N, M’ = Az.N’ andN %4, N’. By IH, N 55 N’
or N 2 N'. SoM Ly M or M %, M. Or M = PQ, M’ = P'QandP %, P'. By
IH, P 25 Por P2, P'.SoM 25 M or M 5, M.
Let M 2, M’ then either = Az.N, M’ = Az.N’ andN %, N’. By IH, N %5 N', so
M 2ig) M. OrM = PQ, M' = P'QandP %, P'. By IH, P %5, P',soM L5 M,
Let M %5 M’ then eitherM = A\z.N, M’ = Az.N" andN %5 N'. By IH, N %5, N, s0
M Logy M'.OrM = PQ, M' = P'QandP %5 P'. By IH, P %5, P, s0M 25, M,

— Letp =2.p'.
Let M 25, M’ thenM = PQ, M’ = PQ' andQ %5, Q. By IH, Q 25 Q' orQ %, Q.
SoM Ly M or M 2, M.
Let M %, M’ thenM = PQ, M' = PQ' andQ %, Q. By IH, Q B4 Q. so
M g, M’
Let M %5 M thenM = PQ, M' = PQ' andQ 5 Q. By IH, Q s Q. so
M L, M.

2 We prove this lemma by induction on the structuréff.

— Either My = z, thenfv((Az. M) My) = fv(My) = fv(M [z := My)). If (Az.M;) My € Al

thenMy = M [z := Ms] € Al

— Or My = \y.My thenfv((\z.\y.Mo)Ms) = fv((Ax.Mo)Ms) \ {y} =" tv(My[z =
M) \ {y} = tv(M; [z := My]) such thaty & fv(Ms) U {z}. If (A\x.Ay.My)Ms € Al then
My, My € Alandz,y € fv(My). So(Ax.My)Ms € Al. By IH, My[z := Ms] € Al. Hence,
M;[x := Ms] € Al such thaty & fv(Ms) U {z}.

— Or My = PQ thenfv((\z.PQ)Ms) = fv(Ax.P)Ms U fv((\2.Q) M) =1 fv(Plx :=
M]) Utv(Q[x := M) = tv((PQ)[x := Ma]).

3. We prove the lemma by induction on the length of the redacti’ —%7 M.
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— If M = M'thenfv(M) = tv(M')
- LetM —3 M" —g, M'. By IH, fv(M) C fv(M"). By definition there existp such that
M" L5, M'. We prove thatv(M") C fv(M') by induction onp.
x Letp =0.
- either M" = (Az.My)My and M' = M|z := M,]. We prove thatv(M’') C
(fv(My) \ {z}) U tv(Mz) = tv(M") by induction on the structure aff; .
1. LetM; = y. If y = 2 thenM’ = M, andfv(M') = fv(M"). If y # x then
M’ =y andfv(M') = {y} C {y} U tv(My) = fv(M").
2. LetM; = A\y.Mj thenM’ = \y.M{ [z := M| such thay ¢ fv(My) U {x}. By
IH, fv(M] [z := Ms]) C fv((Az.M])Ma). Hencefv(M') = fv(M{[z := Ma])\
{y} € tv((Aw.My) Ma) \{y} = (tv(M]) \{z,y}) U (fv(M2) \ {y}) = fv(M").
3. LetM; = MM thenM' = M|z := My|M{'[x := Ms]. By IH, fv(M{[z :=
M) C tv((ha.M])My) andfv(MY [z := Ms]) C fv((Aa.MY)My).
Hence,fv(M') = fv(M[z := Ms)) U tv(M{'[z := Ms]) C fv((Az.M{)Ms) U
fv((Aa. M) My) = ((Fv(M]) U fv(M]) \ {2}) U tv(Ms) = fv(M").
- OrM" = Az.M'z such thate & fv(M'), sofv(M") = fv(M').
x Let p = 1.p/ then eitherM” = \z. My, M' = \xz.My and M, iﬁn Ms;. By IH,
fv(My) C tv(My), sofv(M") = fv(My) \ {z} C fv(My) \ {z} = fv(M'). Or M =
My My, M = M{My and M; 25, M]. By IH, fv(M;) C fv(M]), sofv(M") =
fv(My) Utv(My) C fv(M]) U fv(Msy) = fv(M").
« Letp = 2.9/ thenM” = My My, M’ = My M), and My 25, Mj. By IH, fv(Ms) C
fv(M}), sofv(M") = tv(My) Utv(Ms) C fv(My) U fv(ML) = tv(M").

4. We prove the lemma by induction on the length of the redacti’ — 7, M.

— If M = M’ thenfv(M) = fv(M')
— Let M —%; M" —pg; M'. By IH, fv(M) = fv(M") and if M € Al thenM” € Al. By

definition there existg such that\” % 5; M’. We prove thafv(M”) = fv(M’) and that if
M" € Al'then M’ € Al by induction onp.

x Letp = 0thenM” = (A\x.My)My andM' = M; [z := M| such that: € fv(M;). So,
by lemmma 2.2.2{v(M') = fv(M") and if M" € Al then M’ € Al.

x Let p = 1.p/ then eitherM” = \z.My, M' = \z.M, and M, iﬁ] M,. By IH,
fv(My) = fv(Ms) and if My € Al then My € Al, sofv(M") = tv(M;) \ {z} =
fv(Ms) \ {z} = fv(M') and if M" € Al thenz € fv(M;) = fv(M>) and soM’ € Al.
Or M" = My My, M' = M{M, andM; %5, M. By IH, fv(M;) = fv(M]) and if
M € AlthenM; € Al, sofv(M") = fv(M;) Ufv(Ms) = fv(M])Utv(Msy) = fv(M')
and if M € Al then M’ € Al.

x Letp = 2.p' thenM” = My My, M' = M, M} and My %5, Mj. By IH, fv(My) =
fv(M}) and if My € Al then M, € Al, sofv(M") = tv(My) U fv(Ms) = fv(My) U
fv(M)) = tv(M') and if M" € Al then M’ € Al
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5. =) Let\z.M ﬂﬁn P. We prove the result by case pn Eitherp = 0 and M = Px such that
v & fv(P). Orp = 1.p/, P = \e.M’ andM %5, M’

<) If P =X e.M"andM —p, pM'. So, \z.M 1;135,7 Pand\z.M —g, P. If M = Px and
x ¢ fuoPthenlx.M = \x.Px gﬁn P,so\z.M —g, P.

6a. Ifk = 0thenP = (Ax.M)N;N; ... N, is a directr-reduct of(Az.M)NyN; ... N, absurd. So
k > 1. Assumek = 1, we proveP = M [z := Ny|N; ... N, by induction onn > 0.

— Letn = 0 andr = 1. By definition there existg such that \x. M) Ny im P. We prove
the result by case on.
x Letp =0thenP = Mz := Ny| andz € fv(M).

x Letp = 1.p' then\z.M iﬁl Ax.M' andP = (Az.M')Ny is a directsI-reduct of
(Ax.M) Ny, absurd.

x Letp = 2.p" thenN, iﬁ] N’"andP = (Ax.M)N' is a direct31-reduct of(Az.M )Ny,
absurd.

— Letn = 0 andr = (n. By definition there existg such that A\x. M) Ny ﬁw P. We prove
the result by case op.

« Letp = 0thenP = M|z := Ny.
x Letp = 1.p' then\z. M iﬁn Q@ andP = QNy. By lemma 2.2.5:

- Eitherp’ = 1.p”, Q = \z.M’ andM p—l;ﬁn M'. HenceP = (Az.M')Ny is a direct
Bn-reduct of(Az.M )Ny, absurd.
- Orp =0,M = Qzandz ¢ fv(Q). Hence,P = QNy = M|z := Ny).
x Letp = 2.p' thenNy ign N’'andP = (Az.M)N'is a directgn-reduct of(Az.M) Ny,
absurd.

— Letn = m+1wherem > 0. By definition there existg such tha{\z.M)Ny ... Ny 2,
P. We prove the result by case pn
« Eitherp = 1.p’ then(\z.M)Ny ... Ny, 5, Q andP = QN 41.

- If Qis a directr-reduct of(Ax.M )Ny ... Ny, thenP is a directr-reduct of
(Ax.M)Ny ... Np,1, absurd.

- If @ is not a directr-reduct of(Az.M )Ny ... N,, then it is done by IH.

x Orp =2.p' thenN,, ir Ny, andP = (Az.M)Ny ... N, N,, ., which is a direct
r-reduct of(Az.M )Ny ... Np,41, @bsurd.

6b. By 6a,k > 1. We prove the statement by induction bn> 1.

— If k = 1 then we conclude by 6a.
— Let(Az.M)Ny...N, —F Q —, P.
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« If @ is a directr-reduct of (Az.M)Ny...N,, thenQ = (Az.M')N/...N}, such
that M —* M’ andVi € {0,...,n}, N; —F N/. SinceP is not a directr-reduct
of (\x.M)Ny...N,, P is not a directr-reduct of@. Hence by 6aP = M'[z
NjIN} ... N!.

« If @ is not a directr-reduct of(Az.M )Ny ... N, then by IH, there exists a direct
reduct(Az.M")N{|... N}, of (Ax.M)Ny .. N such thatM'[z := N{|N{...N] —=

Q_H‘P

7. If Pis adirectr-reduct of(Az.M)Ny ... N,, thenP = (Ax.M’)N{,... N} such that\ —* M’
andVi € {0,...,n},N; —F N/. SoP —, M'[z := N{|Ni...N,, (if r = pI, note that
z € fv(M') by lemma 2.2.4) and/[z := No|N;...N,, =5 M'[xz := Nj|N{...N], . If P
is not a directr-reduct of (Az.M )Ny ... N,, then by lemma 6.6b, there exists a direateduct,
(Az.M")N{ ... N}, such thatV/ —} M’ andVi € {0,...,n}, N; —* N/, of (Ax.M)Ny ... N,.
We haveM [z := No|Ny ... N, —5 M'[z := Nj]N7 ... N{l —r P.

8. We prove this lemma by induction on ths structure of
— Letp = 0itis done by definition.
— Letp = 1.p'. Then:

« Either M = \z.M, -5, \z.M| = M’ such thatt, %, M]. By IH, p’ € R}, . So
p € Ry. If p € Ry, thenM|, = M|, € R". By IH, there exists\/| such that

!
My %, My, soM 2, Az M.

£ Or M = MMy "%, M{M, = M such thath; 2, M. By IH, p’ € R}, . So
p € Ry. If p € Ry, thenM|, = M|, € R". By IH, there exists\/| such that

!
My %, Mj, soM . M| M.

~Letp = 2.p'. Then,M = MMy "%, MM} = M’ such thatMy, “, M}. By IH,
p' € Ry, Sop € Ry If p € Ry, thenM|, = M|, € R". By IH, there exists\/; such

that My 2, M3, soM 2, M, Mj,
9. We prove this lemma by induction on ths structure of
— Letp = 0itis done by definition.
— Letp = 1.p'. Then eitherM = \z.M’ = Ly » Ax.M{ = M such thatM’ =, M. By
definition, My = Az.Mj and M’ —I>T M2 By IH, M{ = M), soM; = My. OrM =

M'N 2 MIN = M such thatv’ 25, M. By definition, M, = MjN and M’ %, M.
By IH, M| = M, soM; = M.
— Letp = 2.p'. ThenM = NM' 1—"ir NM| = M, such thatM’ ir M. By definition,
My = NM, andM' 2, M. By IH, M/ = M), soM; = M.
O

Proof(Lemma 5.2)
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1. We prove the lemma by induction on the structuré/af

o LetM =y.
— Eithery = z thenM [z := ¢(cz)] = ¢(cx) # x and for anyN,
Mz := c(cx)] = c¢(cx) # Nz becausex # x.
— Ory # zthenM |z := ¢(cx)] = y # x and for anyN,
Mz := c¢(cx)] =y # Nzx.

o Let M = \y.P. Then,M[x := c(cx)] = \y.Plz := c(cx)] # = (such thaty ¢ {c,z}) and
forany N, M [z := ¢(cx)] # Nz.

e Let M = PQ. Then,M[z := c(cx)] = Plx := c(cx)]|Q[z = c(cx)] # x. Assume
Mz = c¢(cx)] = Nz, soQ[z := ¢(cz)] = x and by IH, absurd.
2. We prove this lemma by induction on the structuré/of

o LetM = 2.
— Eitherz = y then M|y := c(cx)] = ¢(cx) # x and for anyN, My = c(cx)] =
c(cx) # Nx becausex # x.
— Orz # ythenM|[y := c(cx)] = z # x by hypothesis and for any, M [y := c(cz)] =
z # Nx.

e Let M = A\z.P. Then,M|y := c(cx)] = Az.Ply := c(cx)] # x (such thaty ¢ {c,z,y})
and for anyN, M|y := c(cz)] # Nz.

e Let M = PQ. Then,M[y := c¢(cx)] = Plx = c¢(cx)|Q[z = c(cx)] # x. Assume
My = c(cx)] = Nz, soQ|y := ¢(cx)] = z and by IH, absurd.

By cases on the derivation & € M..
By cases on the structure &f using 3.

By cases on the derivation 8 N € M..

o o > W

We prove this result by induction on

e If n =0thenitis done.
e Letn =m + 1 such thatn > 0. By lemma 5.2.5¢" (M) € M, then by IH,M € M..

7. Easy.
8. By cases on the derivation ak.P € An,.
9. By cases on the derivation 8k.P € Al..
10. We prove the lemma by induction on the structurdot M...

e Case (R1)1. EitheM = zthenM[z := N] = N € M.. OrM =y # xzthenM |z :=
N]=M e M..
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Case (R1)2. LeM = A\y.P € Al, such thaty # ¢, P € Al. andy € fv(P). We have
Mz := N] = A\y.M[z := N] such thaty € fv(N) U {z}. By IH, Plx := N]| € Al., so
Mz := N] € Al..

Case (R1)3. LetM/ = \y.Ply := c(cy)] € An. such thaty # candP € An.. By IH,
Plz := N] € An.. Soby (R1).3M [z := N| = \y.P[y := c(cy)][x := N] = M\y.Plx :=
Ny := ¢(cy)] € An. such thaty & fv(N) U {z}.

Case (R1)4. Lef/ = \y.Py such thatPy € An., y & fv(P) U {c} and P # c¢. We have
Mz := N] = \y.(Py)[z := N] = A\y.P[z := Nly, such thaty ¢ fv(N) U {z}. By IH,
Plz := Nly € An.. By lemma 5.2.4P[z := N] # c. Hence, becausg ¢ fv(P[z := NJ),
Mz := N] € An..

Case (R2) LetM = c¢M; M, such thatVy, My € M. Then by IH,M;[x := N|, Ms[x :=
N] € M.. HencecM[x := N|Msx := N| € M..

Case (R3) LetM = M, M, such thatM,, My € M. and M; is a A-abstraction. Then by
IH, Mi[z := NJ],Ms[z := N] € M,.. Hence,M;[z := N|Ms[z := N| € M., since
M, [x := N]is aX-abstraction.

Case (R4) LetM = cP such thatP € An.. Then by IH,P[z := N] € An. and by (R4),
Mz := N] € An..

11. By case on the structure df.

e Let M = A\z.M' thenM [z := c¢(cx)]

o letM e V.

— Either M = z then, M [z := c(cx)] = c(cx). Hence,c(cx) # y, c(cx) # Py since
cx # y, c(cx) # A\y.P andc(cx) # (A\y.P)Q. If M[z := c(cx)] = PQ thenP = ¢
andQ@ = cx.

— OrM = z # zthenM|[z := ¢(cx)] = 2. Hence, ifz = ythenM = y, z # Py,
2z # M\y.P,z # PQandz # (\y.P)Q.

= Az.M'[z := ¢(cx)], wherez ¢ {x,c}. Hence,
Az M'x = c(ex)] # y, \a.M'[x := c(cx)] y, \z2.M'[z = c(ex)] # PQ and
Az.M'[x := c(cx)] # (A\y.P)Q. Let \z.M'[z := ¢(cz)] = A\y.P. By a-converions, assume
y=z. SOM'[z := ¢(cx)] = P.
Let M = MMy thenM [z := c(cx)] = M|z := ¢(cx)|Ma[z := c(cx)]. Hence,M|x :=
clcx)|Malx = c(cx)] # y and Mz = c(cx)|Ma[z = c(cx)] # Ay.P. If Mz =
c(cx)|Ma[x := c(cx)] = Py thenP = Mz := ¢(cx)] and Ma[x := c(cx)] = y. So
My = y. If Mi[z = c(cx)|Malx := c(cx)] = PQ thenP = M[z := c(cz)] and
Q = Mz = c(cx)]. If Mi[z := c(cx)|Ma[z = c(cx)] = (M\y.P)Q then\y.P =
Mz := ¢(cz)] and@ = Ms]z := c(cx)]. SOM; = A\y.My andP = My[z = c(cz)]

12. 12a. By definitionx # c¢. By lemma 5.2.8, eithe® = Nz where Nx € An. or P =

Nz := ¢(cx))] whereN € An.. In the second case since by (R4yx) € An., we get
by lemma 5.2.10 thaWN [z := ¢(cz))] € Ane.

12b. By lemma5.2.1 and lemma 5.2.8.

13. 13a.=) We prove the lemma by induction on the structure of
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e Letp = 0then:

— either M[z := ¢(cx)] = (A\y.P)Q andM' = Ply := Q]. By lemma 5.2.11,
M = (\y.PHQ', P = Pz := c¢(cx)] and@Q = Q'[z := c¢(cx)] such that
y & {c,x}. SOM' = P'ly := Q'][x := ¢(cz)] and M gﬁn P'ly:= Q.

— Or Mz := ¢(cx)] = A\y.M'y such thaty ¢ fv(M'). By lemma 5.2.11M =
Ay.N andM'y = Nz := ¢(cx)] such thaty ¢ {z,c}. Again by lemma 5.2.11,
N = N'yand M’ = N'[z := ¢(cx)]. Becausey ¢ fv(M'), we obatiny ¢
fv(N’) and soM = Ay.N'y %4, N'.

e Letp =1.p. Then:

— Either M|z := ¢(cx)] = \y.P 1._;7)’[377 Ay.P' = M’ such thatP iﬂn P'. By
lemma 5.2.11M = A\y.N andP = N[z := ¢(cz)] such thaty ¢ {c,z}. By
IH, P = N'[z := ¢(cx)] and N iﬂn N'. SoM' = (A\y.N")[z := ¢(cx)] and
M 225 My.N'.

— Or Mz = c(cx)] = PQ "%, P'Q = M’ such that? %5, P'. Then by
lemma 5.2.11, eithed = z andP = cand@ = cx but thenP iﬁn P'is
wrong. OrM = PyQo, P = Py[z := c(cx)] and@Q = Qo[z := c(cz)]. By
IH, P = Pj[z := c¢(cz)] and Ry iﬂn Pj. SoM' = (PiQo)[z := ¢(cx)] and
PyQo 1'—p>,ﬁn PyQo.

o Letp = 2.p thenM [z := ¢(cx)] = PQ 2'—p>/gn PQ' = M’ such that gﬁn Q'
Then by lemma 5.2.11, eithé/ = x andP = c and@ = cz but thenQ iﬁn Q'
iswrong. OrM = PyQo, P = Pylz := c(cx)] andQ = Qplz := c(cx)]. By
H, Q' = Q)fz = c(cx)] andQy Loy Q). SOM' = (PyQp)[x = c(cx)] and
PyQo 2'—p>/ﬁn PyQyp.

<) We prove the lemma by induction on the structure of

e Letp = Othen:

— Either M = \y.Ny such thaty ¢ fv(N). ThenM [z := ¢(cx)] = A\y.N[z =
c(cx)]y gﬁn N[z := c(ex)] such thaty & {c,x}.

- OrM = (\y.P)Q andM’' = Ply := Q]. ThenM|[z := ¢(cz)] = (\y.P[z =
()@l = clex)] Spy Pl = clen)lly = Qs = e(ca)]] = Ply =
Q][z := c(cx)] such thaty & {c, z}.

o Letp =1.p.

— Either M = \y.N %5, A\y.N' = M’ such thatN' 25, N'. By IH, N[z ==
c(cx)] gﬁn N'[z := c(cz)]. So,M|[z := c(cx)] Lo, M'[x := c(cx)] such that
y & {cx}.

— OrM = PQ %5, P'Q = M such thatP 5, P'. By IH, Plz := c(cz)] Zs,
P'[z := c(cx)]. SO,M [z := c(cz)] L, M'[z = c(cx)].
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o Letp = 2.9/ thenM = PQ %5, PQ' = M’ such thatQ %5, Q. By IH,
Q[z = c(cx)] iﬁn Q'[z := ¢(cx)]. So,M [z := ¢(cx)] ﬁ’ﬁn M'[z := c(cx)].
13b. We prove this lemma by induction en

e Letn = 0thenitis done.

e Letn = m + 1 such thatn > 0. Thenc®(M) = c¢(¢™(M)) 24, M'. By case orp
we obtain thap = 2.p’ and M’ = ¢(N’) ande™(M) %5, N'. By IH, p = 2" and
there existsN” € An. such thatN' = ¢™(N") and M p—”>5,7 N". Sop = 2".p"” and
M’ = " (N").

O

Proof(Lemma 5.3) We split the proof of this lemma in two.
We prove the first part of this lemma by case on the structurd of
e LetM € Vandp € R),. SoM|, € R". We prove by case on the structuregothat there is no
suchp.

— Letp =0thenM|, =M ¢ R".
— Letp = 1.p’ thenM|, is undefined.
— Letp = 2.p’ thenM |, is undefined.

o LetM = Xz.N.

— Let M € R". We prove by case on the structuregothat if p € R, thenp € {0} U {1.p’ |
P € Ry}
x Letp =0thenM|, =M € R".
« Letp = 1.p" thenM|, = N|,, € R", sop’ € RY,.
« Letp = 2.p’ thenM|, is undefined.
Letp € {0} U{l.p | p € Ry}, we prove thap € R},.
* Letp = 0. SinceM = M|, € R", by definition,p € R},.
« Letp = 1.p" such thap’ € RY;. By definitionM|, = N|,, € R".
— Let M ¢ R". We prove by case on the structurepofhat if p € R, thenp € {1.p’ | p’ €
N
* Letp =0thenM|, =M ¢ R".
« Letp = 1.p' thenM|, = N|,, € R", sop’ € RY.
« Letp = 2.p" thenlM |, is undefined.
Letp € {1.p' | p’ € R)y}, we prove thap € R},. Then,p = 1.p’ such thaty’ € RY,. By
definiton M|, = N|,, € R".

e LetM = PQ.

