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Desired properties of expliit substitution aluli inlude a) simulation of �-redution, b) onuene (CR) onlosed terms, ) CR on open terms, d) strong normalization (SN) of expliit substitutions and e) preservationof SN of the �-alulus. The ��-alulus (without eta) satis�es a), b), d) and satis�es ) only when the setof open terms is restrited to those whih admit metavariables of sort term. The �s-alulus (without eta)satis�es a)..e) but not ). However, the �s-alulus has an extension �se (again without eta) for whih a)..)holds, but e) fails and d) is unknown. The suspension alulus (whih does not have eta) satis�es a) andwhen restrited to well formed terms it also satis�es b)..d). For the suspension alulus, e) is unknown.The above disussion holds for these aluli without eta-redution. However, work on higher orderuni�ation (HOU) in �se and �� established the importane of ombining eta-redution (as well as expansion)with expliit substitutions. This has provided extensions of �se and �� with eta-redution rules also referredto by �se and �� (f. [15, 3℄). In fat, due to the importane of eta-redution, aluli of expliit substitutions(inluding ��) have been extended with eta rules earlier than the appliation of �� to HOU [19, 39, 12, 29℄.Eta-redution (as well as expansion) is neessary for working with funtions and programs, sine one needsto express funtional or extensional equality. In partiular, when the appliation of two lambda terms a andb to any term  yields the same result, then a and b should be onsidered equal.Although �se and �� have already been extended with eta-redution, the suspension alulus still hasnot. This paper �lls the gap and gives the �rst extension of the rewriting system of the suspension aluluswith an eta-redution rule bringing to it the advantages of the use of eta-redution in substitutions aluli.One the suspension alulus is extended with this eta-redution rule, one an then ompare these threealuli and assess the way eta-redution should be implemented in eah of them. This paper deals with threeuseful notions for these three aluli:� Extending the suspension alulus with an eta-redution rule resulting in �susp. We show the soundnessof this rule and the onuene and strong normalisation of the underlying substitution alulus witheta.� Comparing the adequay of the redution proess of these three substitution aluli extended witheta-redution, using the eÆient simulation of �-redution of [26℄ whih showed that �s and �� arenon omparable. In this paper we show that �se and �� as well as �� and �susp are non omparable,that �se is more adequate than �susp for simulating one step beta-redution.� Reeting on the orret de�nition and adequate implementation of the eta-redution rewrite rulesin these aluli. It is usual pratie when implementing the eta rule for substitution aluli [11, 2℄,to mix isolated appliations of eta-redution with the appliation of other rules of the orrespondingsubstitution aluli. The main disadvantage of this pratie is essentially that the eta rewrite rulesso obtained are unlean beause they have an operational semantis di�erent from the one of the eta-redution rule of the �-alulus: the notion of funtional equivalene embedded in the eta-redutionshould be interpreted modulo the semantis of the orresponding substitution alulus. For the threealuli enlarged with adequate eta rules we show how to implement in pratie these eta rules withoutmixing the isolated appliation of the eta-redution with the appliation of other rules of the assoiatedsubstitution aluli. The de�nition of a suessful implementation depends on an e�etive spei�ationof a pratial method for evaluating the onditions of these eta rules whih are onditional rules ofthe rewriting systems of the three treated aluli. For eah of these expliit substitution aluli, ourimplementation onsists basially of a linear veri�ation along a term of the nonexistene of ourrenesof the free variable of the eta-redution while simultaneously upgrading all other free de Bruijn indiesand without applying any additional rewrite rule of the orresponding substitution alulus. The threeimplementations are proved omplete in the sense that they e�etively simulate eta-redution over purelambda terms.After inluding the neessary notations and motivation about expliit substitutions, in the seond setion,we present the ��, the �se, and the suspension alulus. We enlarge the latter with an eta-redution rulewhih is proved sound in the third setion. Then, in the fourth and �fth setions, we ompare the adequayof these aluli in simulating one step beta-redution and the appropriateness of the de�ned eta rewritingrules. Finally, and before onluding, we disuss the lean implementation of these eta rules in the sixth andseventh setions. 2



2 PreliminariesWe assume familiarity with the notion of term algebra T (F ;X ) built on a (ountable) set of variables X anda set of operators F . Variables in X are denoted by X;Y; ::: and for a term a 2 T (F ;X ), var (a) denotes theset of variables ourring in a. Throughout, we take a; b; ; : : : to range over terms. Additionally, we assumefamiliarity with basi notions of rewriting as in [5℄. In partiular, for a redution relation R over a set A, wedenote with =!R the reexive losure of R , with !�R or just !� the reexive and transitive losureof R and with !+R or just !+ the transitive losure of R . When a !� b we say that there exists aderivation from a to b . By a!n b, we mean that the derivation onsists of n steps of redution and all nthe length of the derivation. Syntatial identity is denoted by a = b. For a redution relation R over A,(A;!R), we use the standard de�nitions of (loally-)onuent or (weakly) Churh Rosser (W)CR, normalforms and strong and weak normalization/termination SN and WN. Suppose R is a SN redutionrelation and let t be a term, then R-nf(t) denotes its normal form. As usual we use indisriminately either\noetherian" or \terminating" instead of SN.A valuation is a mapping from X to T (F ;X ). The homeomorphi extension of a valuation, �, from itsdomain X to the domain T (F ;X ) is alled the grafting of �. As usual, valuations and their orrespondinggraftings are denoted by the same Greek letter. The appliation of a valuation � or its orrespondinggrafting to a term a 2 T (F ;X ) will be written in post�x notation a�. The domain of a grafting �, isde�ned by Dom(�) = fX j X� 6= X;X 2 Xg. Its range, is de�ned by Ran(�) = [X2Dom(�)var (X�). We letvar (�) = Dom(�) [ Ran(�). For expliit representations of a valuation and its orresponding grafting �, weuse the notation � = fX 7!X� j X 2 Dom(�)g. Note that the notion of grafting, usually alled �rst ordersubstitution, orresponds to simple syntati substitution without renaming.We use notations from [6℄ for the �-alulus. Let V be a (ountable) set of variables denoted by loweraselast letters of the Roman alphabet x; y; :::De�nition 2.1 Terms �(V) of the �-alulus with names are indutively de�ned by: �(V) ::= x j(�(V) �(V)) j �x:�(V), where x 2 V. We all �x:a resp. (a b) abstration resp. appliation terms.Terms in �(V) are alled losed �-terms or terms without substitution meta-variables. An abstration �x:arepresents a funtion of formal parameter x, whose body is a. Its appliation (�x:a b) to an argument b,returns the value of a, where x is replaed by b. This replaement of formal parameters with argumentsis known as �-redution. In the ontext of the �rst order substitution or grafting, �-redution would bede�ned by (�x:a b)! afx 7!bg.But in this ontext problems arise foring the use of �-onversion to rename bound variables:1. Let � = fx 7! bg. There are no semanti di�erenes between the abstrations �x:x and �z :z; bothabstrations represent the identity funtion. But (�x:x)� = �x:b and (�z :z)� = �z :z are di�erent.2. Let � = fx 7!yg. (�y:x)� = �y :y and (�z :x)� = �z :y, thus a apture is possible.Consequently, �-redution, should be de�ned in a way that takes are of renaming bound variables whenneessary to avoid harmful apture of variables.The �-alulus usually onsiders substitution as an atomi operation leaving impliit the omputationalsteps needed to e�etively perform omputational operations based on substitution suh as mathing anduni�ation. In any real higher order dedutive system, the substitution required by basi operations suh as �-redution should be implemented via smaller operations. Expliit substitution is an appropriate formalism forreasoning about the operations involved in real implementations of substitution. Sine expliit substitutionis loser to real implementations than to the lassi �-alulus, it provides a more aurate theoretial modelto analyze essential properties of real systems (termination, onuene, orretness, ompleteness, et.) aswell as their time/spae omplexity. For further details of the importane of expliit substitution see [28, 4℄.�-onversion should be performed before applying the substitution in the body of an abstration. Thegrafting of a fresh variable avoids the possibility of apture. It is important to note that renaming seletsfresh variables that have not been used previously. Moreover, sine fresh variables are seleted randomly,the result of the appliation of a substitution � to a term a, whih we denote in pre�x notation �a fordisriminating substitution from grafting, an be oneived as a lass of equivalene of terms.3



De�nition 2.2 �-redution is the rewriting relation de�ned by the rewrite rule (�) and �-redution isthe rewriting relation de�ned by the rewrite rule (�), where:(�) (�x:a b) ! fx=bg(a)(�) �x:(a x) ! a; if x 62 Fvar (a) , where Fvar (a)denotes the free variables ourring in a:Note that our notion of substitution is not ompletely satisfatory beause fresh variables depend on thehistory of the renaming proess. �-terms with meta-variables or open �-terms are given by:De�nition 2.3 Terms �(V ;X ), of the �-alulus with names and meta-variables are indutively de-�ned by: �(V ;X ) ::= x j X j (�(V ;X ) �(V ;X )) j �x:�(V ;X ), where x 2 V and X 2 X .We have seen that the names of bound variables and their orresponding abstrators play a semantiallyirrelevant role in the �-alulus. So any term in �(V) or �(V ;X ) an be seen as a syntatial representativeof its obvious equivalene lass. Hene, during syntati uni�ation, the role that names of bound variablesand their orresponding abstrators play inreases the omplexity of the proess and reates onfusion.Avoiding names is an e�etive way of larifying the meaning of �-terms and, for the uni�ation proess,of eliminating redundant renaming. De Bruijn proposed in [14℄ that names of bound variables be replaedby indies whih relate these bound variables to their orresponding abstrators.It is lear that the orrespondene between an ourrene of a bound variable and its assoiated abstratoroperator is uniquely determined by its depth, that is the number of abstrators between them. Hene, �-termsan be written in a term algebra over the natural numbers N, representing depth indies, the appliationoperator ( ) and a sole abstrator operator � ; i.e., T (f( ); � g [ N).In de Bruijn's notation, indexing the ourrenes of free variables is given by a referential aording to a�xed enumeration of the set of variables V , say x; y; z; : : :, and pre�xing all �-terms with : : : �z:�y :�x: .Now we an de�ne the �-alulus in de Bruijn notation with open terms or meta-variables.De�nition 2.4 The set �dB(X ) of �-terms in notation of de Bruijn is de�ned indutively as:�dB(X ) ::= n j X j (�dB(X ) �dB(X )) j ��dB(X ), where X 2 X and n 2 N n f0g.�dB(X )-terms without meta-variables are alled losed �-terms.We write de Bruijn indies as 1; 2; 3; : : : ; n; : : :, to distinguish them from sripts. Sine all onsideredaluli of expliit substitutions are built over the language of �dB(X ), we will use � to denote �dB(X ).De�ning �-redution in de Bruijn notation's as (�a b)! f1=bga (where f1=bga is the substitution of theindex 1 in a with b) fails: 1) when eliminating the leading abstrator all indies assoiated with free variableourrenes in a should be deremented; 2) when propagating the substitution f1=bg rossing abstratorsthrough a the indies of the substitution (initially 1) and of the free variables in b should be inremented.Hene, we need new operators for deteting, inrementing and derementing free variables.De�nition 2.5 Let a 2 �dB(X ). The i-lift of a, denoted a+i is de�ned indutively as follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2 )3) (�a1)+i = �a+(i+1)1 4) n+i = � n+ 1; if n > in; if n � iThe lift of a term a is its 0-lift and is denoted briey as a+.De�nition 2.6 The appliation of the substitution by b at the depth n� 1; n 2 N n f0g, denoted fn=bga,on a term a in �dB(X ) is de�ned indutively as follows:1) fn=bgX = X, for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�a1 = �fn+ 1=b+ga1 4) fn=bgm = 8<: m� 1; if m > nb; if m = nm; if m < n if m 2 N n f0g.De�nition 2.7 �-redution in the �-alulus with de Bruijn indies is de�ned as (�a b)! f1=bga.4



