A system at the cross-roads of functional and logic
programming
Science of Computer Programming 19, 239-279, 1992.

Fairouz Kamareddine
Technical University of Eindhoven
Department of Mathematics and Computing Science
Den Dolech 2, P.O.Box 513, Eindhoven,
The Netherlands

November 30, 1996

Abstract

The type free A-calculus is powerful enough to contain all the polymorphic and higher
order nature of functional programming and furthermore types could be constructed inside
it. However, mixing the type free A-calculus with logic is not very straightforward (see
[Aczel 80] and [Scott 75]). In this paper, a system that combines polymorphism and higher
order functions with logic is presented. The system is suitable for both the functional and
the logical paradigms of programming as from the functional paradigms point of view,
the system enables one to have all the polymorphism and higher order that exist in
functional languages and much more. In fact even the fixed point operator Y which is
defined as A\f.(Az.f(zz))(Az.f(zz)) can be type checked to ((o¢ — a) — «)) where «
is a variable type. (Az.zz)(A\z.zz) can be type checked too, something not allowed in
functional languages. From the point of view of theorem proving, the system is expressive
enough to allow self referential sentences and those sentences that lead to Russell’s and
Curry’s paradoxes. However, the paradoxes do not hold due to the notion of circular types
which contain the type of propositions. In fact both sentences Az.—zzx and Az.zx — L
are ill typed according to the system, because their resulting types are circular. Hence
the application of either sentence to itself will not result in a proposition. The system is
implemented in Milner’s ML and can be seen as extending ML in two important ways.
First, it extends the part related to the functional paradigm in that it can type terms that
could not be typed in ML; namely, those are the terms that contain self application such
as the Y term above. Second, our system extends ML by adding logic to it in a consistent
way.

1 Introduction

1.1 Type freeness and logic

It is well known that mixing type freeness and logic leads to contradictions. For example, by
taking the following syntax of terms:
E:=x|FEE | x.E’ | -E |E' - E”

and applying the term Az.—zz to itself one gets a contradiction (known as Russell’s
paradox)!. Church was aware of the problem when he started the A-calculus which he intended
to be a theory of functions and logic. But his first theory of the A-calculus was type free and
so was inconsistent. The paradox could be described as follows:

The system had the following three concepts:

e Modus Ponens (MP): From E — E' and E, deduce E'.
e Deduction Theorem (DT): If I is a context, and ' U{E} - E' then I' F E — E'.
e (-conversion (3): (Az.E)E' = E[z := F'].

Now we will show that we can derive E for every term E. Let E be a term and let a =
Ar.(zx — E), then, from (MP), (DT), and (3), we could derive Curry’s paradox:

1 aa =aa — FE (8)

2 aa - aa Definition of
3 aa - F MP+1+2

4 Faa — E DT +3

5 F aa 1

6 FE MP+4+5

This of course, is a contradiction because we can prove anything in the system. The
presence of these foundational difficulties led to the creation of two routes of research. The
first route placed a big emphasis on logic and deduction systems, but avoided the difficulty
by restricting the language used to first or higher order without allowing any self-reference or
polymorphism. The second route placed the emphasis on the expressiveness of the language
and the richness of functional application and self reference, but at the expense of including
logic in the language except if restrictions are made (such as using non-classical logics).
Church, for example, followed Russell and introduced the simply typed A-calculus. However,
it became obvious that the theory had many unattractive features. Of these features we
mention that at each level we should have a natural number system, such that the numbers
at each level n say, are different from those at level n + 1. Moreover, polymorphic functions
(that is functions which take arguments from many levels such as the polymorphic identity
function) do not exist. Church and others then decided to enrich the syntax and the language
but to avoid or restrict logic, hence the type free A-calculus.

These two routes resulted in a gap between well worked out logics (where we have a
sophisticated body of axioms and rules) and fully expressive languages (which allow the
presence of a rich variety of terms including the self-referential ones). The need to remove the
gap created various theories such as Martin-Lof’s type theory and Feferman’s Ty which were
polymorphic, allowed self reference and contained a big fragment of logic ([Martin-Lof 73]
and [Feferman 79]).

While the polymorphically typed languages which contained logic (such as Martin-Lof’s
and Feferman’s) were being developed (we call this route 3 in the history of foundation), two
disciplines in programming were already doing well producing implemented systems based

LOf course here it might be questionned whether this is actually a contradiction. In fact, in the type free
A-calculus, every term has a fixed point. In particular, the term Az.—x has a fixed point E such that £ = —FE.
Once we allow propositions to be a part of our terms however, we have to explain this phenomena of £ = —F.
We may run to three valued logic, but if we wanted to keep to two valued logic, we have to find a persuasive
explanation that there is no paradox.

on routes 1 and 2 above. The first discipline, logic programming, concentrated on theorem
proving and prolog, where the foundation was taken from route 1 but in the least courageous
way by using the bare minimum language (first order) which assures safety from the paradoxes.
The second discipline, functional programming, concentrated on implementing polymorphism
and self reference where the foundation was taken from route 2, but at the expense of logic
and deductions.

The above history does not include the semantics of type free theories which combine
expressiveness and logic. In fact, the models of the type free A-calculus alone were not obvious
and it was in an attempt to prove their non existence, that Scott managed to construct such
a model. Since then a variety of such models were constructed. These models however
cannot model the addition of logic to the type free A-caculus. The reason for this is that
even though —,V,V are continuous, the presence of V will trivialise the model. For we would
get that (Vd € D)([[Fllgja/a] = 1) & [[Fllgju/a) = 1 where u is the bottom element of the
domain. In other words, the ordering relation on Scott domains makes predication trivial.
For, a predicate P is true of all the objects in the model iff it is true of the bottom element.
Both semanticians and computing scientists, however, share an interest in quantification and
hence this problem of predication that faced Turner (in [Turner 84]) is a major issue for those
interested in the semantics of either computer or natural languages and who base their work
on Scott domains. The problem can be described as follows: Assume a language which has
both objects and functions and assume that wifs are built out of other ones using A, V,V,d,.. ..
If the model is a Scott domain F, then there is no problem interpreting anything which is not
a quantified sentence, as the interpretations of all such things are continuous functions and
hence belong to the model. The interpretation of the quantifiers however will be problematic.
This is because if we take the following interpretation for the quantifiers V and 3

1 if for each din D, [[¢]]g(a/e) = 1
[Vxglly =4 0 if forsome din D,[[¢]]g[a/z) =0
L otherwise

1 if for some din D, [[¢]]g[a/2) = 1
[Bzd]ly =4 0 ifforeach din D, [[(b]]g[d/m] =0
1 otherwise

Then the following is a proof of the continuity of the quantifier clause for V:

Assume by induction that we have [[¢]] is continuous where ¢ does not involve quantifiers.
To prove the continuity of [[Vz¢]] (i.e. to prove it in [ASG — E] where ASG is the
collection of assignment functions), we prove it continuous separately in each of its arguments,
according to a theorem related to semantic domains.

Let us prove the continuity of [[Vz¢]] for g in ASG. Take an w-sequence (g,), and prove

that: [Vz¢llug, = U[[Vd]]g, -

e Assume [[V2¢||ug, = 0 <= by definition,

(3d € D)([[¢]lugn[d/z) = 0) <= by induction,

(3d € D)(V[[9llg,[d/2] = 0) <= by the structure of Booleans,
(3d € D)(Fn € w)([[Bllg,[4/z) = 0) <= by logical laws,

(In € w)(3d € D)([[Bllg, [4/z) = 0) <= by definition,

(In € w)([[Vzglly, = 0) <= by the structure of Booleans,
Ul[Vadlly, =0

e Assume [[Vz¢||ug, = 1 <= by definition,

(vd € D)([[¢]lugn[d/z) = 1) <= by induction,

(vd € D)(U[[9llg,[d4/z) = 1) <= by the structure of Booleans,
(Vd € D)(3n € w)([[Bllg,[d/z) = 1) <= u C d and monotonicity,
(In € w)([[#]lg,[u/z] = 1) <= monotonicity,

(In € w)(Vd € D)([[Bllg, 4/« = 1) <= by definition,

(In € w)([[Vzdllg, = 1) <= by the structure of Booleans,

UlVaglly, =1

Therefore [[Vz¢]] is continuous.

By adopting this definition, we have: [[Vz¢]], = 1 iff (Vd € D)([[9]]ga/2] = 1)-

As [[¢]] is continuous, therefore monotonic and as u C d (where, as noted above, u is the
undefined) for each d in D then we get: (Vd € D)([[#]]gja/z) = 1) i [[Pllgu/z) = 1-

This clause has serious consequences. I shall illustrate this by taking in the formal language
an element v’ which names u (Le. [[u']]; = u always). Now see what happens if we take ¢ to
be: x = u/. Applying the above clause we get:

[z = u'llgju/a) = 1 iff (Vd € D)([[x = u']]4[a/s) = 1) which implies:

u=u iff (Vd € D)(d = u).

That is absurd.

Hence, even from the model theoretical point of view we have a problem of combining
type freeness and logic. Of course, models of the type free A-calculus with logic exist and we
mention two of them ([Aczel 80] and [Scott 75]).

In summary, theories and models for the type free A-caculus with logic are needed. Such
theories and models have been offered by various people and in various ways. Of the con-
tributions to the model problem solution, we mention the work of Scott in his combinators
and classes, Feferman in his recursive models of Ty and Aczel in his Frege structures. There
is also the famous method of constructing models using the stabilisation ordinal theorems of
Gupta-Herzberger. Solutions to the theory were proposed by Aczel, Feferman, Scott, Flagg
and Myhill, Fitch, Girard, Gilmore, Turner, Skolem, Ackerman and infinitely more. Those
solutions restricted one or more of the three concepts which lead to Curry’s paradox. That is,
the solutions restricted either g-conversion, or MP or DT. From the programming paradigms
point of view, very few attempts have been made at combining expressiveness with logic. The
need, however, for the combination of expressive languages and strong logics is unquestionable
(see [Feferman 84]). In fact, there is no doubt that we need full expressiveness in computing
science and that we need to express self referential terms. It is well known for example, how
important it is to discuss the semantics of recursion using the presence of the fixed point op-
erators. Logic moreover, is at the heart of programming language semantics and of theorem
proving. How can we hence push away logic only because we need expressivity and because
expressivity and logic lead to paradoxes?

Therefore, this paper aims at providing a very clear system which extends ML in exactly
those two areas of expressiveness and logic and which is consistent. The solution should of
course be to keep as much as possible of expressivity and logic without facing the paradoxes.

Of course we will face the question that there are other systems which are expressive and
have logic in them. Paulson’ HOL is such a system. Our reply is that, yes HOL is expressive
and have logic in it but its expressivity in terms of self referential terms is similar to that of
Milner’s ML. In fact the originality of HOL is that it combines logic to a system as expressive
as ML. Our system on the other hand combines logic to a system more expressive than ML.
So for us not only we have logic, but we have also self referential terms that could not exist
in ML, such as Azx.zz and Af.(\z.f(zx))(Ax.f(zx)).

1.2 Type freeness and Polymorphism

Before we dive into this section, let us attempt to explain what we mean by type freeness
and polymorphism. We understand by a type free theory, a theory where terms are well
structured but all information about types is unimportant. In such a theory, any two terms
can be combined together to result in a term. This is something not accepted in some type
theories where two terms can only be combined together if their types match.

Example 1.1 A\x.x is a type free term and the term (Axz.z)(Azx.x) is a legal one. In some
type theories however, we have to say what is the type of x in Ax.x. For example, Ax : e.x
where e is the type of objects, is of type e — e. In such a theory, \x : e.x cannot be applied
to itself, but only to things of type e.

