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Abstract. We explain in this paper the gradual computerisation process
of an ordinary mathematical text into more formal versions ending with
a fully formalised Mizar text. The process is part of the MathLang—Mizar
project and is divided into a number of steps (called aspects). The first
three aspects (CGa, TSa and DRa) are the same for any MathLang—TP
project where TP is any proof checker (e.g., Mizar, Coq, Isabelle, etc).
These first three aspects are theoretically formalised and implemented
and provide the mathematician and/or TP user with useful tools/au-
tomation. Using TSa, the mathematician edits his mathematical text
just as he would use ITEX, but at the same time he sees the mathemat-
ical text as it appears on his paper. TSa also gives the mathematician
easy editing facilities to help assign to parts of the text, grammatical
and mathematical roles and to relate different parts through a number
of mathematical, rethorical and structural relations. MathLang would
then automatically produce CGa and DRa versions of the text, checks
its grammatical correctness and produce a dependency graph between
the parts of the text. At this stage, work of the first three aspects is
complete and the computerised versions of the text, as well as the depen-
dency graph are ready to be processed further. In the MathLang—Mizar
project, we create from the dependency graph, the roles of the nodes
of the graph, and the (preamble) of the CGa encoding, a Mizar Formal
Proof Sketch (FPS) skeleton. The stage at which the text is transformed
into a Mizar FPS skeleton has only been explained through transforma-
tion hints, and is yet to be theoretically developed into an aspect that can
be implemented and developed into a partially-automated tool. Finally,
the Mizar FPS skeleton of the text is transformed (currently by hand as
any Mizar expert would do and without any computerised tools) into a
correct Mizar FPS and then into a fully formalised Mizar version of the
text. Although we have tested our process on a number of examples, we
chose to illustrate it in this paper using Barendregt’s version of the proof
of Pythagoras’ theorem. We show how this example text is transformed
into its fully formalised Mizar version by passing through the first three
computerised aspects and the transformation hints to obtain Mizar FPS
version. This version is then developed by hand into a fully formalised
Mizar version.



1 Introduction

The past forty years have seen a growing number of uses of the computer in the
daily routine of the mathematician. These uses range from authoring tools (e.g.,
KTEX, MathML), to computation and calculation aids (e.g., Mathematica) to
proof checking tools (e.g., Mizar). Proof checking tools have had the least uses
by ordinary mathematicians since they are completely different from traditional
mathematical authoring, and remain difficult to use by non experts. Even if
the language behind the proof checking tool closely mimics the common math-
ematical language (CML — the language and style mathematicians use to write
their mathematics), the formalisation process remains very long, labor-intensive
and will require expertise in at least programming and logic. Furthermore, for a
mathematical text to be fully verified by a proof checking tool, all its informal
parts and proofs need to be rewritten in sufficient details before being processed
for correctness. Mathematicians do not like writing proofs or details that they
consider to be obvious or trivial. Furthermore, mathematicians prefer developing
new or studying existing mathematical theories rather than proof checking using
the computer existing theories. And so, the gap between the mathematician and
the computer proof checker remains large.

Recent years have seen many attempts to bridge this gap. For example, some
work has been done on computerising mathematical texts without fully formalis-
ing or computer proof checking them. Such computerisations are not sufficiently
detailed for correctness verification but are used as skeletons in the full formal-
isation (see Wiedijk’s work [25]). Although the computerised text remains at a
low level to be fully automatically checked, it has a precise notion of correctness:
it is syntactically correct according to the grammar language but according to
the proof language it contains steps that are not sufficiently justified. However,
in order to create these skeletons, the user still needs to be an expert in the final
destination language. For example, for a mathematician to carry out the work
as outlined in [25], he/she needs to be an expert in Mizar.

In this paper, we allow the ordinary mathematician to do a reasonable
amount of work on computerising mathematical texts that lead to computerised
versions that can be passed to any expert in any proof checker to be fully for-
malised in that proof checker. We choose Mizar to be our target proof checker,
and we consider G. H. Hardy and E. M. Wright’s skeletons as one of the steps to
reach the final Mizar version. However, the skeleton and the Mizar version are
obtained not from CML texts, but from versions computerised by the mathe-
matician which have gone through a number of automatic checking and manip-
ulations. These computerised versions are easier to transform into skeletons and
final Mizar version.

Our approach is sketched in Figure 1. Instead of a Mizar expert transforming
the CML text into a fully formalised Mizar version following one of the paths:
— (©: immediately create the fully formalised Mizar version of the text;

— ®-@©: first create the Mizar Formal Proof Sketch skeleton and then the fully
formalised Mizar version of the text,



we believe that each of the formalisation paths © and ®-(© could be divided

into a number of smaller steps as in the path @-@-© of Figure 1 where all the

levels at step @ are done by the mathematician and where the sub-path @-©
is done by the Mizar expert. This approach has a number of advantages:

— It gives a better view at the process of computerisation.

— It helps build computer programs that can assist humans along the computer-
isation/formalisation processes. In fact, at the TSa, CGa and DRa levels, the
user already enjoys numerous automated help which makes his work almost
minimal. We also aim for partial automations of steps @ and (€).

— It shows that the mathematician can benefit by first authoring the text, and
later on ‘tagging’ it within the MathLang system and checking its grammatical
correctness (see Figure 2 and Section 2.1).

— As expressed in the description of Figure 1, different formalisation paths in-
volve different levels of the expertise required by the user.
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Fig. 1. Computerisation/formalisation paths from CML to Mizar.
The labeled arrows shows the computerising paths from CML to Mizar. In this paper we mainly
focus on the path @-@-©. We also briefly compare it with the path (®-© and the path ©.
The width of the arrow representing each path segment increases accordingly to the expertise
required to achieve the path segment. The dashed arrows illustrate further computerisation
that one can envision.

We have chosen Mizar as the final destination since it comes with the biggest
library of mathematical knowledge verified by computer. This is important since,
most CML texts assume that the reader has at least the fundamental mathe-
matical knowledge required to follow the topic in the document. Therefore, if
we want to formalize a mathematical text, we have to refer at some point to
that fundamental knowledge. Mizar has an impressive library of mathematical
knowledge: the Mizar Mathematical Library (MML). In addition to its MML,



Mizar is the most accessible of the proof checkers (in terms of readability and
write-ability) by mathematicians as expressed by the Mizar creator Trybulec:

Experience has shown that many people with some mathematical
training develop a good idea about the nature of the Mizar language
just by browsing through a sample article. This is no big surprise, since
one of the original goals of the project was to build an environment which
supports the traditional ways that mathematicians work. [20, pp.2]

This said, the user will still need to have an expert knowledge if he/she
wants to deal with the whole mechanism (i.e. the Mizar system, MML, the
Mizar Language, the MML search engines) and create a new Mizar document.

1.1 Example

The example we use in this paper is taken from [26] where Wiedijk used Hardy
and Wright’s version [8, Ch. IV] of Pythagoras’ theorem of irrationality of v/2 to
compare computer based theorem provers. Barendregt wrote a textual version [3]
(reproduced in Figure 8) of this proof which is said to be “informal” in contrast
to the formal versions of theorem provers as in [26]. Wiedijk’s comparison illus-
trates the need to assist the mathematician non-expert in theorem provers. We
have already used this example in [11] to obtain what was then a CGa version.
In this paper, we use this example to show all the versions of the proposed path
(TSa, CGa, DRa, Mizar FPS skeleton, Mizar FPS and finally Mizar).