Observe that the rewriting system of the sole �-redution rule is left-linear and non overlapping (i.e. orthog-onal). Consequently, the rewriting system de�ned over �dB(X ) by the �-redution rule is CR.In the �-alulus with names, the �-redution rule is de�ned by �x:(a x)! a; if x 62 Fvar(a). In �dB(X ),the left side of this rule is written as �(a0 1), where a0 stands for the orresponding translation of a undersome �xed referential of variables into the language of �dB(X ). \a has no free ourrenes of x" means, in�(X ), that there are neither ourrenes in a0 of the index 1 at height zero nor of the index 2 at height onenor of the index 3 at height two et. Hene, there is in general, a term b suh that b+ = a.De�nition 2.8 �-redution in the �-alulus with de Bruijn indies is: �(a 1)! b if b+ = a.3 Caluli �a la ��, �se and the Suspension CalulusWe present ��, �se and the Suspension Calulus. We enlarge the latter with an eta-redution rule whih weprove to be sound and to preserve the onuene of the suspension alulus.3.1 The ��-alulusThe ��-alulus is a �rst order rewriting system that ontains the lambda alulus in de Bruijn notation andwhih makes expliit the substitutions started by �-redutions [1℄. This alulus works on 2-sorted terms:(proper) terms (over whih a; b; : : : range), and substitutions (over whih s; t; : : : range). In this alulus,when a substitution fn=bg is applied to a term a: fn=bga, we internalise this as a[1: : : : :n� 1:b: "n+1℄. Thismeans that all de Bruijn indies exept n remain unhanged, while n is replaed with b. Notie that b is plaedat position n of the substitution list, whih allows for simultaneous substitutions; for instane, a[b1:b2: : : :℄replaes 1; 2; : : : with b1; b2; : : :, respetively. Operationally, this alulus applies this kind of substitutionderementing by one the size of the substitution list as well as the de Bruijn indies. When doing that theoperator " is reahed, a["k℄ internalises the k-lifting of the term a. In this alulus only 1 is used and theother de Bruijn indies are oded by lifting 1 as we will explain below. For details see [1℄.De�nition 3.1 The ��-alulus is de�ned as the alulus of the rewriting system �� of Table 1 whereterms a ::= 1 j X j (a a) j �a j a[s℄; where X 2 X subs s ::= id j " j a:s j s Æ sTable 1: The �� Rewriting System of the ��-alulus with Eta rule(Beta) (�a b) �! a [b � id℄ (Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a (App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �a [1 � (s Æ ")℄ (Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s (IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s (Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u) (VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s (Eta) �(a 1) �! b if a =� b["℄For every substitution s we de�ne the iteration of the omposition of s indutively as s1 = s and sn+1 = sÆsn.We use s0 to denote id . Note that the only de Bruijn index used is 1 , but we an ode n by 1["n�1℄ .The equational theory assoiated with the rewriting system �� de�nes a ongruene denoted =��. Theongruene obtained by dropping Beta and Eta is denoted =�. We use �-redution, �-normal form, et.,with the obvious meaning, in the ase when redution is restrited to the �-rules.The rewriting system �� is loally onuent [1℄, CR on substitution-losed terms (i.e., terms withoutsubstitution variables) [39℄ and not CR on open terms (i.e., terms with term and substitution variables) [13℄.The possible forms of a ��-term in ��-normal form were given in [39℄ by:5



1. �a, where a is a normal term;2. a1 : : : ap: "n, for a1; : : : ; ap normal terms and ap 6= n3. (a b1 : : : bn), where a is either 1, 1["n℄, X or X [s℄ for s 6= id a substitution term in normal form.In the �-alulus with names or de Bruijn indies, the rule Xfy=ag = X , where y is an element of Vor a de Bruijn index, respetively, is neessary beause there is no way to suspend the substitution fy=aguntil X is instantiated. In the ��-alulus, the appliation of this substitution an be delayed, sine theterm X [s℄ does not redue to X . The fat that the appliation of a substitution to a meta-variable an besuspended until the meta-variable is instantiated will be used to ode the substitution of variables in X by\X -grafting" and expliit lifting. Consequently a notion of X -substitution in the ��-alulus is unneessary.Observe that the ondition a =� b["℄ of the Eta rule is stronger than the ondition a = b+ given in De�nition2.8 as X = X+, but there exists no term b suh that X =� b["℄. Note that ��-redution is ompatible with�rst order substitution or grafting and hene X -grafting and ��-redution ommute.3.2 Caluli �a la �s and the �se-alulusCaluli �a la �s avoid introduing two di�erent sets of entities and insist on remaining lose to the syntaxof the �-alulus using de Bruijn indies1. Next to � and appliation, they introdue substitution � andupdating ' operators. A term ontaining neither substitution nor updating operators is alled a pure term.The role of the substitution operator is to internalise the substitution. Essentially, a�nb makes operationalthe appliation of the substitution fn=bg to a. This operator is propagated into the body of the abstrators,while all free de Bruijn indies (greater than n) are dereased by one. One an ourrene of n is found, b isadequately modi�ed (lifted) by the updating operator. The operational e�et of 'ijb is the (i� 1)-lifting ofall de Bruijn indies in b greater than j. For details see [23, 24℄.De�nition 3.2 (The �s-alulus) Terms of the �s-alulus are given by:�s ::= N j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :The set of rules �s is given in Table 2. Table 2: The �s-rules�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destrution n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destrution 'ik n �! � n+ i� 1 if n > kn if n � k1It an be argued that beause we use de Bruijn indies, we remain lose to de Bruijn's philosophy rather than to the syntaxof the �-alulus and that instead it is aluli like �x of [10℄ and �� of [30℄ that remain lose to the syntax of the lambdaalulus. So, we need to explain here that by staying with the syntax of the �-alulus we mean that we do not introduesubstitutions and other ategory of operators separately as in ��, but that a term for us is either an abstration term, anappliation term, a substitution term or an updating term. 6



The �s-alulus was introdued in [23℄ with the aim of providing a alulus that preserves strong normal-isation and has a onuent extension on open terms [24℄. In [23, 25℄, we establish the properties of thesealuli whih we list in the following theorem.Theorem 3.3 The s-alulus is SN, the �s-alulus is onuent on losed terms and satis�es PSN. More-over, the �s-alulus simulates �-redution, is sound and has a onuent extension on open terms.We introdue the open terms and the rules that extend �s to obtain the �se-alulus.De�nition 3.4 The set of open terms, noted �sop is given as follows:�sop ::= V j N j �sop�sop j ��sop j �sop �i�sop j 'ik�sop where i � 1 ; k � 0and where V stands for a set of variables, over whih X, Y , ... range. We take a; b;  to range over �sop.Furthermore, losures, pure terms and ompatibility are de�ned as for �s.Working with open terms one loses onuene as shown by the following ounterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no ommon redut. Moreover, the above example shows thateven loal onuene is lost. But sine ((�X)�11)(Y �11) !! (X�21)�1(Y �11), the solution to the problemseems at hand if one has in mind the properties of meta-substitutions and updating funtions of the �-alulus in the Bruijn notation. These properties are equalities whih an be given a suitable orientation andthe new rules, thus obtained, added to �s yield a rewriting system whih happens to be loally onuent. Forinstane, the rule orresponding to the meta-substitution lemma is the �-�-transition rule. The addition ofthis rule solves the ritial pair in our ounterexample, sine now we have (X�1Y )�11! (X�21)�1(Y �11).De�nition 3.5 The set of rules �se is obtained by adding the rules given in Table 3 to the set �s. The �se-Table 3: The new rules of the �se-alulus�-�-transition (a�ib)�j  �! (a�j+1 ) �i (b �j�i+1 ) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a�j�i+1 b) if k + i � j'-�-transition 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l+ jalulus is the redution system (�sop;!�se) where !�se is the least ompatible redution on �sop generatedby the set of rules �se. The alulus of substitutions assoiated with the �se-alulus is the rewriting systemgenerated by the set of rules se = �se � f�-generationg and we all it se-alulus.The equational theory assoiated to the rewriting system �se de�nes a ongruene =�se . The ongrueneobtained by dropping �-generation and Eta (that will be de�ned below in Table 4) is denoted by =se .Notie that for the ��-alulus we need two sorts: term and substitution [15℄. The set of variables ofsort term in a term a 2 T�se(X ) is denoted by T var (a).We an desribe the operators of the �se-alulus over the signature of a �rst order sorted term algebraT�se(X ) built on X , the set of variables of sort term and its subsort nat�term by:n : ! nat; 8n 2 N n f0g( ) : term� term ! term�i : term� term ! term; 8i 2 N n f0g� : term ! term'ik : term ! term; 8i 2 N; k 2 N n f0gIn [24℄ we proved the following: 7



Theorem 3.6 (WN and CR of se) The se-alulus is weakly normalising and onuent.Lemma 3.7 (Simulation of �-redution) Let a; b 2 �, if a!� b then a!!�se b .Theorem 3.8 (CR of �se) The �se-alulus is onuent on open terms.Theorem 3.9 (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .In [3℄ we proved that:Proposition 3.10 X -grafting and �se-redution ommute.This alulus was originally introdued without the Eta rule that was added in [3℄ to deal with higher orderuni�ation problems as originally done in [15℄ for the ��-alulus.Table 4: The eta rule of the �se-alulus(Eta) �(a 1) �! b if a =se '20bThe haraterization of the �se-normal forms was given in [24, 3℄ by: a term a 2 �se is a �se-nf if andonly if one of the following holds:1. a 2 X [ N;2. a = b with b;  in �se-nf and b not an abstration �d;3. a = �b, where b is a �se-nf exluding appliations of the form ( 1) where '20d =se  for some d;4. a = b�j, where b;  in �se-nf and b is of the form: X or d�ie, with j < i or 'ikd, with j � k;5. a = 'ikb, where b is a �se-nf of the form: X or �jd, with j > k + 1 or 'jl , with k < l;3.3 The Suspension CalulusThe suspension alulus [37, 34℄ deals with �-terms as omputational mehanisms. This was motivated byimplementational questions related to �Prolog, a logi programming language that uses typed �-terms asdata strutures [36℄. The suspension alulus works with three di�erent types of entities:suspended terms M , N ::= C j n j �M j (M N) j [[M; i; j; e1℄℄environments e1, e2 ::= nil j et :: e1 j ffe1; i; j; e2ggenvironment terms et ::= �i j (M; i) j hhet; i; j; e1iiwhere C denotes any onstant and i; j are non negative natural numbers.As onstants and de Bruijn indies are suspended terms, the suspension alulus has open terms. Ratherthan performing adjustments at eah stage, the suspension alulus notation performs the adjustments intoa substitution term only at the �nal substitution stage. Intuitively, a suspended term of the form [[M; i; j; e1℄℄means that the �rst i variables of the �-termM must be substituted in a way determined by the environmente1 and its remaining bound variables must be renumbered aording to the fat thatM used to appear withini abstrations but now appears within j of them.The suspension alulus owns a generation rule �s, that initiates the simulation of a �-redution (as forthe �� and the �se, respetively, the Beta and the �-generation rules do) and two sets of rules for handlingthe suspended terms. The �rst set, the r rules, for reading suspensions and the seond set, the m rules, formerging suspensions are given in Table 5.As in [37℄ we denote by .rm the redution relation de�ned by the r- andm-rules in Table 5. The assoiatedsubstitution alulus, denoted by susp, is the one given by the ongruene =rm.8



