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Reducibility proofs in the λ-calculus

Fairouz Kamareddine, Vincent Rahli and J. B. Wells∗

Abstract. Reducibility, despite being quite mysterious and inflexible, has been used to prove a
number of properties of theλ-calculus and is well known to offer general proofs which canbe
applied to a number of instantiations. In this paper, we lookat two related but different results in
λ-calculi with intersection types.

1. We show that one such result (which aims at giving reducibility proofs of Church-Rosser,
standardisation and weak normalisation for the untypedλ-calculus) faces serious problems
which break the reducibility method. We provide a proposal to partially repair the method.

2. We consider a second result whose purpose is to use reducibility for typed terms in order to
show the Church-Rosser ofβ-developments for the untyped terms (and hence the Church-
Rosser ofβ-reduction). In this second result, strong normalisation is not needed. We extend
the second result to encompass bothβI- andβη-reduction rather than simplyβ-reduction.
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1. Introduction

Based on realisability semantics [Kle45], the reducibility method has been developed by Tait [Tai67] in
order to prove the normalisation of some functional theories. The basic idea of reducibility is to interpret
types by sets ofλ-terms which are closed under some properties. Girard [Gir72] developed the reducibil-
ity method further and used it to prove the strong normalisation of a typedλ-calculus by introducing the
candidates of reducibility [Gal90]. Statman [Sta85], Koletsos [Kol85], and Mitchell [Mit90, Mit96] also
used reducibility to prove the Church-Rosser property (also called confluence) of the simply typedλ-
calculus. Furthermore, Krivine [Kri90] uses reducibilityto prove the strong normalisation of systemD,
an intersection type system [CDC80, CDCV80, CDCV81]. Moreover, Gallier [Gal97, Gal98] uses some
aspects of Koletsos’s method to prove a number of results such as the strong normalisation of theλ-terms
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that are typable in systems likeD orDΩ [Kri90]. In particular, Gallier states some conditions a property
needs to satisfy in order to be enjoyed by some typable terms under some restrictions.

Similarly, Ghilezan and Likavec [GL02] state some conditions a property has to satisfy in order to
hold for all λ-terms typable under some type restrictions in a type systemclose toDΩ. Furthermore,
they state a condition that a property has to satisfy in orderto step from the statement “aλ-term typable
under some restrictions on typeshas the property” to the statement “aλ-termof the untypedλ-calculus
has the property”. If successful, the method of [GL02] wouldprovide an attractive way for establishing
properties such as Church-Rosser for all the untypedλ-terms, by simply showing easier conditions on
typed terms. However, we show in this paper that Ghilezan andLikavec’s method fails in both the typed
and the untyped settings. We outline the obstacle we faced when trying to repair the result for the typed
setting and explain how far we have been able to to repair it. However, the result for the untyped setting
seems unrepairable. Ghilezan and Likavec also present a weaker version of their method for a type
system similar to systemD, which allows one to use reducibility to prove properties ofthe terms typable
by this system, namely the strongly normalisable terms. As far as we know, this portion of their result is
correct. (They do not actually apply this weaker method to any sets of terms.)

In addition to the method proposed by Ghilezan and Likavec (which does not actually work for the
full untyped λ-calculus), other steps of establishing properties like Church-Rosser for typedλ-terms
and concluding the properties for all the untypedλ-terms have been successfully exploited in the lit-
erature. Koletsos and Stavrinos [KS08] use reducibility tostate that theλ-terms that are typable in
systemD satisfies the Church-Rosser property. Using this result together with a method based onβ-
developments [Klo80, Kri90], they show thatβ-developments are Church-Rosser and this in turn will
imply the confluence of the untypedλ-calculus. Although Klop [Klo80] proves the confluence ofβ-
developments [BBKV76], his proof is based on strong normalisation whereas the Koletsos and Stavri-
nos’s proof only uses an embedding ofβ-developments in the reduction of typableλ-terms. In this paper,
we apply Koletsos and Stavrinos’s method toβI-reduction and then generalise it toβη-reduction.

In section 2 we introduce the formal machinery and establishsome needed lemmas. In section 3
we present the reducibility method used by Ghilezan and Likavec and show that it fails at a number of
important propositions which makes it inapplicable to the full untypedλ-calculus, although a version of
their method works for the strongly normalisable terms. We give counterexamples where all the con-
ditions stated in Ghilezan and Likavec’s paper are satisfied, yet the claimed property does not hold. In
section 4 we indicate the limits of the method, show how theselimits affect its salvation and then we
partially salvage it so that it can be correctly used to establish confluence, standardisation and weak head
normal forms but only for restricted sets of lambda terms andtypes (that we believe to be equal to the
set of strongly normalisable terms). We point out some linksbetween the work of [GL02] and that of
Gallier [Gal98]. In section 5, we give a precise formalisation of β-developments where we formally
deal with occurrences of redexes using paths and we adapt definitions from [Kri90] to allowβI- and
βη-reduction. In section 6, we introduce the reducibility semantics for bothβI- andβη-reduction and
establish its soundness. Then, we show that all typable terms satisfy the Church-Rosser property. In
section 7 we adapt the Church-Rosser proof of Koletsos and Stavrinos [KS08] toβI-reduction. In sec-
tion 8 we non-trivially generalise Koletsos and Stavrinos’s method to handleβη-reduction. We formalise
βη-residuals andβη-developments in section 8.1. Then, we compare our notion ofβη-residuals with
those of Curry and Feys [CF58] and Klop [Klo80] in section 8.2, establishing that we allow less residu-
als than Klop but we believe more residuals than Curry and Feys. Finally, we establish in section 8.3 the
confluence ofβη-developments and hence ofβη-reduction. We conclude in section 9.
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2. The Formal Machinery

This section provides some known formal machinery and introduces new definitions and lemmas that
are necessary for the paper. Letn,m be metavariables which range over the set of natural numbersN =
{0, 1, 2, . . . }. We take as convention that if a metavariablev ranges over a sets then the metavariables
vi such thati ≥ 0 and the metavariablesv′, v′′, etc. also range overs.

A binary relation is a set of pairs. Letrel range over binary relations. Letdom(rel) = {x | 〈x, y〉 ∈
rel} andran(rel ) = {y | 〈x, y〉 ∈ rel}. A function is a binary relationfun such that if{〈x, y〉, 〈x, z〉} ⊆
fun theny = z. Let fun range over functions. Lets→ s′ = {fun | dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}.

Givenn setss1, . . . , sn, wheren ≥ 2, s1 × · · · × sn stands for the set of all the tuples built on the
setss1, . . . , sn. If x ∈ s1 × · · · × sn, thenx = 〈x1, . . . , xn〉 such thatxi ∈ si for all i ∈ {1, . . . , n}.

2.1. Familiar background onλ-calculus

This section consists of one long definition of some familiar(mostly standard) concepts of theλ-calculus
and one lemma which deals with the shape of reductions.

Definition 2.1. 1. letx, y, z, etc. range overV, a countable infinite set ofλ-term variables. The set
of terms of theλ-calculus is defined by:

M ∈ Λ ::= x | (λx.M) | (M1M2)

We letM,N,P,Q, etc. range overΛ. We assume the usual definition of subterms: we writeN ⊆
M if N is a subterm ofM . We also assume the usual convention for parenthesis and omit these
when no confusion arises. In particular, we writeM N1...Nn instead of(...(M N1) N2...Nn−1) Nn.

We take terms moduloα-conversion and use the Barendregt convention (BC) where the names of
the bound variables differ from the names of the free ones. When two termsM andN are equal
(moduloα), we writeM = N . We writefv(M) for the set of the free variables of termM .

2. Forn ≥ 0, defineMn(N), by induction onn by: M0(N) = N andMn+1(N) = M(Mn(N)).

3. A path in a termM is a pointer to a subterm ofM . The set of paths is defined as follows:

p ∈ Path ::= 0 | 1.p | 2.p

We defineM |p by: M |0 = M , (λx.M)|1.p = M |p , (MN)|1.p = M |p , and(MN)|2.p = N |p.
We define2n.p by induction onn ≥ 0: 20.p = p and2n+1.p = 2n.2.p.

4. The setΛI ⊂ Λ, of terms of theλI-calculus is defined by:

• If x ∈ V thenx ∈ ΛI.

• If M ∈ ΛI andx ∈ fv(M) thenλx.M ∈ ΛI.

• If M,N ∈ ΛI thenMN ∈ ΛI.

5. The substitutionM [x := N ] of N for all free occurrences ofx in M and the simultaneous substi-
tutionM [xi := Ni, . . . , xn := Nn] for 1 ≤ i ≤ n, of Ni for all free occurrences ofxi in M are
defined as usual.
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6. We define the following four common relations:

• Beta ::= 〈(λx.M)N,M [x := N ]〉.

• BetaI ::= 〈(λx.M)N,M [x := N ]〉, wherex ∈ fv(M).

• Eta ::= 〈λx.Mx,M〉, wherex 6∈ fv(M).

• BetaEta = Beta ∪ Eta.

Let 〈s, r〉 ∈ {〈Beta, β〉, 〈BetaI, βI〉, 〈Eta, η〉, 〈BetaEta, βη〉}.

We defineRr to be{L | 〈L,R〉 ∈ s}. If 〈L,R〉 ∈ s then we callL ar-redex andR ar-contractum
of L (or aL r-contractum). We define the ternary relation→r as follows:

•M
0
→r M

′ if 〈M,M ′〉 ∈ s • λx.M
1.p
→r λx.M

′ if M
p

→r M
′

•MN
1.p
→r M

′N if M
p

→r M
′ • NM

2.p
→r NM

′ if M
p

→r M
′

We define the binary relation→r (for simplicity we use the same name as for the ternary relation)
as follows:M →r M

′ if there existsp such thatM
p

→r M
′. We defineRr

M = {p |M |p ∈ Rr}.

7. LetM ∈ Λ andF ⊆ Λ. F ↾ M = {N | N ∈ F ∧N ⊆M}.

8. Let →hβ be the set of pairs of the form〈λx1. . . . xn.(λx.M0)M1 . . .Mm, λx1. . . . xn.M0[x :=
M1]M2 . . .Mm〉 wheren ≥ 0 andm ≥ 1.

If 〈L,R〉 ∈→hβ then L = λx1. . . . xn.(λx.M0)M1 . . .Mm wheren ≥ 0 andm ≥ 1 and
(λx.M0)M1 is called theβ-head redex ofL. We define the binary relation→iβ as→β \ →hβ.

9. Let r ∈ {→β ,→η,→βη,→βI ,→hβ,→iβ}. We use→∗
r to denote the reflexive transitive closure

of →r. We let≃r denote the equivalence relation induced by→r. If the r-reduction fromM toN
is in k steps, we writeM →k

r N .

10. Let r ∈ {βI, βη} and n ≥ 0. A term (λx.M ′)N ′
0N

′
1 . . . N

′
n is a directr-reduct of a term

(λx.M)N0N1 . . . Nn iff M →∗
r M

′ and∀i ∈ {0, . . . , n}. Ni →
∗
r N

′
i .

11. The setNF (of β-normal forms) andWN (of weaklyβ-normalisable terms) are defined by:

• NF = {λx1. . . . λxn.x0N1 . . . Nm | n,m ≥ 0, N1, . . . , Nm ∈ NF}.

• WN = {M ∈ Λ | ∃N ∈ NF,M →∗
β N}.

12. Letr ∈ {β, βI, βη}. We say thatM has the Church-Rosser property forr (hasr-CR) if whenever
M →∗

r M1 andM →∗
r M2 then there is anM3 such thatM1 →∗

r M3 andM2 →∗
r M3. We define:

• CRr = {M |M hasr-CR}.

• CRr
0 = {xM1 . . .Mn | n ≥ 0 ∧ x ∈ V ∧ (∀i ∈ {1, . . . , n},Mi ∈ CRr)}.

• We useCR to denoteCRβ andCR0 to denoteCRβ
0 .

• A term is a weak head normal form if it is aλ-abstraction (a term of the formλx.M ) or
if it starts with a variable (a term of the formxM1 · · ·Mn). A term is weakly head nor-
malising if it reduces to a weak head normal form. LetWr = {M ∈ Λ | ∃n ≥ 0,∃x ∈
V,∃P,P1, . . . , Pn ∈ Λ,M →∗

r λx.P orM →∗
r xP1 . . . Pn}. We useW to denoteWβ.
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13. We say thatM has the standardisation property if wheneverM →∗
β N then there is anM ′ such

thatM →∗
h M

′ andM ′ →∗
i N . Let S = {M ∈ Λ |M has the standardisation property}.

The next lemma deals with the shape of reductions.

Lemma 2.2. 1. M
p

→βη M
′ iff (M

p

→β M
′ orM

p

→η M
′).

2. If x ∈ fv(M1) thenfv((λx.M1)M2) = fv(M1[x := M2]).
If (λx.M1)M2 ∈ ΛI thenM1[x := M2] ∈ ΛI.

3. If M →∗
βη M

′ thenfv(M ′) ⊆ fv(M).

4. If M →∗
βI M

′ thenfv(M) = fv(M ′) and ifM ∈ ΛI thenM ′ ∈ ΛI.

5. λx.M
p

→βη P iff ( p = 1.p′, P = λx.M ′ andM
p
′

→βη M
′) or (p = 0,M = Px andx 6∈ fv(P )).

6. If r ∈ {βI, βη}, n ≥ 0, P is not a directr-reduct ofN = (λx.M)N0 . . . Nn andN →k
r P , then:

(a) k ≥ 1, and ifk = 1 thenP = M [x := N0]N1 . . . Nn.

(b) There exists a directr-reduct(λx.M ′)N ′
0N

′
1 . . . N

′
n of (λx.M)N0 . . . Nn such that

M ′[x := N ′
0]N

′
1 . . . N

′
n →∗

r P .

7. Let r ∈ {βI, βη}, n ≥ 0 and(λx.M)N0N1 . . . Nn →∗
r P . There existsP ′ such thatP →∗

r P
′

and if (r = βI andx ∈ fv(M)) or r = βη thenM [x := N0]N1 . . . Nn →∗
r P

′.

8. There existsM ′ such thatM
p

→r M
′ iff p ∈ Rr

M .

9. If M
p

→r M1 andM
p

→r M2 thenM1 = M2.

Proof: 1) By induction onp.

2) By induction on the structure ofM1.

3) (resp. 4)) By induction on the length of the reductionM →∗
βη M

′ (resp.M →∗
βI M

′).

5) ⇒) Let λx.M
p

→βη P . We prove the result by case onp. Eitherp = 0 andM = Px such that

x 6∈ fv(P ). Or p = 1.p′, P = λx.M ′ andM
p
′

→βη M
′.

⇐) If P = λx.M ′ andM →βη pM ′. So,λx.M
1.p
→βη P andλx.M →βη P . If M = Px andx 6∈ fvP

thenλx.M = λx.Px
0
→βη P , soλx.M →βη P .

6a) If k = 0 thenP = (λx.M)N1N1 . . . Nn is a directr-reduct of(λx.M)N0N1 . . . Nn, absurd. So
k ≥ 1. Assumek = 1, we proveP = M [x := N0]N1 . . . Nn by induction onn ≥ 0.

6b) By 6a,k ≥ 1. We prove the statement by induction onk ≥ 1.

7) If P is a directr-reduct of(λx.M)N0 . . . Nn thenP = (λx.M ′)N ′
0 . . . N

′
n such thatM →∗

r M
′ and

∀i ∈ {0, . . . , n}, Ni →∗
r N

′
i . SoP →r M

′[x := N ′
0]N

′
1 . . . N

′
n (if r = βI, note thatx ∈ fv(M ′) by

lemma 2.2.4) andM [x := N0]N1 . . . Nn →∗
r M

′[x := N ′
0]N

′
1 . . . N

′
n . If P is not a directr-reduct

of (λx.M)N0 . . . Nn then by lemma 6.6b, there exists a directr-reduct,(λx.M ′)N ′
0 . . . N

′
n, such that

M →∗
r M

′ and∀i ∈ {0, . . . , n}, Ni →
∗
r N

′
i , of (λx.M)N0 . . . Nn. We haveM [x := N0]N1 . . . Nn →∗

r

M ′[x := N ′
0]N

′
1 . . . N

′
n →∗

r P .

8) and 9) By induction on the structure ofp. ⊓⊔
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(ref ) τ ≤ τ

(tr) (τ1 ≤ τ2 ∧ τ2 ≤ τ3) ⇒ τ1 ≤ τ3

(inL) τ1 ∩ τ2 ≤ τ1

(inR) τ1 ∩ τ2 ≤ τ2

(→ -∩) (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3)

(mon′) (τ1 ≤ τ2 ∧ τ1 ≤ τ3) ⇒ τ1 ≤ τ2 ∩ τ3

(mon) (τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2) ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ
′
2

(→ -η) (τ1 ≤ τ ′1 ∧ τ
′
2 ≤ τ2) ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2

(Ω) τ ≤ Ω

(Ω′-lazy) τ → Ω ≤ Ω → Ω

(idem) τ ≤ τ ∩ τ

Figure 1. The ordering axioms on types

2.2. Background on Types and Type Systems

This section provides the necessary background for the typesystems used in this paper. The type systems
λ∩1 andλ∩2 are used in section 3, and the type systemsD andDI are used in section 6.

Definition 2.3. Let i ∈ {1, 2}.

1. LetA be a countably infinite set of type variables, letα range overA and letΩ 6∈ A be a constant
type. The sets of typesType1 ⊂ Type2 are defined as follows:

σ ∈ Type1 ::= α | σ1 → σ2 | σ1 ∩ σ2

τ ∈ Type2 ::= α | τ1 → τ2 | τ1 ∩ τ2 | Ω

2. Let Γ ∈ B1 = {{x1 : σ1, . . . , xn : σn} | ∀i, j ∈ {1, . . . , n}. xi = xj ⇒ σi = σj} and
Γ,∆ ∈ B2 = {{x1 : τ1, . . . , xn : τn} | ∀i, j ∈ {1, . . . , n}. xi = xj ⇒ τi = τj}.

Let dom(Γ) = {x | x : σ ∈ Γ}.

Whendom(Γ1) ∩ dom(Γ2) = ∅, we writeΓ1,Γ2 for Γ1 ∪ Γ2. We writeΓ, x : σ for Γ, {x : σ}
andx : σ for {x : σ}. We denoteΓ = xm : σm, . . . , xn : σn wheren ≥ m ≥ 0, by (xi : σi)

m
n . If

m = 1, we simply denoteΓ by (xi : σi)n.

If Γ1 = (xi : τi)n, (yi : τ ′′i )p andΓ2 = (xi : τ ′i)n, (zi : τ ′′′i )q wherex1, . . . , xn are the only shared
variables, then letΓ1 ⊓ Γ2 = (xi : τi ∩ τ

′
i)n, (yi : τ ′′i )p, (zi : τ ′′′i )q.

LetX ⊆ V. We defineΓ ↾ X = Γ′ ⊆ Γ wheredom(Γ′) = dom(Γ) ∩X.

Let⊑ be the reflexive transitive closure of the axiomsτ1 ∩ τ2 ⊑ τ1 andτ1 ∩ τ2 ⊑ τ2. If Γ = (xi :
τi)n andΓ′ = (xi : τ ′i)n thenΓ ⊑ Γ′ iff for all i ∈ {1, . . . , n}, τi ⊑ τ ′i .

3. • – Let∇1 = {(ref), (tr), (inL), (inR), (→ -∩), (mon′), (mon), (→ -η)}.
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Γ, x : τ ⊢ x : τ
(ax)

x : τ ⊢ x : τ
(axI)

Γ ⊢M : τ1 → τ2 Γ ⊢ N : τ1
Γ ⊢MN : τ2

(→E)
Γ1 ⊢M : τ1 → τ2 Γ2 ⊢ N : τ1

Γ1 ⊓ Γ2 ⊢MN : τ2
(→EI )

Γ, x : τ1 ⊢M : τ2
Γ ⊢ λx.M : τ1 → τ2

(→I)
Γ ⊢M : τ1 Γ ⊢M : τ2

Γ ⊢M : τ1 ∩ τ2
(∩I)

Γ ⊢M : τ1 ∩ τ2
Γ ⊢M : τ1

(∩E1)
Γ ⊢M : τ1 ∩ τ2

Γ ⊢M : τ2
(∩E2)

Γ ⊢M : τ1 τ1 ≤∇ τ2
Γ ⊢M : τ2

(≤∇)
Γ ⊢M : Ω

(Ω)

Figure 2. The typing rules

– Let∇2 = ∇1 ∪ {(Ω), (Ω′ − lazy)}.

– Let∇D = {(inL), (inR)}.

– Let∇DI
= ∇D ∪ {(idem)}.

• – Let Type∇1 , Type∇D , andType∇DI beType1.

– Let Type∇2 beType2.

• – Let∇ be a set of axioms from Figure 1. The relation≤∇ is defined on typesType∇ and
axioms∇. We use≤1 instead of≤∇1 and≤2 instead of≤∇2.

– The equivalence relation is defined by:τ1 ∼∇ τ2 ⇐⇒ τ1 ≤∇ τ2 ∧ τ2 ≤∇ τ1. We use
∼1 instead of∼∇1 and∼2 instead of∼∇2.

• – Let the type systemλ∩1 be the type derivability relation⊢1 between the elements of
B1, Λ, andType1 generated using the following typing rules of Figure 2: (ax), (→E),
(→I), (∩I) and(≤1)).

– Let the type systemλ∩2 be the type derivability relation⊢2 between the elements ofB2,
Λ, andType2 generated using the following typing rules of Figure 2: (ax), (→E), (→I ),
(∩I ), (≤2) and (Ω).

– Let the type systemD be the type derivability relation⊢βη between the elements ofB1,
Λ, andType1 generated using the following typing rules of Figure 2: (ax), (→E), (→I ),
(∩I ) , (∩E1) and (∩E2). Note that systemD does not use subtyping.

– Let the type systemDI be the type derivability relation⊢βI between the elements of
B1, Λ, andType1 generated using the following typing rule of Figure 2: (axI ), (→EI ),
(→I ), (∩I) , (∩E1) and (∩E2). Moreover, in this type system, we assume thatσ∩σ = σ.
Note that systemDI does not use subtyping.
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3. Problems of Ghilezan and Likavec’s reducibility method [GL02]

This section introduces the reducibility method of [GL02] and shows exactly where it fails. Throughout,
we let� = λx.xx.

Definition 3.1. (Type interpretations and the reducibility method of [GL02])
Let i ∈ {1, 2} andP range over2Λ.

1. The type interpretationJ−Ki
− ∈ Typei → 2Λ → 2Λ is defined by:

• JαKi
P = P.

• Jτ1 ∩ τ2K
i
P = Jτ1K

i
P ∩ Jτ2K

i
P .

• JΩK2
P = Λ.

• Jσ1 → σ2K
1
P = {M | ∀N ∈ Jσ1K

1
P .MN ∈ Jσ2K

1
P}.

• Jτ1 → τ2K
2
P = {M ∈ P | ∀N ∈ Jτ1K

2
P ,MN ∈ Jτ2K

2
P}.

2. A valuation of term variables inΛ is a functionν ∈ V → Λ. We writev(x := M) for the function
v′ wherev′(x) = M andv′(y) = v(y) if y 6= x.

3. letν be a valuation of term variables inΛ. Then the term interpretationJ−Kν ∈ Λ → Λ is defined
as follows:JMKν = M [x1 := ν(x1), . . . , xn := ν(xn)], wherefv(()M) = {x1, . . . , xn}.

4. • ν |=i
P M : τ iff JMKν ∈ JτKi

P .

• ν |=i
P Γ iff ∀(x : τ) ∈ Γ. ν(x) ∈ JτKi

P .

• Γ |=i
P M : τ iff ∀ν ∈ V → Λ. ν |=i

P Γ ⇒ ν |=i
P M : τ .

5. Let X ⊆ Λ. We recall here the variable, saturation, closure, and invariance under abstraction
predicates defined by Ghilezan and Likavec (see Definitions 3.6 and 3.15 of [GL02]):

• VAR1(P,X ) ⇐⇒ VAR2(P,X ) ⇐⇒ V ⊆ X .

• SAT1(P,X ) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. ∀N ∈ P. M [x := N ] ∈ X ⇒ (λx.M)N ∈ X ).

• SAT2(P,X ) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. M [x := N ] ∈ X ⇒ (λx.M)N ∈ X ).

• CLO1(P,X ) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. Mx ∈ X ⇒M ∈ P).

• CLO2(P,X ) ⇐⇒ CLO(P,X ) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. M ∈ X ⇒ λx.M ∈ P).

• VAR(P,X ) ⇐⇒ (∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P. xN1 . . . Nn ∈ X ).

• SAT(P,X ) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P.
M [x := N ]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X ).

• INV(P) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. M ∈ P ⇐⇒ λx.M ∈ P).

ForR ∈ {VARi,SATi,CLOi}, letR(P) ⇐⇒ ∀τ ∈ Typei.R(P, JτKi
P).

Lemma 3.2. (Basic lemmas proved in [GL02] and needed for thissection)
1. (a) JMKν(x:=N) ≡ JMKν(x:=x)[x := N ].

(b) JMNKν ≡ JMKνJNKν .
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(c) Jλx.MKν ≡ λx.JMKν(x:=x).

2. If VAR1(P) andCLO1(P) then for allσ ∈ Type1, JσK1
P ⊆ P.

3. If VAR1(P), CLO1(P), SAT1(P), andΓ ⊢1 M : σ thenΓ |=1
P M : σ.

4. If VAR1(P), CLO1(P), SAT1(P), andΓ ⊢1 M : σ thenM ∈ P.

5. For allτ ∈ Type2, if τ 6∼2 Ω thenJτK2
P ⊆ P.

6. If τ1 ≤2 τ2 thenJτ1K
2
P ⊆ Jτ2K

2
P .

7. If VAR2(P), SAT2(P) andCLO2(P) thenΓ ⊢2 M : τ impliesΓ |=2
P M : τ .

8. If VAR2(P), SAT2(P) andCLO2(P) then for allτ ∈ Type2, if τ 6∼2 Ω andΓ ⊢2 M : τ then
M ∈ P.

9. CLO(P,P) ⇒ ∀τ ∈ Type2. τ 6∼2 Ω ⇒ CLO2(P, JτK2
P).

Note that lemma 3.2.3 states thatλ∩1 is sound w.r.t. the|=1
P interpretation, and lemma 3.2.7 states that

λ∩2 is sound w.r.t. the|=2
P interpretation. Based on these soundness lemmas, Ghilezanand Likavec

prove lemmas 3.2.4 and 3.2.8 which are key results in their reducibility method.
Ghilezan and Likavec (see Remark 3.9 of [GL02]) note that ifCLO1(P), VAR1(P) andSAT1(P)

are true thenSNβ ⊆ P (note that this result does not make any use of the type systemλ∩1).
Furthermore, given the notions and statements of definition3.1 and lemma 3.2, [GL02] states that

the predicatesVARi(P), SATi(P) andCLOi(P) for i ∈ {1, 2} are sufficient to develop the reducibil-
ity method. However, in order to prove these predicates (forvarious instances ofP), [GL02] states
that one needs stronger and easier to prove induction hypotheses. Therefore, Ghilezan and Likavec in-
troduce the following conditions:VAR(P,P), SAT(P,P) andCLO(P,P) (see Definition 3.1 above
or Definition 3.15 of [GL02]). These conditions imply restrictions ofVAR2(P,X ), SAT2(P,X ), and
CLO2(P,X ). However, as we show below, this attempt fails. (They do not develop the necessary
stronger induction hypotheses for the case wheni = 1, andλ∩1 can only type strongly normalisable
terms, so we will not consider the casei = 1 further.)

Our definition 3.4 and lemma 3.5 given below are necessary to establish the results of this section (the
failure of the method of [GL02]). In definition 3.4, we use thefollowing fact that the defined preorder
relation is commutative, associative and idempotent:

Remark 3.3. Commutativity, associativity and idempotence w.r.t. the preorder relation are given by the
axioms(inL), (inR), (mon′), (tr) and(ref) listed in figure 1.

Proof: • Commutativity: by(inR), τ1∩τ2 ≤2 τ2 and by(inL), τ1∩τ2 ≤2 τ1 so by(mon′), τ1∩τ2 ≤2

τ2 ∩ τ1. By (inL), τ2 ∩ τ1 ≤2 τ2 and by(inR), τ2 ∩ τ1 ≤2 τ1 so by(mon′), τ2 ∩ τ1 ≤2 τ1 ∩ τ2. Hence,
τ1 ∩ τ2 ∼2 τ2 ∩ τ1.

• Associativity: by(inR), (τ1 ∩ τ2) ∩ τ3 ≤2 τ3, by (inL), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 ∩ τ2, by (inR),
τ1 ∩ τ2 ≤2 τ2, by (inL), τ1 ∩ τ2 ≤2 τ1, so by(tr), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 and(τ1 ∩ τ2) ∩ τ3 ≤2 τ2. By
(mon′), (τ1 ∩ τ2) ∩ τ3 ≤2 τ2 ∩ τ3 and again by(mon′), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 ∩ (τ2 ∩ τ3). By (inL),
τ1∩(τ2∩τ3) ≤

2 τ1, by (inR), τ1∩(τ2∩τ3) ≤
2 τ2∩τ3, by (inL), τ2∩τ3 ≤2 τ2, by (inR), τ2∩τ3 ≤2 τ3,
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so by(tr), τ1 ∩ (τ2 ∩ τ3) ≤2 τ2 andτ1 ∩ (τ2 ∩ τ3) ≤2 τ3. By (mon′), τ1 ∩ (τ2 ∩ τ3) ≤2 τ1 ∩ τ2 and
again by(mon′), τ1 ∩ (τ2 ∩ τ3) ≤

2 (τ1 ∩ τ2) ∩ τ3. Hence,(τ1 ∩ τ2) ∩ τ3 ∼2 τ1 ∩ (τ2 ∩ τ3).

• Idempotence: by(inL), τ ∩ τ ≤2 τ and by(ref) and(mon′), τ ≤2 τ ∩ τ , hence,τ ∼2 τ ∩ τ . ⊓⊔

Definition 3.4. Let to ∈ TypeOmega ::= Ω | to1 ∩ to2.
Let inInter(τ, τ ′) be true iffτ = τ ′ or τ ′ = τ1 ∩ τ2 and (inInter(τ, τ1) or inInter(τ, τ2)).
By commutativity, associativity, and reflexivity we writeτ1 ∩ · · · ∩ τn, wheren ≥ 1, instead ofτ iff

the following condition holds:inInter(τ ′, τ) iff there existsi ∈ {1, . . . , n} such thatτ ′ = τi.

Lemma 3.5. 1. If τ1 ≤2 τ2 andτ1 ∈ TypeOmega thenτ2 ∈ TypeOmega.

2. If τ ≤2 τ ′ andτ ′ 6∼2 Ω thenτ 6∼2 Ω.

3. If τ ∩ τ ′ 6∼2 Ω thenτ 6∼2 Ω or τ ′ 6∼2 Ω.

4. If τ ′ ∼2 Ω thenτ ≤2 τ ∩ τ ′.

5. If τ ≤2 τ ′ and inInter(τ1 → τ2, τ
′) andτ2 6∼2 Ω then there existn ≥ 1 andτ ′1, τ

′′
1 , . . . , τ

′
n, τ

′′
n

such that for alli ∈ {1, . . . , n}, inInter(τ ′i → τ ′′i , τ) andτ ′′i 6∼2 Ω andτ ′′1 ∩ · · · ∩ τ ′′n ≤2 τ2.
Moreover, ifτ1 ∼2 Ω then for alli ∈ {1, . . . , n}, τ ′i ∼

2 Ω.

6. For allτ, τ ′ ∈ Type2, α→ Ω → τ ′ 6∼2 Ω → τ .

Proof: 1) By induction on the size of the derivation ofτ1 ≤2 τ2 and then by case on the last derivation
rule.

2) Let τ ≤2 τ ′. Assumeτ ∼2 Ω. ThenΩ ≤2 τ and by transitivityΩ ≤2 τ ′. Moreover, by (Ω), τ ′ ≤2 Ω.
Soτ ′ ∼2 Ω.

3) By (Ω), τ ∩ τ ′ ≤2 Ω. Let τ ∼2 Ω andτ ′ ∼2 Ω, soΩ ≤2 τ andΩ ≤2 τ ′ and by(mon′), Ω ≤2 τ ∩ τ ′.

4) By (Ω), τ ≤2 Ω and by transitivity,τ ≤2 τ ′ becauseΩ ≤2 τ ′. By (ref), τ ≤2 τ and by(mon′),
τ ≤2 τ ∩ τ ′.

5) By induction on the size of the derivation ofτ ≤2 τ ′ and then by case on the last derivation rule.

6) Let τ ′ ∈ Type2. First we prove thatΩ → τ ′ 6∼2 Ω. AssumeΩ → τ ′ ∼2 Ω thenΩ ≤2 Ω → τ ′. By
lemma 3.5.1,Ω → τ ′ ∈ TypeOmega which is false. We distinguish the following two cases:

• Let τ ∼2 Ω. Assumeα → Ω → τ ′ ∼2 Ω → τ thenΩ → τ ≤2 α → Ω → τ ′. By lemma 3.5.5,
τ ≤2 Ω → τ ′ which is false.

• Let τ 6∼2 Ω. Assumeα → Ω → τ ′ ∼2 Ω → τ thenα → Ω → τ ′ ≤2 Ω → τ . By lemma 3.5.5,
α ∼2 Ω becauseΩ ∼2 Ω, which is false.

⊓⊔

The next lemma establishes the failure of a basic lemma of [GL02].

Lemma 3.6. (Lemma 3.16 of [GL02] does not hold)
The following lemma of [GL02] does not hold:
VAR(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ⇒ VAR(P, JτK2

P)).
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Proof: To show that the above statement is false, we provide a counterexample. First, note that
VAR(P, JτK2

P ) implies thatV ⊆ JτK2
P . Letx ∈ V, τ beα→ Ω → α andP beWN. By lemma 3.5.6, for

all τ ′ ∈ Type2, τ 6∼2 Ω → τ ′. Also VAR(P,P) is trivially true. Now, assumeVAR(P, JτK2
P). By defi-

nition, x ∈ JτK2
P . Then,x ∈ Jα → Ω → αK2

P = JτK2
P . Becausex ∈ P = JαK2

P and�� ∈ Λ = JΩK2
P

thenxx(��) ∈ JαK2
P = P. Butxx(��) ∈ P is false, soVAR(P, JτK2

P) is false. ⊓⊔

The proof for Lemma 3.18 of [GL02] does not work (because of a wrong use of an induction hypoth-
esis) but we have not yet proved or disproved that lemma:

Remark 3.7. (It is not clear that lemma 3.18 of [GL02] holds)
It is not clear whether the following lemma of [GL02] holds:
SAT(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ⇒ SAT(P, JτK2

P )).

The proof given in [GL02] does not go through and we have neither been able to prove nor disprove
this lemma. It remains that this lemma is not yet proved and hence cannot be used in further proofs.

Furthermore, Ghilezan and Likavec state a proposition (Proposition 3.21) which is the reducibility
method for typable terms. However, the proof of that proposition depends on two problematic lemmas
(lemma 3.16 which we showed to fail in our lemma 3.6, and lemma3.18 which by remark 3.7 has not
been proved). The following lemma is needed to prove that Proposition 3.21 of [GL02] does not hold:

Lemma 3.8. VAR(WN,WN), CLO(WN,WN), INV(WN) andSAT(WN,WN) hold.

Proof: • VAR(WN,WN) holds because∀x ∈ V, ∀n ≥ 0, ∀N1, . . . , Nn ∈ WN, xN1 . . . Nn ∈ WN.

• CLO(WN,WN) holds because if∃n,m ≥ 0, ∃x0 ∈ V, ∃N1, . . . , Nm ∈ NF such thatM →∗
β

λx1. . . . λxn.x0N1 . . . Nm then∀y ∈ V, λy.M →∗
β λy.λx1. . . . λxn.x0N1 . . . Nm ∈ NF.

• INV(WN) holds because if∃n,m ≥ 0, ∃x0 ∈ V, ∃N1, . . . , Nm ∈ NF such thatλx.M →∗
β

λx1. . . . λxn.x0N1 . . . Nm thenx1 = x andM →∗
β λx2. . . . λxn.x0N1 . . . Nm.

• SAT(WN,WN) holds because since ifM [x := N ]N1 . . . Nn ∈ WN wheren ≥ 0 andN1, . . . , Nn ∈
WN then∃P ∈ NF such thatM [x := N ]N1 . . . Nn →∗

β P . Hence,(λx.M)NN1 . . . Nn →β M [x :=
N ]N1 . . . Nn →∗

β P . ⊓⊔

Lemma 3.9. (Proposition 3.21 of [GL02] does not hold)
AssumeVAR(P,P), SAT(P,P) andCLO(P,P). The following proposition of [GL02] does not hold:
∀τ ∈ Type2. (τ 6∼2 Ω ∧ ∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ∧ Γ ⊢2 M : τ ⇒M ∈ P).

Proof: Let P beWN. Note thatλy.λz.�� 6∈ WN and∅ ⊢2 λy.λz.�� : α → Ω → Ω is derivable,
whereα → Ω → Ω 6∼2 Ω and by lemma 3.5.6,α → Ω → Ω 6∼2 Ω → τ ′, for all τ ′ ∈ Type2. Since
VAR(WN,WN), CLO(WN,WN) andSAT(WN,WN) hold by lemma 3.8, we get a counterexample for
Proposition 3.21 of [GL02]. ⊓⊔

Finally, Ghilezan and Likavec’s proof method for untyped terms fails too.

Lemma 3.10. (Proposition 3.23 of [GL02] does not hold)
The following proposition of [GL02] does not hold:
If P ⊆ Λ is invariant under abstraction (i.e.,INV(P)), VAR(P,P) andSAT(P,P) thenP = Λ.

Proof: As by lemma 3.8,VAR(WN,WN), SAT(WN,WN), andINV(WN) hold, we get a counterex-
ample for Proposition 3.23. Note that the proof in [GL02] depends on Proposition 3.21 which fails.⊓⊔
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4. How much of the reducibility method of [GL02] can we salvage?

This section provides some indications on the limits of the method. We show how these limits affect the
salvation of the method, we partially salvage it, and we showthat the obtained method can correctly be
used to establish confluence, standardisation, and weak head normal forms but only for restricted sets of
lambda terms and types (that we believe to be equal to the set of strongly normalisable terms). We also
point out some links between the work done by Ghilezan and Likavec and that of Gallier [Gal98].

Because we proved that Proposition 3.23 of [GL02] is false, we know that the set of properties that
a set of termsP has to satisfy in order to be equal to the set of terms of the untypedλ-calculus cannot
be{INV(P),VAR(P,P),SAT(P,P)}. Therefore, even if one changes the soundness result or the type
interpretation (the set of realisers) in order to obtain thesame result as the one claimed by Ghilezan and
Likavec, one also has to come up with a new set of properties.

Proposition 3.23 of [GL02] states a set of properties characterising the set of terms of the untyped
λ-calculus. The predicateVAR(Λ,Λ) states that the variables (more generally, the terms of the form
xNM1 · · ·Mn) belong to the untypedλ-calculus. The predicateINV(Λ) states among other things that
given aλ-termM , the abstraction of a variable overM is aλ-term too. Therefore, to get a full character-
isation of the set of terms of the untypedλ-calculus, we need predicates that cover the application case,
i.e., a predicate, sayAPP(P), stating that(λx.M)NM1 · · ·Mn ∈ P if M,N,M1, . . . ,Mn ∈ P, needs
to hold. Note that this predicate cannot be equivalent to thesum of propertiesVAR(P,P), SAT(P,P)
andINV(P) since we saw that the setWN satisfies these properties but is not equal to theλ-calculus.
Hence, these properties are not enough to characterise theλ-calculus.

The problem with these properties is that if one tries to salvage Ghilezan and Likavec’s reducibility
method, the propertiesVAR(P,P) andCLO(P,P) impose a restriction on the arrow types for which
the interpretation is inP (the realisers of arrow types) as we can see below in the arrowtype case of the
proofs of lemmas 4.4.5 and 4.5. We show at the end of this section that even if the obtained result when
considering these restrictions is an improvement of that ofGhilezan and Likavec using the type system
λ∩1, it is not possible to salvage their method. (Note that this section does not introduce a new set of
predicates. Instead it constrains further the type system used in the method.)

The non-trivial types introduced by Gallier [Gal98] (see below) are not much help in this case,
because of the precise restriction imposed byVAR(P,P). One might also want to consider the sets
of properties stated by Gallier [Gal98], but they are unfortunately not easy to prove forCR (Church-
Rosser), because they require a proof ofxM ∈ CR for all M ∈ Λ. Moreover, if one succeeds in proving
that the variables are included in the interpretation of a defined set of types containingΩ → α, whereΩ
is interpreted asΛ andα asP, then one has proved thatxM ∈ P, which in the caseP = CR means
M ∈ CR (this gives the intuition as why the arrow types inOType3 defined below are of the form
ρ→ ϕ, whereρ cannot be theΩ type).

It is worth pointing out that part of the work done by Gallier [Gal98] could be adapted to the type
systemλ∩2. Gallier defines the non-trivial types as follows (whereτ ∈ Type2):

ψ ∈ NonTrivial ::= α | τ → ψ | τ ∩ ψ | ψ ∩ τ

Note thatNonTrivial ⊂ Type2. Types inType2 are then interpreted as follows:JαKP = P, Jψ ∩ τKP =
Jτ ∩ ψKP = JτKP ∩ JψKP , JτKP = Λ if τ 6∈ NonTrivial and Jτ → ψKP = {M ∈ P | ∀N ∈
JτKP . MN ∈ JψKP}. One can easily prove that ifτ1 ≤2 τ2 thenJτ1KP ⊆ Jτ2KP . Hence, considering the
type systemλ∩2 instead ofDΩ, Gallier’s method provides a set of predicates which when satisfied by a
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set of termsP implies that the set of terms typable in the systemλ∩2 by a non-trivial type is a subset of
P. Gallier proved that the set of head-normalisingλ-terms satisfies each of the given predicates.

Using a method similar to Ghilezan and Likavec’s method, Gallier also proved that the set of weakly
head-normalising terms (W) is equal to the set of terms typable by a weakly non-trivial type in the type
systemDΩ. The set of weakly non-trivial types is defined as follows:

ψ ∈ WeaklyNonTrivial ::= α | τ → ψ | Ω → Ω | τ ∩ ψ | ψ ∩ τ

As explained above and inspired by Gallier’s method, we can now try to salvage Ghilezan and
Likavec’s method by first restricting the set of realisers when defining the interpretation of the set of
types inType2. The different restrictions lead us to the definition ofNTType3 (where “NT” stands for
non trivial sinceNTType3 = NonTrivial) and the following type interpretation:

Definition 4.1. We defineNTType3 by:

ρ ∈ NTType3 ::= α | τ → ρ | ρ ∩ τ | τ ∩ ρ

Note thatNTType3 ⊂ Type2. We define a new interpretation of the types inType2 as follows:

• JαK3
P = P.

• Jτ1 ∩ τ2K
3
P = Jτ1K

3
P ∩ Jτ2K

3
P , if τ1 ∩ τ2 ∈ NTType3.

• JτK3
P = Λ, if τ 6∈ NTType3.

• Jτ1 → τ2K
3
P = {M ∈ P | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2K

3
P}, if τ1 → τ2 ∈ NTType3.

In order to prove the relation between the stronger induction hypotheses (VAR, SAT, andCLO)
and those depending on type interpretations (VAR2, SAT2, andCLO2), and in order to be able to use
these stronger induction hypotheses in the soundness lemma, we have to impose other restrictions (we
especially need these restrictions to prove lemma 4.4.5 below which itself uses lemma 4.4.2 and the fact
that arrowOType3 types defined below are of the restricted formρ→ ϕ).

Definition 4.2. We define the setOType3 (where “O” stands foromega) as follows:

ϕ ∈ OType3 ::= α | Ω | ρ→ ϕ | ϕ ∩ τ | τ ∩ ϕ

Note thatOType3 ⊂ Type2.
Let Γ ∈ B3 = {{x1 : ϕ1, . . . , xn : ϕn} | ∀i, j ∈ {1, . . . , n}. xi = xj ⇒ ϕi = ϕj}, i.e.,

environments inB3 are built from types inOType3.
Let ⊢3 be⊢2 whereB2 is replaced byB3, and letλ∩3 be the type system based on⊢3.
Let |=3

P be the relation|=2
P whereJτK2

P is replaced byJτK3
P .

Note that⊢3, λ∩3, and|=3
P are still built onType2.

Due to the saturation predicate and its uses, we could imposefurther restrictions on the type system.
Alternatively, we slightly modify this predicate (for simplicity of notation, we keep the same name):

Definition 4.3. SAT(P,X ) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ Λ.
M [x := N ]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X ).
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We can prove that ifP ∈ {CR,S,W}, whereCR is the Church-Rosser property,S is the standardi-
sation property, andW is the weak head normalisation property, thenSAT(P,P) holds.

The next lemma (and the relation between the old/new induction hypothesis) is useful for soundness.

Lemma 4.4. 1. Jτ1 ∩ τ2K
3
P = Jτ1K

3
P ∩ Jτ2K

3
P .

2. JρK3
P ⊆ P.

3. If τ1 ≤2 τ2 andτ2 ∈ NTType3 thenτ1 ∈ NTType3.

4. If τ1 ≤2 τ2 thenJτ1K
3
P ⊆ Jτ2K

3
P .

5. If VAR(P,P) then for allϕ ∈ OType3, VAR(P, JϕK3
P ).

6. If SAT(P,P) then for allτ ∈ Type2, SAT(P, JτK3
P ).

Proof: 1) If τ1 ∩ τ2 ∈ NTType3 then it is done by definition. Otherwiseτ1, τ2 6∈ NTType3.
HenceJτ1 ∩ τ2K3

P = Λ = Λ ∩ Λ = Jτ1K
3
P ∩ Jτ2K

3
P .

2) By induction on the structure ofρ.

3) By induction on the size of the derivation ofτ1 ≤2 τ2 and then by case on the last step.

4) By induction on the size of the derivation ofτ1 ≤2 τ2 and then by case on the last step.

5) By induction on the structure ofϕ.

6) By induction on the structure ofτ . ⊓⊔

We now state the following soundness lemma:

Lemma 4.5. If VAR(P,P), SAT(P,P), CLO(P,P) andΓ ⊢3 M : τ thenΓ |=3
P M : τ .

Proof: By induction on the size of the derivation ofΓ ⊢3 M : τ and then by case on the last rule used
in the derivation. Cases dealing withτ 6∈ NTType3 are trivial sinceJτK3

P = Λ. The intersection case is
also trivial by IH. So we only considerτ ∈ NTType3 whereτ is not an intersection type.

• (ax): Let ν |=3
P Γ, x : ϕ thenν(x) ∈ JϕK3

P .

• (→E): By IH, Γ |=3 M : τ1 → τ2 andΓ |=3 N : τ1, so by lemma 3.2.1b,Γ |=3
P MN : τ2

(because ifτ2 ∈ NTType3 thenτ1 → τ2 ∈ NTType3).

• (→I): By IH, Γ, x : τ1 |=3
P M : τ2. Let ν |=3

P Γ andN ∈ Jτ1K
3
P . Thenν(x := N) |=3

P Γ
sincex 6∈ dom(Γ) andν(x := N) |=3

P x : τ1 sinceN ∈ Jτ1K
3
P . Thereforeν(x := N) |=3

P

M : τ2, i.e. JMKν(x:=N) ∈ Jτ2K
3
P . Hence, by lemma 3.2.1a,JMKν(x:=x)[x := N ] ∈ Jτ2K

3
P .

SinceSAT(P,P) holds, we can apply lemma 4.4.6 to obtain(λx.JMKν(x:=x))N ∈ Jτ2K
3
P . By

lemma 3.2.1c,(Jλx.MKν)N ∈ Jτ2K
3
P . HenceJλx.MKν ∈ {M | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2K

3
P}.

Sinceτ1 ∈ OType3 and becauseVAR(P,P) holds, then by lemma 4.4.5,x ∈ Jτ1K
3
P . Hence, by

the same argument as above we obtainJMKν(x:=x) ∈ Jτ2K
3
P . Sinceτ1 → τ2 ∈ NTType3 then

τ2 ∈ NTType3. BecauseCLO(P,P) holds, then by lemma 4.4.2,λx.JMKν(x:=x) ∈ P, and by
lemma 3.2.1c,Jλx.MKν ∈ P. Hence, we conclude thatJλx.MKν ∈ Jτ1 → τ2K

3
P .
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• (≤3): We conclude by IH and lemma 4.4.4.

• (Ω): This case is trivial becauseΩ 6∈ NTType3.
⊓⊔

The next lemma states that a set of terms satisfying the Church-Rosser, the standardisation, or the
weak head normalisation properties, also satisfies the variable, saturation and closure predicates.