1.2 Notations, contributions and outline

Notations. We adopt some rules to facilitate |[MathLang|  Mizar
reading this paper. We use different font styles  Syntax|sans-serif |typewriter
to differentiate MathLang and Mizar syntax  Jargon|boldface |slanted

and notions. MathLang’s abstract syntax is written in the sans-serif font style,
in contrast to Mizar’s syntax, which is highlighted using the typewriter font
style. MathLang jargon words are written using the boldface family font. Spe-
cific Mizar jargon words are written using the slanted font style.

Contributions. Our contributions can be summarised as follows:

1. A gradual computerisation/formalisation into Mizar. We propose a new ap-
proach for the gradual computerisation/formalisation of a CML document into
its more formal versions ending with a fully formalised Mizar version. This grad-
ual approach shows the increasing level of expertise required to achieve the fully
formalised Mizar version, and allows the mathematician and the Mizar expert
to collaborate in the process (see the explanation of Figure 1).

2. Transformation hints. Through the example, we give transformation hints that
allows us to create a skeleton of a document in a fully formal Mizar language.
3. A short comparison between MathLang and Mizar constructs. Through the
example, we compare different MathLang constructions with their counterparts
in Mizar. This brief comparison provides hints and ideas on which knowledge
is required to understand the original document, how this document could be
stored in MathLang and in Mizar where identifiers are taken from MML.



Outline. In Section 2 we briefly explain the various boxes shown in Figure 1.
We also explain the transformation path we are following to build a formal doc-
ument in the Mizar language. In Section 3 we explain how the DRa annotation
on the CML text helps us to build a rough skeleton of the Mizar document.
In Section 4 we give hints as to how mathematical identifiers and their CGa
presentation could be used to narrow their representation in Mizar and give fur-
ther transformation hints of the MathLang document into Mizar. In Section 5
we reflect on the different formalisation paths. Finally, in Section 6 we conclude
and describe related and future work.

2 Background

2.1 MathLang and its aspects

Since 2001, the ULTRA group has been developing as part of the MathLang
project, a number of prototypes for computerising mathematics. The project
MathLang aims to give alternative and complete paths which transform math-
ematical texts into new computerised and/or formalised versions. These paths
are intended to accommodate different degrees of formalisation, different math-
ematical editing/checking tools and different proof checkers. Dividing the for-
malisation of mathematical texts into a number of stages was first proposed by
N.G. de Bruijn to relate CML to his Mathematical Vernacular [6] (MV) and his
proof checking system Automath. We call this principle de Bruijn’s path.

The work may be subdivided. One can think of a first stage where
a person with some mathematical training inserts a number of interme-
diate steps whenever he feels that further workers along the belt might
have trouble, and a second stage where the logical inference rules are
supplied and the actual coding is carried out. For the latter piece of
work one might think of a person with just some elemenary mathemat-
ics training, or of a computer provided with some artificial intelligence.
But we should not be too optimistic about that: programming such jobs
is by no means trivial. [5]

MV was proposed as a formal substitute for parts of CML. Nederpelt re-
fined MV into another formal substitute for parts of CML, Weak Type Theory
(WTT) whose underlying proof theory was developed by Kamareddine [17,14].
MathLang started from de Bruijn’s path idea and Nederpelt’s WTT and was
faced with the huge challenge of how to really create a path from original math-
ematical texts into fully formalised ones and how would this path differ for
different choices of texts, text editors, logical frameworks, and proof checkers.
Soon after a number of prototypes were built, it became obvious that the stages
of the path and the formal substitute of CML need to be seriously revised.

The MathLang language expressiveness has been increased and its description
simplified in comparison with MV and WTT. Moreover, MathLang adopted to
decompose the computerisation process by means of knowledge components.
Each element of this decomposition is defined in what we call, an aspect. In



the current development of MathLang we have defined three aspects (CGa, TSa
and DRa) which we explain below. Figure 2 illustrates with a sentence from our
example (see Section 1.1) the viewpoint each aspect gives to the same text.

The Core Grammatical aspect (CGa) is a formal language derived from
MV and WTT which aims at expliciting the grammatical role played by the
elements of a CML text. The structures and common concepts used in CML are
captured by CGa with a finite set of grammatical categories. Terms represent
mathematical concrete objects such as “v/2” from our example in Figure 2. A
set is a collection of objects like the set of rationals “Q”. A noun is a family
of mathematical objects that share common characteristics, “number” is an ex-
ample of a noun. Nouns could be refined by adjectives like “even”. A valid
document according to CGa’s grammar is a succession of phrases (statements,
declarations and definitions). A phrase could be combined in a sequence to
form a deduction, this sequencing is called a block. One can restrict a state-
ment and the declaration/definition of identifiers to a specific part of the
text with a construction called context or local-scoping. We call step an ex-
pression which is either a phrase, a block or a local-scoping. MathLang’s type
system [13] derives typing judgments to check whether the reasoning parts of a
document are coherently built. CGa is intentionally elementary and results in a
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to each CGa expression a string of words
and/or symbols which aims to act as its
CML representation. The CGa grammar
provides computable constructions to repre-

Fig. 4. MathLang’s encoding of
part of Barendregt’s version of
Pythagoras’ theorem.

sent mathematical reasoning. We added to
this strict language information on how each
CGa element should be printed on paper or
on screen. This makes MathLang’s encoding
of mathematical texts faithful to traditional
mathematical authoring [11]. T'Sa adds on

top of a CML text a new dimension to the This coloured text is the definition
document. This dimension is rendered in our and proof of Corollary 1 as written
les in Fi d ith col d by Barendregt (see Section 1.1). We
examples in Figures 2 and 4 with coloure used TEXmacs and MathLang’s plu-
boxes following the colour coding system of gin for TEXmacs to write this ex-
Fi ample. The text was automatically
igure 3. checked by our implementation of the
The coloured boxes shown in Figure 4 MaﬁhLing tﬁs?}t’stimh[w]-t"}l:h% ar
. row on top o 1S teXt shows e a
are added by the MathLang user himself. relation between the corollary’s defi-
We implemented TSa in a plugin for the sci- nition and its proof.

entific text editor TEXmacs (http://www.texmacs.org/). The view of our ex-
ample shown in Figure 4 was authored using TpXmacs and our plugin. The
plugin transforms the authored document (encoded in TgXmacs’ data structure
extended with TSa boxes) into MathLang CGa internal XML representation.
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Fig. 2. Example of mathematical authoring using MathLang’s aspects.
To illustrate the decomposition of mathematical knowledge with MathLang’s

aspects, we use the example in [: the definition of Corollary 1 which states
the irrationality of v/2. We identify in this sentence the grammatical role of
each element of the text: definition for the entire sentence, term for “\/27
and “2”, set for “Q” and statement for “v/2 ¢ Q”. The author attributes
to each element its CGa grammatical role by wrapping it into a coloured
box following our colour coding system of Figure 3. The formal interpretation
of this sentence is automatically generated from TSa’s [J and is printed in 0
using CGa’s abstract syntax as defined in [13]. The identifiers corollary_1, notin,
sqrt, 2 and Q are provided by the user as arguments for each coloured box
of . Note that the CGa syntax used in [0 is not meant to be used by the
end-user of MathLang, it is only designed for computerisation purposes. The
MathLang end-user edits his MathLang document using the view offered by
TSa, as shown by O (TSa plays the role of a user interface for MathLang). The
internal syntax used in our implementations follows XML recommendations.
In O we indicate with DRa what role this sentence plays in the context from
which it was taken. Sentence O plays the role in the entire example (see [3] or
Figure 8) of corollary and is being justified by the proof which follows. DRa’s O
makes this explicit (see DRa’s role list in Table 1). Finally, we automatically
produce a dependency graph O out of the DRa information (see the left hand
side part of Figure 6).