— Let M € R". We prove by case on the structuregothat if p € R, thenp € {0} U {1.p’ |
P ERPIU(ZY | p € R}
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* Letp = 0thenM|, = M € R".
* Letp = 1.p" thenM|, = P|,, € R", sop’ € Rl.
« Letp = 2.p’ thenM|, = Q[, € R", sop’ € Ry,.
Letp € {0} U{L.p' [ p' € Rp}U{2.p" | p' € Ry}, we prove thap € R,
* Letp = 0. SinceM|, = M € R",sop € R},.
* Letp = 1.p" such thap’ € R’,. SinceM|, = P|, € R", p € R},
* Letp = 2.p’ such thap’ € Ry,. SinceM |, = Q|,y € R", p € R},
— Let M ¢ R". We prove by induction on the structure pthat if p € R, thenp € {1.p’ |
P ERIU{LY [ p € RD}.
* Letp =0thenM|, =M ¢ R".
* Letp = 1.p" thenM|, = P|,, € R", sop’ € Rl.
« Letp = 2.p’ thenM|, = Q[, € R", sop’ € Ry,.
Letp € {1.p" | p’' € Rp}U{2.p" | p' € Ry}, we prove thap € R},
« Letp = 1.p" such thap’ € R’,. SinceM |, = P|,y € R",p € R},
« Letp = 2.p’ such thap’ € Ry,. SinceM |, = Q|,y € R", p € R},

We prove the second part of this lemma by case on the struature
o LetM €V, bylemma5.3R), = J,s0F = 2.
e Let M = \y.N then by lemma 5.3:
—If M e R"thenR}, = {0} U{l.p | p € R }. LetF ={p | 1l.p € F}. Letp € F then
1.p € F,s0p € Ry.
« Letp € F\ {0} thenp = 1.p" such that’ € R’,. Sop’ € F' and itis done.
x Letp € {1.p' | p’ € F'} thenp = 1.p' such thap’ € F'. Sol.p’ =p € F\ {0}.
—If M ¢ R"thenR}, = {1l.p | p € Ry}. LetF = {p | 1.p € F}. Letp € F then
l.p € F,sop € Rly.
« Letp € Fthenp = 1.p’ such thap’ € R’,. Sop’ € F' and it is done.
x Letp € {1.p" | p’ € F'} thenp = 1.p’ such thap’ € F'. Sol.p’ =p € F.

e Let M = PQ then by lemma 5.3:

—If M e R" thenR}, = {0} U{lp|p e RL}U{2.p|p e RG}. LetF 1 ={p|1lp e F}
andF, = {2.p | p € F}. Letp € Fy thenl.p € F,sop € R}. Letp € Fr then2.p € F,
sop € Re.

x Letp € F\ {0}. Eitherp = 1.p’ such thaty’ € R%,, sop’ € F; and it is done. Or
p = 2.p’ such thap’ € R7,, sop’ € F, and itis done.

x Letp € {1.p | p' € Fi}U{2.p' | p’ € F}. Eitherp = 1.p/ such thatp’ € Fi, so
1.p" € F\ {0}. Orp = 2.p’ such thap’ € F,, s02.p’ € F\ {0}.
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—If M ¢ R thenRy, = {l.p |p e Rp}U{2.p|p|p € R} LetFr ={p|lpeF}
andF, = {p | 2.p € F}. Letp € Fy thenl.p € F,sop € R. Letp € Frthen2.p € F,
Sop € R’"Q

x Letp € F. Eitherp = 1.p’ such thap’ € R, sop’ € F; and itis done. Op = 2.p’
such thap’ € RY,, sop’ € F» and it is done.
x Letp € {1.p | p' € FA}U{2.p" | p' € F»}. Eitherp = 1.p' such thaty’ € Fi, so
1.p" € F. Orp = 2.p' such thap’ € F», so2.p’ € F.
0

Proof(Lemma 5.4)
1. By case on the structure 61.

e Let M € VthenM, Mz := c(cx)] ¢ RO
e Let M = \y.N thenM [z := ¢(cx)] = \y.N[z := c(cx)|, wherey & {x, c}.
— If M € RP"thenN = Py such thaty & fv(P). N[z := ¢(cx)] = P[z := c(cx)]y and
y & tv(P[z := c(cx)]), SOM [z := c(cx)] € RN,
— If M[z := c(cx)] € RP" thenN[z := c(cx)] = Py such thaty ¢ fv(P). By 5.2.11,
N = QyandP = Qz := c¢(cx)]. SOM = \y.Qy. Becausey ¢ fv(P), we obtain
y ¢ tv(Q) and soM € R,
o Let M = M My thenM |z := c(cx)] = M|z = c(cx)| Mz := c(cx)].
—If M € RP"thenM; = \y.My. SOM [z := c(cx)] = (\y.Molx := c(cx)]) Ma[z =
c(cx)] € RP", wherey ¢ {x, c}.
— If M[z := c(cx)] € RP" thenM[z := c(cx)] = \y.P. By 5.2.11,M; = \y.M, and
P = My[z := c(cz)] such thaty ¢ {c,z}. So,M € R"

2. We prove this result by inducion on the structure\bf

e If M €V then by lemma 5. 372&7 =
o Let M = \y.M'. ThenM|z := c(ca:)] = \y.M'[z := c(cx)] wherey & {z,c}. By
lemma 5.3:
— If M € RP" then letp = 0. Then,M[x := c(cz)]|, = Mz = c(cx)] = M|,z :=
c(cx)]
— Letp = 1.p’ such thaty’ € Rﬁi/?,. Then,M[z := c(cz)]|, = M'[z := c(cz)]|, =1
M|y o= e(ew)] = Myl i= e(cz)].

o Let M = M M,. ThenM [z := c(cx)] = M|z := c(cx)|Ma[x := c¢(cx)]. By lemma 5.3:
— If M € RP" then letp = 0. Then,M[z = c(cx)]|, = M[z = c(cz)] = M|y[x :=
e(cw)
— Letp = 1.p’ such thay’ € Ry} Then, Mz := c(ca)]|, = Milz = c(cx)]|,y ="
M|yl = c(cx)] = My [z —C(Cfv)]
— Letp = 2.p’ such thay' € R}]. Then, M|z := c(cx)l|, = Ma[w = c(ca)]|, ="

Ma|pla := ecx)] = Mly[z := c(ex)].
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3. =) Letp € sz.M[:czzc(cx)}' By lemma 5.2.1\z. Mz := c(cz)] ¢ R”" so by lemma 5.3,
_ / / Bn
p = 1.p’ such thap’ € RM[I::C(CI)].
Bn Bn
<) Letp € R\ (ree(ery BY l€MMa5.31L.p € Ry e
4, =) Letp € R%I:C(m)}- We prove the statement by induction on the structurg/of
— M ¢V since by lemma 5.3],2%:6:6(61)] = 0.
—Let M = A\y.N so M[z := c(cx)] = M\y.N[z = c(cx)], wherey ¢ {z,c}. By
lemma 5.3:
+ Either if M|z := ¢(cz)] € RP, p = 0. By 1, M € R, sop € RAT.
* Orp = 1.p’ such thaty’ ¢ R%I::C(mn. By IH, p’ € R]’i,”. Hence by lemma 5.3,

p=1p € R%]
— Let M = M1 Ms soM [z := c(cx)] = M|z := c(cx)|Ma[z := c(cx)]. By lemma 5.3:
+ Either if M[z := ¢(cx)] € RP, p = 0. By 1, M € RP", s00 € R

x Orp = 1.p' such thap’ R%[x:c(cx)}- By IH, p’ € R%. Hence by lemma 5.3,
p=1p € R%]
* Orp = 2.p' such thap’ ¢ R%[x::c(m)}- By IH, p’ € R%. Hence by lemma 5.3,

p=2p € Rﬁ};]
<) Letp € R%,. Then by definitionM |, € R?". By 1, M|,[z = c(cx)] € R". By 2,
Mz := c(cx)]|, € RP". Sop € Rg/?

[x:=c(c)]"
5. We prove this statement by induction > 0.
e Letn = 0 then trivial.

e Letn = m + 1 such thatn > 0. By lemma 5.3RfZ(M) —{lp|peRiMu{2p|pe
ROt =" {2mp | p € RYTY.

0
Proof(Lemma 5.5.1a) We prove the statement by caseron
e Eitherr = 1. SinceM € Al., M € Al, soz.P,Q € Al. Hence,z € fv(P) andM € RAL.
e Orr = (Bn. Trivial.
0

Proof(Lemma 5.5.1h) We prove the statement by induction on the structur&/of

o LetM € V\ {c}. Bylemma5.3R}, = @.

e Let M = \z.N € Al, such thatV e Al. and letp € R:I. SinceM ¢ RP', by lemma 5.3,
p = 1.p’ such thayp’ € R5/. So by IH,M|, = N|, € Al..



44

Kamareddine, Rahli, Wells / Reducibility proofs in thealculus

Let M = Az.N[z := c(cx)] € An. such thatN € An. and letp € Rfj By lemma 5.4.3,

p = 1.p  andp’ € Rf\,”[aj:c(m)]. By lemma 5.4.4p" € R]ﬁ\,”. By IH, N|,, € An.. So,M|, =

N[z = c(cz)]|,y =42 N[z := c(cx)]. By lemma 5.2.10N |, [z := c(cz)] € An.

Let M = Az.Nxz € An. such thatNz € An., x ¢ fv(N) andc # N. Letp € Rﬁ}. Since
M € RP", by lemma5.3:

— Eitherp = 0soM|, = M € An..
— Orp = 1.p' such thap' € R?Vng:. By IH, M|, = (Nz)|, € Ane.
Let M = cNP € M, suchthatV, P € M.. Letp € Rj,. SinceM,cN ¢ R", by lemma 5.3:
— Eitherp = 1.2.p" such thap’ € R},. By IH, M|, = N|,y € M..
— Orp = 2.p' such thap’ € RY. By IH, M|, = P|, € M..

LetM = (Az.N)P € M.suchthatx.N, P € M.. Letp € R,. Since by lemma la\/ € R",
by lemma 5.3:

— Eitherp = 0soM|, = M € M..

— Orp = 1.p" suchthap’ € R}, . By IH, M|, = (Az.N)|,y € M..

— Orp =2.p" such thap’ € R}. By IH, M|, = P|,y € M..
Let M = ¢N € An. such thatV € An.. Letp € Rfj SinceM ¢ R7", by lemma5.3p = 2.p’

such thap’ € R3. By IH, M|, = N|,» € A1..
0

Proof(Lemma 5.5.2)

2a. LetM € An.andM —g, M'. Then there existg such thatd 5, M’. We prove that

M’ € An. by induction on the structure @f.

e Letp =0. Then:
— eitherM = A\x.M’x such thatr ¢ fv(M'). BecauseVl € A7, thenM'x € An. and
x # c. By lemma5.2.8M' € An..
—orM = (Az.N)P andM’ = N[z := PJ]. SinceM € An. then\z.N, P € An.. By
definition and lemmas 5.2.10 € An. andz # c¢. By lemma 5.2.10M’ € An,.

e Letp = 1.p'. Then:

— eitherM = Az.N %5, Ax.N' = M’ such thatV %5, N'. SinceM & An.:
x Either N = Pz := c(cz)] whereP € An. andz # c¢. So by lemma 5.2.13a,
N' = N"[z := ¢(cx)] andP —g, N". By IH, N” € An. so by (R1).3,M" =
Ax.N"[z := ¢(cx)] € An.
x Or N = Px wherePzx € An., z & tv(P)U {c}, P # ¢. By IH, N' € An.. By
lemma 5.2.8P € An.. By case onp’:
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- Eitherp’ =0, P = (A\y.Q) andN’ = Q[y := z]. HenceM' = \z.Q[y := z] =
P € An..
- Orp' =1.p", N = P'zandP p—l;@n P’. By lemma 2.2.3g¢ ¢ fv(P’). By IH,
P’ € An., sobylemma5.2.3" # c. Hence, M’ = \x.P'z € An..
— orM = M; M, ﬂ’ﬁn M{ My = M’ such thatV/; ign M. Bylemma5.2.5)M; € An,
and becaus@/, # ¢ we obtain:
« Either M, = ¢My andM, € An.. By case orp’ we obtainp’ = 2.p", M| = cM|
andMy %, M. By IH, M|, € An, so by (R2),M = cM{Ms € An,.
x Or My = \x.Mp andM; € An.. By IH, M| € An.. Bylemma5.2.12a)l, € A,.
lemma 5.2.8x # c. By case ornp’:
- Eitherp’ = 0 and My = M/z such that: ¢ fv(M{). BecauseMy = Mjx €
An., by definition and lemma 5.2.5 we obtald’ = M{ M, € An..

- Orp’ = 1.p" andM| = \xz. M/, such that\/, p—/;ﬁn M. SoM'" = (Ax.M}) M, €
Ane.
o Letp = 2. ThenM = MM, D5 MM, = M’ such thatM, 25, M. By
lemma 5.2.5My € An. so by IH, M} € An.. BecauseM = M;M, € An., again by
lemma 5.2.5V/" = M M), € An,.

2b. By induction onM — 37 M’ in a similar fashion to the above.

0
Proof(Lemma 5.7.1) We prove the statement by induction @ 0.
e Letn = 0 then by definition ¢ (M)|¢ = |M|°.
e Letn = m + 1 such thatn > 0then|c”(M)|¢ = |e(c™(M))|¢ = [¢™(M)|© =TT |M|e.
0

Proof(Lemma 5.7.2) We prove the lemma by induction on
e If n =0thenitis done.

e Letn = m+1suchthatn > 0. Then,l(e"(M),Rff(M)Hc = {[{c"(M),p)|° | p € Rff](M)} =53
[ (M), 2.0)° | p € R0} = (M), )¢ | p € R} =1 (M, RED

0
Proof(Lemma 5.7.3) We prove the lemma by induction on
e If n = 0thenitis done.
e Letn = m 4+ 1 such thatn > 0. Then,|(c"(M),2".p)|¢ = [(¢™(M),2™.p)|¢ =TH |(M, p)|°
0

Proof(Lemma 5.7.4)
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e let P € V. We prove the statement by induction on the structuré&/of

— LetM € Vthen|M|¢= M = P.
— Let M = Az.N then|M|¢ = \z.|N|° # P.
— Let M = M Ms. If M; = cthen|M|® = |Ms|¢. By IH, 3n > 0 such thatMy = ¢ (P). If
My # cthen|M|¢ = |My|¢|Ms|¢ # P.
e Let P = A\z.QQ. We prove the statement by induction on the structurg/of

— Let M € Vthen|M|¢ = M # A\z.Q).
— Let M = Az.N then|M|¢ = \z.|N|®so|N|¢ = Q.
— Let M = M Ms. If My = cthen|M|¢ = |Ms|¢. By IH, 3n > 0 such thatMy = ¢ (\z.N)
and|N|¢ = Q. If M, # cthen|M|¢ = |M;|¢|Ma|¢ # Az.Q.
e Let P = P P,. We prove the statement by induction on the structurg&/of

— LetM e Vthen|M|¢ = M # P, P.

— Let M = \z.N then|M|¢ = \z.[N|¢ # P, P,.

— Let M = MiM,. If My = cthen|M|® = |Ms|°. By IH, 3n > 0 such thatM, =
(MM, MY # ¢, |[MS|© = Py and| MY |© = Po. If My # cthen| M| = | M || Ms|¢ =

PP SO|J\4'1‘C =P and\M2|c =P.
(|

Proof(Lemma 5.8.1) We prove the statement by induction &h.
o Let M € Vthen by lemmab5.3R}, = @.
e Let M = A\z.N then by lemma 5.3:

— Either M € R" then:

* Eitherp = p’ = 0 soitis done.

«* Orp = 0 andp’ = 1.p{ such thatp; € R}. Then,|[(M,0)| = 0 # |[(M,p")|® =
LI(N, pp)°.

« Orp = 1l.py andp’ = 1.p] such thatp;,p1 € R). By hypothesis (M, p)|¢ =
LIN, p1)|® = LN, p)|© = (M, p')|°. SO|(N, p1)|® = [(V, p1)|“and by IH,p; = p;
sop =7p'.

— OrM ¢ R"thenp = 1.p; andp’ = 1.p] such thap;, p; € R’. By hypothesis|(M, p)|¢ =
LIN, p1)|® = 1IN, p1)|© = [(M, p")|°. So[(N, p1)| = |(V, p1)|“ and by IH,p; = p; so
p=r".

e Let M = P(Q then by lemma 5.3:

— EitherM € R", soP is aX-abstraction and:
x Eitherp = p’ = 0 soitis done.
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*

Orp = 0 andp’ = 1.p; such thatp; € R’,. Then|(M,0)|° = 0 # [(M,p)|* =
LI(P, p1)|°.
Orp = 0andp’ = 2.pj such thatp; € Ry,. SinceP is aA-abstraction (A, 0)|® =
0 # [(M,p")| = 2.(Q, p1)|“.
Orp = 1.p; andp’ = 1.p] such thatp;, p; € R}. Since by hypothesig{M, p)|® =
1-|<P,/pl>lc = LI(P, pp)|® = [{(M, p")|° then|[(P, p1)|® = [(P, py)|°. By IH, p1 = pj SO
p=r.
Orp = 1.p; andp’ = 2.p| such thap; € R}, andp] € Ry,. SinceP is a\-abstraction,
(M, p)|° = 1.[(P, p1)|° # 2.(Q, p1)|* = [(M, p')|°.
* Orp = 2.pp andp’ = 2.p; such thatp;,p; € Rp,. SinceP is a A-abstraction,
by hypothesis| (M, p)|© = 2.(Q,p1)|* = 2.(Q, p1)|* = [(M, p")|* sO[(Q, p1)|® =
(@, p1)|° By IH, p1 = pj sop = p'.
— OrM ¢ R", then:

« Orp = l.p; andp’ = 1.p; such thatp;, p; € R}. Since by hypothesig{M, p)|¢ =
1-|<P,/pl>lc = LU(P, p1)|© = (M, p")|°, then[(P, p1)|® = [(P, p1)|. By IH, p1 = p| sO
p=r.

« Orp = l.p; andp’ = 2.p; such thatp; € R, andp] € RG- P =# c, otherwise, by
lemma 5.3R’, = @. Moreover,|(M, p)|¢ = 1.[(P, p1)|° # 2.](Q, p1)|¢ = |(M, p')|°.

* Orp = 2.p; andp’ = 2.p; such thatp;, p; € Rp,. If P # c then, by hypothesis,
(M, p)|® = 2.{(Q, p1)|* = 2.{Q, p1)|® = (M, p")|° SO[(Q, p1)|* = [{Q, p1)|°. By IH,
p1 = py sop = p'. If P = cthen, by hypothesig{M, p)|* = [(Q, p1)|° = Q. p1)|* =
(M, p")|¢ sO[(Q, p1)| = Q. p1)|°. BY IH, p1 = pj sop = p".

*

*

*

O

Proof(Lemma 5.8.2) We prove the statement by induction on the structuré/of
o letM ey
— Let M = z then|M [z := c(cx)]|¢ = |c(ex)|€ = |x|°.
— Let M =y # x then|M [z := c¢(cx)]|® = |M|°.

o Let M = M\y.N then|M[z := c(cz)]|® = My.|N[z = c(cx)]|¢ =TH \y.|N|¢ = |M|¢, where
y & {z,c}h.
o LetM = NP.

— Either N = ¢, soN|x := c(cx)] = ¢. Then,|M[z := c(cx)]|® = |P[z := c(cx)]|c =1
|P|° = [M]°.

— Or N # ¢, soN[z := c(cx)] # c. Then,| Mz = c(cz)]|® = |N[z = c(cx)]|¢|Plz =
c(ex)]| =" |N|°|PIe = | M]°.

Proof(Lemma 5.8.3) We prove the statement by induction on the structuré/of

e Let M = y then by lemma 5.3R”" = &.
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e Let M = A\y.N. Then by lemma 5.3:

— Eitherp = 0if M € RP". Then,|(M[z := c(cx)],0)|¢ = 0 = |(M, 0)[°.
— Orp = 1.p’ such thap’ € R]ﬁvn. Then|(M |z := c(cx)], p)|¢ = 1L.(N[z := c(ex)], p')|¢ =1
LN, p')[* = [(M, p)|° such thay & {x, c}.
e Let M = M7 Ms. Then by lemma 5.3:

— Eitherp = 0if M € R, Then,|(M |z := c(cx)],0)|¢ = 0 = |(M, 0)|.
— Orp = 1.p’ suchthap’ € Rf}]l. Then|(M|x := c(cx)], p)|¢ = L|(M1[z := c(cz)], p')|¢ =11
L|(My, p')|* = (M, p)|°.
— Orp = 2.p' such thap’ € R%.
« If My = cthenMi[z = c¢(c
c(ex)], p')|e =T (Mo, p')|° = |
x If My # cthenMi[z = c(cz)]
c(ex)], p)|© =" 2./(Ms, p')|* = |

Proof(Lemma 5.8.4) We prove this lemma by induction on the structure\of
o LetM € V\ {c}then|M|® = M andfv(M) \ {c} = {M} = fv(|]M[°).

o Let M = \y.P € Al. such thatP € Al. andy # c. Then|M|® = A\y.|P|® andfv(M) \ {c} =
P\ {y, c} =M 1v(|PI9)\ {y} = fv(|M]°).

o Let M = \y.Ply := c(cy)] € An. such thatP € An. andy # c¢. Then|M|® = A\y.|Ply :=
c(ey)]]© =% Ay |P|° andfv(M) \ {c} = fv(Ply == c(ey))) \ {e;y} = tv(P) \ {e,y} =
([ P1%)\ {y} = tv([M]°).

e Let M = \y.Py € An. such thatPy € An., y & fv(P)U{c}andc # N. Then|M|¢ = \y.|Py|¢
andfv(M) \ {c} = fv(Py) \ {c,y} =" fv(|Py|) \ {y} = tv(|M]%).

o Let M = cP(Q € M, such thatP,QQ € M.. Then|M|¢ = |P|¢|Q|¢ andfv(M) \ {c} =
(fv(P) UEv(Q)) \ {c} = (fv(P) \ {c}) U (v(Q) \ {c}) =" fv(|P|) Ufv(|Q|) = fv(|M]°).

o LetM = (\y.P)Q € M.suchthaty.P,Q € M.. Then|M|® = |\y.P|°|Q|° andfv(M)\{c} =

(fV(|(/\y‘-1)3) U (@) \ {c} = (tv(Ay-P) \ {c}) U (tv(Q) \ {c}) =" fv(]Ay.P|?) U fv(|QI%) =
fv(|M|°).

e Let M = cP € An, such thatV € An.. Then|M|¢ = |P|¢ andfv(M) \ {c} = fv(P) \ {c} =1

v (1P[?) = tv([M]%).
O

Proof(Lemma 5.8.5) We prove this lemma by induction on the structure\6f

o LetM €V \{c}.
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— Either M = z then| M|z := N]|° = [N|° = M|z := [N|9] = [M|°[z == |N|9].
— Or M =y # x then|M[z := NJ|¢ = |M|® = M = Mz == [N|9| = | M|z := |N|].

e Let M = \y.P € Al.suchthatP € Al.andy # c. Then|M [z := N]|¢ = \y.|P[z := N]|c =11
Ay.|Pl¢[x := |N|¢] = |M|¢[x := |[N|¢], wherey & fv(N)U{z} and so by lemma 4; & fv(|N|°).

o Let M = \y.Ply := c(cy)] € An. such thatP € An. andy # c¢. Then|M[z := NJ||° =
My Ply = c(ey)llz == NJ|° = M\y.|Plz == Nlly = c(e)]|®° => My.|Plz = N]|© =
A [PIla = NI =2 X Ply i= c(e)]le = [NF] = M|z i= [NIe], wherey ¢ fv(N) U
{z} and so by lemma 4; & fv(|N|°).

o Let M = \y.Py € An. such thatPy € An., y ¢ fv(P) U {c} andc # P. |[M[x := N]||° =
My.|(Py)[z := N]|¢ =17 \y.|Py|°[z := |N|°] = |M|[x := |N|°], wherey ¢ fv(N) U {x} and
so by lemma 4y ¢ fv(|N|°).

e Let M = cPQ € M, such thatP,Q € M.. |[M[x := N]|° = |P[z := N]|¢|Q[z := N]|© =1
|P|[e = IN[T|Q|[ := NI = (IP°|QI)[x := N[ = |M|[z := |N|].

o Let M = (\y.P)Q € M, suchthat\y.P,Q € M.. |[M[z := N]|® = |(A\y.P)[z := N||°|Q[x :=
NJ|© =" My Pl°[z == INI]|QI°[ := [N = (I\y.PI°|QI%) [ := [N|] = |M|[x := |N|].

e Let M = cP € An, such thatN € An.. |[M[z := N]|° = |P[z := N]|° ='H |P|°[z := |[N|°] =

|M|“[z := |N|].
O

Proof(Lemma 5.8.6) We prove the lemma by induction on the structuré\bf
o LetM € V\ {c}then|M|*=M € V\ {c} C Al

e let M = A\z.N such thatN € Al. andz € fv(N) andx # ¢. Then|M|¢ = A\z.|N|¢ and by IH
|N|© € Al Sincex € fv(N), by lemma 4z € fv(|N|°), so|M|° € Al

e Let M = cPQ such thatP, € Al. then|M|¢ = |P|¢|Q|¢ and by IH,|P|¢, |Q|¢ € Al, hence
|M¢ e Al

o Let M = (A\z.P)Q such that\z.P, Q € Al.then|M|¢ = |\z.P|¢|Q|® and by IH,|A\z.P|%, |Q|° €
Al hence|M | € Al
0

Proof(Lemma 5.8.7a) Letp € R'},, then by definition )|, € R". We prove the result by induction
on the structure op.

o Letp =0.

— Letr = gI thenM = (Az.M;)Ms such thatr € fv(M;) and Az.M;, M, € Al. and
M' = Mz := M,]. By definition My € Al., z € fv(M;) andz # c¢. Then|M|¢ =
(Az.|M1|%)|Ms|¢ and |M'|¢ = |Mylz = Ms]|¢ =° |My|°[z = |M3|°]. By lemma 4,
z € fv(|My|9). So,|M[¢ 25, | M’|¢ and| (M, 0)|° = 0.



50 Kamareddine, Rahli, Wells / Reducibility proofs in thealculus

— Letr = fn.
x Either M = (Az.M;)M, such that\a. My, My € An. and M’ = Mz = Ms).
By lemma 5.2,M; € Al. andz # ¢. Then|M|® = (A\x.|M;|%)|Ms|¢ and |M'|© =
|Mi[z := Ms)|¢ =° |M;|[x := | Ms|¢]. So,| M| gg |M'|¢ and|(M,0)|¢ = 0.
x Or M = \x.M'x such thatM'z € An,, x & fv(M'), x # candM’ # c. Then|M|¢ =
Az.|M'|°z. By lemma 4 € fv(|M’|%). So,|M | gg |M'|¢ and|(M, 0)|¢ = 0.
o Letp =1.p.

— Either M = Az.M; and M’ = Az.M] such thaths; %, M/. By lemma 5.3p' € R} . By
lemma 5.2,M; € M.andz # ¢ . By IH, |M;|° p—>"r |M{|¢ such thap” = |(M,p’)|¢. So
(M]e 2 M| and1.p" = (M, p)l°.

— Or M = MM, andM’ = MM, such that); ir Mj. By lemma 5.3p’ € Ry, By
lemma 5.3 M; # c. By lemma5.2.5:

* Either My = cMy where My € M.. By lemma 5.3p" = 2.p; such thaty, € R, .

So by definitionM| = c¢M, such that}/ X, M{. By IH, | M| B, | M| such that

1' 1
Py = (Mo, pp)l. Hence|M|® =2, |M'|° and (M, p)|° = [(cMoMa, 1.2.p5)|° =
1.|(eMo, 2.p)|* = 1.[(Mo, pp)|° = 1.pg

£ Or M, = Ae.My € M,. By IH, [M;|° ™, |M{|° such thatp” = |(M;, p')|°.
By lemma 2,M! € M, and by lemma 5.2.3M/ # c. So, |M|c "%, |M’|° and
(M, p)|° = L[(My,p")|* = 1.p".
o Letp = 2.p' thenM = M;M, and M’ = M, M} such thatM, ir M. By lemma 5.3,
p' € Rj,,. By lemma5.2.5M; € M.. By IH, [Ma| &, | M}|° such thap” = |(My, p')|°.

—If My = cthen|M[e 25, |M|e and| (M, p)|¢ = |(Ma, p')[¢ = p".
_ Otherwisel M|° *% , [M'|¢ and|(M, p)|¢ = 2.|(Ms, p')[¢ = 2."".

Proof(Lemma 5.8.7h) The proof is by induction on the structure &f; .
o LetM; € V\ {c}. ThenM; = |M;|¢ = |M>|¢. By lemma 4,Ms = ¢"(My).

— Either M, = z, thenM;[z := N;] = N; and Ms[z := N3] = ¢"(N3). By hypothesis
(N1, Ry I C [(Na, R )€ =2 (e (N2), Rl )¢

— Or M, =y # xthenM;[z := N;| = y andMz[z := N3] = ¢"(y). We conclude using
lemma 2.

e Let My = A\y.M| € Al such thaty € fv(M]), y # candM; € Al. then|M;|® = \y.M| =
|Ms|¢. By lemma 4 and becauskly € Al., My = \y.M}, y € tv(M)), M) € Al. and
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Ml = |M{|°. By lemma 5.3RYy; = {Lp | p € Ry} andRy, = {Lp | p € R}
So,|(My, Ry)| = {Lp | p € (M], Ri)|7} and[(Ma, Ryp ) = {L.p | p € [(M3, Ryp,)I.
Letp € [(M{, Ri)I% thenlp € [(Mi, Ry )|® C [(Mo, Rhp)Ie Sop € (Mg, R i.e.
(M Ry € (M3, Ry )|

BY IH, [(Mj [ := N1, Ry )| € (Mgl := NoJ, Ry )l

Since Mi[z := Ni| = \y. Ml[a: = Nj] and Mz = Ng] = \y.Mj[z := Ny] wherey ¢
fv(N1) Ufv(N2), by lemma 5. 3RM1[x N = ={lp|pe€ RM,[I _N ]} andRMQ[x Na = ={l.p|

I
P € Riyp ey -

So|(Mi[z == NiJ, Rip .y )© = {1.p | p € [(M{[z == NiJ, Ry} .y, I} and | (Moo
Nol, Ry ) © = {10 | p € [(Mble = Mo, Ry, .\ ) Letp € [(Mifz =
N1, RYL (o) | thenp = 1p’ such thaty’ € |(M[z == Nl] Rﬂf )l S (Mgl =
NoJ, Ry ey )| SOP € [(Maf = NoJ, R ).