Lemma 4.6. LetP ∈ {CR,S,W}. ThenVAR(P,P), SAT(P,P), andCLO(P,P).

Proof: Straightforward using the relevant property and predicateconditions. ⊓⊔

We obtain the following proof method which is our attempt at salvaging the method of [GL02].

Proposition 4.7. If Γ ⊢3 M : ρ thenM ∈ CR,M ∈ S, andM ∈ W.

Proof: By lemma 4.6, lemma 4.4.2 and lemma 4.5 ⊓⊔

We conjecture that the set of terms typable in our type system⊢3 is no more than the set of strongly
normalisable terms.

5. Formalising the background on developments

In this section we go through some needed background from [Kri90] on developments and we precisely
formalise and establish all the necessary properties. Throughout the paper, we takec to be a metavariable
ranging overV. As far as we know, this is the first precise formalisation of developments. Our definition
of developments is similar to Koletsos and Stavrinos’s [KS08]. A major difference is that Koletsos and
Stavrinos [KS08] deal informally with occurrences of redexes while the current paper deal with them
formally using paths (see definition 2.1.3 above).

The next definition adaptsΛc of [Kri90] to deal withβI- andβη-reduction.ΛIc is Λc where in the
abstraction construction rule (R1).2, we restrict abstraction toΛI. In Ληc we introduce the new rule (R4)
and replace the abstraction rule ofΛc by (R1).3 and (R1).4.

Definition 5.1. (Ληc, ΛI c)
1. We letMc range overΛηc,ΛIc defined as follows (note thatΛIc ⊂ ΛI):

(R1) If x is a variable distinct fromc then

1. x ∈ Mc.

2. If M ∈ ΛIc andx ∈ fv(M) thenλx.M ∈ ΛIc.

3. If M ∈ Ληc thenλx.M [x := c(cx)] ∈ Ληc.

4. If Nx ∈ Ληc such thatx 6∈ fv(N) andN 6= c thenλx.Nx ∈ Ληc.

(R2) If M,N ∈ Mc thencMN ∈ Mc.

(R3) If M,N ∈ Mc andM is aλ-abstraction thenMN ∈ Mc.

(R4) If M ∈ Ληc thencM ∈ Ληc.
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As standard in lambda calculi, the next lemma gives necessary information on terms ofMc.

Lemma 5.2. (Generation)
1. M [x := c(cx)] 6= x and for anyN ,M [x := c(cx)] 6= Nx.

2. Letx 6∈ fv(M). Then,M [y := c(cx)] 6= x and for anyN ,M [y := c(cx)] 6= Nx.

3. If M ∈ Mc thenM 6= c.

4. If M,N ∈ Mc thenM [x := N ] 6= c.

5. LetMN ∈ Mc. ThenN ∈ Mc and either:

• M = cM ′ whereM ′ ∈ Mc or

• M = c andMc = Ληc or

• M = λx.P is inMc.

6. If cn(M) ∈ Mc thenM ∈ Mc.

7. If M ∈ Ληc andn ≥ 0 thencn(M) ∈ Ληc.

8. If λx.P ∈ Ληc thenx 6= c and either:

• P = Nx whereN,Nx ∈ Ληc, x 6∈ fv(N) andN 6= c or

• P = N [x := c(cx))] whereN ∈ Ληc.

9. If λx.P ∈ ΛIc thenx 6= c, x ∈ fv(P ) andP ∈ ΛIc.

10. IfM,N ∈ Mc andx 6= c thenM [x := N ] ∈ Mc.

11. Lety 6∈ {x, c}. Then:

• If M [x := c(cx)] = y thenM = y.

• If M [x := c(cx)] = Py thenM = Ny andP = N [x := c(cx)].

• If M [x := c(cx)] = λy.P thenM = λy.N andP = N [x := c(cx)].

• If M [x := c(cx)] = PQ then eitherM = x, P = c andQ = cx or M = P ′Q′ and
P = P ′[x := c(cx)] andQ = Q′[x := c(cx)].

• If M [x := c(cx)] = (λy.P )Q thenM = (λy.P ′)Q′ andP = P ′[x := c(cx)] andQ =
Q′[x := c(cx)].

12. LetM ∈ Ληc.

(a) If M = λx.P thenP ∈ Ληc.

(b) If M = λx.Px thenPx,P ∈ Ληc, x 6∈ fv(P ) ∪ {c} andP 6= c.

13. (a) Letx 6= c. M [x := c(cx)]
p

→βη M
′ iff M ′ = N [x := c(cx)] andM

p

→βη N .
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(b) Let n ≥ 0. If cn(M)
p

→βη M
′ thenp = 2n.p′ and there existsN ∈ Ληc such thatM ′ =

cn(N) andM
p
′

→βη N .

Proof: 1) and 2) By induction on the structure ofM .

3) By cases on the derivation ofM ∈ Mc.

4) By cases on the structure ofM using 3).

5) By cases on the derivation ofMN ∈ Mc.

6) By induction onn.

7) Easy.

8) By cases on the derivation ofλx.P ∈ Ληc.

9) By cases on the derivation ofλx.P ∈ ΛIc.

10) By induction on the structure ofM ∈ Mc.

11) By case on the structure ofM .

12a) By definition,x 6= c. By 8),P = Nx whereNx ∈ Ληc or P = N [x := c(cx)] whereN ∈ Ληc. In
the second case since by (R4)c(cx) ∈ Ληc, we get by 10) thatN [x := c(cx)] ∈ Ληc.

12b) By 1) and 8).

13a) Both⇒) and⇐) are by induction on the structure ofp.

13b) By induction onn. ⊓⊔

As the formalisation of developments is basic to our work, the next lemma is about sets/paths of
redexes.

Lemma 5.3. Let r ∈ {βI, βη} andF ⊆ Rr
M .

• If M ∈ V thenRr
M = ∅ andF = ∅.

• If M = λx.N thenF ′ = {p | 1.p ∈ F} ⊆ Rr
N and:

– if M ∈ Rr thenRr
M = {0} ∪ {1.p | p ∈ Rr

N} andF \ {0} = {1.p | p ∈ F ′}.

– elseRr
M = {1.p | p ∈ Rr

N} andF = {1.p | p ∈ F ′}.

• If M = PQ thenF1 = {p | 1.p ∈ F} ⊆ Rr
P , F2 = {p | 2.p ∈ F} ⊆ Rr

Q and:

– if M ∈ Rr thenRr
M = {0} ∪ {1.p | p ∈ Rr

P} ∪ {2.p | p ∈ Rr
Q} andF \ {0} = {1.p | p ∈

F1} ∪ {2.p | p ∈ F2}.

– elseRr
M = {1.p | p ∈ Rr

P} ∪ {2.p | p ∈ Rr
Q} andF = {1.p | p ∈ F1} ∪ {2.p | p ∈ F2}.

Proof: The part related toRr
M is by case on the structure ofM . The part related toF is also by case

on the structure ofM and uses the first part. ⊓⊔

The next lemma shows the role of redexes w.r.t. substitutions involvingc.

Lemma 5.4. Let r ∈ {βη, βI} andx 6= c.
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1. M ∈ Rβη iff M [x := c(cx)] ∈ Rβη.

2. If p ∈ Rβη
M thenM [x := c(cx)]|p = M |p [x := c(cx)].

3. p ∈ Rβη

λx.M [x:=c(cx)] iff p = 1.p′ andp′ ∈ Rβη

M [x:=c(cx)].

4. Rβη

M [x:=c(cx)] = Rβη
M .

5. Rβη

cn(M) = {2n.p | p ∈ Rβη
M }.

Proof: 1) and 2) By induction on the structure ofM .

3 ⇒) Let p ∈ Rβη

λx.M [x:=c(cx)]. By lemma 5.2.1,λx.M [x := c(cx)] 6∈ Rβη so by lemma 5.3,p = 1.p′

such thatp′ ∈ Rβη

M [x:=c(cx)].

⇐) Let p ∈ Rβη

M [x:=c(cx)]. By lemma 5.3,1.p ∈ Rβη

λx.M [x:=c(cx)].

4)⇒) Let p ∈ Rβη

M [x:=c(cx)]. We prove the statement by induction on the structure ofM .

⇐) Let p ∈ Rr
M . Then by definitionM |p ∈ Rβη. By 1),M |p [x := c(cx)] ∈ Rβη. By 2),M [x :=

c(cx)]|p ∈ Rβη. Sop ∈ Rβη

M [x:=c(cx)].

5) By induction onn ≥ 0. ⊓⊔

The next lemma shows that any element(λx.P )Q of ΛIc (resp.Ληc) is aβI- (resp.βη-) redex, that
ΛIc (resp.Ληc) contains theβI-redexes (resp.βη-redexes) of all its terms and generalises a lemma given
in [Kri90] (and used in [KS08]) stating thatΛηc (resp.ΛIc) is closed under→βη- (resp.→βI -) reduction.

Lemma 5.5. 1. Let(Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} andM ∈ Mc.

(a) If M = (λx.P )Q thenM ∈ Rr.

(b) If p ∈ Rr
M thenM |p ∈ Mc.

2. (a) IfM ∈ Ληc andM →βη M
′ thenM ′ ∈ Ληc.

(b) If M ∈ ΛIc andM →βI M
′ thenM ′ ∈ ΛIc.

Proof: 1a) By case onr.

1b) By induction on the structure ofM .

2a) LetM ∈ Ληc andM →βη M
′. Then there existsp such thatM

p

→βη M
′. We prove thatM ′ ∈ Ληc

by induction on the structure ofp.

2b) By induction onM →βI M
′. ⊓⊔

The next definition, taken from [Kri90], erases all thec’s from anMc-term. We extend it to paths.

Definition 5.6. (| − |c)
We define|M |c and|〈M, p〉|c inductively as follows:
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• |x|c = x • |λx.N |c = λx.|N |c, if x 6= c

• |cP |c = |P |c • |NP |c = |N |c|P |c if N 6= c

• |〈M, 0〉|c = 0 • |〈λx.M, 1.p〉|c = 1.|〈M, p〉|c, if x 6= c

• |〈cM, 2.p〉|c = |〈M, p〉|c • |〈NM, 2.p〉|c = 2.|〈M, p〉|c, if N 6= c

• |〈MN, 1.p〉|c = 1.|〈M, p〉|c

LetF ⊆ Path then we define|〈M,F〉|c = {|〈M, p〉|c | p ∈ F}.

Now, cn is indeed erased from|cn(M)|c and from|cn(N)|c for anycn(N) subterm ofM .

Lemma 5.7. 1. Letn ≥ 0 then|cn(M)|c = |M |c.

2. |〈cn(M),Rβη

cn(M)〉|
c = |〈M,Rβη

M 〉|c.

3. |〈cn(M), 2n.p〉|c = |〈M, p〉|c.

4. Let |M |c = P .

• If P ∈ V then∃n ≥ 0 such thatM = cn(P ).

• If P = λx.Q then∃n ≥ 0 such thatM = cn(λx.N) and|N |c = Q.

• If P = P1P2 then∃n ≥ 0 such thatM = cn(M1M2),M1 6= c, |M1|
c = P1 and|M2|

c = P2.

Proof: 1), 2) and 3) By induction onn.

4) Each case is by induction on the structure ofM . ⊓⊔

The next lemma shows that: if thec-erasures of two paths ofM are equal, then these paths are
also equal and inside a term; substitutingx by c(cx) is undone byc-erasure;c is definitely erased from
the free variables of|M |c; erasure propagates through substitutions; andc-erasing aΛIc-term returns a
ΛI-term.

Lemma 5.8. 1. Letr ∈ {βI, βη}. If p, p′ ∈ Rr
M and|〈M, p〉|c = |〈M, p′〉|c thenp = p′.

2. Letx 6= c. Then,|M [x := c(cx)]|c = |M |c.

3. Letx 6= c andp ∈ Rβη
M . Then,|〈M [x := c(cx)], p〉|c = |〈M, p〉|c.

4. If M ∈ Mc thenfv(M) \ {c} = fv(|M |c).

5. If M,N ∈ Mc andx 6= c then|M [x := N ]|c = |M |c[x := |N |c].

6. If M ∈ ΛIc then|M |c ∈ ΛI.

7. Let(Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} andM,M1, N1,M2, N2 ∈ Mc.

(a) If p ∈ Rr
M andM

p

→r M
′ then|M |c

p
′

→r |M ′|c such thatp′ = |〈M, p〉|c.

(b) Let x 6= c, |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c, |〈N1,R
r
N1

〉|c ⊆ |〈N2,R
r
N2

〉|c, |M1|
c = |M2|

c

and|N1|
c = |N2|

c. Then,|〈M1[x := N1],R
r
M1[x:=N1]

〉|c ⊆ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c.
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(c) Let |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c and |M1|
c = |M2|

c. If M1
p1

→r M
′
1, M2

p2

→r M
′
2 such

that |〈M1, p1〉|
c = |〈M2, p2〉|

c then|〈M ′
1,R

r
M ′

1

〉|c ⊆ |〈M ′
2,R

r
M ′

2

〉|c.

Proof: 1) . . . 6) By induction on the structure ofM .

7a) By induction on the structure ofp.

7b) and 7c) By induction on the structure ofM1. ⊓⊔

6. Reducibility method for the CR proofs w.r.t. βI- and βη-reductions

In this section, we introduce the reducibility semantics for bothβI- andβη-reductions and establish its
soundness (lemma 6.4). Then, we show that all terms typable in eitherDI orD satisfy the Church-Rosser
property, and that all terms ofΛIc (resp.Ληc) are typable in systemDI (resp.D).

The next definition introduces a reducibility semantics forType1 types.

Definition 6.1. 1. Letr ∈ {βI, βη}. We define the type interpretationJ−Kr : Type1 → 2Λ by:

• JαKr = CRr, whereα ∈ A.

• Jσ ∩ τKr = JσKr ∩ JτKr.

• Jσ → τKr = {M ∈ CRr | ∀N ∈ JσKr. MN ∈ JτKr}.

2. A setX ⊆ Λ is saturated iff∀n ≥ 0. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.
M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X .

3. A setX ⊆ ΛI is I-saturated iff∀n ≥ 0. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.
x ∈ fv(M) ⇒M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X .

The next background lemma is familiar to many type systems.

Lemma 6.2. 1. If Γ ⊢βI M : σ thenM ∈ ΛI andfv(M) = dom(Γ).

2. LetΓ ⊢βη M : σ. Thenfv(M) ⊆ dom(Γ) and ifΓ ⊆ Γ′ thenΓ′ ⊢βη M : σ.

3. Letr ∈ {βI, βη}. If Γ ⊢r M : σ, σ ⊑ σ′ andΓ′ ⊑ Γ thenΓ′ ⊢r M : σ′.

Proof: 1) By induction onΓ ⊢βI M : σ.

2) By induction onΓ ⊢βη M : σ.

3) First prove: ifΓ ⊢r M : σ, andσ ⊑ σ′ thenΓ ⊢r M : σ′ by induction onσ ⊑ σ′. Then, do the proof
of 3. by induction onΓ ⊢r M : σ. ⊓⊔

The next lemma states that the interpretations of types are saturated and only contain terms that
are Church-Rosser. Krivine [Kri90] proved a similar resultfor r = β and whereCRr

0 andCRr were
replaced by the corresponding sets of strongly normalisingterms. Koletsos and Stavrinos [KS08] adapted
Krivine’s lemma for Church-Rosser w.r.t.β-reduction instead of strong normalisation. Here, we adapt
the result toβI andβη.
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Lemma 6.3. Let r ∈ {βI, βη}.

1. ∀σ ∈ Type1. CRr
0 ⊆ JσKr ⊆ CRr.

2. CRβI is I-saturated.

3. CRβη is saturated.

4. ∀σ ∈ Type1. JσKβI is I-saturated.

5. ∀σ ∈ Type1. JσKβη is saturated.

Proof: WhenM →∗
r N andM →∗

r P , we writeM →∗
r {N,P}.

1) By induction onσ ∈ Type1.

2) Let M [x := N ]N1 . . . Nn ∈ CRβI wheren ≥ 0, x ∈ fv(M) and (λx.M)NN1 . . . Nn →∗
βI

{M1,M2}. By lemma 2.2.7, there existM ′
1 andM ′

2 such thatM1 →∗
βI M

′
1,M [x := N ]N1 . . . Nn →∗

βI

M ′
1,M2 →∗

βI M
′
2 andM [x := N ]N1 . . . Nn →∗

βI M
′
2. Then, usingM [x := N ]N1 . . . Nn ∈ CRβI .

3) Let M [x := N ]N1 . . . Nn ∈ CRβη wheren ≥ 0 and (λx.M)NN1 . . . Nn →∗
βη {M1,M2}. By

lemma 2.2.7, there existM ′
1 andM ′

2 such thatM1 →∗
βη M

′
1, M [x := N ]N1 . . . Nn →∗

βη M
′
1,M2 →∗

βη

M ′
2 andM [x := N ]N1 . . . Nn →∗

βη M
′
2. Then we conclude usingM [x := N ]N1 . . . Nn ∈ CRβη.

4) and 5) By induction onσ. ⊓⊔

Next, it is straightforward to adapt (and prove) the soundness lemma of [Kri90] to both⊢βI and⊢βη.

Lemma 6.4. Let r ∈ {βI, βη}. If x1 : σ1, . . . , xn : σn ⊢r M : σ and∀i ∈ {1, . . . , n},Ni ∈ JσiK
r then

M [(xi := Ni)
n
1 ] ∈ JσKr.

Proof: By induction onx1 : σ1, . . . , xn : σn ⊢r M : σ. ⊓⊔

Finally, we adapt a corollary from [KS08] to show that every term ofΛ typable in systemDI (resp.
D) has theβI (resp.βη) Church-Rosser property.

Corollary 6.5. Let r ∈ {βI, βη}. If Γ ⊢r M : σ thenM ∈ CRr.

Proof: Let Γ = (xi : σi)n. By lemma 6.3,∀i ∈ {1, . . . , n}, xi ∈ JσiK
r, so by lemma 6.4 and again by

lemma 6.3,M ∈ JσKr ⊆ CRr. ⊓⊔

To accommodateβI- andβη-reduction, the next lemma generalises a lemma given in [Kri90] (and
used in [KS08]). This lemma states that every term ofΛIc (resp.Ληc) is typable in systemDI (resp.D).

Lemma 6.6. Let fv(M) \ {c} = {x1, . . . , xn} ⊆ dom(Γ) wherec 6∈ dom(Γ).

1. If M ∈ ΛIc then forΓ′ = Γ ↾ fv(M), ∃σ, τ ∈ Type1 such that
if c ∈ fv(M) thenΓ′, c : σ ⊢βI M : τ , and ifc 6∈ fv(M) thenΓ′ ⊢βI M : τ .

2. If M ∈ Ληc then∃σ, τ ∈ Type1 such thatΓ, c : σ ⊢βη M : τ .

Proof: By induction onM . Note that by Lemma 5.2,M 6= c. ⊓⊔
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7. Adapting Koletsos and Stavrinos’s method [KS08] toβI-developments

Koletsos and Stavrinos [KS08] gave a proof of Church-Rosserfor β-reduction for the intersection type
systemD of Definition 2.3 (studied in detail by Krivine in [Kri90]) and showed that this can be used
to establish confluence ofβ-developments without using strong normalisation. In thissection, we adapt
their proof toβI. First, we adapt and formalise a number of definitions and lemmas given by Krivine
in [Kri90] in order to make them applicable toβI-developments. Then, we adapt [KS08] to establish the
confluence ofβI-developments and hence ofβI-reduction.

7.1. FormalisingβI-developments

The next definition, taken from [Kri90] (and used in [KS08]) uses the variablec to “freeze” theβI-
redexes ofM which are not in the setF of βI-redex occurrences inM , and to neutralise applications so
that they cannot be transformed into redexes afterβI-reduction. For example, inc(λx.x)y, c is used to
freeze theβI-redex(λx.x)y.

Definition 7.1. (Φc(−,−))
LetM ∈ ΛI, such thatc 6∈ fv(M) andF ⊆ RβI

M .

1. If M = x thenF = ∅ andΦc(x,F) = x

2. If M = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ RβI
N then Φc(λx.N,F) =

λx.Φc(N,F ′).

3. If M = NP , F1 = {p | 1.p ∈ F} ⊆ RβI
N andF2 = {p | 2.p ∈ F} ⊆ RβI

P then

Φc(NP,F) =

{

cΦc(N,F1)Φ
c(P,F2) if 0 6∈ F

Φc(N,F1)Φ
c(P,F2) otherwise.

The next lemma is an adapted version of a lemma which appears in [KS08] and which in turns adapts
a lemma from [Kri90].

Lemma 7.2. 1. If M ∈ ΛI, c 6∈ fv(M), andF ⊆ RβI
M then

(a) fv(M) = fv(Φc(M,F)) \ {c}.

(b) Φc(M,F) ∈ ΛIc.

(c) |Φc(M,F)|c = M .

(d) |〈Φc(M,F),RβI

Φc(M,F)〉|
c = F .

2. LetM ∈ ΛIc.

(a) |〈M,RβI
M 〉|c ⊆ RβI

|M |c
andM = Φc(|M |c, |〈M,RβI

M 〉|c).

(b) 〈|M |c, |〈M,RβI
M 〉|c〉 is the one and only pair〈N,F〉 such thatN ∈ ΛI, c 6∈ fv(N), F ⊆ RβI

N

andΦc(N,F) = M .
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Proof: All items of 1) are by induction on the structure ofM ∈ ΛI. Note that 1b) uses 1a) and that 1d)
uses 1b).

2a) By induction on the construction ofM ∈ ΛIc. Note that by lemma 6,|M |c ∈ ΛI.

2b) By lemma 6,|M |c ∈ ΛI. By lemma 4,c 6∈ fv(|M |c). By 2a, |〈M,RβI
M 〉|c ⊆ RβI

|M |c andM =

Φc(|M |c, |〈M,RβI
M 〉|c). To show unicity, let〈N ′,F ′〉 be another such pair. We haveF ′ ⊆ RβI

N ′ and

M = Φc(N ′,F ′). Then, |M |c = |Φc(N ′,F ′)|c =1c N ′ andF ′ =1d |〈Φc(N ′,F ′),RβI

Φc(N ′,F ′)〉|
c =

|〈M,RβI
M 〉|c. ⊓⊔

The next lemma is needed to defineβI-developments.

Lemma 7.3. LetM ∈ ΛI, such thatc 6∈ fv(M), F ⊆ RβI
M , p ∈ F andM

p

→βI M
′. Then, there exists

a unique setF ′ ⊆ RβI
M ′ such thatΦc(M,F)

p
′

→βI Φc(M ′,F ′) and|〈Φc(M,F), p′〉|c = p.

Proof: By lemma 7.2.1c and lemma 5.8.5.8.1, there exists a uniquep′ ∈ RβI

Φc(M,F), such that

|〈RβI

Φc(M,F), p
′〉|c = p. By lemma 2.2.8, there existsP such thatΦc(M,F)

p
′

→βI P . By lemma 5.8.7a,

M =7.2.1c |Φc(M,F)|c
p0

→βI |P |c, such that|〈RβI

Φc(M,F), p
′〉|c = p0. Sop = p0 and by lemma 2.2.9,

M ′ = |P |c. Let F ′ = |〈P,RβI
P 〉|c. Because,Φc(M,F)

p
′

→βI P , by lemma 2 and lemma 7.2.1b,

P ∈ ΛIc. By lemma 7.2.2a,P = Φc(M ′,F ′) andF ′ ⊆ RβI
M ′ . By lemma 7.2.2b,F ′ is unique. ⊓⊔

We follow [Kri90] and define the set ofβI-residuals of a set ofβI-redexesF relative to a sequence
of βI-redexes. First, we give the definition relative to one redex.

Definition 7.4. LetM ∈ ΛI, such thatc 6∈ fv(M), F ⊆ RβI
M , p ∈ F andM

p

→βI M
′. By lemma 7.3,

there exists a uniqueF ′ ⊆ RβI
M ′ such thatΦc(M,F)

p
′

→βI Φc(M ′,F ′) and|〈Φc(M,F), p′〉|c = p. We
call F ′ the set ofβI-residuals inM ′ of the set ofβI-redexesF in M relative to p.

Definition 7.5. (βI-development)
Let M ∈ ΛI where c 6∈ fv(M) andF ⊆ RβI

M . A one-stepβI-development of〈M,F〉, denoted

〈M,F〉 →βId 〈M ′,F ′〉, is aβI-reductionM
p

→βI M
′ wherep ∈ F andF ′ is the set ofβI-residuals in

M ′ of the set ofβI-redexesF in M relative top. A βI-developmentis the transitive closure of a one-

stepβI-development. We write alsoM
F
→βId Mn for theβI-development〈M,F〉 →∗

βId 〈Mn,Fn〉.

7.2. Confluence ofβI-developments hence ofβI-reduction

The next lemma is informative aboutβI-developments. It relatesβI-reductions of frozen terms toβI-
developments, and it states that given aβI-development, one can always define a new development that
allows at least the same reductions.

Lemma 7.6. 1. LetM ∈ ΛI, such thatc 6∈ fv(M) andF ⊆ RβI
M . Then:〈M,F〉 →∗

βId 〈M ′,F ′〉 ⇐⇒
Φc(M,F) →∗

βI Φc(M ′,F ′).
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2. LetM ∈ ΛI, such thatc 6∈ fv(M) andF1 ⊆ F2 ⊆ RβI
M . If 〈M,F1〉 →βId 〈M ′,F ′

1〉 then there

existsF ′
2 ⊆ RβI

M ′ such thatF ′
1 ⊆ F ′

2 and〈M,F2〉 →βId 〈M ′,F ′
2〉.

Proof: 1) It sufficient to prove:〈M,F〉 →βId 〈M ′,F ′〉 ⇐⇒ Φc(M,F) →βI Φc(M ′,F ′).

• ⇒) Let 〈M,F〉 →βId 〈M ′,F ′〉. By definition 7.5,∃p ∈ F whereM
p

→βI M
′ andF ′ is the set of

βI-residuals inM ′ of the set of redexesF in M relative top. By definition 7.4,Φc(M,F) →βI

Φc(M ′,F ′).

• ⇐) Let Φc(M,F) →βI Φc(M ′,F ′). By lemma 2.2.8,∃pRβI

Φc(M,F) such thatΦc(M,F)
p

→βI

Φc(M ′,F ′). Because, by lemma 7.2.1b,Φc(M,F) ∈ ΛIc, by lemma 5.8.7a and lemma 7.2.1c,
M = |Φc(M,F)|c

p0

→βI |Φc(M ′,F ′)|c = M ′ such that|〈Φc(M,F), p0〉|
c = p. By definition 7.4,

F ′ is the set ofβI-residuals inM ′ of the set of redexesF in M relative top0. By definition 7.5,
〈M,F〉 →βd 〈M ′,F ′〉.

2) By lemma 7.2.1b,Φc(M,F1),Φ
c(M,F2) ∈ ΛIc. By lemma 7.2.1c,|Φc(M,F1)|

c = |Φc(M,F2)|
c.

By lemma 7.2.1d,|〈Φc(M,F1),R
βI

Φc(M,F1)
〉|c = F1 ⊆ F2 = |〈Φc(M,F2),R

βI

Φc(M,F2)
〉|c.

If 〈M,F1〉 →βId 〈M ′,F ′
1〉 then by lemma 1,Φc(M,F1) →βI Φc(M ′,F ′

1). By lemma 2.2.8, there

existsp1 ∈ RβI

Φc(M,F1) such thatΦc(M,F1)
p1

→βI Φc(M ′,F ′
1). Let p0 = |〈RβI

Φc(M,F1), p1〉|
c, so by

lemma 7.2.1d,p0 ∈ F1. By lemma 5.8.7a and lemma 7.2.1c,M
p0

→βI M
′.

By lemma 7.3 there exists a unique setF ′ ⊆ RβI
M ′ , such thatΦc(M,F1)

p
′

→βI Φc(M ′,F ′) and

|〈Φc(M,F1), p
′〉|c = p0. By lemma 2.2.8,p′ ∈ RβI

Φc(M,F1)
. Sincep′, p1 ∈ RβI

Φc(M,F1)
, by lemma 5.8.1,

p′ = p1. So, by lemma 2.2.9,Φc(M ′,F ′) = Φc(M ′,F ′
1). By lemma 7.2.1d,F ′ = F ′

1 andF ′
1 =

|〈Φc(M ′,F ′
1),R

βI

Φc(M ′,F ′

1
)
〉|c.

By lemma 7.3 there exists a unique setF ′
2 ⊆ RβI

M ′ , such thatΦc(M,F2)
p2

→βI Φc(M ′,F ′
2) and

|〈Φc(M,F2), p2〉|
c = p0.

By lemma 2.2.8,p2 ∈ Φc(M,F2). By lemma 7.2.1d,F ′
2 = |〈Φc(M ′,F ′

2),R
βI

Φc(M ′,F ′

2
)
〉|c.

Hence, by lemma 5.8.7c,F ′
1 ⊆ F ′

2 and by lemma 1,〈M,F2〉 →βId 〈M ′,F ′
2〉. ⊓⊔

The next lemma adapts the main theorem in [KS08] where as far as we know it first appeared.

Lemma 7.7. (Confluence of theβI-developments)
Let M ∈ ΛI, such thatc 6∈ fv(M). If M

F1→βId M1 andM
F2→βId M2, then there existF ′

1 ⊆ RβI
M1

,

F ′
2 ⊆ RβI

M2
andM3 ∈ ΛI such thatM1

F ′

1→βId M3 andM2
F ′

2→βId M3.

Proof: If M
F1→βId M1 andM

F2→βId M2, then there existsF ′′
1 ,F

′′
2 such that〈M,F1〉 →

∗
βId 〈M1,F

′′
1 〉

and〈M,F2〉 →∗
βId 〈M2,F

′′
2 〉. By definitions 7.4 and 7.5,F ′′

1 ⊆ RβI
M1

andF ′′
2 ⊆ RβI

M2
. Note that by

definition 7.5 and lemma 2.2.4,M1,M2 ∈ ΛI. By lemma 8.6.2, there existF ′′′
1 ⊆ RβI

M1
andF ′′′

2 ⊆

RβI
M2

such that〈M,F1 ∪ F2〉 →∗
βId 〈M1,F

′′
1 ∪ F ′′′

1 〉 and〈M,F1 ∪ F2〉 →∗
βId 〈M2,F

′′
2 ∪ F ′′′

2 〉. By
lemma 7.6.1,T →∗

βI T1 andT →∗
βI T2 whereT = Φc(M,F1 ∪ F2), T1 = Φc(M1,F

′′
1 ∪ F ′′′

1 ) and
T2 = Φc(M2,F

′′
2 ∪F ′′′

2 ) . Since by lemma 7.2.1b,T ∈ ΛIc and by lemma 6.6.1,T is typable in the type



Kamareddine, Rahli, Wells / Reducibility proofs in theλ-calculus 25

systemDI , soT ∈ CRβI by corollary 6.5. So, by lemma 2.2b, there existsT3 ∈ ΛIc, such thatT1 →∗
βI

T3 andT2 →∗
βI T3. LetF3 = |〈T3,R

βI
T3
〉|c andM3 = |T3|

βI , then by lemma 7.2.2b,T3 = Φc(M3,F3).
Hence, by lemma 7.6.1,〈M1,F

′′
1 ∪ F ′′′

1 〉 →∗
βId 〈M3,F3〉 and 〈M2,F

′′
2 ∪ F ′′′

2 〉 →∗
βId 〈M3,F3〉, i.e.

M1
F ′′

1
∪F ′′′

1→ βId M3 andM2
F ′′

2
∪F ′′′

2→ βId M3. ⊓⊔

We follow [Bar84] and [KS08] and define the following reduction relation:

Definition 7.8. Let M,M ′ ∈ ΛI, such thatc 6∈ fv(M). We define the following one step reduction:
M →1I M

′ ⇐⇒ ∃F ,F ′, (M,F) →∗
βId (M ′,F ′).

Before establishing the main result of this section we need the following lemma that, among other
things, relatesβI-developments toβI-reductions (lemma 7.9.5).

Lemma 7.9. 1. Letc 6∈ fv(M). Then,RβI

Φc(M,∅) = ∅.

2. Letc 6∈ fv(MN) andx 6= c. Then,RβI

Φc(M,∅)[x:=Φc(N,∅)]
= ∅.

3. Letc 6∈ fv(M). If p ∈ RβI
M andΦc(M, {p}) →βI M

′ thenRβI
M ′ = ∅.

4. LetM ∈ ΛI such thatc 6∈ fv(M). If M
p

→βI M
′ then〈M, {p}〉 →βId 〈M ′,∅〉.

5. →∗
βI=→∗

1I .

Proof: 1), 2) and 3) By induction on the structure ofM .

4) By lemma 2.2.8,p ∈ RβI
M . By lemma 7.3, there is a unique setF ′ ⊆ RβI

M ′ , such thatΦc(M, {p}) →βI

Φc(M ′,F ′). By lemma 7.9.3,RβI

Φc(M ′,F ′) = ∅, so |〈Φc(M ′,F ′),RβI

Φc(M ′,F ′)〉|
c = ∅ andF ′ = ∅ by

lemma 7.2.1d. Finally, by lemma 7.6.1,〈M, {p}〉 →βId 〈M ′,∅〉.

5) It is obvious that→∗
1I⊆→∗

βI . We prove→∗
βI⊆→∗

1I by induction on the length ofM →∗
βI M

′. ⊓⊔

Finally, we achieve what we started to do: the confluence ofβI-reduction onΛI.

Lemma 7.10. ΛI ⊆ CRβI .

Proof: Let M ∈ ΛI and c be a variable such thatc 6∈ fv(M). Let M →∗
βI M1 andM →∗

βI M2.
By lemma 5,M →∗

1I M1 andM →∗
1I M2. We prove the statement by induction on the length of

M →∗
1I M1. ⊓⊔

8. Generalising Koletsos and Stavrinos’s method [KS08] toβη-developments

In this section, we generalise the method of [KS08] to handleβη-reduction. This generalisation is not
trivial since we needed to define developments involvingη-reduction and to establish the important result
of the closure underη-reduction of a defined set of frozen terms. These were the main reasons that led us
to extend the various definitions related to developments. For example, clause (R4) of the definition of
Ληc in definition 5.1 aims to ensure closure underη-reduction. The definition ofΛc in [Kri90] excluded
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such a rule and hence we lose closure underη-reduction as can be seen by the following example: Let
M = λx.cNx ∈ Λc wherex 6∈ fv(N) andN ∈ Λc, thenM →η cN 6∈ Λc.

First, we formaliseβη-residuals andβη-developments in section 8.1. Then, we compare our notion
of βη-residuals with those of Curry and Feys [CF58] and Klop [Klo80] in section 8.2, establishing
that we allow less residuals than Klop but we believe more residuals than Curry and Feys. Finally, we
establish in section 8.3 the confluence ofβη-developments and hence ofβη-reduction.

8.1. Formalisingβη-developments

The next definition adapts definition 7.1 to deal withβη-reduction. The variablec is used to 1) freeze
theβη-redexes ofM which are not in the setF of βη-redex occurrences inM ; 2) neutralise applications
so that they cannot be transformed into redexes afterβη-reduction; and 3) neutralise bound variables
soλ-abstraction cannot be transformed into redexes afterβη-reduction. For example, inλx.y(c(cx))
(x 6= y), c is used to freeze theη-redexλx.yx.

Definition 8.1. (Ψc(−,−),Ψc
0(−,−))

Let c 6∈ fv(M) andF ⊆ Rβη
M .

(P1) IfM ∈ V \ {c} andF =lem. 5.3
∅ then:

Ψc(M,F) = {cn(M) | n > 0} Ψc
0(M,F) = {M}

(P2) IfM = λx.N , x 6= c, andF ′ = {p | 1.p ∈ F} ⊆lem. 5.3Rβη
N then:

Ψc(M,F) =

{

{cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧N ′ ∈ Ψc(N,F ′)} if 0 6∈ F

{cn(λx.N ′) | n ≥ 0 ∧N ′ ∈ Ψc
0(N,F

′)} otherwise

Ψc
0(M,F) =

{

{λx.N ′[x := c(cx)] | N ′ ∈ Ψc(N,F ′)} if 0 6∈ F

{λx.N ′ | N ′ ∈ Ψc
0(N,F

′)} otherwise

(P3) IfM = NP , F1 = {p | 1.p ∈ F} ⊆lem. 5.3Rβη
N , andF2 = {p | 2.p ∈ F} ⊆lem. 5.3Rβη

P then:

Ψc(M,F) =

{

{cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc(N,F1) ∧ P
′ ∈ Ψc(P,F2)} if 0 6∈ F

{cn(N ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc
0(N,F1) ∧ P

′ ∈ Ψc(P,F2)} otherwise

Ψc
0(M,F) =

{

{cN ′P ′ | N ′ ∈ Ψc(N,F1) ∧ P
′ ∈ Ψc

0(P,F2)} if 0 6∈ F

{N ′P ′ | N ′ ∈ Ψc
0(N,F1) ∧ P

′ ∈ Ψc
0(P,F2) otherwise

The next lemma is needed to defineβη-developments and relates the freezing and erasure operations.

Lemma 8.2. 1. Letc 6∈ fv(M) andF ⊆ Rβη
M . We have:

(a) Ψc
0(M,F) ⊆ Ψc(M,F).

(b) ∀N ∈ Ψc(M,F). fv(M) = fv(N) \ {c}.
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(c) Ψc(M,F) ⊆ Ληc.

(d) LetM = Nx wherex 6∈ fv(N) ∪ {c} andP ∈ Ψc
0(M,F). Then,Rβη

λx.P = {0} ∪ {1.p |

p ∈ Rβη
P }.

(e) LetM = Nx. If Px ∈ Ψc(Nx,F) thenPx ∈ Ψc
0(Nx,F).

(f) ∀N ∈ Ψc(M,F). ∀n ≥ 0. cn(N) ∈ Ψc(M,F).

(g) ∀N ∈ Ψc(M,F). |N |c = M .

(h) ∀N ∈ Ψc(M,F). F = |〈N,Rβη
N 〉|c.

2. LetM ∈ Ληc. We have:

(a) |〈M,Rβη
M 〉|c ⊆ Rβη

|M |c andM ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

(b) 〈|M |c, |〈M,Rβη
M 〉|c〉 is the unique〈N,F〉 wherec 6∈ fv(N), F ⊆ Rβη

N andM ∈ Ψc(N,F).

3. LetM ∈ Λ, wherec 6∈ fv(M), F ⊆ Rβη
M , p ∈ F andM

p

→βη M
′. Then,∃ a uniqueF ′ ⊆ Rβη

M ′

where∀N ∈ Ψc(M,F) there areN ′ ∈ Ψc(M ′,F ′) andp′ ∈ Rβη
N such thatN

p
′

→βη N ′ and
|〈N, p′〉|c = p.

Proof: 1a), 1b.), 1c), 1g) and 1h) By induction on the structure ofM .

1d) and 1e) By case on the belonging of0 in F .

1f) By case on the structure ofM and induction onn.

2a) By induction on the construction ofM .

2b) By lemmas 5.8.4 and 8.2.2a,c 6∈ fv(|M |c), |〈M,Rβη
M 〉|c ⊆ Rβη

|M |c andM ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

If 〈N ′,F ′〉 is another such pair thenF ′ ⊆ Rβη
N ′ andM ∈ Ψc(N ′,F ′) and by lemmas 8.2.1g and 8.2.1h,

|M |c = N ′ andF ′ = |〈M,Rβη
M 〉|c. ⊓⊔

Definition 8.3. (βη-development)
1. LetM ∈ Λ, F ⊆ Rβη

M , p ∈ F andM
p

→βη M ′. By lemma 8.2.3,∃ a uniqueF ′ ⊆ Rβη
M ′ ,

such that∀N ∈ Ψc(M,F), there areN ′ ∈ Ψc(M ′,F ′) andp′ ∈ Rβη
N whereN

p
′

→βη N ′ and
|〈N, p′〉|c = p. We callF ′ the set ofβη-residuals in M ′ of the set ofβη-redexesF in M

relative to p.

2. LetM ∈ Λ, wherec 6∈ fv(M), andF ⊆ Rβη
M . A one-stepβη-development of〈M,F〉, de-

noted〈M,F〉 →βηd 〈M ′,F ′〉, is aβη-reductionM
p

→βη M ′ wherep ∈ F andF ′ is the set
of βη-residuals inM ′ of the set ofβη-redexesF in M relative top. A βη-developmentis the

transitive closure of a one-stepβη-development. We writeM
F
→βηd M

′ for theβη-development
〈M,F〉 →∗

βηd 〈M ′,F ′〉.
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8.2. Comparison with Curry and Feys [CF58] and Klop [Klo80]

A common definition of aβη-residual is given by Curry and Feys [CF58] (p. 117, 118). Another defini-
tion of βη-residual (calledλ-residual) is presented by Klop [Klo80] (definition 2.4, p. 254). Klop shows
that these definitions allow one to prove different properties of developments. Following the definition
of a βη-residual given by Curry and Feys [CF58] (and as pointed out in [CF58, Klo80, BBKV76]), if
theη-redexλx.(λy.M)x, wherex 6∈ fv(λy.M), is reduced in the termP = (λx.(λy.M)x)N to give
the termQ = (λy.M)N , thenQ is not aβη-residual ofP in P (note that following the definition of a
λ-residual given by [Klo80],Q is aλ-residual of the redex(λy.M)x in P since theλ of the redexQ is
the same as theλ of the redex(λy.M)x in P ). Moreover, if theβ-redex(λy.My)x, wherey 6∈ fv(M),
is reduced in the termP = λx.(λy.My)x to give the termQ = λx.Mx, thenQ is not aβη-residual
of P in P (note that following the definition of aλ-residual given by [Klo80],Q is aλ-residual of the
redexP in P since theλ of the redexQ is the same as theλ of the redexP in P ). Our definition 8.3.1
differs from the common one stated by Curry and Feys [CF58] bythe cases illustrated in the follow-
ing example:Ψc((λx.(λy.M)x)N, {0, 1.0, 1.1.0}) = {cn((λx.(λy.P [y := c(cy)])x)Q) | n ≥ 0 ∧ P ∈

Ψc(M,∅)∧Q ∈ Ψc(N,∅)}, wherex 6∈ fv(λy.M). Letp = 1.0 then(λx.(λy.M)x)N
p

→βη (λy.M)N .

Moreover,P0 = cn((λx.(λy.P [y := c(cy)])x)Q)
p
′

→βη cn((λy.P [y := c(cy)])Q) such thatn ≥ 0,
P ∈ Ψc(M,∅),Q ∈ Ψc(N,∅), and|〈P0, p

′〉|c = |〈P0, 2
n.1.0〉|c = p, andcn((λy.P [y := c(cy)])Q) ∈

Ψc((λy.M)N, {0}).
Let us now compare our definition ofβη-residuals to theλ-residuals given by Klop [Klo80]. We

believe that we accept more redexes as residuals of a set of redexes than Curry and Feys [CF58] (as
shown by the examples of this section) and less than Klop.

We introduce the two calculīΛ andΛ̄ηc which are labelled versions of the calculiΛ andΛηc:
t ∈ Λ̄ ::= x | λnx.t | t1t2

v ∈ ABSc ::= λnx̄.wx̄ | λnx̄.u[x̄ := c(cx̄)], wherex̄ 6∈ fv(w)

w ∈ APPc ::= v | cu

u ∈ Λ̄ηc ::= x̄ | v | wu | cu

wherex̄, ȳ ∈ V \ {c}. Note thatABSc ⊆ APPc ⊆ Λ̄ηc ⊆ Λ̄.
The labels enable to distinguish two different occurrencesof aλ.
Since these two calculi are only labelled versions ofΛ andΛηc, let us assume in this section that the

work done so far holds whenΛ ansΛηc are replaced bȳΛ andΛ̄ηc.
Klop [Klo80] defines hisλ-residuals as follows:

“Let R = M0 →M1 → . . .→Mk → . . . be aβη-reduction,R0 a redex inM0 andRk

a redex inMk such that the head-λ of Rk descends from that ofR0.
Regardless whetherR0, Rk areβ- or η-redexes,Rk is called aλ-residual ofR0 viaR.”

We define the head-λ of a βη-redex by:headlam((λnx.t1)t2) = 〈1, n〉 andheadlam(λnx.t0x) =

〈2, n〉, if x 6∈ fv(t0). If F ⊆ Rβη
t we defineheadlamred(t,F) to be{〈i, n〉 | ∃p ∈ F . headlam(t|p) =

〈i, n〉}. We definehlr(t) to beheadlamred(t,Rβη
t ).

The following lemma states the equality between the head-λ’s of a setF of βη-redexes of a termt
and the head-λ’s of theβη-redexes of any termu in the application of the functionΨc to t andF :

Lemma 8.4. Let c 6∈ fv(t) andF ⊆ Rβη
t . If u ∈ Ψc(t,F) thenhlr(u) = headlamred(t,F).
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Proof: By induction on the structure oft. ⊓⊔

The following lemma states that if a termu1 in Λ̄ηc reduces to a termu′ then the set of head-λ’s of
theβη-redexes ofu′ is included in the set of head-λ’s of theβη-redexes ofu1.

Lemma 8.5. If u1 ∈ Λ̄ηc andu1
p

→βη u
′ thenhlr(u′) ⊆ hlr(u1).

Proof: By induction on the size ofu1 and then by case on the structure ofu1. ⊓⊔

Let us now prove that, following our definition, the set of head-λ’s of theβη-residuals of a set of
βη-redexes in a term is included in the set of head-λ’s of the considered set ofβη-redexes.

Let c 6∈ fv(t), F ⊆ Rβη
t andt

p

→βη t′ then by definition 8.3.1, there exists a uniqueF ′ ⊆ Rβη
t′ ,

such that for allu ∈ Ψc(t,F) (by lemma 8.2.1c,u ∈ Λ̄ηc), there existu′ ∈ Ψc(t′,F ′) andp′ ∈ Rβη
u

such thatu
p
′

→βη u
′ and |〈u, p′〉|c = p. The setF ′ is the set ofβη-residuals int′ of the set of redexes

F in t relative top. By lemma 2.2.3,c 6∈ fv(t′). By definitionΨc(t,F) is not empty. Letu ∈ Ψc(t,F)

then there existu′ ∈ Ψc(t′,F ′) andp′ ∈ Rβη
u such thatu

p
′

→βη u
′ and|〈u, p′〉|c = p. By lemma 8.5,

hlr(u′) ⊆ hlr(u). So, by lemma 8.4,headlamred(t′,F ′) ⊆ headlamred(t,F).
However, this is not enough to match Klop’s definition ofλ-residuals. As a matter of fact, as we

show below, we can findt andF such that, following Klop’s definition,p0 ∈ Rβη
t′ and p0 is a λ-

residual ofF via p but p0 6∈ F ′. Let t = (λ0x.xy)(λ1z.yz)
0
→βη (λ1z.yz)y = t′ and letF =

{0, 2.0}. ThenΨc(t,F) = {cn1((λ0x.c
n2(c3(x)y))(cn3(λ1z.c

n4+1(y)z))) | n1, n2, n3, n4 ≥ 0}. Let
u ∈ Ψc(t,F), thenu = cn1((λ0x.c

n2(c3(x)y))(cn3(λ1z.c
n4+1(y)z))) such thatn1, n2, n3, n4 ≥ 0. We

obtainu = cn1((λ0x.c
n2(c3(x)y))(cn3(λ1z.c

n4+1(y)z)))
p0

→βη c
n1+n2(cn3+3(λ1z.c

n4+1(y)z)y) = u′

such thatp0 = 2n1 .0. ThenF ′ = {1.0} is the set ofβη-residuals int′ of the set of redexesF in t relative
to p. But 0 is aλ-residual ofF via 0 and0 6∈ F ′.

It turns out that, though ourβη-residuals areλ-residuals, the opposite does not hold. For example:

t = λnx̄.(λmȳ.zȳ)x̄
1.0
→β λnx̄.zx̄ = t′ and0 ∈ Rβη

t′ , butu = λnx̄.(λmȳ.cz(c(cȳ)))x̄ ∈ Ψc(t, {0, 1.0})

andu = λnx̄.(λmȳ.cz(c(cȳ)))x̄
1.0
→βη λnx̄.cz(c(cx̄)) = u′ and0 6∈ Rβη

u′ .

8.3. Confluence ofβη-developments and hence ofβη-reduction

The next lemma relatesβη-reductions of frozen terms toβη-developments, and states that given aβη-
development, one can always define a new development that allows at least the same reductions.