‘ Term - - _ Statement ‘ ‘ Declaration ‘ Definition ‘ ‘ Context ‘ - ‘

Fig. 3. MathLang CGa’s colour coding system.




The document is then checked for CGa grammatical validation. In the rest of
this paper we avoid mentioning T'Sa and concentrate instead on the use one can
make of the information held by CGa and DRa.

The Document Rhetorical aspect (DRa) extends the knowledge already
computerised in CGa by expliciting the subjective judgments that the author
gave on the role some text parts play in the document’s structure. At the CGa
level, a document is decomposed into steps either put in a sequence or contextu-
alized by the context construction. One would encode division elements (such
as chapter, section) and mathematical labeling units (such as axiom, theorem,
proof) by this unique step construction (see the MathLang encoding examples
in [12,11,13]). In our example in Figure 4, the proof paragraph is a step com-
posed by several sub-steps. To enhance flexibility, CGa does not differentiate
between these divisions, labels and any other kind of step. DRa provides a
method to computerise these labels traditionally attributed to chunks of text.
These labels and text elements when used in mathematical textbooks or articles
give important hints and indications on how to interpret a chunk of text. More-
over, relations between recognised chunks of text sometimes stay implicit in the
original document. DRa annotations allow to express such information since the
DRa works as an annotation system for the CGa step. This annotation system
is summarised in Table 1 and consists of:
1. Structural rhetorical role names for division elements.
2. Mathematical rhetorical role names for mathematical labeled units.
3. A set of relations to express relations between labeled units/ division elements.
Using the DRa annotation sys-

Description t

em we can capture the role that a
Instances for the hasStructuralRhetoricalRole prop- b X
erty: preamble, part, chapter, section, paragraph, etc. chunk of text plays in a document

Instances for the hasMathematicalRhetoricalRole and the relationship that this role
property: lemma, corollary, theorem, conjecture, def-

inition, axiom, claim, proposition, assertion, proof, ex- imposes on the rest of the document
ercise, example, etc. or other chunk of text. This leads to
____Relation : an automatic generation of a depen-
Types of relation: justifies, subpartOf, uses, exempli- i
fies, inconsistentWith dency graph for the text (see Fig-

ure 8) where relations between parts
of the text are represented by visible
arrows and graph nodes have specified (but not visible) mathematical rhetorical
roles. From the annotated narrative feature of a document we receive a depen-
dency graph between the chunks of text in a document (e.g. see the left hand side
of Figure 6). Those dependencies play an important role in the mathematical
knowledge representation. Thanks to those dependencies, the reader can find his
own way while reading the original text without the need to understand all its
subtleties. Moreover, we will show that these dependencies give the ability to
structure the skeleton of a document in a formal language Mizar (see Figure 6).

Table 1. DRa annotations.

2.2 Mizar and Formal Proof Sketch

The Mizar system (http://mizar.org) is a system for computer checked
mathematics [20,21,19,15]. The ongoing development of the Mizar framework,



lead by Trybulec since 1973, has resulted in several things: the Mizar system, the
Mizar language, the Mizar library and the Mizar software utilities for working
with Mizar documents and the Mizar library.

The Mizar language is used for recording mathematics whereas the Mizar
system is used for checking the correctness of texts written in this language. The
Mizar language is a language suitable for the practical formalisation of mathe-
matics. It is based on first—order logic with free second-order variables. Proofs are
written in the style of natural deduction as proposed by Jaskowski [9]. The lan-
guage itself is also an attempt to approximate in a formal way the mathematical
vernacular used in publications. On one hand, the Mizar language inherits the
expressiveness, naturalness and freedom of reasoning of CML. On the other hand
it is formal enough to allow mechanical verification and computer processing.

The Mizar system is accompanied by a library of mathematics — the Mizar
Mathematical Library (MML), which is the biggest collection of digitalized math-
ematical texts verified by computer [24]. MML consists of Mizar documents,
which are called Articles within the Mizar community. This library is based
on two axiomatic Articles: HIDDEN [4] which consists of built-in notions, and
TARSKI [22] which presents axioms of the Tarski-Grothendieck set theory. All
the other Articles of MML are consequences of those axioms and are verified
by the Mizar system. The user while writing a new Mizar Article reuses the
notation, definitions and theorems and other constructs stored in the library.
The Mizar system assists the author while formalising new terminology and re-
sults. It verifies the claims of the new Article and extracts facts and definitions
for inclusion into the library. The task of building a rich mathematical library is
currently the main effort of the Mizar community. Currently, the library includes
960 Articles contributed by 189 authors!, a number of whom have been active
on a long term basis. There is a number of introductory papers and manuals on
Mizar [1,20] as well as practical hints for writing Mizar Articles.

A Mizar article consists of two parts: the Environment-Declaration and the
Text-Proper. The Environment-Declaration begins with environ and consists of
Directives: vocabularies, notations, constructors etc. Roughly, each Direc-
tive is composed of names of Articles from the MML that contain the knowledge
required for verifying the correctness of the Text-Proper. The Text-Proper is a
sequence of Sections, where each Section starts with begin and consists of a
sequence of theorems and definitions together with their proofs. The division of
the Text-Proper into Sections has no impact on the correctness of the Article.
These two parts of the Mizar Article are processed by two different programs:
Accommodator and Verifier. The Accommodator processes the Environment-
Declaration and creates the Environment in which the knowledge is imported
from MML. The Verifier has no communication with the library and checks the
correctness of the Text-Proper using the knowledge stored in the Environment.

The Formal Proof Sketch (FPS) notion was introduced by Wiedijk in [25]
for declarative systems where the input language of the system is designed to

! http://merak.pb.bialystok.pl/ (last accessed on 2007-02-15, MML version: 4.76.959).



be similar to the language of the informal proofs found in mathematical papers.
The FPS notion makes sense for instance for both the Mizar language and the
Isar language (used for the Isabelle system). According to Wiedijk:

A Formal Proof Sketch is a text in the syntax of a declarative proof
language that was obtained from a full formalization in that language by
removing some proof steps and references between steps. The only errors
(according to the definition of the proof language) in such a stripped
formalization should be justification errors: the errors that say that a
step is not sufficiently justified by the references to previous steps. [25]

Even if the above definition states that the FPS version is derived from the full
formalization, the process of formalization can start from the informal mathe-
matical document. The process actually consists of two phases: first, one mimics
the informal English proof in the formal proof sketch language, second, one
fleshes out this formal proof sketch to a full formalization.