The notion of polymorphism however is quite different from that of type freeness. We say that
a theory is polymorphic if functions are not statically typed and the concept of function is
defined by what the function does independently of the specific domains on which it operates.

Example 1.2 A theory where the identity function Ax.x has for type o — « where « is
a variable type, is polymorphic in that o can be instantiated to any type, such as integers,
booleans and so on. In a statically typed language however, the identity function has to be
given its type at the start and so we speak of the identity function over the integers, the
identity function over the booleans and so on.

Of course there are levels of polymorphism. A theory may allow some functions to be poly-
morphic and not others. A type free theory on the other hand may result in different notions
of polymorphism depending on the concept of type built on the top of it.

Example 1.3 The language ML of Milner is based on Curry’s language A_, Curry (see Sec-
tion 2.1). This language has for syntazx of expressions that of the type free A-calculus, yet this
language is not polymorphic enough to allow terms such as Ax.xx to be typechecked. This is
due to the non rich notion of type built on it.

So far we have only talked about the concepts of type freeness and polymorphism without
talking about their relation to programming languages. Programming languages however,
whether functional, logic or object oriented languages, are facing the problem that their
underlying formalism is not polymorphic, or type free enough. In fact, imperative languages
such as Pascal are based on the idea that functions, procedures, and hence their operands
have a unique type (such languages are said to be monomorphic). Such a problem of strict
typing is faced by many programming languages and attempts have been made in order to
avoid the problem. In fact now, one finds functional languages (such as Milner’s ML) which
are polymorphic.

Example 1.4 The function len which finds the length of a list can be defined in ML as

follows:
rec
len [=0
|| len (a.x) = len z + 1
end

where the only important fact about the function len is that its argument is o list which could
be a list of integers, characters, Boolean, or a list of lists. That is:

len: (list *a) — integer, where *a refers to type variables.

If a user wanted to find the length of a list of integers then *a would be specialised or
instantiated to integer and the function len would now possess the type [integer] — integer.

Object oriented languages too are beginning to accommodate polymorphism. This is because
in object oriented languages, the notion of data type is very important and in these data types
there are definite sets of operations which need to be instantiated with different instances.
Therefore these sets of operations will need to be defined polymorphically. Moreover, the
notion of inheritence in these languages is also very important and an object inherits the
properties of other objects above it in the graph. In this inheritence process properties too
will have to be instantiated; this instantiation is nothing more than a specialisation of a
polymorphic object.

The polymorphism used so far however in programming languages, is still not strong
enough to allow self-referencial terms such as the fixed point operator Y which is defined as
A .(Az.f(zxx))(Az.f(xzz)). Such a Y cannot be given a type in languages such as ML and
hence cannot be used as expressions in those languages. The terms w = (Az.zz)(Az.zx) and
R = (Az.—zx)(Ax.—zz) face the same problem as Y. However, we think it important that
terms like Az.zz and Y exist in any formulation of programming languages if only because of
self reference and self application that exist in such languages.

It might be argued that Az.xx and Y are not needed, by saying that instead of (Az.zx)f
one can use (Ax.\y.xy)ff, and Y can be defined by its characteristic equation YE = E(Y E).
We disagree with this opinion because in languages like ML, even though f in (Az.\y.zy)f f,
gets applied to f, the first f is of a different type than the second one. In fact the two
functions f are different functions (for they have different types) even though they do the
same thing. Hence in languages like ML, we do not have real self application. Furthermore,
in such languages, it is impossible to typecheck Ax.zz or (Az.xzx)f. On the other hand,
assume we work with a language which actually does have real self application, and where
(Ax.Ay.xy) f f actually applies f to itself. This means that f (even though polymorphic) takes
an element of its whole type as an argument. This approach we agree with, and even though
Az.Ay.xy and Az.xx work in a similar way for f, they are still different functions. In other
words here, typechecking usually assumes the following two principles:

1. All occurrences of a variable which are bound by a given A\ must be assigned the same
type.

2. Distinct occurrences of a given free variable are allowed to be assigned different types.

Example 1.5 In (Ax.zz)f, both occurrences of x in xx have the same type, whereas in
Az Ay.xy) f f, the two occurrences of f have distinct types.

According to ML’s approach which assumes those two principles, Az.zx cannot be typechecked
because types don’t usually contain their arrow types. Hence if = is of type a — (3, how do
we know that this x accepts an object of type o — (3 as an argument? Our approach on the
other hand, assumes these two principles too, but there is the extra condition that always
(o = B) < a. Hence if z is of type a — 3, it is also of type a. So x has two types « and
a — (. Moreover, zx is well defined and of type . Also, in (Az.\y.xzy)f f, according to our
approach, the two occurrences of f have the same type a — 3, but also this type < «. Hence
f has two types, a and a — 8.

In the system offered in this paper, we start from the type free lambda calculus. Hence
everything starts without a type, and all combinations of terms are allowed. In fact, anything
can be applied to anything else and the result is a term. If we come to typecheck any term
which does not contain free variables, then its type is given if it exists. For example, Az.zx
is type checked to (o — 1) — ay. However, if we ask to typecheck z in an environment
where the type of x is undefined, then an “error message” will result. We should typecheck
2 in an environment in which z is declared to be of a particular type. Now if we typecheck
(Az : p.x)y in an environment where y is an object (we write y : €) and where p is the type
of propositions then an “error-message” will result informing us that p and e mismatch as
types. This is of course the case because e is not subsumed by p, and the system deduces that
(Az : p.x) which is of type p — p cannot apply to arguments of type e, but can only apply to
terms whose type is subsumed by p (i.e. who are contained in p). If however we typecheck
(Ax : ap.x)y where y : o1 and «p, a1 are type variables, then the system will deduce that
the type of (Ax : ap.z) is ap — «p and it will try to check and see if ag < a1 but as oy
is a variable, the system makes «; become oy and returns ag as the result. Of course in
this section we have mixed the mathematical activity of attributing a type to a term and the
mechanical activity of typechecking a term. These two activities are unquestionably different
things but our paper is concerned with both.

1.3 The paradise of the type free lambda calculus

Let us start by asking a few questions and attempting to answer them. These questions
concern the notions of “types”, “typed” and “type free” theories. “Type” is this construct
that we associate to a term in a typed theory so that we can make sense of some term
combination. In a type free theory on the other hand, any combination is allowed.

Question 1. Are types or levels necessary in the avoidance of the paradoxes?.

Answer Not necessarily. For example, ZF was another solution to the paradox where
we don’t need to classify sets iteratively ([Boolos 71]), yet the Foundation Axiom FA was
included in ZF despite the fact that it was shown that antifoundation axioms are consistent
with ZF (see [Aczel 84] for such a discussion). The Foundation Axiom FA is (3z)(z € a) —
(3z € a)(Vy € z)-(y € a). As a corollary of it, we do not get solutions to x = {z}, or
x = {{z}}. Moreover, the inclusion of FA was unnecessary and it was not the responsible
axiom for avoiding the paradox.

Question 2. Are types needed?

Answer Yes of course. The fact that we ask for the full expressive power of the type free
A-calculus does not mean that types are not needed. In fact when we ask for a type free set
theory, or a set theory where the definition of a set may be impredicative, we don’t go and
forget completely about sets. In type free theories, one asks for the furthest expressive power,
where we can live with self reference and impredicativity but without paradoxes. The better

such an expressive system is, the more we are moving towards type freeness. Just it is enough
to remember that up to the construction of the paradoxes, the ideal system was of course
type free. Due to the paradoxes, helas this type free paradise had to be abandoned. Types
too found an attractive place in the history of foundation and in most areas of applications
of logic. For after all types help in the classification of programs, in the mixing of terms and
so on. And moreover they play an important role in explaining the paradoxes (if such an
explanation is actually possible). For example, Girard’s system F ([Girard 86]) is no less type
free than Feferman’s theory Ty yet types play a valuable role in that system with respect to
impredicativity. The difference between F and Ty might be in the explicitness or implicitness
of the typing scheme. Now even though one works in a type free system such as that of
Feferman, one needs to introduce types such as recursive types, dependent types and the like.
After all many of our proofs are for a particular collection of objects and not for all possible
objects. Exactly as in set theory, intersection, union and so on are absolute necessity. Note
also that a fully type free language cannot accommodate an unrestricted logic together with
an unrestricted B-conversion.

Question 3. So if types are needed why talk about type free theories? Why not ignore
type freeness?

Answer. The reason is that we may not want to be inflexible from the start if we could
afford to be flexible. Type free theories are very elegant and simple, so we can have a clear
picture of how much we have and how the paradox is avoided. Then the detail of constructing
types if followed will produce all the polymorphic higher order types that are needed. So a lot
of unnecessary details (like constructing types) are left till later which will make it easier to
prove results about the strength of the system, the expressive power, completeness and so on.
Also from the point of view of computation, type free theories could be regarded as first order
theories and hence are computationally more tractable than typed theories. Completeness
also holds for first order logics but has to be forced for higher order ones. Hence what I am
arguing for is the use of type freeness followed by the construction of flexible polymorphic
types. It is also the case that the self referentiality of language requires type freeness. So
we can talk about a property having itself as a property. For example, the property of those
things equal to themselves has itself as a property.

That programming language theory needs a type free background to capture polymor-
phism and self reference, and that programming languages are implicitly typed, makes it
desirable to have a type checking algorithm. Type checking ensures that the application
of a function to its arguments is done properly. The purpose of type-checking is to avoid
nonsensical operations like adding a character to a truth value. More precisely a type error
occurs if a function F, of type T — T”, is applied to an argument which is not of type 7.
In this paper, self reference is allowed and paradoxes are avoided in our theory which starts
type free but where the type checker finds those types that are legitimate. In fact, we do not
work with and construct types inside the A-calculus as a theory of functions only, but aim
for the most expressive part which contains logic yet remains consistent. This is done in the
system where everything starts by being a term of the type free A-calculus. Hence everything
starts without a type, and all combinations of terms are allowed. In fact, anything can be
applied to anything else and the result is a term. However only the typeable terms can be
typechecked and the result of the typechecking is their type. For example, the self-application
function Az.xz, which takes a function and applies it to itself is typable and is type checked to
(g = 1) — a1, according to our typing system, where «y, «; are variable types. Our way of
avoiding the paradox is by disallowing special kind of types, the circular types. Those circular

types have the form (ap — a1) — a3 where oy < p, where p is the type of propositions.
Hence above even though we said that Az.zx is typable, the type of its abstracted variable
x, cannot be (op — «1) where oy < p. This system is the type free system where all types
except circular ones can be constructed.

2 Type Theory and polymorphism

In Type Theory, various formulations of the typing systems have been provided, some of
which can type check Az.zx and/or Y and some cannot (see [Barendregt, Hemerik 90]). All
these type systems, use the following as their underlying syntax of types s = z|c|s — s
which says that a type is either a variable or a constant or an arrow. Type systems such as
A2, A, and A (see [Barendregt, Hemerik 90]), add other types to this set of types in order to
typecheck more terms such as Y and Az.zx; those which use only the above syntax of types,
even though they can be polymorphic, they cannot typecheck Y or Ax.zx. Milner’s ML is
such an example; it is based on the system A_, of Curry (see [Barendregt, Hemerik 90]) which
uses the simple syntax of types T' ::= ac|T" — T, and it is unable of typing Y or any term
which involves self application except in an ad-hoc way.

Let us here overview A_,, A2, A\, and An and see what they can do for Az.zz and Y. In
these systems we understand by an environment I' to be a partial function from term variables
to the set of types. This is given by the following definition:

Definition 2.1 An environment is a set of type assignments (V : T') which assigns the type
T to the variable V', such that a variable is not assigned two different types. We let I' range
over environments.