Lemma 8.6. 1. LetM ∈ Λ, wherec 6∈ fv(M), andF ⊆ Rβη
M . Then:

〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇐⇒ ∃N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′

2. LetM ∈ Λ, such thatc 6∈ fv(M) andF1 ⊆ F2 ⊆ Rβη
M . If 〈M,F1〉 →βηd 〈M ′,F ′

1〉 then there

existsF ′
2 ⊆ Rβη

M ′ such thatF ′
1 ⊆ F ′

2 and〈M,F2〉 →βηd 〈M ′,F ′
2〉.

Proof: 1) Note thatΨc(M,F) 6= ∅. Then, it is sufficient to prove:

• 〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇒ ∀N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′ by induction on

the reduction〈M,F〉 →∗
βηd 〈M ′,F ′〉.
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• ∃N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗
βη N

′ ⇒ 〈M,F〉 →∗
βηd 〈M ′,F ′〉 by induction on

the reductionN →∗
βη N

′ such thatN ∈ Ψc(M,F) andN ′ ∈ Ψc(M ′,F ′).

2) By lemma 8.2.1c,Ψc(M,F1),Ψ
c(M,F2) ⊆ Ληc. For allN1 ∈ Ψc(M,F1) andN2 ∈ Ψc(M,F2),

by lemma 8.2.1g,|N1|
c = |N2|

c and by lemma 8.2.1h,|〈N1,R
βη
N1

〉|c = F1 ⊆ F2 = |〈N2,R
βη
N2

〉|c.
If 〈M,F1〉 →βηd 〈M ′,F ′

1〉 then by 1), there existN1 ∈ Ψc(M,F1) andN ′
1 ∈ Ψc(M ′,F ′

1) such that

N1 →βη N
′
1. By definition, there existsp1 such thatN1

p1

→βη N
′
1, and by lemma 2.2.8,p1 ∈ Rβη

N1
. Let

p0 = |〈N1, p1〉|
c, so by lemma 8.2.1h,p0 ∈ F1. By lemma 5.8.7a and lemma 8.2.1g,M

p0

→βη M
′.

By lemma 8.2.3 there exists a unique setF ′ ⊆ Rβη
M ′ such that for allP1 ∈ Ψc(M,F1) there exist

P ′
1 ∈ Ψc(M ′,F ′) andp′ ∈ Rβη

P1
such thatP1

p
′

→βη P
′
1 and|〈P1, p

′〉|c = p0.

Because,N1 ∈ Ψc(M,F1), there existP ′
1 ∈ Ψc(M ′,F ′) andp′ ∈ Rβη

N1
such thatN1

p
′

→βη P ′
1

and |〈N1, p
′〉|c = p0. Sincep′, p1 ∈ Rβη

N1
, by lemma 1,p′ = p1, so by lemma 2.2.9,P ′

1 = N ′
1. By

lemma 8.2.1h,F ′ = |〈N ′
1,R

βη

N ′

1

〉|c = F ′
1.

By lemma 8.2.3 there exists a unique setF ′
2 ⊆ Rβη

M ′ , such that for allP2 ∈ Ψc(M,F2) there exist

P ′
2 ∈ Ψc(M ′,F ′

2) andp2 ∈ Rβη
P2

such thatP2
p2

→βη P
′
2 and|〈P2, p2〉|

c = p0.

SinceΨc(M,F2) 6= ∅, letN2 ∈ Ψc(M,F2). So, there existN ′
2 ∈ Ψc(M ′,F ′

2) andp2 ∈ Rβη
N2

such

thatN2
p2

→βη N
′
2 and|〈N2, p2〉|

c = p0. By lemma 8.2.1h,F ′
2 = |〈N ′

2,R
βη

N ′

2

〉|c.

Hence, by lemma 5.8.7c,F ′
1 ⊆ F ′

2 and by lemma 8.6.1,〈M,F2〉 →βηd 〈M ′,F ′
2〉. ⊓⊔

Lemma 8.7. (Confluence of theβη-developments)
Let M ∈ Λ such thatc 6∈ fv(M). If M

F1→βηd M1 andM
F2→βηd M2, then there existF ′

1 ⊆ Rβη
M1

,

F ′
2 ⊆ Rβη

M2
andM3 ∈ Λ such thatM1

F ′

1→βηd M3 andM2
F ′

2→βηd M3.

Proof: If M
F1→βηd M1 andM

F2→βηd M2, then there existF ′′
1 ,F

′′
2 such that〈M,F1〉 →

∗
βηd 〈M1,F

′′
1 〉

and 〈M,F2〉 →∗
βηd 〈M2,F

′′
2 〉. By definitions 8.3.1 and 8.3.2,F ′′

1 ⊆ Rβη
M1

andF ′′
2 ⊆ Rβη

M2
. By

lemma 8.6.2, there existF ′′′
1 ⊆ Rβη

M1
andF ′′′

2 ⊆ Rβη
M2

such that〈M,F1 ∪ F2〉 →
∗
βηd 〈M1,F

′′
1 ∪ F ′′′

1 〉
and 〈M,F1 ∪ F2〉 →∗

βηd 〈M2,F
′′
2 ∪ F ′′′

2 〉. By lemma 7.6.1 there existT ∈ Ψc(M,F1 ∪ F2), T1 ∈
Ψc(M1,F

′′
1 ∪ F ′′′

1 ) andT2 ∈ Ψc(M2,F
′′
2 ∪ F ′′′

2 ) such thatT →∗
βη T1 andT →∗

βη T2.
Because by lemma 8.2.1c,T ∈ Ληc and by lemma 6.6.2,T is typable in the type systemD, soT ∈

CRβη by corollary 6.5. So, by lemma 2.2a, there existsT3 ∈ Ληc, such thatT1 →∗
βη T3 andT2 →∗

βη T3.

Let F3 = |〈T3,R
βη
T3
〉|c andM3 = |T3|

βη, then by lemma 8.2.2a,F3 ⊆ Rβη
M3

andT3 ∈ Ψc(M3,F3).
Hence, by lemma 8.6.1,〈M1,F

′′
1 ∪ F ′′′

1 〉 →∗
βηd 〈M3,F3〉 and 〈M2,F

′′
2 ∪ F ′′′

2 〉 →∗
βηd 〈M3,F3〉, i.e.

M1
F ′′

1
∪F ′′′

1→ βηd M3 andM2
F ′′

2
∪F ′′′

2→ βηd M3. ⊓⊔

Definition 8.8. Let c 6∈ fv(M). We define the following one step reduction:

M →1 M
′ ⇐⇒ ∃F ,F ′, 〈M,F〉 →∗

βηd 〈M ′,F ′〉

The next lemma is needed for the main proof of this section: the Church-Rosser property of the
untypedλ-calculus w.r.t.βη-reduction and relatesβη-developments toβη-reductions (lemma 8.9.5).
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Lemma 8.9. 1. Letc 6∈ fv(M). ∀P ∈ Ψc(M,∅). Rβη
P = ∅.

2. Letc 6∈ fv(M) ∪ fv(N) andx 6= c. ∀P ∈ Ψc(M,∅). ∀Q ∈ Ψc(N,∅).Rβη

P [x:=Q] = ∅.

3. Letc 6∈ fv(M). If p ∈ Rβη
M , P ∈ Ψc(M, {p}) andP →βη Q thenRβη

Q = ∅.

4. Letc 6∈ fv(M). If M
p

→βη M
′ then〈M, {p}〉 →βηd 〈M ′,∅〉.

5. →∗
βη=→∗

1.

Proof: 1), 2) and 3) By induction on the structure ofM .

4) By lemma 2.2.8,p ∈ Rβη
M . By lemma 8.2.3, there exists a unique setF ′ ⊆ Rβη

M ′ , such that for all
N ∈ Ψc(M, {p}), there existsN ′ ∈ Ψc(M ′,F ′) such thatN →βη N

′. Note thatΨc(M, {p}) 6= ∅. Let

N ∈ Ψc(M, {p}) then there existsN ′ ∈ Ψc(M ′,F ′) such thatN →βη N
′. By lemma 3,Rβη

N ′ = ∅, so

|〈N ′,Rβη
N ′〉|c = ∅ and by lemma 8.2.1h,F ′ = ∅. Finally, by lemma 8.6.1,〈M, {p}〉 →βηd 〈M ′,∅〉.

5) By definition→∗
1⊆→∗

βη. We prove by induction onM →∗
βη M

′ that→∗
βη⊆→∗

1. ⊓⊔

Finally, the next lemma is the main result of this section.

Lemma 8.10. Λ ⊆ CRβη.

Proof: Let M ∈ Λ and letc ∈ V such thatc 6∈ fv(M). LetM →∗
βη M1 andM →∗

βη M2. Then by
lemma 5,M →∗

1 M1 andM →∗
1 M2. We prove the statement by induction onM →∗

1 M1. ⊓⊔

9. Conclusion

Reducibility is a powerful concept which has been applied toprove a number of properties of theλ-
calculus (Church-Rosser, strong normalisation, etc.) using a single method. This paper studied two
reducibility methods which exploit the passage from typed (in an intersection type system) to untyped
terms. We showed that the first method given by Ghilezan and Likavec [GL02] fails in its aim and we
have only been able to provide a partial solution. We adaptedthe second method given by Koletsos
and Stavrinos [KS08] fromβ to βI-reduction and we generalised it toβη-reduction. There are dif-
ferences in the type systems chosen and the methods of reducibility used by Ghilezan and Likavec on
one hand and by Koletsos and Stavrinos on the other. Koletsosand Stavrinos use systemD [Kri90],
which has elimination rules for intersection types whereasGhilezan and Likavec useλ∩ andλ∩Ω with
subtyping. Moreover, Koletsos and Stavrinos’s method depends on the inclusion of typableλ-terms in
the set ofλ-terms possessing the Church-Rosser property, whereas (the working part of) Ghilezan and
Likavec’s method aims to prove the inclusion of typable terms in an arbitrary subset of the untypedλ-
calculus closed by some properties. Moreover, Ghilezan andLikavec consider theVAR(P), SAT(P),
andCLO(P) predicates whereas Koletsos and Stavrinos use standard reducibility methods through satu-
rated sets. Koletsos and Stavrinos prove the confluence of developments using the confluence of typable
λ-terms in systemD (the authors prove that even a simple type system is sufficient). The advantage of
Koletsos and Stavrinos’s proof of confluence of developments is that strong normalisation is not needed.
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A. Proofs of section 2

Proof(Lemma 2.2):

1 We prove the lemma by induction onp.

– Let p = 0.

Let M
0
→βη M

′ then eitherM = (λx.P )Q andM ′ = P [x := Q] and soM
0
→β M ′. Or

M = λx.M ′x such thatx 6∈ fv(M ′) and soM
0
→η M

′.

LetM →η 0M ′ thenM = λx.M ′x such thatx 6∈ fv(M ′) and soM
0
→βη M

′.

LetM →β 0M ′ thenM = (λx.P )Q andM ′ = P [x := Q] and soM
0
→βη M

′.

– Let p = 1.p′.

LetM
p

→βη M
′ then eitherM = λx.N , M ′ = λx.N ′ andN

p
′

→βη N
′. By IH, N

p

→β N
′

orN
p
′

→η N
′. SoM

p

→β M
′ orM

p

→η M
′. OrM = PQ, M ′ = P ′Q andP

p
′

→βη P
′. By

IH, P
p

→β P
′ or P

p
′

→η P
′. SoM

p

→β M
′ orM

p

→η M
′.

LetM
p

→η M
′ then eitherM = λx.N ,M ′ = λx.N ′ andN

p
′

→η N
′. By IH, N

p

→βη N
′, so

M
p

→βη M
′. OrM = PQ,M ′ = P ′Q andP

p
′

→η P
′. By IH, P

p

→βη P
′, soM

p

→βη M
′.

LetM
p

→β M
′ then eitherM = λx.N ,M ′ = λx.N ′ andN

p
′

→β N
′. By IH, N

p

→βη N
′, so

M
p

→βη M
′. OrM = PQ,M ′ = P ′Q andP

p
′

→β P
′. By IH, P

p

→βη P
′, soM

p

→βη M
′.

– Let p = 2.p′.

LetM
p

→βη M
′ thenM = PQ,M ′ = PQ′ andQ

p
′

→βη Q
′. By IH, Q

p

→β Q
′ orQ

p
′

→η Q
′.

SoM
p

→β M
′ orM

p

→η M
′.

Let M
p

→η M ′ thenM = PQ, M ′ = PQ′ andQ
p
′

→η Q′. By IH, Q
p

→βη Q′, so

M
p

→βη M
′.

Let M
p

→β M ′ thenM = PQ, M ′ = PQ′ andQ
p
′

→β Q′. By IH, Q
p

→βη Q′, so

M
p

→βη M
′.

2 We prove this lemma by induction on the structure ofM1.

– EitherM1 = x, thenfv((λx.M1)M2) = fv(M2) = fv(M1[x := M2]). If (λx.M1)M2 ∈ ΛI
thenM2 = M1[x := M2] ∈ ΛI.

– Or M1 = λy.M0 then fv((λx.λy.M0)M2) = fv((λx.M0)M2) \ {y} =IH fv(M0[x :=
M2]) \ {y} = fv(M1[x := M2]) such thaty 6∈ fv(M2) ∪ {x}. If (λx.λy.M0)M2 ∈ ΛI then
M0,M2 ∈ ΛI andx, y ∈ fv(M0). So(λx.M0)M2 ∈ ΛI. By IH, M0[x := M2] ∈ ΛI. Hence,
M1[x := M2] ∈ ΛI such thaty 6∈ fv(M2) ∪ {x}.

– Or M1 = PQ then fv((λx.PQ)M2) = fv(λx.P )M2 ∪ fv((λx.Q)M2) =IH fv(P [x :=
M2]) ∪ fv(Q[x := M2]) = fv((PQ)[x := M2]).

3. We prove the lemma by induction on the length of the reductionM →∗
βη M

′.
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– If M = M ′ thenfv(M) = fv(M ′)

– LetM →∗
βη M

′′ →βη M
′. By IH, fv(M) ⊆ fv(M ′′). By definition there existsp such that

M ′′ p

→βη M
′. We prove thatfv(M ′′) ⊆ fv(M ′) by induction onp.

∗ Let p = 0.

· eitherM ′′ = (λx.M1)M2 andM ′ = M1[x := M2]. We prove thatfv(M ′) ⊆
(fv(M1) \ {x}) ∪ fv(M2) = fv(M ′′) by induction on the structure ofM1.

1. LetM1 = y. If y = x thenM ′ = M2 andfv(M ′) = fv(M ′′). If y 6= x then
M ′ = y andfv(M ′) = {y} ⊆ {y} ∪ fv(M2) = fv(M ′′).

2. LetM1 = λy.M ′
1 thenM ′ = λy.M ′

1[x := M2] such thaty 6∈ fv(M2) ∪ {x}. By
IH, fv(M ′

1[x := M2]) ⊆ fv((λx.M ′
1)M2). Hence,fv(M ′) = fv(M ′

1[x := M2])\
{y} ⊆ fv((λx.M ′

1)M2) \ {y} = (fv(M ′
1) \ {x, y})∪ (fv(M2) \ {y}) = fv(M ′′).

3. LetM1 = M ′
1M

′′
1 thenM ′ = M ′

1[x := M2]M
′′
1 [x := M2]. By IH, fv(M ′

1[x :=
M2]) ⊆ fv((λx.M ′

1)M2) andfv(M ′′
1 [x := M2]) ⊆ fv((λx.M ′′

1 )M2).
Hence,fv(M ′) = fv(M ′

1[x := M2]) ∪ fv(M ′′
1 [x := M2]) ⊆ fv((λx.M ′

1)M2) ∪
fv((λx.M ′′

1 )M2) = ((fv(M ′
1) ∪ fv(M ′′

1 )) \ {x}) ∪ fv(M2) = fv(M ′′).

· OrM ′′ = λx.M ′x such thatx 6∈ fv(M ′), sofv(M ′′) = fv(M ′).

∗ Let p = 1.p′ then eitherM ′′ = λx.M1, M ′ = λx.M2 andM1
p
′

→βη M2. By IH,
fv(M1) ⊆ fv(M2), sofv(M ′′) = fv(M1) \ {x} ⊆ fv(M2) \ {x} = fv(M ′). OrM ′′ =

M1M2, M ′ = M ′
1M2 andM1

p
′

→βη M ′
1. By IH, fv(M1) ⊆ fv(M ′

1), so fv(M ′′) =
fv(M1) ∪ fv(M2) ⊆ fv(M ′

1) ∪ fv(M2) = fv(M ′).

∗ Let p = 2.p′ thenM ′′ = M1M2, M ′ = M1M
′
2 andM2

p
′

→βη M
′
2. By IH, fv(M2) ⊆

fv(M ′
2), sofv(M ′′) = fv(M1) ∪ fv(M2) ⊆ fv(M1) ∪ fv(M ′

2) = fv(M ′).

4. We prove the lemma by induction on the length of the reductionM →∗
βI M

′.

– If M = M ′ thenfv(M) = fv(M ′)

– Let M →∗
βI M

′′ →βI M
′. By IH, fv(M) = fv(M ′′) and ifM ∈ ΛI thenM ′′ ∈ ΛI. By

definition there existsp such thatM ′′ p

→βI M
′. We prove thatfv(M ′′) = fv(M ′) and that if

M ′′ ∈ ΛI thenM ′ ∈ ΛI by induction onp.

∗ Let p = 0 thenM ′′ = (λx.M1)M2 andM ′ = M1[x := M2] such thatx ∈ fv(M1). So,
by lemmma 2.2.2,fv(M ′) = fv(M ′′) and ifM ′′ ∈ ΛI thenM ′ ∈ ΛI.

∗ Let p = 1.p′ then eitherM ′′ = λx.M1, M ′ = λx.M2 andM1
p
′

→βI M2. By IH,
fv(M1) = fv(M2) and if M1 ∈ ΛI thenM2 ∈ ΛI, so fv(M ′′) = fv(M1) \ {x} =
fv(M2) \ {x} = fv(M ′) and ifM ′′ ∈ ΛI thenx ∈ fv(M1) = fv(M2) and soM ′ ∈ ΛI.

Or M ′′ = M1M2, M ′ = M ′
1M2 andM1

p
′

→βη M
′
1. By IH, fv(M1) = fv(M ′

1) and if
M1 ∈ ΛI thenM ′

1 ∈ ΛI, sofv(M ′′) = fv(M1)∪ fv(M2) = fv(M ′
1)∪ fv(M2) = fv(M ′)

and ifM ′′ ∈ ΛI thenM ′ ∈ ΛI.

∗ Let p = 2.p′ thenM ′′ = M1M2, M ′ = M1M
′
2 andM2

p
′

→βη M
′
2. By IH, fv(M2) =

fv(M ′
2) and ifM2 ∈ ΛI thenM ′

2 ∈ ΛI, so fv(M ′′) = fv(M1) ∪ fv(M2) = fv(M1) ∪
fv(M ′

2) = fv(M ′) and ifM ′′ ∈ ΛI thenM ′ ∈ ΛI.
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5. ⇒) Let λx.M
p

→βη P . We prove the result by case onp. Eitherp = 0 andM = Px such that

x 6∈ fv(P ). Or p = 1.p′, P = λx.M ′ andM
p
′

→βη M
′.

⇐) If P = λx.M ′ andM →βη pM ′. So,λx.M
1.p
→βη P andλx.M →βη P . If M = Px and

x 6∈ fvP thenλx.M = λx.Px
0
→βη P , soλx.M →βη P .

6a. If k = 0 thenP = (λx.M)N1N1 . . . Nn is a directr-reduct of(λx.M)N0N1 . . . Nn, absurd. So
k ≥ 1. Assumek = 1, we proveP = M [x := N0]N1 . . . Nn by induction onn ≥ 0.

– Let n = 0 andr = βI. By definition there existsp such that(λx.M)N0
p

→βI P . We prove
the result by case onp.

∗ Let p = 0 thenP = M [x := N0] andx ∈ fv(M).

∗ Let p = 1.p′ thenλx.M
p
′

→βI λx.M
′ andP = (λx.M ′)N0 is a directβI-reduct of

(λx.M)N0, absurd.

∗ Let p = 2.p′ thenN0
p
′

→βI N
′ andP = (λx.M)N ′ is a directβI-reduct of(λx.M)N0,

absurd.

– Let n = 0 andr = βη. By definition there existsp such that(λx.M)N0
p

→βI P . We prove
the result by case onp.

∗ Let p = 0 thenP = M [x := N0].

∗ Let p = 1.p′ thenλx.M
p
′

→βη Q andP = QN0. By lemma 2.2.5:

· Eitherp′ = 1.p′′,Q = λx.M ′ andM
p
′′

→βη M
′. HenceP = (λx.M ′)N0 is a direct

βη-reduct of(λx.M)N0, absurd.

· Or p = 0,M = Qx andx 6∈ fv(Q). Hence,P = QN0 = M [x := N0].

∗ Let p = 2.p′ thenN0
p
′

→βη N
′ andP = (λx.M)N ′ is a directβη-reduct of(λx.M)N0,

absurd.

– Letn = m+1 wherem ≥ 0. By definition there existsp such that(λx.M)N0 . . . Nm+1
p

→r

P . We prove the result by case onp.

∗ Eitherp = 1.p′ then(λx.M)N0 . . . Nm
p
′

→r Q andP = QNm+1.

· If Q is a directr-reduct of(λx.M)N0 . . . Nm thenP is a directr-reduct of
(λx.M)N0 . . . Nm+1, absurd.

· If Q is not a directr-reduct of(λx.M)N0 . . . Nm then it is done by IH.

∗ Or p = 2.p′ thenNm+1
p
′

→r N
′
m+1 andP = (λx.M)N0 . . . NmN

′
m+1 which is a direct

r-reduct of(λx.M)N0 . . . Nm+1, absurd.

6b. By 6a,k ≥ 1. We prove the statement by induction onk ≥ 1.

– If k = 1 then we conclude by 6a.

– Let (λx.M)N0 . . . Nn →∗
r Q→r P .
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∗ If Q is a directr-reduct of (λx.M)N0 . . . Nn, thenQ = (λx.M ′)N ′
0 . . . N

′
n, such

thatM →∗
r M ′ and∀i ∈ {0, . . . , n}, Ni →∗

r N ′
i . SinceP is not a directr-reduct

of (λx.M)N0 . . . Nn, P is not a directr-reduct ofQ. Hence by 6a,P = M ′[x :=
N ′

0]N
′
1 . . . N

′
n.

∗ If Q is not a directr-reduct of(λx.M)N0 . . . Nn, then by IH, there exists a directr-
reduct(λx.M ′)N ′

0 . . . N
′
n of (λx.M)N0 . . . Nn such thatM ′[x := N ′

0]N
′
1 . . . N

′
n →∗

r

Q→r P .

7. If P is a directr-reduct of(λx.M)N0 . . . Nn thenP = (λx.M ′)N ′
0 . . . N

′
n such thatM →∗

r M
′

and ∀i ∈ {0, . . . , n}, Ni →∗
r N ′

i . So P →r M ′[x := N ′
0]N

′
1 . . . N

′
n (if r = βI, note that

x ∈ fv(M ′) by lemma 2.2.4) andM [x := N0]N1 . . . Nn →∗
r M ′[x := N ′

0]N
′
1 . . . N

′
n . If P

is not a directr-reduct of(λx.M)N0 . . . Nn then by lemma 6.6b, there exists a directr-reduct,
(λx.M ′)N ′

0 . . . N
′
n, such thatM →∗

r M
′ and∀i ∈ {0, . . . , n}, Ni →

∗
r N

′
i , of (λx.M)N0 . . . Nn.

We haveM [x := N0]N1 . . . Nn →∗
r M

′[x := N ′
0]N

′
1 . . . N

′
n →∗

r P .

8. We prove this lemma by induction on ths structure ofp.

– Let p = 0 it is done by definition.

– Let p = 1.p′. Then:

∗ EitherM = λx.M1
1.p′

→ r λx.M
′
1 = M ′ such thatM1

p
′

→r M
′
1. By IH, p′ ∈ Rr

M1
. So

p ∈ Rr
M . If p ∈ Rr

M thenM |p = M1|p′ ∈ Rr. By IH, there existsM ′
1 such that

M1
p
′

→r M
′
1, soM

p

→r λx.M
′
1.

∗ Or M = M1M2
1.p
→r M

′
1M2 = M ′ such thatM1

p
′

→r M
′
1. By IH, p′ ∈ Rr

M1
. So

p ∈ Rr
M . If p ∈ Rr

M thenM |p = M1|p′ ∈ Rr. By IH, there existsM ′
1 such that

M1
p
′

→r M
′
1, soM

p

→r M
′
1M2.

– Let p = 2.p′. Then,M = M1M2
1.p
→r M1M

′
2 = M ′ such thatM2

p
′

→r M ′
2. By IH,

p′ ∈ Rr
M2

. Sop ∈ Rr
M . If p ∈ Rr

M thenM |p = M2|p′ ∈ Rr. By IH, there existsM ′
2 such

thatM2
p
′

→r M
′
2, soM

p

→r M1M
′
2.

9. We prove this lemma by induction on ths structure ofp.

– Let p = 0 it is done by definition.

– Let p = 1.p′. Then eitherM = λx.M ′ 1.p′

→ r λx.M
′
1 = M1 such thatM ′ p

′

→r M
′
1. By

definition,M2 = λx.M ′
2 andM ′ p

′

→r M
′
2. By IH, M ′

1 = M ′
2, soM1 = M2. Or M =

M ′N
1.p
→r M

′
1N = M1 such thatM ′ p

′

→r M
′
1. By definition,M2 = M ′

2N andM ′ p
′

→r M
′
2.

By IH, M ′
1 = M ′

2, soM1 = M2.

– Let p = 2.p′. ThenM = NM ′ 1.p
→r NM

′
1 = M1 such thatM ′ p

′

→r M
′
1. By definition,

M2 = NM ′
2 andM ′ p

′

→r M
′
2. By IH, M ′

1 = M ′
2, soM1 = M2.

⊓⊔

Proof(Lemma 5.2):
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1. We prove the lemma by induction on the structure ofM .

• LetM = y.

– Eithery = x thenM [x := c(cx)] = c(cx) 6= x and for anyN ,
M [x := c(cx)] = c(cx) 6= Nx becausecx 6= x.

– Or y 6= x thenM [x := c(cx)] = y 6= x and for anyN ,
M [x := c(cx)] = y 6= Nx.

• LetM = λy.P . Then,M [x := c(cx)] = λy.P [x := c(cx)] 6= x (such thaty 6∈ {c, x}) and
for anyN ,M [x := c(cx)] 6= Nx.

• Let M = PQ. Then,M [x := c(cx)] = P [x := c(cx)]Q[x := c(cx)] 6= x. Assume
M [x := c(cx)] = Nx, soQ[x := c(cx)] = x and by IH, absurd.

2. We prove this lemma by induction on the structure ofM .

• LetM = z.

– Either z = y thenM [y := c(cx)] = c(cx) 6= x and for anyN , M [y := c(cx)] =
c(cx) 6= Nx becausecx 6= x.

– Or z 6= y thenM [y := c(cx)] = z 6= x by hypothesis and for anyN ,M [y := c(cx)] =
z 6= Nx.

• Let M = λz.P . Then,M [y := c(cx)] = λz.P [y := c(cx)] 6= x (such thaty 6∈ {c, x, y})
and for anyN ,M [y := c(cx)] 6= Nx.

• Let M = PQ. Then,M [y := c(cx)] = P [x := c(cx)]Q[x := c(cx)] 6= x. Assume
M [y := c(cx)] = Nx, soQ[y := c(cx)] = x and by IH, absurd.

3. By cases on the derivation ofM ∈ Mc.

4. By cases on the structure ofM using 3.

5. By cases on the derivation ofMN ∈ Mc.

6. We prove this result by induction onn.

• If n = 0 then it is done.

• Let n = m+ 1 such thatm ≥ 0. By lemma 5.2.5,cm(M) ∈ Mc then by IH,M ∈ Mc.

7. Easy.

8. By cases on the derivation ofλx.P ∈ Ληc.

9. By cases on the derivation ofλx.P ∈ ΛIc.

10. We prove the lemma by induction on the structure ofM ∈ Mc.

• Case (R1)1. EitherM = x thenM [x := N ] = N ∈ Mc. OrM = y 6= x thenM [x :=
N ] = M ∈ Mc.
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• Case (R1)2. LetM = λy.P ∈ ΛIc such thaty 6= c, P ∈ ΛIc andy ∈ fv(P ). We have
M [x := N ] = λy.M [x := N ] such thaty 6∈ fv(N) ∪ {x}. By IH, P [x := N ] ∈ ΛIc, so
M [x := N ] ∈ ΛIc.

• Case (R1)3. LetM = λy.P [y := c(cy)] ∈ Ληc such thaty 6= c andP ∈ Ληc. By IH,
P [x := N ] ∈ Ληc. So by (R1).3M [x := N ] = λy.P [y := c(cy)][x := N ] = λy.P [x :=
N ][y := c(cy)] ∈ Ληc such thaty 6∈ fv(N) ∪ {x}.

• Case (R1)4. LetM = λy.Py such thatPy ∈ Ληc, y 6∈ fv(P ) ∪ {c} andP 6= c. We have
M [x := N ] = λy.(Py)[x := N ] = λy.P [x := N ]y, such thaty 6∈ fv(N) ∪ {x}. By IH,
P [x := N ]y ∈ Ληc. By lemma 5.2.4,P [x := N ] 6= c. Hence, becausey 6∈ fv(P [x := N ]),
M [x := N ] ∈ Ληc.

• Case (R2) LetM = cM1M2 such thatM1,M2 ∈ Mc. Then by IH,M1[x := N ],M2[x :=
N ] ∈ Mc. Hence,cM1[x := N ]M2[x := N ] ∈ Mc.

• Case (R3) LetM = M1M2 such thatM1,M2 ∈ Mc andM1 is aλ-abstraction. Then by
IH, M1[x := N ],M2[x := N ] ∈ Mc. Hence,M1[x := N ]M2[x := N ] ∈ Mc, since
M1[x := N ] is aλ-abstraction.

• Case (R4) LetM = cP such thatP ∈ Ληc. Then by IH,P [x := N ] ∈ Ληc and by (R4),
M [x := N ] ∈ Ληc.

11. By case on the structure ofM .

• letM ∈ V.

– EitherM = x then,M [x := c(cx)] = c(cx). Hence,c(cx) 6= y, c(cx) 6= Py since
cx 6= y, c(cx) 6= λy.P andc(cx) 6= (λy.P )Q. If M [x := c(cx)] = PQ thenP = c

andQ = cx.

– Or M = z 6= x thenM [x := c(cx)] = z. Hence, ifz = y thenM = y, z 6= Py,
z 6= λy.P , z 6= PQ andz 6= (λy.P )Q.

• Let M = λz.M ′ thenM [x := c(cx)] = λz.M ′[x := c(cx)], wherez 6∈ {x, c}. Hence,
λz.M ′[x := c(cx)] 6= y, λz.M ′[x := c(cx)] 6= Py, λz.M ′[x := c(cx)] 6= PQ and
λz.M ′[x := c(cx)] 6= (λy.P )Q. Letλz.M ′[x := c(cx)] = λy.P . By α-converions, assume
y = z. SoM ′[x := c(cx)] = P .

• LetM = M1M2 thenM [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)]. Hence,M1[x :=
c(cx)]M2[x := c(cx)] 6= y andM1[x := c(cx)]M2[x := c(cx)] 6= λy.P . If M1[x :=
c(cx)]M2[x := c(cx)] = Py thenP = M1[x := c(cx)] andM2[x := c(cx)] = y. So
M2 = y. If M1[x := c(cx)]M2[x := c(cx)] = PQ thenP = M1[x := c(cx)] and
Q = M2[x := c(cx)]. If M1[x := c(cx)]M2[x := c(cx)] = (λy.P )Q then λy.P =
M1[x := c(cx)] andQ = M2[x := c(cx)]. SoM1 = λy.M0 andP = M0[x := c(cx)]

12. 12a. By definition,x 6= c. By lemma 5.2.8, eitherP = Nx whereNx ∈ Ληc or P =
N [x := c(cx))] whereN ∈ Ληc. In the second case since by (R4)c(cx) ∈ Ληc, we get
by lemma 5.2.10 thatN [x := c(cx))] ∈ Ληc.

12b. By lemma 5.2.1 and lemma 5.2.8.

13. 13a.⇒) We prove the lemma by induction on the structure ofp.
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• Let p = 0 then:

– eitherM [x := c(cx)] = (λy.P )Q andM ′ = P [y := Q]. By lemma 5.2.11,
M = (λy.P ′)Q′, P = P ′[x := c(cx)] andQ = Q′[x := c(cx)] such that

y 6∈ {c, x}. SoM ′ = P ′[y := Q′][x := c(cx)] andM
0
→βη P

′[y := Q′].

– Or M [x := c(cx)] = λy.M ′y such thaty 6∈ fv(M ′). By lemma 5.2.11,M =
λy.N andM ′y = N [x := c(cx)] such thaty 6∈ {x, c}. Again by lemma 5.2.11,
N = N ′y andM ′ = N ′[x := c(cx)]. Becausey 6∈ fv(M ′), we obatiny 6∈

fv(N ′) and soM = λy.N ′y
0
→βη N

′.

• Let p = 1.p′. Then:

– EitherM [x := c(cx)] = λy.P
1.p′

→ βη λy.P ′ = M ′ such thatP
p
′

→βη P ′. By
lemma 5.2.11,M = λy.N andP = N [x := c(cx)] such thaty 6∈ {c, x}. By

IH, P ′ = N ′[x := c(cx)] andN
p
′

→βη N
′. SoM ′ = (λy.N ′)[x := c(cx)] and

M
1.p
→βη λy.N

′.

– Or M [x := c(cx)] = PQ
1.p′

→ βη P ′Q = M ′ such thatP
p
′

→βη P ′. Then by

lemma 5.2.11, eitherM = x andP = c andQ = cx but thenP
p
′

→βη P ′ is
wrong. OrM = P0Q0, P = P0[x := c(cx)] andQ = Q0[x := c(cx)]. By

IH, P ′ = P ′
0[x := c(cx)] andP0

p
′

→βη P
′
0. SoM ′ = (P ′

0Q0)[x := c(cx)] and

P0Q0
1.p′

→ βη P
′
0Q0.

• Let p = 2.p′ thenM [x := c(cx)] = PQ
2.p′

→ βη PQ
′ = M ′ such thatQ

p
′

→βη Q
′.

Then by lemma 5.2.11, eitherM = x andP = c andQ = cx but thenQ
p
′

→βη Q
′

is wrong. OrM = P0Q0, P = P0[x := c(cx)] andQ = Q0[x := c(cx)]. By

IH, Q′ = Q′
0[x := c(cx)] andQ0

p
′

→βη Q′
0. SoM ′ = (P0Q

′
0)[x := c(cx)] and

P0Q0
2.p′

→ βη P0Q
′
0.

⇐) We prove the lemma by induction on the structure ofp.

• Let p = 0 then:

– EitherM = λy.Ny such thaty 6∈ fv(N). ThenM [x := c(cx)] = λy.N [x :=

c(cx)]y
0
→βη N [x := c(cx)] such thaty 6∈ {c, x}.

– OrM = (λy.P )Q andM ′ = P [y := Q]. ThenM [x := c(cx)] = (λy.P [x :=

c(cx)])Q[x := c(cx)]
0
→βη P [x := c(cx)][y := Q[x := c(cx)]] = P [y :=

Q][x := c(cx)] such thaty 6∈ {c, x}.

• Let p = 1.p′.

– EitherM = λy.N
p

→βη λy.N ′ = M ′ such thatN
p
′

→βη N
′. By IH, N [x :=

c(cx)]
p
′

→βη N
′[x := c(cx)]. So,M [x := c(cx)]

p

→βη M
′[x := c(cx)] such that

y 6∈ {c, x}.

– OrM = PQ
p

→βη P
′Q = M ′ such thatP

p
′

→βη P
′. By IH, P [x := c(cx)]

p
′

→βη

P ′[x := c(cx)]. So,M [x := c(cx)]
p

→βη M
′[x := c(cx)].
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• Let p = 2.p′ thenM = PQ
p

→βη PQ′ = M ′ such thatQ
p
′

→βη Q′. By IH,

Q[x := c(cx)]
p
′

→βη Q
′[x := c(cx)]. So,M [x := c(cx)]

p

→βη M
′[x := c(cx)].

13b. We prove this lemma by induction onn.

• Let n = 0 then it is done.

• Let n = m + 1 such thatm ≥ 0. Thencn(M) = c(cm(M))
p

→βη M
′. By case onp

we obtain thatp = 2.p′ andM ′ = c(N ′) andcm(M)
p
′

→βη N
′. By IH, p′ = 2m.p′′ and

there existsN ′′ ∈ Ληc such thatN ′ = cm(N ′′) andM
p
′′

→βη N
′′. Sop = 2n.p′′ and

M ′ = cn(N ′′).
⊓⊔

Proof(Lemma 5.3): We split the proof of this lemma in two.
We prove the first part of this lemma by case on the structure ofM .

• LetM ∈ V andp ∈ Rr
M . SoM |p ∈ Rr. We prove by case on the structure ofp that there is no

suchp.

– Let p = 0 thenM |p = M 6∈ Rr.

– Let p = 1.p′ thenM |p is undefined.

– Let p = 2.p′ thenM |p is undefined.

• LetM = λx.N .

– LetM ∈ Rr. We prove by case on the structure ofp that if p ∈ Rr
M thenp ∈ {0} ∪ {1.p′ |

p′ ∈ Rr
N}.

∗ Let p = 0 thenM |p = M ∈ Rr.

∗ Let p = 1.p′ thenM |p = N |p′ ∈ Rr, sop′ ∈ Rr
N .

∗ Let p = 2.p′ thenM |p is undefined.

Let p ∈ {0} ∪ {1.p | p ∈ Rr
N}, we prove thatp ∈ Rr

M .

∗ Let p = 0. SinceM = M |p ∈ Rr, by definition,p ∈ Rr
M .

∗ Let p = 1.p′ such thatp′ ∈ Rr
N . By definitionM |p = N |p′ ∈ Rr.

– LetM 6∈ Rr. We prove by case on the structure ofp that if p ∈ Rr
M thenp ∈ {1.p′ | p′ ∈

Rr
N}.

∗ Let p = 0 thenM |p = M 6∈ Rr.

∗ Let p = 1.p′ thenM |p = N |p′ ∈ Rr, sop′ ∈ Rr
N .

∗ Let p = 2.p′ thenM |p is undefined.

Let p ∈ {1.p′ | p′ ∈ Rr
N}, we prove thatp ∈ Rr

M . Then,p = 1.p′ such thatp′ ∈ Rr
N . By

definitionM |p = N |p′ ∈ Rr.

• LetM = PQ.

– LetM ∈ Rr. We prove by case on the structure ofp that if p ∈ Rr
M thenp ∈ {0} ∪ {1.p′ |

p′ ∈ Rr
P } ∪ {2.p′ | p′ ∈ Rr

Q}.
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∗ Let p = 0 thenM |p = M ∈ Rr.

∗ Let p = 1.p′ thenM |p = P |p′ ∈ Rr, sop′ ∈ Rr
P .

∗ Let p = 2.p′ thenM |p = Q|p′ ∈ Rr, sop′ ∈ Rr
Q.

Let p ∈ {0} ∪ {1.p′ | p′ ∈ Rr
P} ∪ {2.p′ | p′ ∈ Rr

Q}, we prove thatp ∈ Rr
M .

∗ Let p = 0. SinceM |p = M ∈ Rr, sop ∈ Rr
M .

∗ Let p = 1.p′ such thatp′ ∈ Rr
P . SinceM |p = P |p′ ∈ Rr, p ∈ Rr

M

∗ Let p = 2.p′ such thatp′ ∈ Rr
Q. SinceM |p = Q|p′ ∈ Rr, p ∈ Rr

M

– LetM 6∈ Rr. We prove by induction on the structure ofp that if p ∈ Rr
M thenp ∈ {1.p′ |

p′ ∈ Rr
P} ∪ {1.p′ | p′ ∈ Rr

Q}.

∗ Let p = 0 thenM |p = M 6∈ Rr.

∗ Let p = 1.p′ thenM |p = P |p′ ∈ Rr, sop′ ∈ Rr
P .

∗ Let p = 2.p′ thenM |p = Q|p′ ∈ Rr, sop′ ∈ Rr
Q.

Let p ∈ {1.p′ | p′ ∈ Rr
P } ∪ {2.p′ | p′ ∈ Rr

Q}, we prove thatp ∈ Rr
M .

∗ Let p = 1.p′ such thatp′ ∈ Rr
P . SinceM |p = P |p′ ∈ Rr, p ∈ Rr

M

∗ Let p = 2.p′ such thatp′ ∈ Rr
Q. SinceM |p = Q|p′ ∈ Rr, p ∈ Rr

M

We prove the second part of this lemma by case on the structureof M .

• LetM ∈ V, by lemma 5.3,Rr
M = ∅, soF = ∅.

• LetM = λy.N then by lemma 5.3:

– If M ∈ Rr thenRr
M = {0} ∪ {1.p | p ∈ Rr

N}. LetF ′ = {p | 1.p ∈ F}. Let p ∈ F ′ then
1.p ∈ F , sop ∈ Rr

N .

∗ Let p ∈ F \ {0} thenp = 1.p′ such thatp′ ∈ Rr
N . Sop′ ∈ F ′ and it is done.

∗ Let p ∈ {1.p′ | p′ ∈ F ′} thenp = 1.p′ such thatp′ ∈ F ′. So1.p′ = p ∈ F \ {0}.

– If M 6∈ Rr thenRr
M = {1.p | p ∈ Rr

N}. Let F ′ = {p | 1.p ∈ F}. Let p ∈ F ′ then
1.p ∈ F , sop ∈ Rr

N .

∗ Let p ∈ F thenp = 1.p′ such thatp′ ∈ Rr
N . Sop′ ∈ F ′ and it is done.

∗ Let p ∈ {1.p′ | p′ ∈ F ′} thenp = 1.p′ such thatp′ ∈ F ′. So1.p′ = p ∈ F .

• LetM = PQ then by lemma 5.3:

– If M ∈ Rr thenRr
M = {0} ∪ {1.p | p ∈ Rr

P } ∪ {2.p | p ∈ Rr
Q}. LetF1 = {p | 1.p ∈ F}

andF2 = {2.p | p ∈ F}. Let p ∈ F1 then1.p ∈ F , sop ∈ Rr
P . Let p ∈ F2 then2.p ∈ F ,

sop ∈ Rr
Q.

∗ Let p ∈ F \ {0}. Eitherp = 1.p′ such thatp′ ∈ Rr
P , sop′ ∈ F1 and it is done. Or

p = 2.p′ such thatp′ ∈ Rr
Q, sop′ ∈ F2 and it is done.

∗ Let p ∈ {1.p′ | p′ ∈ F1} ∪ {2.p′ | p′ ∈ F2}. Eitherp = 1.p′ such thatp′ ∈ F1, so
1.p′ ∈ F \ {0}. Or p = 2.p′ such thatp′ ∈ F2, so2.p′ ∈ F \ {0}.
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– If M 6∈ Rr thenRr
M = {1.p | p ∈ Rr

P} ∪ {2.p | p | p ∈ Rr
Q}. LetF1 = {p | 1.p ∈ F}

andF2 = {p | 2.p ∈ F}. Let p ∈ F1 then1.p ∈ F , sop ∈ Rr
P . Let p ∈ F2 then2.p ∈ F ,

sop ∈ Rr
Q.

∗ Let p ∈ F . Eitherp = 1.p′ such thatp′ ∈ Rr
P , sop′ ∈ F1 and it is done. Orp = 2.p′

such thatp′ ∈ Rr
Q, sop′ ∈ F2 and it is done.

∗ Let p ∈ {1.p′ | p′ ∈ F1} ∪ {2.p′ | p′ ∈ F2}. Eitherp = 1.p′ such thatp′ ∈ F1, so
1.p′ ∈ F . Or p = 2.p′ such thatp′ ∈ F2, so2.p′ ∈ F .

⊓⊔

Proof(Lemma 5.4):

1. By case on the structure ofM .

• LetM ∈ V thenM,M [x := c(cx)] 6∈ Rβη.

• LetM = λy.N thenM [x := c(cx)] = λy.N [x := c(cx)], wherey 6∈ {x, c}.

– If M ∈ Rβη thenN = Py such thaty 6∈ fv(P ). N [x := c(cx)] = P [x := c(cx)]y and
y 6∈ fv(P [x := c(cx)]), soM [x := c(cx)] ∈ Rβη.

– If M [x := c(cx)] ∈ Rβη thenN [x := c(cx)] = Py such thaty 6∈ fv(P ). By 5.2.11,
N = Qy andP = Q[x := c(cx)]. SoM = λy.Qy. Becausey 6∈ fv(P ), we obtain
y 6∈ fv(Q) and soM ∈ Rβη.

• LetM = M1M2 thenM [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)].

– If M ∈ Rβη thenM1 = λy.M0. SoM [x := c(cx)] = (λy.M0[x := c(cx)])M2[x :=
c(cx)] ∈ Rβη, wherey 6∈ {x, c}.

– If M [x := c(cx)] ∈ Rβη thenM1[x := c(cx)] = λy.P . By 5.2.11,M1 = λy.M0 and
P = M0[x := c(cx)] such thaty 6∈ {c, x}. So,M ∈ Rβη

2. We prove this result by inducion on the structure ofM .

• If M ∈ V then by lemma 5.3,Rβη
M = ∅.

• Let M = λy.M ′. ThenM [x := c(cx)] = λy.M ′[x := c(cx)] wherey 6∈ {x, c}. By
lemma 5.3:

– If M ∈ Rβη then letp = 0. Then,M [x := c(cx)]|p = M [x := c(cx)] = M |p [x :=
c(cx)]

– Let p = 1.p′ such thatp′ ∈ Rβη
M ′ . Then,M [x := c(cx)]|p = M ′[x := c(cx)]|p′ =IH

M ′|p′ [x := c(cx)] = M |p [x := c(cx)].

• LetM = M1M2. ThenM [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)]. By lemma 5.3:

– If M ∈ Rβη then letp = 0. Then,M [x := c(cx)]|p = M [x := c(cx)] = M |p [x :=
c(cx)]

– Let p = 1.p′ such thatp′ ∈ Rβη
M1

. Then,M [x := c(cx)]|p = M1[x := c(cx)]|p′ =IH

M1|p′ [x := c(cx)] = M |p [x := c(cx)].

– Let p = 2.p′ such thatp′ ∈ Rβη
M2

. Then,M [x := c(cx)]|p = M2[x := c(cx)]|p′ =IH

M2|p′ [x := c(cx)] = M |p [x := c(cx)].
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3. ⇒) Let p ∈ Rβη

λx.M [x:=c(cx)]. By lemma 5.2.1,λx.M [x := c(cx)] 6∈ Rβη so by lemma 5.3,

p = 1.p′ such thatp′ ∈ Rβη

M [x:=c(cx)].

⇐) Let p ∈ Rβη

M [x:=c(cx)]. By lemma 5.3,1.p ∈ Rβη

λx.M [x:=c(cx)].

4. ⇒) Let p ∈ Rβη

M [x:=c(cx)]. We prove the statement by induction on the structure ofM

– M 6∈ V since by lemma 5.3,Rβη

M [x:=c(cx)] = ∅.

– Let M = λy.N soM [x := c(cx)] = λy.N [x := c(cx)], wherey 6∈ {x, c}. By
lemma 5.3:

∗ Either ifM [x := c(cx)] ∈ Rβη, p = 0. By 1,M ∈ Rβη, sop ∈ Rβη
M .

∗ Or p = 1.p′ such thatp′ ∈ Rβη

N [x:=c(cx)]. By IH, p′ ∈ Rβη
N . Hence by lemma 5.3,

p = 1.p′ ∈ Rβη
M .

– LetM = M1M2 soM [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)]. By lemma 5.3:

∗ Either ifM [x := c(cx)] ∈ Rβη, p = 0. By 1,M ∈ Rβη, so0 ∈ Rβη
M .

∗ Or p = 1.p′ such thatp′ ∈ Rβη

M1[x:=c(cx)]. By IH, p′ ∈ Rβη
M1

. Hence by lemma 5.3,

p = 1.p′ ∈ Rβη
M .

∗ Or p = 2.p′ such thatp′ ∈ Rβη

M2[x:=c(cx)]. By IH, p′ ∈ Rβη
M2

. Hence by lemma 5.3,

p = 2.p′ ∈ Rβη
M .

⇐) Let p ∈ Rr
M . Then by definitionM |p ∈ Rβη. By 1, M |p [x := c(cx)] ∈ Rβη. By 2,

M [x := c(cx)]|p ∈ Rβη. Sop ∈ Rβη

M [x:=c(cx)].