The Mizar Formal Proof Sketch (Mizar FPS) is a representation of an
informal proof in the formal Mizar language. A text in Mizar FPS is between a
fully checkable proof and a statement without any proof at all. It is seen as an
incomplete Mizar Article that contains holes in the natural deduction reasoning.
The application of the Mizar system for a correct Mizar FPS text should result
in only one kind of error (the well known #4 error in the Mizar system), which
says that justifications do not necessarily justify the steps. A Mizar Formal Proof
Sketch can be completed into a correct fully formalised Mizar Article by adding
steps and filling essential references for the steps to the proofs. However, it may
sometimes happen that the Mizar FPS version needs to be changed to be able
to reach full formalisation in the Mizar system. In short, the Mizar FPS version
and the full formalisation of an informal text are both written in the same formal
language — the Mizar language, and are both checked by the same software — the
Mizar system; furthermore, Mizar FPS accepts holes in the reasoning.

3 Narrative features vs. Mizar Text-Proper skeletons

The purpose of DRa is to discern explicitly the structure of mathematical knowl-
edge for providing a better encoding of its content, see Figure 8. Using the DRa
annotation system we indicate where important mathematical statements start
and end. One may argue that this information is visible and we do not need to
annotate it explicitly. However, although this information is obvious for a human,
it has to be explicitly specified for a computer. As described in Section 2.1, the
DRa annotations of a text are used to automatically generate the dependency
graph of the text where the relationships between different parts of the text are
represented by visible arrows and where the graph nodes have well specified (but
not visible) mathematical/structural roles (see the left hand side of Figure 6).
We advocate that the DRa annotations of a text and the automatic generation of
its dependency graph are useful for the computerisation of a mathematical text
because it explicits the narrative features of the text. In this section, we explain
how the DRa annotations of a text and its automatically generated dependency
graph are used to create a Mizar FPS Text-Proper skeleton of the text.
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3.1 Transformation hints provided by the dependency graph

Note that the DRa dependency graph (see the left hand side of Figure 6) does not
impose any logical correctness. For instance, on our example (see Figure 4), the
paragraph labeled proof is related by justifies to a mathematical sentence labeled
corollary (see Figure 8). However, this does not imply that the proof indeed
proves the corollary. This latter affirmation is of a different level of importance,
and within MathLang it belongs to a different aspect than the labeling and
relation information. We expect to get an automatic validation of the coherence
of relationships drawn in the document (for instance a block of steps labeled
proof can not justifies another step labeled axiom).

In this section we give transformational hints which use the dependency graph
of a text and the internal representation of the mathematical/structural roles
of its nodes, to create a Mizar FPS Text-Proper skeleton of the text. It should
be noted that we call this stage transformation hints rather than give it a full
blown “aspect” status like CGa, TSa or DRa because we have not completed
its formalisation/implementation. Currently, we simply give hints to the user. In
the future, any implementation of this desired aspect should ask the user, how
each relation is used, and in which order the annotated (boxed) text should be.

Hint 1 Hint 2
label: Eo
proof

label: Eo
A

D,

\

justifies

N
theorem FE;

theorem
Ey
proof

D,

end;

justifies

=

2

subpart0f .

D’

per cases;
suppose case_1:

end;

suppose case_n.

end;

end;
Where Do is transformed into box

between proof and end;

Hint 3

E;

Hint 4
label: B3

A

uses |

proof

... by label ;

\
/
\\uses/justifies E; by label; end;
N Ds
label: Eo

Where Dg is transformed into box

between proof and end;

Fig. 5. Four transformation hints provided by the dependency graph.

Figure 5 lists four hints that we use to transform our main example. In each of
these hints, a dependency graph (on the left hand side of the hints) is transformed
into a Mizar specific structure (on the right hand side). For example, in hint 1, if
we annotate a box, let say F1, as a theorem, it could be transformed into Mizar
syntax as: theorem Fj. Moreover, if we say that a box has the mathematical
role proof, then we can transform it into: proof end ;. Moreover, since a block
of steps having the mathematical role proof is in relation justifies with a single
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statement, we can say that this is a particular Proof Justification in Mizar,
which is transformed into a specific form like the right hand side of hint 1.

Hint 2 deals with proof by cases. If is in relation justifies with a statement
FE5, and consists of the parts ,. . , then we can give a user hint that this
is a Proof Justification in which reasoning is done by all the cases.

In hint 3, the relation uses, could express a Mizar Straightforward-Justification,
for instance, if a sentence E uses or justifies sentence F, then we can inform the
user that this corresponds to a Mizar Straightforward-Justification.

In the dependency graph of hint 4, block uses statement E3. Here, we
transform block into a specific Mizar Proof block, which contains an ex-
pression with Straightforward-Justification to statement Fj.

3.2 Applying the transformation hints to our example

Using the transforma- | [ A|e isLenmag 7]
. . . 19 proof
tion hints of Figure 5, P
we. can transiorm the B 1 R o aetpeeg
dependency gaph pro- justifies 22 Claimg M
. o maEp e TR :
duced for our main ex- e 3 ira’
ample (see the left hand we | etielg] | 54 end;
side of Figure 6) into >
63 per cases;
a proper structure of 64  suppose
the Text-Proper part of e subpart0? N R > [
. . 71 end;
our Mizar FPS (see the subpart0f- © *° 72 suppose
right hand side of Fig- U >
O e BT B R 77 end;
ure 6). A§ already dis- T ena;
cussed, this transforma-
tion is not done auto- | . [Cf el soCorollaryy [
. . . 81 roof
matically. It is our inten- P
: . justifies El ................. > D
tion in the near future, 95 end;

Fig. 6. Transformation into Text-Proper skeleton.
The left hand side reproduces the MathLang dependency
graph of our example (Figure 8). On the right hand side we
show the Mizar Text-Proper skeleton of the same example.
The arrows from left to right shows how the MathLang
dependency graph gives hints on how to build the Mizar
Text-Proper skeleton.

to formalise and imple-
ment the transformation
into a further aspect of
MathLang.

4 Building parts of Mizar FPS from a grammatically
annotated document

4.1 The document’s background knowledge.

When a document has been properly encoded in CGa, all the notions used in
the document would be properly declared with the appropriate CGa grammat-
ical categories. This results in a list which declares the identifiers used in the
document and which form an important part of the background knowledge re-
quired to understand it. For example, the arithmetic operations plus, times or
square root are not defined in our main example (see Figure 8) but are assumed
to be known by the reader. At the CGa encoding level of our example, these
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arithmetic operations need to be declared at the start of the encoded document.
The common way to do so is to start the document with a context containing
the list of declarations of all these symbols and notions (see Figure 7). At the
DRa level, we identify this list of declarations as a preamble by annotating the
CGa paragraph containing the left hand side of Figure 7 by:

[description hasStructuralRhetoricalRole="preamble”]

In our example, the identifier even (line 28 of Figure 7) is in the preamble
because it is used in the original document but not defined. We expect these
identifiers to have a proper definition outside the original text. One can under-
stand them with a good mathematical background or with access to the back-
ground literature (we omit here the way MathLang adopts to refer to external
documents). Each of these externally defined identifiers has to be declared.