Table 5: Rewriting rules of the suspension alulus(�s) ((�t1 t2)�! [[t1; 1; 0; (t2; 0) :: nil℄℄(r1) [[; ol; nl; e℄℄�!; where  is a onstant(r2) [[i; 0; nl; nil℄℄�!i+nl(r3) [[1; ol; nl;�l :: e℄℄�!nl-l(r4) [[1; ol; nl; (t; l) :: e℄℄�! [[t; 0; (nl-l); nil℄℄(r5) [[i; ol; nl; et :: e℄℄�! [[i-1; (ol-1); nl; e℄℄; for i > 1(r6) [[(t1 t2); ol; nl; e℄℄�!([[t1; ol; nl; e℄℄ [[t2; ol; nl; e℄℄)(r7) [[� t; ol; nl; e℄℄�!� [[t; (ol + 1); (nl + 1);�nl :: e℄℄(m1) [[[[t; ol1; nl1; e1℄℄; ol2; nl2; e2℄℄�! [[t; ol0; nl0; ffe1; nl1; ol2; e2gg℄℄; whereol0 = ol1 + (ol2 : nl1) andnl0 = nl2 + (nl1 : ol2)(m2) ffnil; nl; 0; nilgg�!nil(m3) ffnil; nl; ol; et :: egg�!ffnil; (nl-1); (ol-1); egg; for nl; ol � 1(m4) ffnil; 0; ol; egg�!e(m5) ffet :: e1; nl; ol; e2gg�!hhet; nl; ol; e2ii :: ffe1; nl; ol; e2gg(m6) hhet; nl; 0; nilii�!et(m7) hh�m;nl; ol;�l :: eii�!�(l + (nl : ol)); for nl = m+ 1(m8) hh�m;nl; ol; (t; l) :: eii�!(t; (l + (nl : ol))); for nl = m+ 1(m9) hh(t; nl); nl; ol; et :: eii�!([[t; ol; l0; et :: e℄℄;m); wherel0 = ind(et) and m = l0 + (nl : ol)(m10) hhet; nl; ol; et0 :: eii�!hhet; (nl-1); (ol-1); eii; for nl 6= ind(et)De�nition 3.11 ([37℄) The length len(e) of an environment e is given by:len(nil) := 0; len(et :: e0) := len(e0) + 1 andlen(ffe1; i; j; e2gg) := len(e1) + (len(e2) : i).The index ind(et) of an environment term et, and the l-th index indl(e) of environment e and natural numberl, are simultaneously de�ned by indution on the struture of expressions:ind(�m) = m+ 1; ind((t0;m)) = m;ind(hhet0; j; k; eii) = � indm(e) + (j : k) if len(e) > j : ind(et0) = mind(et0) otherwiseindl(nil) = 0; ind0(et :: e0) = ind(et) and indl+1(et :: e0) = indl(e0)indl(ffe1; j; k; e2gg) = 8>>>><>>>>: indm(e2) + (j : k) if l < len(e1) andlen(e2) > m = j : indl(e1)indl(e1) if l < len(e1) andlen(e2) � m = j : indl(e1)indl�l1+j(e2) if l � l1 = len(e1)The index of an environment e, denoted as ind(e), is ind0(e).De�nition 3.12 ([37℄) An expression of the suspension alulus is said to be well-formed if the followingonditions hold over all its subexpressions s:� if s is [[t; ol; nl; e℄℄ then len(e) = ol and ind(e) � nl� if s is et :: e then ind(e) � ind(et)� if s is hhet; j; k; eii then len(e) = k and ind(et) � j� if s is ffe1; j; k; e2gg then len(e2) = k and ind(e1) � j.In the sequel, we only deal with well-formed expressions of the suspension alulus.The suspension alulus simulates �-redution and its assoiated substitution alulus susp is CR (overlosed and open terms) and SN [37℄. In [34℄ Nadathur onjetures that the suspension alulus preserves9



strong normalization too but there is still no proof of this onjeture. The following lemma haraterizes the.rm-normal forms.Lemma 3.13 ([37℄) A well-formed expression of the suspension alulus x is in its .rm-nf if and only ifone of the following aÆrmations holds:1) x is a pure �-term in de Bruijn notation;2) x is an environment term of the form �l or (t; l), where t is a term in its .rm-nf;3) x is the environment nil or et :: e for et and e resp. an environment term and an environment in .rm-nf.3.4 The suspension alulus enlarged with �-redution: the �susp-alulusThe suspension alulus was initially formulated without �-redution. Here we introdue an adequate Eta rulethat enlarges the suspension alulus preserving orretness, onuene, and termination of the assoiatedsubstitution alulus. The suspension alulus enlarged with this Eta rule is denoted by �susp and we ontinueto all its assoiated substitution alulus susp. The Eta rule is formulated in Table 6. Intuitively Eta mayTable 6: The eta rule of the suspension alulus(Eta) (� (t1 1)) �! t2 if t1 =rm [[t2; 0; 1; nil℄℄be interpreted as: when it is possible to apply the �-redution rule to the redex �(t1 1) we obtain a termt2 that has the same struture as t1 with all its free de Bruijn indies deremented by one. This is possiblewhenever there are no free ourrenes of the variable orresponding to 1 in t1. Proposition 3.16 proves theorretness of Eta aording to this interpretation.Remark 3.14 The reader may wonder whether this is the best formulation of Eta in the suspension alulus.Indeed, the reader may ask this question also in onnetion with the formulation of Eta in both the ��- and�se-aluli. Initially, [15℄ intended to use �(a["℄1)! a as a formulation of Eta in the ��-alulus. However,this formulation would lead to an in�nite set of ritial pairs. For this reason, [15℄ took the formulationgiven in Table 1. The same reason led [3℄ to use a formulation of Eta in the �se-alulus whih uses seonvertibility (see table 4). And indeed for the suspension alulus, we also get an in�nite set of ritial pairsif we use (� ([[t1; 0; 1; nil℄℄ 1)) �! t1.We follow [11℄ and [2℄ for �� and �se respetively, and implement the Eta rule of the �susp-alulus byintroduing a dummy symbol �, by:�(M 1) �!Eta N if N = .rm-nf([[M; 1; 0; (�; 0) :: nil℄℄) and � does not our in N .The orretness of this implementation is explained beause an �-redution �(M 1) !� N gives us aterm N , whih is obtained from M by derementing by one all free ourrenes of de Bruijn indies, aspreviously mentioned, and whih orresponds exatly to the .rm-normalization of the term ((�M) �) !�s[[M; 1; 0; (�; 0) :: nil℄℄, whenever � does not appear in this normalized term.Lemma 3.15 Let A be a well-formed term of the suspension alulus. Then the susp-normalization of theterm [[A; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ gives a term obtained from A by inrementing by one all itsde Bruijn free indies greater than k and preserving unaltered all other de Bruijn indies.Proof. By indution on the struture of A. The onstant ase is trivial.� A = n. If n > k: [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !kr5 [[n� k; 0; k + 1; nil℄℄ !r2 n+ 1.If n � k: [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !n�1r5 [[1; k � n+ 1; k + 1;�k � n+ 1:: : : : ::�1::nil℄℄ !r3 n;� A = (B C). we apply r6 and indution hypothesis for B and C;10



� A = (�B). Sine B is bounded by an abstrator, only its free variables greater than k + 1 should beinremented by one, the other variables remain unhanged. Sine [[(�B); k; k + 1;�k :: : : : :: �1 :: nil℄℄!r7 �[[B; k + 1; k + 2;�k + 1 :: : : : :: �1 :: nil℄℄, by applying indution hypothesis over the previousterm we obtain the desired result.� A = [[t; ol; nl; e℄℄. Without loss of generality A may be .rm-normalized and by Lemma 3.13 theobtained term is of one of the forms analysed in the previous ases. �Proposition 3.16 (Soundness of the Eta rule) Every appliation of the Eta rule of �susp to the redex�(t1 1) gives e�etively the term t2 obtained from t1 by derementing all its de Bruijn free indies by one.Proof. The proof is by indution over the struture of t2 onsidering the premise t1 =rm [[t2; 0; 1; nil℄℄.The e�et of normalizing [[t2; 0; 1; nil℄℄ is to inrement by one all de Bruijn free indies ourring at t2:� t2 = n. [[n; 0; 1; nil℄℄!r2 n+ 1 =rm t1.� t2 = (A B). Without loss of generality we an assume that both A and B are in .rm-nf. Observe that[[(A B); 0; 1; nil℄℄!r6 [[A; 0; 1; nil℄℄ [[B; 0; 1; nil℄℄. Now, by indution hypothesis over A and B, we havethat the normalization of the suspended terms [[A; 0; 1; nil℄℄ and [[B; 0; 1; nil℄℄ have the desired e�et andonsequently the same happens with the normalization of the suspended term [[(A B); 0; 1; nil℄℄.� t2 = (�A). As before, assume A is in .rm-nf. Note that [[(�A); 0; 1; nil℄℄ !r7 (�[[A; 1; 2;�1::nil℄℄). Byapplying Lemma 3.15 to the term [[A; 1; 2;�1 :: nil℄℄ we onlude that all free ourrenes of de Bruijnindies greater than 1 at A are inremented by one while the other indies are unhanged.� t2 = [[t; i; j; e℄℄. If t is in .rm-nf then [[t; i; j; e℄℄ .�rm t0, where t0 is a pure �-term in de Bruijn notationby Lemma 3.13. Hene, the analysis given in the previous three ases applies here too. �Noetherianity of susp plus the Eta rule enables us to apply the Newman diamond lemma and theKnuth-Bendix ritial pair riterion for proving its onuene.Lemma 3.17 (susp+ Eta is SN) The rewriting system assoiated to susp and the Eta rule is noetherian.Proof. (Sketh) This is proved by showing that the Eta rule is also ompatible with the well-foundedpartial ordering � that is de�ned and proved ompatible with .rm in [37℄. �A simple environment is an environment without subexpressions of the form ff ; ; ; gg or hh ; ; ; ii.Lemma 3.18 ([37℄) Let e1 be a simple environment and suppose that nl and ol are naturals suh that(nl � ind(e1)) � ol. Then ffe1; nl; ol; e2gg .�rm e1.Lemma 3.19 (Loal-onuene of susp+ Eta) The rewriting system of the substitution alulus suspplus the Eta rule is loally-onuent.Proof. The rewrite relation .rm, i.e., susp, was shown in [37℄ to be (loally) onuent. Thus forproving that the assoiated rewriting system enlarged with the Eta rule is loally-onuent, it is enoughto show that all additional ritial pairs built by overlapping between the Eta rule and the other rules ofsusp are joinable. Note that no ritial pairs are generated from Eta and itself. Moreover, there is a uniqueoverlapping between the set of rules in Table 5 (minus (�s)) and Eta: namely, the one between Eta and (r7).This ritial pair is h[[t2; ol; nl; e℄℄; �[[(t1 1); ol + 1; nl+ 1;�nl :: e℄℄i, where t1 =rm [[t2; 0; 1; nil℄℄. Afterapplying the rules r6 and r3 the right-side term of this ritial pair redues to �([[t1; ol + 1; nl+ 1;�nl :: e℄℄ 1).We prove by analyzing the struture of t1 that this ritial pair is joinable. We take t1 and t2 as .rm-nf's.� t1 = n. For making possible the Eta appliation, we need that n > 1. Aording to the length of theenvironment �nl :: e (i.e., ol + 1) we have the following ases:{ ol + 1 < n. On one side, �([[n; ol + 1; nl+ 1;�nl :: e℄℄ 1) !ol+1r5 �([[n-ol-1; 0; nl+ 1; nil℄℄ 1) !r2�(n-ol+nl 1) !Eta n-ol+nl-1. On the other side, t1 =rm [[t2; 0; 1; nil℄℄, hene t2 = n-1 and wehave [[n-1; ol; nl; e℄℄ !olr5 [[n-1-ol; 0; nl; nil℄℄ !r2 n-ol+nl-1.11