5. We prove this statement by induction onn ≥ 0.

• Let n = 0 then trivial.

• Let n = m+ 1 such thatm ≥ 0. By lemma 5.3,Rβη

cm(M) = {1.p | p ∈ Rβη
c } ∪ {2.p | p ∈

Rβη

cm(M)} =IH {2n.p | p ∈ Rβη
M }.

⊓⊔

Proof(Lemma 5.5.1a): We prove the statement by case onr.

• Eitherr = βI. SinceM ∈ ΛIc,M ∈ ΛI, soλx.P,Q ∈ ΛI. Hence,x ∈ fv(P ) andM ∈ RβI .

• Or r = βη. Trivial.
⊓⊔

Proof(Lemma 5.5.1b): We prove the statement by induction on the structure ofM .

• LetM ∈ V \ {c}. By lemma 5.3,Rr
M = ∅.

• Let M = λx.N ∈ ΛIc such thatN ∈ ΛIc and letp ∈ RβI
M . SinceM 6∈ RβI , by lemma 5.3,

p = 1.p′ such thatp′ ∈ RβI
N . So by IH,M |p = N |p′ ∈ ΛIc.
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• Let M = λx.N [x := c(cx)] ∈ Ληc such thatN ∈ Ληc and letp ∈ Rβη
M . By lemma 5.4.3,

p = 1.p′ andp′ ∈ Rβη

N [x:=c(cx)]. By lemma 5.4.4,p′ ∈ Rβη
N . By IH, N |p′ ∈ Ληc. So,M |p =

N [x := c(cx)]|p′ =5.4.2 N |p′ [x := c(cx)]. By lemma 5.2.10,N |p′ [x := c(cx)] ∈ Ληc.

• Let M = λx.Nx ∈ Ληc such thatNx ∈ Ληc, x 6∈ fv(N) andc 6= N . Let p ∈ Rβη
M . Since

M ∈ Rβη, by lemma 5.3:

– Eitherp = 0 soM |p = M ∈ Ληc.

– Or p = 1.p′ such thatp′ ∈ Rβη
Nx. By IH, M |p = (Nx)|p′ ∈ Ληc.

• LetM = cNP ∈ Mc such thatN,P ∈ Mc. Let p ∈ Rr
M . SinceM, cN 6∈ Rr, by lemma 5.3:

– Eitherp = 1.2.p′ such thatp′ ∈ Rr
N . By IH, M |p = N |p′ ∈ Mc.

– Or p = 2.p′ such thatp′ ∈ RP
r . By IH, M |p = P |p′ ∈ Mc.

• LetM = (λx.N)P ∈ Mc such thatλx.N,P ∈ Mc. Letp ∈ Rr
M . Since by lemma 1a,M ∈ Rr,

by lemma 5.3:

– Eitherp = 0 soM |p = M ∈ Mc.

– Or p = 1.p′ such thatp′ ∈ Rr
λx.N . By IH, M |p = (λx.N)|p′ ∈ Mc.

– Or p = 2.p′ such thatp′ ∈ Rr
P . By IH, M |p = P |p′ ∈ Mc.

• LetM = cN ∈ Ληc such thatN ∈ Ληc. Let p ∈ Rβη
M . SinceM 6∈ Rβη, by lemma 5.3,p = 2.p′

such thatp′ ∈ Rβη
N . By IH, M |p = N |p′ ∈ Ληc.

⊓⊔

Proof(Lemma 5.5.2):

2a. LetM ∈ Ληc andM →βη M ′. Then there existsp such thatM
p

→βη M ′. We prove that
M ′ ∈ Ληc by induction on the structure ofp.

• Let p = 0. Then:

– eitherM = λx.M ′x such thatx 6∈ fv(M ′). BecauseM ∈ Ληc, thenM ′x ∈ Ληc and
x 6= c. By lemma 5.2.8,M ′ ∈ Ληc.

– or M = (λx.N)P andM ′ = N [x := P ]. SinceM ∈ Ληc thenλx.N,P ∈ Ληc. By
definition and lemmas 5.2.10,N ∈ Ληc andx 6= c. By lemma 5.2.10,M ′ ∈ Ληc.

• Let p = 1.p′. Then:

– eitherM = λx.N
p

→βη λx.N
′ = M ′ such thatN

p
′

→βη N
′. SinceM ∈ Ληc:

∗ EitherN = P [x := c(cx)] whereP ∈ Ληc andx 6= c. So by lemma 5.2.13a,
N ′ = N ′′[x := c(cx)] andP →βη N ′′. By IH, N ′′ ∈ Ληc so by (R1).3,M ′ =
λx.N ′′[x := c(cx)] ∈ Ληc.

∗ Or N = Px wherePx ∈ Ληc, x 6∈ fv(P ) ∪ {c}, P 6= c. By IH, N ′ ∈ Ληc. By
lemma 5.2.8,P ∈ Ληc. By case onp′:
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· Eitherp′ = 0, P = (λy.Q) andN ′ = Q[y := x]. HenceM ′ = λx.Q[y := x] =
P ∈ Ληc.

· Or p′ = 1.p′′, N ′ = P ′x andP
p
′′

→βη P
′. By lemma 2.2.3,x 6∈ fv(P ′). By IH,

P ′ ∈ Ληc, so by lemma 5.2.3,P ′ 6= c. Hence,M ′ = λx.P ′x ∈ Ληc.

– orM = M1M2
p

→βη M
′
1M2 = M ′ such thatM1

p
′

→βη M
′
1. By lemma 5.2.5,M2 ∈ Ληc

and becauseM1 6= c we obtain:

∗ EitherM1 = cM0 andM0 ∈ Ληc. By case onp′ we obtainp′ = 2.p′′, M ′
1 = cM ′

0

andM0
p
′′

→βη M
′
0. By IH, M ′

0 ∈ Ληc, so by (R2),M ′ = cM ′
0M2 ∈ Ληc.

∗ OrM1 = λx.M0 andM1 ∈ Ληc. By IH,M ′
1 ∈ Ληc. By lemma 5.2.12a,M0 ∈ Ληc.

lemma 5.2.8,x 6= c. By case onp′:

· Either p′ = 0 andM0 = M ′
1x such thatx 6∈ fv(M ′

1). BecauseM0 = M ′
1x ∈

Ληc, by definition and lemma 5.2.5 we obtainM ′ = M ′
1M2 ∈ Ληc.

· Orp′ = 1.p′′ andM ′
1 = λx.M ′

0 such thatM0
p
′′

→βη M
′
0. SoM ′ = (λx.M ′

0)M2 ∈
Ληc.

• Let p = 2.p′. ThenM = M1M2
p

→βη M1M
′
2 = M ′ such thatM2

p
′

→βη M ′
2. By

lemma 5.2.5,M2 ∈ Ληc so by IH,M ′
2 ∈ Ληc. BecauseM = M1M2 ∈ Ληc, again by

lemma 5.2.5M ′ = M1M
′
2 ∈ Ληc.

2b. By induction onM →βI M
′ in a similar fashion to the above.

⊓⊔

Proof(Lemma 5.7.1): We prove the statement by induction onn ≥ 0.

• Let n = 0 then by definition|cn(M)|c = |M |c.

• Let n = m+ 1 such thatm ≥ 0 then|cn(M)|c = |c(cm(M))|c = |cm(M)|c =IH |M |c.
⊓⊔

Proof(Lemma 5.7.2): We prove the lemma by induction onn.

• If n = 0 then it is done.

• Letn = m+1 such thatm ≥ 0. Then,|〈cn(M),Rβη

cn(M)〉|
c = {|〈cn(M), p〉|c | p ∈ Rβη

cn(M)} =5.3

{|〈cn(M), 2.p〉|c | p ∈ Rβη

cm(M)} = {|〈cm(M), p〉|c | p ∈ Rβη

cm(M)} =IH |〈M,Rβη
M 〉|c.

⊓⊔

Proof(Lemma 5.7.3): We prove the lemma by induction onn.

• If n = 0 then it is done.

• Let n = m+ 1 such thatm ≥ 0. Then,|〈cn(M), 2n.p〉|c = |〈cm(M), 2m.p〉|c =IH |〈M, p〉|c

⊓⊔

Proof(Lemma 5.7.4):
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• let P ∈ V. We prove the statement by induction on the structure ofM .

– LetM ∈ V then|M |c = M = P .

– LetM = λx.N then|M |c = λx.|N |c 6= P .

– LetM = M1M2. If M1 = c then|M |c = |M2|
c. By IH, ∃n ≥ 0 such thatM2 = cn(P ). If

M1 6= c then|M |c = |M1|
c|M2|

c 6= P .

• Let P = λx.Q. We prove the statement by induction on the structure ofM .

– LetM ∈ V then|M |c = M 6= λx.Q.

– LetM = λx.N then|M |c = λx.|N |c so |N |c = Q.

– LetM = M1M2. If M1 = c then|M |c = |M2|
c. By IH, ∃n ≥ 0 such thatM2 = cn(λx.N)

and|N |c = Q. If M1 6= c then|M |c = |M1|
c|M2|

c 6= λx.Q.

• Let P = P1P2. We prove the statement by induction on the structure ofM .

– LetM ∈ V then|M |c = M 6= P1P2.

– LetM = λx.N then|M |c = λx.|N |c 6= P1P2.

– Let M = M1M2. If M1 = c then |M |c = |M2|
c. By IH, ∃n ≥ 0 such thatM2 =

cn(M ′
2M

′′
2 ), M ′

2 6= c, |M ′
2|

c = P1 and|M ′′
2 |

c = P2. If M1 6= c then|M |c = |M1|
c|M2|

c =
P1P2 so|M1|

c = P1 and|M2|
c = P2.

⊓⊔

Proof(Lemma 5.8.1): We prove the statement by induction onM .

• LetM ∈ V then by lemma 5.3,Rr
M = ∅.

• LetM = λx.N then by lemma 5.3:

– EitherM ∈ Rr then:

∗ Eitherp = p′ = 0 so it is done.

∗ Or p = 0 andp′ = 1.p′
1 such thatp′

1 ∈ Rr
N . Then, |〈M, 0〉|c = 0 6= |〈M, p′〉|c =

1.|〈N, p′
1〉|

c.

∗ Or p = 1.p1 and p′ = 1.p′
1 such thatp1, p1 ∈ Rr

N . By hypothesis,|〈M, p〉|c =
1.|〈N, p1〉|

c = 1.|〈N, p′
1〉|

c = |〈M, p′〉|c. So|〈N, p1〉|
c = |〈N, p′

1〉|
c and by IH,p1 = p′

1

sop = p′.

– OrM 6∈ Rr thenp = 1.p1 andp′ = 1.p′
1 such thatp1, p1 ∈ Rr

N . By hypothesis,|〈M, p〉|c =
1.|〈N, p1〉|

c = 1.|〈N, p′
1〉|

c = |〈M, p′〉|c. So|〈N, p1〉|
c = |〈N, p′

1〉|
c and by IH,p1 = p′

1 so
p = p′.

• LetM = PQ then by lemma 5.3:

– EitherM ∈ Rr, soP is aλ-abstraction and:

∗ Eitherp = p′ = 0 so it is done.
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∗ Or p = 0 andp′ = 1.p′
1 such thatp′

1 ∈ Rr
P . Then |〈M, 0〉|c = 0 6= |〈M, p′〉|c =

1.|〈P, p′
1〉|

c.

∗ Or p = 0 andp′ = 2.p′
1 such thatp′

1 ∈ Rr
Q. SinceP is aλ-abstraction,|〈M, 0〉|c =

0 6= |〈M, p′〉|c = 2.|〈Q, p′
1〉|

c.

∗ Or p = 1.p1 andp′ = 1.p′
1 such thatp1, p

′
1 ∈ Rr

P . Since by hypothesis,|〈M, p〉|c =
1.|〈P, p1〉|

c = 1.|〈P, p′
1〉|

c = |〈M, p′〉|c, then|〈P, p1〉|
c = |〈P, p′

1〉|
c. By IH, p1 = p′

1 so
p = p′.

∗ Or p = 1.p1 andp′ = 2.p′
1 such thatp1 ∈ Rr

P andp′
1 ∈ Rr

Q. SinceP is aλ-abstraction,
|〈M, p〉|c = 1.|〈P, p1〉|

c 6= 2.|〈Q, p′
1〉|

c = |〈M, p′〉|c.

∗ Or p = 2.p1 and p′ = 2.p′
1 such thatp1, p

′
1 ∈ Rr

Q. SinceP is a λ-abstraction,
by hypothesis,|〈M, p〉|c = 2.|〈Q, p1〉|

c = 2.|〈Q, p′
1〉|

c = |〈M, p′〉|c so |〈Q, p1〉|
c =

|〈Q, p′
1〉|

c. By IH, p1 = p′
1 sop = p′.

– OrM 6∈ Rr, then:

∗ Or p = 1.p1 andp′ = 1.p′
1 such thatp1, p

′
1 ∈ Rr

P . Since by hypothesis,|〈M, p〉|c =
1.|〈P, p1〉|

c = 1.|〈P, p′
1〉|

c = |〈M, p′〉|c, then|〈P, p1〉|
c = |〈P, p′

1〉|
c. By IH, p1 = p′

1 so
p = p′.

∗ Or p = 1.p1 andp′ = 2.p′
1 such thatp1 ∈ Rr

P andp′
1 ∈ Rr

Q. P = 6= c, otherwise, by
lemma 5.3,Rr

P = ∅. Moreover,|〈M, p〉|c = 1.|〈P, p1〉|
c 6= 2.|〈Q, p′

1〉|
c = |〈M, p′〉|c.

∗ Or p = 2.p1 andp′ = 2.p′
1 such thatp1, p

′
1 ∈ Rr

Q. If P 6= c then, by hypothesis,
|〈M, p〉|c = 2.|〈Q, p1〉|

c = 2.|〈Q, p′
1〉|

c = |〈M, p′〉|c so |〈Q, p1〉|
c = |〈Q, p′

1〉|
c. By IH,

p1 = p′
1 sop = p′. If P = c then, by hypothesis,|〈M, p〉|c = |〈Q, p1〉|

c = |〈Q, p′
1〉|

c =
|〈M, p′〉|c so|〈Q, p1〉|

c = |〈Q, p′
1〉|

c. By IH, p1 = p′
1 sop = p′.

⊓⊔

Proof(Lemma 5.8.2): We prove the statement by induction on the structure ofM .

• LetM ∈ V

– LetM = x then|M [x := c(cx)]|c = |c(cx)|c = |x|c.

– LetM = y 6= x then|M [x := c(cx)]|c = |M |c.

• Let M = λy.N then |M [x := c(cx)]|c = λy.|N [x := c(cx)]|c =IH λy.|N |c = |M |c, where
y 6∈ {x, c}.

• LetM = NP .

– EitherN = c, soN [x := c(cx)] = c. Then,|M [x := c(cx)]|c = |P [x := c(cx)]|c =IH

|P |c = |M |c.

– Or N 6= c, soN [x := c(cx)] 6= c. Then,|M [x := c(cx)]|c = |N [x := c(cx)]|c|P [x :=
c(cx)]|c =IH |N |c|P |c = |M |c.

⊓⊔

Proof(Lemma 5.8.3): We prove the statement by induction on the structure ofM

• LetM = y then by lemma 5.3,Rβη
M = ∅.
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• LetM = λy.N . Then by lemma 5.3:

– Eitherp = 0 if M ∈ Rβη. Then,|〈M [x := c(cx)], 0〉|c = 0 = |〈M, 0〉|c.

– Orp = 1.p′ such thatp′ ∈ Rβη
N . Then|〈M [x := c(cx)], p〉|c = 1.|〈N [x := c(cx)], p′〉|c =IH

1.|〈N, p′〉|c = |〈M, p〉|c such thaty 6∈ {x, c}.

• LetM = M1M2. Then by lemma 5.3:

– Eitherp = 0 if M ∈ Rβη. Then,|〈M [x := c(cx)], 0〉|c = 0 = |〈M, 0〉|c.

– Orp = 1.p′ such thatp′ ∈ Rβη
M1

. Then|〈M [x := c(cx)], p〉|c = 1.|〈M1[x := c(cx)], p′〉|c =IH

1.|〈M1, p
′〉|c = |〈M, p〉|c.

– Or p = 2.p′ such thatp′ ∈ Rβη
M2

.

∗ If M1 = c thenM1[x := c(cx)] = c and |〈M [x := c(cx)], p〉|c = |〈M2[x :=
c(cx)], p′〉|c =IH |〈M2, p

′〉|c = |〈M, p〉|c.

∗ If M1 6= c thenM1[x := c(cx)] 6= c and |〈M [x := c(cx)], p〉|c = 2.|〈M2[x :=
c(cx)], p′〉|c =IH 2.|〈M2, p

′〉|c = |〈M, p〉|c.
⊓⊔

Proof(Lemma 5.8.4): We prove this lemma by induction on the structure ofM .

• LetM ∈ V \ {c} then|M |c = M andfv(M) \ {c} = {M} = fv(|M |c).

• LetM = λy.P ∈ ΛIc such thatP ∈ ΛIc andy 6= c. Then|M |c = λy.|P |c andfv(M) \ {c} =
fv(P ) \ {y, c} =IH fv(|P |c) \ {y} = fv(|M |c).

• Let M = λy.P [y := c(cy)] ∈ Ληc such thatP ∈ Ληc andy 6= c. Then|M |c = λy.|P [y :=
c(cy)]|c =2 λy.|P |c and fv(M) \ {c} = fv(P [y := c(cy)]) \ {c, y} = fv(P ) \ {c, y} =IH

fv(|P |c) \ {y} = fv(|M |c).

• LetM = λy.Py ∈ Ληc such thatPy ∈ Ληc, y 6∈ fv(P )∪{c} andc 6= N . Then|M |c = λy.|Py|c

andfv(M) \ {c} = fv(Py) \ {c, y} =IH fv(|Py|c) \ {y} = fv(|M |c).

• Let M = cPQ ∈ Mc such thatP,Q ∈ Mc. Then |M |c = |P |c|Q|c and fv(M) \ {c} =
(fv(P ) ∪ fv(Q)) \ {c} = (fv(P ) \ {c}) ∪ (fv(Q) \ {c}) =IH fv(|P |c) ∪ fv(|Q|c) = fv(|M |c).

• LetM = (λy.P )Q ∈ Mc such thatλy.P,Q ∈ Mc. Then|M |c = |λy.P |c|Q|c andfv(M)\{c} =
(fv(λy.P ) ∪ fv(Q)) \ {c} = (fv(λy.P ) \ {c}) ∪ (fv(Q) \ {c}) =IH fv(|λy.P |c) ∪ fv(|Q|c) =
fv(|M |c).

• LetM = cP ∈ Ληc such thatN ∈ Ληc. Then|M |c = |P |c andfv(M) \ {c} = fv(P ) \ {c} =IH

fv(|P |c) = fv(|M |c).
⊓⊔

Proof(Lemma 5.8.5): We prove this lemma by induction on the structure ofM .

• LetM ∈ V \ {c}.
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– EitherM = x then|M [x := N ]|c = |N |c = M [x := |N |c] = |M |c[x := |N |c].

– OrM = y 6= x then|M [x := N ]|c = |M |c = M = M [x := |N |c] = |M |c[x := |N |c].

• LetM = λy.P ∈ ΛIc such thatP ∈ ΛIc andy 6= c. Then|M [x := N ]|c = λy.|P [x := N ]|c =IH

λy.|P |c[x := |N |c] = |M |c[x := |N |c], wherey 6∈ fv(N)∪{x} and so by lemma 4,y 6∈ fv(|N |c).

• Let M = λy.P [y := c(cy)] ∈ Ληc such thatP ∈ Ληc andy 6= c. Then |M [x := N ]|c =
λy.|P [y := c(cy)][x := N ]|c = λy.|P [x := N ][y := c(cy)]|c =2 λy.|P [x := N ]|c =IH

λy.|P |c[x := |N |c] =2 λy.|P [y := c(cy)]|c[x := |N |c] = |M |c[x := |N |c], wherey 6∈ fv(N) ∪
{x} and so by lemma 4,y 6∈ fv(|N |c).

• Let M = λy.Py ∈ Ληc such thatPy ∈ Ληc, y 6∈ fv(P ) ∪ {c} andc 6= P . |M [x := N ]|c =
λy.|(Py)[x := N ]|c =IH λy.|Py|c[x := |N |c] = |M |c[x := |N |c], wherey 6∈ fv(N) ∪ {x} and
so by lemma 4,y 6∈ fv(|N |c).

• LetM = cPQ ∈ Mc such thatP,Q ∈ Mc. |M [x := N ]|c = |P [x := N ]|c|Q[x := N ]|c =IH

|P |c[x := |N |c]|Q|c[x := |N |c] = (|P |c|Q|c)[x := |N |c] = |M |c[x := |N |c].

• LetM = (λy.P )Q ∈ Mc such thatλy.P,Q ∈ Mc. |M [x := N ]|c = |(λy.P )[x := N ]|c|Q[x :=
N ]|c =IH |λy.P |c[x := |N |c]|Q|c[x := |N |c] = (|λy.P |c|Q|c)[x := |N |c] = |M |c[x := |N |c].

• LetM = cP ∈ Ληc such thatN ∈ Ληc. |M [x := N ]|c = |P [x := N ]|c =IH |P |c[x := |N |c] =
|M |c[x := |N |c].

⊓⊔

Proof(Lemma 5.8.6): We prove the lemma by induction on the structure ofM .

• LetM ∈ V \ {c} then|M |c = M ∈ V \ {c} ⊆ ΛI.

• let M = λx.N such thatN ∈ ΛIc andx ∈ fv(N) andx 6= c. Then|M |c = λx.|N |c and by IH
|N |c ∈ ΛI. Sincex ∈ fv(N), by lemma 4,x ∈ fv(|N |c), so|M |c ∈ ΛI.

• Let M = cPQ such thatP,Q ∈ ΛIc then |M |c = |P |c|Q|c and by IH,|P |c, |Q|c ∈ ΛI, hence
|M |c ∈ ΛI.

• LetM = (λx.P )Q such thatλx.P,Q ∈ ΛIc then|M |c = |λx.P |c|Q|c and by IH,|λx.P |c, |Q|c ∈
ΛI, hence|M |c ∈ ΛI.

⊓⊔

Proof(Lemma 5.8.7a): Let p ∈ Rr
M , then by definition,M |p ∈ Rr. We prove the result by induction

on the structure ofp.

• Let p = 0.

– Let r = βI thenM = (λx.M1)M2 such thatx ∈ fv(M1) andλx.M1,M2 ∈ ΛIc and
M ′ = M1[x := M2]. By definitionM1 ∈ ΛIc, x ∈ fv(M1) andx 6= c. Then |M |c =
(λx.|M1|

c)|M2|
c and |M ′|c = |M1[x := M2]|

c =5 |M1|
c[x := |M2|

c]. By lemma 4,

x ∈ fv(|M1|
c). So,|M |c

0
→βI |M ′|c and|〈M, 0〉|c = 0.
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– Let r = βη.

∗ Either M = (λx.M1)M2 such thatλx.M1,M2 ∈ Ληc andM ′ = M1[x := M2].
By lemma 5.2,M1 ∈ ΛIc andx 6= c. Then |M |c = (λx.|M1|

c)|M2|
c and |M ′|c =

|M1[x := M2]|
c =5 |M1|

c[x := |M2|
c]. So,|M |c

0
→β |M ′|c and|〈M, 0〉|c = 0.

∗ OrM = λx.M ′x such thatM ′x ∈ Ληc, x 6∈ fv(M ′), x 6= c andM ′ 6= c. Then|M |c =

λx.|M ′|cx. By lemma 4,x ∈ fv(|M ′|c). So,|M |c
0
→β |M ′|c and|〈M, 0〉|c = 0.

• Let p = 1.p′.

– EitherM = λx.M1 andM ′ = λx.M ′
1 such thatM1

p
′

→r M
′
1. By lemma 5.3,p′ ∈ Rr

M1
. By

lemma 5.2,M1 ∈ Mc andx 6= c . By IH, |M1|
c p

′′

→r |M ′
1|

c such thatp′′ = |〈M1, p
′〉|c. So

|M |c
1.p′′

→ r |M ′|c and1.p′′ = |〈M, p〉|c.

– Or M = M1M2 andM ′ = M ′
1M2 such thatM1

p
′

→r M
′
1. By lemma 5.3,p′ ∈ Rr

M1
. By

lemma 5.3,M1 6= c. By lemma 5.2.5:

∗ EitherM1 = cM0 whereM0 ∈ Mc. By lemma 5.3,p′ = 2.p′
0 such thatp′

0 ∈ Rr
M0

.

So by definitionM ′
1 = cM ′

0 such thatM0
p
′

0→r M
′
0. By IH, |M0|

c
p
′′

0→r |M ′
0|

c such that

p′′
0 = |〈M0, p

′
0〉|

c. Hence|M |c
1.p′′

0→ r |M ′|c and |〈M, p〉|c = |〈cM0M2, 1.2.p
′
0〉|

c =
1.|〈cM0, 2.p

′
0〉|

c = 1.|〈M0, p
′
0〉|

c = 1.p′′
0

∗ Or M1 = λx.M0 ∈ Mc. By IH, |M1|
c p

′′

→r |M ′
1|

c such thatp′′ = |〈M1, p
′〉|c.

By lemma 2,M ′
1 ∈ Mc and by lemma 5.2.3,M ′

1 6= c. So, |M |c
1.p′′

→ r |M ′|c and
|〈M, p〉|c = 1.|〈M1, p

′〉|c = 1.p′′.

• Let p = 2.p′ thenM = M1M2 andM ′ = M1M
′
2 such thatM2

p
′

→r M ′
2. By lemma 5.3,

p′ ∈ Rr
M2

. By lemma 5.2.5,M2 ∈ Mc. By IH, |M2|
c p

′′

→r |M ′
2|

c such thatp′′ = |〈M2, p
′〉|c.

– If M1 = c then|M |c
p
′′

→r |M ′|c and|〈M, p〉|c = |〈M2, p
′〉|c = p′′.

– Otherwise|M |c
2.p′′

→ r |M ′|c and|〈M, p〉|c = 2.|〈M2, p
′〉|c = 2.p′′.

⊓⊔

Proof(Lemma 5.8.7b): The proof is by induction on the structure ofM1.

• LetM1 ∈ V \ {c}. ThenM1 = |M1|
c = |M2|

c. By lemma 4,M2 = cn(M1).

– EitherM1 = x, thenM1[x := N1] = N1 andM2[x := N2] = cn(N2). By hypothesis
|〈N1,R

r
N1

〉|c ⊆ |〈N2,R
r
N2

〉|c =2 |〈cn(N2),R
r
cn(N2)〉|

c

– Or M1 = y 6= x thenM1[x := N1] = y andM2[x := N2] = cn(y). We conclude using
lemma 2.

• Let M1 = λy.M ′
1 ∈ ΛIc such thaty ∈ fv(M ′

1), y 6= c andM ′
1 ∈ ΛIc then |M1|

c = λy.M ′
1 =

|M2|
c. By lemma 4 and becauseM2 ∈ ΛIc, M2 = λy.M ′

2, y ∈ fv(M ′
2), M

′
2 ∈ ΛIc and
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|M ′
2|

c = |M ′
1|

c. By lemma 5.3,RβI
M1

= {1.p | p ∈ RβI

M ′

1

} andRβI
M2

= {1.p | p ∈ RβI

M ′

2

}.

So,|〈M1,R
βI
M1

〉|c = {1.p | p ∈ |〈M ′
1,R

βI

M ′

1

〉|c} and|〈M2,R
βI
M2

〉|c = {1.p | p ∈ |〈M ′
2,R

βI

M ′

2

〉|c}.

Let p ∈ |〈M ′
1,R

βI

M ′

1

〉|c, then1.p ∈ |〈M1,R
βI
M1

〉|c ⊆ |〈M2,R
βI
M2

〉|c. Sop ∈ |〈M ′
2,R

βI

M ′

2

〉|c, i.e.

|〈M ′
1,R

βI

M ′

1

〉|c ⊆ |〈M ′
2,R

βI

M ′

2

〉|c.

By IH, |〈M ′
1[x := N1],R

βI

M ′

1
[x:=N1]

〉|c ⊆ |〈M ′
2[x := N2],R

βI

M ′

2
[x:=N2]

〉|c.

SinceM1[x := N1] = λy.M ′
1[x := N1] andM2[x := N2] = λy.M ′

2[x := N2] wherey 6∈

fv(N1)∪ fv(N2), by lemma 5.3,RβI

M1[x:=N1]
= {1.p | p ∈ RβI

M ′

1
[x:=N1]

} andRβI

M2[x:=N2]
= {1.p |

p ∈ RβI

M ′

2
[x:=N2]

}.

So |〈M1[x := N1],R
βI

M1[x:=N1]
〉|c = {1.p | p ∈ |〈M ′

1[x := N1],R
βI

M ′

1
[x:=N1]

〉|c} and|〈M2[x :=

N2],R
βI

M2[x:=N2]
〉|c = {1.p | p ∈ |〈M ′

2[x := N2],R
βI

M ′

2
[x:=N2]

〉|c}. Let p ∈ |〈M1[x :=

N1],R
βI

M1[x:=N1]
〉|c thenp = 1.p′ such thatp′ ∈ |〈M ′

1[x := N1],R
βI

M ′

1
[x:=N1]

〉|c ⊆ |〈M ′
2[x :=

N2],R
βI

M ′

2
[x:=N2]

〉|c. Sop ∈ |〈M2[x := N2],R
βI

M2[x:=N2]
〉|c.

• LetM1 = λy.M ′
1[y := c(cy)] ∈ Ληc such thatM ′

1 ∈ Ληc andy 6= c, then|M1|
c =2 λy.|M ′

1|
c.

Because|M2|
c = λy.|M ′

1|
c, then by lemma 4,M2 = cn(λy.P ) such that|P |c = |M ′

1|
c. By

lemma 5.2.6,λy.P ∈ Ληc. By lemma 5.2.12a,P ∈ Ληc. We prove the lemma by case onλy.P .

– Either λy.P = λy.M ′
2[y := c(cy)] such thatM ′

2 ∈ Ληc. Hence|M ′
2|

c =2 |M ′
2[y :=

c(cy)]|c = |M ′
1|

c. We also haveRβη
M1

=5.4.3 {1.p | p ∈ Rβη

M ′

1
[y:=c(cy)]

} =5.4.4 {1.p |

p ∈ Rβη

M ′

1

} and Rβη
λy.P =5.4.3 {1.p ∈ Rβη

M ′

2
[y:=c(cy)]} =5.4.4 {1.p | p ∈ Rβη

M ′

2

}. So

|〈M1,R
βη
M1

〉|c =3 {1.p | p ∈ |〈M ′
1,R

βη

M ′

1

〉|c} and |〈M2,R
βη
M2

〉|c =2 |〈λy.P,Rβη
λy.P 〉|

c =3

{1.p | p ∈ |〈M ′
2,R

βη

M ′

2

〉|c}. Letp ∈ |〈M ′
1,R

βη

M ′

1

〉|c then1.p ∈ |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c,

sop ∈ |〈M ′
2,R

βη

M ′

2

〉|c, i.e. |〈M ′
1,R

βη

M ′

1

〉|c ⊆ |〈M ′
2,R

βη

M ′

2

〉|c.

By IH, |〈M ′
1[x := N1],R

βη

M ′

1
[x:=N1]

〉|c ⊆ |〈M ′
2[x := N2],R

βη

M ′

2
[x:=N2]

〉|c.

BecauseM1[x := N1] = λy.M ′
1[y := c(cy)][x := N1] = λy.M ′

1[x := N1][y :=
c(cy)] and (λy.P )[x := N2] = λy.M ′

2[y := c(cy)][x := N2] = λy.M ′
2[x := N2][y :=

c(cy)] such thaty 6∈ fv(N1) ∪ fv(N2) ∪ {x}, we obtainRβη

M1[x:=N1]
=5.4.3 {1.p | p ∈

Rβη

M ′

1
[x:=N1][y:=c(cy)]

} =5.4.4 {1.p | p ∈ Rβη

M ′

1
[x:=N1]

} andRβη

(λy.P )[x:=N2]
=5.4.3 {1.p | p ∈

Rβη

M ′

2
[x:=N2][y:=c(cy)]} =5.4.4 {1.p | p ∈ Rβη

M ′

2
[x:=N2]

}.

So |〈M1[x := N1],R
βη

M1[x:=N1]
〉|c =3 {1.p | p ∈ |〈M ′

1[x := N1],R
βη

M ′

1
[x:=N1]

〉|c} and

|〈M2[x := N2],R
βη

M2[x:=N2]
〉|c =2 |〈(λy.P )[x := N2],R

βη

(λy.P )[x:=N2]〉|
c =3 {1.p | p ∈

|〈M ′
2[x := N2],R

βη

M ′

2
[x:=N2]

〉|c}. Let p ∈ |〈M1[x := N1],R
βI

M1[x:=N1]
〉|c thenp = 1.p′

such thatp′ ∈ |〈M ′
1[x := N1],R

βI

M ′

1
[x:=N1]

〉|c ⊆ |〈M ′
2[x := N2],R

βI

M ′

2
[x:=N2]

〉|c. Hence,

p ∈ |〈M2[x := N2],R
βI

M2[x:=N2]
〉|c.

– Let λy.P = λy.M ′
2y such thatP = M ′

2y ∈ Ληc, y 6∈ fv(M ′
2) andM ′

2 6= c. So we
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have |M ′
2y|

c = |M ′
1|

c. We already showed thatRβη
M1

= {1.p | p ∈ Rβη

M ′

1

}. Since

λy.P ∈ Rβη, by lemma 5.3,Rβη
λy.P = {0} ∪ {1.p | p ∈ Rβη

M ′

2
y
}. So |〈M1,R

βη
M1

〉|c =3

{1.p | p ∈ |〈M ′
1,R

βη

M ′

1

〉|c} and |〈M2,R
βη
M2

〉|c =2 |〈λy.P,Rβη
λy.P 〉|

c = {0} ∪ {1.p | p ∈

|〈M ′
2y,R

βη

M ′

2
y
〉|c}. Let p ∈ |〈M ′

1,R
βη

M ′

1

〉|c then1.p ∈ |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c, so

p ∈ |〈M ′
2y,R

βη

M ′

2
y
〉|c, i.e. |〈M ′

1,R
βη

M ′

1

〉|c ⊆ |〈M ′
2y,R

βη

M ′

2
y
〉|c.

By IH, |〈M ′
1[x := N1],R

βη

M ′

1
[x:=N1]

〉|c = |〈(M ′
2y)[x := N2],R

βη

(M ′

2
y)[x:=N2]

〉|c.

BecauseM1[x := N1] = λy.M ′
1[y := c(cy)][x := N1] = λy.M ′

1[x := N1][y :=
c(cy)], (λy.P )[x := N2] = λy.(M ′

2y)[x := N2] = λy.M ′
2[x := N2]y such thaty 6∈

fv(N1) ∪ fv(N2) ∪ {x}, we obtain(λy.P )[x := N2] ∈ Rβη, Rβη

M1[x:=N1]
=5.4.3 {1.p | p ∈

Rβη

M ′

1
[x:=N1][y:=c(cy)]

} =5.4.4 {1.p | p ∈ Rβη

M ′

1
[x:=N1]

} andRβη

(λy.P )[x:=N2]
= {0} ∪ {1.p |

p ∈ Rβη

(M ′

2
y)[x:=N2]}.

So |〈M1[x := N1],R
βη

M1[x:=N1]
〉|c =3 {1.p | p ∈ |〈M ′

1[x := N1],R
βη

M ′

1
[x:=N1]

〉|c} and

|〈M2[x := N2],R
βη

M2[x:=N2]
〉|c =2 |〈(λy.P )[x := N2],R

βη

(λy.P )[x:=N2]〉|
c = {0}∪{1.p | p ∈

|〈(M ′
2y)[x := N2],R

βη

(M ′

2
y)[x:=N2]

〉|c}. Letp ∈ |〈M1[x := N1],R
βI

M1[x:=N1]
〉|c thenp = 1.p′

such thatp′ ∈ |〈M ′
1[x := N1],R

βI

M ′

1
[x:=N1]

〉|c ⊆ |〈(M ′
2y)[x := N2],R

βI

(M ′

2
y)[x:=N2]〉|

c. So

p ∈ |〈M2[x := N2],R
βI

M2[x:=N2]
〉|c.

• LetM1 = λy.M ′
1y ∈ Ληc such thatM ′

1y ∈ Ληc, M ′
1 6= c andy 6∈ fv(M ′

1) ∪ {c}, then|M1|
c =

λy.|M ′
1y|

c. Because|M2|
c = λy.|M ′

1y|
c, then by lemma 4,M2 = cn(λy.P ) such that|P |c =

|M ′
1y|

c. By lemma 5.2.6,λy.P ∈ Ληc. By lemma 5.2.12a,P ∈ Ληc. We prove the lemma by case
onλy.P .

– Eitherλy.P = λy.M ′
2[y := c(cy)] such thatM ′

2 ∈ Ληc. SinceM1 ∈ Rβη, Rβη
M1

=5.3 {0} ∪

{1.p | p ∈ Rβη

M ′

1
y
}. Moreover,Rβη

λy.P =5.4.3 {1.p | p ∈ Rβη

M ′

2
[y:=c(cy)]

}, so|〈M1,R
βη
M1

〉|c =

{0} ∪ {1.p | p ∈ |〈M ′
1y,R

βη

M ′

1
y
〉|c} and|〈M2,R

βη
M2

〉|c =2 |〈λy.P,Rβη
λy.P 〉|

c = {1.p | p ∈

|〈M ′
2[y := c(cy)],Rβη

M ′

2
[y:=c(cy)]

〉|c}. We have0 ∈ |〈M1,R
βη
M1

〉|c but0 6∈ |〈M2,R
βη
M2

〉|c.

– Or λy.P = λy.M ′
2y such thatM ′

2y ∈ Ληc, y 6∈ fv(M ′
2) ∪ {x} andM ′

2 6= c. So we
have|M ′

2y|
c = |M ′

1y|
c. BecauseM1, λy.P ∈ Rβη, by lemma 5.3,Rβη

M1
= {0} ∪ {1.p |

p ∈ Rβη

M ′

1
y
} andRβη

λy.P = {0} ∪ {1.p | p ∈ Rβη

M ′

2
y
}. So|〈M1,R

βη
M1

〉|c = {0} ∪ {1.p | p ∈

|〈M ′
1y,R

βη

M ′

1
y
〉|c} and|〈M2,R

βη
M2

〉|c =2 |〈λy.P,Rβη
λy.P 〉|

c = {0}∪{1.p | p ∈ |〈M ′
2y,R

βη

M ′

2
y
〉|c}.

Letp ∈ |〈M ′
1y,R

βη

M ′

1
y
〉|c then1.p ∈ |〈M1,R

βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c, sop ∈ |〈M ′
2y,R

βη

M ′

2
y
〉|c,

i.e. |〈M ′
1y,R

βη

M ′

1
y
〉|c ⊆ |〈M ′

2y,R
βη

M ′

2
y
〉|c. By IH, |〈(M ′

1y)[x := N1],R
βη

(M ′

1
y)[x:=N1]

〉|c =

|〈(M ′
2y)[x := N2],R

βη

(M ′

2
y)[x:=N2]

〉|c.

BecauseM1[x := N1] = λy.(M ′
1y)[x := N1] = λy.M ′

1[x := N1]y, (λy.P )[x := N2] =
λy.(M ′

2y)[x := N2] = λy.M ′
2[x := N2]y andy 6∈ fv(N1) ∪ fv(N2) such thaty 6∈ fv(N1) ∪

fv(N2) ∪ {x}, we haveM1[x := N1], (λy.P )[x := N2] ∈ Rβη, Rβη

M1[x:=N1]
= {0} ∪
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{1.p | p ∈ Rβη

(M ′

1
y)[x:=N1]

} andRβη

M2[x:=N2]
= {0} ∪ {1.p | p ∈ Rβη

(M ′

2
y)[x:=N2]

}. So

|〈M1[x := N1],R
βη

M1[x:=N1]
〉|c = {0} ∪ {1.p | p ∈ |〈(M ′

1y)[x := N1],R
βη

(M ′

1
y)[x:=N1]

〉|c}

and|〈M2[x := N2],R
βη

M2[x:=N2]
〉|c =2 |〈(λy.P )[x := N2],R

βη

(λy.P )[x:=N2]
〉|c = {0}∪ {1.p |

p ∈ |〈(M ′
2y)[x := N2],R

βη

(M ′

2
y)[x:=N2]

〉|c}. Let p ∈ |〈M1[x := N1],R
βI

M1[x:=N1]
〉|c then

eitherp = 0 ∈ |〈M2[x := N2],R
βη

M2[x:=N2]
〉|c or p = 1.p′ such thatp′ ∈ |〈(M ′

1y)[x :=

N1],R
βI

(M ′

1
y)[x:=N1]

〉|c ⊆ |〈(M ′
2y)[x := N2],R

βI

(M ′

2
y)[x:=N2]

〉|c.

Sop ∈ |〈M2[x := N2],R
βI

M2[x:=N2]
〉|c.

• Let M1 = cP1Q1 ∈ Mc such thatP1, Q2 ∈ Mc then |M1|
c = |P1|

c|Q1|
c = |M2|

c. Note that
M1 6∈ Rr. Because|M2|

c = |P1|
c|Q1|

c, then by lemma 4,M2 = cn(PQ) such thatP 6= c,
|P |c = |P1|

c and|Q|c = |Q1|
c. By lemma 5.2.6,PQ ∈ Mc. We prove the lemma by case onPQ.

– EitherP,Q ∈ Mc andP is aλ-abstractionλy.P ′. BecausePQ ∈ Mc, by lemma 1a,PQ =
(λy.P ′)Q ∈ Rr. By lemma 5.3,Rr

M1
= {1.2.p | p ∈ Rr

P1
}∪{2.p | p ∈ Rr

Q1
} andRr

PQ =
{0} ∪ {1.p | p ∈ Rr

P} ∪ {2.p | p ∈ Rr
Q}. So|〈M1,R

r
M1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪

{2.p | p ∈ |〈Q1,R
r
Q1

〉|c} and |〈M2,R
r
M2

〉|c =2 |〈PQ,Rr
PQ〉|

c = {0} ∪ {1.p | p ∈
|〈P,Rr

P 〉|
c} ∪ {2.p | p ∈ |〈Q,Rr

Q〉|
c}. Let p ∈ |〈P1,R

r
P1
〉|c then1.p ∈ |〈M1,R

r
M1

〉|c ⊆
|〈M2,R

r
M2

〉|c. Sop ∈ |〈P,Rr
P 〉|

c, i.e. |〈P1,R
r
P1
〉|c ⊆ |〈P,Rr

P 〉|
c. Let p ∈ |〈Q1,R

r
Q1

〉|c

then 2.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. So p ∈ |〈Q,Rr
Q〉|

c, i.e. |〈Q1,R
r
Q1

〉|c ⊆
|〈Q,Rr

Q〉|
c. By IH, |〈P1[x := N1],R

r
P1[x:=N1]

〉|c ⊆ |〈P [x := N2],R
r
P [x:=N2]

〉|c and
|〈Q1[x := N1],R

r
Q1[x:=N1]

〉|c ⊆ |〈Q[x := N2],R
r
Q[x:=N2]

〉|c.

BecauseM1[x := N1] = cP1[x := N1]Q1[x := N1] and(PQ)[x := N2] = (λy.P ′[x :=
N2])Q[x := N2] ∈5.2.10 Mc such thaty 6∈ fv(N2), we obtainM1[x := N1] 6∈ Rr

and (PQ)[x := N2] ∈1a Rr. So by lemma 5.3 we haveRr
M1[x:=N1]

= {1.2.p | p ∈

Rr
P1[x:=N1]

} ∪ {2.p | p ∈ Rr
Q1[x:=N1]

} andRr
(PQ)[x:=N2]

= {0} ∪ {1.p | p ∈ Rr
P [x:=N2]

} ∪

{2.p | p ∈ Rr
Q[x:=N2]

}.
So |〈M1[x := N1],R

r
M1[x:=N1]

〉|c = {1.p | p ∈ |〈P1[x := N1],R
r
P1[x:=N1]

〉|c} ∪ {2.p |

p ∈ |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c} and |〈M2[x := N2],R
r
M2[x:=N2]

〉|c =2 |〈(PQ)[x :=

N2],R
r
(PQ)[x:=N2]

〉|c = {0}∪{1.p | p ∈ |〈P [x := N2],R
r
P [x:=N2]

〉|c}∪{2.p | p ∈ |〈Q[x :=

N2],R
r
Q[x:=N2]

〉|c}. Let p ∈ |〈M1[x := N1],R
r
M1[x:=N1]

〉|c then eitherp = 1.p′ such that
p′ ∈ |〈P1[x := N1],R

r
P1[x:=N1]

〉|c ⊆ |〈P [x := N2],R
r
P [x:=N2]

〉|c. So p ∈ |〈M2[x :=

N2],R
r
M2[x:=N2]

〉|c. Or p = 2.p′ such thatp′ ∈ |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c ⊆ |〈Q[x :=

N2],R
r
Q[x:=N2]

〉|c. Sop ∈ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c.

– Or P = cP ′ such thatP ′, Q ∈ Mc, then|P |c = |P ′|c = |P1|
c. SinceM1, PQ 6∈ Rr, by

lemma 5.3,Rr
M1

= {1.2.p | p ∈ Rr
P1
}∪{2.p | p ∈ Rr

Q1
} andRr

PQ = {1.2.p | p ∈ Rr
P ′}∪

{2.p | p ∈ Rr
Q}. So|〈M1,R

r
M1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,R

r
Q1

〉|c}

and|〈M2,R
r
M2

〉|c =2 |〈PQ,Rr
PQ〉|

c = {1.p | p ∈ |〈P ′,Rr
P ′〉|c} ∪ {2.p | p ∈ |〈Q,Rr

Q〉|
c}.

Let p ∈ |〈P1,R
r
P1
〉|c then1.p ∈ |〈M1,R

r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Sop ∈ |〈P ′,Rr
P ′〉|c,

i.e. |〈P1,R
r
P1
〉|c ⊆ |〈P ′,Rr

P ′〉|c. Let p ∈ |〈Q1,R
r
Q1

〉|c then 2.p ∈ |〈M1,R
r
M1

〉|c ⊆
|〈M2,R

r
M2

〉|c. So p ∈ |〈Q,Rr
Q〉|

c, i.e. |〈Q1,R
r
Q1

〉|c ⊆ |〈Q,Rr
Q〉|

c. By IH, |〈P1[x :=
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N1],R
r
P1[x:=N1]

〉|c ⊆ |〈P ′[x := N2],R
r
P ′[x:=N2]

〉|c and |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c ⊆

|〈Q[x := N2],R
r
Q[x:=N2]

〉|c.

BecauseM1[x := N1] = cP1[x := N1]Q1[x := N1] and (PQ)[x := N2] = cP ′[x :=
N2]Q[x := N2], we obtainM1[x := N1], (PQ)[x := N2] 6∈ Rr. So by lemma 5.3 we have
Rr

M1[x:=N1]
= {1.2.p | p ∈ Rr

P1[x:=N1]
} ∪ {2.p | p ∈ Rr

Q1[x:=N1]
} andRr

(PQ)[x:=N2]
=

{1.2.p | p ∈ Rr
P ′[x:=N2]

} ∪ {2.p | p ∈ Rr
Q[x:=N2]

}. So |〈M1[x := N1],R
r
M1[x:=N1]

〉|c =

{1.p | p ∈ |〈P1[x := N1],R
r
P1[x:=N1]

〉|c} ∪ {2.p | p ∈ |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c}

and |〈M2[x := N2],R
r
M2[x:=N2]

〉|c =2 |〈(PQ)[x := N2],R
r
(PQ)[x:=N2]

〉|c = {1.p | p ∈

|〈P ′[x := N2],R
r
P ′[x:=N2]

〉|c} ∪ {2.p | p ∈ |〈Q[x := N2],R
r
Q[x:=N2]

〉|c}.
Let p ∈ |〈M1[x := N1],R

r
M1[x:=N1]

〉|c then eitherp = 1.p′ such thatp′ ∈ |〈P1[x :=

N1],R
r
P1[x:=N1]

〉|c ⊆ |〈P ′[x := N2],R
r
P ′[x:=N2]

〉|c. Sop ∈ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c.
Or p = 2.p′ such thatp′ ∈ |〈Q1[x := N1],R

r
Q1[x:=N1]

〉|c ⊆ |〈Q[x := N2],R
r
Q[x:=N2]

〉|c. So
p ∈ |〈M2[x := N2],R

r
M2[x:=N2]

〉|c.