4{ not(stat): stat;

5 and(stat,stat): stat;

6 implies(stat,stat): stat;
7

8

contradiction(): stat;
forall(dec(‘x), stat) : stat;

Inot jllﬂand HII] — [Ilcontradictionl
9 exists(dec(‘x), stat) : stat;
10 0: term; 2: term; 4: term;

11 N set; Q set; Z: set;
m 12 =(term, term): stat;

13 neq(term, term): stat;

14 >(term, term): stat;
--. 15 <(term, term): stat;
16 in(term,set): stat;

— 17 notin(term,set): stat;
ID [II[¢]IID<[I 18 is(term,noun): stat;
19 sq(term): term;
20 sqrt(term): term;
21 *(term,term): term;
T +(t ,t ot B
i P
24 abs(term): term;
-u_ 25 subtraction(set,set): set;
26 one_element_set(term): set;
27 number: noun;
[mumber| even infinite | descending | s even: adj,

29 sequence(set):noun;
30 infinite:adj;
31 descending:adj; };

Fig. 7. Preamble of MathLang’s encoding of Pythagoras’ theorem
The left hand side presents the preamble as shown by TSa whereas the right hand side
shows the corresponding lines in the automatically generated CGa (printed using CGa’s
abstract syntax as defined in [13]).

In Mizar, the Environment plays a similar role to the MathLang preamble
by describing the background knowledge of the Article, however, there is one
subtle difference. Namely, the Environment in Mizar lists the MML entries that
have to be loaded prior to any analysis of the Text-Proper part of the Arti-
cle (see Listing 1.1 for our example’s Environment). The Articles to be loaded
contain, among other things, the notations and definitions that are used in the
Text-Proper part. This gives a slightly different constraint to the authoring: in
MathLang the author simply needs to list the external identifiers, whereas in
Mizar the author needs to select the background MML literature to use. The
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MathLang CGa is more concerned with the “visible” external identifiers (CGa is
about the grammatical completeness and therefore only needs the grammatical
signature of each identifier) but Mizar needs to have a complete semantic and
logic background (with Definitions or Proofs associated to each identifier).

Listing 1.1. Mizar FPS Environment

6environ

7 vocabularies INT_1, SQUARE_1, MATRIX_2, IRRAT_1, RAT_1, ARYTM_3, ABSVALUE,

8 SEQM_3, FINSET_1;

9 notations INT_1, NAT_1, SQUARE_1, XXREAL_O, ABIAN, RAT_1, IRRAT_1, XCMPLX_O,
10 INT_2, SEQM_3, FINSET_1, REAL_1, PEPIN;

11 constructors INT_1, NAT_1, SQUARE_1, XXREAL_O, ABIAN, RAT_1, IRRAT_1,XCMPLX_O,
12 INT_2, SEQM_3, FINSET_1, PEPIN;

13 requirements SUBSET, NUMERALS, ARITHM, BOOLE, REAL;

14 registrations XREAL_O, REAL_1, NAT_1, INT_1;

The preamble of the CGa encoding is crucial in the migration process of
encoding into a Mizar FPS version of the text. We treat the information of
the preamble as a subset of the Mizar Environment. In Mizar FPS we use
the same symbols and identifiers that were explicitly introduced in the CGa,
although some of them have different spelling. We have to remember that at
some point we can acquire the CGa encoding of a mathematical text, which
could contain identifiers or symbols that have not been defined in the MML yet.
In such case we have to define those identifiers in the Text-Proper part of the
Mizar FPS and introduce their names in the associated Vocabulary file. This
situation requires much more investigation in the future.

In this section, we use the preamble to build two parts of the Mizar FPS
Environment-Declaration, namely Directives: vocabularies (which consist of
MML entries that store symbols used in the Text-Proper part of the Article)
and notations (which consist of MML entries that store notions of symbols
used in the Text-Proper). The information in the preamble gives hints how
the identifiers could correspond to Mizar counterparts. By filling only those two
Directives in the Environment-Declaration, we can check the Text-Proper part
of the Mizar FPS in terms of “grammatical correctness”. After those Directives
are fully filled, we call the Mizar system with a special option (i.e. accom -p
$PATH/file_name.miz and verifier —-p $PATH/file name.miz). If the Mizar system
does not return any error, then the Text-Proper part of the Article is ” gram-
matically correct” according to the Mizar grammar, and the symbols and their
Formats that are used in the Text-Proper. The Format describes the number of
arguments and the order (infix, prefix or postfix) in which the arguments of a
Constructor Symbol may be used. Although, this partially filled Environment-
Declaration allows to check the “grammatical correctness” of the Text-Proper,
the Environment-Declaration needs to be more fully filled to achieve a proper
Mizar FPS where the only errors are Justification errors.

We do not show in the paper how to build the proper Environment and
how to search the MML. We only express briefly that identifiers in the CGa
correspond more or less to Mizar Items. Such correspondence gives the overall
idea and hints as to what kind of Items we have to search for in MML or to
introduce in the Text-Proper in case they are not yet defined in MML.
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4.2 Mathematical identifiers and their formal counterparts

Mathematical conjuctions. In the preamble created in our example (see
Figure 7) one can find the introduced identifiers that play the role of statement
conjunctions, e.g. implies or and. These are usually reserved words and terminal
in the Mizar Language, and they are used to form Formulas, see the table below.

CML | CGa | Mizar
or td (stat, stat): stat; Formula or Formula
and Formula and Formula
implies |where the identifier’s name id|Formula implies Formula
iff is choosen by the wuser, e.g.|Formula iff Formula
not lines 4-7 in Figure 7. not Formula

Declarations of these conjunctions are presented in CGa as identifiers that take
two arguments of type stat and return the same type stat. This typing informa-
tion allows us to assume that these identifiers are expressed as Mizar reserved
words, which have the same spelling as in CML.

Binders like V’, ‘& CML v, 3
or ‘37 are indispensable ~ Possible CGa| s forall(dec('x), stat) : stat;
parts of CML. In CGa, 9o exists(dec(‘x), stat) : stat;

Quantified-Formula =

for Qualified-Variables [st Formula)
Mizar (holds Formula | Quantified-Formula) |
ex Qualified-Variables st Formula (holds
Formula | Quantified-Formula)

the user has to declare
them (see figure 7). The
CGa is flexible and al-
lows any kind of binder.
The Mizar user, if he
wants to introduce a new binder, has to do so in an indirect way, although the
syntax for Mizar binders was proposed in [23]. Nonetheless, the Mizar language
offers the two most essential binders: V and 3 which are given as Quantified-
Formula in the Mizar syntax (see the table on the right).

Functions identifiers in CML 2
CGa are ClOSGlyl .r61ate.d Possible CGalio sq(term): term;
to Functor-Definitions in definition let x be complex number;
Mizar. The information that ) func x°2 equals
. Mizar :: SQUARE_1:def 3
we gain from the CGa en-
coding is the number of ar- end;

guments and their weak in- OML N\

put and output types. For Possible CGal2s subtraction(set,set): set;

instance sq 15 & functlon definition let X,Y be set;

which takes one argument func X \ Y -> set means
. i :: XBOOLE_O:def 4

and return a value with the Mizar o

same type as argument (see end;

the table on the right). However, it is common knowledge that this function
corresponds to the mathematical function square (usually written as 2 in CML).
With this information, we can search MML to find the appropriate Mizar func-
tion definition counterpart, which is introduced as Functor-Definition. Similarly
to such specific CGa identifiers, functions in Mizar have to define the types of
their arguments and the type of their results. Mizar functors are constructors
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of (atomic) term, i.e. applied to a (possibly empty) list of terms they create a

term.