{ ol + 1 � n. On one side, �([[n; ol + 1; nl+ 1;�nl :: e℄℄ 1) !n�1r5 �([[1; ol � n+ 2; nl+ 1; e1 :: e0℄℄ 1)and the subsequent derivation depends on the struture of e1: when e1 = �l we apply r3 obtaining�(nl+1-l 1) !Eta nl-l and on the other side, [[n-1; ol; nl; e℄℄!n�2r5 [[1; ol � n+ 2; nl;�l :: e0℄℄ !r3nl-l; when e1 = (t; l), where without loss of generality t is supposed to be in .rm-nf, we have�([[1; ol � n+ 2; nl+ 1; (t; l) :: e0℄℄ 1) !r4 �([[t; 0; nl� l + 1; nil℄℄ 1) !Eta.rm-nf([[[[t; 0; nl+1�l; nil℄℄; 1; 0; (�; 0) ::nil℄℄) !m1.rm-nf([[t; 0; nl�l; ffnil; nl+1�l; 1; (�; 0) ::nilgg℄℄)!m3.rm-nf([[t; 0; nl� l; ffnil; nl� l; 0; nilgg℄℄) !m2 .rm-nf([[t; 0; nl� l; nil℄℄)and on the other side, [[1; ol � n+ 2; nl; (t; l) :: e0℄℄!r4 [[t; 0; nl� l; nil℄℄.Sine .rm-nf([[t; 0; nl� l; nil℄℄) and [[t; 0; nl� l; nil℄℄ are joinable we obtain the onuene.� t1 = (A B). Sine the sole rule of the �susp that truly \applies" appliations is the �s, we an sepa-rately onsider Eta-redutions for A and B and then apply the indution hypothesis. That is, supposeindutively that �([[A; ol + 1; nl+ 1;�nl :: e℄℄ 1)!Eta A00 and [[A0; ol; nl; e℄℄, where [[A0; 0; 1; nil℄℄ =rm Aas well as �([[B; ol + 1; nl + 1;�nl :: e℄℄ 1) !Eta B00 and [[B0; ol; nl; e℄℄, where [[B0; 0; 1; nil℄℄ =rm B arejoinable. Then sine �([[(A B); ol + 1; nl+ 1;�nl ::e℄℄ 1) !r6�(([[A; ol + 1; nl+ 1;�nl ::e℄℄ [[B; ol + 1; nl+ 1;�nl ::e℄℄) 1) !Eta (A00 B00) and [[(A0 B0); ol; nl; e℄℄ !r6([[A0; ol; nl; e℄℄ [[B0; ol; nl; e℄℄) we an onlude the onuene.� t1 = (�A). By the Eta rule implementation, it is enough to show the joinability of the Eta-redution ofthe term �([[(�A); ol + 1; nl+ 1;�nl ::e℄℄ 1) that is .susp-nf([[[[(�A); ol + 1; nl+ 1;�nl ::e℄℄; 1; 0; (�; 0) ::nil℄℄)and the term [[ .susp -nf([[(�A); 1; 0; (�; 0) ::nil℄℄); ol; nl; e℄℄.On the one side, [[ .susp -nf([[(�A); 1; 0; (�; 0)::nil℄℄); ol; nl; e℄℄ .�rm.susp-nf([[[[(�A); 1; 0; (�; 0)::nil℄℄; ol; nl; e℄℄) !r7;r7.susp-nf((�[[[[A; 2; 1;�0::(�; 0)::nil℄℄; ol + 1; nl+ 1;�nl::e℄℄)) .�rm(� .susp -nf([[[[A; 2; 1;�0::(�; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) !m1(� .susp -nf([[A; ol + 2; nl+ 1; ff�0::(�; 0)::nil; 1; ol+ 1;�nl::egg℄℄))and we have that ff�0::(�; 0)::nil; 1; ol+ 1;�nl::egg !m5;m5hh�0; 1; ol+ 1;�nl::eii::hh(�; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol+ 1;�nl::egg!m7�nl::hh(�; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol+ 1;�nl::egg !m10�nl::hh(�; 0); 0; ol; eii::ffnil; 1; ol+ 1;�nl::egg !m3;m4�nl::hh(�; 0); 0; ol; eii::e. Then we obtain the term(� .susp -nf([[A; ol + 2; nl+ 1;�nl :: hh(�; 0); 0; ol; eii :: e℄℄)). On the other side,.susp-nf([[[[(�A); ol + 1; nl+ 1;�nl :: e℄℄; 1; 0; (�; 0) :: nil℄℄) !r7;r7.susp-nf((�[[[[A; ol + 2; nl+ 2;�nl+ 1::�nl ::e℄℄; 2; 1;�0::(�; 0) ::nil℄℄)) .�rm(� .susp -nf([[[[A; ol + 2; nl + 2;�nl+ 1::�nl ::e℄℄; 2; 1;�0::(�; 0) ::nil℄℄)) !m1(� .rm -nf[[A; ol + 2; nl + 1; ff�nl + 1::�nl ::e; nl+ 2; 2;�0::(�; 0) ::nil℄℄) and we have that ff�nl+1 ::�nl :: e; nl+ 2; 2;�0 :: (�; 0) :: nilgg !m5;m5hh�nl + 1; nl + 2; 2;�0 :: (�; 0) ::nilii :: hh�nl; nl + 2; 2;�0 :: (�; 0) ::nilii ::ffe; nl + 2; 2;�0 :: (�; 0) ::nilgg!m7 �nl :: hh�nl; nl+ 2; 2;�0 :: (�; 0) :: nilii :: ffe; nl + 2; 2;�0 :: (�; 0) :: nilgg .�rm (By Lemma 3.18,sine we are working with well-formed terms and then) ind(e) � nl)�nl :: hh�nl; nl+ 2; 2;�0 :: (�; 0) :: nilii :: e !m10�nl :: hh�nl; nl+ 1; 1; (�; 0) :: nilii :: e !m8 �nl :: (�; nl) :: e.Then we obtain the term (� .susp -nf([[A; ol + 2; nl+ 1;�nl :: (�; nl) :: e℄℄)).The sole di�erene of the obtained suspended terms is the seond environment term of their envi-ronments, that is hh(�; 0); 0; ol; eii and (�; nl). But sine the Eta rule applies, when propagating thesubstitution between these suspended terms, the dummy symbol and hene these seond environmentterms should disappear. Now we an onlude that these terms are joinable. �Finally, sine the rewriting system assoiated to susp enlarged with the Eta rule is loally-onuent andnoetherian, we an apply the Newman diamond lemma for onluding its onuene.Theorem 3.20 (Conuene of susp+ Eta) The alulus susp jointly with the Eta rule, is onuent.12



4 Comparing the adequay of the aluliAording to the riterion of adequay introdued in [26℄ we prove that the �� and the �susp as well as the�� and the �se are non omparable. Additionally, we prove that the �se is more adequate in the simulationof one step �-redution than the �susp.Let a; b 2 � suh that a !� b. A simulation of this �-redution in ��, for � 2 f�; se; suspg is a ��-derivation a!r !�� �() = b, where r is the rule starting � (beta for ��, �-generation for �se, �s for �susp)applied to the same redex as the redex in a!� b. The riterion of adequay is de�ned as follow:De�nition 4.1 ([26℄) (Adequay) Let �1; �2 2 f�; se; suspg. The ��1-alulus is more adequate (in sim-ulating one step �-redution) than the ��2-alulus, denoted ��1 � ��2, if:� for every �-redution a!� b and every ��2-simulation a!n��2 b there exists a ��1-simulation a!m��1 bsuh that m � n;� there exists a �-redution a !� b and a ��1-simulation a !m��1 b suh that for every ��2-simulationa!n��2 b we have m < n.If neither ��1 � ��2 nor ��2 � ��1, then we say that ��1 and ��2 are non omparable.The ounterexamples proving that �� and �s are non omparable presented in [26℄ apply also to the inom-parability of �� and �se sine �se is an extension of �s for open terms.Proposition 4.2 The ��- and the �se-aluli are non omparable.Lemma 4.3 Every ��-derivation of ((��2) 1) to its ��-nf has length greater than or equal to 6.Proof. In fat, all possible derivations are of one of the following forms.� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !ShiftCons �1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !ShiftCons�1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !Map�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos �1[" Æ(1:((1:id)Æ "))℄ !Map�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !Clos�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !Clos�1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons �1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map �1["℄[1:(1["℄:(idÆ "))℄ !IdL�1["℄[1:(1["℄: ")℄ !Clos �1[" Æ(1:(1["℄: "))℄ !ShiftCons �1[1["℄: "℄ !V arCons �1["℄ = �2. �In the following lemmas, (M 1n) is a shorthand for n appliations of 1, i.e., (: : : ((M 1)1) : : : 1).Lemma 4.4 Every �susp-derivation of (��(2 2)) 1n to its �susp-nf has length 4n+ 5.Proof. In fat, note that the sole possible derivation is:(��(2 2)) 1n !�s [[(�(2 2)); 1; 0; (1n; 0) ::nil℄℄ !r7 �[[(2 2); 2; 1;�0::(1n; 0) ::nil℄℄ !r6�([[2; 2; 1;�0::(1n; 0) ::nil℄℄ [[2; 2; 1;�0::(1n; 0) ::nil℄℄) !2r5�([[1; 1; 1; (1n; 0) ::nil℄℄ [[1; 1; 1; (1n; 0) ::nil℄℄) !2r4 �([[1n; 0; 1; nil℄℄ [[1n; 0; 1; nil℄℄) !2(n�1)r6�(([[1; 0; 1; nil℄℄)n ([[1; 0; 1; nil℄℄)n) !2nr2 �(2n 2n). �13