Notation 2.2 When (V : T) € T', we say that the type of V in the environment T is T.
Moreover, we define the free variables of a term T, FV(T), in the usual way and say that
Ve FV(D) iff Ve FV(T") for some (V',T") € T. Moreover, the notation T' = E : T means
that from the environment I', we can deduce that the expression E has type T.

2.1 The system A_Curry

Definition 2.3 (Exzpressions and Types of A_, Curry)
Ezpressions are E :=V|EE3]A\V.E
Types are T == alc|T — T

Definition 2.4 (Rules of A_, Curry)
Rules of A_, Curry are defined as follows:

(V:T)el (1)

rev:T

'EE :T =17 '-Ey,:T @)
'-EEy: 17

(V:T)UT+HE:T' 3)
PEANVE:T =T

Example 2.5 In A, Curry, Ax.\y.xy can be seen to be of type (T — T') —- T — T’ as
follows:

(i) x:T =T hyp

(i1) y: T hyp

(111) x:T—T (i), reit

(iv) xy: T (i), (i), (2)

(v) Ayay: T — T (i) ... (iv), (3)
(vi) e yxy: (T —-T')—>T —T (i) ... (v), (3)

In)\, we cannot typecheck Az.zx nor Y.

2.2 The system)\,

Definition 2.6 (Ezpressions and Types of \2)
Ezpressions are E ==V |E1E2|A\V.E
Types are T ::= a|c|T — T|Va.T

Definition 2.7 (Rules of \2)
Rules of Ay are (1) + (2) + (8) + (4) + (5) where:

' E; :Va.T

I'FE :Ta:=1T (4)
r-E:T adg FV(T)
'+ E:VaT (5)
Example 2.8 In \o, that Ax.zz is of type Va.(V3.8) — « can be seen as follows:
(i) z: V6.3 hyp
(ii) z: 68—« (1), (4)
(i) z:f (1), (4)
(iv) TT (i), (i), (2)
(v) Ae.xz : (VB.0) = « (i) ... (), (3)
(vi) Ar.zz : Va.(VG.0) = « (v), (5)

However, The fixed point term Y is not typable in Ag nor is (Az.xzx)(Az.zx).

2.3 The system),

Definition 2.9 (Ezpressions and Types of \,)
Ezpressions are E :=V |EE3y]A\V.E
Types are T == alc|T — T|pa.T

Moreover, in A, we need the following concept:

Definition 2.10 (Approzimation of Types)
We say that T ~T' iff S(T) = I(T") where S(T') is a tree defined as follows:

o) =«
J(e)=c

10

(T -1 =

1

S(pa.T) = S(T[a := pa.T)) if “defined”, else e.
Example 2.11 Here are two terms and their corresponding images by .
1. S(poa) =o

2. S(pa.a — a) =

S(pa.a =a) S(pa.a — a)

Definition 2.12 (Rules of \,)
Rules are (1) + (2) + (3) + (6) where
'FE :T T~T (6)
FFE : T

Example 2.13 Let T' = pa.(a = T), then T' =~ T' — T. Now, \x.xzz gets the type T' — T
as follows:

(i) x: T hyp

(ii) z: T =T (i), (6)

(iii) zx: T (i), (i), (2)
(i) \e.xx : T' — T (i) ... (ii) (3)

Example 2.14 That Y is of type (I' - T) — T can be seen as follows:
() f:T—T hyp

(1) x: T hyp

(iii) 2T =T (ii), (6)

(iv) xx: T (i), (i), (2)

(v) flza) . T (i), (i), (2)

(vi) Ae.f(zx): TM =T (i) ... (v), (3)

(vii) Ao f(xx) : T (vi), (6)

(viii) Az f(xx))Ae.f(zz) : T (vi), (vii), (2)

(iz) Nf.(Az.f(zz)) e .f(zx) : (T =-T)—=>T (i) ... (viii), (3)

(Az.zx)(Az.xx) can be typechecked to T'. Moreover if we started with 77 = po.a — «
then we could typecheck Y (Az.xzx) to T".

11

2.4 The system \n

Definition 2.15 (Ezpressions and Types of An)

Ezpressions are E :=V|EE3y]A\V.E

Types are T ::= a|c|T — T|T NT with w a constant type.

Types are ordered by < and where T < w for every type T. Moreover, < is symmetric,
transitive, closed under intersection and satisfies amongst other things that T NT' < T'.

Definition 2.16 (Rules of \n)
Rules are (1) + (2) + (83) +(6) + (7) +(8) + (9)+ (10) where

TFE :TNT

7
'FE :T F'EE T ™
B :T FPFE :T (8)
'FE :TNT
'FE, :T T<T)
'=E -1
10
'FE :w (10)

Example 2.17 That A\x.zx has type (TN (T — T")) — T" can be seen as follows:
(i) z:TNT—-1T) hyp

(ii) z:T =T (@), (7)

(iii) z:T (i),(7)

(iv) xx: T (19), (4i1), (2)

(v) Aexx: (TN(T —T)) - T (i) ... (), (3)

In An however, (Az.zz)(Azx.zx) gets the type w due to the failure of the system in finding
the more specific type for it. Moreover, Y is not typable in An.

Our aim in this paper is not to extend the syntax of types by allowing forall, recursive or
intersection types as in Az, A, and An, but to provide a typing system similar to ML, except
that the matching between types takes a different form than that in ML. The reason why ML
cannot typecheck Az.xx and Y is that even though ML is based on the type free A-calculus,
its typing principles leave xa — xb and *a (where *a and *b are any types) incomparable.
On the other hand, the structure of the models of the type free A-calculus demands that
(*a — *b) < *a, and this ordering is the basis of applying functions to themselves. Take for
example, Ax.zx, the operator occurrence of x requires that x be of type xa — *b, and for this
occurrence to apply to x,x must also be of type *a.

Like ML we will construct a polymorphic type system based on the type free A-calculus.
Unlike ML however, the relation between types will include that every arrow type is in-
cluded in its domain space. This system will allow typing the self referential term Y =
A .(Az.f(xx))(Az.f(zz)), the self application function Az.zz and all the possible mixtures of
Y and \x.zx.

12

3 The system L)

3.1 Expressions

Let our term variables be z,2',y,y,2,2" ..., let V,V', V" ... range over these variables,
let ap,aq,... be our type variables and let 3,3y, 31 ..., range over these variables. We let
E,E',E”,...E\,Fs,...,®,U,..., range over expressions and T', 7', T}, T5, . . . range over type
expressions.

Definition 3.1 (Types)
We will construct types inside this language as follows:
T ::= (| Basic | (Ty — T3)
Basic ::=p|t]e

Here p is the type of propositions, ¢ is the type of truths (that is of all the true propositions)
and e is the type of objects. In fact e contains everything, variable types, basic types and
arrow types. This is the case due to the subsumption relation < on the types defined in
Definition 3.8.

Definition 3.2 (Ezpressions)
We assume the following syntax of terms:

E = V|(E1E)|(A\V.E)|QE|(AV : T.Ey)|(E1 A E2)|(E1 — Eo)|(=Ey)|(VV.E)|(VV : T.Ey)

Hence as seen from the syntax, we work inside the type free A-calculus with logic but we also
allow types. All the above terms should be obvious except for QF. This is to be understood
as saying that F is a proposition. It is needed to make the construction of logic inside the
type free A-calculus non paradoxical (see [Kamareddine 89], [Aczel 80], [Beeson 84]). More
precisely, even though (Az.—zz)(Ax.—zz) = —(Az.—zz)(Ax.—~zz), the paradox does not arise
because there is no way to prove that Q(\z.~zx).2 Finally, we assume the usual conventions
for the dropping of parentheses when no confusion occurs and say that £ = E’ iff E and E’
are exactly the same.

Definition 3.3 (Substitution)?
We define E[E'/V] the result of substituting E' for each free occurrence of V in E as
follows:

20ur syntax of terms (excluding those that involve logic) is similar to that of Milner except that we do not
include the f, let and fiz constructs; these can however be built out of other ones.
3These rules are used in the implementation in Section 7.

13

S [VIE/V]=F

(S2) | VI[E"/V]=V"if not (V! =V)

(53) | (BrE)[E'/V) = (B:[E'/VI) (B[V)

(Ex A ES)[E'/V] = (EA[E'/V]) A (Eo[E'/V])
(11— Ey)[I/V] = (By[I7/V]) — (By[E'jV])
(SE)[E'/V] = ~(E[E/V])

(S4) | If M is V or M is V : T then
(AM.E})[E'/V] = AM.E;

(VM.E)[E' V] = VM.E,

(S5) | If M" is V' or M' is V' : T then

(S6) | If (M" is V' or M' is V' :T) and (M” is V” or V" : T) then
AM'".E)[E'/V] =AM .E([V” /V'|[E']V]

if not (V' =V) and V' € free(E'), and V € free(E1) and V" & free(E'Ey)
(YM'.E)[E' V] = VM B[V VI|[E' V]

if not (V' =V) and V' € free(E'), and V € free(E1) and V" & free(E'Ey)

(AM".Ey)[E'/V] = AM".EL[E'/V] if not (V' =V) and V' & free(E') or V & free(E;)
(VM'.Ey)[E'|]V] =VM'.E{[E'/V] if not (V' =V) and V' & free(E') or V & free(E)

As we said before, the typed terms are built out of the type free ones. Hence, we will
restrict attention to the untyped fragment. We assume the well known three axioms of the
type free A-calculus (there are of course other axioms and rules which will be gradually
introduced below):

Definition 3.4 (Azioms of the type free A-calculus)
The following three axioms are assumed in our system:

() \V.E =4 \V.E[V'/V] ifV' & free(E)
(3) (\V.E)E' -4 E|E'JV]
(n) \VV.EV —y E ifV & free(E).

We write E =3 E' (respectively E —, E' and E —,, E') iff E' is obtained from E by reducing
any subterm of E using () (respectively («) and (7)).

If E —3 E' (respectively E —, E' and E —, E') then we say E [-reduces (respectively
a-reduces and 7-reduces) to E'.

If an expression may be reduced by (3) or (n), we say that it contains a (-redex or an
n-redex. An expression of the form (AV.E)E' is called a (3-redez and the corresponding term
E[E'/V] is called its contractum. An expression of the form A\z.Ex where x ¢ free(E) is
called an n-redex. Its contractum is E.

Definition 3.5 (Reduction)
We define < to be the rfelezive and transitive closure of — where E — E' < E —g E' or
E —, E or E =, E'. When E < E', we say that E reduces to E'.

Definition 3.6 (Equality)
We define equality to be the smallest equivalence relation containing <. If E = E', we say
that E equals to E'.

Definition 3.7 (Normal Form)
An expression is in normal form if it does not contain an n-redex or a (B-redex, an expres-
sion E has a normal form if E = E' for some E' in normal form.

14

3.2 Types and their semantic justification

As explained at the end of Section 2, the reason why ML cannot typecheck Azr.xx and Y
is that even though Milner’s ML is based on the type free A-calculus, its typing principles
leave *a — xb and *a (where *a and b are any types) incomparable. On the other hand,
the structure of the models of the type free A-calculus demands that (xa — %b) < *a, and
this ordering is the basis of applying functions to themselves. Based on this observation, the
relation between types will include that every arrow type is included in its domain space.
This relation < is defined as follows:

Definition 3.8 (Subsumption Relation)
The ordering/subsumption relation on types is given by the following rules:
i)T <e
i)t <p
i) (T —-T)<T
w) T <T
v) if T<T and T' <T then T =T'
vi) if T <T' and T' <T” then T <17
vig) if T <T' then (Th = T) < (T1 - T")

In other words, everything is an object, true propositions are propositions, < is a partial
order and (7" —) is monotonic. moreover, it is mainly clause iii) which enables us to have self
application in the system.