Predicates. In the CML

_E_

CGa encoding some
identifiers play the role

Possible CGa

of predicates which take Mizar
arguments of type term
or set and return stat. CML

16 in(term,set): stat;

notation let a,b be ext-real number;
antonym b < a for a <= b;

end;

<.

In Mizar these identi- Possible CGa

15  <(term, term): stat;

fiers are given in terms
of Predicate-Definition
(see the tables on the
right). Predicates in
Mizar are constructors
of atomic formulas, can
have several predefined

Mizar

notation let a,b be ext-real number;
antonym b < a for a <= b;

end;

where the original predicate is defined as follows:

definition let x,y be ext-real number;
pred x <= y means

:: XXREAL_O:def 5

end;

properties (e.g. symmetry, reflexivity etc.) and define the type of their argu-
ments. We claim that some CGa identifiers (with input types: term or set, and
output type stat) correspond more or less to Mizar Predicates.

Nouns in CML are abstract

CML number

concepts that classify objects ac-

Possible CGa

27 number: noun;

cording to their characteristics.
The CGa notion of noun corre-
sponds to the notion of Types in
Mizar. Types in Mizar are defined
using either Mode-Definitions or
Structure-Definitions. For example,

notation

synonym number for set;
end;
where set is the primitive type (i.e.

Mizar

the widest type) in Mizar introduced
as a Mode-Definition in the article
HIDDEN

the identifier number declared as a noun in CGa corresponds to Mode in Mizar
(see the table on the right). One can also define a noun in CGa by giving its
features with a step. This corresponds to the Definiens inside either Mode-
Definition or Structure-Definition which helps to find within MML a proper
Type. For example, a noun description of the identifier group in CGa (see the
example in [13]) could help to identify the Type Group in Mizar.
CML

Possible CGa

Adjectives are another essen- even

28 even: adj;

tial part of CML. The CGa no-

tion of adjectives corresponds to
the notion of Attributes in Mizar.
Mizar Attributes are defined using

definition let i be number;
attr i is even means
Mizar : ABIAN:def 1

end

Attributes-Definitions. For example, the identifier even declared as an adjective
in CGa corresponds to the Attribute in Mizar (see the table on the right). Fur-
thermore, adjectives in CML and CGa are used to modify the characteristics of
a noun. Similarly, in Mizar we use Adjectives to refine Types [2].

Other identifiers In CGa we have declared some identifiers to be terms, e.g.
0, 2, 4 (see line 10 of Figure 7), whereas in Mizar they are treated as Numerals,
which have not been introduced inside MML.
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Other identifiers, that have been introduced while computerising our example
in CGa, are sets, i.e. N, Q, Z (see line 11 of Figure 7). These represent well known
mathematical sets of numbers, i.e. N, Q, Z respectively. In the Mizar Mathemat-
ical Library these sets are introduced as Functors (via Functor-Definitions) with
empty lists of terms, using the symbols: NAT, RAT, INT respectively.

4.3 Transforming the document building steps

As already mentioned (see Section 2.1), in MathLang we present phrase, block
and local-scoping in terms of step and treat a block as a single step composed
of a sequence of statements. Moreover, the CGa preamble gives hints how the
identifiers should be translated in Mizar and in which Mizar Format (i.e. which
Mizar symbols and the place and number of arguments). This information is
used to put Mizar symbols inside Formulas.

In this section we show using a number of examples, how particular steps
of our main example encoded in CGa are represented in the Mizar language.
Although, we do not give hints how each CGa step could be transformed into
the Mizar language, we show some ideas through small examples.

Atomic statements in CGa CML that m2 is even. but

< 3 ‘q _ - ’
COI‘I‘prOI’ld to Mizar’s Formu Possible CGaaa is(sq(m), even number);
Ias. Mizar 28 m~2 is even ;

Blocks in MathLang and in Mizar express a sequence of statements/steps:
{stepy, ..., step, } (see the example below). In MathLang, if a block is accompa-
nied with a particular mathematical rhetorical role (using the DRa annotation
system), it could be transformed into a Mizar specific structure. For instance, if
a MathLang block is annotated as proof using the DRa, it will still be treated
as a sequence of steps within the CGa. However, in Mizar, it is transformed to
a special Proof Justification : proof Reasoning end; (see Section 3).

CML | Possible CGa | Mizar
... m? = 2n2%. But then “9 = 2%n-~2:
n = 0 by the lemma.|gg { 8?. s o B n*4,
Contradiction shows |90 =(sq(m),*(2,sq(n))); z; L = 0 by Lemma:
that V2 € Q. 91 Lemma |[> =(n,0); 02::> 14 ’
92 }‘contradlctlon; 93 hence contradiction;
93 94::> *4

Contexts. In CGa we use local-scoping, i.e. step; > step, which makes the
declarations, definitions, and assertions inside step; available inside steps. This
allows to build any kind of context for another statement or part of the doc-
ument. For example, we can use local-scoping to introduce a new local predi-
cate. In Mizar, this is introduced as a private predicate (via Private-Predicate-
Definition), and does not need any kind of context (see the table below).

CML Define on N the predicate: P(m) <= 3In.m? = 2n% & m > 0.
; 38 { ml: N, } |>

Possible CGa 39 P(ml):= exists(nl:N, and(=(sq(ml),x(2,sq(nl))),>(ml0)) );
Mizar 21 defpred P[Nat] means ex n being Nat st $1°2 = 2xn"2 & $1 > 0;
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Another possible way of presenting the local-scoping usage is to make as-
sumptions into a context to be used in the reasoning block (see the table below).
Based on such specified assumptions we can provide further deduction.

We can use local-scoping CML suppose m? — 2n?
to introduce a new (local or - - (—Ga(m.~(2.5a(m)). 1 1>
global) variable with a state- ~ Possible CGalll ¢ Y '
ment expressing some prop-
erty of this variable. In Mizar . ™}
this is called Choice-Statement Mizar  Je2  assume 40: m"2 = 2+n"2;

(see the table below). In such context we introduce a local variable, which is
actually bounded with the skeleton of the proof, in the sense that it doesn’t
change the proof. We have treated this as referring to an available proposition
(probably being a consequence of reasoning, for instance definition unfolding)
“ex x being T st P[x]”, where x is Term, T is Type and P is Predicate. From
this we can write “consider a being T such that P[a]”. We do this when
we want to reuse the introduced variable in further reasoning steps.

CML So m = 2k and we have

46 { ki N, =(m=(2,k)); } |>
a7

Possible CGa -
50 s

Mizar 32 consider k being Nat such that m = 2xk;

The above listed examples of the local-scoping construct show only ideas
how it could be used when computerizing mathematics. The usage of this con-
struction is not limited to these examples and gives a lot of freedom and flexibility
when representing mathematical expressions in MathLang. Therefore it is diffi-
cult to propose one transformation hint for the Mizar corresponding structure.

5 Different formalisation paths

The direct path from CML to Mizar — ((© of Figure 2). When trans-
forming a CML text directly to Mizar, a number of facts need to hold:

1. The user needs to be a specialist in the Mizar system (including MML and
its search engines: MML Query or the grep tool). Furthermore, the user’s
expertise needs to encompass both mathematics and computer science. In
fact, even if a Mizar Article resembles a CML text, Mizar is much more
closer to declarative programming languages (e.g. Pascal).