Lemma 4.5 ( [26℄) There exists a derivation of (��(2 2)) 1n to its ��-nf whose length is n+ 9.Proof. Consider the following derivation:(��(2 2)) 1n = (��(1["℄ 1["℄)) 1n !Beta (�(1["℄ 1["℄))[1n:id℄ !Abs�((1["℄ 1["℄)[1:((1n:id)Æ ")℄) !Map�((1["℄ 1["℄)[1:(1n["℄:(idÆ "))℄) !n�1App �((1["℄ 1["℄)[1:((1["℄)n:(idÆ "))℄) !App�((1["℄[1:((1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !Clos�((1[" Æ(1:(1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !ShiftCons�((1[(1["℄)n:(idÆ ")℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !V arCons�((1["℄)n (1["℄[1:((1["℄)n:(idÆ "))℄)) !3 �((1["℄)n (1["℄)n) = �(2n 2n). �Proposition 4.6 The ��- and �susp-aluli are non omparable.Proof. On one side, by Lemmas 4.4 and 4.5, there exists a simulation (��(2 2)) 1n !�� �(2 2) shorterthan the shortest of the simulations (��(2 2)) 1n !�susp �(2 2). Then �susp 6� ��.On the other side, onsider the following simulation in �susp:((��2) 1) !�s [[(�2); 1; 0; (1; 0) :: nil℄℄ !r7 �[[2; 2; 1;�0 :: (1; 0) :: nil℄℄ !r5�[[1; 1; 1; (1; 0) :: nil℄℄ !r4 �[[1; 0; 1; nil℄℄ !r2 �2.This simulation together with Lemma 4.3 allows us to onlude that: �� 6� �susp. �To prove that �se is more adequate in the simulation of one step �-redution than �susp we need toestimate the lengths of derivations.De�nition 4.7 Let A;B;C 2 � and k � 0. We de�ne the funtions M : �! N and Qk : �� �! N by:�M(n)=1�M(�A)=M(A)+1�M(A B)=M(A)+M(B)+1 �Qk(n; B)=8<: n if n<kn+M(B) if n=kk+1 if n>k�Qk((A B); C)=Qk(A;C)+Qk(B;C)+1 �Qk(�A;B)=Qk+1(A;B)+1Lemma 4.8 Let A 2 �. Then all se-derivations of 'ikA to its se-nf have length M(A).Proof. By simple indution over the struture of A. This is an easy extension of the same lemmaformulated for the �s-alulus in [26℄. �Lemma 4.9 Let A 2 �. Then all susp-derivations of the well-formed term [[A; i; i;�i� 1 :: : : : :: �0 :: nil℄℄to its susp-nf have length greater than or equal to M(A).Proof. By indution over the struture of terms.� A = n. If n > i then [[n; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !ir5 [[n� i; 0; i; nil℄℄ !r2 n. The length of thederivation is i+ 1 �M(A). If n � i then [[n; i; i;�i� 1:: : : : ::�0::nil℄℄!n�1r5[[1; i� n+ 1; i;�i� n :: : : : ::�0::nil℄℄!r3 n. The length of the derivation is n �M(A).� A = (B C). We have that [[(B C); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r6([[B; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ [[C; i; i;�i� 1 :: : : : :: �0 :: nil℄℄). By the indution hypothesis we on-lude that the length of the derivation is greater than or equal to 1+M(B)+M(C) =M(B C) =M(A).� A = (�B). We have that [[(�B); i; i;�i� 1 :: : : : :: �0 :: nil℄℄!r7 �[[B; i+ 1; i+ 1;�i :: : : : :: �0 :: nil℄℄.By indution hypothesis we onlude that the length of the derivation is greater than or equal to1 +M(B) =M(�B) =M(A). �Lemma 4.10 Let B 2 � and i; j � 0. The derivation of the susp-term [[B; i; j;�j � 1 :: e℄℄ to its susp-nfhas length greater than or equal to M(B).Proof.� Case B = n, [[n; i; j;�j � 1 :: e℄℄ rewrites to its susp-nf in one or more steps depending on n.14



� Case B = (C D), we have [[(C D); i; j;�j � 1::e℄℄!r6 [[C; i; j;�j � 1::e℄℄ [[D; i; j;�j � 1 :: e℄℄. By theindution hypothesis we obtain the desired result.� Case B = (�C), we have [[(�C); i; j;�j � 1 :: e℄℄ !r7 �[[C; i+ 1; j + 1;�j :: e0℄℄, that by indutionhypothesis ompletes the proof. �Proposition 4.11 Let A;B 2 � and k � 0. Then every susp-derivation of[[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ to its susp-nf has length greater than or equal to Qk(A;B).Proof. By strutural indution over A.� A = n. If n < k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; k � n+ 1; k � 1;�k � n� 1:: : : : ::�0:: (B; l) ::nil℄℄! r3 n. This derivation has length n � Qk(n; B).If n = k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5 [[1; 1; k � 1; (B; l) ::nil℄℄ ! r4[[B; 0; k � 1� l; nil℄℄. By Lemma 4.10 the last term rewrites to its susp-nf in M(B) or more rewritesteps. The whole derivation has length greater than or equal to n+M(B) = Qk(n; B) = Qk(A;B).If n > k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !kr5 [[n-k; 0; k-1; nil℄℄ !r2 n� 1. Derivationwhose length is k + 1 � Qk(n; B) = Qk(A;B).� A = (C D). [[(C D); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r6([[C; k; k-1;�k-2 :: : : : ::�0::(B;0)::nil℄℄ [[D; k; k-1;�k-2 :: : : : ::�0:: (B;0)::nil℄℄). By the indution hypothe-sis the derivation has length greater than or equal to 1+Qk(C;B)+Qk(D;B)=Qk((C D); B)=Qk(A;B).� A = �C. [[(�C); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄!r7 �[[C; k + 1; k;�k � 1:: : : : ::�0::(B; l) ::nil℄℄.By the indution hypothesis we an onlude that this derivation has length greater than or equal to1 +Qk+1(C;B) = Qk(�C;B) = Qk(A;B). �Proposition 4.12 Let A;B 2 � and k � 1. se-derivations of A�kB to its se-nf have length � Qk(A;B).Proof. By strutural indution over the pure lambda term A.� A = n. By applying the �-destrution rule, in the ase n 6= k, we obtain either n� 1 or n and in thease n = k, 'k0B. In the ase that n 6= k, the derivation has length equal to 1 � Qk(n; B). In the otherase, we apply Lemma 4.8 obtaining that the omplete se-normalization has length 1+M(B). In bothases the derivation has length less than or equal to Qk(n; B).� A = (C D). (C D)�kB ! (C�kB D�kB). By applying the indution hypothesis we onlude thatthe omplete derivation has length less than or equal to 1 +Qk(C;B) +Qk(D;B) = Qk((C D); B).� A = (�C). (�C)�kB ! �(C�k+1B). By the indution hypothesis we onlude that the wholederivation has length less than or equal to 1 +Qk+1(C;B) = Qk(�C;B). �Theorem 4.13 (�se��susp)The �se is more adequate in the simulation of one step �-redution than the�susp-alulus.Proof. We prove the stronger result that if A 2 � and A!�s B !msusp susp-nf(B) is a �susp-simulationof a �-redution then: A !��generation C !nse se-nf(C) has length n+ 1 � m+ 1 .In �susp, for any redex of �s we have (�D) E !�s [[D; 1; 0; (E; 0) ::nil℄℄!msusp susp-nf([[D; 1; 0; (E; 0) ::nil℄℄). Inthe �se, (�D) E !��generation D�1E !nse se-nf(D�1E). By Propositions 4.11 and 4.12,m � Q1(D;E) � n.Hene, the length of a �susp-simulation of a �-redution is not shorter than that of some �se-simulation.The 2nd part of being more adequate is shown by omparing the length of simulations. E.g., let (�2) 1!�1. In �susp the only possible three steps simulation is: (�2) 1 !�s [[2; 1; 0; (1; 0) ::nil℄℄ !r5 [[1; 0; 0; nil℄℄ !r21. In �se the only possible two steps simulation is: (�2) 1 !��generation 2�11 !��destrution 1. �As mentioned in the above proof, we prove a stronger result than simple better adequay of �se asin [26℄. In fat, we prove that the length of all �se-simulations are shorter than the length of any �susp-simulation. Examining the proofs of Propositions 4.11 and 4.12 whih relate the length of derivations with themeasure operator Qk, it appears evident that both aluli work similarly exept that after having propagated15



suspended terms between the body of abstrators, �susp deals with the substitutions in a less eÆient way.To explain that, ompare the simulations of �-redution from the term (�(�ni)) j, where n � 0:(�(�ni))j!��gen (�ni)�1j!n����trans �n(i�n+1j) =: t1(�(�ni))j!�s [[�ni; 1; 0; (j;0)::nil℄℄!nr7 �n[[i; n+ 1; n;�n-1 :: : : : ::�0:: (j;0)::nil℄℄ =: t2.After that the �se omplete the simulation in one or two steps by heking arithmeti inequations:t1 !��dest 8<: �ni; if i < n+ 1�ni� 1; if i > n+ 1�n('n+10 j)!'�dest �nj+ n; if i = n+ 1But in the �susp we have to destrut the environment list, environment by environment:t28<: !i�1r5 �n[[1; n-i+ 2; n;�n-i :: : : : ::�0:: (j; 0) ::nil℄℄!r3 �ni; if i < n+ 1!n+1r5 �n[[i� n� 1; 0; n; nil℄℄!r2 �ni� 1; if i > n+ 1!i�1r5 �n[[1; 1; n; (j; 0) ::nil℄℄!r4 �n[[j; 0; n; nil℄℄!r2 �nj+ n; if i = n+ 1These simple onsiderations lead us to believe that the main di�erene of the two alulus (at least inthe simulation of �-redution) is given by the manipulation of indies: although �susp inludes all de Bruijnindies, it does not pro�t from the existene of the built-in arithmeti for indies. These observations may berelevant for the treatment of the open question of preservation of strong normalization of �susp (onjeturedpositively in [34℄), sine the �se has been proved to answer this question negatively in [18℄.5 Relating the Eta rules[3℄ established the orrespondene between the Eta rules of �� and �se through the premises t["℄ =� Mand '20t =se M , where t 2 �dB . This orrespondene means that the e�et of applying the substitution ["℄,in ��, and the upgrading '20, in �se, to a pure �-term are idential. This implies that these Eta rules areequivalent when applied to a pure �-term. Hene, it remains to show that the results, in the two aluli, ofapplying the substitution ["℄ and the upgrading operator '20 to a �-term t are equal (up to the odi�ationof the term in the internal language of the alulus). This is the ase k = 0 of the third item of the followinglemma.Lemma 5.1 (Eta orrespondene of �� and �se [3℄)1. Let n be a de Bruijn index. Then, for k�0, the se-nf of '2kn and the �-nf ofn[1:1["℄:1["2℄: : :1["k�1℄: "k+1℄ are orresponding de Bruijn indies.2. Let �t an abstration over �dB. Then, for k � 0,(�t)[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ �-rewrites to �(t[1:1["℄:1["2℄ : : : 1["k℄: "k+2℄).3. Let t 2 �dB and t0 its odi�ation in the language of ��, where all de Bruijn indies n 2 N ourringin t are replaed with 1["n�1℄. Then, for k � 0,the �-nf of t0[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ orresponds to the se-nf of '2kt.Analogously to the previous lemma, in the next proposition we establish the orrespondene between therules Eta of �susp and �se; i.e., the orrespondene, in the above mentioned sense, between the terms at theirpremises: [[t; 0; 1; nil℄℄ and '20t, for t 2 �dB. This orresponds to the ase k = 0 of the following proposition.Proposition 5.2 (Eta orrespondene of �susp and �se) Let t 2 �dB. Then, for all k � 0,the susp-nf of the suspended term [[t; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ orresponds to the se-nf of '2kt.Proof. This is done by indution on the struture of t.� t = n. By Lemma 3.15 we have that for all k � 0,[[n; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄ ! � n+ 1 if n > kn if n � kThis oinides with the result of applying the rule '-dest to the term '2kn.16