Let My = \y.Mj[y := c(cy)] € An. such thatM| € An. andy # c, then|M;|¢ =2 \y.|M]|°.

Because M| = \y.|Mj|¢, then by lemma 4M,; = ¢"(\y.P) such that|P|° = |M]|°. B

lemma5.2.6)\y.P € An.. By lemma 5.2.12aP € An.. We prove the lemma by case an.P.

— Either \y.P = A\y.MjJy = c(cy)] such thatM} € An.. Hence|Mj|© =2 |Mlily =

cley)ll© = |M{|e. We also haveR] =45 {Lp | p € Ry .} =>4 {Lp |
p € RypyandRy) , =542 {1p € Ryl 0} =>4 {Lp | p € RYL}. So
(M, REIC =2 {1p | p € \(M{Rﬁylc} and |(M,, R )| =2 [(\y.P, nyp>|c =
{Lp | p € (Mg, RYL)IY. Letp € [(M{, RIG)|" thenl.p € (M, RAZ )| C [(Ma, RYT ),
sop € [(Mg, RYD)IC, e [(Mf, R C [(Mg, R
By IH, [(M{[z := N1|, R .y )€ € (M3 = NoJ, RYD e

BecauseM;[z := N;j| = )\y.Ml[ = cley)]lz = Ni] = Xy.M{[z = Ni]ly =

c(ey)] and (A\y.P)[z := No| = Ay.My := c(ey)][z = Nz] = Ay Mylz == N[y :=

c(cy)] such thaty ¢ fv(Ny) U fv(No) U {z}, we obtalnRM (2= Na] =43 fp | p €

Rt iymeepy} = L0 [0 € RM, gt @ARYL o =548 {Lp | p €

Rty illycteny} = {12 [ 2 € Ry, x—Nzl}

So|(Mi[z = N\, Ry} >|C =5 {Lp | p € [(M{[z = M|, R} _y,)I°} and

[(Ma[z == N, Rﬁ”[ s=N: >\C =* ((\y.P)[z := N, R(Ayp)[ wpl© =" {1y | p €

(Mjla = Nol, Ry, )|} Letp € [(Mife = Ni], R%WZM}W thenp = 1.p/

such thaty’ € [(M][z := Nl],Rﬁjﬂx:Nﬂw C Mz = Ng],Rﬁé[m::NﬂHc. Hence,

p € [(Molw := NoJ, Ry o w ) I°

— Let \y.P = \y.MJy such thatP = My € An., y ¢ fv(M)) and M) # c. So we
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have [Mjy|© = |Mj|°. We already showed thdﬁfjl ={lp | p € Rfj{}. Since
\y.P € R, by lemma 53R , = {0} U{lp | p € R%y}. So|[(My, Ry} =3
{Lp | p € (MR and[(Ma, RAL)E =2 [(Ay. PRy p)|¢ = {0} U {Lp | p €
[(Mgy, RY, )1} Letp € [(M, R thenlp € [(My, RYG)I° € [(Ma, RIZ)I% s0
p € (Mgy, RyJL )I° e (M, R C [(My, R .

BY IH, [(M] [ := N1, Ry ) = H(May)[w := Nol R, )

BecauseM[z := Ni| = Ay.M{ly := c(ey)llz = Ni| = My.M[z := Ni]ly :=
c(ey)], A\y.P)[z = No] = Ay.(Miy)lx := No| = \y.Mj[z = Ns]y such thaty ¢
fv(N1) U fv(N2) U {x}, we obtain(Ay. P)[z := No] € RO, R\ =543 {1.p | p €

B _54. B B _
RJ{[%Nl}[y:c@y)]} =P L [P € Rifip ) ARG by = {0} U {Lp |
n
P € Riytgypfs=nal

So|(Mifa := N Ry .y )I° = {Lp | p € [(Mi[e == N,RY}_\ )|} and
(Ma [z := NoJ, ROL o) =2 KO- P)[w = Nol, RV, by )| = {0}U{Lp | p €
(M)l = NoJ, R{yy o nyp) Y- Letp € [(M[z:= N, R 0)|° thenp = 1p/
such thay’ € [(M[z := N1, Rip oy )1 € [((Mgy)la = Nol, Ry, ) SO

I c
pE |<M2[.1‘ = ]\[2]77—‘)’[;‘\42[1::]\72]>| ’

o Let My = \y.Mjy € An. such thatMiy € An., My # candy ¢ fv(Mj) U {c}, then|M;|¢ =

Ay.|Mjy|c. BecausgMs|® = A\y.|Mjyl|¢, then by lemma 4)My = ¢ (\y.P) such thafP| =
|M{y|°. By lemma5.2.6)y.P € An.. By lemma5.2.12aP € An.. We prove the lemma by case
on\y.P.

— Either\y.P = \y.Mjly := c(cy)] such thath} € An.. SinceM; € R7, Ry} =53 {0} U
&) B _5.4. Bn e _

{lp|pe RJ\;{y}. Moreover,RAZ'P =543 (1| p e R/]g\;é[y;:c(cy)}}’ so|(My, Ry )¢ =
{0} U{Lp | p € [(M{y, RYJ )} and|(Ma, RET)I =2 |y PRRY ) = {1.p | p €
[(M3ly = e(cy)l, RAJs ooy |} We haved € [(M, R )| but0 ¢ (Mo, R )"

— Or \y.P = \y.M}y such thatMyy € An., y & ftv(M}) U {z} and M) # ¢. So we
have | Mjy|© = |M{y|¢. BecauseMy, \y.P € R”", by lemma 5.3,73%71 = {0} u{l.p |
p € Ryj, }andRy! p = {0} U {Lp | p € R }. So|(My, Ry7)I° = {0} U{lp | p €
[(Miy, Ry, )1} and|(Mz, RYZ )| =2 [(Ay- PR p)I° = {0YU{Lp | p € [(May, RYJL ).
Letp € [(M{y, Ry )| thenl.p & |(My, Ryf)I° C [(Ma, RyL)[¢ sop € [(Mgy, R I°,
Le. |(Miy, Ryf )I° C [(M3y, Rop DI By IH, [(Miy)lz = N, R n )l =
(M)l = Nol, R{yy )|
BecauseM; [z := Ni| = \y.(M{y)[x := Ni| = \y.M{[z := Ni]y, (\y.P)[z := No] =
Ay.(Mby)[x := Na] = \y.Mj[x := Naly andy ¢ fv(Ny) U fv(Ns) such thaty ¢ fv(N;) U
fv(No) U {z}, we haveMi [z := Ni], (\y.P)[x := NoJ € R, RYT .\ = {0} U



Kamareddine, Rahli, Wells / Reducibility proofs in thealculus 53

&) _ B
{1p | p € R(]@, _np) and R Mofr=ng] = 10t U{Lp | p € R(A’Zéy)[ﬁ:m}. So
(M [z = Ny, Rﬁ}l[x _e)lE = {0} U{Lp | p € ((My)lz = N, Ry I

and|(Mafa := Nal, Ry v, ) € =2 (Pl i= Nal, RYY, )€ = {03 U{Lp |
p € [(Mby)[z := Ny, Rfﬂ’g pweny) [} Letp € [(Mifz = N, RG7 )| then
eitherp = 0 € [(Ma[z := No, Rﬁ Molzie >\C or p = 1.p’ such thaty’ € [((Mjy)[z =
N R w1 € 1((Mgy) [ —Nz] R

SOp S |<M2[.T = NQ] Rﬁ/flg[;t }HC

(gl

o Let My = cP(QQ; € M, such thatP;, @, € M, then|M1\C = ‘P1|C|Q1‘C = |M2‘C. Note that
M, ¢ R". BecausdMs|¢ = |P1|¢|Q1]¢, then by lemma 4)My = ¢"(PQ) such thatP # c,
|P|¢ = |P1|and|Q|® = |Q1]°. By lemma5.2.6PQ) € M.. We prove the lemma by case &i%).

— EitherP,Q € M. andP is a\-abstractiom\y.P’. Because’Q) € M., by lemma 1aPQ =
(\y.P")Q € R". Bylemma5.3R}, = {1.2.p [ p € Rp }U{2.p | p € Ry, } andRp =
{0y U{lp | peRpIU{2p | pER] Q) Sol(My, Ry )| = {1.p | p € [(P1,Rp)[} U
{2p | p € (Q1,RG)I} and|<M2,RT2>IC =2 (PQ,Rpq)|© = {0t U{lp | p €
(P, Rp)[FU{2.p [ p € (Q,Rp)l}. Letp € [(P, R, )| thenl.p e [(My1, R}, )| €
(M, Ry )IF. Sop € |(P.Rp) ie |(Pr Ry )I° © [(PRp)E. Letp € |(Qr R,
then2.p & |(My, Ry ) C |V, Ry ). Sop € [(QRY) ie. [(QuRp,)F €
(QRLIE. By M, (Pl = NiJ, Ry I° € [Pl = Nal, Rpy,, o dl° and
(@il = NiLRY, )| € 1(Qlw := Nal, Rl I
Becausel [z := Ny] = cPi[z := N1]Q1[z := Ni] and(PQ)[x := No] = (\y.P'[x :=
No))Q[z = No] €>210 M, such thaty ¢ fv(Ny), we obtainM;[z = Ni] ¢ R"
and (PQ)[z := N] €'® R". So by lemma 5.3 we havR}, .\, = {1.2.p | p €
R};l[x::Nl]} U{2.p|pe th[ac::Nl}} andR(PQ)[ﬁ:Nﬂ ={0}u{lp|pe RTP[$::N2]} U
{20 [P € Rgpony -

S0 [(Mfe i= N0 Rigy ) = {12 | # € (Pl i= Nl Ry o) (YU (20 |
p € (@Qilr = Nil, R,y )|} and|[(Malz == Nol, Ry, e =2 [(PQ)fa

Nol, RipQ)w=ns] )| = {O}U{l plpel(Plx:= N2]7Rp[x,_N2 N u{2p|pe \(Q[a: =
Ng] Romw=ny) |} Letp € [(Mi[z == N1, Ry . _n, )| then eitherp = 1.p’ such that

p € \(Pl[x = N, RP1[$':N1]>|C C |{(Plx := Ng, R;[$::N2]>|C_ Sop € [(My[x =

NQ],RTMﬂﬁ:NﬂHC. Orp = 2.p' such thap’ € [(Q1]x := Nl],R’"Ql[ﬁ:Nl]HC C Qx ==

NZ]’RZQ[:B::NQ]HC' Sop € [(Ma[z := NQ]’RR/IQ[;B;:NQ]HC'

— Or P = ¢P’ such thatP’,Q € M., then|P|® = |P'|® = |P|°. SinceM;,PQ ¢ R", by
lemma5.3RY, ={1.2.p [ p € Rp }U{2.p | p € R, } andRp, = {1.2.p [ p € R/ }U
{2.p | p e RE } 50|<M1,R}"\41>\C ={lp|pe (P, Rp)|tU{2p|p € [(Q1,R,)I}
and|<Mz,R’j\42>\c =? [(PQ, Rpg)l* ={Lp | p e (P, Rp)IFU{2.p | p € (Q, Ry}
Letp € |(P1, Rp,)| thenl-p e (M, Ry )¢ C (M2, Ry, Sop € [(P, RS,
ie. (P, Rp)I® C (P, Rp) Letp € [(Q1,Rp,)|° then2.p € [(Mi,Ry,)|° C
[(Ma2, Ry, )1 Sop € [(Q R 1e. (Q1, Ry, ) € Q. Ry By IH, [(Pifz :=
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Ny, Rpl[x N1]>|c C [(Px = N2]aR71nD/[x;:N2]>|c and[(Q1 [z = Nl],REgl[x;:Nﬂﬂc -
Qe = Nal, Ry )

BecauseM[z := Ni| = cPi[z := N1]Qi[z := Ni] and (PQ)[z := N3] = cP'[z =
Ns|Q[z == Na|, we obtainM; [z := N1, (PQ)[x := Nz ¢ R". So by lemma 5.3 we have
R Mi[z:=N1] — {12zp|pe R?Dl[ Nﬂ} U{zp|p € RQ1[$ N]} andR(PQ)[if =Na] —
{1.2p[p € RP’[;Z; =Ny] tu{2.p|pe RQ[;L’ =Ny] b So|[(Mi[z == Nil, RMl[x N1]>| =
{Lp [ p e [(Plz = Nl] Ry fwimny) [T U {2p | p € (@il := N1, Ry (e}
and [(Mz[z := Ny, RM2[$ N2]>|C =2 [((PQ)[z = N2]7R?pQ)[g;;:N2]>|C = {1.]) | p €
(P = Nal, Ry )4 U420 | p € (@ i= Nal, REyy )}

Letp € |(Mi[z := Nl] RY np|© then eitherp = 1.p" such thatp’ € [(Py[z =

M |z:=
Nl]aRpl[x;:Nl]H C (Pl —N2] Rlp Pai= }H Sop € [(Ma[z := No, RMQ[ N2]>‘C-
Orp = 2.p’ such thay’ € |(Q1[x := Ny], T\’,’"Ql[x >| C (Q[z := N, R Qle=Na)] >|c So

p € [(Ma[x := N3, T\’,M2[$ N2]>|c.

o Let M) = PiQ; € M. such thatP,Q, € M, and P, is aA-abstraction\y.Py. Then|M;|¢ =
|P1|€|Q1]¢. Note that becaus@/; € M. then by lemma 1a)M; € R". So by lemma 5.3,
0 € R}y, S00 € [(M1, Ry, )| BecauseMs|® = |P1[|Q1], then by lemma 4)M; = ¢"(PQ)
such thatP # ¢, |P|¢ = |Pi|¢ and|Q|¢ = |Q1|°. By lemma 5.2.6,PQ € M,.. We prove the
lemma by case ofQ).

— Either P = ¢P’ such thatP’,Q € M., soPQ ¢ R". Hence, by lemma 5.3R%, =
{1.2.p \ p € Rp}U{2.p | p € Ry} So[(Ma, Ry, ) = \(PQ,R}BQHC ={lp|pc
(P, Rp )T U{2.p [ p € (Q, R’“H }. Henced ¢ (M, M) |-

— Or P,Q € M. andP is a\-abstraction\y.P’ . BecauseP@) = (\y.P")Q € M. then by
lemma 1a,PQ € R". By lemma 53R}, = {0} U{l.p |p e Rp}U{2.p|p € Ry}
andRpy = {0t U{lp | p € Rp}U{2p € R} o} So, |<M17Rr >\C = {0} u{lp |
p € (PLRp)ITFU{2p | p € [(Q1,Rg,)I }and\(Mz,R’“ 1° =2 [(PQRpg)|© =
O} Uy v e (PRRIYU{s | 7 e QR Letp € |(PrRpI then
Lp € [(My Ry ) € [(Ma, Ry ). Sop € [(P.RISIE, e [{PL Rp I € (PR
letp € \(QhRTQl)\C then2.p € |<M1,R}“Wl>\c C [(Ma, Ryp,) | So,p € {Q,Rp)I% e
(@1, Rp, ) € QR
By IH, [(P[x := Nl]’R?Dl[x::NI]HC C |(Plx = NQ],R’I“D[x::NQ]>|C and

|<Q1[33 = Nl] RTQI[I }>|c - |<Q[33 = N2]7RTQ[I;:N2]>|C-

By lemma 5.2.10M; [z := Ni] € M. and by lemma 1a)/;[z := Ni] = (\y.Pylz :=

M))Qi[x := N1] € R". By lemma 5.2.10(PQ)[x := Ny] € M, and by lemma 1a,

(PQ)[x := No] = (M\y.Plz = NQ])Q[x = Ny] € R". So by lemma 5.3 we have

Rt foeny) = {0ju{lp|pe Rpy ey ] tu{2.p|pe RO N]} andRE’PQ)[ Ny =
{O}U{lp \ P € Rpy,. NQ}U{M \ p ERQ[x _ Ny SO[{My [z := Ny, RMl[z e =
{OH{Lp | p € (Pilz :== M|, Rp .o ny) T U {229 | p € (Qilz == M|, Ry, (peny) [}

and (Ml == NoJ, Ry ) =2 ((PQ)[E = No], Ripgy.. N2>\c={0}u{1p\
p € |(Plz := No|, R}, [.:N2]>|c} U{2p | p € |(Qx = Ng] Q[;B N2]>| }. Letp €

(Mi[z = Ni|,Riy e[ then eitherp = 0 € [(Mafa = NoJ, Ry, .y, OF
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p = 1.p' suchthap’ € [(P[x := N, R () |© € [Pz := No|, R, _ )| Sop €
[(Mala = Na|, Ry, .y, Orp = 2.p" such thap’ € [(Qufz := N1|, Rp .y, I C
(@l := No), Riy,_ )l S0p € (Mol i= NoJ, Ry I

o LetM; = cM] € An. such thatM] € An.. So|M{| = [M;|°. By lemm 2,[(M;, R}])|® =
|<M{7R]ﬁ\;{>‘c By H, ‘(M{[J: = N1]7 ?M{[I;:Nl]ﬂc - ‘(MQ[J: = NQLR?WQ[I;:NQ]HC' Since
M [z := Ni] = cMj[x := N then by lemm 2|(M;[z := Nl],Rﬁ/Z[ﬁ:Nl]HC = |[(M{[z =

N1, R oo SOI (M 1= N, Ry o DI € [(Maf 1= N, Ry 0
O

Proof(Lemma 5.8.7c) By lemma 8,p; € R, andp; € Rj, . We prove this lemma by induction
on the structure of/;.

1. LetM; € V' \ {c} then nothing to prove sinck/; does not reduce.

2. Let M; = Ax.N; € Al. such thatr # c. So|M;| = A\z.|N1|¢ = |M;|°. By lemma 4,
becausell, € Al. and by lemma 5.2}, = Az.Ny and|Ny|¢ = |N1|¢ . SoN; € Al.. Since
My, My ¢ R, by lemma 53Ry, = {lp | p € Ry} andRy, = {1.p | pRY.} so
My, REDIE = {Lp | p € [(N, RIS} and [(Ma, RGL)[C = {Lp | p € [(N2, RAL)IY-
Letp € |<N1,R%>|‘3 thenl.p € \(Ml,R%HC, so by hypothesisl.p € |<M2,R%>\C. Hence,
p € [(No, R, ie (N1, RYL)E C [(No, RRL)IC. Sincepr € Ry, p1 = Lp| such that
pl € RY. Sinceps € Ryp, po = 1.p} such thapy € RY.. Since|(My,p)|¢ = |[(Ms, p)|° then
(N3, p) ¢ = [(Na, pb)[e. Hence,M; = ANy Ps; Ae.N] = M] such thatV, “5; N/ and
My = ANy %51 Ae.N} = M} such thatNs "5, N} By IH, \(N{,Rf@r C \(Ng,Rf@\C.
By lemma 5.3,73% ={lp|pe Rﬁ,’;} anomﬁjé ={lp|pe Rfj} so|(M{,R%>|O =
{Lp | p € (N, RRG)Iy and| (M3, Ryp )¢ = {Lp | p € [(N3, RR:) I} Letp € [(M, Ry,
thenp = 1.p’ such thap’ \(N{,R%)\C - |<N§,R%>\C, Sop € \(MQ,R%HC.

3. LetM; = Az.Ni[z := c(cx)] € An. such thatV, € An. andx # cthen|M;|¢ = Az.|Ni[z =
c(cx)]|¢ =2 \x.|Ny|°. Becaus@Ms|¢ = Az.|Np|¢, then by lemma 4M, = ¢™(Az.P) such that
|P|¢ = |Ni|. By lemma5.2.6\z.P € An.. We prove the lemma by case am.P.

e Either\z.P = Az.Nz[z := c(cx)] such thatVy € An.. Then,
N1 = [PI° = [Nalw i= e(ca)]| =% [ Na|* andR{}, =>4 {1p | p € R ooy} =>4
{1-]7 ‘ p e R]ﬁ\g} anngz-P =43 {1-]7 ‘ VRS R]ﬁVZ[a:::c(cas)]} =544 {1-]7 ‘ VRS R]ﬁ\fz}
So, [(My, RN =% {1.p | p € [N, R} and| (Mo, RYT) [ =2 | PR )| =
{1.p | p € [(No, RAD)[}. Letp € [(Ny, RYT) | thenl.p € [(My, RYJ)|E C (Mo, RIL)IC,
Sop € |<N2,R%>|C, i.e.\(Nl,R]ﬁ\}mC - |<N2,R%>|C. Because; € Rﬁl,we obtainp; =
1.p} such thaty] € R]ﬁv’z Becausey, € R% and by lemma 5.4.5 we obtajp = 2".1.p),
such thap), € Rf\,’;. Becausd.|(Ny, py)|¢ =3 (M1, p1)|¢ = [(Ma, p2)|¢ =33 1.|(Na, pb)|°,
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we obtain|(Ny, )| = [(Na, pb)|¢. SOM; = \z.Ny[z := c(cz)] Bg, \z.Py = M] and
My = " (Az.Nalx := c(cx)]) 2577 "(A\z.Py) = M) such thatV [z := c(cx)] P_%ﬁn P
and Ns [z := c(cz)] p—%ﬁn P, . Bylemma5.2.13aP, = N{[z := c(cz)], P = Nj[z =
lex)], Ny B, N{and Ny %, Np. By W, (N RN C [(N} R, Hence,
Ri =43 {Lp | p € RY Lyt =" {lp | p € R} and Ry, =242
{1p € R oyt =" Lo | p € R} So, (MR =3 {1p | p €
(N, REI} and (M3, RIS =2 [(Az.Po, RYT p)I° =% {Lp | p € [(N3, RRD)IY.
Letp € \(M{,R%HC thenp = 1.p’ such thatp’ € |<N{,R%>IC - |<N§,R§Z>|C, o)
p € (M3, R, e [(M], RAZI © (M5, RETIe.

e Let \z.P = \x.Noz such thatNyx € A, ¢ fv(Ny) and Ny # ¢, thenz.P € R,
Rot, =43 {Lp | p € RY yCoperyt =44 {Lp | p € R} andRYY , =73 {0} U
{1p | p € RY,}. By lemma5.4.5RY" , =53 {2".0} U {2".1.p | p € R}, }. So,
(MR =2 {Lp | p € [(NLRYD)IY and [(Ma, RYZ)|© =2 [(Ae. PRI p)|° =
{0} U{Lp | p € [(Noz, RY,)[}. Letp € [(N1,RY)[€ thenl.p € [(My, Ry €
[(Mz, Ry, s0p € [(Naz, RRY )|, e [(N1, R C |(Naz, R, ). Sincep; €
Rﬁ}}l,pl = 1.p] such thap; € R]ﬁ\g Because, ¢ R% and1.|(Ny, p})|¢ =3 (M1, ;)| =
|(Ma, p2)|°, thenpy = 2".1.p} such thap) € Ry . Because.|(Ny, p})|° =3 [(My, p1)|° =
(M, p2)|® =% [(Az.Now, L.py)|® = L[(Nax, p5)|° then [(Ny, p1)|° = [(Naz, py)|°. So
My = Az.Ni[z := c(cz)] Bog, Aa.Pr = M| and My = "(\x.Nozw) B, "(A\a.Nb) =
M/, such thatN;[z = c(cx)] p—iw P, and Ny p—%ﬁn N} . Bylemma 5.2.13aP;, =
N{[z = c(cz)], and N} ’iﬂn N{. By IH, |(N{,R]ﬂ\z>|c C \(Né,R]ﬂV’g)\c. Moreover,
Rite =>4 {Lp | p € RNyt =74 {1 | p € R} andRYY 1\ {0} =7
{Lp | p € R} So (M, RYL)C =3 {Lp | p € [(N],RI)|} and (M3, RYT )| \
{0} =2 [(Aa.Ng, RYT \)1°\ {0} = {L1.p € [(Ng, RRY1)[}. Letp € [(M], R])|° then
p = L.p’ such thaty’ € |<N{,R§3}>|¢ C \(Ng,nfvzw, sop € \(Mé,R%HC \ {0}, i.e.
(M, RN © [(M3, R ).

4, LetM; = Mz.Nyx € An, such thatNyz € Ane, = & fv(Ny) U {c} andN; # ¢, thenM; € R
and |M;]¢ = Ax.|Niz|¢ = Ax.|Ny|°x. Becausg@Ms|¢ = Az.|Ny|“z, then by lemma 4)M, =
c"(Az.P) such thai P|¢ = |N{|°x. By lemma 5.2.6\z.P € An.. We prove the lemma by case
on\x.P.