2. CML texts can be ambiguous, and the user needs to find and clarify those
ambiguities when formalising the text.

3. The Mizar user needs to interpret the text, to find the meaning of each part
of the document, and to present it in a formal way.

4. Although the Mizar user has a choice (he may first present parts of the text
in the Mizar language, or start from a single statement and look in MML
for knowledge that allows the presentation of this statement in the Mizar
language, and then to rewrite it; if the statement is accompanied with the
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proof, maybe the user could fully formalize the proof, and move forward to
rewriting the rest of the document within Mizar), there is a common way to
translate a text into Mizar which is as follows:

— Start from a single statement, write it in Mizar.

— If the statement is accompanied with the proof then fully formalize the
proof, if the statement is a definition then define it in Mizar with the
proper definiens and prove Mizar specific conditions for the definition.

— Then, move forward within the CML and Mizar translation and finally,
reveal the rest of the reasoning structure of the CML text in Mizar.

The path from CML to Mizar FPS to Mizar — (®-(@© of Figure 2).
When transforming a CML text to Mizar FPS and then to Mizar, a number of
facts needs to hold:

1.

The user needs to be a Mizar specialist as well, and requires similar amount
of knowledge as the user who follows the direct path (© to Mizar.

. The difference (see point 4 from the above list) is that first, the user needs to

structure the whole CML text in Mizar FPS. At this stage the user actually
does not stop to fully formalize a particular definition or theorem. Although
such a choice is possible, Mizar FPS is not meant to do that.

. After structuring the CML text in Mizar FPS, the user needs to complete

the formalisation by filling all the gaps in the reasoning (i.e., filling the holes
in sentences that were labelled with the error *4 by the Mizar system.)

. Since the level of ambiguity of a text is the same as in the direct path, the

user needs to carry out the same amount of work as above.

At this stage we could say that although step (© might lead to the same

result of steps ®)-©), the work done via {)-(€) can be more enjoyable for the
Mizar user and a bit easier.

Our proposed path from CML to MathLang to Mizar FPS to Mizar —
(@-@-®© of Figure 2). When transforming a CML text to MathLang, then
to Mizar FPS and then to Mizar, a number of facts needs to hold:

1.

The first part of the path (@) is done by a mathematician, who does not
require a lot of MathLang knowledge when annotating the text with CGa
grammatical categories or assigning the relationships between different parts
of the text and the mathematical or structural rhetorical roles different math-
ematical entities play. The mathematician simply reveals his understanding
of the text. This annotation gives some advantages:
— It explicits all the identifiers used in the text together with a number of
arguments and their weak input and output types.
— It resolves some ambiguities of the text.
— It allows the document to be grammatically validated via the automatic
CGa checker.
— It specifies the roles of the important chunks of the text, and expresses
dependencies between them.
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— The dependencies of the text parts and the internal information about
the roles entities play, allow the automatic generation of a dependency
graph which gives the reasoning structure of the text.

— At this point the work of the mathematician is finished.

2. The Mizar specialist takes the tagged document within MathLang and trans-
forms it into Mizar FPS (part @ of the path). Here, the user needs to be a
Mizar specialist and to have the same Mizar knowledge as in the direct path
and the one via Mizar FPS.

3. However, at step @, the user has a structure of the CML text (tagged by the
mathematician’s understanding of the text and the DRa and CGa steps)
which helps him to build the skeleton of Mizar FPS. Secondly, all the used
identifiers, with the number of their arguments, are stored in one place (the
DRa explicit annotation of the preamble), and could be reused to find
counterparts in Mizar MML and to build parts of the Environment. The user
also gains from resolved ambiguities of the CML text within MathLang. We
believe that this makes the work for the Mizar user a lot easier.

4. At this stage we could say that although step (® might lead to the same
result of steps @-@), the work done via @-@ gives an active role to the
mathematician in the computerisation and allows the mathematician’s com-
puterisation to give a number of useful hints to the Mizar user to create the
Mizar FPS skeleton and the Mizar FPS version of the text.

We believe that it is worth following our proposed path. Not every math-
ematician is interested in fully formalising mathematical texts. Sometimes one
may just want a partial formalisation, or even to formalise and verify the cor-
rectness of one particular theorem/proof. We believe it is too taxing on mathe-
maticians to ask them to learn the language and specific logic of a proof checker.
The advantage of using MathLang as an intermediate step in the proposed path
towards Mizar FPS is a guidance for non expert-authors. This guidance mainly
helps to extract from the original text an indication of the required background
knowledge and an abstraction of the reasoning structure of the text.

6 Conclusions, Related and Future Work

Conclusions. We have presented in this paper our MathLang approach to en-
coding mathematics on computers. This approach defends the idea that comput-
erisation should come before any formalisation. We briefly showed how Math-
Lang could be used as a useful computerisation tool for the ordinary mathe-
matician who can use it to edit his text (as if he was using IWTEX) and then get
a number of automated features and programs that enable him to to create a
number of computerised versions of the text. These computerised versions have
useful information about the original text, and are then used by the Mizar expert
to create first a Mizar FPS version and then a fully formalised Mizar version.

— The main advantage of using MathLang as a mathematical framework is
a clear guidance for the non-expert author. This guidance mainly helps to
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extract from the original text different aspects of mathematical knowledge
at different phases of its computerisation.

— The DRa annotation gives useful hints how the skeleton of the Mizar FPS
Article can be built.

— The CGa preamble is treated as a subset of the Mizar Environment. CGa
identifiers have corresponding counterparts within the Mizar library or could
be introduced as Mizar specific Definitional-Items. This gives hints about the
way we could transform CGa identifiers into their counterparts in Mizar and
for which kind of Symbols and Formats we need to search in MML.

At the time of writing the paper, we used the most recent Mizar system: Mizar
system version: 7.8.03 and the MML version: 4.76.959. Due to page constrains
we do not attach the complete formalisation of our example in Mizar. However,
it is available on-line: http://www.macs.hw.ac.uk/ retel/pythagoras/.