� t = (A B). [[(A B); k; k+1;�k ::�k�1:: : : : ::�1::nil℄℄ !r6([[A; k; k + 1;�k :: : : : :: �1 :: nil℄℄ [[B; k; k+1;�k :: : : : ::�1::nil℄℄) IH�('2kA '2kB). Also, '2kt!'�app ('2kA '2kB).� t=(�A). [[(�A); k; k+1;�k ::�k�1:: : : : ::�1:: nil℄℄ !r7(�[[A; k+1; k+2;�k+1:: : : :::�1::nil℄℄) IH� (�'2k+1A). Also, '2k(�A)!���trans (�'2k+1A). �This orrespondene is not obvious for open terms. In fat, let  be a onstant. On one side, in �susp,we have that [[; k; k + 1;�k :: : : : :: �1 :: nil℄℄ !r1 . On the other side, '2k is irreduible in �se. Bothterms an, in a ertain sense, be onsidered equivalent sine the upgrading operator '2k does not modifythe onstant  and this orrespondene ould be assumed in other pratial ontexts suh as those of higherorder uni�ation via expliit substitutions.The following notational onventions are useful for the rest of the paper:Notation 5.3 Let � 2 f�; se; suspg, and let �� be the orresponding expliit substitution alulus. Thegeneration rules of �� (i.e. the Beta, �-generation or �s rules), will be denoted orrespondingly by ��-gen.Similarly, Eta� denotes the orresponding Eta rule. � denotes the assoiated substitution alulus, that isgiven by the rewriting rules of the alulus �� exept the �-gen and the Eta� rules. The ongruene generatedby the rules of the substitution alulus � is denoted by =�. By �-nf(M) we denote the �-normal form of the��-term M . If M has a ��-gen redex at the root position then we denote by gen��(M; root) its ontratum.Now, we establish the appropriateness of the three Eta rules of ��, �se and �susp. By appropriatenessof a spei� Eta rule we understand that every pure �-terms whih ontains an Eta redex is redued to thesame pure �-term by the usual �-rule as well as by the spei� Eta rule.Lemma 5.4 (Appropriateness of the Eta rules) Let a 2 �dB. Then the following statements are equiv-alent:(a) �(a 1)!�b(b) �(a 1)!Eta�b, where � stands for �, se or susp.Proof. Suppose (a) is true. Then by strutural indution on the term a:1. �susp: We will show that [[b; 0; 1; nil℄℄ =susp a.� a = n (n > 1): [[n� 1; 0; 1; nil℄℄!2 n.� a = ( d). b+ = ( d) means that b is obtained from ( d) dereasing all its free indies by one.Now note that the e�et of normalizing [[b; 0; 1; nil℄℄ is to inrease all free indies of b by one asshown in the proof of the proposition 3.16.� a = �. Suppose b+ = � so b is obtained from � dereasing all free indies in  but 1 by oneand onlude onsidering the same argument of the previous item.2. �se: This is a straightforward from previous item and proposition 5.2.3. ��: This is a straightforward from previous item and lemma 5.1.Conversely, we will show that:1. In �susp that [[b; 0; 1; nil℄℄ =susp b+:� [[n� 1; 0; 1; nil℄℄!r2 n = (n� 1)+.� [[( d); 0; 1; nil℄℄!r6 [[; 0; 1; nil℄℄ [[d; 0; 1; nil℄℄ IH= + d+ = ( d)+.� [[�; 0; 1; nil℄℄!r7 �[[; 1; 2;�1 :: nil℄℄ IH= �+1 = (�)+.2. In �se that '20(b) = b+: 17



� '20(n� 1)!'�destr n = (n� 1)+� '20( d)!'�app '20() '20(d) IH= + d+ = ( d)+.� '20(�)!'�� �('21) IH= �(+1) = (�)+.3. In �� that b["℄ = b+.� 1["n�2℄["℄!Clos 1["n�1℄ = (n� 1)+.� ( d)["℄!App ["℄ d["℄ IH= + d+ = ( d)+.� (�)["℄!Abs �([1: "2℄) IH= �+1 = (�)+. �6 Usual implementations of EtaIn the sequel we use \�" for �-redution, and \Eta" for the Eta-redution rules of the expliit substitutionaluli. By an \implementation" of the Eta rule of any of the three treated aluli of expliit substitutions weunderstand an e�etive omputational mehanism of evaluation of the premisse of the onditional rewritingEta rule, whih allows for deiding the ourrene of Eta-redies and their subsequent redution. In otherwords, an implementation is an e�etive mehanism for deiding the one step Eta-redution relation.When implementing the one step redution of these aluli one has to take into aount that the givenEta rule and its suggested implementation are not lean in the sense that one appliation of Eta-redutionan involve appliations of other rules of the substitution alulus.In an expliit substitution alulus ��, a lean implementation of the �-redution does not apply additionalrules of the assoiated substitution alulus � during a one step appliation of the implemented �-redution.De�nition 6.1 (Clean Implementations of �-redution) An implementation of �-redution, sayImEta�, in an expliit substitution alulus �� is said to be lean if for any ��-term M , whenever we obtainN from M by applying this implementation of the �-redution, denoted by M !ImEta� N , there is no N 0suh that M !Eta� N 0 and N 0 !�� N . An implementation of �-redution that is not lean is alled unlean.Lemma 6.2 (The Eta rules are unlean) The implementations of �-redution diretly from the Eta�rewriting rules of the three treated aluli are unlean.Proof. Counterexamples are easy to formulate (e.g. see proof of Lemma 6.4) beause the equationalpremise of all the three rules is given in terms of the orresponding � ongruene =�: a =� b["℄, a =se '20(b)and a =susp [[b; 0; 1; nil℄℄, respetively. �6.1 Rule implementation for ��We used OCAML, a variation of the ML language, for implementing the rewriting rules of the three treatedaluli. The ode of this implementation is available at http://www.mat.unb.br/~ayala/TCgroup/. For��, onsider for example the rule Abs. We have to remark that �� works with two di�erent entities: terms(terms) and substitutions (subs), whih should be disriminated in any implementation. ��-terms of theform 1, �M , (M N) and M [S℄ are respetively represented as One, L(M), A(M,N) and Sb(M,S) and ��-substitutions of the form id, ", M:S and S Æ T as Id, Up, Pt(M,S) and Cp(S,T). Appliations of the rulesare implemented in two steps: the �rst one of detetion of redies and the seond one, after seletion of apossible redex, of true redution. Detetion of redies for this rule is implemented as in Table 7. Note thatthe searh for redies is divided in the searh over terms and substitution entities. One a redex at positionpr of the term exp is deteted (and seleted) the appliation of Abs is done by means of the funtion spei�edin Table 8. Analogously, the appliation is divided in parts for terms and substitutions. All other rules aresimilarly implemented. 18



Table 7: Detetion of redies for Abs of ��let re mathingAbs exp l pos =math exp with Dummy -> l | One -> l | Vr  -> l |A(e1,e2) -> append (mathingAbs e1 l (append pos [1℄)) (mathingAbs e2 [℄ (append pos [2℄)) |L(e1) -> mathingAbs e1 l (append pos [1℄) |Sb(L(e1),sb) -> pos::append(mathingAbs e1 l (append pos [1;1℄))(mathingAbsSb sb [℄ (append pos [2℄)) |Sb(e1,sb) -> append (mathingAbs e1 l (append pos [1℄)) (mathingAbsSb sb [℄ (append pos [2℄))and mathingAbsSb subs l pos =math subs with Up -> l | Id -> l |Pt(e1,sb) -> append (mathingAbs e1 l (append pos [1℄)) (mathingAbsSb sb [℄ (append pos [2℄)) |Cp(s1,s2) -> append (mathingAbsSb s1 l (append pos [1℄)) (mathingAbsSb s2 [℄ (append pos [2℄));;Table 8: Appliation of Abs of ��let re absredution exp pr =math pr with [℄ -> (math exp with Sb(L(e1),sb) -> L(Sb(e1,Pt(One,Cp(sb,Up)))) | _ -> exp) |1 :: tail -> (math exp with Dummy -> exp | One -> exp | Vr  -> exp |A(e1,e2) -> A((absredution e1 tail),e2) | L(e1) -> L(absredution e1 tail) |Sb(e1,s2) -> Sb((absredution e1 tail),s2)) |2 :: tail -> (math exp with Dummy -> exp | One -> exp | Vr  -> exp |L(e1) -> exp | A(e1,e2) -> A(e1,(absredution e2 tail)) |Sb(e1,s2)-> Sb(e1,(absredutionSb s2 tail))) | _ -> expand absredutionSb subs pr =math pr with [℄ -> subs |1 :: tail -> (math subs with Id -> subs | Up -> subs |Cp(s1,s2) -> Cp((absredutionSb s1 tail),s2) |Pt(e1,s2) -> Pt((absredution e1 tail),s2)) |2 :: tail -> (math subs with Id -> subs | Up -> subs |Cp(s1,s2) -> Cp(s1,(absredutionSb s2 tail)) |Pt(e1,s2)-> Pt(e1,(absredutionSb s2 tail))) | _ -> subs;;6.2 Rule implementation for �seThe implementation for �se is simpler sine we have to onsider a sole entity, that is the one of (lambda) terms.�se-terms are of the form n, (M N), �M , M�iN and 'ikM and are represented in OCAML respetively asDB n, A(M,N), L(M), S(i,M,N) and P(k,i,M). Searhing for redies of the �-�-transition and its appliationfor a seleted redex pr are given in Tables 9 and 10, respetively.Table 9: Detetion of redies for �-�-transition of �selet re mathingSLtransition exp l pos =math exp with Dummy ->l | DB i ->l | Vr  ->l |A(e1,e2)->append (mathingSLtransition e1 l(append pos [1℄))(mathingSLtransition e2 [℄ (append pos [2℄)) |L(e1) -> (mathingSLtransition e1 l (append pos [1℄)) |S(i,L(e1),e2)->pos::append(mathingSLtransition e1 l (append pos [1;1℄))(mathingSLtransition e2 [℄ (append pos [2℄)) |S(i,e1,e2) -> append (mathingSLtransition e1 l (append pos [1℄))(mathingSLtransition e2 [℄ (append pos [2℄)) |P(j,k,e1) -> (mathingSLtransition e1 l (append pos [1℄));;6.3 Rule implementation for �suspExpressions in �susp an be of three di�erent types: (suspended) terms, environments and environmentterms. Terms of the form C, n, (M N), �M and [[t; i; j; e℄℄ are represented by Vr , DB n, A(M,N), L(M)and Sp(t,i,j,e); environments of the form nil, et :: e and ffenv1; i; j; env2gg by Nilen, Con(et,e) andCk(env1,i,j,env2); and environment terms of the form �n, (t; l) and hhenvt; i; j; envii by Ar(n), Paar(t,l)and LG(envt,i,j,env), respetively. The searh for redies of the rule (r7) is given in Table 11 and for itsappliation in a seleted position in Table 12. Note that the searh for redies and the appliation of therule is divided in the searh over suspended terms, environments and environment terms.19