(@) Leth\z.P = \x.Ns[z := c(cz)] such thatV, € An,. theanj1 =>3{0}u{l.p|pe€ R]ﬁ\,’igg}
andRy? , =543 (1.p | p € Rfvz[x::c(cx)]} =44 p|pec Rf\g} So,|(M1,R§}71>|C -
{0} U{Lp | p € (N, R} and|(Ma, REL)|E =2 [(Aw. P, REY L)|e =3 {1p | p €
(N2, R}, Henced € [(My, Ry )¢ but0 ¢ [(Ma, R ).
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(b) Let \z.P = A\z.Nyx such thatNox € Ane, x & fv(Ny) and Ny # ¢, then M, € R,
Since|Ms|¢ = Ax.|Noz|¢ = Ax.|Na|z, |[N12|¢ = |Noz|® and\Nl\C | N2|¢. Moreover,
R, —53{0}u{1p\p e RYLY, RM—”{O}U{M | p € R} andR) =545
(2np | p e RY L} =23 {2n0} U{2"1p | p € RNW} 50,\<M1,7z§;1>\c = {0} U
{Lp | p € [Nz, RY )|} and (Mo, RAP)IE =2 |(Ax. P, RET )¢ = {0} U {Lp | p €
[(Noz, R Y. Letp € [(Niz, RY )¢ thenlp € [(My, Ry} C [(Ma, RYL)|, s0
p e |<N2:C,R]5V"x>|c ie. |(N1:1:,R§}VZI>|C [(No, R]ﬁv”xﬂc Moreover, R]ﬁv”x \ {0} =53
{1p | p € RYYandRY,\ {0} =52 {1.p | p € R}, so|(Nyz, Ry ,)I¢\ {0} =
{lp|pc \<N17R5”>\ }and[(Noz, R )\ {0} = {1.p | p € (N2, RY1)I). Let
p € [N, R thenlp € [(Nyz, R )¢\ {0} C [(Nya, R VIE C [(Naw, RV,
sop € |<N2,R?Vg>|c, ie. |<N1,R?Vq>|c C |<N2,R?V’;>|c. Sincep; € Rﬁjl:

e Eitherp; = 0. Becausey € R% and|(M, p1)|¢ = |(Ma, p2)|¢, we obtainpy, = 2".0.
SoM; %4, Ny andM, = ¢"(Az.Nax) 5, ¢*(Na). Itis done since(Ny, Ry )|° C
(N, RN =2 (™ (N2), R )|

e Orp; = 1.p; such thatp] € Rle- Becasuey, € R% and|[(My, p1)|¢ = [(Ma, pa2)|¢,

we obtainps = 2™.1.p} such that), € R . Becasud.|(Nyz, p1)|¢ = [(M7, p1)| =
(M, pa)|© = |<M" szv Lpy)|®=1. |<N2x p3)|°, we 0btam|<N1x P = [(Naz, p3)|°.
SoM; = \x. Nz —>5,7 )\l‘N{ = M{ andMsy = ¢ ()\.I‘NQ.Z‘) —>ﬁn ()\.I‘Né) = Mé

such that\,z 25, NJ and Nz 225, Nb. By IH, \(N{,Rﬁ’mc C \(NQ,R@’;W.

— Either Nyz € R, soN; = \y.P;, and by lemma 5. 3Rle ={0}u{lp|pe
R’gn} Becausé(le RN15c>|C C [{Naz, RNM>|C we obtaind € [(Nsz, RN2I>|C.
Hence,0 € RNM and by lemma 5.3RN2x ={0ju{lp|pe R]ﬁ\,’;} Hence,
Nox € RP" and by lemma 4N, = \y.P, such that P, |¢ = | P, |°.

« Eitherp] = 0. Becausé(Nz, p})|¢ = |(Naz, p4)|¢, we obtainp, = 0. SoM; =
Az (M. Pz B, Ae.Pily = x] = M| and My = ¢*(\z.(\y.Py)z) B,
"(Ax.Poly := z]) = M,. Becauser ¢ fv(Ny) U fv(Ny), we obtainM| =
Ny and M}, = ¢"(N). It is done since|<N1,R]‘ig>|C C \(NQ,R%W =2
(e (N2), RO I

x Let p] = 1.p{ such thatp] € Rﬁ” Becausg(N; z, pmc = [(Naz, ph)|¢, we
obtainp), = 1.p4 such thatp) € Rﬁ” SoM; = \z.Niz g, M. Nla: = M|
and My = ¢"(A\z.Noz) ~ S, (A\x.NJz) = M} such that\V, —>5,7 N{ and
Ny =g, Nj. becauser ¢ fv(N;) U fv(Nz), by lemma 2.2.3, we obtain
x ¢ tv(N]) U fv(NY). So, M|, \z.Nyx € R and by lemma 5. 3RM, =
{0yu{lp | peRY }andRA e = 0y U{lp | pc RNé}. Hence,
(MR = {0} U e | C € [(N]RRD)I} and (Mg, Ry =2
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[ Ng, R v )I° = {0} U {Lp | p € |(N5, RRD)I).
Becauset(N{,RfV’p\c C \(Ng,Rf@r, we obtain|<M{,R§\Z7{>|C = {0y u{l.p|
p € (N RENIY C {0} U {Lp | p € [(NG, RADIY = (Mg, RiD) |
— Else by lemma 537315\,’196 ={lp|pe R]ﬁv’i} Letp; = 1.py such thapy € R]ﬁv’i
Then, p,, = 1.p4 such thatpl € R]ﬁv’; SoM; = Az.Niz Bg, Ae.Ni'z = M;
and My = c"(Ax.Nox) ﬂﬁn "(Ax.Nyx) = M. such thatN; p—1>ﬁ7, N{ and
Ny p—2>5,7 Nj. Becauser ¢ fv(Np) U fv(N2), by lemma 2.2.3 we obtain; ¢
tv(NY) Utv(Ny). So,M{, \z.Nyz € R%" and by lemma 5.3R"", = {0} U {1.p |
1
p € Rﬁ,”{} andeg'Né = {0}u{lp | p € R?V"} Hence,|<M{,Rfj{>\c =
{0} U {1.p | p € [(N], RRD)I} and | (M, Rip)|e ==2 [(Ax.NB, RY? )[° =
{0y U{Lp | p € |(N, RET)|°). Because(N{, RII)|e C |(Ng, RI1)[e, we ob-
2 1 2
tain [(M{, Ryp)I° = {0} U{Lp | p € [(NLRY)T € {0} U{lp | p e
(N, R} = (M3, RAp )

5. LetM; = cP1@Q1 € M, such thatP;, P, € M.. So|Mi|¢ = |P1|¢|@Q1]¢ = | M2|°. We prove the
statement by induction on the structure)d$:

Let My € V \ {c} then|M;|¢ = My # | P1|°|Q1]°.

Let My = Az.No € Al such thatVy € Al andz # cthen|Ms|¢ = Ax.|Na | # | P1[¢|Q1]¢.
Let My = Az.Na[z = c(cx)] € An. such thatNy, € An. andz # cthen|Msy|¢ =
Az.|Nojz = c(cx)]|¢ # | P1]¢|Q1]°.

Let My = Ax.Nox € An. such thatNoz € Al andz ¢ fv(Na) U {c} and Ny # ¢ then
|Ms|¢ = \x.|Noz|© # | P ]|Q1]°.

Let My = cP2Q2 € M, such thatP,, Q2 € M., then|cPs|¢ = |P|¢ = |P1|¢ and|Q2|¢ =
|@Q1]¢. SinceMy,cP, ¢ R, by lemma 5.3R}, = {1.2.p | p € Rp}U{2.p | p €
R, }- SO [(M1, Ry ) = {1.p | p € (P, Ry} U{2.p | p € (Q1,RG,)|°}- Again
by lemma 5.3, sincéd, ¢ R", R}, = {12.p | p € Rp,}U{2.p | p € Ry, }. So,
[(Ma2, Riy,)|© = A{1p | p € [(P2, R FU{2.p | p € {Q2,Rpy, )|} Letp € [(P1, Ry, )|
thenl.p € [(M1, R}, )|® C [(M2,R},,)|°. Hence,p € [(P, Rp,)|% i.e. (P, Rp )| C
[(Po, Rp,)|° Letp € [(Q1,Rp)|  then2.p € [(My, R}, )| C [(M, Ry,,)|° Hence,
p € [(Q2.Rp,) 1% el (Qu, Ry DI C [(Q2, R, )|°. Sincep; € Ry,:

— Eitherp; = 1.2.pj suchthap; € Ry, andsol.|(Py, py)|¢ = [(M1, p1)|¢ = [(Ma, p2)|°.
Hence, becausg, € Rj,,, we obtainpy; = 1.2.py such that(P1, pj)|¢ = [(P, py)|°©
andp, € R},. Hence,M; = cPIQ1 &, cP{Q1 = M| and M, = cP,Q2 3,
cPyQy = M} such thatP, 5, Pl and Py 2, Py. By IH, |(P}.R},)[¢ C [(P.RI)I°.
By lemma 53R}, = {12.p | p € Rjp} U {2p | p € R}y, } andR;, = {12 |
p € Ry} U{2.p | p € R, b sO[(M], Ry = {Lp [ p € (P, Rp)|}U{2p |
p € [(QuRY,)I} and [(M5, Ry,)¢ = {1 | p € [(PLRy,)FU {2 | p €
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(Q2, Ry} Letp € |<M{,RTM{>|C. Eitherp = 1.p’ such thaty’ € |<P1’,R’"P1,>\C
(P, Ripy)I°. Sop € [(M},Ry,,)|°. Orp = 2.p such thaty’ € [(Q1,Rpy, )|
(@2, Rp,)I°. Sop € (Mg, Ry, )[°

— Orp1 = 2.p; such thatp; € Ry, and s02.[(Q1, p1)|* = [(M1,p1)|¢ = [(Ma, pa2)|°.
Becausegn, € R, we obtainpy = 2.py such that(Qy, p1)|® = [(Q2, ps)|°. Hence,
M, = cPQ; =5, cP Q) = M{ and My = cP>Qs L cP,Q), = M such that

Q1 =, QrandQz 2, Q4. By IH, [(Q4,Ry)|° € [(Q4,Ryy,)[. By lemma 5.3,
R?\/[{ ={12.p|peRp }U{2.p|p ERY /1} andR?wé ={12p[peRpU{2.p |
p € Ry, b sO[(M{, Ryl = {1.p | p € [(P1,Rp,) [T U{2p [ p € (@1, Ry )}
and [(M3, Ry )| = {Lp | p € [(P,Rp)IF U{2p | p € [(@5,R,)[} Let
p € \(M{,RMHC. Eitherp = 1.p" such thatp’ € [(P1,Rp)|© C [(P2, R}p,)| So
p € [(M},Ry,,)[. Or p = 2.9/ such thaty’ € |(Q4. Ry )I° C (@b, Rpy,)I°. So
P € (M5, Ry )IC.

o LetMy = P,Qo € M. suchthatP,, Q, € M. andP; is ai-abstraction. ThefP|¢ = | P |¢
and|Q2|® = |Q1]°. SinceM; ¢ R", by lemma 5.3R}, = {1.2.p | p € Rp } U{2.p |
P € R, SO [(My, Ry )l® = {Lp [ p € [(P,Rp)IFU{2.p | p € [(Q1,RG,) [}
Again by lemma 5.3, sincé/; € R" by lemma 1aR}, = {0} U{l.p | p € Rp,} U
{2 | p € RG, 1 S0, [(My, Ry, )| = {00 = {Lp | p € [(P,Rp,)|tUA{2.p |
p € [(Q2,R,)|). Letp € [(P1,Rp,)|° thenl.p e [(My, Ry )| € [(Mz, Ryp,)["
Hence,p € [(2,Rp)[¢, i.e. [(P1,Rp )¢ C [(F2,Rp,)| Letp € [(Q1, Ry, )| then
2.p € |(My, Ry)® © (M2, Ryy,)|° Hence,p € [(Q2,Rp), )| i.e. (@1, Rg,)|°
(Q2,Rp, )| - Sincep € Ry,

— Eitherp; = 1.2.p] suchthap; € R}, andsol.|(Py, p1)|¢ = [(M1, p1)|® = [(Ma, p2)|°.
Becausep, € R, we obtainpy = 1.py such that(P1, py)|¢ = [(P, py)|© andp; €

R, Hence My = cPiQy 5, cP{Q1 = M{ andM; = P»Q2 2, PyQs = M} such

thatP, 2%, P/ andP, 2, P} By IH, |(F], bl C |(FS. Ry, |°. BecausePy € M.,
then by lemma 2P € M,. By lemma 5.2.3P;) # c. By lemma 5.3RTM{ ={12.p |
pE R};l,}u {2.p | p € Ry, } andR], ; \{0}={lp|pe R’”Q,}U {2pp R,
so [(M{, Ryl = {lp | p € (PLRp)IFUL{2p [ p € [(Q1,Rg,)[} and
[(Ms, Ry [\ A0} = {1.p | p € (B, Rp)IFU{2p | p € [(Q2,RG,)[} Let
p € \(M{,RTM{HC. Eitherp = 1.p" such thaty’ € \(P{,R};I,HC - \(PQ/,R};Z;)\C. So
p € \(MQ,R’"MQF. Orp = 2.p" such thatp’ € [(Q1,Rp,)|© € [(Q2, Ry, )| So
p € [(Mg, Ry, )"

— Orp1 = 2.p; such thatp; € Ry, and s02.[(Q1, p1)|* = [(M1,p1)|¢ = [(Ma, pa2)|°.
Becausegn, € R, we obtainpy = 2.p; such that(Q1, p1)|® = [(Q2, ps)|°. Hence,
My = cPLQ1 ™, ¢cPLQ) = M and My = PyQo %3, PyQly = Mj such that, 2,
Qi andQz %, Q4. By IH, [(Q}. Ry ) C [(Q5.Ry,)[°. By lemma 5.3Rj,, =
{12p [ p e Rp}U{2p | p € Ry} andRy, \ {0} = {l.p [ p € Rp,} U{2.p |

-
-
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p € Ry, b so[(M], Ryl = {1.p | p € [(P,Rp,)|F U{2p [ p € (@1, Ry}
and [(My, Ry )“\ {0} = {Lp [ p € (P2, Rp,)[FU{2p [ p € [(Q5,RE, )Y
Letp € |(M], }“w{>|c. Eitherp = 1.p" such thaty’ € [(P1, R} )|© C [(P2, Rp,)|

/ T (& I / / / T C / T (&
Sop € |/<M2T,R]\C4é>\ . Orp = 2.p’ such thaty’ € |( 1,RQ,1>| C [ 2,72%)\ . So
p € (M3, Ry ).

o Let My = ¢Ny € M. = An. such thatNy € An.. So|Na|¢ = |Ms|¢ = |M|°.
By lemma 5.4.5R7] = {2.p | p € R} and|[(M1, Ri7)C € [(Ma, RYL)E =2
|<N2,R%>\C. Becausep, € Rf}g, we obtainp, = 2.p} such thatp), € R]ﬁv’; So,

My = cNy ﬂﬁn c¢N}, = M such thatNVy ﬁﬁn NJ. Becauseé(Ny, ph)|¢ =3 |[(Ma, po)|© =
[(My, p1)|°, by H, [(M{, Ry )| C [(Ng, RIGHIE = (Mg, Ry

6. LetM; = (Az.P1)Q1 € M, such that\z.P,,Q; € M,.. By lemma 5.2.8, lemma 5.2.12a and
lemma 5.2.9P € M. andz # c. SO|Mi|¢ = |Az.P1|¢|Q1|¢ = |Ma|® = (Az.|P1]9)|Q1]°. By
lemma 1a)M; € R", so by lemma 5.3R}, ={0}U{l.p|pe Ry, p}U{2.p|p € Rp, }and
Ry, \{1.0} = {0}u{l.L.p | p € R }U{2.p [ p € Ry }. SO[(M1, R}y, )| = {0tU{lp | p €
(AP RY, p)FU{2.p | p € [(Q1, Rpy,)I°} and|(My, Ry, )|\ {1.0} = {0} U{1.1p | p €
(P, Rp) T U{2.p | p € [(Q1,RE, )|} We prove this statement by induction on the structure
of Ms:

o Let M, € V\ {c} then|My|¢ = My # | Py[°|Qq]°.
Let My = Az.No € Al.such thatVy € Al andz # cthen|Ms|¢ = Ax.|No | # | P1[¢|Q1]¢.

Let My = Ax.No[z := c(cx)] € An. such thatNy, € An. andz # c then|My|¢ =
Az.|Nalz := c(cx)]|® # [P1]°]Q1]°.

Let My = Az.Naz € An. such thatNox € An., No # candz ¢ fv(Ny) U {c} then
|M2‘c = )\.T|N21‘|C 75 ‘P1|C|Q1‘c.

o Let My = cP2Q2 € M, such thatP, Q2 € M.. By lemma 5.3/R},, = {1.2.p | p €

Rp,tUA{2.p | p € RG, b so[(Ma, Ry )¢ = {1p | p € (P2, Rp,)|FU{2p | p €

|<Q2,R222>\C}. Becaus® € [(M1, R}, )| and0 ¢ [(M2, R}, )|, we obtain| (M, Ry, )¢ €
[(Mz, Ry, )|

Let My = ()\.’EPQ)QQ € M. such that\z. P, Qs € M., then|P1‘c = |P2‘c and|Q1\c =

|Q2|¢. By lemma 5.2.8, lemma 5.2.12a and lemma 5.29¢ M. By lemma 53R}y, =

{0tu{l.p | p € Ry, p,}U{2.p | p € R, } andR},, \{1.0} = {0}U{l.1.p | p € R}, }U

{2.p | p € RG, } So|(Ma, R0 = {0} U{lp [ p € [(Az. P2, RY, p)|FU{2p [ p €

(@2, R}, |} and|(Ma, Ry, )€\ {10} = {0} U {LLp | p € (PR )T U{2p [ p €

|<Q2,R2’22>\C}. Letp € [(Az.P1, Ry, p,)|° thenl.p € [(M1, R} )| C [(M2, R}y, )| So
p € |\ P2, R, p)I e [(Ae. P RY, p )¢ C [(Ax. Py, RS, p,)|°. Letp € [(Pr, R, )|

thenl.l.p € [(My, Ry )¢ C [(M2,R}y,)|¢ Sop € [(P2,Rp,)|¢ i.e. (P, Rp )¢ C

[(Po, Rp,)|¢ Letp € [(Q1,R))|° then2.p € [(My, Ry, )| € (M2, Ry,)|¢ Sop €

(Q2, R, e[ (@1 Ry, )1 C [(Qa, Ry, )|°. Sincep; € Ry,

— Eitherp; = 0. Becausep; € R'y;,, we obtainp; = 0. Hence,M; = (Az.Pp)@Q1 &T
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Pz == Q1] = M] andMy = (\z.P2)Qs >, Pafz := Q5] = M}. By lemma 7b,
(M, Ry e C (M3, Ry )

— Orp; = 1.pj suchthap; € RY, p andsol.[(\z. Py, p1)|¢ = [(Ma, p1)|® = [(Ma, p2)|°.
Becaus% € R}, we obtainps = 1.p; such that(\z. Py, p})|© = [(Az. P, ps)|¢ and
Py € Ry, p,- By lemma5.3:

x Either \z.P; = Az.N;2 € R" such thate ¢ fv(Ny), M. = An. andp] = 0. So,
|(Az.Py, pb)|© = 0. Hence,p), = 0 and\z.P, = Az.Naz such thate ¢ fv(Na).

2

Hence, M; = (\z.N1z)Q: En« Ni1Q1 = M and My = (Az.Npz)Q2 2,
NoQ@o = M2 such that\z. Nz —> N7 and\z.Nox —> No. BylH ‘(Nl,Rr >‘C -
[(N2, Riy, )|

- If Ny is aA-abstraction then by lemma 14,z € R". So1.1.0 € R}, and
[(M3,1.1.0)|¢ = 1.1.0 = [(M1,1.1.0)| € \(Ml,R}"\/IIHC C (M, ?\42”0-
Hence,1.1.0 € Rj,,. So N, is a \-abstraction. S(R’"M ={0}U{lp|pc€
T\’,’”NI}U{Zp |p € R l}al’ldT\’, = ={0}U{l.p|peRy }U{2 p|peER] }
SO|(M1, Ryl = {0} U{Lp | pe \(Nl,R’M Ju{2.p|pe @, 1>| }
and|(My, Rfy;,)|¢ = {0yU{L.p [ p € [(N2, Riy,)[FU{2.p | p € (@2, Rp,) [}
Letp € [(M1, R}, Eitherp = 0 € |<M2, )% Orp = 1.p" such that
p" € (N1, Riy,)I¢ C [{(Na, Ry, )| Sop € |<M§,R’"Mé>|c. Orp = 2.p’ such that
p' € (Q1, Ry € (Q2, Ry, )| Sop € [(M, Ry, )[°.

: OtherwiseR}“w{ ={lp|pe Ry U{2.p|p e Ry, }andR) é\{0} ={l.p|
p € Riy,} U{2.p | p € Ry, }, sO[(M1, Ry )| = {1.p [ p € (N1, Ry, )|} U
{20 | p € [(Qu R, )|} and| (M, Ry, )\ {0} = {1.p | p € [(No, R}, )|} U
{2.p | p € (Q2,R,)[}. Letp € |<M{,R§w{>\c. Eitherp = 1.p’ such that
P € [{N1, Ry I C (N2, Ri, )¢ Sop € [(Mj, Ry, )| Orp = 2.5/ such that
p/ € |<Q17 é1>‘c C |<Q27 é2>‘c' Sop € |<M57R7JA\4§>‘C

x Orp; = 1. p” such thapy’ € R, . Sop; = 1.py such thapy € R, . Hence,M; =

(\z.P)Q, B, ()\a: PHQ, = M; andM2 = (\e.P2)Q2 B, (\2.P))Qy = M}

such that\z.P; 2, Az. P/ and \z.P» . . Py. By IH, [(Az.P[, R} P/HC -
|(A\z.Py, RY P,>|C. Since My, My € M., by lemma 2,M[, M}, ¢ M. By
lemma 5.3 and lemma 1R}, P = ={0}u{l.p | p e RS, P,}U{Q.p | p € R, }and
Ry ={0u{lp|pe R}, ptU{2p P eRy,} SO|<M{,R}}4{>\C ={o0}u
{Lp | p € [Pl Ry, p)[} U {2 | p € [(QuRE,)I} and| (M, Ry )| =
{0} U{Lp | p € [QaPLRS, )} U {2 | p € Qe RY,)I). Letp €
|<M1,RTM,>|C Eitherp = 0 thenp € \(MQ,R’"MQF. Or p = 1.p’ such that
P € [P Ry, ol € [(ha PSR, pI*. Sop € (M5, Ry )" Orp = 2

such thap’ € [(Q1,Rg, )| € [(Q2, >|C Sop € [(Mg, Ry
— Or p; = 2.p| such thatp € RY, and 302.\(Q1,p{>|c = [(My, p1)|° = [(Ma, p2)|°.
Becausep; € R}, we obtainp, = 2.p; such that(Q1, p1)|® = [{Q2, p)|°. Hence,
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= (\z.P)Q, ﬂ (A\z.P)Q, = M{ and My = (\z.P)Qy B, (A\z.Py)Ql =

M2 such thatQ; —>r Q) and Q —>r Q5. By IH, [(Q1,R5)° € (@, Ry )
SlnceMl,Mg € M., by lemma 2,M;, M) € M.. By lemma 5.3 and lemma 1a,

Riyy = {0y U{lp | p € Ry, p} U{2:p | p € RG, } andRy, —{O}U{lp\pe

Rix,pQ}U{Q'p | p € Riy, }, sO[(M], Riy)|* = {0}U{Lp | p € (P, Pl FU{2.p |

p € [(Q1, R} and[(My, Ry )|« = {0} U{l.p [p € \(M-PzaR’ix.pﬁl Ju{2.p |

pE |<Q/2,R22/2>\C}. Letp € \(M{,RTM{HC. Eitherp =0 ¢ |<M§,R}"\4§>\C. Orp =1.p

such thaty’ € [(A\z.P1, Ry, p )¢ € [(Az.P2, Ry, p,)|° SOp € \(MQ,R’”M£>|C. Or

p =20’ such thay' € [(Q}, Rpy I € |(Qh. Riy, )| Sop € (M, Ry, )|

o Let My = ¢Ny € M. = An. such thatNy € An.. So|Na|¢ = |Ms|¢ = |M|°.

By lemma 5.4.5R7] = {2.p | p € R} and|[(M1, Ri7)C € [(Ma, RYL)E =2

|<N2,R]’ig>\c. Becausep, € Rf}?, we obtainp, = 2.p} such thatp), € R]ﬁv’; So,

My = ¢Ny B4, ¢Nj = M} such thatNy 25, Nj. Since|(Na, pb)|¢ =3 [(Ma, po)|¢ =
[(My, p1)|°, by H, [(M{, Ryl )| C [(Ng, RIS = [(Mg, Ry )|

7. LetM; = ¢Ny € M. = An. such thatV; € An.. SO|N|¢ = |M;1|¢ = |M2|¢. By lemma 5.4.5,

RyE = {2p | p € RY} and (N1, R[S =2 [(M1, Ry} C (Mo, Ry})|°. Because
p1 € Rﬁ}l, we obtainp; = 2.p] such thatp] € Rf\,’z So, M| = ¢V, ﬂgn ¢N{ = Mj such
that Ny ~4g, Ni. Becausd(Ny,p})|® = [(My,p1)|° = |(Ma, pa)|¢, by IH, \(Ml,Rﬂ" )}e =
|<N{7R§3§7{>\C c |<Mé,R§f}7§>\c-

Proofs of section 3

Proof(Remark 3.3)

e Commutativity: by(ing), 71 N 72 <2 7 and by(ing), 71 N 72 <2 71 S0 by (mon/), 1 N1 <

T N 71. By (inL), To N Ty SQ 5 and by(ZTLR), To N Ty SQ 71 SO by(mon/), To M Ty SQ 71 N To.
Hence,r Ny ~2 To M T1.

Associativity: by (ing), (11 N 72) N 713 <? 73, by (inr), (11 N 1) N3 <? 71 N 7, by (ing),
71 N1 <21, by (ing), 11 N7 <2 71,80 by(tr), (11 N 7)) N73 <27 and(r N ) N3 <? 7.
By (mon’), (7‘1 N 7'2) N 73 SQ 75 N 73 and again b)(mon’), (7‘1 N 7'2) N 73 SQ 71 N (TQ N 7'3).
By (inr), 11 N (2 N73) <? 71, by (ing), 1 N (2 N73) <2 N7, by (ing), = N 13 <2 7,
by (’iTLR), To M T3 SQ T3, SO by(tr), 71 N (TQ N 7'3) SQ T and7r; N (7‘2 N 7'3) SQ 73. By (mon’),
71 N (12 N 73) <2 71 N1 and again by(mon’), 71 N (2 N 73) <2 (11 N 72) N 73. Hence,
(Tl ﬂTQ) ﬂTg N2 T1 N (TQ ng).

e Idempotence: byiny), 7 N7 <? 7 and by(ref) and(mon’), 7 <?> 7N 7, hencer ~%2 TN .

O
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Proof(Lemma 3.5)
1. By induction on the size derivation of <? m» and then by case on the last rule of the derivation.

— (ref): 7 < 7. By 7 € TypeOmega.

— (tr): (1 <2 A1 <? 13) = 11 <? 13. By IH twice, 73 € TypeOmega.
— (inz): 1 N 1o <? 71. By definition; € TypeOmega.

— (ing): 71 N1 <? 7. By definitionr, € TypeOmega.

— (= -N): (11 = )N (11 — 73) <? 71 — (12N73). If (71 = T2)N (71 — 73) € TypeOmega
then by definitionr;, — 7, ™ — 73 € TypeOmega which is false.