Related work. Geleijnse [7] compared WTT and Mizar, presented CML ex-
amples in both WTT and Mizar and gave a correspondence between WTT and
Mizar identifiers. His main approach was based on comparing these two lan-
guages. Our approach is completely different (although of course we are indebted
to all the progress in Automath, MV, WTT, FPS and Mizar). Even though in-
spired by MV and WTT, MathLang’s CGa has moved towards an automatically
generated structure obtained from the mathematician’s editing of the text at the
TSa level where the mathematician types his text easier than using WTEX (in
fact, we can claim that this stage is as easy as if the mathematician is writing his
text on paper). T'Sa also gives the mathematician editing features that allows him
to assign mathematical, structural and rethorical roles, to entities and chunks
of the text and relationships between these chunks. The automatic programs of
MathLang create not only the CGa version of the text but also the dependency
graph of the text which is then used to create a Mizar FPS Text-Proper version
of the text. Our path @-@-© of Figure 1 is fully worked out and offers the
user much computerised help along the way, and a number of well-formulated
hints used in the gradual computerisation and formalisation of the text from the
original CML version to a number of computerised versions (CGa, DRa, TSa)
followed by a Mizar skeleton followed by Mizar FPS and full Mizar versions.
Furthermore, although the de Bruijn path principle (see Section 2.1) has played
an influential role in this research, the various levels (or aspects, or stages) of
our proposed path are new. Another approach which follows the de Bruijn path
principle is discussed by Jojgov and Nederpelt in [10]. However their description
of a path from CML to type theory via WTT and type theory with open terms
(TTOT) starts from a WTT-text which differs from (but represents) the original
CML-text, and then takes the WTT-text into a TTOT version and later into
type theory. Our approach starts from the original CML-text (which is the input
given by the mathematician into MathLang TSa). The process of moving from
the CML-text input into a Mizar FPS skeleton is supported by a number of au-
tomated MathLang programs and transformed into the Mizar FPS full version
by the Mizar specialist and fully checked by the Mizar system.
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Future Work. MathLang is an ongoing project. As we have seen, the theoretical
formalisation and computer implementation of the first three aspects provided
a number of useful tools that automatically generate a number of computerised
versions of the text each used for a different purpose and each enjoys a different
level of formality. As we have also seen, further aspects need to be formalised.
For example, it is important to have an aspect that transforms the dependency
graph into a Mizar Text-Proper skeleton (currently we only provide hints for
doing so). It is also important to study in depth the stage where a Mizar FPS
version is fully formalised in Mizar. A number of issues need to be investigated:

How to employ search engines (like grep or semantic mining MML Query)
to look up MML in order to find a proper Mizar counterpart for an identifier
used in a CML text and explicitly stated in its MathLang CGa version.
How the MathLang noun description construction could be reused to find
a counterpart in MML or to define either a Mode or a Structure.

How to deal with the freedom that MathLang gives while computerising a
common mathematical document.

We also need to express the hints for transforming a dependency graph into
a Mizar FPS Text-Proper skeleton, in terms of formal rules which we aim
to prove correct and to implement. Moreover, our aim is to start building
a computer tool which will support the Mizar specialist with the migration
process from a CML+MathLang document to Mizar FPS.
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A Original and DRa-annotated text of our example

Lemma 1.

For m,n € N one has:
m?2=2n? —= m=n=0

Proof.

Define on N the predicate:
P(m) < 3n.m? =2n2 & m > 0.

Clai justifies
aim. .

P(m) = 3Im’ < m.P(m’).

Indeed suppose m? = 2n? and m >
0. It follows that m? is even, but
then m must be even, as odds square
to odds. So m = 2k and we have
on? = m? = 4k? = n? = 2k?
Since m > 0, if follows that m? > 0,
n? > 0 and n > 0. Therefore P(n).
Moreover, m?2 =n? 4+n? > nz, so
m? > n? and hence m > n. So we L
can take m’ = n. uses:

By the claim Vm € N.=P(m), since there are !
no infinite descending sequences of natural @

subpart0f
numbers. i

subpart0f
Now suppose m? = 2n? C

with m # 0. Then m > 0 and hence
P(m). Contradiction.
Therefore m = 0. But then also n =

0.

Corollary 1. V2¢Q

Proof. Suppose V2 € Q, i.e. V2 = p/q
with p € Z,q € Z — {0}. Then V2 = m/n
with m = |p|,n = |q| # 0. It follows that
m? = 2n2%. But then n = 0 by the lemma.
Contradiction shows that v/2 ¢ Q.

Fig. 8. Barendregt’s version (without and with dependency graph) of the proof of the
Pythagoras’ theorem
The original text of Barendregt’s version[3] of the proof of the Pythagoras’ theorem is
reproduced on the left hand side. The right hand side of the figure shows the automatically
generated dependency graph for the text where relations between parts of the text are

represented by visible arrows and graph nodes have specified (but not visible) mathematical
structural roles.
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B The Mizar Formal Proof Sketch presentation

Listing 1.2. Encoding of the example from Figure 8 in the Mizar FPS

1 This file is verified with the system version:

2:: Mizar verifier= 7.8.03,MML = 4.76.959

3:

4:: Created by Krzysztof Retel {retel@macs.hw.ac.uk}

5

6environ

7 vocabularies INT_1, SQUARE_1, MATRIX_2, IRRAT_1, RAT_1, ARYTM_3, ABSVALUE,
8 SEQM_3, FINSET_1;

9 notations INT_1, NAT_1, SQUARE_1, XXREAL_O, ABIAN, RAT_1, IRRAT_1, XCMPLX_O,
10 INT_2, SEQM_3, FINSET_1, REAL_1, PEPIN;

11 constructors INT_1, NAT_1, SQUARE_1, XXREAL_O, ABIAN, RAT_1, IRRAT_1,XCMPLX_O,
12 INT_2, SEQM_3, FINSET_1, PEPIN;

13 requirements SUBSET, NUMERALS, ARITHM, BOOLE, REAL;

14 registrations XREAL_O, REAL_1, NAT_1, INT_1;

15begin

16

17

18Lemma: for m,n being Nat holds m™2 = 2%n~2 implies m = 0 & n = O

19 proof

20 let m,n being Nat;

21 defpred P[Nat] means ex n being Nat st $1°2 = 2*n"2 & $1 > 0;

22 Claim: for m being Nat holds P[m] implies ex m’ being Nat st m’> < m & P[m’]

23 proof

24 let m being Nat;

25 assume P[m];

26 then consider n being Nat such that

27 m~2 = 2*%n"2 & m > 0;

28 m~2 is even ;

29::> *4

30 m is even;

31::> *4

32 consider k being Nat such that m = 2x*k;
33::> *4
34 2*%¥n"2 = m~2

35::> *4

36 .= 4xk"2;

37::> *4

38 then n~2 = 2xk~2;

39 m > 0 implies m"2 > 0 & n"2 > 0 & n > 0;
40::> *x4 .4 .4
41 then P[n];

42::> *x4 ,4

43 m"2 = n"2 + n"2;

44 11> *4

45 n"2 + n"2 > n"~2;

46 11> *4

47 then m~“2 > n~2;

48 11> *4

49 then m > n;

50::> *4

51 take m’ = n;

52 thus thesis;

53::> *x4 ,4

54 end;

55 A2: for k being Nat holds not P[k]
56 proof

57 not ex q being Seq_of_Nat st q is infinite decreasing by Claim;
58::> *4

59 hence thesis;

60::> *4

61 end;

62 assume AO0: m~2 = 2*n~2;

63 per cases by AO;
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64

79

8oCorollary:

81
82
83
84

85::

86
87

88 ::

89

90 : ¢

91

92 ::

93

94 :

95
96

97 1t

HEb 4

en

p

Hbd
e

>

suppose Bl: m <> 0;

then

then

then contradiction by A2;

m > 0;
*4
P[m] by B1;
*4

hence thesis;

end;

suppose S1: m = 0;

then
thus
end;

d;

roof

assume sqrt 2 is ratiomnal;
then ex p,q being Integer st
q <> 0 & sqrt 2 = p/q;

then consider m,n being Integer such that
AO: sqrt 2 = m/n and m

m-2 =

n =20

hence

nd;

4: This inference is not accepted

n = 0;
*4
thesis by S1;
*4

sqrt 2 is irrational

2%n"2;
*4
by Lemma;
*4
contradiction;
*4

abs n & n <>

0;
*4
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