We say that by (T' < T"), T subsumes T"; intuitively it means that any expression which
is of type T is also of type T".

Due to the presence of logic and self application, we will use the notion of circular types
defined in Definition 4.14, to avoid the paradoxes. When an expression E has type T we
write F : T. In particular we write ® : p for ® a proposition and ® : ¢ for ® true. We write
T = T' if the types T and T" are syntactically the same. Our syntax of types is very similar
to that of Milner ([Milner 78]) except that we restrict attention to the domain e which is a
model of the type free A-calculus. We follow Milner in defining monotypes to be types which
contain no type variables and use u, v, I, to range over monotypes. As Milner we use the
word polytype to describe that a type may contain type variables.

3.3 The typing rules with respect to the new ordering and the typing of Y
and self application.

We carry over here the definition of an environment and the notation I' = E : T" as given in
definition 2.1 and Notation 2.2. The following rules associate types to the expressions of the
type free part. Those expressions involving logic will be type checked later.

Definition 3.9 (Typing \-expressions) The following typing rules accommodate in the usual
typing rules, the notion of ordering:

(V:T)eTl
r=v:T (11)
'-E:T T<T

'FE:T' (12)

15

'FE:T—>T 'EEy:T

1
Fl‘ElEQ:T’ (3)

{(V:T)}uTHE:T'

F'EANVE:T =T (14)

From the above, it is obvious that some expressions have many types. For example, Az.x is
of type o — « for any type variable a.

Now let us illustrate with typing Az.zz and Y.

Example 3.10 Az.zz has type (g = 1) = ay:
(1) T:iap— ap Assumption
(1) ap = a1 < ap clause 1) of <
(113) e (i), (ii), (12)
(iv) TT o (i), (iii), (13)
(v) Az.zx : (ap — 1) = g (i) ... (v), (14)

Example 3.11 Af.(Az.f(zx))(Az.f(zx)) has type (ae = ag) = ag:

(i) fias— ay assumption

(i1) z: (] = ag) = ay assumption

D), (1 = ag) > as < a1 = s clause 1) of <
(iv) Tap = ay (i), (i), (12)

(v) TT Qg (i), (iv), (13)
(vi) flaz) - ag (i), (v), (13)

(vii) Ar.f(zz) : (o = a) = o) = o (i) ... (vi), (14)

(viii) (a1 = ag) = ag) = ag < (] = ag) = ag clause i1i) of <
(iz) Av.f(xz) : (a1 = ag) = ag (vii), (viii), (12)

(z) (Az.f(zx))(Az.f(zx)) @ g (113), (iz), (13)

(zi) A\f.(Ax.f(zx))(Az.f(zz)) : (g =) = o (i) ... (z), (14)

Example 3.12 As another example, (A : ag.x)y where y : a1 and ag, a1 are type variables,
is also typable and the system will deduce that the type of (Ax : ag.x) is ag — g and it will
try to check and see if ag < aq but as aq s a variable, the system makes c; become oy and
returns oqg as the result.

4 Type checking

The type checker is straightforward yet it allows for better polymorphism than other systems
because of the subsumption relation that is used. The algorithm for type checking is imple-
mented using checkezpr where checkexpr is a function with the following functionality:
environments X heap-variables x terms — (substitutions x types x heap-variables) + error.

Before we explain the type checker we need to describe how we implement the various
data types and the various relation on them.

16

4.1 On the A-reducer

The implementation of the terms, types and their properties is straightforward except when
we come to the reducer. This is because we are using the type free A-calculus as our basis
and hence many reductions will not end in normal forms. The following example illustrates
the point:

Example 4.1 (Az:e — p.zz)(Ax: e — p.ax)
=(Az:e—pxx)Ar:e— pax) as (e > p<e)
=(Ar:e—=pazr)(Ar:e— pax) as (e > p<e)
=...=(A:e—prz)(Ar:e— pax) as (e > p<e) =...and so on.

To be able to implement the reducer of the expressions, we have to be able to deal with
such a problem. Because normal order reduction is safe, that is if a term has a normal form
then it finds it, we are going to use normal order reduction which works on the leftmost
outermost reductions of the terms. Of course normal order reduction will not deal with the
above problem of (A\z : e = p.xz)(Az : € = p.xx). For this we will need an ad-hoc mechanism
because of the undecidability of reduction. In fact there are much better lambda reducers
than our own and better mechanisms such as head and weak normal forms. For this paper,
we take the approach of checking if when reducing E we get an expression which contains F.
If so, we stop and return the new expression. Not only reduction is undecidable but equality
between terms is undecidable too. In this paper, the equality relation is implemented in terms
of reduction and equivalence, so E = E' iff (reduceE) = (reduceE").

There are expressions that the reducer or equality checker don’t deal with. The following
is an example of such an expression:

Example 4.2 If we take Y to be A\f.(A\x.f(zx))(Az.f(zz)), i.e. Y is a fized point opera-
tor, then reduce (Y (Ax.x)) would lead to (A\z.x)((Ax.(Az.x)(xx))(Az.(A\z.2)(2xx))) whereas we
would have liked to get:(Ax.xx)(Az.xx). The system will deduce that Y (Az.z) = (Az.x)(Y (Az.z))
and this is trivial because (A\x.x)E = E for any E. However the system will not be able to
deduce that Y (Az.xx) = (Azz)(Y (Az.zz)). In fact it deduces that they are not equal be-
cause when it checks reduce(Y (A\x.xx)) and reduce (Az.xx)(Y (\z.xx)) it finds two different
ETPressions.

This of course should not be seen as a deficiency of the system, in fact this is the norm of
lambda reducers.

4.2 Subsumption and unification of types

Like Milner’s <, our subsumption relation < is transitive and reflexive. Unlike Milner, our <
gives us that (¢« - a) = (¢ = a) < (@ > a) = a < (o - a) — e < e and there is no way
to unify the type variable a with another type variable .

To replace o’s by o'’s as in Milner’s system, we would need to unify the a’s and «o'’s. For
this we need unification on types which saves the binding of types, so we can say that if «
and o' can be unified, we have

(a—a)=w(a—a)<(a—a)— (d 2d)<a—=wd <d va<a—a<e

All the clauses for the subsumption relation given in Definition 3.8 are straightforward to
implement except if the types involved contain variable types then unification will come in
and some variable types will be instantiated to other types. For example, 8 < T will result in

17

a substitution of types where 3 is bound to IT". We will change < to deal with substitutions
so that when we write T < T, we don’t only get a truth value, but a form of unification
takes place. This sort of unification will be saved in a substitution function. Due to recursion
needs, we start from a type substitution s when we ask the question 7' < T” and we obtain a
(possibly) new type substitution s’. This is written as T <; 7" = s'. Hence, T <, T" = s’ will
move from substitution s to substitution s’ which takes into account some type unification
during the process of comparing T' and T".
Before we define <;, we need a few auxilliary definitions:

Definition 4.3 (Type Substitution)

We define a type substitution to be a function from types to types which assigns types to
type variables. We let SUB be the set of substitutions and let s range over it. Hence each s
is a set of elements of the form: (3,T), where no two different elements have (3 as their first
component. For a type T and a substitution s, we let sT be the type obtained by replacing all
the type variables in T which appear as first projections in s, by their values in s.

Example 4.4 For ezample, if s = {(8,e)}, and T is f — [then sT is e — e.

Notation 4.5 In the implementation, in section 7, we take ob, pr and tr to represent the
types e, p and t respectively.

Definition 4.6 (Subsumeset)
subsumeset takes a type and finds those types that subsume it. The implementation of
such a function is item 1 in 7.4. It is very straightforward and will not be explained further.

Example 4.7 subsumeset p = [e; p] and subsumeset p —t = [p — e;p — p;p — t].

Now we come to the subsumption relation itself, it is implemented by the function subsume
given as item 4 in 7.4. Note the use of the option type (item 7 in 7.1):

type option *a *b = N*a + Y*b
This is so that in case the subsumption fails, we get an error message to the effect. If the
subsumption succeeds, we get a substitution. In fact many of our functions will give us results
in the type option. if the result of a function f is NI, then f fails and I contains a message
explaining why the failure occured. If the result of f is Y I then f succeeds and I is the
desired result of f.

occurs, isarrow, domain, range, scomp, addrem, id-subst and sub-type appear in the im-
plementation of subsumption (item 4, 7.4). They are to be understood as follows:

occurs T returns true if there are type variables in T, else it returns false. Isarrow tests
whether a type is an arrow type (such as a —). Domain T and range T find the domain
and range of an arrow type T. Scomp is the composition function which composes two
substitutions, id-subst is the identity substitution and addrem gxy = g everywhere except for
x where it gives the value y. We use sub-type to apply a substitution to a type. Of course
here we will not repeat the implementation of subsume from item 4 of 7.4, but note that this
function can be roughly translated by the following definition:

Definition 4.8 (An algorithm for subsumes)
i) <sv =g sif p € (subsumeset v)
7,7,) (T — Tl) <;T =dr S

18

i) T <, T =4 s

i) B <, T =g 5T/

v) T < T =g s if (ST = p) and (sTy = v) and ((p <5 v) = s)
vi) T < T fails if (sT = p) and (sTy =v) and p <, v fails
’Uii) T Ss T1 =df (T1 Ss M) Zf sT = 1%

viii) (Ty = Ty) <, (T1 = TY)) =g (T <, T%)

iz) (T < T") =g find T" such that T <, T" and T" <, T"

T" is found by the call subsumed_by T where subsumed_by is defined as item 5 in 7.4. Note
here that we have used the concept subsumed_by to accommodate the transitivity clause of
Definition 3.8. In fact, subsumed_by accommodates transitivity through clause ix) of Defini-
tion 4.8.

Example 4.9 subsume takes three arguments, the type substitution, and the two types to be
compared. For instance,

1. subsumeid_substep = N("No") from line 4 of the implementation of subsume.

2. If (o : p) € phi then subsume phi o e = Y (phi), from line 3 of the implementation of
subsume.

Definition 4.10 We say that a polytype T which contains type variables is cyclic according
to a type substitution s iff

1) sT#T

2)sT <;T

This notion of a cyclic type is implemented as item 14 in 7.4.

Example 4.11 (3 is cyclic according to (3,0 — [1).

Now we define unification of types as follows:

Definition 4.12 (Unification)
i) p1 =5 po = s if 1 <s p2
ii) Brs T = s[T/B] if s =0 and (cyclic sT)
iii) B~ T = s[sT/B] if sB=0 and sT =T
w) Brs T =50 <, sT
v) T = =T < 30
’UZ) ((Tl — TQ) g (Tg — T4)) = (T2 sl T4) where s1 =11 ~; 13

The ML function for this unification is to be found as item 11 in 7.7.

Example 4.13 (unifyid_subst (8,0 — (")) returns Y (id_subst[3 — ('/]), from clause ii)
of Definition 4.12. In other words when you unify 3 with 8 — (' in the identity substitution,
you succeed (you obtain the Y part of the type option) and you obtain a substitution which is
exactly the same as id_subst except that for (3 it gives — (3.