Table 10: Appliation of �-�-transition of �selet re sltransition exp pr =math pr with [℄ -> (math exp with S(i,L(e1),e2) -> L(S(i+1,e1,e2)) | _ -> exp) |1 :: tail -> (math exp withA(e1,e2) -> A((sltransition e1 tail),e2) |L(e1) -> L(sltransition e1 tail) |S(i,e1,e2)-> S(i,(sltransition e1 tail),e2) |P(j,k,e1) -> P(j,k,(sltransition e1 tail)) | _ -> exp ) |2 :: tail -> (math exp withA(e1,e2) -> A(e1,(sltransition e2 tail)) |S(i,e1,e2)-> S(i,e1,(sltransition e2 tail)) | _ -> exp ) | _ -> exp;;Table 11: Detetion of redies for r7 of �susplet re mathing_r7 exp l pos = math exp with Dummy ->l | DB i ->l | Vr  ->l |A(e1,e2) -> append (mathing_r7 e1 l (append pos [1℄))(mathing_r7 e2 [℄ (append pos [2℄)) |L(e1) -> (mathing_r7 e1 l (append pos [1℄)) |Sp(L(e1),_,_,env)->pos::append(mathing_r7 e1 l (append pos [1;1℄))(mathingEnv_r7 env [℄ (append pos [2℄))|Sp(e1,_,_,env) -> append (mathing_r7 e1 l (append pos [1℄))(mathingEnv_r7 env [℄ (append pos [2℄))and mathingEnv_r7 env l pos = math env with Nilen -> l |Con(envt, env1) -> append (mathingEt_r7 envt l (append pos [1℄))(mathingEnv_r7 env1 [℄ (append pos [2℄)) |Ck(env1,_,_,env2) -> append (mathingEnv_r7 env1 l (append pos [1℄))(mathingEnv_r7 env2 [℄ (append pos [2℄))and mathingEt_r7 envt l pos = math envt with Ar i -> l |LG(envt1,_,_,env1) -> append (mathingEt_r7 envt1 l (append pos [1℄))(mathingEnv_r7 env1 [℄ (append pos [2℄)) |Paar(e1,i) -> (mathing_r7 e1 l (append pos [1℄));;6.4 Implementations by �-normalization of Eta are unleanObserve that exept for the Eta rule, deiding the appliability of all other rewrite rules of the three aluli(f. Table 1 for ��; 2, 3 and 4 for �se; 5 and 6 for �susp) is straightforward, sine these rules are eithernon onditional rules or their premises are simple arithmeti onditions easy to deide by means of built-inarithmeti mehanisms that are embedded in all modern omputational systems.Nevertheless, the appliability of the Eta rules of the three aluli depends on heking a ondition overthe ongruene of the rewrite system, whih an, in the �rst instane be implemented following a suggestionby Borovansk�y in [11℄ for �� and used in [2℄ for �se. Note that the �-redution �(M 1) !� N gives aterm N resulting from M by derementing all its free de Bruijn indies by one. And the suggestion isthat this orresponds to the normalization, after the appliation at the root position of the generation ruleof the onsidered alulus of the term ((�M) �) whenever � does not our in this normalization. Theimplementation of this suggestion is presented for the three aluli in the following de�nition.De�nition 6.3 (�-nf implementation of the �-redution) For the three treated aluli, the diret im-plementation of the rewrite rule�(M 1)�!nfEta�N if N = �-nf(gen��(((�M) �); root)) and � does not our in Nis alled the implementation by �-normalization of the �-redution, denoted by nfEta�.This implementation is sound for �� (f. [11℄) as well as for �se (f. [2℄). However this implementation isunlean beause during �-normalization, rules of the substitution aluli not stritly involved in �-redutionan be applied. For instane, the �se-term �((4�11) 1) !nfEtase 2, but �((4�11) 1) 6!� 2. Of ourse,�((4�11) 1) !��dest �(3 1) !� 2 (as well as �(3 1) !nfEtase 2). Observe here that the Eta rule (table 4)does not orrespond to the intended operational semantis of the � rule: �(M 1)!� N means that M andN are funtionally equivalent. 20



Table 12: Appliation of r7 of �susplet re r7_redution exp pr =math pr with [℄ -> (math exp with Sp(L(e1),i,j,env) -> L(Sp(e1,i+1,j+1,Con(Ar(j),env))) | _ -> exp ) |1 :: tail -> (math exp with(e1,e2) -> A((r7_redution e1 tail),e2) |L(e1) -> L(r7_redution e1 tail) |Sp(e1,i,j,env) -> Sp((r7_redution e1 tail),i,j,env) | _ -> exp) |2 :: tail -> (math exp withA(e1,e2) -> A(e1,(r7_redution e2 tail)) |Sp(e1,i,j,env) -> Sp(e1,i,j,(r7_redutionEnv env tail)) | _ -> exp)and r7_redutionEnv env pr = math pr with1 :: tail -> (math env withCon(envt,env1) -> Con((r7_redutionEt envt tail),env1) |Ck(env1,i,j,env2) -> Ck((r7_redutionEnv env1 tail),i,j,env2) | _ -> env) |2 :: tail -> (math env withCon(envt,env1) -> Con(envt,(r7_redutionEnv env1 tail)) |Ck(env1,i,j,env2) -> Ck(env1,i,j,(r7_redutionEnv env2 tail)) | _ -> env)and r7_redutionEt envt pr = math pr with1 :: tail -> (math envt withPaar(e1,i) -> Paar((r7_redution e1 tail),i) |LG(envt1,i,j,env1) -> LG((r7_redutionEt envt1 tail),i,j,env1) | _ -> envt) |2 :: tail -> (math envt withLG(envt1,i,j,env1) -> LG(envt1,i,j,(r7_redutionEnv env1 tail))| _ -> envt);;Lemma 6.4 (nfEta� implementations of the �-redution are unlean) The implementations of the�-redution by �-normalization for the three treated aluli are unlean.Proof.� For the ��, onsider the redution �((1["3℄[1["℄:id℄)1)!nfEta� 1["℄ = 2. But �((1["3℄[1["℄:id℄)1)!Eta�1["2℄[1:id℄!�� 2.� For the �se, onsider the redution �((4�12)1)!nfEtase 2. But '20(3�11) =se 4�12 and so�((4�12)1)!Etase 3�11!se 2.� For the �susp, onsider the redution �([[4; 1; 0; (2; 0) :: nil℄℄ 1)!nfEtasusp 2. But[[[[3; 1; 0; (1; 0) :: nil℄℄; 0; 1; nil℄℄ =susp [[4; 1; 0; (2; 0) :: nil℄℄ and so �([[4; 1; 0; (2; 0) :: nil℄℄ 1)!Etasusp[[3; 1; 0; (1; 0) :: nil℄℄!�susp 2. �In the sequel, we present a leaner way to implement the Eta rules avoiding the appliation of other rulesof the substitution aluli than the ones stritly involved in the �-redution.7 Clean implementations of EtaWe will adapt the above implementation idea, but will restrit the �-normalization of the term gen��((�M) �).The restrited �-normalization, alled �-pseudo-normalization, should propagate the dummy symbol betweenthe struture of the term M without applying extra rules of the substitution alulus.Essentially the idea for avoiding the appliation of extra rules of the substitution aluli during theveri�ation of the premise via pseudo-normalization is to apply rules only when ourrenes of � are deteted:l! r if � ours in lAs for all the other rules previously illustrated, our OCAML implementation divides the appliationof an Eta rule in two parts: detetion of redies and redution. For ��, gen��((�M) �) = M [�:id℄. The�-pseudo-nf(M [�:id℄) has been implemented as the funtion sig-norm in Table 13, where the ourdummy'sheks searh in linear time the ourrene of Dummy in exp. Note that in sig-norm exept for the rulesIdL, IdR and Clos, non trivial redutions are possible only if � ours. In ase these rules had beenonditioned like the others, it should be impossible to normalize very simple terms as for instane, 1[" Æid℄21



that are neessary for pseudo-normalizations as ((�1["2℄) �) !�s 1["2℄[�:id℄ !Clos 1["2 Æ(�:id)℄ !Asso1[" Æ(" Æ(�:id))℄ !ShiftCons 1[" Æid℄ !IdR 1["℄. Sine our objetive is to propagate the dummy symbolbetween the struture of the normalized term that non restrited appliation of these rules may be pointedout as a de�ieny beause extra rules may be applied during the �-pseudo-normalization.Table 13: �-pseudo-normalizationlet re sig-norm exp = math exp with Dummy -> Dummy | One -> One | Vr  -> Vr  |(*App*) Sb(A(e1,e2),sb)->(if ourdummy1sb(sb) then A(Sb(e1,sig-normsb(sb)),Sb(e2,sig-normsb(sb)))else exp)|(*Abs*) Sb(L(e1),sb)-> (if ourdummy1sb(sb) then L(Sb(e1,sig-normsb(Pt(One,Cp(sb,Up))))) |(*Clos*) Sb(Sb(e1,s1),s2) -> Sb(e1,sig-normsb(Cp(s1,s2))) |(*VarCons*) Sb(One,Pt(e1,sb)) -> (if (ourdummy1(e1) || ourdummy1sb(sb)) then sig-norm(e1) else exp) |(*Id*) Sb(e1,Id) -> (if ourdummy1(e1) then sig-norm(e1) else exp)and sig-normsb subs = math subs with Up -> Up | Id -> Id |(*SCons*) Pt(Sb(One,s1),Cp(Up,s2)) -> (if ((s1 = s2)&&(ourdummy1sb(s1))) then sig-normsb(s1) else subs) |(*ShiftCons*) Cp(Up,Pt(e1,sb)) -> (if (ourdummy1(e1) || ourdummy1sb(sb)) then sig-normsb(sb)else subs) |(*IdL*) Cp(Id,sb) -> sig-normsb(sb) |(*IdR*) Cp(sb,Id) -> sig-normsb(sb) |(*Map*) Cp(Pt(e1,s1),s2) -> (if (ourdummy1(e1) || ourdummy1sb(s1) || ourdummy1sb(s2)) thensig-normsb(Pt(sig-norm(Sb(e1,s2)),sig-normsb(Cp(s1,s2)))) else subs) |(*Asso*) Cp(Cp(s1,s2),sb3) -> (if (ourdummy1sb(s1) || ourdummy1sb(s2) || ourdummy1sb(sb3)) thensig-normsb(Cp(s1,sig-normsb(Cp(s2,sb3)))) else subs) | _ -> subs;;For �se, we have gen�se ((�M) �) =M�1�. And the se-pseudo-normalization of a �se-term, exp, is givenby the funtion se-norm in Table 14. This pseudo-normalization is simpler than the previous one, sine weare dealing with a sole entity and additionally the �se rewrite rules preserve, in a ertain way, the strutureof terms: the symbol � remains always as last argument of the term to be normalized. As a onsequene ofthis regularity, implementation of the pseudo-normalization is done via unonditional rewrite rules (withoutpremises \if ourrdumy"). Clearly, this represents an advantage over the other two aluli.Table 14: se-pseudo-normalizationlet re se-norm exp = math exp with Dummy -> Dummy | DB i -> DB i | Vr ->Vr |S(i,Vr ,Dummy)-> exp |(*si-dest*) S(i,DB j,Dummy) -> (if j<i then DB j else (if j>i then (DB (j-1)) else P(0,i,Dummy))) |(*si-app*) S(i,A(e1,e2),Dummy) -> A((se-norm (S(i,e1,Dummy))),(se-norm (S(i,e2,Dummy)))) |(*si-lambda*) S(i,L(e1),Dummy) -> L(se-norm (S(i+1,e1,Dummy))) |(*si-si*) S(i,S(j,e1,e2),Dummy)->(if i >= j then S(j,(se-norm(S(i+1,e1,Dummy))),(se-norm(S(i-j+1,e2,Dummy))))else exp) |(*si-phi*) S(i,P(k,n,e),Dummy)->(if i>=k+n then P(k,n,(se-norm(S(i-n+1,e,Dummy))))else (if i>k then P(k,n-1,e) else exp)) | _ -> exp;;In �susp this implementation is very similar to the one of ��. We have that gen�susp((�M) �) =[[M; 1; 0; (�; 0) :: nil℄℄. The funtion susp-norm in Table 15 implements the susp-pseudo-normalization ofa �susp expression exp. Observations done for the sig-norm of �� apply for the susp-norm of �susp: exeptfor three rules, one step redution is deided via the ourdummy's hek that runs in linear time on the sizeof exp. Rules r2 and r3 should be implemented without any Dummy. As for ��, this implies that other rulesthan those essential for the propagation of the � symbol may be applied during this pseudo-normalization.One may think there is a tradeo� beause of the inlusion onditionals, but the veri�ation of ourrenesof the Dummy symbol an be performed simultaneously when solving the mathing without additional ost.De�nition 7.1 (�-pse-nf implementation of the �-redution) For the aluli ��; �se and �susp thepreviously proposed implementation of the �-redution, that is formulated as the rewrite rule�(M 1)�!pse-nfEta�N if N = �-pse-nf(gen��(((�M) �); root)) and � does not our in Nis alled the implementation by �-pseudo normalization of the �-redution, denoted by pse-nfEta�.22