— (mon'): (1 <®? AT <2 713) =1 <2 N1 BylHm, 73 € TypeOmega. Hence,
9 N 13 € TypeOmega.

— (mon): (11 <? 7 A1 <2 7)) = 71 N1y <? 7] N 75. By definition;, 7» € TypeOmega.
By IH, 71, 7, € TypeOmega. Sor{ N 75 € TypeOmega.

— (=) (N <A <) =1 -7 <?1 — 7. Byr — 75 ¢ TypeOmega.
— (92): 7 <2 Q. By definition(2 € TypeOmega.
— (Q-lazy): T — Q2 <? Q — Q. Itis done since — Q ¢ TypeOmega.

2. Lett <? 7. Assumer ~2? Q. ThenQ <? 7 and by transitivityQ <? 7’. Moreover, by (),
7 <2Q. Sor ~2 Q.

3. By (@), N7’ <2 Q. lett ~2 Qandr’ ~2 Q, soQ) <? 7 and) <? 7’ and by(mon'), Q <% TN7’.

4. By (Q), 7 <% Q and by transitivity,r <? 7/ because&? <? 7'. By (ref), 7 <? 7 and by(mon’),
r<?2rn7.

5. We prove the lemma by induction on the size derivation 6f? 7/ and then by case on the last
rule of the derivation.

— (ref): 7 < 7. Thenitis done witlm = 1, 7/ = 7, andr{ = 7.
— (tr): (11 <2 AT <2 13) = 7 <? 13. Letr, 7/ such thainInter(7 — 7/, 73) andr’ «£2 Q.

By IH there exist» > 1 andry, r{,...,7,, 7}, suchthatforali € {1,...,n}, inInter(r; —
' 1) andr! #? Qandr/ N---N7/ <? 7. Again by IH, for alli € {1,...,n}, there
existm; > 1andr{",, 7" ... .7/ . 7/ € Type® such that for allj € {1,...,m;},

inlnter(r}; — 77/, 7) and 7]’/ A% Qandr” N---n7) <? 7. Using rule (non),
associativity and commutativity,”; N --- N7 N--nr 00 <P
Letr ~2 Q. ThenbyIH, forali € {1,...,n}, ! ~2 Q. Againby IH, foralli € {1,...,n},
forallj e {1,...,mi}, 7/ ~* Q.

— (ing): 71 N7 <? 7. Letr, 7' such thatinInter(r — 7/, 71) and7’ «2? Q then it is done
withn =1, 7{ = 7 andr{ = 7.

— (ing): 71 N1 <? 7. Let7, 7 such thatinlnter(r — 7/,7) and7’ «2? Q then it is done
withn =1, 7/ = 7" and7r{ = 7.
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(= -N): (11 — )N (11 — 13) <2 71 — (2N 73). Letr, 7" such thainInter(r — 7/, 71 —
(o N73)) and7’ £2 Qthent = my andr’ = 75 N 73. 7o £2 Q or 73 %2 Q because”’ 2 Q
and using lemma 3.5.3. th «? Q andr3 £? Q then itis done witm = 2, 7] = 74 = 7
and7] = m and7y = 3. If  #? Q andr3 ~? Q then it is done witm = 1, 7{ = 7, and
" = 1, becauses <? 7, N 73 by lemma 3.5.4. If, ~2 Q andr; % Q then it is done with
n =1, =7 andr{ = 73 because; <* 7, N 73 by lemma 3.5.4 and commutativity.
(mon'): (11 <2 m AT <? 13) = 71 <% mN73. Letr, 7/ such thatinInter(t — 7/, 75 N 73)
andr’ 2 Q. EitherinInter(r — 7/, 75) and we conclude by IH. OinInter(r — 7/, 73)
and we conclude by IH.

(mon): (11 <27 A <2 7)) = nNm <? 7 N7 Letr,7 such thatinlnter(r —
7', 7{ N'74). Eitherinlnter(r — 7/, 7{) and it is done by IH. OtlInter(r — 7/, 75) and it is
done by IH.

(—-n): (n <2 ATy <?n) =1 — 715 <? 1 — m. Letr,7 such thatinlnter(r —
.11 — 79) and7’ #? Qthent = 1 and7’ = 75 and it is done withh = 1 andr{ = 7
becauser, £2 Q by lemma 3.5.2 and becauserif~2 2 thenr| ~2 Q.

(Q): 7o <2 Q. There is nor, 7’ such thatnInter(r — 7/, Q).

(V-lazy): 7o — Q <2 Q — Q. there is nor’ «£? Q such thatnInter(r — 7/,Q — Q).

6. let7’ e Type?. First we prove thaf — 7/ %2 Q. Assume) — 7/ %2 Q thenQ <2 Q — /. By
lemma 3.5.12 — 7’ € TypeOmega which is false.

LetT ~% Q. Assumex — Q — 7/ ~2 Q — 7thenQ — 7 <? @ — Q — 7. By lemma 3.5.5,
T <2 Q — 7/ which is false.

LetT % Q. Assumex — Q — 7/ ~2 Q — T thena — Q — 7/ <? Q — 7. By lemma 3.5.5,
a ~? Q) becausé? ~% Q, which is false.

O

C. Proofs of section 4

Proof(Lemma 4.4)

1. If 71 N2 € NTType® then it is done by definition. Otherwise, 7> ¢ NTType?, so[r N 7] =
A=ANA= [[Tl]]% N [[7'2]]%.

2. We prove this result by induction on the structure of

Letp = a then[p]} = P.

Letp = 7 — p/, then by definition[[p]3, C P.

Letp = 7N/, then by IH,[p']% C P. So[p]3 = [r]: N[5 C P.
Letp = p' N7, then by IH,[p']% C P. So[p]% = [r]%: N[5 C P.

3. By induction on the size of the derivationaf <? 7 and then by case on the last step.

(ref): = < 7. This case is trivial.
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e (Q): 7 < Q. This case is trivial sinc@ ¢ NTType®.

e (tr): 1 <o Ao <73 =11 <73. We conclude using IH twice.

o (V-lazy): T — Q < Q — Q. This case is trivial sinc® — Q ¢ NTType®.
e (ing): 71 N1y < 7. This case is trivial.

e (ing): 11 N7 < 7o. This case is trivial.

o (= -N): (= m)N(n — 7)) <1 — (RNT). if 71— (mN73) € NTType® then
9 € NTType? or 3 € NTType®. Hencer; — m € NTType® or 1, — 13 € NTType?, so
(7’1 — Tg) N (Tl — 7'3) € NTTyp63

o (mon'): 71 < AT <T3=7 <N If N7 € NTType® thenr, € NTType® or
3 € NTType?, so by IH,7; € NTType®.

o (mon): 1 < T AT <7 =T N1 < T N7 If 7 N 7h € NTType® thent] € NTType®
or 7, € NTType®. So by IH,7; € NTType® or m, € NTType®, hencer; N1, € NTType®.

e(—m ) <THAT,<m =1 -1 <mn — m lfn — n c NTType’ then
m € NTType®, so by IH,7, € NTType®, hencer] — 7, € NTType®.
4. By induction on the size of the derivationaf <? 7, and then by case on the last step.

e (ref): 7 < 7. This case is trivial.

e (Q): 7 < Q. This case is trivial sincgQ]3, = A.

e (tr)) m < AT <1 =7 <13 BylH, [n]} C [n]) and[n]d C [r]3, so
[m]% < [m]%-

o (V-lazy): 7 — Q < Q — Q. This case is trivial sincgr — Q3 = [Q — Q)3 = A.

e (ing):mmNme <7.Byl[rnN TQ]];’) = [[7'1]]% N [[TQ]]% C [[Tlﬂ%

e (ing): 1N <T19. Byl [rnN TQ]];’) =[n]?N [[TQ]]% C [[TQH%

o (—=-N):(r —m)N(n — 1) <1 — (T2 NT3).

— If 1 — 79,71 — 73 € NTType® thenry, 73, 7o N5 € NTType?, so[(ry — m2)N (1 —
)5 =[n — n]bN[n — nlp ={M € P|VYN € [n]}. MN € [n]in{M €
P|VN € [r]%. MN € [r3]5} ={M € P |VN € [r1]}. MN € [r]3 N [rs3]3} =
{M € P|VN € [[T]]% MN € [ ﬁTgﬂ%} =[rn — (2 ﬁTg)]]%.

—If 1 — 7 € NTType® andr, — 75 ¢ NTType?, thenry, » N 73 € NTType® and
5 & NTType?, So[(r1 — 1) N (11 — 73)]]% =[n — 7—2]]% Nln — T3ﬂ% ={M ¢
P | VN € [r]}. MN € [r]d} = {M € P | VN € [n]b. MN € [nNm)b} =
[[7'1 — (7’2 N 7'3)]]%.

—Ifn — 7 & NTType® andr, — 75 € NTType?, thenrs, 5 N 73 € NTType® and
m & NTType?, so[(r1 — ) N (11 — )b =[n — nlbnln —nlp={Mec
P | VN €[]} MN € [r3]h} = {M € P | VYN € [n]b. MN € [N m)b} =
[[7'1 — (7’2 N 7'3)]]%.

—If 7 — 70,71 — 73 & NTType?, thenr, 73, oN73 & NTType?, so[(r1 — )N (11 —
)5 = 11 — (N 73)]5 = A.
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e (mon): 1 <mAT <713=T1 <TN73. ByIH, [[Tl]]% C [[Tg]]% al’ld[[ﬁ]]% C [[73]]%. So
by 1, [[Tl]]% - [[7—2]]% M [[Tg]]% = [[TQ ﬂTg]]%.

o (mon): 7 <71 ATe <1y =1 N1 <71 NT7s ByIH, [[7'1]];’) C [[Tﬂ]% and [[7'2]];’) C [[Té]]%
So by 1,[ri N w]p = [n]p N nlp C [#]H N [w]% = [11 N7l

e (— ) < T AT, < T =71 — 1 <71 — T BylH, [[Tl]]% C [[T{]]% and
[7]3 C [r]3. If 71 — = € NTType® thenr, € NTType® and by 3,7 € NTType®, so
T — Ty € NTType? and[r] — Té]]% ={M e P|VN € [[Tﬂ]% MN € [[Té]]%} Cc{M €
P |VN € [[7'1]]%. MN € [[7'2]]%} =[rn — 7'2]]%. Otherwise[r] — Té]]% Clm— 7'2]];’) =
A.

5. AssumeVAR(P,P). Letn > 0,z € V and for alli € {1,...,n}, M; € P. By the hypothesis,
xMy --- M, € P. We prove thattM; --- M,, € [[go]];’g by induction on the structure of.

o If o =athenzM; - M, € P = [af}.
o If o =QthenzM;--- M, € A = [Q]3.
e lf o =7N¢'. ByIH, oM, --- M, € [[(p/]]%, so by 1,zM;--- M, € [[T]]% N [[4,0/]]% =
[T N ¢T3
If o = ¢’ N7 By IH, M- M, € [¢']%, so by LaM;---M, € [¢]% N [r]} =
[¢' N 713
Ifp=p— ¢
— If ¢ € NTType® theny’ € NTType’. Let N € [p]%, so by 2,N € P. By IH,
My - MuN € [¢']. SoxM; -+ M, € [p — ¢]%.
— If ¢ NTType® thenzM; --- M, € [p — ¢']3 = A.

6. AssumeSAT(P,P). Letn > 0,z € V, M,N € Aand foralli € {1,...,n},N; € A. We
prove that ifM [z := N|Ny --- N,, € [7]% then(Az.M)NN; - -- N, € [r]% by induction on the
structure ofr.

If 7 = a then[a]3 = P and we conclude using the hypotheSisT (P, P).
If 7 =Qthen(Ax.M)NN;--- N, € A =[Q]%.

o If 7 = 7 N7 AssumeM[z := NINy---N, € [r]3 =" [n]® N [n]? then by IH,
(Az.M)NNj --- N, € [n]? 0 [r]? = [7]3.

e lfr=71 — m.

— If 7 € NTType® thenr, € NTType®. Let P € [r1]% andM [z := NNy --- N, € [7]%
then by 2, M|z := N|N;---N,, € P. By hypothesis, \x.M)NN;---N,, € P.
Moreover,M [z := N|N; --- N, P € [13]%. By IH, (Az.M)NNy - -+ N, P € [12]%, so
(Az.M)NN; --- N, € [r]3.

— Letr ¢ NTType® then(Az.M)NN; --- N, € [7]% = A.



Kamareddine, Rahli, Wells / Reducibility proofs in thealculus 67

D. Proofs of section 6

Proof(Lemma 6.2) 1. By induction orl’ %1 M : ¢. 2. By induction ol 77 M : o.
3. First prove (*): ifl' =" M : o, ando C ¢’ thenT' " M : ¢’ by induction ono C ¢’. Then, do the
proof of 3. by induction o’ " M : o. For the latter we do:

e Case(az): f T,z : 0 F z: 0,1,z : 0’ C T,z : 0 ando C ¢” theno’ C o and sao’ C o”.

By @),z :0' F 2 : 0. By (®), ",z :0' F" 2 : 0.
BINT s BIN.

* Case(—pn): If e S e T =1, Ty, A = A Ay, TN A = T3 Ty 0 ' =
I'5,T%, A5 C T'where,I'y = (z; : 03)n, 2 = (Y5, 7j)ms I3 = (25 : 05 N 0))n, A1 = (25 1 0))n,
Ao = (21, p1)k, dom(Ty) Ndom(As) = &, I = (2 : Ti)n, Ty = (¥, T5)ms Ay = (21,5
; Co;Nol, 7 Crjandp; C p thenT, T, C T andTy, Ay C A. By IH, T4, T 90 M -
o — 7andl'y, AL F91 N @ o, so by(—pr), T M T, T, AL 97 MN @ 7. By (*), and since
I, MY =T%, we havely, Ty, AL FL MN : 7.

O

Proof(Lemma 6.3) WhenM —} N andM —} P, we write M —} {N, P}.
1. By induction orv € Type'.

e If 0 € AthenCR; C CR" = [o]".

e If c =7nNpthenbyIH,CRy C [7]", [p]" € CR", soCR;, C [t Np]" € CR".

e If o =7 — pthen by IH,CRj C [7]",[p]” € CR" and[o]" C CR" by definition. Let
M € CR{,, soM = zN; ... N, such that. > 0andNy,..., N, € CR". LetP € [r]" so
P € CR", hence M P € CRj, C [p]" andM € [o]".

2. Let M[z := N]N;...N, € CR’ wheren > 0, z € fv(M) and (A\z.M)NN; ... N, —hr
{My, My}
By lemma 2.2.7, there exist/; and M3 such thatM, —7; M{, M[z := N|Ni...N, —};
Mj, My —3; M3 and M[z = N]Ny...N, —j; M;. Then we conclude using/[z :=

N]N;...N, € CR.

3. Let M[z := N|Ny...N, € CR”" wheren > 0 and (A\x.M)NNy... N, —% {Mi, My}.

By lemma 2.2.7, there exist/; and M; such thatM, —j M], M[z := N]Ni...N, —p,
Mj, My —p, Mjand Mz := N|N;...N, —j M;. Then we conclude using/[z :=

N]N;...N, € CR,
4. By induction orns.

e If o € A, then the statement is true by 2.

e If 0 = 7N p, then by IH,[7]% and[p]°! are I-saturated. Led/, N, Ni,..., N, € A,
x € fv(M), n > 0, andM[z := NIN;...N, € [0]?" = [7]°" n [p]?!. Then by I-
saturation(A\z.M)NN; ... N, € [r]?! and(Az.M)NNj ... N, € [p]°*. Done.
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o If o =7 — p, then by IH,[7]%T and[p]?! are |-saturated. Let > 0, M, N, Ny,..., N, €
A,z € fv(M), andM[z := N]N;...N, € [o]?. LetP € [7]*! # @, thenM [z :=
N]N;...N,P € [p]°".

By I-saturation,(\z. M)N Ny ... N, P € [p]*! so(Az.M)NN; ... N, € [7]°! = [p]?".
Since,M[z := N]Nj ... N, € [¢]? € CR®" andC R"! is saturated by 2,
then(A\z.M)NN; ... N,, € CR.

5. By induction orp.

e If 0 € A, then the statement is true by 3.

e If o = 7N p, then by IH,[7]?" and[[p]*" are saturated.
Let M|z := N|N; ... N, € [¢]?" = [7]°" N [p]®".
Then by saturation\z. M)NNj ... N, € [7]?" and(Ax.M)NNj ... N,, € [p]°". Done.
e If 0 = 7 — p, then by IH,[7]°" and[p]°" are saturated. Let > 0, M, N, Ny,..., N, €
A,z € V,andM[z := NIN;...N, € [o]?". LetP € [7]°" # @, thenM[z =
N]Ni ... N,P € [p]°". By saturation{\z. M)NNj ... N, P € [p]°" so
(AMz.M)NN; ... N, € [7]°" = [p]". Since,M[z := N]N;...N, € [¢]*" C CRP" and
CRP"is saturated by 3, thep\z.M)NN; ... N, € CR".
O

Proof(Lemma 6.4) By induction onz; : oy,...,2, : 0, F" M : 0.

e If the last rule is(ax) or (az'), use the hypothesis.

e If the last rule is(—g:). LetT'y My = (x; : 03 N0, (Yi : Ti)p, (2i : pi)g SUCh thatl'; =

(i 2 0i)n, (i : Ti)p andTl’y = (x; : Ué)n,(zi : ,Oi)q. LetVi € {1,... ,n},Ni € [[JZ‘ N Jg]]ﬁl SO
N; € [o;]" andN; € [0/]% Vi € {1,...,p}, P € [n]° andVi € {1,...,q}, P] € [p:]"".
So by IH,M[(z; :== Ni)n, (yi := P,),] € [o — 7] andN{(z; := N;)n, (2 := P!),] € [o]"L.
Hence, (M N)[(zi = Ni)n, (vi = Pi)p, (2 := P!)g] € [7]°!.

If the last rule i(— ). LetT' = (z; : 0;), andvi € {1,...,n}, N; € [0;]°". Soby IH,M[(x; :=
Ni)n) € [o — 7]°" and N[(x; := N;),] € [0]°". Hence,(M N)[(x; := N;),] € [7]°".

If the last rule is(—;). Letl’ = (x; : 0;), @andVi € {1,...,n}, N; € [o;]". LetP € [o]" # @.
Soby IH,M|[(x; :== N;)p,x := P] € [7]". Moreover((Ax.M)[(x; := N;),]))P = (Az.M[(x; =
Ni)n])P.

— FortP1, sincer € fv(M) by lemma 2.2.4(\x. M|[(z; := Ni)p)) —p1 M[(z; := Ny)p,z =
P] and since by lemma 6.37]% is |-saturated((\z. M)[(z; := N;),])P € [r]?L.
— For=91, (A\z.M[(z; := N;)n]) —p M[(x; := N;)n,z := P] and since by lemma 6.37]%"
is saturated((\z. M)[(z; := N;)n])P € [7]°".
So(Ax.M)[(x; := N;)n| € [o]" = [r]". Sincez € [o]", M[(z; :== N;),] € [7]" € CR", so
Az M[(z; := Ny)p| = Az.M)[(z; := N;)n] € CR".

If the last rule is(Ny). LetI’ = (x; : 0y), @andVi € {1,...,n}, N; € [0;]". So by IH,M[(z; :=
Ni)n] € [r]" and M |(z; := N;)n] € [p]". SOM[(z; := Ni)n] € [o]".
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e If the last rule is(Ng1). LetD’ = (z; : 0y), andVi € {1,...,n},N; € [o;]". So by IH,
M{[(z; := N;)n] € J[onT7]", s0M|[(z; := N;)y] € [o]".

e If the last rule is(Ng2). LetD’ = (z; : 0y), andVi € {1,...,n},N; € [o;]". So by IH,
M{(z; := Ny)n) € [oNT]", SOM[(z; := N;)n] € [7]".
O

Proof(Lemma 6.6) By induction onM. Note that by Lemma 5.2\ # c.
eletM =x#c.Thenl =Ty,z:7,"=z:7, TV z:randVo, T,z :1,c: 0 F x : 7.
o Let M = Az.N € Al.then by lemma 5.2V € Al. andz € fv(N). Vp:

— If ¢ € fv(M) thenc € fv(N) and by IH,30, 7 whereI”,z : p,c : ¢ % N : 1, hence
IMc:oF e N:p—r.

— If ¢ & fv(M) then by IH,37 wherel”, z : p %7 N : 7, hencel” 3! \z.N : 7.

o Let M = A\x.N € An. then by lemma 5.2.12.12&' € An.. By IH, Vp, 3o, 7 such thatl", x :
p,c:o P N 7. Hencel',c:o F9" \x.N : 1.

e Let M = ¢cNP whereN,P € Al.. LetT} =T | fv(N) andT, = T' | fv(P). Note that
I' =T | fv(eNP) =T, 11 T%.

— If ¢ € fv(N) U fv(P) then by IH,37;, 7 such thaf; 7 N : 7y andT% F°T P : 1. Let
p € Type' ando = 7, — 7 — p. By (—p,) twice, T, M Th,c: o F NP : p.

—If ¢ € fv(N) ande ¢ fv(P) then by IH,301, 71, such thatl},c : oy F*1 N : 7 and
I, 91 P .. Letp € Type! and letoc = o1 N (1, — ™ — p). By (az!) and(Ng),
c:otF ¢:m — 7 — p. By lemma 6.2.30,c: 0o F8I N . 7. By (—g,) twice,
Ml c:o P eNP : p.

— If ¢ € fv(N) N fv(P) then by IH,30y, 09,7, 7 such thatl,c : oy F* N : 7, and
| e FOIN . Letp € Typel and letc = o1 N (o2 N (11 — 7 — p)). By
(az’) and(Ng),c: o F ¢: 1 — m — p. By lemma 6.2.3]",c: 0 HAL N . 7, and
I,c:0 % P:ry. By (—pg,) twice,T, T, c: o0 FPL eNP : p.

e Let M = ¢NP whereN, P € An.. by IH, 301,09, 71, such thatl’,¢ : o1 7 N : 7, and
D,c:09 9 N : 1. Letp € Type! and leto = o1 N (52N (17 — T2 — p)). By (az!) and(Ng),
c:oFP e — 1 — p. Bylemma6.2.3[,c: o F N : 7, andT,c: 0 97 P : 7. By
(—g,) twice,T',c: o 9 eNP : p.

e Let M = NP whereN,P € Al.and N = Xx.Ny. SoNy € Al. andx € fv(Ny). Let
'Y =T fv(N)andl¥, =T | fv(P). Note thatl" =T | fv(NP) =Ty NT%. By BC,z # cand
x & tv(P).

— If ¢ ¢ fv(Az.Ny) U fv(P) then by IH, 3, such that, F°7 P : 7, and again by IH37; such
thatl}, z : 7o F Ny : 71. By (—7) and(—g,), T, N T F (A\z.No)P = 71.
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— If ¢ € fv(Az.Np) andc ¢ fv(P) then by IH,3m such thafl’, %7 P : . Again by IH,
Jo, 71 such thatl, ¢ : 0,7 : 7o F%7 Ny : 7. By (—;) and(—g,), Iy NTh,c: o F
()\afNo)P LT

— If ¢ € fv(\z.No)Nfv(P), then by IH, 302, 75 such thal, ¢ : o5 F°1 P : 75 and again by IH,
Joy, 7 such thaty, ¢ : oy, : 7 T Ny = 7. By (—1), T, c: o1 FT AaNg : 79 — 7.
By (—g,), [y T, c: 01 Nog FAT (Ax.No)P : 7.

e Let M = NP whereN, P € An.andN = A\z.Nj then by lemma 5.2.12.12a], € An.. By IH,
Joa, T such thaf, ¢ : o5 H7 P : 1, and again by IH3o, 71 such thafl, ¢ : o1,z : 75 F7 Ny :
1. By (—1), T c: 01 FP" X\2.Ny : 79 — 11. Leto = o1 N oy. By Lemma 6.2.3],c : o F57
\e.Ny: 75 — 7 andl,c: 0 H P : 1. Hence, byY(—g), T, c: o 9 (A\z.No)P : 7.

o Let M = ¢N whereN € An.. By IH, 30,7 such thaf,c : o H°7 N : 7. Letp € Type! and
o' =on(r— p). ByLemma6.2.3T,c: ¢’ " N : 7andl',c : o' F97 ¢ : 7 — p. Hence, by
(—g),T,c:0 FPeN : p.

O

E. Proofs of section 7

Proof(Lemma 7.2)

1. la. By induction on the structure 8f € Al.
o LetM =z # c. Then®®(z, F) =z, F = @ andfv(x) = fv(x) \ {c}.
e Let M = A\z.N suchthatr # candF = {p | 1.p € F} C Rﬁf Then,fv(M) =
fv(N)\{z} = fv(@¢(N, F))\{c, 2} = tv(Az.®(N, F)) \ {c} = fv(®¢(M, F))\
{c}.
o LetM = MM, Fi ={p|Lpe F} C Ry andF = {p|2.p € F} C Ry, .
— If 0 € Fthen,®¢(M, F) = ®°(My, F1) D ( My, Fp).
— ElSG,‘I)C(M, .7'—) = C(I)C(Ml,fl)q)c(Mg,fg).
In both casesv(M) = fv(M;)Ufv(Mso) =1 (fv(®¢( My, F1))\{cHU(Ev (D¢( My, F2))\
{c}) = tv(®¢(M, F)) \ {c}.
1b. By induction on the structure aff € Al.
o Let M €V, thenM # c. SOF = @ and®(M,F) = M € Al..
e Let M = \z.N suchthat: # candF ={p|1l.p € F} C R]ﬁ\f By IH, ®¢(N,F') €
Al.. By lemma 7.2.1ag € fv(®°(N, F')). Hence®°(M, F) = Ax.®¢(N, F') € Al..
o LetM = MMy, Fi = {p|1.p € F} C Ry andF = {p | 2.p € F} C Ry .
—-Ifoe ]:then@c(M, f) = (I)C(Ml,}_l)q)c(Mg,fg).
By IH, ®¢(My, 1), ®¢(Ms, F2) € Al. and asM; is a\-abstraction®¢(M;, Fy)
is aA\-abstraction. Henc®<(M, F) € Al..
- E|Se,(I)C(M,.7:) = C(I)C(Ml,]:l)q)c(Mg,fg). By IH, (I)C(Ml,}_l),q)c(Mg,}—Q) S
Al., hence®¢(M, F) € Al...
1c. By induction on the structure aff € Al.
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o Let M = x # c. Then,F = @ and®(z, F) = = = |z|°.

e LetM = A\z.N such that: # candF’ = {p | 1.p € F} C R5. Then,|®¢(M, F)|c =
Az ®(N, F)|¢ = Aa.|®¢(N, F')|¢ =TH \a.N.

o LetM = MM, Fy = {p|Lp € F} C R} andF = {p|2.p € F} C R},

— If 0 € F then M, is a A-abstraction, hencep¢(M;, F;) is a A-abstraction. So,
|©°(M, F)|* = |@°(My, F1)®(Ma, F2)|° = |@°(My, F1)|°|9(Ma, Fp)|¢ =1
MMy = M.
- Else,|<I>C(M,.7-")\C = |C‘I)C(M1,f1)‘1)c(M2,.7:2)|c = ‘(I)C(M17‘7_“1)|c|q>c(M2’f2)‘c
= MMy = M.
1d. By induction on the structure aff € Al.

o If M =z #cthend®(M,F) = M andF = @ =53 |(M, R1)|".

e Let M = \z.N such that: # candF = {p | 1.p € F} C R3. ThenF =53 {1.p |
peF}y =" {1p|p e [(@(N,F), Riiw [} = {LI@ (N, F'),p)[ | p €
Rigevt = @M, F), Lp)|° | p € Rq,p(m} =53 [(B(M, F), Rige (1157 |°

o LetM = MMy, Fi ={p|Llpec F} C Ry andF = {p|2.p € F} C Ry, .