19

4.3 Type checking the expressions

An important concept for typechecking the expressions of the type free A-calculus with logic
is that of circular type. This is implemented as item 15 of 7.4, and it can be formally defined
as follows:

Definition 4.14 (Circular Type)
We say that a type (T — T') — T" is circular iff:

1. T and T" are both monotypes.
2. T <pand T" < p.
Example 4.15 (8 — p) — t and (e — p) — (p — p) are circular types.

We are ready now to describe our type checking algorithm which will be implemented in 7.9.
This algorithm will start from the rules given in Definition 3.9, but takes also into account
logic, subsumption and unification of types and our concept of circular types which avoids
the paradoxes. The notation I' = F : T means that from the environment I', we can deduce
that the expression E has type T. The following rules associate types to expressions, however
they are supposed to be understood in a procedural way, that is (16) is tried first then (17)
and so on. Also when we invoke I' F aq,I' I ag, then it is to be understood that I' - a; is
executed first and if it succeeds then I' - a5 is invoked but where I' has been changed as a
result of I' - ay. All rules have the form

hypothesis hi,ha, ..., hy

15
conclusion C (15)

and if we are at rule R; testing its hypothesis, hi, hs, ..., hn and one of the h; fails, we abandon
R; and go to R;+;1 but all changes to the environment which happened during execution of
hi,ho, ..., hy are now undone. Now equations (16), ..., (29) explain how the typechecker as
implemented in checkexpr (item 1 of 7.9) has been derived. Basically we start from equations
(11), ..., (14) and accommodate logic, subsumption and unification of types and reduction
of terms. Also we must use our notation of circular type to avoid the paradoxes. Note that
checkezpr takes 3 arguments, the environment in which the expression must be checked, the
first free variable from the heap and the expression to be type checked. Now we go to equations
(11), ..., (14), and expand them in an algorithm upon which the implementation of the type
checker will be based. Equations (16), ..., (23) will be the replacement of equations (11),
..., (14). Le. equations which accommodate circular types, subsumption and unification in
the usual typing schemes. Equations (24), ..., (29) accommodate the logical types. Here
are these equations, their relation to equations (11), ..., (14) and to their implementation
in checkexpr.

(V:T)eTl
r=v:T

As we see, equation (11) remains unchanged and this is implemented as clause 2 of checkezpr.
Clause 1 of checkexpr implements that the type of bot (the bottom element L) is p.

(16)

TEAV.E :T — T"TF Ey: T',T F ct(T"),
PFet(T —-T"), L T <T,TF reduce((\V.Ey)Ey) : T"
If((A\V.Ey)E») is not a subexpression of reduce((A\V.E;)E5>)

It (()\VEl)Eg) 2

20

CEANVE :T—-T"TFEy:T'\T'FunifyT'T

TF (WE)E) : T (18)

The above two equations typecheck terms of the form ((AV.E;)E2). The first equation deals
with the case where both types of AV.E; and E5 are constant types, and where the result of
((A\V.E1)E») has a more specific type than that of the range of A\V.E;. The resulting type is
the more specific one rather than the general one. The second equation is used in case it is
difficult to calculate the more specific type, then the most general one, (the range of A\V.E))
is given. These two equations are implemented as clause 3 of checkexpr. Note here that the
2 equations might not sound so compatible with one unique clause. All the other details
however, such as ct, reduce and subexpression are tested inside the calls check_list, list_types
and so on.

TEAV:TLE :T - T"TFE,: T, '+ ct(T"),T F ct(T — T"),

LT <T,TtF reduce((A\V.Ey)Es) : T"
If((A\V.E1)E,) is not a subexpression of reduce((A\V.E1)E>)

TF((AV :TLE)Ey) : T"

(19)

CEAV:TVLE :T—T"THEy: T\ T unifyT'T

These two equations are similar to (17) and (18) but where the abstracted variable is typed.
They are implemented as clause 4 of checkezpr.
TFE :T,T kB : T TFunifyT (T' — B))
'k E1E2 : ﬁ

(21)

This equation deals with the case where the first term E; does not have the form of a A term.
For example, in zx, the first = is not a A term, yet we would like to apply it to the second
z. In this case, the first term, is given an arrow type and everything is made to fit. This
equation is implemented as clause 5 of checkexpr.

Note that we take 5 equations, (17), ..., (21) to accommodate equation (13).
(V:B)UTHE:Tif (8 — T') non-circular in T’ (22)
TFAV.E:3 1T
(V:T)UTFE:Tif (T — T') is non-circular in I’ (23)

PEANV:TE:T—-T

These two equations replace equation (14). Equation (22) deals with the case where the
abstracted variable is untyped and equation (23) deals with the case where the abstracted
variable is typed. Those two equations are implemented as clauses 6 and 7 of checkexpr.

THAV.E:T,T FunifyTp

THYV.E:p (24)

FENCTE:T TFunifyT' p

FEYV:TE:p (25)

21

The above two equations typecheck forall terms, by first typechecking a A term which corre-
sponds to it and unifying the type of the A term with p. They are implemented as clauses 9
and 8 of checkexpr respectively.

'-E:T,I'FunifyTp

26
r-QF:p (26)
''FE:T,TtFunifyTp

'-=-E:p (27)

'FE Ty, TrunifyTip,I' F Es: T, T FunifyTop (28)
'-Ei\NEy:p

FFE Ty, TrunifyTyp, ' F Es: T, T FunifyTop (29)
I'-FE — Es p

The above four equations are now obvious. They are implemented as clauses 10, ..., 13

respectively.

Example 4.16 Now let us see how Ax.xx s type checked by the system. In summary the
method is as follows:

() [+] hyp

(i1) ap = g — a From unification

(1ii) TT o From (i), (ii), (21)

(iv) Az.xx: (g = a1) = o From (22)

The system however, when asked to typecheck Ax.xx (by calling typecheck [Ax.xx]), will
follow the steps below (note that check-list [("x”, ap)][z; x]ar = Y(id-subst, [ag; o], 1) and
that unify id-subst (g, g = 1) = Y(id-subst [y — a1 /p]))

1. checks [Az.xx][] ap 1

1.1 checkexpr [| cg Az.xx

1.1.1 typecheckbodyabs o (checkezpr [("x”,)] a1 zx)

To checkexpr [("x”,)] a1 xzx, one has to typecheckapp (check-list [("x”, ap)] [z;x] aq).
Le. typecheckapp (Y(id-subst, [ag; apl, 1)) which is

typecheckappl o (unify id-subst (o, a9 — an)). This is

typecheckappl oy Y (id-substiag — oy /cw]) which is Y(id-substfay — a1 /ag], a1,).

Now, typecheckbodyabs o (checkezpr [("x”, ap)]orxzx) returns (g — a1) — g, the type
of \x.xx.

Example 4.17 Y is type checked by the system as follows

(1)[f + cxo hyp

(i1) [aq] hyp

(1ii)] o] = A From unification

(iv) TT Qg From (i), (iii), (17)

(v) ap R ag — as From unification

(i) flar):as From (i), (iv), (v), (21)

(vii) Ax.f(zx) : (0 = a2) = ag From (i) ... (vi), (22), unification
(viii) [ay] hyp

(iz) 4 R o — Qs From unification

(z) TT Qs From (viii), (iz), (21)

22

(zi) ay X ay From unification
(zii) TT Qg From (z), (xi), unification
(xiii) flzzx): as From (i), (xzii), (v), (21)

(ziv) Az.f(zx) : (g4 — az) — a3
(zv) a3 =~ ao From unification
(zvi) (4 — ag) = a3 = a; — ag
(zvii) (Az.f(zz))(M. f(xzx)) @ aq

(042 — 012) — 02

Example 4.18 The following will give a feel of how the system works.

From (viii) ...

(ziii), (22), unification

From unification

From (xv), (zvi), (21)

From (i) ... (zvii),

They are examples of

what expressions we give the system and what messages or types we get back.

‘ Expressions ‘ Types
1 z.x gy —
2Xx:ex e—e
3 \r.xx (g = 1) = oy
4 (A\z.zx)(Ax.xz) aq
5 Az :pax P —
6 \x:e— paxx error: (e — p) — p is circular
TVz: (g = o).y P
8Vx:ex error, not a proposition
9V : (e =).y P
10Vzx.xx p

11 Mz : (ap — aq).zy

12 2f.(As:e = pf(ss))(As:e— pf(ss))
1I3Nf:e—=p.(As:e—pf(ss))(As:e— pf(ss))
1 Nf.(Azx.f(zz))(Az f(xx))

15 (Nf.(Az.f(zz)) Az f(xx)))(Az : p.xx)
16 (M- (22) Ot (22)) (M- (vt (w2
17 (Nf.(Az.f(zz)) Az f(2x))) (Az.22)

18 (Az.xx)(Af.(Az.f(zxx))(Az. f(zx)))

19 \x.—zzx

20 Az : (o9 — t).—zx

21 Az : (g = p).—xx

20 \x.xe — L

~— e —

) (Az.f(xx)))

(o — a1) = a1

error: (p — p) — p is circular
error: (e — p) — p is circular
(012 — 042) — 9

p

g

a2

7]
error,
error,
error,
error,

circular type
circular type
circular type
circular type

5 Theorem proving in the system

Now let us see how the paradoxical sentences do not lead us to problems. Take the following

paradoxical sentences:
Let Russell = Az.—xx
And AnotherRussell = Az : (ag — t).~zx
And TypedRussell = A\x : (ag — p).—zx
And Curry = Az.xx — L

typecheck x where z is any of the above terms returns: an error message informing us
that the term has a circular type. So the system does not allow the typing of the paradoxical
sentences. However as we have seen in the section on polymorphism above, the system allows
and typechecks all self referential terms which are safe. I.e. whereas the system typecheks

23

Az.xx, it does not allow Ax.—xzz. This is because it knows that for — to make sense, it should
apply to a proposition but it cannot make xx be a proposition.

It might be thought that this theory would fall foul of Russell’s paradox, due to the fact
that zz is a well-formed formula for z of any type 17 — T5; and hence by abstracting over
—zz, we could obtain aa = —aa where ¢ is Az.—xz. In particular, if one took z to be of type
e — p, then a = Az.—~zz would be of type (¢ — p) — p and hence aa would be of type p,
leading to a contradiction from the above equality. The careful reader however would realise
that one of our above steps was wrong. That is, even if x is of type e — p, and even though
—zz is a proposition, \z.—xx is not well-formed. More specifically, its type, (e — p) — p, is
circular. In fact we have a more general result: the paradox does not arise for « of any type
T — p. This follows from the following lemma:

Lemma 5.1 If x is of type T — p, then Az.—xx of type (T — p) — p is not well-formed.
Proof:

(i) x:T —p hyp

(ii)) T —-p<p from <
(1ii) xx : p from (21)

(v) —xx : p from (27)

But as (T — p) — p is circular, we cannot apply (23) to get that Ax.—xx has type
(T — p) — p. In fact we cannot type \x.—xx. The system comes back and tells us that the
type is circular (see term 19 of Exzample 4.18). O

This might still be unpersuasive however, for the paradox can arise in other ways. For
example, take x of type T' — T, where T’ < p. Then zz is of type T’ < p, hence —xz is of
type p. Now, if Axz.—zz is a well-formed expression (call it a) then aa is of type p and is equal
to aa. Contradiction. In view of this, we have to prove something stronger than Lemma 5.1.
This we do via the following lemma:

Lemma 5.2 If z is of type T — T', where T" < p, then \x.—zx of type (T — T') — p is not
well-formed.

Proof:

(i) x:T =T hyp

(1)) T -T'<T from <

(111) xx = T from (21)

(iv) ~xx :p from (27), as T' <p

But as (T — T') — p is circular, we cannot apply (23) to get that \x.—~xx has type
(T = T') = p. In fact we cannot type A\x.—~xx. The system comes back and tells us that the
type is circular (see terms 20 and 21 of Example 4.18). O

Up to here, we have only used the type p to express logic, and ¢ has been ignored. We
shall show here how the type ¢ is used and demonstrate the idea by showing that we do not
face Curry’s paradox.