• LetM1 = P1Q1 ∈ Mc such thatP1, Q1 ∈ Mc andP1 is aλ-abstractionλy.P0. Then|M1|
c =

|P1|
c|Q1|

c. Note that becauseM1 ∈ Mc then by lemma 1a,M1 ∈ Rr. So by lemma 5.3,
0 ∈ Rr

M1
, so0 ∈ |〈M1,R

r
M1

〉|c. Because|M2|
c = |P1|

c|Q1|
c, then by lemma 4,M2 = cn(PQ)

such thatP 6= c, |P |c = |P1|
c and |Q|c = |Q1|

c. By lemma 5.2.6,PQ ∈ Mc. We prove the
lemma by case onPQ.

– Either P = cP ′ such thatP ′, Q ∈ Mc, soPQ 6∈ Rr. Hence, by lemma 5.3,Rr
PQ =

{1.2.p | p ∈ Rr
P ′} ∪ {2.p | p ∈ Rr

Q}. So |〈M2,R
r
M2

〉|c =2 |〈PQ,Rr
PQ〉|

c = {1.p | p ∈
|〈P ′,Rr

P ′〉|c} ∪ {2.p | p ∈ |〈Q,Rr
Q〉|

c}. Hence0 6∈ |〈M2,R
r
M2

〉|c.

– Or P,Q ∈ Mc andP is aλ-abstractionλy.P ′ . BecausePQ = (λy.P ′)Q ∈ Mc then by
lemma 1a,PQ ∈ Rr. By lemma 5.3,Rr

M1
= {0} ∪ {1.p | p ∈ Rr

P1
} ∪ {2.p | p ∈ Rr

Q1
}

andRr
PQ = {0} ∪ {1.p | p ∈ Rr

P } ∪ {2.p ∈ Rr
Q}. So, |〈M1,R

r
M1

〉|c = {0} ∪ {1.p |

p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,R

r
Q1

〉|c} and |〈M2,R
r
M2

〉|c =2 |〈PQ,Rr
PQ〉|

c =
{0} ∪ {1.p | p ∈ |〈P,Rr

P 〉|
c} ∪ {2.p | p ∈ |〈Q,Rr

Q〉|
c}. Let p ∈ |〈P1,R

r
P1
〉|c then

1.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Sop ∈ |〈P,Rr
P 〉|

c, i.e. |〈P1,R
r
P1
〉|c ⊆ |〈P,Rr

P 〉|
c.

let p ∈ |〈Q1,R
r
Q1

〉|c then2.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. So,p ∈ |〈Q,Rr
Q〉|

c, i.e.
|〈Q1,R

r
Q1

〉|c ⊆ |〈Q,Rr
Q〉|

c.
By IH, |〈P1[x := N1],R

r
P1[x:=N1]

〉|c ⊆ |〈P [x := N2],R
r
P [x:=N2]

〉|c and
|〈Q1[x := N1],R

r
Q1[x:=N1]

〉|c ⊆ |〈Q[x := N2],R
r
Q[x:=N2]

〉|c.

By lemma 5.2.10,M1[x := N1] ∈ Mc and by lemma 1a,M1[x := N1] = (λy.P0[x :=
N1])Q1[x := N1] ∈ Rr. By lemma 5.2.10,(PQ)[x := N2] ∈ Mc and by lemma 1a,
(PQ)[x := N2] = (λy.P ′[x := N2])Q[x := N2] ∈ Rr. So by lemma 5.3 we have
Rr

M1[x:=N1]
= {0}∪ {1.p | p ∈ Rr

P1[x:=N1]
}∪ {2.p | p ∈ Rr

Q1[x:=N1]
} andRr

(PQ)[x:=N2]
=

{0}∪{1.p | p ∈ Rr
P [x:=N2]

}∪{2.p | p ∈ Rr
Q[x:=N2]

}. So|〈M1[x := N1],R
r
M1[x:=N1]

〉|c =

{0}{1.p | p ∈ |〈P1[x := N1],R
r
P1[x:=N1]

〉|c} ∪ {2.p | p ∈ |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c}

and |〈M2[x := N2],R
r
M2[x:=N2]

〉|c =2 |〈(PQ)[x := N2],R
r
(PQ)[x:=N2]

〉|c = {0} ∪ {1.p |

p ∈ |〈P [x := N2],R
r
P [x:=N2]

〉|c} ∪ {2.p | p ∈ |〈Q[x := N2],R
r
Q[x:=N2]

〉|c}. Let p ∈

|〈M1[x := N1],R
r
M1[x:=N1]

〉|c then eitherp = 0 ∈ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c. Or
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p = 1.p′ such thatp′ ∈ |〈P1[x := N1],R
r
P1[x:=N1]

〉|c ⊆ |〈P [x := N2],R
r
P [x:=N2]

〉|c. Sop ∈

|〈M2[x := N2],R
r
M2[x:=N2]

〉|c. Or p = 2.p′ such thatp′ ∈ |〈Q1[x := N1],R
r
Q1[x:=N1]

〉|c ⊆

|〈Q[x := N2],R
r
Q[x:=N2]

〉|c. Sop ∈ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c.

• Let M1 = cM ′
1 ∈ Ληc such thatM ′

1 ∈ Ληc. So |M ′
1|

c = |M1|
c. By lemm 2,|〈M1,R

βη
M1

〉|c =

|〈M ′
1,R

βη

M ′

1

〉|c. By IH, |〈M ′
1[x := N1],R

r
M ′

1
[x:=N1]

〉|c ⊆ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c. Since

M1[x := N1] = cM ′
1[x := N1] then by lemm 2,|〈M1[x := N1],R

βη

M1[x:=N1]
〉|c = |〈M ′

1[x :=

N1],R
βη

M ′

1
[x:=N1]

〉|c. So|〈M1[x := N1],R
r
M1[x:=N1]

〉|c ⊆ |〈M2[x := N2],R
r
M2[x:=N2]

〉|c.
⊓⊔

Proof(Lemma 5.8.7c): By lemma 8,p1 ∈ Rr
M1

andp2 ∈ Rr
M2

. We prove this lemma by induction
on the structure ofM1.

1. LetM1 ∈ V \ {c} then nothing to prove sinceM1 does not reduce.

2. Let M1 = λx.N1 ∈ ΛIc such thatx 6= c. So |M1|
c = λx.|N1|

c = |M2|
c. By lemma 4,

becauseM2 ∈ ΛIc and by lemma 5.2,M2 = λx.N2 and |N2|
c = |N1|

c . SoN2 ∈ ΛIc. Since
M1,M2 6∈ RβI , by lemma 5.3,RβI

M1
= {1.p | p ∈ RβI

N1
} andRβI

M2
= {1.p | pRβI

N2
} so

|〈M1,R
βI
M1

〉|c = {1.p | p ∈ |〈N1,R
βI
N1

〉|c} and |〈M2,R
βI
M2

〉|c = {1.p | p ∈ |〈N2,R
βI
N2

〉|c}.

Let p ∈ |〈N1,R
βI
N1

〉|c then1.p ∈ |〈M1,R
βI
M1

〉|c, so by hypothesis,1.p ∈ |〈M2,R
βI
M2

〉|c. Hence,

p ∈ |〈N2,R
βI
N2

〉|c, i.e. |〈N1,R
βI
N1

〉|c ⊆ |〈N2,R
βI
N2

〉|c. Sincep1 ∈ RβI
M1

, p1 = 1.p′
1 such that

p′
1 ∈ RβI

N1
. Sincep2 ∈ RβI

M2
, p2 = 1.p′

2 such thatp′
2 ∈ RβI

N2
. Since|〈M1, p〉|

c = |〈M2, p〉|
c then

|〈N1, p
′
1〉|

c = |〈N2, p
′
2〉|

c. Hence,M1 = λx.N1
p1

→βI λx.N
′
1 = M ′

1 such thatN1
p
′

1→βI N
′
1 and

M2 = λx.N2
p2

→βI λx.N
′
2 = M ′

2 such thatN2
p
′

2→βI N
′
2. By IH, |〈N ′

1,R
βI

N ′

1

〉|c ⊆ |〈N ′
2,R

βI

N ′

2

〉|c.

By lemma 5.3,RβI

M ′

1

= {1.p | p ∈ RβI

N ′

1

} andRβI

M ′

2

= {1.p | p ∈ RβI

N ′

2

}, so |〈M ′
1,R

βI

M ′

1

〉|c =

{1.p | p ∈ |〈N ′
1,R

βI

N ′

1

〉|c} and|〈M ′
2,R

βI

M ′

2

〉|c = {1.p | p ∈ |〈N ′
2,R

βI

N ′

2

〉|c}. Letp ∈ |〈M ′
1,R

βI

M ′

1

〉|c,

thenp = 1.p′ such thatp′ ∈ |〈N ′
1,R

βI

N ′

1

〉|c ⊆ |〈N ′
2,R

βI

N ′

2

〉|c, sop ∈ |〈M ′
2,R

βI

M ′

2

〉|c.

3. LetM1 = λx.N1[x := c(cx)] ∈ Ληc such thatN1 ∈ Ληc andx 6= c then|M1|
c = λx.|N1[x :=

c(cx)]|c =2 λx.|N1|
c. Because|M2|

c = λx.|N1|
c, then by lemma 4,M2 = cn(λx.P ) such that

|P |c = |N1|
c. By lemma 5.2.6,λx.P ∈ Ληc. We prove the lemma by case onλx.P .

• Eitherλx.P = λx.N2[x := c(cx)] such thatN2 ∈ Ληc. Then,
|N1|

c = |P |c = |N2[x := c(cx)]|c =2 |N2|
c andRβη

M1
=5.4.3 {1.p | p ∈ Rβη

N1[x:=c(cx)]} =5.4.4

{1.p | p ∈ Rβη
N1

} andRβη
λx.P =5.4.3 {1.p | p ∈ Rβη

N2[x:=c(cx)]} =5.4.4 {1.p | p ∈ Rβη
N2

}.

So,|〈M1,R
βη
M1

〉|c =3 {1.p | p ∈ |〈N1,R
βη
N1

〉|c} and|〈M2,R
βη
M2

〉|c =2 |〈λx.P,Rβη
λx.P 〉|

c =3

{1.p | p ∈ |〈N2,R
βη
N2

〉|c}. Letp ∈ |〈N1,R
βη
N1

〉|c then1.p ∈ |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c,

sop ∈ |〈N2,R
βη
N2

〉|c, i.e.|〈N1,R
βη
N1

〉|c ⊆ |〈N2,R
βη
N2

〉|c. Becausep1 ∈ Rβη
M1

, we obtainp1 =

1.p′
1 such thatp′

1 ∈ Rβη
N1

. Becausep2 ∈ Rβη
M2

and by lemma 5.4.5 we obtainp2 = 2n.1.p′
2

such thatp′
2 ∈ Rβη

N2
. Because1.|〈N1, p

′
1〉|

c =3 |〈M1, p1〉|
c = |〈M2, p2〉|

c =3,3 1.|〈N2, p
′
2〉|

c,
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we obtain|〈N1, p
′
1〉|

c = |〈N2, p
′
2〉|

c. SoM1 = λx.N1[x := c(cx)]
p1

→βη λx.P1 = M ′
1 and

M2 = cn(λx.N2[x := c(cx)])
p2

→βη c
n(λx.P2) = M ′

2 such thatN1[x := c(cx)]
p
′

1→βη P1

andN2[x := c(cx)]
p
′

2→βη P2 . By lemma 5.2.13a,P1 = N ′
1[x := c(cx)], P2 = N ′

2[x :=

c(cx)], N1
p
′

1→βη N ′
1 andN2

p
′

2→βη N ′
2. By IH, |〈N ′

1,R
βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c. Hence,

Rβη

M ′

1

=5.4.3 {1.p | p ∈ Rβη

N ′

1
[x:=c(cx)]

} =5.4.4 {1.p | p ∈ Rβη

N ′

1

} and Rβη
λx.P2

=5.4.3

{1.p ∈ Rβη

N ′

2
[x:=c(cx)]

} =5.4.4 {1.p | p ∈ Rβη

N ′

2

}. So, |〈M ′
1,R

βη

M ′

1

〉|c =3 {1.p | p ∈

|〈N ′
1,R

βη

N ′

1

〉|c} and |〈M ′
2,R

βη

M ′

2

〉|c =2 |〈λx.P2,R
βη
λx.P2

〉|c =3 {1.p | p ∈ |〈N ′
2,R

βη

N ′

2

〉|c}.

Let p ∈ |〈M ′
1,R

βη

M ′

1

〉|c then p = 1.p′ such thatp′ ∈ |〈N ′
1,R

βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c, so

p ∈ |〈M ′
2,R

βη

M ′

2

〉|c, i.e. |〈M ′
1,R

βη

M ′

1

〉|c ⊆ |〈M ′
2,R

βη

M ′

2

〉|c.

• Let λx.P = λx.N2x such thatN2x ∈ Ληc, x 6∈ fv(N2) andN2 6= c, thenλx.P ∈ Rβη,
Rβη

M1
=5.4.3 {1.p | p ∈ Rβη

N1[x:=c(cx)]
} =5.4.4 {1.p | p ∈ Rβη

N1
} andRβη

λx.P =5.3 {0} ∪

{1.p | p ∈ Rβη
N2x}. By lemma 5.4.5,Rβη

λx.P =5.3 {2n.0} ∪ {2n.1.p | p ∈ Rβη
N2x}. So,

|〈M1,R
βη
M1

〉|c =3 {1.p | p ∈ |〈N1,R
βη
N1

〉|c} and |〈M2,R
βη
M2

〉|c =2 |〈λx.P,Rβη
λx.P 〉|

c =

{0} ∪ {1.p | p ∈ |〈N2x,R
βη
N2x〉|

c}. Let p ∈ |〈N1,R
βη
N1

〉|c then1.p ∈ |〈M1,R
βη
M1

〉|c ⊆

|〈M2,R
βη
M2

〉|c, so p ∈ |〈N2x,R
βη
N2x〉|

c, i.e. |〈N1,R
βη
N1

〉|c ⊆ |〈N2x,R
βη
N2x〉|

c. Sincep1 ∈

Rβη
M1

, p1 = 1.p′
1 such thatp′

1 ∈ Rβη
N1

. Becausep2 ∈ Rβη
M2

and1.|〈N1, p
′
1〉|

c =3 |〈M1, p1〉|
c =

|〈M2, p2〉|
c, thenp2 = 2n.1.p′

2 such thatp′
2 ∈ Rβη

N2x. Because1.|〈N1, p
′
1〉|

c =3 |〈M1, p1〉|
c =

|〈M2, p2〉|
c =3 |〈λx.N2x, 1.p

′
2〉|

c = 1.|〈N2x, p
′
2〉|

c then |〈N1, p
′
1〉|

c = |〈N2x, p
′
2〉|

c. So

M1 = λx.N1[x := c(cx)]
p1

→βη λx.P1 = M ′
1 andM2 = cn(λx.N2x)

p2

→βη c
n(λx.N ′

2) =

M ′
2 such thatN1[x := c(cx)]

p
′

1→βη P1 andN2x
p
′

2→βη N ′
2 . By lemma 5.2.13a,P1 =

N ′
1[x := c(cx)], andN1

p
′

1→βη N ′
1. By IH, |〈N ′

1,R
βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c. Moreover,

Rβη

M ′

1

=5.4.3 {1.p | p ∈ Rβη

N ′

1
[x:=c(cx)]

} =5.4.4 {1.p | p ∈ Rβη

N ′

1

} andRβη

λx.N ′

2

\ {0} =5.3

{1.p | p ∈ Rβη

N ′

2

}. So, |〈M ′
1,R

βη

M ′

1

〉|c =3 {1.p | p ∈ |〈N ′
1,R

βη

N ′

1

〉|c} and |〈M ′
2,R

βη

M ′

2

〉|c \

{0} =2 |〈λx.N ′
2,R

βη

λx.N ′

2

〉|c \ {0} = {1.p ∈ |〈N ′
2,R

βη

N ′

2

〉|c}. Let p ∈ |〈M ′
1,R

βη

M ′

1

〉|c then

p = 1.p′ such thatp′ ∈ |〈N ′
1,R

βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c, sop ∈ |〈M ′
2,R

βη

M ′

2

〉|c \ {0}, i.e.

|〈M ′
1,R

βη

M ′

1

〉|c ⊆ |〈M ′
2,R

βη

M ′

2

〉|c.

4. LetM1 = λx.N1x ∈ Ληc such thatN1x ∈ Ληc, x 6∈ fv(N1) ∪ {c} andN1 6= c, thenM1 ∈ Rβη

and |M1|
c = λx.|N1x|

c = λx.|N1|
cx. Because|M2|

c = λx.|N1|
cx, then by lemma 4,M2 =

cn(λx.P ) such that|P |c = |N1|
cx. By lemma 5.2.6,λx.P ∈ Ληc. We prove the lemma by case

onλx.P .

(a) Letλx.P = λx.N2[x := c(cx)] such thatN2 ∈ Ληc thenRβη
M1

=5.3 {0}∪{1.p | p ∈ Rβη
N1x}

andRβη
λx.P =5.4.3 {1.p | p ∈ Rβη

N2[x:=c(cx)]} =5.4.4 {1.p | p ∈ Rβη
N2

}. So,|〈M1,R
βη
M1

〉|c =

{0} ∪ {1.p | p ∈ |〈N1x,R
βη
N1x〉|

c} and|〈M2,R
βη
M2

〉|c =2 |〈λx.P,Rβη
λx.P 〉|

c =3 {1.p | p ∈

|〈N2,R
βη
N2

〉|c}. Hence,0 ∈ |〈M1,R
βη
M1

〉|c but0 6∈ |〈M2,R
βη
M2

〉|c.
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(b) Let λx.P = λx.N2x such thatN2x ∈ Ληc, x 6∈ fv(N2) andN2 6= c, thenM2 ∈ Rβη.
Since|M2|

c = λx.|N2x|
c = λx.|N2|

cx, |N1x|
c = |N2x|

c and |N1|
c = |N2|

c. Moreover,
Rβη

M1
=5.3 {0} ∪ {1.p | p ∈ Rβη

N1x}, Rβη
λx.P =5.3 {0} ∪ {1.p | p ∈ Rβη

N2x} andRβη
M2

=5.4.5

{2n.p | p ∈ Rβη
λx.P } =5.3 {2n.0} ∪ {2n.1.p | p ∈ Rβη

N2x}. So, |〈M1,R
βη
M1

〉|c = {0} ∪

{1.p | p ∈ |〈N1x,R
βη
N1x〉|

c} and |〈M2,R
βη
M2

〉|c =2 |〈λx.P,Rβη
λx.P 〉|

c = {0} ∪ {1.p | p ∈

|〈N2x,R
βη
N2x〉|

c}. Let p ∈ |〈N1x,R
βη
N1x〉|

c then1.p ∈ |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c, so

p ∈ |〈N2x,R
βη
N2x〉|

c, i.e. |〈N1x,R
βη
N1x〉|

c ⊆ |〈N2x,R
βη
N2x〉|

c. Moreover,Rβη
N1x \ {0} =5.3

{1.p | p ∈ Rβη
N1

} andRβη
N2x \ {0} =5.3 {1.p | p ∈ Rβη

N2
}, so |〈N1x,R

βη
N1x〉|

c \ {0} =

{1.p | p ∈ |〈N1,R
βη
N1

〉|c} and |〈N2x,R
βη
N2x〉|

c \ {0} = {1.p | p ∈ |〈N2,R
βη
N2

〉|c}. Let

p ∈ |〈N1,R
βη
N1

〉|c then1.p ∈ |〈N1x,R
βη
N1x〉|

c \ {0} ⊆ |〈N1x,R
βη
N1x〉|

c ⊆ |〈N2x,R
βη
N2x〉|

c,

sop ∈ |〈N2,R
βη
N2

〉|c, i.e. |〈N1,R
βη
N1

〉|c ⊆ |〈N2,R
βη
N2

〉|c. Sincep1 ∈ Rβη
M1

:

• Eitherp1 = 0. Becausep2 ∈ Rβη
M2

and|〈M1, p1〉|
c = |〈M2, p2〉|

c, we obtainp2 = 2n.0.

SoM1
0
→βη N1 andM2 = cn(λx.N2x)

p2

→βη c
n(N2). It is done since|〈N1,R

βη
N1

〉|c ⊆

|〈N2,R
βη
N2

〉|c =2 |〈cn(N2),R
βη

cn(N2)〉|
c.

• Or p1 = 1.p′
1 such thatp′

1 ∈ Rβη
N1x. Becasuep2 ∈ Rβη

M2
and|〈M1, p1〉|

c = |〈M2, p2〉|
c,

we obtainp2 = 2n.1.p′
2 such thatp′

2 ∈ Rβη
N2x. Becasue1.|〈N1x, p

′
1〉|

c = |〈M1, p1〉|
c =

|〈M2, p2〉|
c =3 |〈λx.N2x, 1.p

′
2〉|

c = 1.|〈N2x, p
′
2〉|

c, we obtain|〈N1x, p
′
1〉|

c = |〈N2x, p
′
2〉|

c.
SoM1 = λx.N1x

p1

→βη λx.N
′
1 = M ′

1 andM2 = cn(λx.N2x)
p2

→βη c
n(λx.N ′

2) = M ′
2

such thatN1x
p
′

1→βη N
′
1 andN2x

p
′

2→βη N
′
2. By IH, |〈N ′

1,R
βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c.

– EitherN1x ∈ Rβη, soN1 = λy.P1 and by lemma 5.3,Rβη
N1x = {0} ∪ {1.p | p ∈

Rβη
N1

}. Because|〈N1x,R
βη
N1x〉|

c ⊆ |〈N2x,R
βη
N2x〉|

c, we obtain0 ∈ |〈N2x,R
βη
N2x〉|

c.

Hence,0 ∈ Rβη
N2x and by lemma 5.3,Rβη

N2x = {0} ∪ {1.p | p ∈ Rβη
N2

}. Hence,
N2x ∈ Rβη and by lemma 4,N2 = λy.P2 such that|P1|

c = |P2|
c.

∗ Eitherp′
1 = 0. Because|〈N1x, p

′
1〉|

c = |〈N2x, p
′
2〉|

c, we obtainp′
2 = 0. SoM1 =

λx.(λy.P1)x
p1

→βη λx.P1[y := x] = M ′
1 andM2 = cn(λx.(λy.P2)x)

p2

→βη

cn(λx.P2[y := x]) = M ′
2. Becausex 6∈ fv(N1) ∪ fv(N2), we obtainM ′

1 =

N1 andM ′
2 = cn(N2). It is done since|〈N1,R

βη
N1

〉|c ⊆ |〈N2,R
βη
N2

〉|c =2

|〈cn(N2),R
βη

cn(N2)〉|
c.

∗ Let p′
1 = 1.p′′

1 such thatp′′
1 ∈ Rβη

N1
. Because|〈N1x, p

′
1〉|

c = |〈N2x, p
′
2〉|

c, we

obtainp′
2 = 1.p′′

2 such thatp′′
2 ∈ Rβη

N2
. SoM1 = λx.N1x

p1

→βη λx.N
′′
1 x = M ′

1

andM2 = cn(λx.N2x)
p2

→βη cn(λx.N ′′
2 x) = M ′

2 such thatN1
p
′′

1→βη N ′′
1 and

N2
p
′′

2→βη N ′′
2 . becausex 6∈ fv(N1) ∪ fv(N2), by lemma 2.2.3, we obtain

x 6∈ fv(N ′′
1 ) ∪ fv(N ′′

2 ). So,M ′
1, λx.N

′′
2 x ∈ Rβη and by lemma 5.3,Rβη

M ′

1

=

{0} ∪ {1.p | p ∈ Rβη

N ′

1

} andRβη

λx.N ′′

2
x

= {0} ∪ {1.p | p ∈ Rβη

N ′

2

}. Hence,

|〈M ′
1,R

βη

M ′

1

〉|c = {0} ∪ {λx.C | C ∈ |〈N ′
1,R

βη

N ′

1

〉|c} and |〈M ′
2,R

βη

M ′

2

〉|c =2
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|〈λx.N ′′
2 x,R

βη

λx.N ′′

2
x
〉|c = {0} ∪ {1.p | p ∈ |〈N ′

2,R
βη

N ′

2

〉|c}.

Because|〈N ′
1,R

βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c, we obtain|〈M ′
1,R

βη

M ′

1

〉|c = {0} ∪ {1.p |

p ∈ |〈N ′
1,R

βη

N ′

1

〉|c} ⊆ {0} ∪ {1.p | p ∈ |〈N ′
2,R

βη

N ′

2

〉|c} = |〈M ′
2,R

βη

M ′

2

〉|c.

– Else by lemma 5.3,Rβη
N1x = {1.p | p ∈ Rβη

N1
}. Let p′

1 = 1.p′′
1 such thatp′′

1 ∈ Rβη
N1

.

Then,p′
2 = 1.p′′

2 such thatp′′
2 ∈ Rβη

N2
. SoM1 = λx.N1x

p1

→βη λx.N
′′
1 x = M ′

1

andM2 = cn(λx.N2x)
p2

→βη cn(λx.N ′′
2 x) = M ′

2 such thatN1
p
′′

1→βη N ′′
1 and

N2
p
′′

2→βη N ′′
2 . Becausex 6∈ fv(N1) ∪ fv(N2), by lemma 2.2.3 we obtain,x 6∈

fv(N ′′
1 )∪ fv(N ′′

2 ). So,M ′
1, λx.N

′
2x ∈ Rβη and by lemma 5.3,Rβη

M ′

1

= {0}∪ {1.p |

p ∈ Rβη

N ′

1

} andRβη

λx.N ′

2

= {0} ∪ {1.p | p ∈ Rβη

N ′

2

}. Hence,|〈M ′
1,R

βη

M ′

1

〉|c =

{0} ∪ {1.p | p ∈ |〈N ′
1,R

βη

N ′

1

〉|c} and |〈M ′
2,R

βη

M ′

2

〉|c ==2 |〈λx.N ′
2,R

βη

λx.N ′

2

〉|c =

{0} ∪ {1.p | p ∈ |〈N ′
2,R

βη

N ′

2

〉|c}. Because|〈N ′
1,R

βη

N ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c, we ob-

tain |〈M ′
1,R

βη

M ′

1

〉|c = {0} ∪ {1.p | p ∈ |〈N ′
1,R

βη

N ′

1

〉|c} ⊆ {0} ∪ {1.p | p ∈

|〈N ′
2,R

βη

N ′

2

〉|c} = |〈M ′
2,R

βη

M ′

2

〉|c.

5. LetM1 = cP1Q1 ∈ Mc such thatP1, P2 ∈ Mc. So|M1|
c = |P1|

c|Q1|
c = |M2|

c. We prove the
statement by induction on the structure ofM2:

• LetM2 ∈ V \ {c} then|M2|
c = M2 6= |P1|

c|Q1|
c.

• LetM2 = λx.N2 ∈ ΛIc such thatN2 ∈ ΛIc andx 6= c then|M2|
c = λx.|N2|

c 6= |P1|
c|Q1|

c.

• Let M2 = λx.N2[x := c(cx)] ∈ Ληc such thatN2 ∈ Ληc and x 6= cthen |M2|
c =

λx.|N2[x := c(cx)]|c 6= |P1|
c|Q1|

c.

• Let M2 = λx.N2x ∈ Ληc such thatN2x ∈ ΛIc andx 6∈ fv(N2) ∪ {c} andN2 6= c then
|M2|

c = λx.|N2x|
c 6= |P1|

c|Q1|
c.

• LetM2 = cP2Q2 ∈ Mc such thatP2, Q2 ∈ Mc, then|cP2|
c = |P2|

c = |P1|
c and|Q2|

c =
|Q1|

c. SinceM1, cP2 6∈ Rr, by lemma 5.3,Rr
M1

= {1.2.p | p ∈ Rr
P1
} ∪ {2.p | p ∈

Rr
Q1

}. So,|〈M1,R
r
M1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,R

r
Q1

〉|c}. Again
by lemma 5.3, sinceM2 6∈ Rr, Rr

M2
= {1.2.p | p ∈ Rr

P2
} ∪ {2.p | p ∈ Rr

Q2
}. So,

|〈M2,R
r
M2

〉|c = {1.p | p ∈ |〈P2,R
r
P2
〉|c}∪{2.p | p ∈ |〈Q2,R

r
Q2

〉|c}. Letp ∈ |〈P1,R
r
P1
〉|c

then1.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Hence,p ∈ |〈P2,R
r
P2
〉|c, i.e. |〈P1,R

r
P1
〉|c ⊆

|〈P2,R
r
P2
〉|c. Let p ∈ |〈Q1,R

r
Q1

〉|c then2.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Hence,
p ∈ |〈Q2,R

r
Q2

〉|c, i.e. |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. Sincep1 ∈ Rr
M1

:

– Eitherp1 = 1.2.p′
1 such thatp′

1 ∈ Rr
P1

and so1.|〈P1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Hence, becausep2 ∈ Rr

M2
, we obtainp2 = 1.2.p′

2 such that|〈P1, p
′
1〉|

c = |〈P2, p
′
2〉|

c

and p′
2 ∈ Rr

P2
. Hence,M1 = cP1Q1

p1

→r cP ′
1Q1 = M ′

1 andM2 = cP2Q2
p2

→r

cP ′
2Q2 = M ′

2 such thatP1
p
′

1→r P
′
1 andP2

p
′

2→r P
′
2. By IH, |〈P ′

1,R
r
P ′

1

〉|c ⊆ |〈P ′
2,R

r
P ′

2

〉|c.

By lemma 5.3,Rr
M ′

1

= {1.2.p | p ∈ Rr
P ′

1

} ∪ {2.p | p ∈ Rr
Q1

} andRr
M ′

2

= {1.2.p |

p ∈ Rr
P ′

2

} ∪ {2.p | p ∈ Rr
Q2

}, so |〈M ′
1,R

r
M ′

1

〉|c = {1.p | p ∈ |〈P ′
1,R

r
P ′

1

〉|c} ∪ {2.p |

p ∈ |〈Q1,R
r
Q1

〉|c} and |〈M ′
2,R

r
M ′

2

〉|c = {1.p | p ∈ |〈P ′
2,R

r
P ′

2

〉|c} ∪ {2.p | p ∈
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|〈Q2,R
r
Q2

〉|c}. Let p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 1.p′ such thatp′ ∈ |〈P ′
1,R

r
P ′

1

〉|c ⊆

|〈P ′
2,R

r
P ′

2

〉|c. So p ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 2.p such thatp′ ∈ |〈Q1,R
r
Q1

〉|c ⊆

|〈Q2,R
r
Q2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c.

– Or p1 = 2.p′
1 such thatp′

1 ∈ Rr
Q1

and so2.|〈Q1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Becausep2 ∈ Rr

M2
, we obtainp2 = 2.p′

2 such that|〈Q1, p
′
1〉|

c = |〈Q2, p
′
2〉|

c. Hence,

M1 = cP1Q1 =
p1

→r cP1Q
′
1 = M ′

1 andM2 = cP2Q2
p2

→r cP2Q
′
2 = M ′

2 such that

Q1
p
′

1→r Q′
1 andQ2

p
′

2→r Q′
2. By IH, |〈Q′

1,R
r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c. By lemma 5.3,

Rr
M ′

1

= {1.2.p | p ∈ Rr
P1
} ∪ {2.p | p ∈ Rr

Q′

1

} andRr
M ′

2

= {1.2.p | p ∈ Rr
P2
} ∪ {2.p |

p ∈ Rr
Q′

2

}, so |〈M ′
1,R

r
M ′

1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q′

1,R
r
Q′

1

〉|c}

and |〈M ′
2,R

r
M ′

2

〉|c = {1.p | p ∈ |〈P2,R
r
P2
〉|c} ∪ {2.p | p ∈ |〈Q′

2,R
r
Q′

2

〉|c}. Let

p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 1.p′ such thatp′ ∈ |〈P1,R
r
P1
〉|c ⊆ |〈P2,R

r
P2
〉|c. So

p ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 2.p′ such thatp′ ∈ |〈Q′
1,R

r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c. So

p ∈ |〈M ′
2,R

r
M ′

2

〉|c.

• LetM2 = P2Q2 ∈ Mc such thatP2, Q2 ∈ Mc andP2 is aλ-abstraction. Then|P2|
c = |P1|

c

and |Q2|
c = |Q1|

c. SinceM1 6∈ Rr, by lemma 5.3,Rr
M1

= {1.2.p | p ∈ Rr
P1
} ∪ {2.p |

p ∈ Rr
Q1

}. So, |〈M1,R
r
M1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,R

r
Q1

〉|c}.
Again by lemma 5.3, sinceM2 ∈ Rr by lemma 1a,Rr

M2
= {0} ∪ {1.p | p ∈ Rr

P2
} ∪

{2.p | p ∈ Rr
Q2

}. So, |〈M2,R
r
M2

〉|c = {0}∪ = {1.p | p ∈ |〈P2,R
r
P2
〉|c} ∪ {2.p |

p ∈ |〈Q2,R
r
Q2

〉|c}. Let p ∈ |〈P1,R
r
P1
〉|c then 1.p ∈ |〈M1,R

r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c.
Hence,p ∈ |〈P2,R

r
P2
〉|c, i.e. |〈P1,R

r
P1
〉|c ⊆ |〈P2,R

r
P2
〉|c. Let p ∈ |〈Q1,R

r
Q1

〉|c then
2.p ∈ |〈M1,R

r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Hence,p ∈ |〈Q2,R
r
Q2

〉|c, i.e. |〈Q1,R
r
Q1

〉|c ⊆
|〈Q2,R

r
Q2

〉|c. Sincep1 ∈ Rr
M1

:

– Eitherp1 = 1.2.p′
1 such thatp′

1 ∈ Rr
P1

and so1.|〈P1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Becausep2 ∈ Rr

M2
, we obtainp2 = 1.p′

2 such that|〈P1, p
′
1〉|

c = |〈P2, p
′
2〉|

c andp′
2 ∈

Rr
P2

. Hence,M1 = cP1Q1
p1

→r cP
′
1Q1 = M ′

1 andM2 = P2Q2
p2

→r P
′
2Q2 = M ′

2 such

thatP1
p
′

1→r P
′
1 andP2

p
′

2→r P
′
2. By IH, |〈P ′

1,R
r
P ′

1

〉|c ⊆ |〈P ′
2,R

r
P ′

2

〉|c. BecauseP2 ∈ Mc,

then by lemma 2,P ′
2 ∈ Mc. By lemma 5.2.3,P ′

2 6= c. By lemma 5.3,Rr
M ′

1

= {1.2.p |

p ∈ Rr
P ′

1

} ∪ {2.p | p ∈ Rr
Q1

} andRr
M ′

2

\ {0} = {1.p | p ∈ Rr
P ′

2

} ∪ {2.p | p ∈ Rr
Q2

},

so |〈M ′
1,R

r
M ′

1

〉|c = {1.p | p ∈ |〈P ′
1,R

r
P ′

1

〉|c} ∪ {2.p | p ∈ |〈Q1,R
r
Q1

〉|c} and

|〈M ′
2,R

r
M ′

2

〉|c \ {0} = {1.p | p ∈ |〈P ′
2,R

r
P ′

2

〉|c} ∪ {2.p | p ∈ |〈Q2,R
r
Q2

〉|c}. Let

p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 1.p′ such thatp′ ∈ |〈P ′
1,R

r
P ′

1

〉|c ⊆ |〈P ′
2,R

r
P ′

2

〉|c. So

p ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 2.p′ such thatp′ ∈ |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. So

p ∈ |〈M ′
2,R

r
M ′

2

〉|c.

– Or p1 = 2.p′
1 such thatp′

1 ∈ Rr
Q1

and so2.|〈Q1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Becausep2 ∈ Rr

M2
, we obtainp2 = 2.p′

2 such that|〈Q1, p
′
1〉|

c = |〈Q2, p
′
2〉|

c. Hence,

M1 = cP1Q1
p1

→r cP1Q
′
1 = M ′

1 andM2 = P2Q2
p2

→r P2Q
′
2 = M ′

2 such thatQ1
p
′

1→r

Q′
1 andQ2

p
′

2→r Q′
2. By IH, |〈Q′

1,R
r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c. By lemma 5.3,Rr
M ′

1

=

{1.2.p | p ∈ Rr
P1
} ∪ {2.p | p ∈ Rr

Q′

1

} andRr
M ′

2

\ {0} = {1.p | p ∈ Rr
P2
} ∪ {2.p |
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p ∈ Rr
Q′

2

}, so |〈M ′
1,R

r
M ′

1

〉|c = {1.p | p ∈ |〈P1,R
r
P1
〉|c} ∪ {2.p | p ∈ |〈Q′

1,R
r
Q′

1

〉|c}

and |〈M ′
2,R

r
M ′

2

〉|c \ {0} = {1.p | p ∈ |〈P2,R
r
P2
〉|c} ∪ {2.p | p ∈ |〈Q′

2,R
r
Q′

2

〉|c}.

Let p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 1.p′ such thatp′ ∈ |〈P1,R
r
P1
〉|c ⊆ |〈P2,R

r
P2
〉|c.

Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 2.p′ such thatp′ ∈ |〈Q′
1,R

r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c. So

p ∈ |〈M ′
2,R

r
M ′

2

〉|c.

• Let M2 = cN2 ∈ Mc = Ληc such thatN2 ∈ Ληc. So |N2|
c = |M2|

c = |M1|
c.

By lemma 5.4.5,Rβη
M2

= {2.p | p ∈ Rβη
N2

} and |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c =2

|〈N2,R
βη
N2

〉|c. Becausep2 ∈ Rβη
M2

, we obtainp2 = 2.p′
2 such thatp′

2 ∈ Rβη
N2

. So,

M2 = cN2
p2

→βη cN
′
2 = M ′

2 such thatN2
p
′

2→βη N
′
2. Because|〈N2, p

′
2〉|

c =3 |〈M2, p2〉|
c =

|〈M1, p1〉|
c, by IH, |〈M ′

1,R
βη

M ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c =2 |〈M ′
2,R

βη

M ′

2

〉|c.

6. LetM1 = (λx.P1)Q1 ∈ Mc such thatλx.P1, Q1 ∈ Mc. By lemma 5.2.8, lemma 5.2.12a and
lemma 5.2.9,P1 ∈ Mc andx 6= c. So |M1|

c = |λx.P1|
c|Q1|

c = |M2|
c = (λx.|P1|

c)|Q1|
c. By

lemma 1a,M1 ∈ Rr, so by lemma 5.3,Rr
M1

= {0} ∪ {1.p | p ∈ Rr
λx.P1

}∪ {2.p | p ∈ Rr
Q1

} and
Rr

M1
\{1.0} = {0}∪{1.1.p | p ∈ Rr

P1
}∪{2.p | p ∈ Rr

Q1
}. So|〈M1,R

r
M1

〉|c = {0}∪{1.p | p ∈
|〈λx.P1,R

r
λx.P1

〉|c} ∪ {2.p | p ∈ |〈Q1,R
r
Q1

〉|c} and|〈M1,R
r
M1

〉|c \ {1.0} = {0} ∪ {1.1.p | p ∈
|〈P1,R

r
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,R

r
Q1

〉|c}. We prove this statement by induction on the structure
of M2:

• LetM2 ∈ V \ {c} then|M2|
c = M2 6= |P1|

c|Q1|
c.

• LetM2 = λx.N2 ∈ ΛIc such thatN2 ∈ ΛIc andx 6= c then|M2|
c = λx.|N2|

c 6= |P1|
c|Q1|

c.

• Let M2 = λx.N2[x := c(cx)] ∈ Ληc such thatN2 ∈ Ληc and x 6= c then |M2|
c =

λx.|N2[x := c(cx)]|c 6= |P1|
c|Q1|

c.

• Let M2 = λx.N2x ∈ Ληc such thatN2x ∈ Ληc, N2 6= c andx 6∈ fv(N2) ∪ {c} then
|M2|

c = λx.|N2x|
c 6= |P1|

c|Q1|
c.

• Let M2 = cP2Q2 ∈ Mc such thatP2, Q2 ∈ Mc. By lemma 5.3,Rr
M2

= {1.2.p | p ∈
Rr

P2
} ∪ {2.p | p ∈ Rr

Q2
}, so |〈M2,R

r
M2

〉|c = {1.p | p ∈ |〈P2,R
r
P2
〉|c} ∪ {2.p | p ∈

|〈Q2,R
r
Q2

〉|c}. Because0 ∈ |〈M1,R
r
M1

〉|c and0 6∈ |〈M2,R
r
M2

〉|c, we obtain|〈M1,R
r
M1

〉|c 6⊆
|〈M2,R

r
M2

〉|c.

• Let M2 = (λx.P2)Q2 ∈ Mc such thatλx.P2, Q2 ∈ Mc, then|P1|
c = |P2|

c and|Q1|
c =

|Q2|
c. By lemma 5.2.8, lemma 5.2.12a and lemma 5.2.9,P2 ∈ Mc. By lemma 5.3,Rr

M2
=

{0}∪{1.p | p ∈ Rr
λx.P2

}∪{2.p | p ∈ Rr
Q2

} andRr
M2

\{1.0} = {0}∪{1.1.p | p ∈ Rr
P2
}∪

{2.p | p ∈ Rr
Q2

}. So|〈M2,R
r
M2

〉|c = {0} ∪ {1.p | p ∈ |〈λx.P2,R
r
λx.P2

〉|c} ∪ {2.p | p ∈
|〈Q2,R

r
Q2

〉|c} and|〈M2,R
r
M2

〉|c \ {1.0} = {0} ∪ {1.1.p | p ∈ |〈P2,R
r
P2
〉|c} ∪ {2.p | p ∈

|〈Q2,R
r
Q2

〉|c}. Let p ∈ |〈λx.P1,R
r
λx.P1

〉|c then1.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. So
p ∈ |〈λx.P2,R

r
λx.P2

〉|c, i.e. |〈λx.P1,R
r
λx.P1

〉|c ⊆ |〈λx.P2,R
r
λx.P2

〉|c. Let p ∈ |〈P1,R
r
P1
〉|c

then 1.1.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. So p ∈ |〈P2,R
r
P2
〉|c, i.e. |〈P1,R

r
P1
〉|c ⊆

|〈P2,R
r
P2
〉|c. Let p ∈ |〈Q1,R

r
Q1

〉|c then2.p ∈ |〈M1,R
r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c. Sop ∈
|〈Q2,R

r
Q2

〉|c, i.e. |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. Sincep1 ∈ Rr
M1

:

– Eitherp1 = 0. Becausep2 ∈ Rr
M2

, we obtainp2 = 0 . Hence,M1 = (λx.P1)Q1
0
→r
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P1[x := Q1] = M ′
1 andM2 = (λx.P2)Q2

0
→r P2[x := Q2] = M ′

2. By lemma 7b,
|〈M ′

1,R
r
M ′

1

〉|c ⊆ |〈M ′
2,R

r
M ′

2

〉|c.

– Orp1 = 1.p′
1 such thatp′

1 ∈ Rr
λx.P1

and so1.|〈λx.P1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Becausep2 ∈ Rr

M2
, we obtainp2 = 1.p′

2 such that|〈λx.P1, p
′
1〉|

c = |〈λx.P2, p
′
2〉|

c and
p′
2 ∈ Rr

λx.P2
. By lemma 5.3:

∗ Eitherλx.P1 = λx.N1x ∈ Rr such thatx 6∈ fv(N1), Mc = Ληc andp′
1 = 0. So,

|〈λx.P2, p
′
2〉|

c = 0. Hence,p′
2 = 0 andλx.P2 = λx.N2x such thatx 6∈ fv(N2).

Hence,M1 = (λx.N1x)Q1
p1

→r N1Q1 = M ′
1 andM2 = (λx.N2x)Q2

p2

→r

N2Q2 = M ′
2 such thatλx.N1x

p
′

1→r N1 andλx.N2x
p
′

2→r N2. By IH, |〈N1,R
r
N1

〉|c ⊆
|〈N2,R

r
N2

〉|c.

· If N1 is aλ-abstraction then by lemma 1a,N1x ∈ Rr. So1.1.0 ∈ Rr
M1

and
|〈M2, 1.1.0〉|

c = 1.1.0 = |〈M1, 1.1.0〉|
c ∈ |〈M1,R

r
M1

〉|c ⊆ |〈M2,R
r
M2

〉|c.
Hence,1.1.0 ∈ Rr

M2
. SoN2 is aλ-abstraction. SoRr

M ′

1

= {0} ∪ {1.p | p ∈

Rr
N1

}∪{2.p | p ∈ Rr
Q1

} andRr
M ′

2

= {0}∪{1.p | p ∈ Rr
N2

}∪{2.p | p ∈ Rr
Q2

},

so |〈M ′
1,R

r
M ′

1

〉|c = {0} ∪ {1.p | p ∈ |〈N1,R
r
N1

〉|c} ∪ {2.p | p ∈ |〈Q1,R
r
Q1

〉|c}

and|〈M ′
2,R

r
M ′

2

〉|c = {0}∪{1.p | p ∈ |〈N2,R
r
N2

〉|c}∪{2.p | p ∈ |〈Q2,R
r
Q2

〉|c}.

Let p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 0 ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 1.p′ such that

p′ ∈ |〈N1,R
r
N1

〉|c ⊆ |〈N2,R
r
N2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c. Orp = 2.p′ such that

p′ ∈ |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c.

· OtherwiseRr
M ′

1

= {1.p | p ∈ Rr
N1

}∪{2.p | p ∈ Rr
Q1

} andRr
M ′

2

\{0} = {1.p |

p ∈ Rr
N2

} ∪ {2.p | p ∈ Rr
Q2

}, so|〈M ′
1,R

r
M ′

1

〉|c = {1.p | p ∈ |〈N1,R
r
N1

〉|c} ∪

{2.p | p ∈ |〈Q1,R
r
Q1

〉|c} and|〈M ′
2,R

r
M ′

2

〉|c \{0} = {1.p | p ∈ |〈N2,R
r
N2

〉|c}∪

{2.p | p ∈ |〈Q2,R
r
Q2

〉|c}. Let p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 1.p′ such that

p′ ∈ |〈N1,R
r
N1

〉|c ⊆ |〈N2,R
r
N2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c. Orp = 2.p′ such that

p′ ∈ |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c.

∗ Or p′
1 = 1.p′′

1 such thatp′′
1 ∈ Rr

P1
. Sop′

2 = 1.p′′
2 such thatp′′

2 ∈ Rr
P2

. Hence,M1 =

(λx.P1)Q1
p1

→r (λx.P ′
1)Q1 = M ′

1 andM2 = (λx.P2)Q2
p2

→r (λx.P ′
2)Q2 = M ′

2

such thatλx.P1
p
′

1→r λx.P
′
1 andλx.P2

p
′

2→r λx.P
′
2. By IH, |〈λx.P ′

1,R
r
λx.P ′

1

〉|c ⊆

|〈λx.P ′
2,R

r
λx.P ′

2

〉|c. SinceM1,M2 ∈ Mc, by lemma 2,M ′
1,M

′
2 ∈ Mc. By

lemma 5.3 and lemma 1a,Rr
M ′

1

= {0}∪{1.p | p ∈ Rr
λx.P ′

1

}∪{2.p | p ∈ Rr
Q1

} and

Rr
M ′

2

= {0} ∪ {1.p | p ∈ Rr
λx.P ′

2

} ∪ {2.p | p ∈ Rr
Q2

}, so|〈M ′
1,R

r
M ′

1

〉|c = {0} ∪

{1.p | p ∈ |〈λx.P ′
1,R

r
λx.P ′

1

〉|c} ∪ {2.p | p ∈ |〈Q1,R
r
Q1

〉|c} and|〈M ′
2,R

r
M ′

2

〉|c =

{0} ∪ {1.p | p ∈ |〈λx.P ′
2,R

r
λx.P ′

2

〉|c} ∪ {2.p | p ∈ |〈Q2,R
r
Q2

〉|c}. Let p ∈

|〈M ′
1,R

r
M ′

1

〉|c. Either p = 0 then p ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 1.p′ such that

p′ ∈ |〈λx.P ′
1,R

r
λx.P ′

1

〉|c ⊆ |〈λx.P ′
2,R

r
λx.P ′

2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 2.p′

such thatp′ ∈ |〈Q1,R
r
Q1

〉|c ⊆ |〈Q2,R
r
Q2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c.

– Or p1 = 2.p′
1 such thatp′

1 ∈ Rr
Q1

and so2.|〈Q1, p
′
1〉|

c = |〈M1, p1〉|
c = |〈M2, p2〉|

c.
Becausep2 ∈ Rr

M2
, we obtainp2 = 2.p′

2 such that|〈Q1, p
′
1〉|

c = |〈Q2, p
′
2〉|

c. Hence,
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M1 = (λx.P1)Q1
p1

→r (λx.P1)Q
′
1 = M ′

1 andM2 = (λx.P2)Q2
p2

→r (λx.P2)Q
′
2 =

M ′
2 such thatQ1

p
′

1→r Q′
1 andQ2

p
′

2→r Q′
2. By IH, |〈Q′

1,R
r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c.