—If 0 € Fthen®¢(M,F) = &My, F1)P¢(Ms, F»). SinceM; is a \-abstraction
then®¢(M;y, F;) too. By lemma 7.2.10p¢(M, F) € Al, then®c(M, F) € RAL.
Hence,F =53 {0} U{lp | p € L} U{2p | p € R} =IH {0} u{lp |
p € (O (M1, F1), Rt 1y, 7 )ITHUAZp | p € [(@(Ma, Fo), Rige 1, )|} =
{0} U {L.[(@¢(My, F1),p)° | p € Rige ot YU A2 (@M, F2),p)|° | p €
Rie oty } = {0JU{[(@(M, F), 1.p)[° | p € Rt a7y JOLI(@S(M, F), 2.p) ¢ |

1

P € Ripe(rsy m} =2 1@ (M, F), Rige (31,71

— Else, ®¢(M, F) = c®°(My, F1)®¢(Ms, F). Then, F =53 {1.p | p € F} U
(20 | p e B} =" {1p | p € (@M1, F1), Rt 1, 2T U {20 | p €
[(®€(M2, F2), R@c(MQ )l = ALK®(My, Fa),p)|© | p € R ot Y
{2.[(®¢(My, Fo), p)|° | p € Ry (0, ) b=
{|<<I>C(M F),1.2.p)|° | p € Riyge oy ) Y@M, F), 2.p) | | p € R@c(MQ )

(@8 (M,F),REL )

2a. By induction on the construction &f € Al.. By lemma 6,/ | € Al
e Let M € V\ {c}. Hence|M|¢ = M, by lemma 5.3](M, R%W =0 = R‘%'
C C I C

M = °(|M°, |(M,R}[)[°).

e Let M = Az.P such thatr # ¢, P € Al andz € fv(P). Then,|M|® = Az.|P|°.
By H, [(P,RE)|* € Ry and P = ®<(|P|°, |(P, R)[). Hence,[(M, Rjj)|e =53
(M, 1p)|" | p € RP} = {Lp [ p € (PRI} C{Llp | p € R} =>* R
Moreover,M = ®¢(| M|, |(M, RI1)[).

o Let M = cPQwhereP,Q € Al then|M|° = |P||Q|°. By I, (P, R})|° C R},

(R € Ripger P = (P [(P,RED]) and @ = ®°(IQI°, [(Q,RY)[).

and
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Hence|(M, Ri7)|© =52 {|(M, 1.2.p)|° | p € R} U{[(M,2.p)|° | pRE } = {1.p |
p € PRE)ITU{2p | p € (QRG)IY S {lp | peRpJU{2p | pe
Ry} €75 Ry .. MoreoverM = &°(|M |7 (M, R[)[%).

o Let M = PQ whereP, () € Al, and P is a A-abstraction. ThenM|¢ = |P|¢|Q|°,
where |P|¢ is a A-abstraction. By IH,|(P,R§I>|C - Rﬁf'c, |(Q,Rgf>|c - R%
P = ®(|PI%,|(P,REDIY) andQ = 24(QI7, [(Q, RE)I)- Hence (M, R« =2
{0} UM, 1p)e | p e REFU{(M2p)° | p e RYY ={0}u{lp|pe
(PRENFU{2p | p € (QRGID S {0} Uflp | p e R JU{2p | p e

Rigeh =7 Ry Moreoverd = a<(M |7, [(M. RY)I).

2b. Bylemma6|M|¢ € Al. By lemma4c ¢ fv(|M|°). By lemma 7.2.2a (M, Rfjﬂc - R‘%F
and M = ®¢(|M|°, |(M, Rf}ﬂc). To prove unicity, assume thafV’, 7’) is another such
pair. SoF C Ri andM = ®¢(N',F'). Then,|M|® = |®¢(N', F')|c =">1¢ N’ and
T2 @8N, 1), R ) = (M, R

de(N,F
O

Proof(Lemma 7.3) Bylemma 7.2.1c and lemma 1, there exists a unigue Rg{(Mf), such that
|(R§>{(Mﬂ,p/>|C — p. By lemma 2.2.8, there exisf such tha®“(M, F) 5, P. By lemma 5.8.7a,

M =T21e |Be(M, F)|° B4 |[P|°, such that(REL , ».2')|° = po. SOp = py and by lemma 2.2.9,

M' = |P|c. LetF' = [(P,R}})|°. Because®‘(M,F) %5, P, by lemma 2 and lemma 7.2.1b,
P € Al.. Bylemma 7.2.2aP = ®¢(M', F') and F' C Rﬁ,. By lemma 7.2.2bF’ is unique. 0

Proof(Lemma 7.6.1) It sufficient to prove:
<M,.7:> _>ﬁ1d <M,,.7:/> < (DC(M,F) —>ﬁ] (DC(M/,./T/)

o =) let (M, F) —g1q (M, F'). Then by definition 7.5, there existse F such thatM %3, M’
andF' is the set of3I-residuals inV/’ of the set of redexe& in M relative top. By definition 7.4
we obtain®“(M, F) —zr ®4(M', F').

o <) Let ®¢(M,F) —pgr ®¢(M',F') then by lemma 2.2.8, there exisﬁgzgﬁ(Mf) such that
(M, F) Lgr @¢(M’, F'). Because, by lemma 7.2.16¢(M, F) € Al., by lemma 5.8.7a and
lemma 7.2.1cM = |®¢(M, F)|© Bs; |@6(M', F')|¢ = M’ such that(®°(M, F), po)|° = p.
By definition 7.4,F" is the set of3/-residuals inM’ of the set of redexe$ in M relative topy.
By definition 7.5 we obtaifM, F) —gq (M', F').

0

Proof(Lemma7.6.2) Bylemma7.2.1b®°(M, Fy), ®°(M,Fs) € Al.. Bylemma7.2.1c®(M, F1)|¢ =
|®C(M, F»)|¢. By lemma 7.2.1d|(®¢(M, fl),Rgﬁ(Mfl)Hc = F1 C Fy = |(®¢(M, fg),Rgﬁ(Mfg)Hc.
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If (M,F1) —>51d (M', F}) then by lemma 7.6.19¢(M, F) —pr ®°(M’', F}). By lemma 2.2.8,
there existy; € R¢C(Mf ) such tha®e(M, F,) %5 @(M', F}). Letpy = |(R§,€<M’¢1),p1>lc, so by
lemma 7.2.1dpy € F;. By lemma 5.8.7a and lemma 7.2.2d, % 5; M’

By lemma 7.3 there exists a unique st C RM/, such that®c(M, F) im oc(M', F') and
|( (M, F1),p")|¢ = po. By lemma 2.2.8p" € R¢C(Mf) Sincep’, py € R@«(Mf) by lemma 1,
p’ = pi1. So, by lemma 2.2.99¢(M', F') = ®¢(M’, F]). By lemma 7.2.1d,f’ = F| and F| =
(@M, F}), Rige g 511

By lemma 7.3 there exists a unique €t C Rfj,, such thatd®(M, F») 25 @¢(M', F5) and

|(®(M, F2), p2)| = po- ;
By lemma 2.2.8p, € $°(M, F»). By lemma 7.2.1d7; = [(9°(M', F), Rie 0 ) I°

Hence, by lemma 5.8.7¢] C F;, and by lemma 7.6.1M, Fa) —para (M, F3). 0

Proof(Lemma?7.7) If M ﬂﬁld My andM ﬂmd Mo, then there exist&?’, 7 such tha{ M, ;) =514
(My, FY) and(M, Fa) =%, (M2, Fy). By definitions 7.4 and 7.5F] C R’% andFY C R%. Note
that by definition 7.5 and lemma 2.2.4/;, M, € Al. By lemma 2, there exisf#;” C Rﬁl and
Fi' C R% such that(M, 71 U Fa) —5p (M1, FY U F") and(M, Fi U Fa) — 71, (Ma, Fy U F5').
By lemma 7.6.171 =5 Th andT =51 Tb whereT = ®¢(M, F, U Fs), Th = (M, F{ U F{") and
Ty = ®¢(Mo, F5) UFY') . Since by lemma 7.2.1H; € Al. and by lemma 6.6.1] is typable in the type
systemD;, soT € CR? by corollary 6.5. So, by lemma 2.2b, there exiBisc Al,, such that}; —

Ty andTs —5; Ts. LetF3 = |(T3,RM>|C andM3 |T3|57, then by lemma 7.2. 2lT3 = O¢(Ms, F3).
Hence, by lemma 7.6.XM;, F{ U f’”> hra (Ms, F3) and (M, 7 U Fy') —jp, (M3, F3), e

f//Uf/// f// f///
My 1= BId M5 and M, 25 BId Ms. O

Proof(Lemma 7.9.1) Note thato C Rﬁj . We prove this statement by induction on the structure of
M.

e Let M € Vthen®d‘(M, ) = M andR’;} = @ by lemma 5.3.

e Let M = A\z.N such thatr # cthen®‘(M, &) = \z.9°(N, ). By IH, R(V(N o) =9 and by
lemma 5. 3R¢C(M o) = = .

o Let M = MM, then ®(M, @) = c®°(M;,2)®(My, @). By IH, Ryl . = & and

1

R§>€<M ) = @ and by lemma 5. 3Rgc(M 5 =2

Proof(Lemma 7.9.2) We prove the statement by induction on the structuré/of
o let M €V, then®“(M, o) = M.

— Either M = z, then®‘(M, @)[z := ®°(N, @)] = ®¢(N, @) and by lemma chpr (N,@) =
.
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— Or M # z, then®¢(M, @)[x := (N, )] = M and by lemma 5.37,3% =
o LeﬁtIM = \y.M' such thaty # cthen®°(M, @) = \y.®°(M’,2). So Rg{(M 2)[wi=0e(N,2)] —
ny Be(M?,2) [ @C(N )] such thaty ¢ fv(®°(N,@)) U {z}. By IH, R@C(M, 2) b (N, @) = .

By lemma 5. SR@(M o) z=de(N,2)] = D

o Let M = MM, then@C(M @) = C‘I)C(Ml, @)‘I)C(MQ, @)
So Rg{:(M 2)[z:=®¢(N, )] RcéC(M @) [z:=c e —de :
1,8) 5= B¢ (N, )]0 (Ma, 2)z:=0<(N, )]
BI _ pBI _
By IH, Roe (a1, 0)a: <I>C(N,®)] = Roe (M, 0)[w:mte(N,2)] = 2

and by lemma 5. 372¢C(M 2) = de(N,2)] = .

Proof(Lemma 7.9.3) We prove the statement by induction on the structuré/of

e Let M € Vthen by lemma5.3R% = &

e Let M = \z.N such thatr # ¢ then by lemma 5.3R% = {lp|pe R]@I}. Letp € Rﬁ, then

p = 1.p’ such thap’ € RM Then,®¢(M, {p}) = A\z.®°(N, {p’}) By lemma 5.3735{(]\4 oy =
{Lp|peRg () }. So, By lemma 2.2.8, ®°(M, {p}) 5/ P thenpy = 1.p1, P = Az.P’

and®(N, {p'}) 5, P'. By IH, R?! = &, so by lemma 5.3R' = &.
o Let M = M Ms.

— LetM e RP!, thenM; = \z.M and by lemma5.3R%1 = {0}U{l.p | p € R%}U{Q.p \

pE Rﬁ%}
« Eitherp = 0 then®“(M,{0}) = (M1, 2)P¢(Ms, ). By lemma le{(M o) =
Rgf(M o) =2 Becauseb®(M, {0}) —3r M’ then by definition there exists) such

that &¢(M, {0}) 2 S5 M'. By lemma 2.2.8p, € R@(M o)
Az.®¢(My, @) such thate # ¢, by Iemma 5 3, we obtain:

Becauseb®(M;, @) =

1 . B8I . .
RgC(M oy = {0} if ®¢(M,{0}) € R@c(M oy = 2 otherwise. Sapy and
(M, {0}) € R%. Hence,M' = <I>C(M0, )z := ®¢(My, )] and by lemma 2,
R =o.

¢(Mo,2)[x:=D¢(M2,9)]

« Orp = Lp’ such thay’ € Rj] . So, <I>C(M {p}) = c@c(Ml,{p’})q)C(Mg,@). By
BI

lemma 1Ry y, o) = @ By Iemma5 3R¢C(M{ H = ={l2p|pe€ R@:(Ml o })}

So, By lemma 2.2.8, ifb¢(M, {p}) _TJI M’ thenpy = 1.2.p), p{ € R@C(Ml ()’

M' = cM{®¢(M>, @) andd“(My, {p’}) _W M. ByIH, R7!, = zand by lemma5.3,

=
R =&

+ Orp = 2.p’ such thay’ € RY] . So, (M, {p}) = c®°(M;, )<I>C(M27{P'})- By
lemma LREL ) = @ By lemma 53R, oy =120 | p€ R s, ot
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So, By lemma 2.2.8, ib¢(M, {p}) & —W M’ thenpy = 2.p{, p} € R@c(% () M =
c®°(My, @) M and (Mo, {p'}) —W M. By IH, RS / = @ and by lemma 5.3,
R =&
— Let M ¢ RP!, then by lemma 5.3R5) = {1.p | p € RI: YU {2 R
: Ry ={lp|peRy, 2| pERy,}
« Eitherp = 1.p’ such thayp’ € R}y, . So, <I>C(M {p}) = c®°(M, {p'})‘I)C(MQ, @). By
I
lemma 1R¢C(M o =9 By Iemma5 3R¢C(M o) ={12p|pc€ R¢C(M1 I })}
So, By lemma 2.2.8, ifb¢(M,{p}) _WI M' thenpy = 1.2.p, p} € Rq>c(M1 )
M' = cM|®¢(Ms, @) and®“(M, {p’}) _>BI M. By H, Rﬁ, = @ and by lemma5’.3,
RU, =2
+ Orp = 2.p' such thay’ € R} . So, (M, {p}) = c®°(My, 2)®°(Ms, {p'}). By
B _ BI
lemma 1, Ry, o) = @ By lemma 5. 3R¢C(M oy = {2p|p € R@c(MQ,{p/})}-
So, By lemma 2.2.8, ib¢(M, {p}) & =51 M’ thenpy = 2.p)), pj) € R@c(% () M =
c®°(My, @) M} and (Mo, {p'}) —OW M. By IH, R% = @ and by lemma 5.3,
2
R =2
0
Proof(Lemma 7.9.4) Bylemma 2.2.8p < Rm By lemma 7.3, there exists a unique $&tC RM,,
such thato® (M, {p}) —pr @°(M', F'). Bylemma3Ry. /- = @, S0[(@(M', F'), Rl 0 )| =
@ and by lemma 7.2.1dF" = @. Finally, by lemma 7.6. 1M, {p}) —s1q (M’, @). O

Proof(Lemma 7.9.5) Itis obvious that—],C—7,. We only prove that-7; C—>H Let M, M’ € Al
such thatV/ —7%; M'. We prove this claim by mductlon on the lengthlaf —7%, M’

e LetM = M'thenitis done sinceM, ) —7;, (M, F) for someF.

o Let M —%, M" —g M'. By IH, M —%, M". By definition there existp such that)” = ;
M’ then by lemma 4M", {p}) —p1q (M', @), soM" —1; M'. HenceM —7,; M" —; M'.
O

Proof(Lemma 7.10) LetM € Al andc be a variable such that¢ fv(1). AssumeM —7%; M; and
M —7; M. Then by lemma 5M —7; My andM —7; M. We prove the statement by induction on
the length ofM —7; M.

e Let M = M;. HenceM; —7; My andMy —7; M.

o Let M —i, M| —i; M. By IH, 3M;, M| —7j;, M;and M, —j; M;. We prove that
dMs, My —75; MsandM; —;; Ms, by induction onM{ —7; Mj.

— let M| = M3, henceM; — 1y My andMy —7; M.

— LetM] —7i; MY —q; M. By IH, 3MY', My —5; My andMY —; MY'. Bylemma2.2.4,
c & tv(MY). SinceMy —; M5 and My —q; MY, by lemma 7.73Ms, M; —; Ms and
Mé// —17 M3.

|
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F. Proofs of section 8

Proof(Lemma 8.2)

1. 1la. By induction on the structure &f.
o LetM €V \ {c}, thenF =53 g andV§(M, @) = {M} = {"(M)} C ¥¢(M, 2).
e Let M = \z.N such thatr # candF’ = {p | 1.p € F} C53 R77.

—If 0 € FthenU§(M,F) = {Mz.N' | N' € U§(N,F")} = {"(\x.N') | N’ €
WE(N,F')} C Ue(M,F).

— Else¥§(M,F) = {Mz.N'[z := c(cz)] | N' € U¢(N,F)} = {P(A\e.N'[z :=
c(ex)]) | N' € UE(N, F')} C U¢(M,F).

e LetM = NP, Fi ={p|lpeF} C** Ry andF, = {p | 2.p € F} <53 RN

—If 0 € FthenU§(M,F) = {N'P' | N' € W§(N,F\) AP € U5(P,F»)} =
{(N'P") | N' € UE(N, F1)\NP' € U§(P,F2)}. By IH, U§(P, Fa) C U(P, Fy),
so by definitionW§ (M, F) C WE(M, F).

— ElseU§(M,F) = {¢cN'P' | N € U¢(N, F1) A P' € U§(P, F2)}
= {(eN'P") | N' € U(N,Fi) A P' € U§(P,Fs)}. By IH, U&(P,F,) €
Ue(P, F2), so by definition¥§(M, F) C U¢(M, F).

1b. By induction on the structure @f.
o LetM € V\ {c}, thenF = &, V¢(M,F) = {"(M) | n > 0} and
VN € U¢(M,F). fv(M) = {M} = tv(N) \ {c}.
e Let M = A\z.N such thate # zandF' = {p |1l.p € F} C R]ﬁvn.

—1f 0 € FthenU¢(M,F) = {"(Az.N") |n > 0 AN’ € U§5(N,F')}. LetP €
U¢(M,F), so3dn > 0and N’ € W§(N,F') such thatP = ¢"(A\x.N'). Hence,
fv(M) = fv(N) \ {z} =11 fv(N)\ {c, 2} = fv(P) \ {c}.

— Else U¢(M, F) = {¢"(A\x.N'[x := c(cx)]) |n > 0 AN € V¢(N,F')}. Let
P € U¢(M,F), s03dn > 0 and3IN’ € ¥°(N,F’) such thatP = ¢"(Az.N'[z :=
c(cx)]). Hencefv(M) = fv(N) \ {z} =11 fv(N')\ {¢,z} = fv(P) \ {c}.

o LetM = MMy, Fy = {p| 1.p € F} C Ry} andF = {p | 2.p € F} C R}

— If 0 € Fthen,¥¢(M,F) =
{"(N'P') |n>0AN'" € WUG(M;, Fy) AP € U(My, Fy)}. Let P € We(M, F),
sodn >0, N' € ¥§(M;,Fy) andP’ € U¢(My, Fo) such thatP = ¢ (N'P’).
Hence,fv(M) = fv(M;) U fv(My) =IH:1e (fy(N') \ {c}) U (fv(P") \ {c}) =
(tv(N) Utv(P) \ {c} = tv(P) \ {c}.

— ElseU¢(M, F) = {¢"(cN'P') | n > 0AN' € (M, Fi) A P € U¢(My, Fa)}.
Let P € W¢(M,F), sodn > 0, N' € U¢(My, Fy) and P’ € W¢(Ms, F>) such that
P = c"(ecN'P'). Hencefv(M) = fv(M;)Ufv(Ms) =" (fv(N)Ufv(P")\{c} =
tv(P)\ {c}.

1c. By induction on the structure af .
o If M € V\{c}thenF = gand¥*(M,F) = {c"(M)|n > 0}. Use lemma 5.2.7.
e Let M = Az.N such thate # candF ={p | 1.p € F} C Rf\,”.
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— If 0 € F,thenN = Pz such thatr ¢ fv(P) andV°(M,F) = {c"(Az.N') | n >
0OAN' € W5(N, F)}. Let F/ = {p | 1.p € F'} C*3 RN
x If 0 € F' then,U§(N,F') = {P'x | P' € U§(P,F")}. Let M' € U¢(M,F),

soM' = ¢"(Ax.P'z) wheren > 0 and P’ € ¥§(P, F"). Sincex ¢ fv(P), by
lemmas 8.2.1b and 8.2.1a¢ fv(P’). By IH and lemma 8.2.1&’, P’z € An,.
By lemma 5.2,P" # ¢. Hence, by(R1).4, Axz.P'z € An.. We conclude using
lemma 5.2.7.

x ElseU§(N,F') = {cP'z | P € ¥¢(P,F")}. Let M' € W¢(M,F), soM' =
"(Az.cP'z) wheren > 0 and P’ € ¥¢(P,F"). Sincex ¢ fv(P), by lem-
mas 8.2.1bg ¢ fv(P’), sox & fv(cP’). By IH and lemma 8.2.1a&;P'x € An,.
SincecP’ # ¢, by (R1).4, Az.cP'x € An.. We conclude using lemma 5.2.7.

— Else U¢(M, F) = {¢"(A\x.N'[x := ¢(ex)]) |n > 0OAN' € U¢(N,F')}. Let
N’ € U¢(N,F')andn > 0. Since by IHN’ € A7, by lemma 5.2.7 andR1).3,
(Ax.N'[z := c(cx)]) € Ane.

e LetM = NP, Fi ={p|LpeF} CRY andF, = {p|2.p € F} CRI.

—1f 0 € FthenW(M,F) = {*(N'P') |n > 0AN' € W5(N,F|) AP €
Ue(P, Fy)}. LetP = ¢*(N'P') € W¢(M, F) such thatn > 0, N’ € WE(N, F)
and P' € V%P, F,). By IH and lemma 8.2.1aN’, P’ € An.. SinceN is
a \-abstraction then by definitiotv’ too. Hence, by(R3), N'P’ € An.. By
lemma 5.2.7¢"(N'P’) € An..

— ElseU¢(M, F) = {¢"(¢cN'P') |n>0AN' € U¢(N, F1) AP € U¢(P, F)}. Let
"(cN'P'") € ¥¢(M,F) such thatn > 0, N’ € ¥°(N,F) andP’ € U°(P, Fy).
By IH, N', P’ € An.. Hence by(R2), ¢cN'P’' € An. and by lemma 5.2.7,

" (eN'P') € An..

1d. We prove this lemma by case on the belonging iof 7. Let 7' = {p | 1.p € F} C R]ﬁ\,”.

e If 0 € FthenV§(Nx,F) = {N'z | N € ¥§(N,F')}. Hence,P = N’z such that
N’ € U§(N,F'). Sincex ¢ fv(N), by lemmas 8.2.1b and 8.2.1a,¢ fv(N'). So
Ar.P = \z.N'z € RP" and by lemma 5.37,352.13 —{0}U{lp|peRI.

e Else U§(Nz,F) = {e¢N'z | N' € ¥¢N,F)} and P = ¢N'z such thatN’ €
Ue¢(N,F'). Sincex ¢ fv(N), by lemmas 8.2.1by ¢ fv(N’) and soz ¢ fv(cN’).
Sincelz.cN'z € RP", by lemma 5.37352.13 —{0}U{l.p|peRI.

le. LetF, = {p | 1.p € F} CRY andF, = {p | 2.p € F} C RY" =53 2. We prove this
lemma by case on the belonging®in F.

o If 0 € FthenU¢(Nz, F) = {"(N'Q) |n>0AN"€ U§(N,Fi1) AQ € V(z,F2)}.
SoPzx = ¢"(N'Q) such that > 0, N’ € U§(N, F;) and@ € ¥¢(x,Fz). Son = 0,
N’ = P andQ@ = z. Sincex € V§(z,d), Px € U§(Nx, F).

e ElseV¢(Nz,F) = {c"(cN'Q) | n > 0AN" € U§(N,F1) ANQ € V(z,F2)}. So
Pz = ¢"(¢N'Q) such thatn > 0, N' € U§(N,F;) andQ € ¥z, F). Son = 0,
¢N' = P and@ = z. Sincex € V§(z,2), Px € U§(Nz, F).

1f. Easy by case on the structure/af and induction om.
1g. By induction on the structure @f.
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o LetM € V\{c}. Then¥<(M, F) = {c"(M) |n > 0} andF = &. Now, use lemma 1.
e Let M = Az.N suchthatt # candF ={p|1l.p € F} C R]ﬁ\,”.