Our version of the Deduction Theorem (DT') has the following form:

DT)TU®:t-T:timpliesTUP:pk (& — U): ¢t

Modus Ponens (MP) has also the following form:

24

(MP)I'H(® - ¥):tand ' ®: ¢t implies ' - W : ¢,

If we take a to be the formula

Ar.(xx — 1),

then by (-conversion,

(1) aa = aa — L.

Now, it holds trivially that

(2) aa:tFaa:t,

By (1) we derive

(3) aa:tFaa — L :t.

and, by Modus Ponens applied to (2) and (3) we get

aa:tH Lt

By (DT) we can now derive aa : p - (aa — L) : t.

Then also aa : p - aa : t.

Given the last two steps, we can again apply Modus Ponens to get

aa:pk L:t.

However, we cannot show that aa : p. In fact A\z.(xx — L) is not well formed due to
lemma 5.1 above as its type is (" — p) — p. This is because if x is of some type T, since
xx has to be of type p, we can infer that 7" must be of the form 7" — p. From this it follows
that a is of type (" — p) — p, which is circular. Hence we do not face Curry’s paradox.

This is all the proof theory that we mention about this system in this paper, for more
results and properties about the logical properties and the proof theory of the system refer
to [Kamareddine 92A]. Also [Kamareddine 92B] and [Kamareddine 92C] present a model of
the system together with other systems of the type free A-calculus with logic.

6 Conclusion

The system provided in this paper has powerful properties. First it is type free. That is,
anything structured is an expression and anything non problematic will have a type. These
types are polymorphic in the sense that expressions can have many variable types and these
variable types may be instantiated to anything. For example, the identity function has type
g — «p, and the identity function applied to objects of type e will result in elements
of type e. The polymorphic power of the system comes from the ability to typecheck all
polymorphic functions even those which are problematic in other systems. For example the
fixed point operator, Y = Af.(Ax.f(xx))(Az.f(zz)) is typechecked to (e —) — a9 and
even can apply to itself. Even Y'Y is typechecked to as. f = Az.xzx is also typechecked to
(1 = a1) — a1 and f applied to itself is typechecked to ay. As said earlier, these types
can be instantiated so that gg where ¢ is the identity function over e (i.e. ¢ = Az : e.x), is
typechecked to e naturally. We believe this system is one of the first which can typecheck all
the above while remaining a very expressive and simple one. Other polymorphic systems like
ML, do not have this polymorphic power. In fact, ¥ cannot be typechecked in ML. Instead,
the fixed point operator is defined trivially by the equation: letrec YE = E(Y E), and then
this Y is typechecked to (o — ag) — ao. But this is not good enough as one cannot define
Y by its A-expression. Another nice characteristic of the system is its ability to combine
logic and the type free A-calculus while remaining consistent. So even though the Russell
sentence (Az.—(xx)) is a well formed sentence of the system, its type cannot be found. In
fact, the system returns an error message explaining that this sentence has a circular type.

25

The same thing applies to the Curry’s sentence (Az.xzx — L). Of course here, one may wonder
if the paradox is really avoided, and may give as an example F' = A\f.(Az.f(zz)) which is
typechecked to (g — a9) — ((ag = a2) — a2), and then instantiate it to F'— which would
be of type (p — p) — p. This does not hold however because (p — p) — p is circular and the
system does not accept such instantiation. Finally, the system also has error messages which
convey the reasons of failure in typechecking and where the failure occured.

7 Program listing

9~~~

module infixr ;

export typevar, tterm, ob, pr, tr, show_type, show_tlist, subsume, ctsubsume, circulartype, change,
mysub_type, equaltype, subsumeset, makearrows, subsumed_by, isbasictype, isarrow, domain, range,
istlambda, term, free, out, substitute, isin, newvar, rename, show_term, len, betaconverge, etacon-
verge, alphaconverge, reduceoutermost, reduce, occur, subexpression, equiv, islambda, isinnf, be-
taconverts, etaconverts, isapp,hasnf, subexp, nodupappend, operator, operand, propconj, propneg,
propimpl, propbot, anothereq, cyclictype, fvars, occurs, mem, zip, option, next, ~~~, getsub, get-
type, gettvn, print, printerror, iserror, istvar,lookupYN, sub_type, scomp, id_subst, delta, extend,
unify, unify_list,addrem, makeprop, composesubs, app-sub_env, typecheckapp, seeprop, occurtype,
typecheckbodyabs, checkexpr, check_list, listtypes, typecheckprop, getphi, typechecklapp, checkexpr,
checks, typecheck, typecheckappl;

7.1 Terms, Types and Options Declarations
1. rec type typevar = alpha Int
2. and type tterm = tvar typevar + top (List Char) (List tterm)
3. and ob = top "OB” []
4. and pr = top "PR” []
5. and tr = top "TR” []
6

. and type term = bot + var (List Char) + app term term + lambda (List Char) term +
tlambda (List Char) tterm term + prop term + conj term term + neg term + impl term term
+ forall (List Char) term + tforall (List Char) tterm term

=~

and type option *a *b = N*a +Y*b

7.2 Printing

1. and show_type (tvar (alpha x)) = itos x

|| show_type (top s 1) = if s = "arrow” then show._tlist 1 else s
2. and show_tlist ([t1;t2]) = ”(?@show_type t1@Q” 7@”-"@” » 7@” ”@show_type t2 @”)"@” ”

3. and show_term bot = "bot”
|| show_term (var v) = ”(var ”@Qv@”)
app E E’) = ?(app ”@show_term EQ” ”@show_term E’@Q”)”
lambda v E) = ”(lambda ”@v@” ” @show_term EQ”)”
tlambda v t E) = ”(tlambda ”@Qv@” ”@ show_type t @” ”@show_term EQ”)”
conj E E’) = ”(conj ”@show_term EQ” ”@show_term E’Q”)”
neg E) = 7 (neg ”@show_term EQ”)”
impl E E’) = ”(imply ”@show_term EQ” ”@show_term E’@Q”)”

”

|| show_term
|| show_term
|| show_term
|| show_term

|| show_term

N N N N S N

|| show_term

26

7.3

1.

2.

3.

|| show_term (prop E) = ”(prop ”@show_term EQ”)”
|| show_term (forall v E) = ”(forall ”@Qv@” ” @show_term E@”)”
|| show_term (tforall v t E) = ”(tforall ?@Qv@” ”@ show_type t @” ”@show_term EQ”)”

Properties of terms

and len bot =1

| len (var v) =1

app E E’) = (len E) + (len E’)
lambda v E) = 1+ (len E)
tlambda v t E) = 14 (len E)
prop E) = (len E)

conj E E’) = (len E) + (len E’)
impl E E’) = (len E) + (len E)

neg E) = (len E)

| len (forall v E) = 1+ (len E)

|| len (tforall vt E) =1 + (len E)

and occur E E’ & (equiv EE’) =1

|loccur E (app E1 E2) = (occur E E1) + (occur E E2)

|| occur (var v’) (lambda v E1) & (v = v’) = 1+ (occur (var v’) E1)

|| occur E (lambda v E1) = (occur E E1)

|| occur (var v’) (tlambda v t E1) & (v = v’) = 1+ (occur (var v’) E1)
|| occur E (tlambda v t E1) = (occur E E1)

|| occur E (prop E’) = (occur E E’)

|| occur E (conj E1 E2) = (occur E E1) + (occur E E2)

[| occur E (impl E1 E2) = (occur E E1) + (occur E E2)

|| occur E (neg E’) = (occur E E)

|| occur (var v’) (forall v E1) & (v = v’) = 1+ (occur (var v’) E1)

|| occur E (forall v E1) = (occur E E1)

|| occur (var v’) (tforall v t E1) & (v = v’) = 1+ (occur (var v’) E1)

|| occur E (tforall v t E1) = (occur E E1)

|| occur E E’ =

[| len
|| len
|| len
[| len
[| len
|| len

|| len

P~~~ o~~~ o~ o~

and free bot =]

|| free (var v) = [v]

app E E’) = (free E) @ (free E’)
lambda v E) = out v (free E)
tlambda v t E) = out v (free E)
conj E E’) = (free E) @ (free E?)
impl E E’) = (free E) @ (free E)
prop E) = (free E)

neg E) = (free E)

|| free (forall v E) = out v (free E)
[|free (tforall v t E) = out v (free E)

|| free
|| free
|| free
|| free
|| free
|| free

|| free

N N AN N N N S N

27

4.

10.
11.

and subexpression E E’ & (equiv E E’) = true

app E1 E2) = (subexpression E E1) | (subexpression E E2)
conj E1 E2) = (subexpression E E1) | (subexpression E E2)
impl E1 E2) = (subexpression E E1) | (subexpression E E2)
prop E1) = (subexpression E E1)

subexpression E
I
subexpression E
I p
subexpression E
I p

~ o~~~

||subexpression E
[|subexpression E (neg E1) = (subexpression E E1)

|| subexpression (var v’) (lambda v E1) = (v’ = v) | (subexpression (var v’) E1)

|| subexpression (var v’) (tlambda v t E1) = (v’ = v) | (subexpression (var v’) E1)
||subexpression E (lambda v E1) = (subexpression E E1)

||subexpression E (tlambda v t E1) = (subexpression E E1)

||subexpression E (forall v E1) = (subexpression E E1)

|| subexpression E (tforall v t E1) = (subexpression E E1)

|| subexpression E E’ = false

and equiv bot bot = true
|| equiv (var v) (var v’) = (v = v’)

[lequiv (app E1 E2) (app E’1 E’2) = ((equiv E1 E’1) & (equiv E2 E’2))

[lequiv (conj E1 E2) (conj E'1 E’2) = ((equiv E1 E’'1) & (equiv E2 E’2))
[lequiv (impl E1 E2) (impl E’1 E’2) = ((equiv E1 E’'1) & (equiv E2 E’2))
[lequiv (prop E1) (prop E’l) = (equiv E1 E’1)

[lequiv (neg E1) (neg E’'1) = (equiv E1 E’1)

[lequiv (lambda v E) (lambda v’ E’) = ((v = v’) & (equiv E E’))

[lequiv (tlambda v t E) (tlambda v’ t’ E’) = ((v = v’) &(t =t’) & (equiv E E’))
[lequiv (forall v E) (forall v’ E’) = ((v =v’) &

(equiv E E))
[lequiv (tforall v t E) (tforall v’ ¢’ E’) = ((v = v’) & (equiv E E’))
[lequiv E E’ = false
and subexp bot = [bot]
|| subexp (var v) = [(var v)]
app E1 E2) = (app E1 E2).(nodupappend (subexp E1) (subexp E2))
lambda v E1) = (nodupappend [(var v)] ((lambda v E1).(subexp E1)))
tlambda v t E1) = (nodupappend [(var v)] ((tlambda v t E1).(subexp E1)))
conj E1 E2) = (conj E1 E2).(nodupappend (subexp E1) (subexp E2))
impl E1 E2) = (impl E1 E2).(nodupappend (subexp E1) (subexp E2))
prop E) = (prop E). (subexp E)
neg E) = (neg E). (subexp E)
|| subexp (forall v E1) = (nodupappend [(var v)] ((forall v E1).(subexp E1)))
|| subexp (tforall v t E1) = (nodupappend [(var v)] ((tforall v t E1).(subexp E1)))
and islambda (lambda v E) = true
|| islambda other = false
and istlambda (tlambda v t E) = true
|| istlambda other = false

|| subexp
|| subexp
|| subexp
|| subexp
|| subexp
|| subexp
|| subexp

N N N N N N SN N

and isapp (app E E’) = true
|| isapp other = false

and operator (app E E’) = E
and operand (app E E’) = E’

28

7.4

1.

10.
11.

12.

13.

14.

15.