SinceM1,M2 ∈ Mc, by lemma 2,M ′
1,M

′
2 ∈ Mc. By lemma 5.3 and lemma 1a,

Rr
M ′

1

= {0} ∪ {1.p | p ∈ Rr
λx.P1

} ∪ {2.p | p ∈ Rr
Q′

1

} andRr
M ′

2

= {0} ∪ {1.p | p ∈

Rr
λx.P2

}∪{2.p | p ∈ Rr
Q′

2

}, so|〈M ′
1,R

r
M ′

1

〉|c = {0}∪{1.p | p ∈ |〈P1,R
r
P1
〉|c}∪{2.p |

p ∈ |〈Q′
1,R

r
Q′

1

〉|c} and|〈M ′
2,R

r
M ′

2

〉|c = {0} ∪ {1.p | p ∈ |〈λx.P2,R
r
λx.P2

〉|c} ∪ {2.p |

p ∈ |〈Q′
2,R

r
Q′

2

〉|c}. Let p ∈ |〈M ′
1,R

r
M ′

1

〉|c. Eitherp = 0 ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or p = 1.p′

such thatp′ ∈ |〈λx.P1,R
r
λx.P1

〉|c ⊆ |〈λx.P2,R
r
λx.P2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c. Or

p = 2.p′ such thatp′ ∈ |〈Q′
1,R

r
Q′

1

〉|c ⊆ |〈Q′
2,R

r
Q′

2

〉|c. Sop ∈ |〈M ′
2,R

r
M ′

2

〉|c.

• Let M2 = cN2 ∈ Mc = Ληc such thatN2 ∈ Ληc. So |N2|
c = |M2|

c = |M1|
c.

By lemma 5.4.5,Rβη
M2

= {2.p | p ∈ Rβη
N2

} and |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c =2

|〈N2,R
βη
N2

〉|c. Becausep2 ∈ Rβη
M2

, we obtainp2 = 2.p′
2 such thatp′

2 ∈ Rβη
N2

. So,

M2 = cN2
p2

→βη cN
′
2 = M ′

2 such thatN2
p
′

2→βη N
′
2. Since|〈N2, p

′
2〉|

c =3 |〈M2, p2〉|
c =

|〈M1, p1〉|
c, by IH, |〈M ′

1,R
βη

M ′

1

〉|c ⊆ |〈N ′
2,R

βη

N ′

2

〉|c =2 |〈M ′
2,R

βη

M ′

2

〉|c.

7. LetM1 = cN1 ∈ Mc = Ληc such thatN1 ∈ Ληc. So|N1|
c = |M1|

c = |M2|
c. By lemma 5.4.5,

Rβη
M1

= {2.p | p ∈ Rβη
N1

} and |〈N1,R
βη
N1

〉|c =2 |〈M1,R
βη
M1

〉|c ⊆ |〈M2,R
βη
M2

〉|c. Because

p1 ∈ Rβη
M1

, we obtainp1 = 2.p′
1 such thatp′

1 ∈ Rβη
N1

. So,M1 = cN1
p1

→βη cN ′
1 = M ′

1 such

thatN1
p
′

1→βη N
′
1. Because|〈N1, p

′
1〉|

c =3 |〈M1, p1〉|
c = |〈M2, p2〉|

c, by IH, |〈M ′
1,R

βη

M ′

1

〉|c =2

|〈N ′
1,R

βη

N ′

1

〉|c ⊆ |〈M ′
2,R

βη

M ′

2

〉|c.
⊓⊔

B. Proofs of section 3

Proof(Remark 3.3):

• Commutativity: by(inR), τ1 ∩ τ2 ≤2 τ2 and by(inL), τ1 ∩ τ2 ≤2 τ1 so by(mon′), τ1 ∩ τ2 ≤2

τ2 ∩ τ1. By (inL), τ2 ∩ τ1 ≤2 τ2 and by(inR), τ2 ∩ τ1 ≤2 τ1 so by(mon′), τ2 ∩ τ1 ≤2 τ1 ∩ τ2.
Hence,τ1 ∩ τ2 ∼2 τ2 ∩ τ1.

• Associativity: by(inR), (τ1 ∩ τ2) ∩ τ3 ≤2 τ3, by (inL), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 ∩ τ2, by (inR),
τ1 ∩ τ2 ≤2 τ2, by (inL), τ1 ∩ τ2 ≤2 τ1, so by(tr), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 and(τ1 ∩ τ2) ∩ τ3 ≤2 τ2.
By (mon′), (τ1 ∩ τ2) ∩ τ3 ≤2 τ2 ∩ τ3 and again by(mon′), (τ1 ∩ τ2) ∩ τ3 ≤2 τ1 ∩ (τ2 ∩ τ3).
By (inL), τ1 ∩ (τ2 ∩ τ3) ≤2 τ1, by (inR), τ1 ∩ (τ2 ∩ τ3) ≤2 τ2 ∩ τ3, by (inL), τ2 ∩ τ3 ≤2 τ2,
by (inR), τ2 ∩ τ3 ≤2 τ3, so by(tr), τ1 ∩ (τ2 ∩ τ3) ≤

2 τ2 andτ1 ∩ (τ2 ∩ τ3) ≤
2 τ3. By (mon′),

τ1 ∩ (τ2 ∩ τ3) ≤2 τ1 ∩ τ2 and again by(mon′), τ1 ∩ (τ2 ∩ τ3) ≤2 (τ1 ∩ τ2) ∩ τ3. Hence,
(τ1 ∩ τ2) ∩ τ3 ∼2 τ1 ∩ (τ2 ∩ τ3).

• Idempotence: by(inL), τ ∩ τ ≤2 τ and by(ref) and(mon′), τ ≤2 τ ∩ τ , hence,τ ∼2 τ ∩ τ .
⊓⊔
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Proof(Lemma 3.5):

1. By induction on the size derivation ofτ1 ≤2 τ2 and then by case on the last rule of the derivation.

– (ref ): τ ≤ τ . By τ ∈ TypeOmega.

– (tr): (τ1 ≤2 τ2 ∧ τ2 ≤2 τ3) ⇒ τ1 ≤2 τ3. By IH twice, τ3 ∈ TypeOmega.

– (inL): τ1 ∩ τ2 ≤2 τ1. By definitionτ1 ∈ TypeOmega.

– (inR): τ1 ∩ τ2 ≤2 τ2. By definitionτ2 ∈ TypeOmega.

– (→ -∩): (τ1 → τ2)∩(τ1 → τ3) ≤
2 τ1 → (τ2∩τ3). If (τ1 → τ2)∩(τ1 → τ3) ∈ TypeOmega

then by definitionτ1 → τ2, τ1 → τ3 ∈ TypeOmega which is false.

– (mon′): (τ1 ≤2 τ2 ∧ τ1 ≤2 τ3) ⇒ τ1 ≤2 τ2 ∩ τ3. By IH τ2, τ3 ∈ TypeOmega. Hence,
τ2 ∩ τ3 ∈ TypeOmega.

– (mon): (τ1 ≤2 τ ′1 ∧ τ2 ≤2 τ ′2) ⇒ τ1 ∩ τ2 ≤2 τ ′1 ∩ τ
′
2. By definitionτ1, τ2 ∈ TypeOmega.

By IH, τ ′1, τ
′
2 ∈ TypeOmega. Soτ ′1 ∩ τ

′
2 ∈ TypeOmega.

– (→ -η): (τ1 ≤2 τ ′1 ∧ τ
′
2 ≤2 τ2) ⇒ τ ′1 → τ ′2 ≤2 τ1 → τ2. By τ ′1 → τ ′2 6∈ TypeOmega.

– (Ω): τ ≤2 Ω. By definitionΩ ∈ TypeOmega.

– (Ω′-lazy): τ → Ω ≤2 Ω → Ω. It is done sinceτ → Ω 6∈ TypeOmega.

2. Let τ ≤2 τ ′. Assumeτ ∼2 Ω. ThenΩ ≤2 τ and by transitivityΩ ≤2 τ ′. Moreover, by (Ω),
τ ′ ≤2 Ω. Soτ ′ ∼2 Ω.

3. By (Ω), τ∩τ ′ ≤2 Ω. let τ ∼2 Ω andτ ′ ∼2 Ω, soΩ ≤2 τ andΩ ≤2 τ ′ and by(mon′), Ω ≤2 τ∩τ ′.

4. By (Ω), τ ≤2 Ω and by transitivity,τ ≤2 τ ′ becauseΩ ≤2 τ ′. By (ref), τ ≤2 τ and by(mon′),
τ ≤2 τ ∩ τ ′.

5. We prove the lemma by induction on the size derivation ofτ ≤2 τ ′ and then by case on the last
rule of the derivation.

– (ref ): τ ≤ τ . Then it is done withn = 1, τ ′′1 = τ2 andτ ′1 = τ1.

– (tr): (τ1 ≤2 τ2∧τ2 ≤2 τ3) ⇒ τ1 ≤2 τ3. Let τ, τ ′ such thatinInter(τ → τ ′, τ3) andτ ′ 6∼2 Ω.
By IH there existn ≥ 1 andτ ′1, τ

′′
1 , . . . , τ

′
n, τ

′′
n such that for alli ∈ {1, . . . , n}, inInter(τ ′i →

τ ′′i , τ2) andτ ′′i 6∼2 Ω andτ ′′1 ∩ · · · ∩ τ ′′n ≤2 τ ′. Again by IH, for all i ∈ {1, . . . , n}, there
exist mi ≥ 1 and τ ′′′1,i, τ

′′′′
1,i , . . . , τ

′′′
mi,i

, τ ′′′′mi,i
∈ Type2 such that for allj ∈ {1, . . . ,mi},

inInter(τ ′′′j,i → τ ′′′′j,i , τ1) and τ ′′′′j,i 6∼2 Ω and τ ′′′′1 ∩ · · · ∩ τ ′′′′m ≤2 τ ′′i . Using rule (mon),
associativity and commutativity,τ ′′′′1,1 ∩ · · · ∩ τ ′′′′m1,1 ∩ · · · ∩ τ ′′′′1,n ∩ · · · ∩ τ ′′′′mn,n ≤2 τ ′.

Let τ ∼2 Ω. Then by IH, for alli ∈ {1, . . . , n}, τ ′i ∼
2 Ω. Again by IH, for alli ∈ {1, . . . , n},

for all j ∈ {1, . . . ,mi}, τ ′′′j,i ∼
2 Ω.

– (inL): τ1 ∩ τ2 ≤2 τ1. Let τ, τ ′ such thatinInter(τ → τ ′, τ1) andτ ′ 6∼2 Ω then it is done
with n = 1, τ ′′1 = τ ′ andτ ′1 = τ .

– (inR): τ1 ∩ τ2 ≤2 τ2. Let τ, τ ′ such thatinInter(τ → τ ′, τ2) andτ ′ 6∼2 Ω then it is done
with n = 1, τ ′′1 = τ ′ andτ ′1 = τ .
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– (→ -∩): (τ1 → τ2)∩ (τ1 → τ3) ≤
2 τ1 → (τ2∩τ3). Let τ, τ ′ such thatinInter(τ → τ ′, τ1 →

(τ2 ∩ τ3)) andτ ′ 6∼2 Ω thenτ = τ1 andτ ′ = τ2 ∩ τ3. τ2 6∼2 Ω or τ3 6∼2 Ω becauseτ ′ 6∼2 Ω
and using lemma 3.5.3. Ifτ2 6∼2 Ω andτ3 6∼2 Ω then it is done withn = 2, τ ′1 = τ ′2 = τ1
andτ ′′1 = τ2 andτ ′′2 = τ3. If τ2 6∼2 Ω andτ3 ∼2 Ω then it is done withn = 1, τ ′1 = τ1 and
τ ′′1 = τ2 becauseτ2 ≤2 τ2 ∩ τ3 by lemma 3.5.4. Ifτ2 ∼2 Ω andτ3 6∼2 Ω then it is done with
n = 1, τ ′1 = τ1 andτ ′′1 = τ3 becauseτ3 ≤2 τ2 ∩ τ3 by lemma 3.5.4 and commutativity.

– (mon′): (τ1 ≤2 τ2 ∧ τ1 ≤2 τ3) ⇒ τ1 ≤2 τ2 ∩ τ3. Let τ, τ ′ such thatinInter(τ → τ ′, τ2 ∩ τ3)
andτ ′ 6∼2 Ω. Either inInter(τ → τ ′, τ2) and we conclude by IH. OrinInter(τ → τ ′, τ3)
and we conclude by IH.

– (mon): (τ1 ≤2 τ ′1 ∧ τ2 ≤2 τ ′2) ⇒ τ1 ∩ τ2 ≤2 τ ′1 ∩ τ ′2. Let τ, τ ′ such thatinInter(τ →
τ ′, τ ′1 ∩ τ

′
2). EitherinInter(τ → τ ′, τ ′1) and it is done by IH. OrinInter(τ → τ ′, τ ′2) and it is

done by IH.

– (→ -η): (τ1 ≤2 τ ′1 ∧ τ
′
2 ≤2 τ2) ⇒ τ ′1 → τ ′2 ≤2 τ1 → τ2. Let τ, τ ′ such thatinInter(τ →

τ ′, τ1 → τ2) andτ ′ 6∼2 Ω thenτ = τ1 andτ ′ = τ2 and it is done withn = 1 andτ ′′1 = τ ′2
becauseτ ′2 6∼2 Ω by lemma 3.5.2 and because ifτ1 ∼2 Ω thenτ ′1 ∼2 Ω.

– (Ω): τ0 ≤2 Ω. There is noτ, τ ′ such thatinInter(τ → τ ′,Ω).

– (Ω′-lazy): τ0 → Ω ≤2 Ω → Ω. there is noτ ′ 6∼2 Ω such thatinInter(τ → τ ′,Ω → Ω).

6. letτ ′ ∈ Type2. First we prove thatΩ → τ ′ 6∼2 Ω. AssumeΩ → τ ′ 6∼2 Ω thenΩ ≤2 Ω → τ ′. By
lemma 3.5.1,Ω → τ ′ ∈ TypeOmega which is false.

Let τ ∼2 Ω. Assumeα → Ω → τ ′ ∼2 Ω → τ thenΩ → τ ≤2 α → Ω → τ ′. By lemma 3.5.5,
τ ≤2 Ω → τ ′ which is false.

Let τ 6∼2 Ω. Assumeα → Ω → τ ′ ∼2 Ω → τ thenα → Ω → τ ′ ≤2 Ω → τ . By lemma 3.5.5,
α ∼2 Ω becauseΩ ∼2 Ω, which is false.

⊓⊔

C. Proofs of section 4

Proof(Lemma 4.4):

1. If τ1 ∩ τ2 ∈ NTType3 then it is done by definition. Otherwiseτ1, τ2 6∈ NTType3, soJτ1 ∩ τ2K
3
P =

Λ = Λ ∩ Λ = Jτ1K
3
P ∩ Jτ2K

3
P .

2. We prove this result by induction on the structure ofρ.

• Let ρ = α thenJρK3
P = P.

• Let ρ = τ → ρ′, then by definition,JρK3
P ⊆ P.

• Let ρ = τ ∩ ρ′, then by IH,Jρ′K3
P ⊆ P. SoJρK3

P = JτK3
P ∩ Jρ′K3

P ⊆ P.

• Let ρ = ρ′ ∩ τ , then by IH,Jρ′K3
P ⊆ P. SoJρK3

P = JτK3
P ∩ Jρ′K3

P ⊆ P.

3. By induction on the size of the derivation ofτ1 ≤2 τ2 and then by case on the last step.

• (ref ): τ ≤ τ . This case is trivial.
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• (Ω): τ ≤ Ω. This case is trivial sinceΩ 6∈ NTType3.

• (tr): τ1 ≤ τ2 ∧ τ2 ≤ τ3 ⇒ τ1 ≤ τ3. We conclude using IH twice.

• (Ω′-lazy): τ → Ω ≤ Ω → Ω. This case is trivial sinceΩ → Ω 6∈ NTType3.

• (inL): τ1 ∩ τ2 ≤ τ1. This case is trivial.

• (inR): τ1 ∩ τ2 ≤ τ2. This case is trivial.

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3). if τ1 → (τ2 ∩ τ3) ∈ NTType3 then
τ2 ∈ NTType3 or τ3 ∈ NTType3. Henceτ1 → τ2 ∈ NTType3 or τ1 → τ3 ∈ NTType3, so
(τ1 → τ2) ∩ (τ1 → τ3) ∈ NTType3.

• (mon′): τ1 ≤ τ2 ∧ τ1 ≤ τ3 ⇒ τ1 ≤ τ2 ∩ τ3. If τ2 ∩ τ3 ∈ NTType3 thenτ2 ∈ NTType3 or
τ3 ∈ NTType3, so by IH,τ1 ∈ NTType3.

• (mon): τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2 ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ
′
2. If τ ′1 ∩ τ

′
2 ∈ NTType3 thenτ ′1 ∈ NTType3

or τ ′2 ∈ NTType3. So by IH,τ1 ∈ NTType3 or τ2 ∈ NTType3, henceτ1 ∩ τ2 ∈ NTType3.

• (→ -η): τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2 ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2. If τ1 → τ2 ∈ NTType3 then
τ2 ∈ NTType3, so by IH,τ ′2 ∈ NTType3, henceτ ′1 → τ ′2 ∈ NTType3.

4. By induction on the size of the derivation ofτ1 ≤2 τ2 and then by case on the last step.

• (ref ): τ ≤ τ . This case is trivial.

• (Ω): τ ≤ Ω. This case is trivial sinceJΩK3
P = Λ.

• (tr): τ1 ≤ τ2 ∧ τ2 ≤ τ3 ⇒ τ1 ≤ τ3. By IH, Jτ1K
3
P ⊆ Jτ2K

3
P and Jτ2K

3
P ⊆ Jτ3K

3
P , so

Jτ1K
3
P ⊆ Jτ3K

3
P .

• (Ω′-lazy): τ → Ω ≤ Ω → Ω. This case is trivial sinceJτ → ΩK3
P = JΩ → ΩK3

P = Λ.

• (inL): τ1 ∩ τ2 ≤ τ1. By 1, Jτ1 ∩ τ2K3
P = Jτ1K

3
P ∩ Jτ2K

3
P ⊆ Jτ1K

3
P .

• (inR): τ1 ∩ τ2 ≤ τ2. By 1, Jτ1 ∩ τ2K3
P = Jτ1K

3 ∩ Jτ2K
3
P ⊆ Jτ2K

3
P .

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3).

– If τ1 → τ2, τ1 → τ3 ∈ NTType3 thenτ2, τ3, τ2∩τ3 ∈ NTType3, soJ(τ1 → τ2)∩(τ1 →
τ3)K

3
P = Jτ1 → τ2K

3
P ∩ Jτ1 → τ3K

3
P = {M ∈ P | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2K

3
P}∩ {M ∈

P | ∀N ∈ Jτ1K
3
P . MN ∈ Jτ3K

3
P} = {M ∈ P | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2K

3
P ∩ Jτ3K

3
P} =

{M ∈ P | ∀N ∈ JτK3
P . MN ∈ Jτ2 ∩ τ3K

3
P} = Jτ1 → (τ2 ∩ τ3)K

3
P .

– If τ1 → τ2 ∈ NTType3 andτ1 → τ3 6∈ NTType3, thenτ2, τ2 ∩ τ3 ∈ NTType3 and
τ3 6∈ NTType3, soJ(τ1 → τ2) ∩ (τ1 → τ3)K

3
P = Jτ1 → τ2K

3
P ∩ Jτ1 → τ3K

3
P = {M ∈

P | ∀N ∈ Jτ1K
3
P . MN ∈ Jτ2K

3
P} = {M ∈ P | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2 ∩ τ3K

3
P} =

Jτ1 → (τ2 ∩ τ3)K
3
P .

– If τ1 → τ2 6∈ NTType3 andτ1 → τ3 ∈ NTType3, thenτ3, τ2 ∩ τ3 ∈ NTType3 and
τ2 6∈ NTType3, soJ(τ1 → τ2) ∩ (τ1 → τ3)K

3
P = Jτ1 → τ2K

3
P ∩ Jτ1 → τ3K

3
P = {M ∈

P | ∀N ∈ Jτ1K
3
P . MN ∈ Jτ3K

3
P} = {M ∈ P | ∀N ∈ Jτ1K

3
P . MN ∈ Jτ2 ∩ τ3K

3
P} =

Jτ1 → (τ2 ∩ τ3)K
3
P .

– If τ1 → τ2, τ1 → τ3 6∈ NTType3, thenτ2, τ3, τ2∩τ3 6∈ NTType3, soJ(τ1 → τ2)∩(τ1 →
τ3)K

3
P = Jτ1 → (τ2 ∩ τ3)K

3
P = Λ.



66 Kamareddine, Rahli, Wells / Reducibility proofs in theλ-calculus

• (mon′): τ1 ≤ τ2 ∧ τ1 ≤ τ3 ⇒ τ1 ≤ τ2 ∩ τ3. By IH, Jτ1K
3
P ⊆ Jτ2K

3
P andJτ1K

3
P ⊆ Jτ3K

3
P . So

by 1,Jτ1K3
P ⊆ Jτ2K

3
P ∩ Jτ3K

3
P = Jτ2 ∩ τ3K

3
P .

• (mon): τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2 ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ
′
2. By IH, Jτ1K

3
P ⊆ Jτ ′1K

3
P andJτ2K

3
P ⊆ Jτ ′2K

3
P .

So by 1,Jτ1 ∩ τ2K3
P = Jτ1K

3
P ∩ Jτ2K

3
P ⊆ Jτ ′1K

3
P ∩ Jτ ′2K

3
P = Jτ ′1 ∩ τ

′
2K

3
P .

• (→ -η): τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2 ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2. By IH, Jτ1K
3
P ⊆ Jτ ′1K

3
P and

Jτ ′2K
3
P ⊆ Jτ2K

3
P . If τ1 → τ2 ∈ NTType3 thenτ2 ∈ NTType3 and by 3,τ ′2 ∈ NTType3, so

τ ′1 → τ ′2 ∈ NTType3 andJτ ′1 → τ ′2K
3
P = {M ∈ P | ∀N ∈ Jτ ′1K

3
P . MN ∈ Jτ ′2K

3
P} ⊆ {M ∈

P | ∀N ∈ Jτ1K
3
P . MN ∈ Jτ2K

3
P} = Jτ1 → τ2K

3
P . Otherwise,Jτ ′1 → τ ′2K

3
P ⊆ Jτ1 → τ2K

3
P =

Λ.

5. AssumeVAR(P,P). Let n ≥ 0, x ∈ V and for alli ∈ {1, . . . , n},Mi ∈ P. By the hypothesis,
xM1 · · ·Mn ∈ P. We prove thatxM1 · · ·Mn ∈ JϕK3

P by induction on the structure ofϕ.

• If ϕ = α thenxM1 · · ·Mn ∈ P = JαK3
P .

• If ϕ = Ω thenxM1 · · ·Mn ∈ Λ = JΩK3
P .

• If ϕ = τ ∩ ϕ′. By IH, xM1 · · ·Mn ∈ Jϕ′K3
P , so by 1,xM1 · · ·Mn ∈ JτK3

P ∩ Jϕ′K3
P =

Jτ ∩ ϕ′K3
P .

• If ϕ = ϕ′ ∩ τ . By IH, xM1 · · ·Mn ∈ Jϕ′K3
P , so by 1,xM1 · · ·Mn ∈ Jϕ′K3

P ∩ JτK3
P =

Jϕ′ ∩ τK3
P .

• If ϕ = ρ→ ϕ′.

– If ϕ ∈ NTType3 thenϕ′ ∈ NTType3. Let N ∈ JρK3
P , so by 2,N ∈ P. By IH,

xM1 · · ·MnN ∈ Jϕ′K3
P . SoxM1 · · ·Mn ∈ Jρ→ ϕ′K3

P .

– If ϕ 6∈ NTType3 thenxM1 · · ·Mn ∈ Jρ→ ϕ′K3
P = Λ.

6. AssumeSAT(P,P). Let n ≥ 0, x ∈ V, M,N ∈ Λ and for all i ∈ {1, . . . , n}, Ni ∈ Λ. We
prove that ifM [x := N ]N1 · · ·Nn ∈ JτK3

P then(λx.M)NN1 · · ·Nn ∈ JτK3
P by induction on the

structure ofτ .

• If τ = α thenJαK3
P = P and we conclude using the hypothesisSAT(P,P).

• If τ = Ω then(λx.M)NN1 · · ·Nn ∈ Λ = JΩK3
P .

• If τ = τ1 ∩ τ2. AssumeM [x := N ]N1 · · ·Nn ∈ JτK3
P =1 Jτ1K

3 ∩ Jτ2K
3, then by IH,

(λx.M)NN1 · · ·Nn ∈ Jτ1K
3 ∩ Jτ2K

3 =1 JτK3.

• If τ = τ1 → τ2.

– If τ ∈ NTType3 thenτ2 ∈ NTType3. LetP ∈ Jτ1K
3
P andM [x := N ]N1 · · ·Nn ∈ JτK3

P

then by 2,M [x := N ]N1 · · ·Nn ∈ P. By hypothesis,(λx.M)NN1 · · ·Nn ∈ P.
Moreover,M [x := N ]N1 · · ·NnP ∈ Jτ2K

3
P . By IH, (λx.M)NN1 · · ·NnP ∈ Jτ2K

3
P , so

(λx.M)NN1 · · ·Nn ∈ JτK3
P .

– Let τ 6∈ NTType3 then(λx.M)NN1 · · ·Nn ∈ JτK3
P = Λ.

⊓⊔
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D. Proofs of section 6

Proof(Lemma 6.2): 1. By induction onΓ ⊢βI M : σ. 2. By induction onΓ ⊢βη M : σ.
3. First prove (*): ifΓ ⊢r M : σ, andσ ⊑ σ′ thenΓ ⊢r M : σ′ by induction onσ ⊑ σ′. Then, do the
proof of 3. by induction onΓ ⊢r M : σ. For the latter we do:

• Case(ax): If Γ, x : σ ⊢βη x : σ, Γ′, x : σ′ ⊑ Γ, x : σ andσ ⊑ σ′′ thenσ′ ⊑ σ and soσ′ ⊑ σ′′.
By (ax)Γ′, x : σ′ ⊢βη x : σ′. By (*), Γ′, x : σ′ ⊢βη x : σ′′.

• Case(→EI ): If Γ⊢βIM :σ→τ ∆⊢βIN :σ
Γ⊓∆⊢βIMN :τ

, Γ = Γ1,Γ2, ∆ = ∆1,∆2, Γ ⊓ ∆ = Γ3,Γ2,∆2, Γ′ =
Γ′

3,Γ
′
2,∆

′
2 ⊑ Γ where,Γ1 = (xi : σi)n, Γ2 = (yj , τj)m, Γ3 = (xi : σi ∩ σ

′
i)n, ∆1 = (xi : σ′i)n,

∆2 = (zl, ρl)k, dom(Γ2) ∩ dom(∆2) = ∅, Γ′
3 = (xi : σi)n, Γ′

2 = (yj, τ j)m, ∆′
2 = (zl, ρl)k,

σi ⊑ σi ∩ σ
′
i, τj ⊑ τj andρl ⊑ ρl thenΓ′

3,Γ
′
2 ⊑ Γ andΓ′

3,∆
′
2 ⊑ ∆. By IH, Γ′

3,Γ
′
2 ⊢βI M :

σ → τ andΓ′
3,∆

′
2 ⊢βI N : σ, so by(→EI ), Γ′

3 ⊓ Γ′
3,Γ

′
2,∆

′
2 ⊢βI MN : τ . By (*), and since

Γ′
3 ⊓ Γ′

3 = Γ′
3, we have:Γ′

3,Γ
′
2,∆

′
2 ⊢βI MN : τ .

⊓⊔

Proof(Lemma 6.3): WhenM →∗
r N andM →∗

r P , we writeM →∗
r {N,P}.

1. By induction onσ ∈ Type1.

• If σ ∈ A thenCRr
0 ⊆ CRr = JσKr.

• If σ = τ ∩ ρ then by IH,CRr
0 ⊆ JτKr, JρKr ⊆ CRr, soCRr

0 ⊆ Jτ ∩ ρKr ⊆ CRr.

• If σ = τ → ρ then by IH,CRr
0 ⊆ JτKr, JρKr ⊆ CRr andJσKr ⊆ CRr by definition. Let

M ∈ CRr
0, soM = xN1 . . . Nn such thatn ≥ 0 andN1, . . . , Nn ∈ CRr. LetP ∈ JτKr so

P ∈ CRr, hence,MP ∈ CRr
0 ⊆ JρKr andM ∈ JσKr.

2. LetM [x := N ]N1 . . . Nn ∈ CRβI wheren ≥ 0, x ∈ fv(M) and (λx.M)NN1 . . . Nn →∗
βI

{M1,M2}.
By lemma 2.2.7, there existM ′

1 andM ′
2 such thatM1 →∗

βI M ′
1, M [x := N ]N1 . . . Nn →∗

βI

M ′
1, M2 →∗

βI M ′
2 andM [x := N ]N1 . . . Nn →∗

βI M ′
2. Then we conclude usingM [x :=

N ]N1 . . . Nn ∈ CRβI .

3. LetM [x := N ]N1 . . . Nn ∈ CRβη wheren ≥ 0 and (λx.M)NN1 . . . Nn →∗
βη {M1,M2}.

By lemma 2.2.7, there existM ′
1 andM ′

2 such thatM1 →∗
βη M ′

1, M [x := N ]N1 . . . Nn →∗
βη

M ′
1, M2 →∗

βη M ′
2 andM [x := N ]N1 . . . Nn →∗

βη M ′
2. Then we conclude usingM [x :=

N ]N1 . . . Nn ∈ CRβη.

4. By induction onσ.

• If σ ∈ A, then the statement is true by 2.

• If σ = τ ∩ ρ, then by IH,JτKβI and JρKβI are I-saturated. LetM , N , N1,. . . , Nn ∈ Λ,
x ∈ fv(M), n ≥ 0, andM [x := N ]N1 . . . Nn ∈ JσKβI = JτKβI ∩ JρKβI . Then by I-
saturation,(λx.M)NN1 . . . Nn ∈ JτKβI and(λx.M)NN1 . . . Nn ∈ JρKβI . Done.
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• If σ = τ → ρ, then by IH,JτKβI andJρKβI are I-saturated. Letn ≥ 0, M,N,N1, . . . , Nn ∈
Λ, x ∈ fv(M), andM [x := N ]N1 . . . Nn ∈ JσKβI . Let P ∈ JτKβI 6= ∅, thenM [x :=
N ]N1 . . . NnP ∈ JρKβI .
By I-saturation,(λx.M)NN1 . . . NnP ∈ JρKβI so (λx.M)NN1 . . . Nn ∈ JτKβI ⇒ JρKβI .
Since,M [x := N ]N1 . . . Nn ∈ JσKβI ⊆ CRβI andCRβI is saturated by 2,
then(λx.M)NN1 . . . Nn ∈ CRβI .

5. By induction onσ.

• If σ ∈ A, then the statement is true by 3.

• If σ = τ ∩ ρ, then by IH,JτKβη andJρKβη are saturated.
LetM [x := N ]N1 . . . Nn ∈ JσKβη = JτKβη ∩ JρKβη.
Then by saturation,(λx.M)NN1 . . . Nn ∈ JτKβη and(λx.M)NN1 . . . Nn ∈ JρKβη. Done.

• If σ = τ → ρ, then by IH,JτKβη andJρKβη are saturated. Letn ≥ 0, M,N,N1, . . . , Nn ∈
Λ, x ∈ V, andM [x := N ]N1 . . . Nn ∈ JσKβη. Let P ∈ JτKβη 6= ∅, thenM [x :=
N ]N1 . . . NnP ∈ JρKβη. By saturation,(λx.M)NN1 . . . NnP ∈ JρKβη so
(λx.M)NN1 . . . Nn ∈ JτKβη ⇒ JρKr. Since,M [x := N ]N1 . . . Nn ∈ JσKβη ⊆ CRβη and
CRβη is saturated by 3, then(λx.M)NN1 . . . Nn ∈ CRβη.

⊓⊔

Proof(Lemma 6.4): By induction onx1 : σ1, . . . , xn : σn ⊢r M : σ.

• If the last rule is(ax) or (axI), use the hypothesis.

• If the last rule is(→EI ). Let Γ1 ⊓ Γ2 = (xi : σi ∩ σ′i)n, (yi : τi)p, (zi : ρi)q such thatΓ1 =
(xi : σi)n, (yi : τi)p andΓ2 = (xi : σ′i)n, (zi : ρi)q. Let ∀i ∈ {1, . . . , n}, Ni ∈ Jσi ∩ σ

′
iK

βI so
Ni ∈ JσiK

βI andNi ∈ Jσ′iK
βI , ∀i ∈ {1, . . . , p}, Pi ∈ JτiK

βI and∀i ∈ {1, . . . , q}, P ′
i ∈ JρiK

βI .
So by IH,M [(xi := Ni)n, (yi := Pi)p] ∈ Jσ → τKβI andN [(xi := Ni)n, (zi := P ′

i )q] ∈ JσKβI .
Hence,(MN)[(xi := Ni)n, (yi := Pi)p, (zi := P ′

i )q] ∈ JτKβI .

• If the last rule is(→E). LetΓ = (xi : σi)n and∀i ∈ {1, . . . , n}, Ni ∈ JσiK
βη. So by IH,M [(xi :=

Ni)n] ∈ Jσ → τKβη andN [(xi := Ni)n] ∈ JσKβη. Hence,(MN)[(xi := Ni)n] ∈ JτKβη.

• If the last rule is(→I). Let Γ = (xi : σi)n and∀i ∈ {1, . . . , n}, Ni ∈ JσiK
r. LetP ∈ JσKr 6= ∅.

So by IH,M [(xi := Ni)n, x := P ] ∈ JτKr. Moreover((λx.M)[(xi := Ni)n])P = (λx.M [(xi :=
Ni)n])P .

– For⊢βI , sincex ∈ fv(M) by lemma 2.2.4,(λx.M [(xi := Ni)n]) →βI M [(xi := Ni)n, x :=
P ] and since by lemma 6.3,JτKβI is I-saturated,((λx.M)[(xi := Ni)n])P ∈ JτKβI .

– For⊢βη, (λx.M [(xi := Ni)n]) →β M [(xi := Ni)n, x := P ] and since by lemma 6.3,JτKβη

is saturated,((λx.M)[(xi := Ni)n])P ∈ JτKβη.

So(λx.M)[(xi := Ni)n] ∈ JσKr ⇒ JτKr. Sincex ∈ JσKr, M [(xi := Ni)n] ∈ JτKr ⊆ CRr, so
λx.M [(xi := Ni)n] = (λx.M)[(xi := Ni)n] ∈ CRr.

• If the last rule is(∩I). Let Γ = (xi : σi)n and∀i ∈ {1, . . . , n}, Ni ∈ JσiK
r. So by IH,M [(xi :=

Ni)n] ∈ JτKr andM [(xi := Ni)n] ∈ JρKr. SoM [(xi := Ni)n] ∈ JσKr.
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• If the last rule is(∩E1). Let Γ = (xi : σi)n and∀i ∈ {1, . . . , n}, Ni ∈ JσiK
r. So by IH,

M [(xi := Ni)n] ∈ Jσ ∩ τKr, soM [(xi := Ni)n] ∈ JσKr.

• If the last rule is(∩E2). Let Γ = (xi : σi)n and∀i ∈ {1, . . . , n}, Ni ∈ JσiK
r. So by IH,

M [(xi := Ni)n] ∈ Jσ ∩ τKr, soM [(xi := Ni)n] ∈ JτKr.
⊓⊔

Proof(Lemma 6.6): By induction onM . Note that by Lemma 5.2,M 6= c.

• LetM = x 6= c. ThenΓ = Γ1, x : τ , Γ′ = x : τ , Γ′ ⊢βI x : τ and∀σ, Γ1, x : τ, c : σ ⊢βη x : τ .

• LetM = λx.N ∈ ΛIc then by lemma 5.2,N ∈ ΛIc andx ∈ fv(N). ∀ρ:

– If c ∈ fv(M) thenc ∈ fv(N) and by IH,∃σ, τ whereΓ′, x : ρ, c : σ ⊢βI N : τ , hence
Γ′, c : σ ⊢βI λx.N : ρ→ τ .

– If c 6∈ fv(M) then by IH,∃τ whereΓ′, x : ρ ⊢βI N : τ , henceΓ′ ⊢βI λx.N : τ .

• Let M = λx.N ∈ Ληc then by lemma 5.2.12.12a,N ∈ Ληc. By IH, ∀ρ, ∃σ, τ such thatΓ, x :
ρ, c : σ ⊢βη N : τ . Hence,Γ, c : σ ⊢βη λx.N : τ .

• Let M = cNP whereN,P ∈ ΛIc. Let Γ′
1 = Γ ↾ fv(N) andΓ′

2 = Γ ↾ fv(P ). Note that
Γ′ = Γ ↾ fv(cNP ) = Γ′

1 ⊓ Γ′
2.

– If c 6∈ fv(N) ∪ fv(P ) then by IH,∃τ1, τ2 such thatΓ′
1 ⊢βI N : τ1 andΓ′

2 ⊢βI P : τ2. Let
ρ ∈ Type1 andσ = τ1 → τ2 → ρ. By (→EI

) twice,Γ′
1 ⊓ Γ′

2, c : σ ⊢βI cNP : ρ.

– If c ∈ fv(N) andc 6∈ fv(P ) then by IH,∃σ1, τ1, τ2 such thatΓ′
1, c : σ1 ⊢βI N : τ1 and

Γ′
2 ⊢βI P : τ2. Let ρ ∈ Type1 and letσ = σ1 ∩ (τ1 → τ2 → ρ). By (axI) and (∩E),
c : σ ⊢βI c : τ1 → τ2 → ρ. By lemma 6.2.3,Γ′

1, c : σ ⊢βI N : τ1. By (→EI
) twice,

Γ′
1 ⊓ Γ′

2, c : σ ⊢βI cNP : ρ.

– If c ∈ fv(N) ∩ fv(P ) then by IH,∃σ1, σ2, τ1, τ2 such thatΓ′
1, c : σ1 ⊢βI N : τ1 and

Γ′
2, c : σ2 ⊢βI N : τ2. Let ρ ∈ Type1 and letσ = σ1 ∩ (σ2 ∩ (τ1 → τ2 → ρ)). By

(axI) and(∩E), c : σ ⊢βI c : τ1 → τ2 → ρ. By lemma 6.2.3,Γ′
1, c : σ ⊢βI N : τ1, and

Γ′
2, c : σ ⊢βI P : τ2. By (→EI

) twice,Γ′
1 ⊓ Γ′

2, c : σ ⊢βI cNP : ρ.

• Let M = cNP whereN,P ∈ Ληc. by IH, ∃σ1, σ2, τ1, τ2 such thatΓ, c : σ1 ⊢βη N : τ1 and
Γ, c : σ2 ⊢βη N : τ2. Letρ ∈ Type1 and letσ = σ1 ∩ (σ2 ∩ (τ1 → τ2 → ρ)). By (axI) and(∩E),
c : σ ⊢βη c : τ1 → τ2 → ρ. By lemma 6.2.3,Γ, c : σ ⊢βη N : τ1, andΓ, c : σ ⊢βη P : τ2. By
(→EI

) twice,Γ, c : σ ⊢βη cNP : ρ.

• Let M = NP whereN,P ∈ ΛIc andN = λx.N0. SoN0 ∈ ΛIc and x ∈ fv(N0). Let
Γ′

1 = Γ ↾ fv(N) andΓ′
2 = Γ ↾ fv(P ). Note thatΓ′ = Γ ↾ fv(NP ) = Γ′

1 ⊓ Γ′
2. By BC,x 6= c and

x 6∈ fv(P ).

– If c 6∈ fv(λx.N0)∪ fv(P ) then by IH,∃τ2 such thatΓ′
2 ⊢βI P : τ2 and again by IH,∃τ1 such

thatΓ′
1, x : τ2 ⊢βI N0 : τ1. By (→I) and(→EI

), Γ′
1 ⊓ Γ′

2 ⊢βI (λx.N0)P : τ1.
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– If c ∈ fv(λx.N0) andc 6∈ fv(P ) then by IH,∃τ2 such thatΓ′
2 ⊢βI P : τ2. Again by IH,

∃σ, τ1 such thatΓ′
1, c : σ, x : τ2 ⊢βI N0 : τ1. By (→I) and (→EI

), Γ′
1 ⊓ Γ′

2, c : σ ⊢βI

(λx.N0)P : τ1.

– If c ∈ fv(λx.N0)∩fv(P ), then by IH,∃σ2, τ2 such thatΓ′
2, c : σ2 ⊢βI P : τ2 and again by IH,

∃σ1, τ1 such thatΓ′
1, c : σ1, x : τ2 ⊢βI N0 : τ1. By (→I), Γ′

1, c : σ1 ⊢βI λxN0 : τ2 → τ1.
By (→EI

), Γ′
1 ⊓ Γ′

2, c : σ1 ∩ σ2 ⊢βI (λx.N0)P : τ1.

• LetM = NP whereN,P ∈ Ληc andN = λx.N0 then by lemma 5.2.12.12a,N0 ∈ Ληc. By IH,
∃σ2, τ2 such thatΓ, c : σ2 ⊢βη P : τ2 and again by IH,∃σ1, τ1 such thatΓ, c : σ1, x : τ2 ⊢βη N0 :
τ1. By (→I), Γ, c : σ1 ⊢βη λx.N0 : τ2 → τ1. Let σ = σ1 ∩ σ2. By Lemma 6.2.3,Γ, c : σ ⊢βη

λx.N0 : τ2 → τ1 andΓ, c : σ ⊢βη P : τ2. Hence, by(→E), Γ, c : σ ⊢βη (λx.N0)P : τ1.

• Let M = cN whereN ∈ Ληc. By IH, ∃σ, τ such thatΓ, c : σ ⊢βη N : τ . Let ρ ∈ Type1 and
σ′ = σ ∩ (τ → ρ). By Lemma 6.2.3,Γ, c : σ′ ⊢βη N : τ andΓ, c : σ′ ⊢βη c : τ → ρ. Hence, by
(→E), Γ, c : σ′ ⊢βη cN : ρ.

⊓⊔

E. Proofs of section 7

Proof(Lemma 7.2):

1. 1a. By induction on the structure ofM ∈ ΛI.

• LetM = x 6= c. ThenΦc(x,F) = x, F = ∅ andfv(x) = fv(x) \ {c}.

• Let M = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ RβI
N . Then,fv(M) =

fv(N)\{x} =IH fv(Φc(N,F ′))\{c, x} = fv(λx.Φc(N,F ′))\{c} = fv(Φc(M,F))\
{c}.

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

andF2 = {p | 2.p ∈ F} ⊆ RβI
M2

.

– If 0 ∈ F then,Φc(M,F) = Φc(M1,F1)Φ
c(M2,F2).

– Else,Φc(M,F) = cΦc(M1,F1)Φ
c(M2,F2).

In both cases,fv(M) = fv(M1)∪fv(M2) =IH (fv(Φc(M1,F1))\{c})∪(fv(Φc(M2,F2))\
{c}) = fv(Φc(M,F)) \ {c}.

1b. By induction on the structure ofM ∈ ΛI.

• LetM ∈ V, thenM 6= c. SoF = ∅ andΦc(M,F) = M ∈ ΛIc.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ RβI
N . By IH, Φc(N,F ′) ∈

ΛIc. By lemma 7.2.1a,x ∈ fv(Φc(N,F ′)). Hence,Φc(M,F) = λx.Φc(N,F ′) ∈ ΛIc.

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

andF2 = {p | 2.p ∈ F} ⊆ RβI
M2

.

– If 0 ∈ F thenΦc(M,F) = Φc(M1,F1)Φ
c(M2,F2).

By IH, Φc(M1,F1),Φ
c(M2,F2) ∈ ΛIc and asM1 is aλ-abstraction,Φc(M1,F1)

is aλ-abstraction. HenceΦc(M,F) ∈ ΛIc.

– Else,Φc(M,F) = cΦc(M1,F1)Φ
c(M2,F2). By IH, Φc(M1,F1),Φ

c(M2,F2) ∈
ΛIc, hence,Φc(M,F) ∈ ΛIc.

1c. By induction on the structure ofM ∈ ΛI.
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• LetM = x 6= c. Then,F = ∅ andΦc(x,F) = x = |x|c.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ RβI
N . Then,|Φc(M,F)|c =

|λx.Φc(N,F ′)|c = λx.|Φc(N,F ′)|c =IH λx.N .

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

andF2 = {p | 2.p ∈ F} ⊆ RβI
M2

.
– If 0 ∈ F thenM1 is a λ-abstraction, hence,Φc(M1,F1) is a λ-abstraction. So,
|Φc(M,F)|c = |Φc(M1,F1)Φ

c(M2,F2)|
c = |Φc(M1,F1)|

c|Φc(M2,F2)|
c =IH

M1M2 = M .
– Else,|Φc(M,F)|c = |cΦc(M1,F1)Φ

c(M2,F2)|
c = |Φc(M1,F1)|

c|Φc(M2,F2)|
c

=IH M1M2 = M .

1d. By induction on the structure ofM ∈ ΛI.

• If M = x 6= c thenΦc(M,F) = M andF = ∅ =5.3 |〈M,RβI
M 〉|c.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ RβI
N . ThenF =5.3 {1.p |

p ∈ F ′} =IH {1.p | p ∈ |〈Φc(N,F ′),RβI

Φc(N,F ′)〉|
c} = {1.|〈Φc(N,F ′), p〉|c | p ∈

RβI

Φc(N,F ′)} = {|〈Φc(M,F), 1.p〉|c | p ∈ RβI

Φc(N,F ′)} =5.3 |〈Φc(M,F),RβI

Φc(M,F)〉|
c.

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

andF2 = {p | 2.p ∈ F} ⊆ RβI
M2

.
– If 0 ∈ F thenΦc(M,F) = Φc(M1,F1)Φ

c(M2,F2). SinceM1 is aλ-abstraction
thenΦc(M1,F1) too. By lemma 7.2.1b,Φc(M,F) ∈ ΛIc thenΦc(M,F) ∈ RβI .
Hence,F =5.3 {0} ∪ {1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =IH {0} ∪ {1.p |

p ∈ |〈Φc(M1,F1),R
βI

Φc(M1,F1)
〉|c} ∪ {2.p | p ∈ |〈Φc(M2,F2),R

βI

Φc(M2,F2)
〉|c} =

{0} ∪ {1.|〈Φc(M1,F1), p〉|
c | p ∈ RβI

Φc(M1,F1)
} ∪ {2.|〈Φc(M2,F2), p〉|

c | p ∈

RβI

Φc(M2,F2)} = {0}∪{|〈Φc(M,F), 1.p〉|c | p ∈ RβI

Φc(M1,F1)
}∪{|〈Φc(M,F), 2.p〉|c |

p ∈ RβI

Φc(M2,F2)
} =5.3 |〈Φc(M,F),RβI

Φc(M,F)〉|
c.

– Else,Φc(M,F) = cΦc(M1,F1)Φ
c(M2,F2). Then,F =5.3 {1.p | p ∈ F1} ∪

{2.p | p ∈ F2} =IH {1.p | p ∈ |〈Φc(M1,F1),R
βI

Φc(M1,F1)〉|
c} ∪ {2.p | p ∈

|〈Φc(M2,F2),R
βI

Φc(M2,F2)
〉|c} = {1.|〈Φc(M1,F1), p〉|

c | p ∈ RβI

Φc(M1,F1)
} ∪

{2.|〈Φc(M2,F2), p〉|
c | p ∈ RβI

Φc(M2,F2)
} =

{|〈Φc(M,F), 1.2.p〉|c | p ∈ RβI

Φc(M1,F1)
}∪{|〈Φc(M,F), 2.p〉|c | p ∈ RβI

Φc(M2,F2)}

=5.3 |〈Φc(M,F),RβI

Φc(M,F)〉|
c.

2. 2a. By induction on the construction ofM ∈ ΛIc. By lemma 6,|M |c ∈ ΛI

• Let M ∈ V \ {c}. Hence|M |c = M , by lemma 5.3,|〈M,RβI
M 〉|c = ∅ = RβI

|M |c and

M = Φc(|M |c, |〈M,RβI
M 〉|c).