Table 15: susp-pseudo-normalizationlet re susp-norm exp = math exp with Dummy -> Dummy | DB i -> DB i | Vr  -> Vr  |(*r1*) Sp(Dummy,i,j,env) -> Dummy |(*r2*) Sp(DB i,0,j,Nilen) -> DB (i+j) |(*r3*) Sp(DB 1,i,j,Con(Ar(k),env)) -> DB (j-k) |(*r4*) Sp(DB 1,i,j,Con(Paar(e1,k),env)) -> (if (ourdummy3 e1) then susp-norm(Sp(e1,0,j-k,Nilen))else exp) |(*r5*) Sp(DB i,j,k,Con(envt,env)) -> (if((ourdummy3_Et envt) || (ourdummy3_Env env))then susp-norm(Sp(DB (i-1),j-1,k,env))else exp) |(*r6*) Sp(A(e1,e2),i,j,env) -> (if ((ourdummy3 e1) || (ourdummy3 e2) || (ourdummy3_Env env))then A(susp-norm(Sp(e1,i,j,env)),susp-norm(Sp(e2,i,j,env))) else exp) |(*r7*) Sp(L(e1),i,j,env)->(if ((ourdummy3 e1) || (ourdummy3_Env env))then L(susp-norm(Sp(e1,i+1,j+1,Con(Ar(j),env)))) else exp) |_ -> exp;;From the argumentations before the previous de�nition, one an onlude that the implementation of �-redution by �se-pseudo-normalization is leaner and more eÆient than the orresponding implementationsof �-redution for �� and �susp.Lemma 7.2 (pse-nfEtasusp and pse-nfEta� implementations of the �-redution are unlean)The implementations of �-redution by susp- and �-pseudo normalization are unlean.Proof. Observing the pseudo-normalization rules for these two aluli we an see that, for ��, the rulesnamed Clos, IdL and IdR must be implemented without onditional as the others, i.e., these rules do notpropagate the � symbol. The justi�ation for this an be found in the third paragraph of Setion 7.An analogous argument is used in the ase of �susp. �Lemma 7.3 (pse-nfEtase implementation of the �-redution is lean)The implementation of �-redution by se-pseudo normalization is lean.Proof. By diret inspetion of the pseudo-normalization rules of the �se-alulus (Table 15). Note thatall applied rules just propagate the � symbol. �The following three propositions show the ompleteness of the implementations of the Eta rules based onthese pseudo-normalizations, denoted by Eta� for � 2 f�; se; suspg, restrited for pure lambda terms.Lemma 7.4 Let M 2 �dB. The �-pseudo-nf of M [1:1["℄: : : : :1["k�2℄:�["k�1℄: "k�1℄ gives a term that pre-serves all ourrenes of terms inM orresponding to variables less than k unhanged, replaes all ourrenesorresponding to the the kth variable with �["k�1℄ and derements by one all ourrenes orresponding tovariables greater than k.Proof. We use the word variable for ourrenes of 1["k�1℄. By indution on the struture of M :� M = n. If n<k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄ !Clos1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄ !n�2Asso1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1))))℄ !n�1ShiftCons 1["n�1℄.If n = k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄!Clos 1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄!n�2Asso1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1))))℄!n�1ShiftCons �["n�1℄.If n > k then 1["n�1℄[1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1℄!Clos 1["n�1Æ(1:1["℄ : : : 1["k�2℄:�["k�1℄: "k�1)℄!n�2Asso1["Æ("Æ(: : : ("Æ(1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1))))℄ !n�1ShiftCons 1["n�1�k Æ "k�1℄ = 1["n�2℄.� M = (A B). Diretly by the indution hypothesis.� M = (�A). Then(�A)[1:1["℄ : : :1["k�2℄:�["k�1℄:"k�1℄ !Abs �A[1:((1:1["℄ : : :1["k�2℄:�["k�1℄: "k�1)Æ ")℄!kMap�A[1:(1["℄:1["℄["℄ : : :1["k�2℄["℄:�["k�1℄["℄:("k�1 Æ "))℄!Clos �A[1:1["℄:1["2℄ : : : 1["k�1℄:�["k℄: "k℄. And bythe indution hypothesis we an onlude. �23



Proposition 7.5 (Completeness of pse-nfEta�)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEta� N .Proof. Here we are interpreting the de Bruijn index k in the language of �� as usual by 1["k�1℄. Theproof is by indution on the struture of M .� M = n. If n 6= 1 then on the one side, �(n 1) !� n� 1. On the other side we have to thatn[�:id℄ = 1["n�1℄[�:id℄ �-pseudo-normalizes to n� 1. In fat, 1["n�1℄[�:id℄!Clos 1["n�1 Æ(�:id)℄!Asso1["n�2 Æ(" Æ(�:id))℄!ShiftCons 1["n�2 Æ(id)℄!IdR 1["n�2℄ = n� 1.� M = (A B). For A and B without ourrenes of the free de Bruijn index 1, by the onditionfor the appliation of the �-redution to (A B), we have that �(A 1) !� A0 and �(B 1) !� B0,where A0 and B0 are obtained from A and B by derementing all the free variables by one. Also,(A B)[�:id℄!App A[�:id℄ B[�:id℄. By the indution hypothesis the �-pseudo-nf of A[�:id℄ and B[�:id℄orresponds respetively to A0 and B0.� M = (�A). A does not own ourrenes of terms orresponding to the free de Bruijn index 2. Then�((�A) 1) !� �A00, where A00 is obtained from A by derementing all its free variables exept 1 byone. Thus applying Lemma 7.4 to the term M [�:id℄, we obtain the desired result. �Lemma 7.6 Let M 2 �dB. Then the se-pseudo-nf of M�i� gives a term obtained from M by preserving allfree de Bruijn indies less than i unhanged, replaing the ourrenes of the ith free de Bruijn index with'i0� and derementing all the free ourrenes of de Bruijn indies greater than i by one.Proof. Indution on the struture of M .� M = n. If n < i then n�i� !��dest n. If n = i then n�i�!��dest 'i0�. If n > i then n�i� !��destn� 1.� M = (A B). (A B)�i�!��app (A�i�) (B�i�). And by indution hypothesis we an onlude.� M = (�A). (�A)�i�!��� �A�i+1�. And by indution hypothesis we an onlude. �Proposition 7.7 (Completeness of pse-nfEtase)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEtase N .Proof. Indution on the struture of M .� M = n. If n > 1 then n�1�!��dest n� 1.� M = (A B). For A and B without free ourrenes of the de Bruijn index 1, we have that �(A 1)!�A0 and �(B 1) !� B0, where A0 and B0 are obtained from A and B by derementing all their freeourrenes of de Bruijn indies by one. Also, (A B)�1�!��app (A�1�) (B�1�), and by the indutionhypothesis we have that (A�1�)!Etase A0 and (B�1�)!Etase B0.� M = (�A). For A without free ourrenes of the de Bruijn index 2, �((�A) 1)!� �A00, where A00 isobtained from A by derementing all its free de Bruijn indies exept 1 by one. Also, (�A)�1� !����A�2�. Now by Lemma 7.6 we get the desired result. �Lemma 7.8 Let A and B be well-formed �susp-terms and k � 0. Then the rm-normalization of the well-formed term [[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ gives a term by derementing by one all free deBruijn indies greater than k ourring at A, replaing the kth free variable of A with B (atualized aordingto the ontext of the term) and keeps unhanged all other free ourrenes of de Bruijn indies.Proof. Similar to the proof of Lemma 3.15. �Proposition 7.9 (Completeness of pse-nfEtasusp)Let M 2 �dB. If �(M 1)!� N then �(M 1)!pse-nfEtasusp N .24



Proof. By indution on the struture of M .� M = n. If n > 1 then [[n; 1; 0; (�; 0) :: nil℄℄!r5 [[n� 1; 0; 0; nil℄℄ !r2 n� 1.� M = (A B). Similar to Lemma 7.8 using that [[(A B); 1; 0; (�; 0) ::nil℄℄ !r6 [[A; 1; 0; (�; 0) ::nil℄℄[[B; 1; 0; (�; 0) ::nil℄℄ and IH: [[A;1;0;(�;0) ::nil℄℄!Etasusp A0 and [[B; 1; 0; (�; 0) ::nil℄℄ !Etasusp B0.� M = (�A). For A without free ourrenes of the de Bruijn index 2, �((�A) 1) !� �A00, where A00is obtained from A derementing by one all its free de Bruijn indies exept 1.Now use [[(�A); 1; 0; (�;0) ::nil℄℄ !r7 �[[A; 2; 1;�0::(�; 0) ::nil℄℄ and Lemma 7.8. �8 Future Work and Conlusion[15, 3℄ showed that �-redution is of great interest for adapting substitution aluli (�� and �se) for importantpratial problems like higher order uni�ation. In this paper, we have enlarged the suspension alulusof [37, 34℄ with an adequate Eta rule for �-redution and showed that this extended suspension alulus,named �susp, enjoys onuene and termination of the assoiated substitution alulus susp (with Eta).Additionally, we used the notion of adequay of [26℄ for omparing these three aluli when simulatingone step �-redution. We onluded that �� and �� are mutually non omparable for � 2 fse; suspg but that�se is more adequate than �susp in simulating one step beta-redution. After all, although �� is a �rst orderalulus and the other two aluli are seond order, omparing them is not unfair sine the use of (built-in)arithmeti is standard in all modern programming environments. Reently Liang and Nadathur pointed outthe importane of having the possibility to ombine steps of beta-redution in pratial implementations,whih resumes to the ability of the alulus to ompose substitutions [31, 35℄. This results in naturalappliations for �� and the suspension alulus in ontrast to the �se. Consequently, it will be of greatimportane to study possible adaptations of the �se whih enable this property. In partiular, this wouldbe interesting if the work arried out for �se on HOU, an be mapped into the �t [26℄ whih is a alulus�a la �se but whih updates �a la ��. That is, �t does partial updating, like �� and the suspension alulus,whereas, �se does global updating. We leave this for future work.Moreover, we established the orrespondene of these Eta rules of the three aluli. This orrespondenemeans that the operational e�ets of applying these Eta rules over pure �-terms in the three aluli areidential. For the three aluli in question enlarged with adequate eta rules we showed how to implementthese eta rules. For the �se we build a lean implementation of the eta rule, that is, avoiding the appliationof other rules of the substitution aluli than the ones stritly involved in the veri�ation of the �-redies.And we proved that it is not possible to follow the same approah for the �� and �susp. We proved thatthese implementations are omplete in the sense that any �-redution for dealing with pure �-terms in deBruijn notation an be simulated by these Eta implementations. For the three treated aluli, the mainadvantage of our lean eta implementation approah is that it is loser than previous implementations tothe operational semantis of the usual �-redution of the �-alulus. Additionally, we have pointed out thatfor �susp as well as for the ��-alulus, in these Eta implementations, the appliation of rules not stritlyinvolved with the �-redution is neessary, but that this is not the ase for �se. We have also showed that forthe former two aluli, onditional rewriting rules whose premises are deided in linear time in the size of theterms in normalization are neessary while for �se this is done via non onditional rules whose appliabilityis deided by simple mathing of their left-hand sides. Our Eta implementation is being inorporated intoan ELAN prototype for simply-typed higher order uni�ation via �se.An immediate work to be done is to study two open questions: whether the se-alulus has strongnormalization (SN) [27℄ , and whether �susp preserves SN. Interesting points arise in this ontext sine: �seis more adequate in the simulation of one step �-redution than �susp; �se does not preserves SN [18℄; andthe substitution alulus of �susp has SN.Referenes[1℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit Substitutions. J. of Funtional Programming,1(4):375{416, 1991. 25
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