Properties of Types

and subsumeset x & (x = ob) = [ob]

|| subsumeset x & (x = pr) = [ob; pr]

|| subsumeset x & (x= tr) = [ob; pr; tr]
)

|| subsumeset x & (istvar x) =
|| subsumeset x & (isarrow x) = makearrows (domain x) (subsumeset (range x))

and makearrows x [] = []

|| makearrows x (y.ys) = (top ”arrow” [x;y]).(makearrows x ys)

and ctsubsume x y & (~(occurs x) & ~(occurs y)) = isin x (subsumeset y)
|| ctsubsume x y = false

and subsume phi x y & ((ctsubsume x y) | ((isarrow x) & ((domain x) = y))|(x = y)) = Y(phi)
[|subsume phi (tvar x) y = Y(scomp (addrem id_subst x y) phi)
[|subsume phi x y & (ctsubsume (sub_type phi x) (sub_type phi y)) = Y(phi)

7

[|subsume phi x y & ((~(occurs (sub_type phi x)))&(~ (occurs (sub_type phi y)))) = N ("no”)
[|subsume phi x y & (~(occurs (sub_type phi x))) = subsume phi y x

[|subsume phi x y = if ((isarrow x) & (isarrow y) & ((domain x) = (domain y)) &

(™ (iserror (subsume phi (range x) (range y))))) then (subsume phi (range x) (range y)) else

if(~ (iserror (subsumed_by (sub_type phi x)))) then subsume phi (getsub (subsumed_by x)) y
else

N (”Cannot unify : ”@”types mismatch” @”n” @show_type x @ ”n” @show_type y@”n”)
and subsumed_by x & (x = tr) = Y(pr)

|| subsumed_by x & (x = pr) = Y(ob)

|| subsumed_by (top "arrow” 1) = Y(hd 1)

|| subsumed_by x = N ”error”

and ishasictype x = x = "OB” | x = "PR” | x = "TR”

and isarrow (top "arrow” 1) = true

|| isarrow other = false

and istvar (tvar x) = true

||istvar other = false

and domain (top ”arrow” (x.xs)) = x

and range (top ”arrow” [x;y]) =y

and occurs (tvar x) = true

[loccurs (top s tlist) = exists (occurs) tlist

and fvars (tvar x) = [x]

|| fvars (top s 1) = concmap fvars |

and equaltype x y =

x =y | ~(iserror (subsume id_subst x y)) &~ (iserror (subsume id_subst y x))

and cyclictype phi t =

(occurs t) & ~((sub_type phi t) = t) & ~(iserror(subsume phi (sub_type phi t) t))

and circulartype (top ”arrow” [(top ”arrow” [t’; t1]);t2]) & (~(occurs t1) & ~(occurs t2)) =
(~ (iserror(subsume id_subst t1 pr)) & ~(iserror(subsume id_subst t2 pr)))

|| circulartype other = false

29

7.5 Substitution of Terms

1. and substitute bot E’ v = bot
|| substitute (var v') E' v & (v =v)) = E
|| substitute
|| substitute
|| substitute
|| substitute

var v') E’ v = var v’

app E1 E2) E’ v = app (substitute E1 E’ v) (substitute E2 E’ v)
lambda v’ E1) E’ v & (v = v’) = lambda v’ E1

tlambda v’ t E1) E’ v & (v = v’) = tlambda v’ t El

|| substitute (tforall v’ t E1) E’ v & (v = v’) = tforall v’ t E1

|| substitute (lambda v’ E1) E’ v & (~(isin v’ (free E’)) | ~(isin v (free E1))) =
(lambda v’ (substitute E1 E’ v))

|| substitute (tlambda v’ t E1) E’ v &(™~(isin v’ (free E’)) | ~(isin v (free E1)))
(tlambda v’ t (substitute E1 E’ v))

|| substitute (tforall v’ t E1) E’ v &(~(isin v’ (free E’)) | ~(isin v (free E1))) =
(tforall v’ t (substitute E1 E’ v))

|| substitute (lambda v’ E1) E’ v & ((isin v’ (free E’)) & (isin v (free E1))) =

let new_var = newvar v’ (free (app E’ E1)) in

A~~~ o~ o~~~

(lambda new_var (substitute (substitute E1 (var new_var) v’) E’ v))

|| substitute (tlambda v’ t E1) E’ v & ((isin v’ (free E’)) & (isin v (free E1)))=
let new_var = newvar v’ (free (app E’ E1)) in

(tlambda new_var t (substitute (substitute E1 (var new_var) v’) E’ v))

|| substitute (tforall v’ t E1) E’ v & ((isin v’ (free E’)) & (isin v (free E1))) =
let new_var = newvar v’ (free (app E’ E1)) in

(tforall new_var t (substitute (substitute E1 (var new_var) v’) E’ v))

|| substitute (prop E) E’ v = prop (substitute E E’ v)

|| substitute (conj E1 E2) E’ v = conj (substitute E1 E’ v) (substitute E2 E’ v)
|| substitute (impl E1 E2) E’ v = impl (substitute E1 E’ v) (substitute E2 E’ v)
|| substitute (neg E) E’ v = neg (substitute E E’ v)

|| substitute (forall v’ E1) E’ v & (v = v’) = forall v’ E1

|| substitute (forall v’ E1) E’ v & (~(isin v’ (free E’)) | ~(isin v (free E1))) =
(forall v’ (substitute E1 E’ v))

|| substitute (forall v’ E1) E’ v &((isin v’ (free E’)) & (isin v (free E1))) =

let new_var = newvar v’ (free (app E’ E1)) in

~ o~~~

(forall new_var (substitute (substitute E1 (var new_var) v’) E’ v))

7.6 REDUCTION OF TERMS

1. and betaconverge (app (lambda v E) E’) = (true, substitute E E’ v)
|| betaconverge (app (tlambda v t E) E’) = (true, substitute E E’ v)
|| betaconverge other = (false, other)

2. and etaconverge (lambda v (app E E’))& ((E’ = (var v)) & ~(isin v (free E))) = (true, E)
|| etaconverge (tlambda v t (app E E’))& ((E’ = (var v)) & ~(isin v (free E))) = (true, E)

|| etaconverge other = (false, other)

30

3. and alphaconverge (lambda v E) = (true, let new_var = newvar (rename v) (free E) in
(lambda new_var (substitute E (var new_var) v)))
|| alphaconverge (tlambda v t E) = (true, let new_var = newvar (rename v) (free E) in
(tlambda new_var t (substitute E (var new_var) v)))

|| alphaconverge other = (false, other)
4. and reduce E = reduceoutermost (snd (etaconverge E))

5. and reduceoutermost bot = bot
|| reduceoutermost (var v) = (var v)
|| reduceoutermost (app E1 E2) & (islambda E1) = let E = (app E1 E2) in
let E> = (snd (betaconverge E)
|| reduceoutermost (app E1 E2

in if (subexpression E E’) then E’ else (reduce E’)
& (istlambda E1) = let E = (app E1 E2) in

let E> = (snd (betaconverge E)) in if (subexpression E E’) then E’ else (reduce E’)
|| reduceoutermost (app E1 E2) = let E’ = (reduce El) in

if (subexpression E1 E’) then (app E1 (reduce E2)) else (reduce (app E’ E2))

|| reduceoutermost (lambda v E) = (snd (etaconverge (lambda v (reduce E))))

|| reduceoutermost (tlambda v t E) = (snd (etaconverge (tlambda v t (reduce E))))
|| reduceoutermost (prop E) = prop (reduce (snd (etaconverge E)))
|| reduceoutermost (neg E) = neg (reduce (snd (etaconverge E)))

|| reduceoutermost (conj E E’) =

conj (reduce (snd (etaconverge E))) (reduce (snd (etaconverge E’)))

|| reduceoutermost (impl E E’) =

impl (reduce (snd (etaconverge E))) (reduce (snd (etaconverge E’)))

|| reduceoutermost (forall v E) = forall v (reduce (snd (etaconverge E)))

|| reduceoutermost (tforall v t E) = tforall v t (reduce (snd (etaconverge E)))

6. and anothereq E E’ = (equiv (reduce E) (reduce E’))

7. and isinnf E = let E” = [E1;; E1 < (subexp E)] in ((null (filter betaconverts E’)) & (null (filter
etaconverts E’)))

8. and hasnf E = isinnf (reduce E)
9. and betaconverts E = fst (betaconverge E)

10. and etaconverts E = fst (etaconverge E)

7.7 Substitution and Unification of Types

1. and sub_type phi t = mysub_type phi t [|
2. and mysub_type phit 1 & (isin t 1) = ¢
|| mysub_type phi (tvar tvn) 1 =
let a = phi tvn in if ((a = (tvar tvn)) | (a = ob) | (a = pr) | (a = tr)) then a else
if (istvar a) then (sub_type phi a) else
(top ”arrow” [mysub_type phi (domain a) ((tvar tvn).l); mysub_type phi (range a) ((tvar tvn).1)])
|| mysub_type phi (top ten 1) '= top ten (map (\u.mysub_type phi ul’) 1)
3. and scomp sub2 subl tvn = sub_type sub2 (subl tvn)

4. and id_subst tvn = tvar tvn

31

10.
11.

12.

7.8

Ll

7.9

and delta tvn t tvnl = if tvn = tvnl then t else tvar tvnl

and composesubs sub t (N w) = N w
||composesubs sub t (Y (sub’,t’,tvn)) =Y (scomp sub’ sub,(sub_type sub’ t).t’,tvn)

and app-sub_env phi env = map ((x,y).(x,sub_type phi y)) env

and addrem phi tvn t tvnl = if tvn = tvnl then t else phi tvnl

and change phi tvn t tvnl = sub_type (addrem phi tvn t) (tvar tvnl)

and extend phi tvn t = if t = tvar tvn then Y phi else Y (scomp (delta tvn t) phi)

and unify phi ((tvar tvn), t) = if cyclictype phi t then Y(addrem phi tvn t) else let rec phitvn
= phi tvn and phit = sub_type phi t in if phitvn = tvar tvn then extend phi tvn phit else unify
phi (phitvn, phit)

[Junify phi ((top tcn ts), (tvar tvn)) = subsume phi (sub_type phi(top tcn ts))(sub_type phi
(tvar tvn))

|| unify phi ((top sl tlist1), (top s2 tlist2)) =
if (~(occurs (top sl tlistl))) & (™~ (occurs (top s2 tlist2))) then

if ~(iserror(subsume phi (top sl tlistl)(top s2 tlist2))) then Y phi else N (?Cannot unify :
”@”types mismatch” @’ n” @show_type (top s2 tlist2) @ "n”@show_type (top sl tlist1)@”n”)

else unify_list phi (zip tlist1 tlist2)
and unify_list phi [] =Y phi
|| unify_list phi ((s,t).sts) = unify phi (s,t) ~~~ (\u.unify_list u sts)

Logic

and propconj (prop E1) (prop E2) = prop (conj E1 E2)
and propimpl (prop E1) (prop E2) = prop (impl E1 E2)
and propneg (prop E) = prop (neg E)

and propbot bot = prop bot

Type Checking
and checkexpr env tvn bot = Y (id_subst,pr,tvn)

|| checkexpr env tvn (var x) = let a = (lookupYN env x) in if (iserror a)

then N (x@”:” @(printerror a)) else Y (id_subst,getsub a,tvn)

||checkexpr env tvn (app (lambda x e) el) =

typechecklapp env (lambda x e) el (check list env [(lambda x e); el] tvn)
||checkexpr env tvn (app (tlambda x t €) el) =

typechecklapp env (tlambda x t e) el (check.list env [(tlambda x t e); el] tvn)
||checkexpr env tvn (app el e2) = typecheckapp (check.list env [el; e2] tvn)
[|checkexpr env tvn (lambda x e) =

let a =typecheckbodyabs (tvar tvn) (checkexpr ((x,tvar tvn).env) (next tvn) e) in
if iserror a then a else if (circulartype (gettype a)) then N ”circular type” else a