• Let M = λx.P such thatx 6= c, P ∈ ΛIc andx ∈ fv(P ). Then, |M |c = λx.|P |c.
By IH, |〈P,RβI

P 〉|c ⊆ RβI

|P |c
andP = Φc(|P |c, |〈P,RβI

P 〉|c). Hence,|〈M,RβI
M 〉|c =5.3

{|〈M, 1.p〉|c | p ∈ RβI
P } = {1.p | p ∈ |〈P,RβI

P 〉|c} ⊆ {1.p | p ∈ RβI

|P |c} =5.3 RβI

|M |c.

Moreover,M = Φc(|M |c, |〈M,RβI
M 〉|c).

• LetM = cPQ whereP,Q ∈ ΛIc then|M |c = |P |c|Q|c. By IH, |〈P,RβI
P 〉|c ⊆ RβI

|P |c,

|〈Q,RβI
Q 〉|c ⊆ RβI

|Q|c, P = Φc(|P |c, |〈P,RβI
P 〉|c) andQ = Φc(|Q|c, |〈Q,RβI

Q 〉|c).
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Hence,|〈M,RβI
M 〉|c =5.3 {|〈M, 1.2.p〉|c | p ∈ RβI

P } ∪ {|〈M, 2.p〉|c | pRβI
Q } = {1.p |

p ∈ |〈P,RβI
P 〉|c} ∪ {2.p | p ∈ |〈Q,RβI

Q 〉|c} ⊆ {1.p | p ∈ RβI

|P |c} ∪ {2.p | p ∈

RβI

|Q|c} ⊆5.3 RβI

|M |c. MoreoverM = Φc(|M |βI , |〈M,RβI
M 〉|c).

• Let M = PQ whereP,Q ∈ ΛIc andP is aλ-abstraction. Then,|M |c = |P |c|Q|c,
where |P |c is a λ-abstraction. By IH,|〈P,RβI

P 〉|c ⊆ RβI

|P |c, |〈Q,R
βI
Q 〉|c ⊆ RβI

|Q|c,

P = Φc(|P |c, |〈P,RβI
P 〉|c) andQ = Φc(|Q|c, |〈Q,RβI

Q 〉|c). Hence,|〈M,RβI
M 〉|c =5.3

{0} ∪ {|〈M, 1.p〉|c | p ∈ RβI
P } ∪ {|〈M, 2.p〉|c | p ∈ RβI

Q } = {0} ∪ {1.p | p ∈

|〈P,RβI
P 〉|c} ∪ {2.p | p ∈ |〈Q,RβI

Q 〉|c} ⊆ {0} ∪ {1.p | p ∈ RβI

|P |c} ∪ {2.p | p ∈

RβI

|Q|c} =5.3 RβI

|M |c. MoreoverM = Φc(|M |βI , |〈M,RβI
M 〉|c).

2b. By lemma 6,|M |c ∈ ΛI. By lemma 4c 6∈ fv(|M |c). By lemma 7.2.2a,|〈M,RβI
M 〉|c ⊆ RβI

|M |c

andM = Φc(|M |c, |〈M,RβI
M 〉|c). To prove unicity, assume that〈N ′,F ′〉 is another such

pair. SoF ′ ⊆ RβI
N ′ andM = Φc(N ′,F ′). Then, |M |c = |Φc(N ′,F ′)|c =7.2.1c N ′ and

F ′ =7.2.1d |〈Φc(N ′,F ′),RβI

Φc(N ′,F ′)〉|
c = |〈M,RβI

M 〉|c.
⊓⊔

Proof(Lemma 7.3): By lemma 7.2.1c and lemma 1, there exists a uniquep′ ∈ RβI

Φc(M,F), such that

|〈RβI

Φc(M,F), p
′〉|c = p. By lemma 2.2.8, there existsP such thatΦc(M,F)

p
′

→βI P . By lemma 5.8.7a,

M =7.2.1c |Φc(M,F)|c
p0

→βI |P |c, such that|〈RβI

Φc(M,F), p
′〉|c = p0. Sop = p0 and by lemma 2.2.9,

M ′ = |P |c. Let F ′ = |〈P,RβI
P 〉|c. Because,Φc(M,F)

p
′

→βI P , by lemma 2 and lemma 7.2.1b,

P ∈ ΛIc. By lemma 7.2.2a,P = Φc(M ′,F ′) andF ′ ⊆ RβI
M ′ . By lemma 7.2.2b,F ′ is unique. ⊓⊔

Proof(Lemma 7.6.1): It sufficient to prove:

〈M,F〉 →βId 〈M ′,F ′〉 ⇐⇒ Φc(M,F) →βI Φc(M ′,F ′)

• ⇒) let 〈M,F〉 →βId 〈M ′,F ′〉. Then by definition 7.5, there existsp ∈ F such thatM
p

→βI M
′

andF ′ is the set ofβI-residuals inM ′ of the set of redexesF in M relative top. By definition 7.4
we obtainΦc(M,F) →βI Φc(M ′,F ′).

• ⇐) Let Φc(M,F) →βI Φc(M ′,F ′) then by lemma 2.2.8, there existspRβI

Φc(M,F) such that

Φc(M,F)
p

→βI Φc(M ′,F ′). Because, by lemma 7.2.1b,Φc(M,F) ∈ ΛIc, by lemma 5.8.7a and

lemma 7.2.1c,M = |Φc(M,F)|c
p0

→βI |Φc(M ′,F ′)|c = M ′ such that|〈Φc(M,F), p0〉|
c = p.

By definition 7.4,F ′ is the set ofβI-residuals inM ′ of the set of redexesF in M relative top0.
By definition 7.5 we obtain〈M,F〉 →βd 〈M ′,F ′〉.

⊓⊔

Proof(Lemma 7.6.2): By lemma 7.2.1b,Φc(M,F1),Φ
c(M,F2) ∈ ΛIc. By lemma 7.2.1c,|Φc(M,F1)|

c =

|Φc(M,F2)|
c. By lemma 7.2.1d,|〈Φc(M,F1),R

βI

Φc(M,F1)〉|
c = F1 ⊆ F2 = |〈Φc(M,F2),R

βI

Φc(M,F2)〉|
c.
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If 〈M,F1〉 →βId 〈M ′,F ′
1〉 then by lemma 7.6.1,Φc(M,F1) →βI Φc(M ′,F ′

1). By lemma 2.2.8,

there existsp1 ∈ RβI

Φc(M,F1) such thatΦc(M,F1)
p1

→βI Φc(M ′,F ′
1). Let p0 = |〈RβI

Φc(M,F1), p1〉|
c, so by

lemma 7.2.1d,p0 ∈ F1. By lemma 5.8.7a and lemma 7.2.1c,M
p0

→βI M
′.

By lemma 7.3 there exists a unique setF ′ ⊆ RβI
M ′ , such thatΦc(M,F1)

p
′

→βI Φc(M ′,F ′) and

|〈Φc(M,F1), p
′〉|c = p0. By lemma 2.2.8,p′ ∈ RβI

Φc(M,F1). Sincep′, p1 ∈ RβI

Φc(M,F1), by lemma 1,

p′ = p1. So, by lemma 2.2.9,Φc(M ′,F ′) = Φc(M ′,F ′
1). By lemma 7.2.1d,F ′ = F ′

1 andF ′
1 =

|〈Φc(M ′,F ′
1),R

βI

Φc(M ′,F ′

1
)
〉|c.

By lemma 7.3 there exists a unique setF ′
2 ⊆ RβI

M ′ , such thatΦc(M,F2)
p2

→βI Φc(M ′,F ′
2) and

|〈Φc(M,F2), p2〉|
c = p0.

By lemma 2.2.8,p2 ∈ Φc(M,F2). By lemma 7.2.1d,F ′
2 = |〈Φc(M ′,F ′

2),R
βI

Φc(M ′,F ′

2
)
〉|c.

Hence, by lemma 5.8.7c,F ′
1 ⊆ F ′

2 and by lemma 7.6.1,〈M,F2〉 →βId 〈M ′,F ′
2〉. ⊓⊔

Proof(Lemma 7.7): If M
F1→βId M1 andM

F2→βId M2, then there existsF ′′
1 ,F

′′
2 such that〈M,F1〉 →

∗
βId

〈M1,F
′′
1 〉 and〈M,F2〉 →

∗
βId 〈M2,F

′′
2 〉. By definitions 7.4 and 7.5,F ′′

1 ⊆ RβI
M1

andF ′′
2 ⊆ RβI

M2
. Note

that by definition 7.5 and lemma 2.2.4,M1,M2 ∈ ΛI. By lemma 2, there existF ′′′
1 ⊆ RβI

M1
and

F ′′′
2 ⊆ RβI

M2
such that〈M,F1 ∪ F2〉 →

∗
βId 〈M1,F

′′
1 ∪ F ′′′

1 〉 and〈M,F1 ∪ F2〉 →
∗
βId 〈M2,F

′′
2 ∪ F ′′′

2 〉.
By lemma 7.6.1,T →∗

βI T1 andT →∗
βI T2 whereT = Φc(M,F1 ∪ F2), T1 = Φc(M1,F

′′
1 ∪ F ′′′

1 ) and
T2 = Φc(M2,F

′′
2 ∪F ′′′

2 ) . Since by lemma 7.2.1b,T ∈ ΛIc and by lemma 6.6.1,T is typable in the type
systemDI , soT ∈ CRβI by corollary 6.5. So, by lemma 2.2b, there existsT3 ∈ ΛIc, such thatT1 →∗

βI

T3 andT2 →∗
βI T3. LetF3 = |〈T3,R

βI
T3
〉|c andM3 = |T3|

βI , then by lemma 7.2.2b,T3 = Φc(M3,F3).
Hence, by lemma 7.6.1,〈M1,F

′′
1 ∪ F ′′′

1 〉 →∗
βId 〈M3,F3〉 and 〈M2,F

′′
2 ∪ F ′′′

2 〉 →∗
βId 〈M3,F3〉, i.e.

M1
F ′′

1
∪F ′′′

1→ βId M3 andM2
F ′′

2
∪F ′′′

2→ βId M3. ⊓⊔

Proof(Lemma 7.9.1): Note that∅ ⊆ RβI
M . We prove this statement by induction on the structure of

M .

• LetM ∈ V thenΦc(M,∅) = M andRβI
M = ∅ by lemma 5.3.

• LetM = λx.N such thatx 6= c thenΦc(M,∅) = λx.Φc(N,∅). By IH, RβI

Φc(N,∅) = ∅ and by

lemma 5.3,RβI

Φc(M,∅) = ∅.

• Let M = M1M2 then Φc(M,∅) = cΦc(M1,∅)Φc(M2,∅). By IH, RβI

Φc(M1,∅) = ∅ and

RβI

Φc(M2,∅) = ∅ and by lemma 5.3,RβI

Φc(M,∅) = ∅.
⊓⊔

Proof(Lemma 7.9.2): We prove the statement by induction on the structure ofM .

• letM ∈ V, thenΦc(M,∅) = M .

– EitherM = x, thenΦc(M,∅)[x := Φc(N,∅)] = Φc(N,∅) and by lemma 1,RβI

Φc(N,∅) =
∅.
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– OrM 6= x, thenΦc(M,∅)[x := Φc(N,∅)] = M and by lemma 5.3,RβI
M = ∅.

• LetM = λy.M ′ such thaty 6= c thenΦc(M,∅) = λy.Φc(M ′,∅). So,RβI

Φc(M,∅)[x:=Φc(N,∅)] =

RβI

λy.Φc(M ′,∅)[x:=Φc(N,∅)] such thaty 6∈ fv(Φc(N,∅)) ∪ {x}. By IH, RβI

Φc(M ′,∅)[x:=Φc(N,∅)] = ∅.

By lemma 5.3,RβI

Φc(M,∅)[x:=Φc(N,∅)] = ∅.

• LetM = M1M2 thenΦc(M,∅) = cΦc(M1,∅)Φc(M2,∅).
So,RβI

Φc(M,∅)[x:=Φc(N,∅)] = RβI

cΦc(M1,∅)[x:=Φc(N,∅)]Φc(M2,∅)[x:=Φc(N,∅)].

By IH, RβI

Φc(M1,∅)[x:=Φc(N,∅)] = RβI

Φc(M2,∅)[x:=Φc(N,∅)] = ∅

and by lemma 5.3,RβI

Φc(M,∅)[x:=Φc(N,∅)] = ∅.
⊓⊔

Proof(Lemma 7.9.3): We prove the statement by induction on the structure ofM .

• LetM ∈ V then by lemma 5.3,RβI
M = ∅.

• LetM = λx.N such thatx 6= c then by lemma 5.3,RβI
M = {1.p | p ∈ RβI

N }. Let p ∈ RβI
M , then

p = 1.p′ such thatp′ ∈ RβI
N . Then,Φc(M, {p}) = λx.Φc(N, {p′}) By lemma 5.3,RβI

Φc(M,{p}) =

{1.p | p ∈ RβI

Φc(N,{p′})}. So, By lemma 2.2.8, ifΦc(M, {p})
p0

→βI P thenp0 = 1.p1, P = λx.P ′

andΦc(N, {p′})
p1

→βI P
′. By IH, RβI

P ′ = ∅, so by lemma 5.3,RβI
P = ∅.

• LetM = M1M2.

– LetM ∈ RβI , thenM1 = λx.M0 and by lemma 5.3,RβI
M = {0}∪{1.p | p ∈ RβI

M1
}∪{2.p |

p ∈ RβI
M2

}.

∗ Either p = 0 thenΦc(M, {0}) = Φc(M1,∅)Φc(M2,∅). By lemma 1,RβI

Φc(M1,∅) =

RβI

Φc(M2,∅) = ∅. BecauseΦc(M, {0}) →βI M
′ then by definition there existsp0 such

thatΦc(M, {0})
p0

→βI M
′. By lemma 2.2.8,p0 ∈ RβI

Φc(M,{0}). BecauseΦc(M1,∅) =

λx.Φc(M0,∅) such thatx 6= c, by lemma 5.3, we obtain:
RβI

Φc(M,{0}) = {0} if Φc(M, {0}) ∈ RβI , RβI

Φc(M,{0}) = ∅ otherwise. Sop0 and

Φc(M, {0}) ∈ RβI . Hence,M ′ = Φc(M0,∅)[x := Φc(M2,∅)] and by lemma 2,
RβI

Φc(M0,∅)[x:=Φc(M2,∅)] = ∅.

∗ Or p = 1.p′ such thatp′ ∈ RβI
M1

. So,Φc(M, {p}) = cΦc(M1, {p
′})Φc(M2,∅). By

lemma 1,RβI

Φc(M2,∅)
= ∅. By lemma 5.3,RβI

Φc(M,{p})
= {1.2.p | p ∈ RβI

Φc(M1,{p′})
}.

So, By lemma 2.2.8, ifΦc(M, {p})
p0

→βI M ′ thenp0 = 1.2.p′
0, p′

0 ∈ RβI

Φc(M1,{p′})
,

M ′ = cM ′
1Φ

c(M2,∅) andΦc(M1, {p
′})

p
′

0→βI M
′
1. By IH,RβI

M ′

1

= ∅ and by lemma 5.3,

RβI
M ′ = ∅.

∗ Or p = 2.p′ such thatp′ ∈ RβI
M2

. So,Φc(M, {p}) = cΦc(M1,∅)Φc(M2, {p
′}). By

lemma 1,RβI

Φc(M1,∅) = ∅. By lemma 5.3,RβI

Φc(M,{p}) = {2.p | p ∈ RβI

Φc(M2,{p′})}.
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So, By lemma 2.2.8, ifΦc(M, {p})
p0

→βI M
′ thenp0 = 2.p′

0, p′
0 ∈ RβI

Φc(M2,{p′}),M
′ =

cΦc(M1,∅)M ′
2 andΦc(M2, {p

′})
p
′

0→βI M ′
2. By IH, RβI

M ′

2

= ∅ and by lemma 5.3,

RβI
M ′ = ∅.

– LetM 6∈ RβI , then by lemma 5.3,RβI
M = {1.p | p ∈ RβI

M1
} ∪ {2.p | p ∈ RβI

M2
}.

∗ Eitherp = 1.p′ such thatp′ ∈ RβI
M1

. So,Φc(M, {p}) = cΦc(M1, {p
′})Φc(M2,∅). By

lemma 1,RβI

Φc(M2,∅) = ∅. By lemma 5.3,RβI

Φc(M,{p}) = {1.2.p | p ∈ RβI

Φc(M1,{p′})}.

So, By lemma 2.2.8, ifΦc(M, {p})
p0

→βI M ′ thenp0 = 1.2.p′
0, p′

0 ∈ RβI

Φc(M1,{p′}),

M ′ = cM ′
1Φ

c(M2,∅) andΦc(M1, {p
′})

p
′

0→βI M
′
1. By IH,RβI

M ′

1

= ∅ and by lemma 5.3,

RβI
M ′ = ∅.

∗ Or p = 2.p′ such thatp′ ∈ RβI
M2

. So,Φc(M, {p}) = cΦc(M1,∅)Φc(M2, {p
′}). By

lemma 1,RβI

Φc(M1,∅) = ∅. By lemma 5.3,RβI

Φc(M,{p}) = {2.p | p ∈ RβI

Φc(M2,{p′})}.

So, By lemma 2.2.8, ifΦc(M, {p})
p0

→βI M
′ thenp0 = 2.p′

0, p′
0 ∈ RβI

Φc(M2,{p′}),M
′ =

cΦc(M1,∅)M ′
2 andΦc(M2, {p

′})
p
′

0→βI M ′
2. By IH, RβI

M ′

2

= ∅ and by lemma 5.3,

RβI
M ′ = ∅.

⊓⊔

Proof(Lemma 7.9.4): By lemma 2.2.8,p ∈ RβI
M . By lemma 7.3, there exists a unique setF ′ ⊆ RβI

M ′ ,

such thatΦc(M, {p}) →βI Φc(M ′,F ′). By lemma 3,RβI

Φc(M ′,F ′)
= ∅, so|〈Φc(M ′,F ′),RβI

Φc(M ′,F ′)
〉|c =

∅ and by lemma 7.2.1d,F ′ = ∅. Finally, by lemma 7.6.1,〈M, {p}〉 →βId 〈M ′,∅〉. ⊓⊔

Proof(Lemma 7.9.5): It is obvious that→∗
1I⊆→∗

βI . We only prove that→∗
βI⊆→∗

1I . LetM,M ′ ∈ ΛI
such thatM →∗

βI M
′. We prove this claim by induction on the length ofM →∗

βI M
′.

• LetM = M ′ then it is done since〈M,F〉 →∗
βId 〈M,F〉 for someF .

• LetM →∗
βI M

′′ →βI M
′. By IH, M →∗

1I M
′′. By definition there existsp such thatM ′′ p

→βI

M ′ then by lemma 4〈M ′′, {p}〉 →βId 〈M ′,∅〉, soM ′′ →1I M
′. HenceM →∗

1I M
′′ →1I M

′.
⊓⊔

Proof(Lemma 7.10): LetM ∈ ΛI andc be a variable such thatc 6∈ fv(M). AssumeM →∗
βI M1 and

M →∗
βI M2. Then by lemma 5,M →∗

1I M1 andM →∗
1I M2. We prove the statement by induction on

the length ofM →∗
1I M1.

• LetM = M1. HenceM1 →∗
1I M2 andM2 →∗

1I M2.

• Let M →∗
1I M ′

1 →1I M1. By IH, ∃M ′
3,M

′
1 →∗

1I M ′
3 andM2 →∗

1I M ′
3. We prove that

∃M3,M1 →∗
1I M3 andM ′

3 →1I M3, by induction onM ′
1 →∗

1I M
′
3.

– letM ′
1 = M ′

3, henceM ′
3 →1I M1 andM1 →∗

1I M1.

– LetM ′
1 →∗

1I M
′′
3 →1I M

′
3. By IH, ∃M ′′′

3 ,M1 →∗
1I M

′′′
3 andM ′′

3 →1I M
′′′
3 . By lemma 2.2.4,

c 6∈ fv(M ′′
3 ). SinceM ′′

3 →1I M
′
3 andM ′′

3 →1I M
′′′
3 , by lemma 7.7,∃M3,M

′
3 →1I M3 and

M ′′′
3 →1I M3.

⊓⊔
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F. Proofs of section 8

Proof(Lemma 8.2):

1. 1a. By induction on the structure ofM .

• LetM ∈ V \ {c}, thenF =5.3
∅ andΨc

0(M,∅) = {M} = {c0(M)} ⊆ Ψc(M,∅).

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆5.3 Rβη
N .

– If 0 ∈ F thenΨc
0(M,F) = {λx.N ′ | N ′ ∈ Ψc

0(N,F
′)} = {c0(λx.N ′) | N ′ ∈

Ψc
0(N,F

′)} ⊆ Ψc(M,F).

– ElseΨc
0(M,F) = {λx.N ′[x := c(cx)] | N ′ ∈ Ψc(N,F ′)} = {c0(λx.N ′[x :=

c(cx)]) | N ′ ∈ Ψc(N,F ′)} ⊆ Ψc(M,F).

• LetM = NP , F1 = {p | 1.p ∈ F} ⊆5.3 Rβη
N andF2 = {p | 2.p ∈ F} ⊆5.3 Rβη

P .

– If 0 ∈ F thenΨc
0(M,F) = {N ′P ′ | N ′ ∈ Ψc

0(N,F1) ∧ P ′ ∈ Ψc
0(P,F2)} =

{c0(N ′P ′) |N ′ ∈ Ψc
0(N,F1)∧P

′ ∈ Ψc
0(P,F2)}. By IH, Ψc

0(P,F2) ⊆ Ψc(P,F2),
so by definition,Ψc

0(M,F) ⊆ Ψc(M,F).

– ElseΨc
0(M,F) = {cN ′P ′ | N ′ ∈ Ψc(N,F1) ∧ P

′ ∈ Ψc
0(P,F2)}

= {c0(cN ′P ′) | N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc
0(P,F2)}. By IH, Ψc

0(P,F2) ∈
Ψc(P,F2), so by definition,Ψc

0(M,F) ⊆ Ψc(M,F).

1b. By induction on the structure ofM .

• LetM ∈ V \ {c}, thenF = ∅, Ψc(M,F) = {cn(M) | n ≥ 0} and
∀N ∈ Ψc(M,F). fv(M) = {M} = fv(N) \ {c}.

• LetM = λx.N such thatx 6= x andF ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F thenΨc(M,F) = {cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Ψc
0(N,F

′)}. Let P ∈
Ψc(M,F), so∃n ≥ 0 andN ′ ∈ Ψc

0(N,F
′) such thatP = cn(λx.N ′). Hence,

fv(M) = fv(N) \ {x} =IH,1a fv(N ′) \ {c, x} = fv(P ) \ {c}.

– ElseΨc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈ Ψc(N,F ′)}. Let
P ∈ Ψc(M,F), so∃n ≥ 0 and∃N ′ ∈ Ψc(N,F ′) such that,P = cn(λx.N ′[x :=
c(cx)]). Hence,fv(M) = fv(N) \ {x} =IH fv(N ′) \ {c, x} = fv(P ) \ {c}.

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη
M1

andF2 = {p | 2.p ∈ F} ⊆ Rβη
M2

.

– If 0 ∈ F then,Ψc(M,F) =
{cn(N ′P ′) | n ≥ 0∧N ′ ∈ Ψc

0(M1,F1)∧P
′ ∈ Ψc(M2,F2)}. LetP ∈ Ψc(M,F),

so∃n ≥ 0,N ′ ∈ Ψc
0(M1,F1) andP ′ ∈ Ψc(M2,F2) such thatP = cn(N ′P ′).

Hence,fv(M) = fv(M1) ∪ fv(M2) =IH,1a (fv(N ′) \ {c}) ∪ (fv(P ′) \ {c}) =
(fv(N ′) ∪ fv(P ′)) \ {c} = fv(P ) \ {c}.

– ElseΨc(M,F) = {cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc(M1,F1) ∧ P
′ ∈ Ψc(M2,F2)}.

Let P ∈ Ψc(M,F), so∃n ≥ 0,N ′ ∈ Ψc(M1,F1) andP ′ ∈ Ψc(M2,F2) such that
P = cn(cN ′P ′). Hence,fv(M) = fv(M1)∪fv(M2) =IH (fv(N ′)∪fv(P ′))\{c} =
fv(P ) \ {c}.

1c. By induction on the structure ofM .

• If M ∈ V \ {c} thenF = ∅ andΨc(M,F) = {cn(M)|n ≥ 0}. Use lemma 5.2.7.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ Rβη
N .
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– If 0 ∈ F , thenN = Px such thatx 6∈ fv(P ) andΨc(M,F) = {cn(λx.N ′) | n ≥

0 ∧N ′ ∈ Ψc
0(N,F

′)}. LetF ′′ = {p | 1.p ∈ F ′} ⊆5.3 Rβη
P .

∗ If 0 ∈ F ′ then,Ψc
0(N,F

′) = {P ′x | P ′ ∈ Ψc
0(P,F

′′)}. LetM ′ ∈ Ψc(M,F),
soM ′ = cn(λx.P ′x) wheren ≥ 0 andP ′ ∈ Ψc

0(P,F
′′). Sincex 6∈ fv(P ), by

lemmas 8.2.1b and 8.2.1a,x 6∈ fv(P ′). By IH and lemma 8.2.1a,P ′, P ′x ∈ Ληc.
By lemma 5.2,P ′ 6= c. Hence, by(R1).4, λx.P ′x ∈ Ληc. We conclude using
lemma 5.2.7.

∗ ElseΨc
0(N,F

′) = {cP ′x | P ′ ∈ Ψc(P,F ′′)}. LetM ′ ∈ Ψc(M,F), soM ′ =
cn(λx.cP ′x) wheren ≥ 0 andP ′ ∈ Ψc(P,F ′′). Sincex 6∈ fv(P ), by lem-
mas 8.2.1b,x 6∈ fv(P ′), sox 6∈ fv(cP ′). By IH and lemma 8.2.1a,cP ′x ∈ Ληc.
SincecP ′ 6= c, by (R1).4, λx.cP ′x ∈ Ληc. We conclude using lemma 5.2.7.

– ElseΨc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈ Ψc(N,F ′)}. Let
N ′ ∈ Ψc(N,F ′) andn ≥ 0. Since by IHN ′ ∈ Ληc, by lemma 5.2.7 and(R1).3,
cn(λx.N ′[x := c(cx)]) ∈ Ληc.

• LetM = NP , F1 = {p | 1.p ∈ F} ⊆ Rβη
N andF2 = {p | 2.p ∈ F} ⊆ Rβη

P .

– If 0 ∈ F then Ψc(M,F) = {cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈ Ψc
0(N,F1) ∧ P ′ ∈

Ψc(P,F2)}. Let P = cn(N ′P ′) ∈ Ψc(M,F) such thatn ≥ 0, N ′ ∈ Ψc
0(N,F1)

and P ′ ∈ Ψc(P,F2). By IH and lemma 8.2.1a,N ′, P ′ ∈ Ληc. SinceN is
a λ-abstraction then by definitionN ′ too. Hence, by(R3), N ′P ′ ∈ Ληc. By
lemma 5.2.7,cn(N ′P ′) ∈ Ληc.

– ElseΨc(M,F) = {cn(cN ′P ′) | n ≥ 0∧N ′ ∈ Ψc(N,F1)∧P
′ ∈ Ψc(P,F2)}. Let

cn(cN ′P ′) ∈ Ψc(M,F) such thatn ≥ 0, N ′ ∈ Ψc(N,F1) andP ′ ∈ Ψc(P,F2).
By IH, N ′, P ′ ∈ Ληc. Hence by(R2), cN ′P ′ ∈ Ληc and by lemma 5.2.7,
cn(cN ′P ′) ∈ Ληc.

1d. We prove this lemma by case on the belonging of0 in F . LetF ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

• If 0 ∈ F thenΨc
0(Nx,F) = {N ′x | N ′ ∈ Ψc

0(N,F
′)}. Hence,P = N ′x such that

N ′ ∈ Ψc
0(N,F

′). Sincex 6∈ fv(N), by lemmas 8.2.1b and 8.2.1a,x 6∈ fv(N ′). So
λx.P = λx.N ′x ∈ Rβη and by lemma 5.3,Rβη

λx.P = {0} ∪ {1.p | p ∈ Rβη
P }.

• Else Ψc
0(Nx,F) = {cN ′x | N ′ ∈ Ψc(N,F ′)} and P = cN ′x such thatN ′ ∈

Ψc(N,F ′). Sincex 6∈ fv(N), by lemmas 8.2.1b,x 6∈ fv(N ′) and sox 6∈ fv(cN ′).
Sinceλx.cN ′x ∈ Rβη, by lemma 5.3,Rβη

λx.P = {0} ∪ {1.p | p ∈ Rβη
P }.

1e. LetF1 = {p | 1.p ∈ F} ⊆ Rβη
N andF2 = {p | 2.p ∈ F} ⊆ Rβη

x =5.3
∅. We prove this

lemma by case on the belonging of0 in F .

• If 0 ∈ F thenΨc(Nx,F) = {cn(N ′Q) | n ≥ 0 ∧N ′ ∈ Ψc
0(N,F1) ∧Q ∈ Ψc(x,F2)}.

SoPx = cn(N ′Q) such thatn ≥ 0, N ′ ∈ Ψc
0(N,F1) andQ ∈ Ψc(x,F2). Son = 0,

N ′ = P andQ = x. Sincex ∈ Ψc
0(x,∅), Px ∈ Ψc

0(Nx,F).

• ElseΨc(Nx,F) = {cn(cN ′Q) | n ≥ 0 ∧ N ′ ∈ Ψc
0(N,F1) ∧ Q ∈ Ψc(x,F2)}. So

Px = cn(cN ′Q) such thatn ≥ 0, N ′ ∈ Ψc
0(N,F1) andQ ∈ Ψc(x,F2). Son = 0,

cN ′ = P andQ = x. Sincex ∈ Ψc
0(x,∅), Px ∈ Ψc

0(Nx,F).

1f. Easy by case on the structure ofM and induction onn.

1g. By induction on the structure ofM .
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• LetM ∈ V \{c}. ThenΨc(M,F) = {cn(M) | n ≥ 0} andF = ∅. Now, use lemma 1.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F then Ψc(M,F) = {cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Ψc
0(N,F

′)}. Let
cn(λx.N ′) ∈ Ψc(M,F) wheren ≥ 0 andN ′ ∈ Ψc

0(N,F
′). Then,|cn(λx.N ′)|c =1

|λx.N ′|c = λx.|N ′|c =IH,1a λx.N .

– ElseΨc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈ Ψc(N,F ′)}. Let
cn(λx.N ′[x := c(cx)]) ∈ Ψc(M,F) wheren ≥ 0 andN ′ ∈ Ψc(N,F ′). Then,
|cn(λx.N ′[x := c(cx)])|c =1 |λx.N ′[x := c(cx)]|c = λx.|N ′[x := c(cx)]|c =2

λx.|N ′|c =IH λx.N .

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη
M1

andF2 = {p | 2.p ∈ F} ⊆ Rβη
M2

.

– If 0 thenΨc(M,F) = {cn(N ′P ′) | n ≥ 0∧N ′ ∈ Ψc
0(M1,F1)∧P

′ ∈ Ψc(M2,F2)}.
Let cn(N ′P ′) ∈ Ψc(M,F) wheren ≥ 0,N ′ ∈ Ψc

0(M1,F1) andP ′ ∈ Ψc(M2,F2).
SinceM1 is aλ-abstraction, by definitionN ′ too. Then,|cn(N ′P ′)|c =1 |N ′P ′|c =
|N ′|c|P ′|c =IH,1a M1M2.

– ElseΨc(M,F) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Ψc(M1,F1) ∧ P2 ∈ Ψc(M2,F2)}.
Letcn(cP1P2) ∈ Ψc(M,F) wheren ≥ 0,P1 ∈ Ψc(M1,F1) andP2 ∈ Ψc(M2,F2).
Then|cn(cP1P2)|

c =1 |cP1P2|
c = |cP1|

c|P2|
c = |P1|

c|P2|
c =IH M1M2.

1h. We prove the statement by induction onM .

• LetM ∈ V \ {c}. ThenΨc(M,F) = {cn(x) | n ≥ 0} andF = ∅. If P ∈ Ψc(M,F)

thenRβη
P =5.4.5

∅. Hence,F = |〈P,Rβη
P 〉|c.

• LetM = λx.N such thatx 6= c andF ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F thenN = Px wherex 6∈ fv(P ) andΨc(M,F) = {cn(λx.N ′) | n ≥
0 ∧N ′ ∈ Ψc

0(N,F
′)}. LetN0 = cn(λx.N ′) ∈ Ψc(M,F) wheren ≥ 0 andN ′ ∈

Ψc
0(N,F

′). Then,|〈N0,R
βη
N0

〉|c = {|〈N0, p〉|
c | p ∈ Rβη

N0
} =5.4.5 {|〈λx.N ′, p〉|c |

p ∈ Rβη
λx.N ′} =1d {0} ∪ {|〈λx.N ′, 1.p〉|c | p ∈ Rβη

N ′} = {0} ∪ {1.|〈N ′, p〉|c | p ∈

Rβη
N ′} = {0} ∪ {1.p | p ∈ |〈N ′,Rβη

N ′〉|c} =IH,1a {0} ∪ {1.p | p ∈ F ′} =5.3 F .

– Else Ψc(M,F) = {cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈ Ψc(N,F ′)}. Let
N0 = cn(λx.P [x := c(cx)]) ∈ Ψc(M,F) wheren ≥ 0 andP ∈ Ψc(N,F ′).
Then,|〈N0,R

βη
N0

〉|c = {|〈N0, p〉|
c | p ∈ Rβη

N0
} =5.4.5 {|〈λx.P [x := c(cx)], p〉|c |

p ∈ Rβη

λx.P [x:=c(cx)]
} =5.4.3 {|〈λx.P [x := c(cx)], 1.p〉|c | p ∈ Rβη

P [x:=c(cx)]
} =5.4.4

{|〈λx.P [x := c(cx)], 1.p〉|c | p ∈ Rβη
P } = {1.|〈P [x := c(cx)], p〉|c | p ∈

Rβη
P } =3 {1.|〈P, p〉|c | p ∈ Rβη

P } = {1.p | p ∈ |〈P,Rβη
P 〉|c} =IH {1.p |

p ∈ F ′} =5.3 F .

• LetM = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη
M1

andF2 = {p | 2.p ∈ F} ⊆ Rβη
M2

.

– If 0 ∈ F then Ψc(M,F) = {cn(NP ) | n ≥ 0 ∧ N ∈ Ψc
0(M1,F1) ∧ P ∈

Ψc(M2,F2)}. LetN0 = cn(NP ) ∈ Ψc(M,F) wheren ≥ 0, N ∈ Ψc
0(M1,F1)

andP ∈ Ψc(M2,F2). SinceM1 is a λ-abstraction, by definitionN too. Then,
|〈N0,R

βη
N0

〉|c = {|〈N0, p〉|
c | p ∈ Rβη

cn(NP )} =5.4.5 {|〈NP, p〉|c | p ∈ Rβη
NP } =5.3

{0}∪{|〈NP, 1.p〉|c | p ∈ Rβη
N }∪{|〈NP, 2.p〉|c | p ∈ Rβη

P } = {0}∪{1.|〈N, p〉|c |
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p ∈ Rβη
N } ∪ {2.|〈P, p〉|c | p ∈ Rβη

P } = {0} ∪ {1.p | p ∈ |〈N,Rβη
N 〉|c} ∪ {2.p |

p ∈ |〈P,Rβη
P 〉|c} =IH {0} ∪ {1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =5.3 F .

– ElseΨc(M,F) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Ψc(M1,F1) ∧ P2 ∈ Ψc(M2,F2)}.
Let N0 = cn(cP1P2) ∈ Ψc(M,F) wheren ≥ 0, P1 ∈ Ψc(M1,F1) andP2 ∈

Ψc(M2,F2). Then,|〈N0,R
βη
N0

〉|c = {|〈N0, p〉|
c | p ∈ Rβη

N0
} =5.4.5 {|〈cP1P2, p〉|

c |

p ∈ Rβη
cP1P2

} =5.3 {|〈cP1P2, 1.2.p〉|
c | p ∈ Rβη

P1
}∪{|〈cP1P2, 2.p〉|

c | p ∈ Rβη
P2
} =

{1.|〈P1, p〉|
c | p ∈ Rβη

P1
} ∪ {2.|〈P2, p〉|

c | p ∈ Rβη
P2
} = {1.p | p ∈ |〈P1,R

βη
P1
〉|c} ∪

{2.p | p ∈ |〈P2,R
βη
P2
〉|c} =IH {1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =5.3 F .

2. 2a. By induction on the construction ofM .

• Let M ∈ V \ {c}. So |M |c = M , by lemma 5.3,Rβη
M = ∅ = Rβη

|M |c andM ∈

Ψc(|M |c, |〈M,Rβη
M 〉|c) = Ψc(M,∅) = {cn(M) | n ≥ 0}.

• LetM = λx.N [x := c(cx)] such thatx 6= c andN ∈ Ληc. Then,|M |c = λx.|N |c and
|〈M,Rβη

M 〉|c = {|〈M, p〉|c | p ∈ Rβη
M } =5.4.3 {|〈M, 1.p〉|c | p ∈ Rβη

N [x:=c(cx)]} =5.4.4

{|〈M, 1.p〉|c | p ∈ Rβη
N } =3 {1.|〈N, p〉|c | p ∈ Rβη

N } = {1.p | p ∈ |〈N,Rβη
N 〉|c} ⊆IH

{1.p | p ∈ Rβη

|N |c} =2 {1.p | p ∈ Rβη

|N [x:=c(cx)]|c} ⊆5.3 Rβη

λx.|N [x:=c(cx)]|c =

Rβη

|λx.N [x:=c(cx)]|c
.

We just proved that|〈M,Rβη
M 〉|c = {1.p | p ∈ |〈N,Rβη

N 〉|c}, so0 6∈ |〈M,Rβη
M 〉|c and

|〈N,Rβη
N 〉|c = {p | 1.p ∈ |〈M,Rβη

M 〉|c}. By definition, Ψc(|M |c, |〈M,Rβη
M 〉|c) =

{cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c)}. By IH, N ∈

Ψc(|N |c, |〈N,Rβη
N 〉|c), soM ∈ Ψc(|M |c, |〈M,Rβη

M 〉|c).

• LetM = λx.Nx such thatNx ∈ Ληc, N 6= c andx 6∈ fv(N) ∪ {c}. By lemma 5.2.8,
N ∈ Ληc and by lemma 4,x 6∈ fv(|N |c). |M |c = λx.|Nx|c = λx.|N |cx. Since
M, |M |c ∈ Rβη, by lemma 5.3,Rβη

M = {0} ∪ {1.p | p ∈ Rβη
Nx}, so |〈M,Rβη

M 〉|c =

{0} ∪ {1.p | p ∈ |〈Nx,Rβη
Nx〉|

c} ⊆IH {0} ∪ {1.p | p ∈ Rβη

|Nx|c} = Rβη

|M |c .

We proved|〈Nx,Rβη
Nx〉|

c = {p | 1.p ∈ |〈M,Rβη
M 〉|c} and0 ∈ |〈M,Rβη

M 〉|c. By defini-

tion,Ψc(|M |c, |〈M,Rβη
M 〉|c) = {cn(λx.N ′) | n ≥ 0∧N ′ ∈ Ψc

0(|Nx|
c, |〈Nx,Rβη

Nx〉|
c)}.

By IH, Nx ∈ Ψc(|Nx|βη, |〈Nx,Rβη
Nx〉|

c), so by lemma 8.2.1e,

Nx ∈ Ψc
0(|Nx|

βη , |〈Nx,Rβη
Nx〉|

c). HenceM ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

• Let M = cNP whereN,P ∈ Ληc, so cN ∈ Ληc. |M |c = |cN |c|P |c = |N |c|P |c.
BecauseM, cN 6∈ Rβη, By lemma 5.3,Rβη

M = {1.2.p | p ∈ Rβη
N } ∪ {2.p |∈ Rβη

P }. So

|〈M,Rβη
M 〉|c = {1.p | p ∈ |〈N,Rβη

N 〉|c} ∪ {2.p | p ∈ |〈P,Rβη
P 〉|c} ⊆IH {1.p | p ∈

Rβη

|N |c} ∪ {2.p | p ∈ Rβη

|P |c} ⊆5.3 Rβη

|M |c.

We just proved that0 6∈ |〈M,Rβη
M 〉|c and |〈N,Rβη

N 〉|c = {p | 1.p ∈ |〈M,Rβη
M 〉|c}

and|〈P,Rβη
P 〉|c = {p | 2.p ∈ |〈M,Rβη

M 〉|c}. By definition,Ψc(|M |c, |〈M,Rβη
M 〉|c) =

{cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c) ∧ P ′ ∈ Ψc(|P |c, |〈P,Rβη

P 〉|c)}. By

IH, N ∈ Ψc(|N |βη , |〈N,Rβη
N 〉|c) andP ∈ Ψc(|P |βη , |〈P,Rβη

P 〉|c),

soM ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).
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• Let M = NP whereN,P ∈ Ληc andN is aλ-abstraction. So by definition|N |c is
a λ-abstraction too and|M |c = |N |c|P |c. SinceM ∈ Rβη, By lemma 5.3,Rβη

M =

{0} ∪ {1.p | p ∈ Rβη
N } ∪ {2.p | p ∈ Rβη

P }. So |〈M,Rβη
M 〉|c = {0} ∪ {1.p | p ∈

|〈N,Rβη
N 〉|c} ∪ {2.p | p ∈ |〈P,Rβη

P 〉|c} ⊆IH {0} ∪ {1.p | p ∈ Rβη

|N |c} ∪ {2.p | p ∈

Rβη

|P |c} =5.3 Rβη

|M |c.

We just proved that0 ∈ |〈M,Rβη
M 〉|c, |〈N,Rβη

N 〉|c = {p | 1.p ∈ |〈M,Rβη
M 〉|c} and

|〈P,Rβη
P 〉|c = {p | 2.p ∈ |〈M,Rβη

M 〉|c}. By definition, Ψc(|M |c, |〈M,Rβη
M 〉|c) =

{cn(N ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc
0(|N |c, |〈N,Rβη

N 〉|c) ∧ P ′ ∈ Ψc(|P |c, |〈P,Rβη
P 〉|c)}. By

IH, N ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c) andP ∈ Ψc(|P |c, |〈P,Rβη

P 〉|c),

soN ∈ Ψc
0(|N |c, |〈N,Rβη

N 〉|c) andM ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

• Let M = cN whereN ∈ Ληc then |M |c = |N |c. By lemma 5.3,Rβη
M = {2.p | p ∈

Rβη
N } so |〈M,Rβη

M 〉|c = |〈N,Rβη
N 〉|c ⊆IH Rβη

|N |c = Rβη

|M |c.

By IH, N ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c) = Ψc(|M |c, |〈M,Rβη

M 〉|c), so by lemma 8.2.1f,

M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

2b. By lemma 4,c 6∈ fv(|M |c). By lemma 8.2.2a,|〈M,Rβη
M 〉|c ⊆ Rβη

|M |c and

M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c). To prove unicity, assume that〈N ′,F ′〉 is another such pair.

SoF ′ ⊆ Rβη
N ′ andM ∈ Ψc(N ′,F ′). By lemma 8.2.1g,|M |c = N ′ and by lemma 8.2.1h,

F ′ = |〈M,Rβη
M 〉|c.

⊓⊔

Proof(Lemma 8.2.3): Let N1 ∈ Ψc(M,F). By lemma 8.2.1c,N1 ∈ Ληc. By lemma 8.2.1h and
lemma 1, there exists a uniquep1 ∈ Rβη

N1
, such that|〈N1, p1〉|

c = p. By lemma 2.2.8, there exists

N ′
1 such thatN1

p1

→βη N ′
1. By lemma 2,N ′

1 ∈ Ληc. By lemma 5.8.7a,|N1|
c

p
′

1→βη |N ′
1|

c such that
p′
1 = |〈N1, p1〉|

c = p. By lemma 8.2.1g,M = |N1|
c. So by lemma 2.2.9,M ′ = |N ′

1|
c. Let F ′ =

|〈N ′
1,R

βη

N ′

1

〉|c. By lemma 8.2.2b,(M ′,F ′) is the one and only pair such thatc 6∈ fv(M ′), F ′ ⊆ Rβη
M ′ and

N ′
1 ∈ Ψc(M ′,F ′).

Let N2 ∈ Ψc(M,F). By lemma 8.2.1c,N2 ∈ Ληc. By lemma 8.2.1h and lemma 1, there exists a
uniquep2 ∈ Rβη

N2
, such that|〈N2, p2〉|

c = p. By lemma 2.2.8, there existsN ′
2 such thatN2

p2

→βη N
′
2.

By lemma 2,N ′
2 ∈ Ληc. By lemma 5.8.7a,|N2|

c
p
′

2→βη |N ′
2|

c such thatp′
2 = |〈N2, p2〉|

c = p. By
lemma 8.2.1g,M = |N2|

c. So by lemma 2.2.9,M ′ = |N ′
2|

c. LetF ′′ = |〈N ′
2,R

βη

N ′

2

〉|c. By lemma 8.2.2b,

(M ′,F ′′) is the one and only pair such thatc 6∈ fv(M ′), F ′′ ⊆ Rβη
M ′ andN ′

2 ∈ Ψc(M ′,F ′′).

BecauseN1, N2 ∈ Ψc(M,F), by lemma 8.2.1h,|〈N1,R
βη
N1

〉|c = |〈N2,R
βη
N2

〉|c and by lemma 8.2.1g,

|N1|
c = |N2|

c. Finally, by lemma 5.8.7c,F ′ = |〈N ′
1,R

βη

N ′

1

〉|c = |〈N ′
2,R

βη

N ′

2

〉|c = F ′′. ⊓⊔

Lemma F.1. If p ∈ Rβη
t thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t|p).

Proof: We prove this lemma by induction on the structure oft.

• Let t ∈ V then by lemma 5.3,Rβη
t = ∅.
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• Let t = λny.t
′ then by lemma 5.3:

– Eitherp = 0 if t′ = t′′y andy 6∈ fv(t′′). Thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t[x̄ :=
c(cx̄)]) = headlam(λny.t

′′[x̄ := c(cx̄)]y) = 〈2, n〉 = headlam(t) such thaty 6∈ {c, x̄}.

– Or p = 1.p′ such thatp′ ∈ Rβη
t′ . Thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t′|p′ [x̄ :=

c(cx̄)]) =IH headlam(t′|p′) = headlam(t|p).

• Let t = t1t2 then by lemma 5.3:

– Eitherp = 0 if t1 = λny.t0. Thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t[x̄ := c(cx̄)]) =
headlam((λny.t0[x̄ := c(cx̄)])t2[x̄ := c(cx̄)]) = 〈1, n〉 = headlam(t) such thaty 6∈ {c, x̄}.

– Or p = 1.p′ such thatp′ ∈ Rβη
t1

. Thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t1|p′ [x̄ :=
c(cx̄)]) =IH headlam(t1|p′) = headlam(t|p).

– Or p = 2.p′ such thatp′ ∈ Rβη
t2

. Thenheadlam(t|p [x̄ := c(cx̄)]) = headlam(t2|p′ [x̄ :=
c(cx̄)]) =IH headlam(t2|p′) = headlam(t|p).

⊓⊔

Lemma F.2. Let t ∈ Λ̄ andF ⊆ Rβη
t .

• If t = x thenheadlamred(t,F) = hlr(t) = ∅.

• If t = λnx.t1 then if t ∈ Rβη thenhlr(t) = hlr(t1) ∪ {〈2, n〉} elsehlr(t) = hlr(t1).

• If t = λnx.t1 andF1 = {p | 1.p ∈ F} then if0 ∈ F then
headlamred(t,F) = headlamred(t1,F1) ∪ {〈2, n〉} else
headlamred(t,F) = headlamred(t1,F1).

• If t = t1t2 then if t ∈ Rβη then hlr(t) = hlr(t1) ∪ hlr(t2) ∪ {headlam(t)} elsehlr(t) =
hlr(t1) ∪ hlr(t2).

• If t = t1t2, F1 = {p | 1.p ∈ F} andF2 = {p | 2.p ∈ F} then
if 0 ∈ F thenheadlamred(t,F) = headlamred(t1,F1) ∪ headlamred(t2,F2) ∪ {headlam(t)}
elseheadlamred(t,F) = headlamred(t1,F1) ∪ headlamred(t2,F2).

• If t = λnx̄.t1[x̄ := c(cx̄)] thenhlr(t) = hlr(t1).

• If t = cn(t1), thenhlr(t) = hlr(t1).

Proof: By definitionhlr(t) = {〈i, n〉 | ∃p ∈ Rβη
t . headlam(t|p) = 〈i, n〉} andheadlamred(t,F) =

{〈i, n〉 | ∃p ∈ F . headlam(t|p) = 〈i, n〉}. We prove the frist three items of this lemma by induction on
the size oft and then by case on the structure oft.