—1f0 € FthenU¢(M,F) = {"(Az.N") | n > 0 AN" € ¥§(N,F)}. Let
c(A\z.N') € U¢(M, F)wheren > 0andN’ € W5(N, F'). Then,|c"(Az.N")|¢ =1
|JAz.N'|¢ = Az.|N'|¢ =TH1e \g N,

— Else UM, F) = {"(A\x.N'[x := c(cx)]) |n > 0 AN € V¢(N,F')}. Let
"(Az.N'[z := c(cx)]) € V(M,F) wheren > 0 andN' € U¢(N,F’). Then,
|c"(\z.N'[z = c(cx)])|® = |Me.N'[z = c(cz)]|¢ = A\ |N'[x := c(cx)]|¢ =2
Az |N'|¢ =TH \z.N.

o LetM = MM, Fi = {p|Lp € F} C Ry} andF = {p | 2.p € F} C Ry

— If 0thenWe(M, F) = {¢"(N'P') | n > 0AN’ € W§(My, F1)AP' € W¢(My, F»)}.
Letc™(N'P') € U¢(M,F)wheren > 0, N' € U§(M;,F,)andP’ € U°(Ms, F>).
SinceM; is aA-abstraction, by definitiov’ too. Then,c®(N'P')|¢ =t |[N'P'|¢ =
‘N’|C|P,|C _IHla MlMQ.

- ElSG\IJC(M, .7'—) = {cn(cP1P2) ‘ n>0AP € ‘I/C(Ml,fl) NPy e \IJC(MQ,fg)}.
Letc"(cPy Py) € U¢(M,F)wheren > 0, P, € W¢(My, Fi)andP, € WE( My, Fa).
Then|c™(cPy P2)[¢ =t [cP i Pa|¢ = [cPy || Po|¢ = |Py|¢| Py| =11 My M.

1h. We prove the statement by induction &ah

o LetM € V\ {c}. ThenU¢(M,F) = {c"(z) |n >0} andF = @. If P € U°(M,F)
thenRY! =545 . Hence,F = |(P, R1)|.
e Let M = Az.N such thate # candF = {p | 1.p € F} C R]ﬂ\,”.

—If 0 € FthenN = Px wherez ¢ fv(P)and¥¢(M,F) = {"(Az.N') | n >
0AN' € U§(N,F')}. Let Ny = ¢"(A\x.N') € U¢(M,F) wheren > 0andN’ €
W§(N, F'). Then,|(No, R7)[¢ = {|{No, p)[* | p € RR]} =54 {|(Ax.N', p)|° |
p € R} = {0} U{IQAa.N', Lp) |7 | p € RYT} = {0} U{LI(N',p)[ | p €
Ry = {0} U{Lp|pe [N, R} =1 {0y u{lp | p e Fy =3 F.

— Else U¢(M,F) = {"(Az.P[z = c(cx)]) | n > OAP € U¢(N,F')}. Let
No = *(Az.Plx := c(cz)]) € V¢(M,F) wheren > 0 andP € W¢(N,F").
Then, |(No, RIS = {|(No, p)[° | p € RY} =542 {|(Ax.Plz := c(cx)), p)|° |

pE sz,p[x::c(cx)}} =243 {|(\a. Pz == c(ex)], 1.p)|° | p € R]ﬁ;Ex;:c(cx)]} =044

{{(\e.Plz = c(ca)], 1p)[° | p € RY} = {L|Plz = c(ex)],p)|° | p €

Ry =2 (LUPp) | p e REYY = (1p | p € (PRI} =" {1.p |
peF}=3F.

o LetM = MMy, Fy = {p| 1.p € F} C Ry} andF = {p | 2.p € F} C R}

—1f 0 € FthenU¢(M,F) = {*(NP) |n > 0AN € U§(M,F1) NP €
Ue( My, Fo)}. Let Ng = c*(NP) € W¢(M,F) wheren > 0, N € W§(My, Fy)
and P € V°(M,, Fy). SincelM; is a A-abstraction, by definitionV too. Then,
[(No, R = {1{No, )I° | p € RET ypy} =+ (NP, p)[° | p € R} =53
{0} U{[(NP, Lp)|c | p € RIVULIINP,2.p)|° | p € RET} = {0}U{L|(N, p)|° |
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p e RYYULUP. P | p e RY} = {0} U{lp | p e [(NRY)}U{2p |
p e (PRI = {0y U{Llp |pe FIu{2p|pe R} =23 F.

— ElseU¢(M,F) = {"(cPiP) | n > 0A P € U¢(My,F1) APy € U(Ms, F2)}.
Let No = "(cP1P;) € ¥¢(M,F) wheren > 0, P, € V¢(M;,F;) and P, €
U (Ma, Fy). Then,[(No, RV [C = {|(No, p)|° | p € RaT} =545 {|{cP Pa, p)° |
p € R} =53 {|(cPL P, 1.2.p)[° | p € RETYU{|(cPL Py, 2.0)| | p € R} =
{LI(PL ) | p € REFUL2 Py p)° | p € REY = {Lp | p € (P REDIFU
(2.0 | p € (P, RNy =T {1p | p € FLyU{2.p | p € Fo} =23 F.

2. 2a. By induction on the construction &f.

o Let M € V\ {c}. So|M|® = M, by lemma 5.3,72?}7 =0 = Rﬁ@‘ and M €
We(| M, [(M, RE])[€) = Ue(M, @) = {c"(M) | n > 0}.

e Let M = \x.N[z := ¢(czx)] such thatr # candN € An.. Then,|M|¢ = Az.|N|¢ and
(MRS = {(M, p)|° | p € RGT} =243 {[(M,1p)[° | p € Rf’v’}z::c(mn} =544
(L, Lp)l" | p € Ry} = {LUN. D) | p € RN} = {Lp|p e, R} <1
{LplpeRy S ="{lplpe R\ Nwimc(en)]|<} co R Nis=c(ca)e =
Rﬁ’?

[Az.N[z:=c(cx)]|¢"

We just proved that(M, Rﬁ) ¢={l.p|p €N, R’]g\,”ﬂc}, so0 & |(M, Rfjﬂc and
(N,REDIC = {p | 1p € [(M,RE])[}. By definition, We(|M|°, [(M, RI)|%) =
{(*N\e.N'[z = c(c)]) | n > 0 AN € (NS (N, RN} By IH, N €
TN, [(N, RRT[E), soM € We(|MIe, [(M, RIT)).

e Let M = Az.Nz such thatNz € An., N # candx ¢ fv(N) U {c}. By lemma 5.2.8,
N € An. and by lemma 4z ¢ fv(|N|¢). |M|¢ = Az.|Nz|® = Az.|N|°z. Since
M,|M|¢ € R, by lemma 5.3R57 = {0} U {l.p | p € R}, so|(M,RT|c =
{0} U{lp | pe[(Ne,R)IT S {0} U{Lp | p € R} = Rl
We proved|<Na:,R]ﬂV"x>\c ={p|1lpe|(M, Rf}ﬂc} and0 € |(M, Rf}ﬂc. By defini-
tion, We(|M |, |(M, REM|¢) = {¢"(Ax.N") | n > OAN’ € W§(|Nz|, |(Na, Ra)|)}.
By IH, N € We(|Nx|?, | (N, R3")|%), so by lemma 8.2.1e,

Nz € W§(|Nz|®, |(Na, R57)[€). HenceM e We(|M|e, |(M, Ro1 ).

o Let M = ¢cNP whereN, P € An., socN € An,. |M|° = |[eN||P|¢ = |N|°|P-.
Because\l,cN ¢ R, By lemma5.3R57 = {1.2.p | p € RAT} U{2.p |€e R} So
|<zﬂw,7e§2>\c ={lr|pe \<N,R7é;>\0} U{2p [ p e (PRENG S {1p|p e
RNt U{2.p [ p € Rip} € Ry
We just proved that ¢ |[(M,R77)|¢ and [(N,REN® = {p | 1.p € [(M, R}
and|(P, R = {p | 2.p € |(M,R}})|°}. By definition, we(|M|°, |(M, R{})|%) =
{¢"(eN'P') [ n >0 AN" € WE(IN|¢, (N, RY)[) A P € We(|PIe, |(P,RET)[)}. By
IH, N € W(IN |1, [(N,R7)|¢) and P € we(|P|%, (P, RE1)|),
soM € Ue(|M<, [(M, R{])[).
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e Let M = NP whereN,P € An. and N is a A-abstraction. So by definitionV|© is
a A-abstraction too angV/|© = |N|¢|P|¢. SinceM € R"", By lemma 5.3,72%7 =
{0y UfLlp | p € RYIU{2p | p € RE. SO|(M,RYDI" = {0} U{Lp | p €
(N RENFUA{2p | p € (PRI} S {0y U{lp [ p e RV I U{2p | p €
Ripet =" Rijje
We just proved that € |<M,R§}7>|C, |<N,R]ﬁv’7>|c ={p | lp € \(M,Rfjﬂc} and
(PREN = {p | 2p € [(M.RYDI}. By definition, we(|M|°, [(M,RY})|") =
{"(N'P') [n = 0 AN" € UG(IN|%, [N, R A P! € U°(|PJ°, [(P,RE"))}. By
H, N € We(IN|, [(N,RY)[€) and P € W(|P|<, |(P, RE)[%),

SON € W§(IN|°, [(N, RY)[) andM € UM, [{(M, Ry7)[).

o Let M = cN whereN € An. then|M|® = |N|°. By lemma 5.3,72%7 ={2p|pe
R} SO (M R = (N R S R = R
By IH, N € WE(|N|% [(N,RIN|E) = We(|M|<, |(M,R57)[¢), so by lemma 8.2.1f,
M € We(|M ", [(M, Ry7)[°).

2b. By lemma 4¢ ¢ fv(|M|°). By lemma 8.2.2a,(M, R3[| C Rﬁ\% and
M e ve(|M|¢, |(M, Rf}ﬂc). To prove unicity, assume thaiv’, ') is another such pair.
SoF' C R]ﬁ\ﬁ andM € U¢(N', F'). By lemma 8.2.1g|M|* = N’ and by lemma 8.2.1h,
F = (M, R
O

Proof(Lemma 8.2.3) Let Ny € ¥¢(M,F). By lemma 8.2.1c/N; € An.. By lemma 8.2.1h and
lemma 1, there exists a unique < R]ﬂv’i such that (N1, p1)|© = p. By lemma 2.2.8, there exists

N} such that\; %5, NJ. By lemma 2,N] € An.. By lemma 5.8.7a|N;|¢ 25, |N]|° such that
i = [(N1,p1)|© = p. By lemma 8.2.1gM = |N;|°. So by lemma 2.2.9)/" = |N{|°. LetF' =
[{(N], R]ﬂv’}ﬂc. By lemma 8.2.2b(M’, F') is the one and only pair such tha¥ fv(M'), ' C Rﬁ}, and
N| e we(M', F).

Let N, € U¢(M,F). By lemma 8.2.1cN, € An.. By lemma 8.2.1h and lemma 1, there exists a
uniqueps € Rf\,’; such that(Ns, p2)|© = p. By lemma 2.2.8, there exisf§] such thatV, 2@7 NJ.

/

By lemma 2,N} € An.. By lemma 5.8.7a|N,|° ﬁﬁn |N3|¢ such thatp) = |(Na, p2)|° = p. By
lemma 8.2.1gM = |Ny|°. So by lemma 2.2.9}/" = |Nj|°. Let F" = |<N§,R§Z>|C. By lemma 8.2.2b,

(M', F") is the one and only pair such thatZ fv(M'), 7" C Rf} and N}, € we(M', F").
BecauséVy, N, € ¥¢(M, F), by lemma 8.2.1H,(N1,R]ﬂv’i>|c = \(NQ,R%HC and by lemma 8.2.1g,
|N1[¢ = |No|°. Finally, by lemma 5.8.7¢F" = [(N], Ru1)|¢ = [(N5, R |© = F". O
1 2
LemmaF.1. If p € Rtﬂ" thenheadlam(t|, [z := c(cz)]) = headlam(t,).

Proof: We prove this lemma by induction on the structure.of

e Lett € V then by lemma 5.3],3?’7 = .
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e Lett = \,y.t' then by lemma 5.3:

— Eitherp = 0if ¢ = "y andy ¢ fv(¢"). Thenheadlam(t|,(zZ := ¢(cz)]) = headlam(t[z :=
c(ex)]) = headlam(\,y.t"[Z := ¢(cz)]y) = (2,n) = headlam(¢) such thay & {c, z}.

— Orp = 1.p' such thaty’ € Rgn. Thenheadlam(t|, [z := c(cz)]) = headlam(t'|, [z :=
c(ez)]) =1 headlam(#|,/) = headlam/(t|,).

e Lett = tyty then by lemma 5.3:

— Eitherp = 0if t; = A\,y.to. Thenheadlam(t|, [z := c(cZ)]) = headlam(t[Z := c(cz)]) =
headlam((Any.to[Z := c(cT)])te[z := ¢(cT)]) = (1,n) = headlam(t) such thay ¢ {c, z}.

— Orp = 1.p’ such thaty’ € Rtﬁln. Thenheadlam ([, [z := ¢(cZ)]) = headlam(t|, [T :=
c(ez)]) =1 headlam(t;|,/) = headlam(t|,).

— Orp = 2.p such thap’ € R}". Thenheadlam(t|, [ := ¢(cz)]) = headlam(ts, [z :=
c(cz)]) =" headlam(ts|,/) = headlam(t[,).

LemmaF.2. Lett € A andF C RY".
e If ¢t = x thenheadlamred(¢, F) = hlr(¢) = @.
o If £ = A\paty then ift € RA7 thenhlr(t) = hlr(f;) U {(2,n)} elsehlr(t) = hir(f,).

o If t = \,x.ty andF; = {p | 1.p € F} thenif0 € F then
headlamred (¢, ) = headlamred(¢1,F1) U {(2,n)} else
headlamred (¢, ) = headlamred (¢, F1).

o If t = tity then ift € RP thenhlr(t) = hir(t;) U hlr(ts) U {headlam(t)} elsehlr(t) =
hll‘(tl) U hll‘(tg).

o Ift = tite, F1 = {p | 1.p € .7'—} al’ldj'—g = {p | 2.]) € .7'—} then
if 0 € F thenheadlamred(¢, F) = headlamred(¢;, 1) U headlamred(ta, F2) U {headlam(¢) }
elseheadlamred(t, ) = headlamred(¢;, F7) U headlamred(ts, F2).

o If t = \,Z.t1[Z := c(cx)] thenhlr(t) = hlr(¢y).

o If t =" (t1), thenhlr(t) = hlr(¢y).

Proof: By definitionhlr(t) = {(i,n) | Ip € Rtﬁn. headlam(t|,) = (i,n)} andheadlamred(t, F) =
{(i,n) | 3p € F. headlam(t|,) = (i,n)}. We prove the frist three items of this lemma by induction on
the size oft and then by case on the structuret of

e Lett = z. By lemma5.3F = RS" = @, thenheadlamred(z, F) = hir(z) = @.
e Lett = N\, x.17.

— Lett € RP" thent; = tyz such thatr ¢ fv(tg).
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« Let (j,m) € hlr(¢) then there existp € Rtﬁ” such thatheadlam(t|,) = (j,m). By
lemma 5.3:

- Eitherp = 0, so(j, m) = headlam(t|o) = headlam(t) = (2, n).

- Orp = 1.p’ such thap’ € R}, Then,(j,m) = headlam(t|,) = headlam(ty],).
So(j,m) € hlr(ty).

« Let (j,m) € hlr(t1) U {(2,n)}.

- Either (j,m) € hlr(¢1). Then there existp € Rfl” such thatheadlam(t4],) =
(j,m). By lemma 5.31.p € RY" and(j,m) = headlam(t,|,) = headlam(t| ).
So(j,m) € hlr(t).

- Or (j,m) = (2,n). By lemma5.30 € Rtﬂ" andheadlam(t|g) = headlam(t) =
(2,n). So(j,m) € hlr(t).

— Lett ¢ R,

x Let (j,m) € hlr(¢) then there existy € Rf” such thatheadlam(t|,) = (j,m).
By lemma 5.3,p = 1.p’ such thatp’ € Rfl”. Then, (j,m) = headlam(t|,) =
headlam(t1|,/). S0(j,m) € hlr(t;).

« Let (j,m) € hlr(¢;) then there existp € Rfl” such thateadlam(t|,) = (j,m). By
lemma 5.3,1.p € T\’,f" and (j, m) = headlam(t;|,) = headlam(t|; ). So(j,m) €
hlr(¢).

o Lett = \,z.t; andF; = {p ‘ l.p € .7:}

— Let0 € F thent € R7".,
* Let (j,m) € headlamred(t, F) then there existp € F such thatheadlam(t|,) =
(,m). By lemma 5.3:
- Eitherp = 0, so(j, m) = headlam(t|y) = headlam(t) = (2, n).
- Orp = 1.p' such thatp’ € F;. Then,(j,m) = headlam(t|,) = headlam(t;],).
So(j,m) € headlamred(t1, F1).
x Let (j, m) € headlamred(ty, F1) U {(2,n)}.
- Either (j,m) € headlamred(¢1, F1). Then there existp € F; such that
headlam(t,|,) = (j,m). So,1.p € F and
(4, m) = headlam(t;|,) = headlam(t|; ,). Hence,(j, m) € headlamred(¢, F).
- Or (j,m) = (2,n). Becaus® € F andheadlam(t|y) = headlam(t) = (2,n) then
(j,m) € headlamred(t, F).

— Let0 ¢ F.

* Let (j,m) € headlamred(t, F) then there existp € F such thatheadlam(t|,) =
(j,m). By lemma 5.3p = 1.p" such thaty’ € F;. Then,(j,m) = headlam(t|,) =
headlam(t1|,/). S0(j,m) € headlamred(t;, F1).

* Let (j,m) € headlamred(t;, F;) then there existp € F; such thatheadlam(t|,) =
(j,m). By lemma 5.31.p € F and(j,m) = headlam(¢;|,) = headlam(t|; ). So
(7,m) € headlamred(t, F).
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o Lett = tyto.

— Lett € RAthent; = \,z.ty. S0(1,n) = headlam(t).
« Let (j,m) € hlr(¢) then there existp € Rf” such thatheadlam(t|,) = m. By
lemma 5.3:

- Eitherp = 0, so(j, m) = headlam(t|yg) = headlam(t) = (1,n).

- Orp = 1.p’ such thaty’ € Rtﬂln. Then,(j,m) = headlam(t|,) = headlam(t1|,/).
So(j,m) € hlr(ty).

- Orp = 2.p' such thap’ € Rfj.

Moreover,(j, m) = headlam(t|,) = headlam(tz,/). S0(j,m) € hlr(ts).
« Let (j,m) € hlr(t1) Uhlr(t2) U {(1,n)}.

- Either (j,m) € hlr(¢;). Then there existp € Rﬁ” such thatheadlam(t;],) =
(7,m). By lemmab5.31.p € Rtﬂ" and(j, m) = headlam(t;|,) = headlam(t|; ;).
So(j,m) € hlr(t).

- Or (j,m) € hlr(t2). Then there existp € Rfj such thatheadlam(tz|,) = (j, m).
By lemma 5.32.p € RY" and (j,m) = headlam(ts|,) = headlam(t|s,). So
(7,m) € hlr(t).

. Or (j,m) = (1,n). By lemma 5.30 € R/" andheadlam(t|y) = headlam(t) =
(1,n). So(j,m) € hlr(t).

— Lett ¢ R,
« Let (j,m) € hlr(¢) then there existp € Rf” such thatheadlam(t|,) = (j,m). By
lemma 5.3:

- Either p = 1.p’ such thatp’ € Rfl”. Moreover, (j,m) = headlam(t|,) =
headlam(t|,/). So(j,m) € hlr(t;).

- Orp = 2.p' such thap’ € Rg”.

Moreover,(j, m) = headlam(t|,) = headlam(ta,/). S0(j,m) € hlr(ts).
« Let (j,m) € hlr(¢1) U hlr(¢2).

- Either (j,m) € hlr(¢1). Then there existp € Rfl” such thatheadlam(t,],) =
(j,m). By lemma 5.31.p € R?" and(j, m) = headlam(t,|,) = headlam(t| ).
So(j,m) € hlr(t).

- Or (j,m) € hlr(t2). Then there existp € Rfj such thateadlam(tz],) = (j,m).
By lemma 5.32.p € RJ7 and (j,m) = headlam(ts],) = headlam(t|2,). So
(7,m) € hlr(t).

o Lett =tity, F1 = {p ‘ l.p e f} andF; = {p ‘ 2.p € f}

— Let0 € F thent € R,

* Let (j,m) € headlamred(t, F) then there existp € F such thatheadlam(t|,) = m.
By lemma 5.3:

- Eitherp = 0, so(j, m) = headlam(¢|y) = headlam(t).
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- Orp = 1.p' such thatp’ € F;. Then,(j,m) = headlam(t|,) = headlam(t;],).
So(j,m) € headlamred(t;, F1).
- Orp = 2.p" such thatp’ € F,. Then,(j,m) = headlam(t|,) = headlam(ts|, ).
So(j,m) € headlamred(ta, F2).
x Let (j,m) € headlamred(t;, F1) U headlamred(te, F2) U {headlam(t)}.
- Either (j,m) € headlamred(¢;, 7). Then there exists € F; such that
headlam(t;|,) = (j,m). So,1.p € F and
(4,m) = headlam(t;|,) = headlam(t|; ,). Hence,(j, m) € headlamred(¢, F).
- Or (j,m) € headlamred(ts, F2). Then there exists € F» such that
headlam(ta|,) = (j,m). S0,2.p € F and
(4, m) = headlam(tz|,) = headlam(t|2,). Hence,(j, m) € headlamred(¢, F).
- Or (j,m) = headlam(t). Becaus# € F andheadlam(t|y) = headlam(t), then
(j,m) € headlamred(t, F).
- Let0 & F.
* Let (j,m) € headlamred(t, F) then there existp € F such thatheadlam(t|,) =
(,m). By lemma 5.3:
- Eitherp = 1.p’ such thaty’ € F;. Moreover,
(j,m) = headlam(t|,) = headlam(¢1|,/). So(j,m) € headlamred(t, F1).
- Orp = 2.p' such thap’ € F. Moreover,
(j,m) = headlam(t|,) = headlam(ts|,/). So(j,m) € headlamred(t, F3).
« Let (j,m) € headlamred(t;, 1) U headlamred(to, F2).
- Either (j,m) € headlamred(¢;, ;). Then there exists € F; such that
headlam(t|,) = (j,m). So,1.p € F and
(4, m) = headlam(t;|,) = headlam(t|; ,). Hence,(j, m) € headlamred(¢, F).
- Or (j,m) € headlamred(ts, F2). Then there exists € F» such that
headlam(ts|,) = (j,m). S0,2.p € F and
(4, m) = headlam(tz|,) = headlam(t|2,). Hence,(j, m) € headlamred(¢, F).

Lett = A\, z.t1 [z := c(cz)].

e Let (j,m) € hlr(¢) then there existp € Rf” such thatheadlam(t|,) = (j,m). By lemma 5.4.3
and lemma 5.4.4p = 1.p’ such thaty’ € Rfl”. Moreover,
(j,m) = headlam(t|,) = headlam(t1[Z := ¢(cz)]|,) =42 headlam(t1|, [T := c(cz)]) =1
headlam(t1|,/). So(j,m) € hlr(t1).

e Let(j,m) € hlr(¢1) then there exists € Rfl” such thaheadlam(t;|,) = (j, m). By lemma5.4.3

and lemma 5.4.4].p € Rt’g". Moreover, (j,m) = headlam(t;|,) ="! headlam(t;|,[z :=
c(cz)]) =242 headlam(t1 [z := c(cZ)]|,) = headlam(t|, ). SO(j, m) € hlr(t).

Lett = ¢"(t1). We prove thahlr(¢) = hlr(¢1) by induction on n.
e Letn = 0thenitis done.

e Letn =m + 1 such thatn > 0 thenhlr(t) =2 hir(¢™(t1)) =T hlr(ty).
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Proof(Lemma 8.4) We prove this lemma by induction on the structure.of

o Lett = x # cthen by lemma 5.3F = @ andu = ¢"(x) such that, > 0. Then,hlr(u) =12
@ = headlamred (¢, F).

e Lett = \,x.t; suchthatr # candF, =p | 1l.p € F.

—If 0 € Fthent; = tjx such thatr ¢ fv(t}), andu = ¢"(\,z.u1) such thatn > 0
andu; € Y§(t,F1). By IH and lemma 8.2.1ahlr(u;) = headlamred (¢, F1). Then,
hir(u) =8214E2 hir(up )U{(2,n)} = headlamred (¢, F1)U{(2,n)} =2 headlamred(t, F).

— Else,u = ¢"(\yz.ui[x := ¢(cx)]) such thate > 0 andu; € ¥e(¢1,F1). By IH, hlr(u;) =
headlamred (¢, F7).
Then,hlr(u) =2 hir(u;) = headlamred(t;, F;) =2 headlamred(t, F).

o Lett =tity, F1 = {p ‘ 1.p e .7'—} andf, = {p ‘ 2.p € .7'—}

—If 0 € Fthent; = \y.t}, andu = ¢"(ujug) such thatn > 0, u; € ¥§(¢1, F1) and
ug € W(ta,F2). By definition, uy = \,y.u)j. By IH and lemma 8.2.1ahlr(uy) =
headlamred (¢, 1) andhlr(ug) = headlamred(ts, F2).

Then,hlr(u) =2 hir(up )Uhlr(us)U{(1,n)} = headlamred (¢, F; )Uheadlamred(t2, 7> )U
{(1,n)} =2 headlamred(t, F).

— Else,u = "(cujug) such thatn > 0, u; € ¥¢(t1,F1) andug € ¥(ta, F2). By IH,
hlr(u;) = headlamred(t;, Fy) andhlr(us) = headlamred(to, 7). Then,hlr(u) =12
hlr(u1) U hlr(ug) = headlamred (¢, ;) U headlamred(t2, F2) =2 headlamred(t, F).

0
Lemma F.3. hlr(u; [Z := ¢(cuz)]) C hlr((ApZ.ui[Z := c(cz)])us).
Proof: We prove the lemma by induction on the sizeugfand then by case on the structureugf
e Letwu; € V. Eitheru; = Z thenhlr(ui[Z := c(cug)]) = hlr(c(cus)) =2 hlr(us) %FA

hir((A\,Z.u1[Z := c(cx)])uz). Oruy = y # & thenhlr(ui [z := c(cuz)]) = hlr(ug) CH4F2
hlr(ApZ.uq [T := c(cZ)])uz).

o Letu; = A\, g.u)[y := c(ey)]. Thenhlr(ui [z := c(cuz)]) = hlr((Apg.ui[7 = c(ep)])[z =

c(cun))) = hlrOmgy 7 = c(cun)|[g == e(cq))) =P ble(uf[7 = cleuz)]) S hlr((An-u
c(e)])uz) =2 hle(u JUbl(us)U{ (1, )} =2 Wle(nt1 [ = e(cp)]) Uble(u2) U1,
hlr((ApZ.u1 [T := ¢(cT)])ug) such thaty & fv(us) U{z}.