[|checkexpr env tvn (tlambda x t €) = let a = typecheckbodyabs t (checkexpr ((x,t).env) tvn e)
in if iserror a then a else if (circulartype (gettype a)) then N ”circular type” else a

||checkexpr env tvn (tforall x t e) = typecheckprop(checkexpr ((x,t).env) tvn e)

32

||checkexpr env tvn (forall x e) = typecheckprop(checkexpr ((x,tvar tvn).env) (next tvn) e)
||checkexpr env tvn (prop e) = typecheckprop(checkexpr env tvn e)
||checkexpr env tvn (neg e) = typecheckprop(checkexpr env tvn e)

||checkexpr env tvn (conj el e2) =

let rec a = typecheckprop(checkexpr env tvn el) in if (™ (iserror a))

then let rec b = typecheckprop(checkexpr (app_sub_env (getphi a) env) (gettvn a) e2)

in if (~(iserror b)) then Y(scomp (getphi a)(getphi b), gettype b, gettvn b) else b else a
||checkexpr env tvn (impl el e2) =

let rec a = typecheckprop(checkexpr env tvn el) in if (~(iserror a)) then

let rec b = typecheckprop(checkexpr (app_sub_env (getphi a) env) (gettvn a) e2) in

if (~(iserror b)) then Y(scomp (getphi a)(getphi b), gettype b, gettvn b) else b else a

. and typecheckprop a = if (~(iserror a)) then
let b = (gettype a) in if occurs b then makeprop (seeprop (getphi a) b) (gettvn a) b else

Y

if (iserror(subsume id_subst b pr)) then N "not a proposition” else a else a

. and typechecklapp env el e2 (N w) =N w

[|typechecklapp env el €2 (Y (phi,[t1;t2],tvn)) =

if ~(occurs t2) & ~(occurs (domain t1)) & ~(iserror(subsume id_subst t2 (domain t1)))
& ~(subexpression (app el e2) (reduce (app el e2))) then

checkexpr env tvn (reduce (app el €2)) else

if (occurs t2 | occurs (domain t1)| (subexpression (app el e2) (reduce (app el €2)))) then
let rec a = (unify phi (t2, domain t1)) in Y(getsub a, sub_type (getsub a) (range t1), tvn)

else N "can’t do it”

. and check list env [] tvn = Y (id_subst,[],tvn)

[|check list env (e.es) tvn = listtypes env e es (checkexpr env tvn e)

. and listtypes env e es (N w) = N (w@”at ”@” ”@ show_term e@”n”)
||listtypes env e es (Y (sub,t,tvn)) =
composesubs sub t (check list (app-sub_env sub env) es tvn)

. and typecheckapp (N w) = N w

[|typecheckapp (Y (phi,[t1;t2],tvn)) =

if (isarrow t1) & ~(iserror (subsume id_subst t2 (domain t1))) then

let a = (getsub (subsume id_subst t2 (domain t1))) in

Y (scomp a phi, sub_type (scomp a phi) (range t1), tvn) else

if (isarrow t1) & ~(occurs t1) & ™~ (occurs t2) then N(” Cannot unify : ”@”types mismatch” @”n” @show _type
(domain t1) @ ”n” @show_type t2 @”n”) else

typecheckappl tvn (unify phi (t1,top ”arrow” [t2; (tvar tvn)]))

. and typecheckappl tvn (N w) = N w
|| typecheckappl tvn (Y phi) = Y(phi, phi tvn, next tvn)

. and typecheckbodyabs e (N w)= N w
[|typecheckbodyabs (tvar tvn)(Y (phi,t,tvn’)) =Y (phi, top "arrow” [(phi tvn) ;t],tvn’)
[|typecheckbodyabs e (Y (phi,t,tvn’)) = Y (phi, top ”arrow” [(sub_type phi e); t], tvn’)

. and typecheck exp = checks exp [] (alpha 0) 1

33

10.

and checks [] env tvn n = []

||checks (x.xs) env tvn n = let rec a = checkexpr env tvn x in if (~(iserror a)) then
(itos n@”. ”@print a@”n”).checks xs env (gettvn a) (n+1) else

[printerror a@”n”@”in”@” ” @show_term x@ "n”@”at”@” ”?@”line” @” ” @itos n@”n”]

7.10 Needed Functions

1.

10.
11.
12.
13.

14.
15.
16.
17.

18.

19.

and out x [] =[]

|| out x (y.xs) & (x =y) = xs
[lout x (y.xs) = y.(out x xs)

. and nodupappend [] x = x

|| nodupappend (x.xs) y & (isin x y) = nodupappend xs y

|| nodupappend (x.xs) y = x.(nodupappend xs y)

and isin x [] = false

|| isin x (y.xs) = (x = y) | (isin x xs)

and newvar x | = if (isin x 1) then newvar (rename x) 1 else x
and rename x = x@”””

and (Nw) "™~ f=Nw

[| (Y x) ™~ f=1fx

and next (alpha n) = alpha (n+1)

and zip [] xs =[]

||zip (xxs)] =[]

|| zip (xxs) (y.ys) = (x,y).(ip x5 ys)
and mem x [| = false

|| mem x (y.ys) = x =y | mem x ys
and getsub (Y x) = x

and print (Y (a,b,c)) = show_type b
and printerror (N w) = w

and iserror (N w) = true

||iserror other = false

and gettvn (Y (a,b,c)) =c

and gettype (Y (a,b,c)) = b

and getphi (Y (a,b,c)) = a

and lookupYN [] a = N ”variable not found”

|| lookupYN ((k,v).env) a = if a = k then Y v else lookupYN env a
and makeprop (N w) tvn t = (N w)

||makeprop (Y phi) tvn t = Y(phi, sub_type phi t, tvn)

and seeprop phi (tvar x) = if phi x = tvar x then Y(change phi x pr) else subsume phi (phi x)
pr
|| seeprop phi x & (x = pr | x = tr) = Y(id_subst)

~ A~~~

|| seeprop phi (top "arrow” [x; y]) = seeprop phi x (\u.seeprop u y)

34

20. and occurtype x & (x = y) = true

7.11

This index is in alphabetical order where we go first through the 3 items on one line and then go to

|| occurtype x (tvar y) = false

|| occurtype x (top ten 1) = exists (occurtype x) 1 end

the next line.

Index of the various functions

functions, where

| functions, where

| functions, where

e 06, 7.10
anothereq, 6, 7.6
betaconverts, 9, 7.6
check list, 4, 7.9
composesubs, 6, 7.7
delta, 5, 7.7

equiv, 5, 7.3
extend, 10, 7.7
getphi, 16, 7.10
gettype,15, 7.10
isapp, 9, 7.3
iserror, 13, 7.10
islambda, 7, 7.3
len, 1, 7.3
makeprop, 18, 7.10
mysub_type, 2, 7.7
nodupappend, 2, 7.10
occurs, 11, 7.4
operator, 10, 7.3
pr, 4, 7.1,
propconj, 1, 7.8
propneg, 3, 7.8

reduceoutermost, 5, 7.6

seeprop, 19, 7.10
show_type, 1, 7.2,
substitute, 1, 7.5
subsumeset, 1, 7.4
tr, 5, 7.1,
typecheckapp, 6, 7.9
typechecklapp, 3, 7.9
unify, 11, 7.7

addrem, 8, 7.7
app-sub_env, 7, 7.7
change, 9, 7.7
checks, 10, 7.9
ctsubsume, 3 7.4
domain, 9, 7.4
etaconverge, 2, 7.6
free, 3, 7.3

getsub, 10, 7.10
hasnf, 8, 7.6
isarrow, 7, 7.4
isin, 3, 7.10
istlambda, 8, 7.3
listtypes, 5, 7.9
makearrows, 2, 7.4
newvar, 4, 7.10
ob, 3, 7.1,
occurtype, 20, 7.10
option, 7, 7.1
print, 11, 7.10
propbot, 4, 7.8
range, 10, 7.4
rename, 5, 7.10
show_term, 3, 7.2
subexp, 6, 7.3
subsume, 4, 7.4,
sub_type, 1, 7.7
tterm, 2, 7.1,
typecheckappl, 7, 7.9
typecheckprop, 2, 7.9
unify list, 12, 7.7

alphaconverge, 3, 7.6
betaconverge, 1, 7.6
checkexpr, 1, 7.9
circulartype, 15, 7.4
cyclictype, 14, 7.4
equaltype, 13, 7.4
etaconverts, 10, 7.6
fvars, 12, 7.4
gettvn, 14, 7.10
id_subst, 4, 7.7
isbasictype, 6, 7.4
isinnf 7, 7.6

istvar, 8, 7.4
lookupYN, 17, 7.10
mem, 9, 7.10

next, 7, 7.10

occur, 2, 7.3
operand, 11, 7.3
out, 1, 7.10
printerror, 12, 7.10
propimpl, 2, 7.8
reduce, 4, 7.6
scomp, 3, 7.7
show_tlist, 2, 7.2,
subexpression, 4, 7.3
subsumed_by, 5, 7.4
term, 6, 7.1
typecheck, 9, 7.9

typevar, 1, 7.1,
zip, 8, 7.10

typecheckbodyabs, 8, 7.9

8 Acknowledgements

I would like to thank Huub ten Eikelder, Rob Hoogerwoord and the anonymous referees for
their constructive comments on improving the style and presentation of the paper.

References

[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium,
1980.

35

[Aczel 84] Aczel, P., Non-well founded sets, CSLI Lecture notes No 14, 1984.

[Barendregt, Hemerik 90] Barendregt, H., and Hemerik, C., Types in Lambda calculi and program-
ming languages, Proceedings of the ESOP conference, Copenhagen 1990.

[Beeson 84] Beeson, M., Foundations of constructive Mathematics, Springer Verlag, Berlin, 1984.

[Boolos 71] Boolos, G., The iterative conception of sets, Journal of Philosophy LXVIII, pp 215-231,
1971.

[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloguium ’78, M.
Boffa et al (eds), pp 159-224, North Holland, 1979.

[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic Logic 49, pp
75-111, 1984.

[Girard 86] Girard, J.Y., The system F of variable types, fifteen years later, Theoretical Computer
Science 45, pp 159-192, North-Holland, 1986.

[Kamareddine 89] Kamareddine, F., Semantics in a Frege Structure, PhD thesis, University of Edin-
burgh, 1989.

[Kamareddine 92A] Kamareddine, F., A-terms, logic, determiners and quantifiers, Journal of Logic,
Language and Information, Volume 1, No 1, pp 79-103, 1992.

[Kamareddine 92B] Kamareddine, F., Set Theory and Nominalisation, Part I, Journal of Logic and
Computation, Volume 2, No 5, 1992.

[Kamareddine 92C] Kamareddine, F., Set Theory and Nominalisation, Part II, Journal of Logic and
Computation, Volume 2, No 6, 1992.

[Martin-Lof 73] Martin-Lof, P., An intuitionistic theory of types: predicative part, logic colloquium
78 , Rose and Shepherdson (eds), North Holland, 1973.

[Milner 78] Milner, R., A theory of type polymorphism in programming, Journal of Computer and
System Sciences, Volume 17, No 3, 1978.

[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, Lecture
Notes in Computer Science 37, Bshm (ed), Springer, Berlin, pp 1-26, 1975.

[Turner 84] Turner, R., Three Theories of Nominalized Predicates, Studia Logica XLIV2, 1984, pp.
165-186.

36