• Let t = x. By lemma 5.3,F = Rβη
x = ∅, thenheadlamred(x,F) = hlr(x) = ∅.

• Let t = λnx.t1.

– Let t ∈ Rβη thent1 = t0x such thatx 6∈ fv(t0).
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∗ Let 〈j,m〉 ∈ hlr(t) then there existsp ∈ Rβη
t such thatheadlam(t|p) = 〈j,m〉. By

lemma 5.3:

· Eitherp = 0, so〈j,m〉 = headlam(t|0) = headlam(t) = 〈2, n〉.

· Or p = 1.p′ such thatp′ ∈ Rβη
t1

. Then,〈j,m〉 = headlam(t|p) = headlam(t1|p′).
So〈j,m〉 ∈ hlr(t1).

∗ Let 〈j,m〉 ∈ hlr(t1) ∪ {〈2, n〉}.

· Either 〈j,m〉 ∈ hlr(t1). Then there existsp ∈ Rβη
t1

such thatheadlam(t1|p) =

〈j,m〉. By lemma 5.3,1.p ∈ Rβη
t and〈j,m〉 = headlam(t1|p) = headlam(t|1.p).

So〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 = 〈2, n〉. By lemma 5.3,0 ∈ Rβη
t andheadlam(t|0) = headlam(t) =

〈2, n〉. So〈j,m〉 ∈ hlr(t).

– Let t 6∈ Rβη.

∗ Let 〈j,m〉 ∈ hlr(t) then there existsp ∈ Rβη
t such thatheadlam(t|p) = 〈j,m〉.

By lemma 5.3,p = 1.p′ such thatp′ ∈ Rβη
t1

. Then, 〈j,m〉 = headlam(t|p) =
headlam(t1|p′). So〈j,m〉 ∈ hlr(t1).

∗ Let 〈j,m〉 ∈ hlr(t1) then there existsp ∈ Rβη
t1

such thatheadlam(t1|p) = 〈j,m〉. By

lemma 5.3,1.p ∈ Rβη
t and〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So〈j,m〉 ∈

hlr(t).

• Let t = λnx.t1 andF1 = {p | 1.p ∈ F}.

– Let 0 ∈ F thent ∈ Rβη.

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there existsp ∈ F such thatheadlam(t|p) =
〈j,m〉. By lemma 5.3:

· Eitherp = 0, so〈j,m〉 = headlam(t|0) = headlam(t) = 〈2, n〉.

· Or p = 1.p′ such thatp′ ∈ F1. Then,〈j,m〉 = headlam(t|p) = headlam(t1|p′).
So〈j,m〉 ∈ headlamred(t1,F1).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) ∪ {〈2, n〉}.

· Either〈j,m〉 ∈ headlamred(t1,F1). Then there existsp ∈ F1 such that
headlam(t1|p) = 〈j,m〉. So,1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence,〈j,m〉 ∈ headlamred(t,F).

· Or 〈j,m〉 = 〈2, n〉. Because0 ∈ F andheadlam(t|0) = headlam(t) = 〈2, n〉 then
〈j,m〉 ∈ headlamred(t,F).

– Let 0 6∈ F .

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there existsp ∈ F such thatheadlam(t|p) =
〈j,m〉. By lemma 5.3,p = 1.p′ such thatp′ ∈ F1. Then,〈j,m〉 = headlam(t|p) =
headlam(t1|p′). So〈j,m〉 ∈ headlamred(t1,F1).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) then there existsp ∈ F1 such thatheadlam(t1|p) =
〈j,m〉. By lemma 5.3,1.p ∈ F and〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So
〈j,m〉 ∈ headlamred(t,F).
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• Let t = t1t2.

– Let t ∈ Rβη thent1 = λnx.t0. So〈1, n〉 = headlam(t).

∗ Let 〈j,m〉 ∈ hlr(t) then there existsp ∈ Rβη
t such thatheadlam(t|p) = m. By

lemma 5.3:

· Eitherp = 0, so〈j,m〉 = headlam(t|0) = headlam(t) = 〈1, n〉.

· Or p = 1.p′ such thatp′ ∈ Rβη
t1

. Then,〈j,m〉 = headlam(t|p) = headlam(t1|p′).
So〈j,m〉 ∈ hlr(t1).

· Or p = 2.p′ such thatp′ ∈ Rβη
t2

.
Moreover,〈j,m〉 = headlam(t|p) = headlam(t2|p′). So〈j,m〉 ∈ hlr(t2).

∗ Let 〈j,m〉 ∈ hlr(t1) ∪ hlr(t2) ∪ {〈1, n〉}.

· Either 〈j,m〉 ∈ hlr(t1). Then there existsp ∈ Rβη
t1

such thatheadlam(t1|p) =

〈j,m〉. By lemma 5.3,1.p ∈ Rβη
t and〈j,m〉 = headlam(t1|p) = headlam(t|1.p).

So〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 ∈ hlr(t2). Then there existsp ∈ Rβη
t2

such thatheadlam(t2|p) = 〈j,m〉.

By lemma 5.3,2.p ∈ Rβη
t and 〈j,m〉 = headlam(t2|p) = headlam(t|2.p). So

〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 = 〈1, n〉. By lemma 5.3,0 ∈ Rβη
t andheadlam(t|0) = headlam(t) =

〈1, n〉. So〈j,m〉 ∈ hlr(t).

– Let t 6∈ Rβη.

∗ Let 〈j,m〉 ∈ hlr(t) then there existsp ∈ Rβη
t such thatheadlam(t|p) = 〈j,m〉. By

lemma 5.3:

· Either p = 1.p′ such thatp′ ∈ Rβη
t1

. Moreover, 〈j,m〉 = headlam(t|p) =
headlam(t1|p′). So〈j,m〉 ∈ hlr(t1).

· Or p = 2.p′ such thatp′ ∈ Rβη
t2

.
Moreover,〈j,m〉 = headlam(t|p) = headlam(t2|p′). So〈j,m〉 ∈ hlr(t2).

∗ Let 〈j,m〉 ∈ hlr(t1) ∪ hlr(t2).

· Either 〈j,m〉 ∈ hlr(t1). Then there existsp ∈ Rβη
t1

such thatheadlam(t1|p) =

〈j,m〉. By lemma 5.3,1.p ∈ Rβη
t and〈j,m〉 = headlam(t1|p) = headlam(t|1.p).

So〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 ∈ hlr(t2). Then there existsp ∈ Rβη
t2

such thatheadlam(t2|p) = 〈j,m〉.

By lemma 5.3,2.p ∈ Rβη
t and 〈j,m〉 = headlam(t2|p) = headlam(t|2.p). So

〈j,m〉 ∈ hlr(t).

• Let t = t1t2, F1 = {p | 1.p ∈ F} andF2 = {p | 2.p ∈ F}.

– Let 0 ∈ F thent ∈ Rβη.

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there existsp ∈ F such thatheadlam(t|p) = m.
By lemma 5.3:

· Eitherp = 0, so〈j,m〉 = headlam(t|0) = headlam(t).
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· Or p = 1.p′ such thatp′ ∈ F1. Then,〈j,m〉 = headlam(t|p) = headlam(t1|p′).
So〈j,m〉 ∈ headlamred(t1,F1).

· Or p = 2.p′ such thatp′ ∈ F2. Then,〈j,m〉 = headlam(t|p) = headlam(t2|p′).
So〈j,m〉 ∈ headlamred(t2,F2).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) ∪ headlamred(t2,F2) ∪ {headlam(t)}.

· Either〈j,m〉 ∈ headlamred(t1,F1). Then there existsp ∈ F1 such that
headlam(t1|p) = 〈j,m〉. So,1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence,〈j,m〉 ∈ headlamred(t,F).

· Or 〈j,m〉 ∈ headlamred(t2,F2). Then there existsp ∈ F2 such that
headlam(t2|p) = 〈j,m〉. So,2.p ∈ F and
〈j,m〉 = headlam(t2|p) = headlam(t|2.p). Hence,〈j,m〉 ∈ headlamred(t,F).

· Or 〈j,m〉 = headlam(t). Because0 ∈ F andheadlam(t|0) = headlam(t), then
〈j,m〉 ∈ headlamred(t,F).

– Let 0 6∈ F .

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there existsp ∈ F such thatheadlam(t|p) =
〈j,m〉. By lemma 5.3:

· Eitherp = 1.p′ such thatp′ ∈ F1. Moreover,
〈j,m〉 = headlam(t|p) = headlam(t1|p′). So〈j,m〉 ∈ headlamred(t1,F1).

· Or p = 2.p′ such thatp′ ∈ F2. Moreover,
〈j,m〉 = headlam(t|p) = headlam(t2|p′). So〈j,m〉 ∈ headlamred(t2,F2).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) ∪ headlamred(t2,F2).

· Either〈j,m〉 ∈ headlamred(t1,F1). Then there existsp ∈ F1 such that
headlam(t1|p) = 〈j,m〉. So,1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence,〈j,m〉 ∈ headlamred(t,F).

· Or 〈j,m〉 ∈ headlamred(t2,F2). Then there existsp ∈ F2 such that
headlam(t2|p) = 〈j,m〉. So,2.p ∈ F and
〈j,m〉 = headlam(t2|p) = headlam(t|2.p). Hence,〈j,m〉 ∈ headlamred(t,F).

Let t = λnx̄.t1[x̄ := c(cx̄)].

• Let 〈j,m〉 ∈ hlr(t) then there existsp ∈ Rβη
t such thatheadlam(t|p) = 〈j,m〉. By lemma 5.4.3

and lemma 5.4.4,p = 1.p′ such thatp′ ∈ Rβη
t1

. Moreover,
〈j,m〉 = headlam(t|p) = headlam(t1[x̄ := c(cx̄)]|p′) =5.4.2 headlam(t1|p′ [x̄ := c(cx̄)]) =F.1

headlam(t1|p′). So〈j,m〉 ∈ hlr(t1).

• Let 〈j,m〉 ∈ hlr(t1) then there existsp ∈ Rβη
t1

such thatheadlam(t1|p) = 〈j,m〉. By lemma 5.4.3

and lemma 5.4.4,1.p ∈ Rβη
t . Moreover,〈j,m〉 = headlam(t1|p) =F.1 headlam(t1|p [x̄ :=

c(cx̄)]) =5.4.2 headlam(t1[x̄ := c(cx̄)]|p) = headlam(t|1.p). So〈j,m〉 ∈ hlr(t).

Let t = cn(t1). We prove thathlr(t) = hlr(t1) by induction on n.

• Let n = 0 then it is done.

• Let n = m+ 1 such thatm ≥ 0 thenhlr(t) =F.2 hlr(cm(t1)) =IH hlr(t1).
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⊓⊔

Proof(Lemma 8.4): We prove this lemma by induction on the structure oft.

• Let t = x 6= c then by lemma 5.3,F = ∅ andu = cn(x) such thatn ≥ 0. Then,hlr(u) =F.2

∅ = headlamred(t,F).

• Let t = λnx.t1 such thatx 6= c andF1 = p | 1.p ∈ F .

– If 0 ∈ F then t1 = t′1x such thatx 6∈ fv(t′1), andu = cn(λnx.u1) such thatn ≥ 0
andu1 ∈ Ψc

0(t1,F1). By IH and lemma 8.2.1a,hlr(u1) = headlamred(t1,F1). Then,
hlr(u) =8.2.1d,F.2 hlr(u1)∪{〈2, n〉} = headlamred(t1,F1)∪{〈2, n〉} =F.2 headlamred(t,F).

– Else,u = cn(λnx.u1[x := c(cx)]) such thatn ≥ 0 andu1 ∈ Ψc(t1,F1). By IH, hlr(u1) =
headlamred(t1,F1).
Then,hlr(u) =F.2 hlr(u1) = headlamred(t1,F1) =F.2 headlamred(t,F).

• Let t = t1t2, F1 = {p | 1.p ∈ F} andF2 = {p | 2.p ∈ F}.

– If 0 ∈ F then t1 = λny.t
′
1, andu = cn(u1u2) such thatn ≥ 0, u1 ∈ Ψc

0(t1,F1) and
u2 ∈ Ψc(t2,F2). By definition, u1 = λny.u

′
1. By IH and lemma 8.2.1a,hlr(u1) =

headlamred(t1,F1) andhlr(u2) = headlamred(t2,F2).
Then,hlr(u) =F.2 hlr(u1)∪hlr(u2)∪{〈1, n〉} = headlamred(t1,F1)∪headlamred(t2,F2)∪
{〈1, n〉} =F.2 headlamred(t,F).

– Else,u = cn(cu1u2) such thatn ≥ 0, u1 ∈ Ψc(t1,F1) andu2 ∈ Ψc(t2,F2). By IH,
hlr(u1) = headlamred(t1,F1) and hlr(u2) = headlamred(t2,F2). Then,hlr(u) =F.2

hlr(u1) ∪ hlr(u2) = headlamred(t1,F1) ∪ headlamred(t2,F2) =F.2 headlamred(t,F).
⊓⊔

Lemma F.3. hlr(u1[x̄ := c(cu2)]) ⊆ hlr((λnx̄.u1[x̄ := c(cx̄)])u2).

Proof: We prove the lemma by induction on the size ofu1 and then by case on the structure ofu1.

• Let u1 ∈ V. Either u1 = x̄ then hlr(u1[x̄ := c(cu2)]) = hlr(c(cu2)) =F.2 hlr(u2) ⊆F.4

hlr((λnx̄.u1[x̄ := c(cx̄)])u2). Or u1 = y 6= x̄ thenhlr(u1[x̄ := c(cu2)]) = hlr(u1) ⊆F.4,F.2

hlr((λnx̄.u1[x̄ := c(cx̄)])u2).

• Let u1 = λmȳ.u
′
1[ȳ := c(cȳ)]. Thenhlr(u1[x̄ := c(cu2)]) = hlr((λmȳ.u

′
1[ȳ := c(cȳ)])[x̄ :=

c(cu2)]) = hlr(λmȳ.u
′
1[x̄ := c(cu2)][ȳ := c(cȳ)]) =F.2 hlr(u′1[x̄ := c(cu2)]) ⊆

IH hlr((λnx̄.u
′
1[x̄ :=

c(cx̄)])u2) =F.2 hlr(u′1)∪hlr(u2)∪{〈1, n〉} =F.2 hlr(λmȳ.u
′
1[ȳ := c(cȳ)])∪hlr(u2)∪{〈1, n〉} =F.2

hlr((λnx̄.u1[x̄ := c(cx̄)])u2) such that̄y 6∈ fv(u2) ∪ {x̄}.

• Let u1 = λmȳ.wȳ such thatȳ 6∈ fv(w). Then,hlr(u1[x̄ := c(cu2)]) = hlr(λmȳ.(wȳ)[x̄ :=
c(cu2)]) =F.2 hlr((wȳ)[x̄ := c(cu2)]) ∪ {〈2,m〉} ⊆IH hlr((λnx̄.(wȳ)[x̄ := c(cx̄)])u2) ∪
{〈2,m〉} =F.2 hlr(wȳ) ∪ hlr(u2) ∪ {〈1, n〉, 〈2,m〉} =F.2 hlr((λnx̄.(λmȳ.wȳ)[x̄ := c(cx̄)])u2)
such that̄y 6∈ fv(u2) ∪ {x̄}.
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• Let u1 = cu′1u
′′
1. Then,hlr(u1[x̄ := c(cu2)]) = hlr(cu′1[x̄ := c(cu2)]u

′′
1 [x̄ := c(cu2)]) =F.2

hlr(u′1[x̄ := c(cu2)])∪hlr(u′′1[x̄ := c(cu2)]) ⊆
IH hlr((λnx̄.u

′
1[x̄ := c(cx̄)])u2)∪hlr((λnx̄.u

′′
1[x̄ :=

c(cx̄)])u2) =F.2 hlr(u′1) ∪ hlr(u′′1) ∪ hlr(u2) ∪ {〈1, n〉} =F.2 hlr((λnx̄.(cu
′
1u

′′
1)[x̄ := c(cx̄)])u2).

• Let u1 = vu′′1 (such thatv = λmȳ.wȳ and ȳ 6∈ fv(w) or v = λmȳ.u
′
1[ȳ := c(cȳ)]). Then,

hlr(u1[x̄ := c(cu2)]) = hlr(v[x̄ := c(cu2)]u
′′
1 [x̄ := c(cu2)]) =F.2 hlr(v[x̄ := c(cu2)]) ∪

hlr(u′′1[x̄ := c(cu2)])∪{〈1,m〉} ⊆IH hlr((λnx̄.v[x̄ := c(cx̄)])u2)∪hlr((λnx̄.u
′′
1 [x̄ := c(cx̄)])u2)∪

{〈1,m〉} =F.2 hlr(v)∪hlr(u′′1)∪hlr(u2)∪{〈1, n〉, 〈1,m〉} =F.2 hlr((λnx̄.(vu
′′
1)[x̄ := c(cx̄)])u2).

• Let u1 = cu′1. Then,hlr(u1[x̄ := u2]) = hlr(cu′1[x̄ := c(cu2)]) =F.2 hlr(u′1[x̄ := c(cu2)]) ⊆IH

hlr((λnx̄.u
′
1[x̄ := c(cx̄)])u2) =F.2 hlr(u′1) ∪ hlr(u2) ∪ {〈1, n〉} =F.2 hlr((λnx̄.(cu

′
1)[x̄ :=

c(cx̄)])u2).
⊓⊔

Lemma F.4. If t1 ⊆ t2 thenhlr(t1) ⊆ hlr(t2).

Proof: We prove the lemma by induction on the structure oft2.

• Let t2 = x, then it is done because by definitiont1 = x.

• Let t2 = λnx.t0 then by definition:

– Eithert1 = t2 so it is done.

– Or t1 ⊆ t0. Thenhlr(t1) ⊆
IH hlr(t0) ⊆

F.2 hlr(t2).

• Let t2 = t3t4 then by definition:

– Eithert1 = t2 so it is done.

– Or t1 ⊆ t3. Thenhlr(t1) ⊆
IH hlr(t3) ⊆

F.2 hlr(t2).

– Or t1 ⊆ t4. Thenhlr(t1) ⊆
IH hlr(t4) ⊆

F.2 hlr(t2).
⊓⊔

Proof(Lemma 8.5): We prove this lemma by induction on the size ofu and then by case on the
structure ofu.

• Let u = x̄ then it is done becausēx does not reduce by→βη.

• Let u = λnx̄.u1[x̄ := c(cx̄)]. Becauseu
p

→βη u′, then by lemma 2.2.8, lemma 5.4.3 and

lemma 5.2.13a,p = 1.p′, u′ = λnx̄.u
′
1[x̄ := c(cx̄)] andu1

p
′

→βη u
′
1. By IH, hlr(u′1) ⊆ hlr(u1).

So, by lemma F.2,hlr(u′) = hlr(u′1) ⊆ hlr(u1) = hlr(u).

• Let u = λnx̄.wx̄ andx̄ 6∈ fv(w). Becauseu
p

→βη u
′, by lemma 2.2.8 and lemma 5.3:

– Eitherp = 0 andu′ = w. Sohlr(u′) ⊆F.4 hlr(u).

– Or p = 1.p′, wx̄
p
′

→βη u
′
1 andu′ = λnx̄.u

′
1. By IH, hlr(u′1) ⊆ hlr(wx̄). So,hlr(u′) ⊆F.2

hlr(u′1) ∪ {〈2, n〉} ⊆ hlr(wx̄) ∪ {〈2, n〉} =F.2 hlr(t).
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• Let u = (λnx̄.wx̄)u1 such that̄x 6∈ fv(w). Becauseu
p

→βη u
′, by lemma 2.2.8 and lemma 5.3:

– Eitherp = 0. Sou′ = wu1. By case onw:

∗ Eitherw is av and sou′ ∈ Rβη. Let 〈1,m〉 = headlam(u′) thenhlr(u′) =F.2 hlr(w)∪
hlr(u1) ∪ {〈1,m〉} ⊆F.2 hlr(u).

∗ Orw = cu2 and sou′ 6∈ Rβη. Thenhlr(u′) =F.2 hlr(w) ∪ hlr(u1) ⊆
F.2 hlr(u).

– Or p = 1.p′ such thatp′ ∈ Rβη
λnx̄.wx̄. Sou′ = u′1u1 such thatλnx̄.wx̄

p
′

→βη u′1. By IH,
hlr(u′1) ⊆ hlr(λnx̄.wx̄). By lemma 5.3:

∗ Eitherp′ = 0 andu′1 = w, sou′ = wu1. By case onw:

· Eitherw is a v and sou′ ∈ Rβη. Let 〈1,m〉 = headlam(u′) thenhlr(u′) =F.2

hlr(w) ∪ hlr(u1) ∪ {〈1,m〉} ⊆F.2 hlr(u).

· Orw = cu2 and sou′ 6∈ Rβη. Thenhlr(u′) =F.2 hlr(w) ∪ hlr(u1) ⊆
F.2 hlr(u).

∗ Or p′ = 1.p′′, u′1 = λnx̄.u2 andwx̄
p
′′

→βη u2. Then,hlr(u′) =F.2 hlr(u′1) ∪ hlr(u1) ∪
{〈1, n〉} ⊆ hlr(λnx̄.wx̄) ∪ hlr(u1) ∪ {〈1, n〉} =F.2 hlr(t).

– Or p = 2.p′ such thatp′ ∈ Rβη
u1

. Sou′ = (λnx̄.wx)u
′
1 such thatu1

p
′

→βη u′1. By IH,
hlr(u′1) ⊆ hlr(u1). So,hlr(u′) =F.2 hlr(λnx̄.wx̄) ∪ hlr(u′1) ∪ {〈1, n〉} ⊆ hlr(λnx̄.wx̄) ∪
hlr(u1) ∪ {〈1, n〉} =F.2 hlr(u).

• Let u = (λnx̄.u1[x̄ := c(cx̄)])u2. Becauseu
p

→βη u
′, by lemma 2.2.8 and lemma 5.3:

– Eitherp = 0. Sou′ = u1[x̄ := c(cu2)]. By lemma F.3,hlr(u′) ⊆ hlr(u).

– Or p = 1.p′ such thatp′ ∈ Rβη

λnx̄.u1[x̄:=c(cx̄)]. So u′ = u′1u2 such thatλnx̄.u1[x̄ :=

c(cx̄)]
p
′

→βη u
′
1. By IH, hlr(u′1) ⊆ hlr(λnx̄.u1[x̄ := c(cx̄)]). By lemma 2.2.8, lemma 5.4.3,

lemma 5.4.4 and lemma 5.2.13a,p′ = 1.p′′, u′1 = λnx̄.u
′′
1 [x̄ := c(cx̄)] andu1

p
′′

→βη u′′1.
Then,hlr(u′) =F.2 hlr(u′1) ∪ hlr(u2) ∪ {〈1, n〉} ⊆ hlr(λnx̄.u1[x̄ := c(cx̄)]) ∪ hlr(u2) ∪
{〈1, n〉} =F.2 hlr(u).

– Or p = 2.p′ such thatp′ ∈ Rβη
u2

. Sou′ = (λnx̄.u1[x̄ := c(cx̄)])u′2 such thatu2
p
′

→βη u
′
2. By

IH, hlr(u′2) ⊆ hlr(u2). So,hlr(u′) =F.2 hlr(λnx̄.u1[x̄ := c(cx̄)]) ∪ hlr(u′2) ∪ {〈1, n〉} ⊆
hlr(λnx̄.u1[x̄ := c(cx̄)]) ∪ hlr(u2) ∪ {〈1, n〉} =F.2 hlr(u).

• Let u = cu1u2. Becauseu
p

→βη u
′, by lemma 2.2.8 and lemma 5.3:

– Either p = 1.2.p′ such thatp′ ∈ Rβη
u1

. So u′ = cu′1u2 such thatu1
p
′

→βη u′1. By IH,
hlr(u′1) ⊆ hlr(u1). So,hlr(u′) =F.2 hlr(u′1) ∪ hlr(u2) ⊆ hlr(u1) ∪ hlr(u2) =F.2 hlr(u).

– Or p = 2.p′ such thatp′ ∈ Rβη
u2

. Sou′ = cu1u
′
2 such thatu2

p
′

→βη u
′
2. By IH, hlr(u′2) ⊆

hlr(u2). So,hlr(u′) =F.2 hlr(u1) ∪ hlr(u′2) ⊆ hlr(u1) ∪ hlr(u2) =F.2 hlr(u).

• Let u = cu1. Becauseu
p

→βη u
′, by lemma 2.2.8 and lemma 5.3p = 2.p′ such thatp′ ∈ Rβη

u1
.

So u′ = cu′1 such thatu1
p
′

→βη u′1. By IH, hlr(u′1) ⊆ hlr(u1). So, hlr(u′) =F.2 hlr(u′1) ⊆
hlr(u1) =F.2 hlr(u).
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⊓⊔

Proof(Lemma 8.6.1): Note thatΨc(M,F) 6= ∅. Then, it is sufficient to prove:

• 〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇒ ∀N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′ by induction on

the reduction〈M,F〉 →∗
βηd 〈M ′,F ′〉.

– If 〈M,F〉 = 〈M ′,F ′〉 then it is done.

– Let 〈M,F〉 →βηd 〈M ′′,F ′′〉 →∗
βηd 〈M ′,F ′〉. By IH: ∀N ′′ ∈ Ψc(M ′′,F ′′). ∃N ′ ∈

Ψc(M ′,F ′). N →∗
βη N ′′. By definition 8.3.2, there existp ∈ F such thatM

p

→βη M ′′

andF ′′ is the set ofβη-residuals inM ′′ of the set of redexesF in M relative top. By
definition 1 we obtain:∀N ∈ Ψc(M,F). ∃N ′′ ∈ Ψc(M ′′,F ′′). N →βη N

′′.

• ∃N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗
βη N

′ ⇒ 〈M,F〉 →∗
βηd 〈M ′,F ′〉 by induction on

the reductionN →∗
βη N

′ such thatN ∈ Ψc(M,F) andN ′ ∈ Ψc(M ′,F ′).

– If N = N ′ then by lemma 8.2.2b,M = M ′ andF = F ′.

– Let N →βη N ′′ →∗
βη N ′. By lemma 8.2.1c,N ∈ Ληc, so by lemma 2,N ′′ ∈ Ληc. By

lemma 8.2.2b,〈|N ′′|c, |〈N ′′,Rβη
N ′′〉|c〉 is the one and only pair such thatc 6∈ FV (|N ′′|c),

|〈N ′′,Rβη
N ′′〉|c ⊆ Rβη

|N ′′|c andN ′′ ∈ Ψc(|N ′′|c, |〈N ′′,Rβη
N ′′〉|c).

So by IH, 〈|N ′′|c, |〈N ′′,Rβη
N ′′〉|c〉 →∗

βηd 〈M ′,F ′〉. By definition, there existsp such that

N
p

→βη N ′′ and by lemma 2.2.8,p ∈ Rβη
N . By lemmas 5.8.7a and lemma 8.2.1g,M =

|N |c
p0

→βη |N ′′|c such that|〈N, p〉|c = p0. So by lemma 2.2.8,p0 ∈ Rβη
M . By defini-

tion 1, there exists a uniqueF ′ ⊆ Rβη

|N ′′|c, such that for allP ∈ Ψc(M,F), there exist

P ′ ∈ Ψc(|N ′′|c,F ′) andp′
0 ∈ Rβη

P such thatP
p
′

0→βη P
′ and |〈P, p′

0〉|
c = p0 = |〈N, p〉|c.

Moreover,F ′ is called the set ofβη-residuals in|N ′′|c of the set of redexesF in M rel-
ative to |〈N, p〉|c. SinceN ∈ Ψc(M,F), there existP ′ ∈ Ψc(|N ′′|c,F ′) andp′ ∈ Rβη

N

such thatN
p
′

→βη P
′ and|〈N, p′〉|c = |〈N, p〉|c. By lemma 1,p = p′, so by lemma 2.2.9,

P ′ = N ′′. SinceN ′′ ∈ Ψc(|N ′′|c,F ′), by lemma 8.2.2b,F ′ = |〈N ′′,Rβη
N ′′〉|c. Finally, by

definition 8.3.2,〈M,F〉 →βηd 〈|N ′′|c, |〈N ′′,Rβη
N ′′〉|c〉.

⊓⊔

Proof(Lemma 8.6.2): By lemma 8.2.1c,Ψc(M,F1),Ψ
c(M,F2) ⊆ Ληc. For allN1 ∈ Ψc(M,F1)

andN2 ∈ Ψc(M,F2), by lemma 8.2.1g,|N1|
c = |N2|

c and by lemma 8.2.1h,|〈N1,R
βη
N1

〉|c = F1 ⊆

F2 = |〈N2,R
βη
N2

〉|c.
If 〈M,F1〉 →βηd 〈M ′,F ′

1〉 then by lemma 8.6.1, there existN1 ∈ Ψc(M,F1) andN ′
1 ∈ Ψc(M ′,F ′

1)

such thatN1 →βη N ′
1. By definition, there existsp1 such thatN1

p1

→βη N ′
1, and by lemma 2.2.8,

p1 ∈ Rβη
N1

. Let p0 = |〈N1, p1〉|
c, so by lemma 8.2.1h,p0 ∈ F1. By lemma 5.8.7a and lemma 8.2.1g,

M
p0

→βη M
′.

By lemma 8.2.3 there exists a unique setF ′ ⊆ Rβη
M ′ such that for allP1 ∈ Ψc(M,F1) there exist

P ′
1 ∈ Ψc(M ′,F ′) andp′ ∈ Rβη

P1
such thatP1

p
′

→βη P
′
1 and|〈P1, p

′〉|c = p0.
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Because,N1 ∈ Ψc(M,F1), there existP ′
1 ∈ Ψc(M ′,F ′) andp′ ∈ Rβη

N1
such thatN1

p
′

→βη P ′
1

and |〈N1, p
′〉|c = p0. Sincep′, p1 ∈ Rβη

N1
, by lemma 1,p′ = p1, so by lemma 2.2.9,P ′

1 = N ′
1. By

lemma 8.2.1h,F ′ = |〈N ′
1,R

βη

N ′

1

〉|c = F ′
1.

By lemma 8.2.3 there exists a unique setF ′
2 ⊆ Rβη

M ′ , such that for allP2 ∈ Ψc(M,F2) there exist

P ′
2 ∈ Ψc(M ′,F ′

2) andp2 ∈ Rβη
P2

such thatP2
p2

→βη P
′
2 and|〈P2, p2〉|

c = p0.

SinceΨc(M,F2) 6= ∅, letN2 ∈ Ψc(M,F2). So, there existN ′
2 ∈ Ψc(M ′,F ′

2) andp2 ∈ Rβη
N2

such

thatN2
p2

→βη N
′
2 and|〈N2, p2〉|

c = p0. By lemma 8.2.1h,F ′
2 = |〈N ′

2,R
βη

N ′

2

〉|c.

Hence, by lemma 5.8.7c,F ′
1 ⊆ F ′

2 and by lemma 8.6.1,〈M,F2〉 →βηd 〈M ′,F ′
2〉. ⊓⊔

Proof(Lemma 8.7): If M
F1→βηd M1 andM

F2→βηd M2, then there existF ′′
1 ,F

′′
2 such that〈M,F1〉 →

∗
βηd

〈M1,F
′′
1 〉 and〈M,F2〉 →∗

βηd 〈M2,F
′′
2 〉. By definitions 8.3.1 and 8.3.2,F ′′

1 ⊆ Rβη
M1

andF ′′
2 ⊆ Rβη

M2
.

By lemma 8.6.2, there existF ′′′
1 ⊆ Rβη

M1
andF ′′′

2 ⊆ Rβη
M2

such that〈M,F1 ∪F2〉 →
∗
βηd 〈M1,F

′′
1 ∪F ′′′

1 〉
and〈M,F1 ∪ F2〉 →∗

βηd 〈M2,F
′′
2 ∪ F ′′′

2 〉. By lemma 8.6.1 there existT ∈ Ψc(M,F1 ∪ F2), T1 ∈
Ψc(M1,F

′′
1 ∪ F ′′′

1 ) andT2 ∈ Ψc(M2,F
′′
2 ∪ F ′′′

2 ) such thatT →∗
βη T1 andT →∗

βη T2.
Because by lemma 8.2.1c,T ∈ Ληc and by lemma 6.6.2,T is typable in the type systemD, soT ∈

CRβη by corollary 6.5. So, by lemma 2.2a, there existsT3 ∈ Ληc, such thatT1 →∗
βη T3 andT2 →∗

βη T3.

Let F3 = |〈T3,R
βη
T3
〉|c andM3 = |T3|

βη, then by lemma 8.2.2a,F3 ⊆ Rβη
M3

andT3 ∈ Ψc(M3,F3).
Hence, by lemma 8.6.1,〈M1,F

′′
1 ∪ F ′′′

1 〉 →∗
βηd 〈M3,F3〉 and 〈M2,F

′′
2 ∪ F ′′′

2 〉 →∗
βηd 〈M3,F3〉, i.e.

M1
F ′′

1
∪F ′′′

1→ βηd M3 andM2
F ′′

2
∪F ′′′

2→ βηd M3. ⊓⊔

Proof(Lemma 8.9.1): Note that∅ ⊆ Rβη
M . We prove this statement by induction on the structure of

M .

• Let M ∈ V \ {c} thenΨc(M,∅) = {cn(M) | n ≥ 0} andRβη

cn(M) = ∅, wheren ≥ 0, by
lemma 5.3 and lemma 5.4.5.

• Let M = λx.N such thatx 6= c thenΨc(M,∅) = {cn(λx.Q[x := c(cx)]) | n ≥ 0 ∧ Q ∈
Ψc(N,∅)}. Let P ∈ Ψc(M,∅), thenP = cn(λx.Q[x := c(cx)]) such thatn ≥ 0 andQ ∈

Ψc(N,∅) By IH, Rβη
Q = ∅ and by lemma 5.4.4, lemma 5.4.3 and lemma 5.4.5,Rβη

P = ∅.

• LetM = M1M2 thenΨc(M,∅) = {cn(cQ1Q2) | n ≥ 0∧Q1 ∈ Ψc(M1,∅)∧Q2 ∈ Ψc(M2,∅)}.
Let P ∈ Ψc(M,∅), thenP = cn(cQ1Q2) such thatn ≥ 0, Q1 ∈ Ψc(M1,∅) andQ2 ∈

Ψc(M2,∅). By IH, Rβη
Q1

= Rβη
Q2

= ∅ and by lemma 5.3 and lemma 5.4.5,Rβη
P = ∅.

⊓⊔

Proof(Lemma 8.9.2): We prove the statement by induction on the structure ofM .

• LetM ∈ V \ {c}, thenΨc(M,∅) = {cn(M) | n ≥ 0}. LetP ∈ Ψc(M,∅) andQ ∈ Ψc(N,∅),
thenP = cn(M) wheren ≥ 0.

– EitherM = x, thenP [x := Q] = cn(Q) and by lemma 8.2.1f and lemma 1,Rβη

cn(Q) = ∅.

– OrM 6= x, thenP [x := Q] = P and by lemma 1,Rβη
P = ∅.
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• Let M = λy.M ′ such thaty 6= c thenΨc(M,∅) = {cn(λy.P ′[y := c(cy)]) | n ≥ 0 ∧ P ′ ∈
Ψc(M ′,∅)}. Let P ∈ Ψc(M,∅) andQ ∈ Ψc(N,∅), thenP = cn(λy.P ′[y := c(cy)]) where
n ≥ 0 andP ′ ∈ Ψc(M ′,∅). So,Rβη

P [x:=Q] = Rβη

cn(λy.P ′[x:=Q][y:=c(cy)]), such thaty 6∈ fv(Q)∪{x}.

By IH, Rβη

P ′[x:=Q] = ∅ and by lemmas 5.4.4, 5.4.3 and 5.4.5,Rβη

P [x:=Q] = ∅.

• LetM = M1M2 thenΨc(M,∅) = {cn(cP1P2) | n ≥ 0∧P1 ∈ Ψc(M1,∅)∧P2 ∈ Ψc(M2,∅)}.
Let P ∈ Ψc(M,∅) andQ ∈ Ψc(N,∅) thenP = cn(cP1P2) wheren ≥ 0, P1 ∈ Ψc(M1,∅) and
P2 ∈ Ψc(M2,∅). So,Rβη

P [x:=Q]
= Rβη

cn(cP1[x:=Q]P2[x:=Q])
. By IH, Rβη

P1[x:=Q]
= Rβη

P2[x:=Q]
= ∅

and by lemmas 5.3 and 5.4.5,Rβη

P [x:=Q] = ∅.
⊓⊔

Proof(Lemma 8.9.3): We prove the statement by induction on the structure ofM .

• LetM ∈ V \ {c} then nothing to prove since by lemma 5.3,Rβη
M = ∅.

• LetM = λx.N such thatx 6= c.

– If M ∈ Rβη thenN = N0x such thatx 6∈ FV (N0) and by lemma 5.3,Rβη
M = {0} ∪ {1.p |

p ∈ Rβη
N }. Let p ∈ Rβη

M then:

∗ Eitherp = 0, thenΨc(M, {p}) = {cn(λx.P ′) | n ≥ 0 ∧ P ′ ∈ Ψc
0(N,∅)}. Let P ∈

Ψc(M, {p}) thenP = cn(λx.P ′) such thatn ≥ 0 andP ′ ∈ Ψc
0(N,∅). SoP ′ = cP ′

0x

such thatP ′
0 ∈ Ψc(N0,∅). By lemmas 1 and 8.2.1a,Rβη

P ′ = ∅. If P →βη Q then

by definition, there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b and lemma 2.2.8,

Q = cn(Q′), p0 = 2n.p′
0 andλx.P ′ p

′

0→βη Q
′ such thatp′

0 ∈ Rβη
λx.P ′ . By lemma 8.2.1b,

x 6∈ fv(cP ′
0). By lemmas 5.3,Rβη

λx.P ′ = {0} ∪ {1.p | p ∈ Rβη
P ′} = {0}. Sop′

0 = 0 and

Q′ = cP ′
0. By lemma 1,Rβη

P ′

0

= ∅ and by lemma 5.4.5,Rβη
Q = ∅.

∗ Or p = 1.p′ such thatp′ ∈ Rβη
N . SoΨc(M, {p}) = {cn(λx.P ′[x := c(cx)]) | n ≥

0 ∧ P ′ ∈ Ψc(N, {p′})}. Let P ∈ Ψc(M, {p}) thenP = cn(λx.P ′[x := c(cx)]) such
thatn ≥ 0 andP ′ ∈ Ψc(N, {p′}). If P →βη Q then there existsp0 such thatP

p0

→βη Q.
By lemma 5.2.13b, lemma 2.2.8, lemma 5.4.3 and lemma 5.2.13a, p0 = 2n.1.p′

0 such

thatp′
0 ∈ Rβη

P ′ andQ = cn(λx.Q′[x := c(cx)]) such thatP ′ p
′

0→βη Q
′. By IH, Rβη

Q′ = ∅,

so by lemma 5.4.4, lemma 5.4.3 and lemma 5.4.5,Rβη
Q = ∅.

– Else, by lemma 5.3,Rβη
M = {1.p | p ∈ Rβη

N }. Let p = 1.p′ such thatp′ ∈ Rβη
N . So

Ψc(M, {p}) = {cn(λx.P ′[x := c(cx)]) | n ≥ 0∧P ′ ∈ Ψc(N, {p′})}. LetP ∈ Ψc(M, {p})
thenP = cn(λx.P ′[x := c(cx)]) such thatn ≥ 0 andP ′ ∈ Ψc(N, {p′}). If P →βη Q then

there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b, lemma 2.2.8, lemma 5.4.3 and
lemma 5.2.13a,p0 = 2n.1.p′

0 such thatp′
0 ∈ Rβη

P ′ andQ = cn(λx.Q′[x := c(cx)]) such that

P ′ p
′

0→βη Q
′. By IH, Rβη

Q′ = ∅, so by lemma 5.4.4, lemma 5.4.3 and lemma 5.4.5,Rβη
Q = ∅.

• LetM = M1M2.
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– LetM ∈ Rβη, thenM1 = λx.M0 such thatx 6= c and by lemma 5.3,Rβη
M = {0} ∪ {1.p |

p ∈ Rβη
M1

} ∪ {2.p | p ∈ Rβη
M2

}. Let p ∈ Rβη
M then:

∗ Either p = 0 thenΨc(M, {p}) = {cn(P1P2) | n ≥ 0 ∧ P1 ∈ Ψc
0(M1,∅) ∧ P2 ∈

Ψc(M2,∅)}. Let P ∈ Ψc(M, {p}) thenP = cn(P1P2) such thatn ≥ 0, P1 ∈

Ψc
0(M1,∅) andP2 ∈ Ψc(M2,∅). By lemma 1 and lemma 8.2.1a,Rβη

P1
= Rβη

P2
= ∅.

SinceP1 ∈ Ψc
0(M1,∅), P1 = λx.P0[x := c(cx)] such thatP0 ∈ Ψc(M0,∅). If

P →βη Q then by definition there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b

and lemma 2.2.8,Q = cn(Q′), p0 = 2n.p′
0 andP1P2

p
′

0→βη Q
′ such thatp′

0 ∈ Rβη
P1P2

.

By lemma 5.3,Rβη
P1P2

= {0}. Sop′
0 = 0 andQ = cn(P0[x := c(cP2)]). Because

c(cP2) ∈ Ψc(M2,∅), by lemma 2 and lemma 5.4.5,Rβη
Q = ∅.

∗ Or p = 1.p′ such thatp′ ∈ Rβη
M1

. So,Ψc(M, {p}) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈
Ψc(M1, {p

′}) ∧ P2 ∈ Ψc(M2,∅)}. Let P ∈ Ψc(M, {p}) thenP = cn(cP1P2) such
that n ≥ 0, P1 ∈ Ψc(M1, {p

′}) andP2 ∈ Ψc(M2,∅). By lemma 1,Rβη
P2

= ∅. If

P →βη Q then by definition there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b and

lemma 2.2.8,p0 = 2n.p′
0 such thatp′

0 ∈ Rβη
cP1P2

andQ = cn(Q′) such thatcP1P2
p
′

0→βη

Q′. By lemma 5.3,Rβη
cP1P2

= {1.2.p | p ∈ Rβη
P1
}. Sop′

0 = 1.2.p′′
0 such thatp′′

0 ∈ Rβη
P1

.

SoQ′ = cQ1P2 andP1
p
′′

0→βη Q1. By IH, Rβη
Q1

= ∅, so by lemma 5.4.5,Rβη
Q = ∅.

∗ Or p = 2.p′ such thatp′ ∈ Rβη
M2

. So,Ψc(M, {p}) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈
Ψc(M1, {∅}) ∧ P2 ∈ Ψc(M2, p

′)}. Let P ∈ Ψc(M, {p}) thenP = cn(cP1P2) such
that n ≥ 0, P1 ∈ Ψc(M1, {∅}) andP2 ∈ Ψc(M2, p

′). By lemma 1,Rβη
P1

= ∅. If

P →βη Q then by definition there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b and

lemma 2.2.8,p0 = 2n.p′
0 such thatp′

0 ∈ Rβη
cP1P2

andQ = cn(Q′) such thatcP1P2
p
′

0→βη

Q′. By lemma 5.3,Rβη
cP1P2

= {2.p | p ∈ Rβη
P2
}. Sop′

0 = 2.p′′
0 such thatp′′

0 ∈ Rβη
P2

. So

Q′ = cP1Q2 andP2
p
′′

0→βη Q2. By IH, Rβη
Q2

= ∅, so by lemma 5.4.5,Rβη
Q = ∅.

– LetM 6∈ Rβη, then by lemma 5.3,Rβη
M = {1.p | p ∈ Rβη

M1
} ∪ {2.p | p ∈ Rβη

M2
}.

∗ Eitherp = 1.p′ such thatp′ ∈ Rβη
M1

. So,Ψc(M, {p}) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈
Ψc(M1, {p

′}) ∧ P2 ∈ Ψc(M2,∅)}. Let P ∈ Ψc(M, {p}) thenP = cn(cP1P2) such
that n ≥ 0, P1 ∈ Ψc(M1, {p

′}) andP2 ∈ Ψc(M2,∅). By lemma 1,Rβη
P2

= ∅. If

P →βη Q then by definition there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b and

lemma 2.2.8,p0 = 2n.p′
0 such thatp′

0 ∈ Rβη
cP1P2

andQ = cn(Q′) such thatcP1P2
p
′

0→βη

Q′. By lemma 5.3,Rβη
cP1P2

= {1.2.p | p ∈ Rβη
P1
}. Sop′

0 = 1.2.p′′
0 such thatp′′

0 ∈ Rβη
P1

.

SoQ′ = cQ1P2 andP1
p
′′

0→βη Q1. By IH, Rβη
Q1

= ∅, so by lemma 5.4.5,Rβη
Q = ∅.

∗ Or p = 2.p′ such thatp′ ∈ Rβη
M2

. So,Ψc(M, {p}) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈
Ψc(M1, {∅}) ∧ P2 ∈ Ψc(M2, p

′)}. Let P ∈ Ψc(M, {p}) thenP = cn(cP1P2) such
that n ≥ 0, P1 ∈ Ψc(M1, {∅}) andP2 ∈ Ψc(M2, p

′). By lemma 1,Rβη
P1

= ∅. If

P →βη Q then by definition there existsp0 such thatP
p0

→βη Q. By lemma 5.2.13b and
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lemma 2.2.8,p0 = 2n.p′
0 such thatp′

0 ∈ Rβη
cP1P2

andQ = cn(Q′) such thatcP1P2
p
′

0→βη

Q′. By lemma 5.3,Rβη
cP1P2

= {2.p | p ∈ Rβη
P2
}. Sop′

0 = 2.p′′
0 such thatp′′

0 ∈ Rβη
P2

. So

Q′ = cP1Q2 andP2
p
′′

0→βη Q2. By IH, Rβη
Q2

= ∅, so by lemma 5.4.5,Rβη
Q = ∅.

⊓⊔

Proof(Lemma 8.9.4): By lemma 2.2.8,p ∈ Rβη
M . By lemma 8.2.3, there exists a unique setF ′ ⊆ Rβη

M ′ ,
such that for allN ∈ Ψc(M, {p}), there existsN ′ ∈ Ψc(M ′,F ′) such thatN →βη N ′. Note that
Ψc(M, {p}) 6= ∅. LetN ∈ Ψc(M, {p}) then there existsN ′ ∈ Ψc(M ′,F ′) such thatN →βη N

′. By
lemma 3,Rβη

N ′ = ∅, so |〈N ′,Rβη
N ′〉|c = ∅ and by lemma 8.2.1h,F ′ = ∅. Finally, by lemma 8.6.1,

〈M, {p}〉 →βηd 〈M ′,∅〉. ⊓⊔

Proof(Lemma 8.9.5): By definition→∗
1⊆→∗

βη. We prove that→∗
βη⊆→∗

1. LetM,M ′ ∈ Λ such that
c 6∈ fv(M) andM →∗

βη M
′. We prove this claim by induction onM →∗

βη M
′.

• LetM = M ′ then it is done since〈M,F〉 →∗
βηd 〈M,F〉.

• Let M →∗
βη M

′′ →βη M
′. By IH, M →∗

1 M
′′. By definition there existsp such thatM ′′ p

→βη

M ′. By lemma 2.2.3,c 6∈ fv(M ′′). By lemma 4,〈M ′′, {p}〉 →βηd 〈M ′,∅〉, soM ′′ →1 M
′.

HenceM →∗
1 M

′′ →1 M
′.

⊓⊔

Proof(Lemma 8.10): LetM ∈ Λ and letc ∈ V such thatc 6∈ fv(M). LetM →∗
βη M1 andM →∗

βη

M2. Then by lemma 5,M →∗
1 M1 andM →∗

1 M2. We prove the statement by induction onM →∗
1 M1.

• LetM = M1. HenceM1 →∗
1 M2 andM2 →∗

1 M2.

• LetM →∗
1 M

′
1 →1 M1. By IH, ∃M ′

3,M
′
1 →∗

1 M
′
3 andM2 →∗

1 M
′
3. We prove that∃M3,M1 →∗

1

M3 andM ′
3 →1 M3, by induction onM ′

1 →∗
1 M

′
3.

– letM ′
1 = M ′

3, henceM ′
3 →1 M1 andM1 →∗

1 M1.

– Let M ′
1 →∗

1 M
′′
3 →1 M

′
3. By IH, ∃M ′′′

3 ,M1 →∗
1 M

′′′
3 andM ′′

3 →1 M
′′′
3 . By lemma 2.2.3,

c 6∈ fv(M ′′
3 ). SinceM ′′

3 →1 M
′
3 andM ′′

3 →1 M
′′′
3 , By lemma 8.7,∃M3,M

′
3 →1 M3 and

M ′′′
3 →1 M3.

⊓⊔