>
\/H\

o Letu; = A\,y.wy such thaty ¢ fv(w). Then,hlr(u1[z := c(cuz)]) = hlr(A,y.(wy)[z
c(eu))) =2 bl((wp)lz = cleuw)]) U {2,m)} € Wr(Onz-(wp)le = c(en)])un
{(2,m)} =12 hir(wy) U hlr(uz) U {{1,n), (2,m)} =2 hir((A\,Z.(Any.wh)[Z = c(cz)])
such thaty ¢ fv(ug) U {7}.
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e Letu; = cujuf. Thenhlr(ui[Z = c(cuz)]) = hlr(cu}[Z := c(cug)]ul[Z := c(cug)]) =F2
hir(u}[Z = e(cug)])Uhlr(uf [z := c(cuz)]) CH hir((A\,Z.uh [T := c(c)])ug )Uhlr((\, Z.uf [T =
c(cz)])ug) =12 hir(u}) U hlr(uf) Uhlr(ug) U {(1,n)} =2 hir((\,Z.(cufuf) [z == c c:?:)])uQ)

e Letu; = vuf (such thatv = A\, y.wy andy ¢ fv(w) orv = A\,y.ui[y = c(cy)]). Then,
hlr(ul[ = c(cug)]) = hlr(v[z = c(cug)uf[Z = c(cuz)]) =2 hlr(v[z := c(cuz)]) U
hir(u}[Z := c(cuz)]))U{(1,m)} CTH hir((\,z.0[T = c(ci‘)])uz)uhlr(()\na: u [z = e(ex)])uz)U
{(1,m)} =2 hir(v)Uhlr(uf)Uhlr(ug)U{(1,n), (1, m)} =2 hir((\,z.(vu) [z := ¢(

z)
= up]) = hlr(cu} [T := c(cug)]) =12 hir(u} [z := c(cuz)]) clHd

e Letu; = cuj. Then,hlr(u; [z : C
hir((A\,Z.uj[Z == c(cZ)))ug) =2 hir(u)) U hlr(uz) U {(1,n)} =2 hir((\,z.(cu})[z :=
c(cx)])uz).

O

Lemma F.4. If t; C to thenhlr(¢;) C hlr(¢s).

Proof: We prove the lemma by induction on the structure-of
e Letty = x, then it is done because by definition= x.
e Letty, = \,x.ty then by definition:

— Eithert; = ¢ so it is done.
— Orty C to. Thenhlr(t;) T hir(ty) €52 hir(ts).

o Letty, = t3t4 then by definition:

— Eithert; = ¢ so it is done.
— Orty C t3. Thenhlr(t;) T hir(tz) €2 hir(ts).
— Orty C ty4. Thenhlr(ty) CHH hir(ty) €2 hir(ts).
O

Proof(Lemma 8.5) We prove this lemma by induction on the sizewfnd then by case on the
structure ofu.

e Letu = 7 then it is done becausedoes not reduce by- g,

o Letu = M\Z.uy[Z := c(cz)]. Becauseu >4, «/, then by lemma 2.2.8, lemma 5.4.3 and

lemma 5.2.13ap = 1.p, v/ = A\, z.u}[Z := ¢(cz)] anduy iﬂn u}. By IH, hlr(u}) C hlr(uy).
So, by lemma F.23Ir(v’) = hlr(u)) C hlr(uy) = hlr(u).

o Letu = \,z.wz andz ¢ fv(w). Because: iﬁn u', by lemma 2.2.8 and lemma 5.3:
— Eitherp = 0 andu’ = w. Sohlr(u') CF* hir(u).

—Orp = 1.9, wz %y andu’ = A,z By IH, hlr(u}) C hlr(wz). So,hlr(u) CF?
hir(u)) U {(2,n)} C hir(wz) U {(2,n)} =2 hir(t).
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e Letu = (\,Z.wZ)uy such thate ¢ fv(w). Because: iﬁn u’, by lemma 2.2.8 and lemma 5.3:

— Eitherp = 0. Sow’ = wu;. By case onv:
* Eitherw is av and sou’ € R7". Let(1,m) = headlam(u') thenhlr(u') =2 hlr(w) U
hir(ug) U {(1,m)} €2 hlr(u).
* Orw = cug and sou’ ¢ RA". Thenhlr(v') =2 hir(w) U hlr(ug) CF2 hir(u).

— Orp = 1.p" such thatp’ € sziwf Sou' = wjuy such that\,z.wz iﬂn u). By IH,
hlr(u}) C hlr(\,Z.wz). By lemma 5.3:
« Eitherp’ = 0 andu) = w, sou’ = wu,. By case onw:
- Eitherw is av and sou’ € RP". Let(1,m) = headlam(u’) thenhlr(u’) =2
hir(w) U hlr(up) U {(1,m)} CF*2 hir(u).
- Orw = cug and sou’ ¢ R, Thenhlr(u') =2 hir(w) U hlr(uy) CF2 hir(u).
« Orp’ = 1.p", v} = \,Z.ug andwz p—>ﬁﬁn uz. Then,hlr(v') =2 hir(u)) U hlr(u) U
{{1,n)} C hlr(\,Z.wZ) U hlr(uy) U {(1,n)} =52 hir(t).

— Orp = 2.p' such thatp’ € RY". Sou' = (Apz.wzx)uy such thatu, ign u}. By IH,
hir(u}) C hlr(u;). So,hlr(v/) =2 hlr(\,z.wz) U hlr(u}) U {(1,n)} C hir(\,z.wT) U
hir(ug) U {(1,n)} =2 hir(u).

o Letu = (A\,Z.u1[Z := c(cT)])ug. Becauser ﬂgn u’, by lemma 2.2.8 and lemma 5.3:
— Eitherp = 0. Sou’ = u1[Z := ¢(cuz)]. By lemma F.3hlr(u’) C hlr(u).
— Or p = 1.p’ such thatp’ € szim[j:zc(ci

c(ez)] iﬁn u). By IH, hlr(u}) C hlr(A\,Z.u1[Z := ¢(cz)]). By lemma 2.2.8, lemma 5.4.3,

- Sou = wjuy such thath,z.u1[z =

lemma 5.4.4 and lemma 5.2.13d, = 1.p", v} = A\, z.uf[z := c(cx)] anduy p—>"ﬁ7, uf.

Then,hir(v’) =2 hir(uv}) U hlr(uz) U {(1,n)} C hlr(\,Z.u1[Z = c(cz)]) U hlr(ug) U
{17} =2 hlr(u).

— Orp = 2.p such thaty’ € R4Y. Sou/ = (A,Z.uy [Z := c(ex)])ufy such thatus iﬁn ub. By
IH, hir(ub) C hlr(ug). So,hlr(u') =2 hir(\,z.u1[Z = c(c7)]) Uhlr(ub) U {(1,n)} C
hir(\,z.u1[Z := c(cZ)]) Uhlr(ug) U {{1,n)} =2 hir(u).

o Letu = cujus. Because: 2, ', by lemma 2.2.8 and lemma 5.3:
— Eitherp = 1.2.p" such thatp’ € Rﬁ?. Sou = cujug such thatu; iﬁn uy. By IH,
hir(u}) C hlr(up). So,hlr(w’) =2 hir(u}) Uhlr(uz) C hlr(u1) U hlr(ug) =2 hlr(u).
— Orp = 2.9/ such thatp’ € RE7. Sou’ = cuyu), such thatus i@n ub. By IH, hlr(u}) C
hlr(uz). So,hlr(v') =2 hir(u;) U hlr(ub) € hir(uy) Uhlr(ug) =52 hir(u).

e Letu = cu;. Because ﬂﬁn u/, by lemma 2.2.8 and lemma 58= 2.p’ such thatp’ € Rﬁ?.

Sou' = cul such thatuy %, ). By IH, hir(u)) C hlr(up). So,hlr(u’) =F2 hlr(u}) C
hlr(uy) =2 hir(u).
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Proof(Lemma 8.6.1) Note that¥“(M, F) # @. Then, it is sufficient to prove:

o (M,F) —pq (M, F') = VN € UM, F). AN" € ¥¢(M', 7). N —3, N’ by induction on
the reductionM, F) —7,, (M', F').

- If (M, F) = (M',F') then it is done.

— Let (M, F) —gpa (M",F") —%, (M',F). By IH: YN" € w(M",F"). IN' €
ve(M', F'). N =5, N". By definition 8.3.2, there exigt € F such thatM g, M”
and F” is the set ofgn-residuals inM"” of the set of redexeg in M relative top. By
definition 1 we obtainy N € w¢(M, F). IN" € V¢(M", F"). N —g, N".

e IN € UM, F). AN" € ¥¢(M', F'). N —p, N' = (M,F) —5,, (M',F') by induction on
the reductionV —7% N’ such thatV € W¢(M, F) andN' € We(M', 7).

— If N = N’then by lemma 8.2.2b\/ = M’ andF = F.

— Let N —g, N” —3 N’. By lemma 8.2.1cN € An,, so by lemma 2N” € An.. By
emma 8.2.2b; ) ,Rx)[€) is the one and only pair such that ,
l 8.2.2b/|N"|<, [(N", R,)[<) s th d only pair such thatg FV/(IN"|)
(N R C ROt andN” € We(IN"J°, [N, RRD)[°).
So by IH, (|[N"|¢, |<N”,R]ﬁ\ﬁ,>|c> —h,a (M',F"). By definition, there existg such that
N &ﬁn N" and by lemma 2.2.8p € Rf\,”. By lemmas 5.8.7a and lemma 8.2.14g, =
INJ¢ 5, [N”|¢ such that|(N,p)| = pp. So by lemma 2.2.8py € RY7. By defini-

tion 1, there exists a uniqué’ C Rﬁ\’},,|c, such that for allP € ¥¢(M, F), there exist

P’ € Ue(|N"|¢, F') andp}, € R such thatP ﬁgn P and (P, p})|© = po = |(N, p)|°.
Moreover, ' is called the set ofin-residuals in|N"|¢ of the set of redexe& in M rel-
ative to|(N, p)|¢. SinceN € W°(M,F), there existP’ € W¢(|N"|¢, F') andp’ € R]ﬁv”
such thatV &ﬁn P’ and|(N, p")|¢ = [(N,p)|c. By lemma 1,p = p’, so by lemma 2.2.9,
P’ = N". SinceN"” € U¢(|N"|¢, F"), by lemma 8.2.2bF" = |<N”,R]ﬂv7,>|c. Finally, by

definition 8.3.2(M, F) — g, (IN"|¢, [(N" , RLY|°).
O

Proof(Lemma 8.6.2) By lemma 8.2.1c¥¢(M, F1),V¢(M,Fz) C An.. For all Ny € ¥¢(M, Fy)
and Ny € W¢(M, ), by lemma 8.2.1g|V;|* = |N3|° and by lemma 8.2.1H{Ny, R{/)|® = F1 C
Fy = |(Ne, R

If (M, F1) —pna (M', F7) then by lemma 8.6.1, there exi§§ € W¢(M, Fy) andN| € Ue(M', F)
such thatN; —4, Nj. By definition, there existp; such thatN; %5, Nj, and by lemma 2.2.8,
P E R]ﬂ\,’i Let po = [(N1, p1)|¢, so by lemma 8.2.1hypy € F;. By lemma 5.8.7a and lemma 8.2.1g,
M B M.

By lemma 8.2.3 there exists a unique g&tC Rﬁ?, such that for allP, € ¥¢(M, F;) there exist
P} € Ue(M', F') andp’ € R such thatP, L5, P| and|(Py, p')[* = po.
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Because N, € U¢(M, Fy), there existP] € ¥¢(M',F') andp’ € Rﬁg such thath, gﬁn P
<’:1I’Id|<]\[1>p/>|C = Po- Sincep’ P E R]‘ig’ by lemma l,p/ — p1, SO by lemma 229P1’ _ N{ By
lemma 8.2.1hF’ = |<N17Rﬁn>|c = 7.

By lemma 8.2.3 there exists a unique %tc RM,, such that for all?, € W¢(M, F,) there exist
Pj e We(M', F)) andp, € Rﬁ” such thatP, 25, Py and|(Pz, p2)|° = po.

Slnce\IJC(M, Fo) # 2, let Ny € U¢(M, Fy). So, there exisiV}, € W¢(M', F,) andpy € R]ﬁv’; such
that Ny 225, N and|(Na, pa)|© = po. By lemma 8.2.1hF} = |<N§,R§z>|c.

Hence, by lemma 5.8.7¢] C F; and by lemma 8.6. 1M, F2) —pnq (M', F5). 0

Proof(Lemma8.7) If M ﬂﬁnd M, andM E%gnd Mo, then there exisFy', 7 such that M, F;) — ﬁnd
(My, 7{') and(M, F») —7, 4 (M, F3). By definitions 8.3.1 and 8.3.2/,?{’ C Rfjl andF) C Rﬁ’g.

By lemma 8.6.2, there exist;” C Rﬁ}l andFy’ C R% such that M, 71 U F2) —75, 4 (M, F{ UF")

and (M, F; U Fo) = hnd (Mo, F U F)'). By lemma 8.6.1 there exist € Ue(M,F, U Fy), T €

Ue(My, Fy U F) andTy € W¢(Ms, F5 U FY") such thatl’ —%, T andT — 5y To.

Because by lemma 8.2.1€, € An. and by lemma 6.6.2] is typable in the type systeM®, soT €
CR?" by corollary 6.5. So, by lemma 2.2a, there exiBs= A7, such thafly L andT; =75, Ts.
Let F3 = |<T3,R§Z>|C and M3 = |T3|%7, then by lemma 8.2.2aF; C Rm andT3 e e (Mg,]-'g)
Hence, by lemma 8.6.XM:, 7' U F") —5, ; (Ms, F3) and (Mo, Fy' U Fy") —5; (M3, F3), |

f// f/// // f///
M, — Bnd Ms andMg 5 Bnd M. g

Proof(Lemma 8.9.1) Note thato C Rj}} We prove this statement by induction on the structure of
M.

o Let M € V\ {c} thenW®(M, @) = {c"(M) | n > 0} andR!,, = &, wheren > 0, by
lemma 5.3 and lemma 5.4.5.

e Let M = Az.N such thatr # c then¥¢(M,2) = {"(A\z.Qx = c(cz)]) | n > 0ANQ €
V¢(N,2)}. LetP € U¢(M,2), thenP = " (Az.Q[x := c(cx)]) such that, > 0 andQ@ €
U¢(N, @) By IH, Rg” = @ and by lemma 5.4.4, lemma 5.4.3 and lemma 5.7@.%7, = .

e LetM = MM, then\IJC(M, @) = {Cn(CQlQQ) ‘ n>0AQ € \IJC(Ml, @)/\QQ S ‘I’C(MQ,@)}.
Let P € UM, @), thenP = "(cQ1Q2) such thatn > 0, Q1 € V¢(M;,2) and@Qs €

Ue(Msy, o). By IH, Rg’z = Rg’; = @ and by lemma 5.3 and lemma 5.475@’7 =g
O

Proof(Lemma 8.9.2) We prove the statement by induction on the structuré/of

o Let M € V\ {c}, thenV¢(M, o) = {c"(M) | n > 0}. Let P € ¥¢(M, o) and@ € ¥¢(N, @),
thenP = ¢" (M) wheren > 0.

— Either M = z, thenP[z := Q] = ¢"(Q) and by lemma 8.2.1f and Iemmanf,?(Q) = .

— Or M # z,thenP[z := Q] = P and by lemma 1R = &
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e Let M = \y.M’' such thaty # ¢ thenV¢(M, o) = {"(A\y.P'ly :== c(ey)]) | n > 0N P €
(M, 2)}. LetP € UM, ) and@ € ¥°(N, ), thenP = ¢"(\y.P'[y := c(cy)]) where

/ c ! Bn _ Bn
n > 0andP’ € v¢(M', ). So,RP[x::Q] = Ry P/ =Qly—c(cy)])’ such thay ¢ fv(Q)U{z}.
By IH, R?"

Pllemq) = @ @nd by lemmas 5.4.4, 5.4.3 and 5.LV§.'3f,?

w=q) =@
o Let M = MM, thenU¢(M, ) = {¢"(cPP2) | n>0AP, € US(M;, @) APy € U(Ms, @)}
Let P € ¥¢(M, ) and@ € V¢(N, @) thenP = ¢"(cP, ) wheren > 0, P, € V¢(M;, @) and
_ RO

B _ b B _
P2 S ‘IJC(M% ) SO 7—‘7’P7[7$ } Rc"(cPl[;t Q| P2[z:=Q)])" By IH, RP?W =Q] — "VPx:=Q] T 9
and by lemmas 5.3 and 5.438?[35::@ = . .

Proof(Lemma 8.9.3) We prove the statement by induction on the structuré/of
e Let M €V \ {c} then nothing to prove since by lemma 58,/ = @.
e Let M = A\z.N such thatr # c.

— If M € RP"thenN = Nyx such thatr ¢ FV (Np) and by lemma 5.3R27 = {0} U {1.p |
p € RYY. Letp € RS then:

« Eitherp = 0, thenW¢(M,{p}) = {¢"(\x.P") | n > 0N P’ € U§(N,2)}. LetP €
Ue(M,{p}) thenP = ¢"(Az.P’) such thatn > 0 andP’ € ¥§(N,2). SOP' = cPjx
such thatP; € ¥¢(Ny, o). By lemmas 1 and 8. 2.1&2%7 = @. If P —g, Q then
by definition, there existg, such thatP —>5n Q. By lemma 5.2.13b and lemma 2.2.8,

Q = c"(Q"), po = 2".p, and\z. P’ —>ﬁ7, Q' such thatp, € RM p- By lemma 8.2.1b,
z & tv(cP}). By lemmas 5. 3RA ={0tU{lp|pe RP,} = {0}. Sop, = 0 and
Q' = cPj. By lemma 1RP, = @ and by lemma 5.4.5’;%” =g.

« Orp = 1.p/ such thaty’ € RY". Sowe(M,{p}) = {¢"(\&.P'[z := ¢(cx)]) | n >
OA P € U¢(N,{p'})}. LetP € ¥¢(M,{p}) thenP = ¢"(\x.P'[z := ¢(cx)]) such

thatn > 0 andP’ € U¢(N, {p'}). If P — 3, Q then there existg, such thatP ﬂﬁn Q.
By lemma 5.2.13b, lemma 2.2.8, lemma 5.4.3 and lemma 5.2i3a 2".1.p(, such

/

thatp(, € Rlﬂ;] and@ = ¢"(A\z.Q’[x := ¢(cx)]) such thatP’ @)ﬂn Q'. By IH, Rgf =
so by lemma 5.4.4, lemma 5.4.3 and lemma 525 = o.

— Else, by lemma 5.3]%%7 ={lp|pc€ R]ﬁvn}. Let p = 1.p’ such thatp’ € R]ﬁ\,”. So
Ue(M,{p}) = {c"(\a.P'[z := c(cz)]) | n > ONP" € ¥¢(N,{p’})}. LetP € U¢(M,{p})
thenP = ¢"(\x.P'[x := c(ca:)]) such thatn > 0 and P’ € U°(N, {p'}). If P —3, Q then
there existspy such thatP —>ﬁn Q. By lemma 5.2.13b, lemma 2.2.8, lemma 5.4.3 and
lemma 5.2.13ap, = 2".1.p(, such thaty, € Rg] and@ = " (A\z.Q'[z := ¢(cx)]) such that

P @)ﬂn Q'. By IH, Rﬁ” @, so by lemma 5.4.4, lemma 5.4.3 and lemma 522.%7 .

o Let M = My Ms.
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— Let M € R, thenM; = \z.Mj such thatr # ¢ and by lemma 5.37,%%7 ={0}U{lp |
pEeRYLIU{2p | p e R} Letp € R} then:

« Eitherp = 0 thenU¢(M,{p}) = {"(PAP2) | n > 0A P, € U§(M;,@) NPy €
Ue(My,2)}. Let P € W¢M,{p}) thenP = " (P, P,) such thatn > 0, P, €
VS (M, o) and Py € \IJC(MQ,Q). By lemma 1 and lemma 8.2.1’&1@? = ngz = 0.
Since P, € V§(M,,9), Pi = M. Pylx = c(cz)] such thatPo € UMy, o). If
P —pg, Q then by deflnltlon there existg) such thatP —>g,7 Q. By lemma 5.2.13b
and lemma 2.2.8) = ¢"(Q'), po = 2".p; and P, P, —>g,7 Q' such thatp) € R’?;?PQ.
By lemma 5.3,735"13 = {0}. Sop), = 0and@ = "(Pylz := c(cP,)]). Because
c(cPy) € U¢(Msy, @), by lemma 2 and lemma 5. 4R5’7 = g.

x Orp = Lp’ such thaty’ € RY. So,T¢(M,{p}) = {¢"(cPLP2) | n > 0AP €
Ue(My,{p'}) N Py € ¥°(Ms,2)}. Let P € W¢(M,{p}) thenP = ¢"(cP, P,) such
thatn > 0, P, € V¢(My,{p'}) and P, € ¥°(M>, o). By lemma 1,73?3’27 =o. If
P — g3, Q then by definition there exists such thatP @’ﬁn Q. By lemma5.2.13b and
lemma 2.2.8p, = 2". p6 such thatp € RfIZlPQ and@ = ¢"(Q') such thatP, P, ﬁgn
Q'. By lemma 5. SRCP P2 ={l2p|pc Rﬁn} Sop), = 1.2.py such thaty; € jo.

S0Q' = cQ1 P> andPy “%5, Q1. By IH, R} = @, s0 by lemma 5.4 8% =

x Orp = 2.’ such thaty’ € RY.. So,T¢(M,{p}) = {¢"(cPiP2) | n > O0AP €
U(My,{D}) N Py € U¢(My, p')}. Let P € U¢(M,{p}) thenP = ¢"(cP, P,) such
thatn > 0, P € U°(Mi,{@}) and P, € U°(My, p'). By lemma 1R} = @. If
P — 3, Q then by definition there existg such thatP Qﬁn Q. Bylemma 5.2.13b and
lemma 2.2.8p, = 2". pO such thatp), € RCP p, ANAQ = ¢"(Q') such thatP, @gn
Q. By lemma 5. 3ch p=12P1D€ R?JZ}. Sop|, = 2.p{j such thatp| € Rﬁz. So

Q' = cPiQ, andP; —>ﬁ,7 Q2. By IH, R} = @, so by lemma 5.4.5R¢) = &
— Let M ¢ RP", thenbylemmaS:{Qﬁ”_{lp\peR }U{Qp\peR s

« Eitherp = 1.p’ such tha’ € RY. S0,9¢(M,{p}) = {¢"(cP\Py) | n > 0A P €
Ue(My,{p'}) N Py € U(Ms,@)}. Let P € W¢(M,{p}) thenP = ¢"(cP, P») such
thatn > 0, P, € Y°(My,{p'}) and P, € VU¢(My, & ). By lemma 1,73?3’27 =o. If
P — 3, Q then by definition there exists such that? —>ﬁ7, Q. Bylemma 5.2.13b and
lemma 2.2.8p, = 2". pO such thatp), € Rf}llp2 and@ = ¢"(Q’) such thatP, P, p—%n
Q. By lemma 5. SRCP P2 ={12p|pec R’f{}. Sop), = 1.2.p{ such thap( jo.

S0Q' = cQ1 P> andPy 3, Q1. By IH, R} = 2, s0 by lemma 5.4.8R) = &

« Orp = 2.p' such thay’ € Ry7. S0, U¢(M,{p}) = {¢*(cPiP2) |n > 0AP €
Ue(My,{@}) N Py € U¢(My,p')}. Let P € W¢(M,{p}) thenP = ¢"(cP, P,) such
thatn > 0, P, € V¢(M;,{@}) and P, € VU¢(My, ’). By lemma 1,73?3’17 =o. If
P — 3, Q then by definition there exists such that? —>ﬁ7, Q. Bylemma 5.2.13b and
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lemma 2.2.8py = 2".p, such that € RfIZlPQ and@ = ¢"(Q') such thatP, P, ﬁﬁn
Q'. By lemma 5.3Rf1’llp2 ={2p|pc€ Rgg}. Sop(, = 2.p{ such thatp] € Rﬁz So

Q' = cP1Qs and P, p—omn Q2. By IH, Rg’; = @, so by lemma 5.4.8R%" — &.
|

Proof(Lemma8.9.4) Bylemma?2.2.8p € Rj}} By lemma 8.2.3, there exists a unique etC Rff},
such that for allN € ¥°(M, {p}), there existsN' € W°(M’, ') such thatN —g, N'. Note that
Ue(M,{p}) # @. LetN € U¢(M, {p}) then there exist&’ € w¢(M’', F') such thatN —g3, N’. By
lemma S,R]ﬁ\,”, = g, so\(N’,R]ﬁV”,HC = @ and by lemma 8.2.1hF" = @. Finally, by lemma 8.6.1,
(M {p}) —pna (M', ). O

Proof(Lemma 8.9.5) By definition —1C—75,- We prove that—>gng—>’{. Let M, M’ € A such that
¢ ¢ fv(M) andM —7, M'. We prove this claim by induction o/ —7, M'.

e LetM = M'thenitis done sinceM, F) —, , (M, F).

o Let M —j M" —g, M'. By IH, M —7 M". By definition there existp such thati/” 2,
M'. By lemma 2.2.3¢ ¢ fv(M"). By lemma 4,(M",{p}) —pna (M', @), SOM" —; M'.
HenceM —] M" —; M.

O

Proof(Lemma 8.10) LetM € A and letc € V such that & fv(M). LetM —7 My andM —7,
M. Then by lemma 5)/ —] M; andM —7 M,. We prove the statement by induction dh —7 M;.

o Let M = M. HenceM; —7 My and My —] M.

o Let M —i M{ —; M,. By IH, 3M;, M| —7 Mj and My —7 Mj;. We prove thaBM3, My —7
M3 andMj; —1 Ms, by induction onM{ —7 Mj.

— let M{ = M3, henceM; —; My andM; —7 M;.

— Let M| —7 MY —y M. By IH, IV My, —5 MY andMY —, M}'. By lemma 2.2.3,
c & tv(My). SinceMy — Mj;and My —, M5’, By lemma 8.7 3Ms3, My —; M3 and
Mé” —1 Mg.

g



