
COMPUTERISING MATHEMATICAL TEXT

Fairouz Kamareddine, Joe Wells, Christoph Zengler and

Henk Barendregt

Reader: Serge Autexier

1 BACKGROUND AND MOTIVATION

Mathematical texts can be computerised in many ways that capture differing
amounts of the mathematical meaning. At one end, there is document imag-
ing, which captures the arrangement of black marks on paper, while at the other
end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which capture the
full mathematical meaning and have proofs expressed in a formal foundation of
mathematics. In between, there are computer typesetting systems (e.g., LATEX and
Presentation MathML) and semantically oriented systems (e.g., Content MathML,
OpenMath, OMDoc, etc.). In this paper we advocate a style of computerisation
of mathematical texts which is flexible enough to connect the different approaches
to computerisation, which allows various degrees of formalisation, and which is
compatible with different logical frameworks (e.g., set theory, category theory,
type theory, etc.) and proof systems. The basic idea is to allow a man-machine
collaboration which weaves human input with machine computation at every step
in the way. We propose that the huge step from informal mathematics to fully
formalised mathematics be divided into smaller steps, each of which is a fully
developed method in which human input is minimal.

Let us consider the following two questions:

1. What is the relationship between the logical foundations of mathematical
reasoning and the actual practice of mathematicians?

2. In what ways can computers support the development and communication
of mathematical knowledge?

1a Logical Foundations

Our first question, of the relationship between the practice of mathematics and
its logical foundations, has been an issue for at least two millennia. Logic was
already influential in the study and development of mathematics since the time
of the ancient Greeks. One of the main issues was already known by Aristotle,
namely that for a logical/mathematical proposition Φ,

88 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

• given a purported proof of Φ, it is not hard to check whether the argument
really proves Φ, but

• in contrast, if one is asked to find a proof of Φ, the search may take a very
long time (or even go forever without success) even if Φ is true.

Aristotle used logic to reason about everything (mathematics, farming, medicine,
law, etc.). A formal logical style of deductive reasoning about mathematics was
introduced in Euclid’s geometry [Heath, 1956].

The 1600s saw a increase in the importance of logic. Researchers like Leib-
niz wanted to use logic to address not just mathematical questions but also
more esoteric questions like the existence of God. In the 1800s, the need for a
more precise style in mathematics arose, because controversial results had ap-
peared in analysis [Kamareddine et al., 2004a]. Some controversies were solved by
Cauchy’s precise definition of convergence in his Cours d’Analyse [Cauchy, 1821],
others benefited from the more exact definition of real numbers given by Dedekind
[Dedekind, 1872], while at the same time Cantor was making a tremendous con-
tribution to the formalisation of set theory and number theory [Cantor, 1895;
Cantor, 1897] and Peano was making influential steps in formalised arithmetic
[Peano, 1889] (albeit without an extensive treatment of logic or quantification).

In the last decades of the 1800s, the contributions of Frege made the move
toward formalisation much more serious. Frege found

“. . . the inadequacy of language to be an obstacle; no matter how un-
wieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain precision”

Based on this understanding of a need for greater preciseness, Frege presented
Begriffsschrift [Frege, 1879], the first formalisation of logic giving logical concepts
via symbols rather than natural language. “Begriffsschrift” is the name both of
the book and of the formal system the book presents. Frege wrote:

“[Begriffsschrift’s] first purpose, therefore, is to provide us with the
most reliable test of the validity of a chain of inferences and to point
out every presupposition that tries to sneak in unnoticed, so that its
origin can be investigated.”

Later, Frege wrote the Die Grundlagen der Arithmetik and Grundgesetze der
Arithmetik [Frege, 1893; Frege, 1903; van Heijenoort, 1967] where he argued that
mathematics is a branch of logic and described arithmetic in the Begriffsschrift.
Grundgesetze was the culmination of Frege’s work on building a formal foundation
for mathematics.

One of the major issues in the logical foundations of mathematics is that the
naive approach of Frege’s Grundgesetze (and Cantor’s earlier set theory) is incon-
sistent. Russell discovered a paradox in Frege’s system (and also in Russell’s own
system) that allows proving a contradiction, from which everything can be proven,
including all the false statements [Kamareddine et al., 2004a]. The need to build

Computerising Mathematical Text 89

logical foundations for mathematics that do not suffer from such paradoxes has
led to many diverging approaches. Russell invented a form of type theory which
he used in the famous Principia Mathematica [Whitehead and Russel, 1910–1913].
Others have subsequently introduced many kinds of type theories and modern type
theories are quite different from Russell’s [Barendregt et al., 2013]. Brouwer in-
troduced a different direction, that of intuitionism. Later, ideas from intuitionism
and type theory were combined, and even extended to cover the power of classical
logic (which Brouwer’s intuitionism rejects). Zermelo followed a different direction
in introducing an axiomatisation of set theory [Zermelo, 1908], later extended by
Fraenkel and Skolem to form the well known Zermelo/Fraenkel (ZF) system. In
yet another direction, it is possible to use category theory as a foundation. And
there are other proposed foundations, too many to discuss here.

Despite the variety of possible foundations for mathematics, in practice real
mathematicians do not express their work in terms of a foundation. It seems that
most modern mathematicians tend to think in terms that are compatible with
ZFC (which is ZF extended with the Axiom of Choice), but in practice they al-
most never write the full formal details. And it is quite rare for mathematicians
to do their thinking while regarding a type theory as the foundation, even though
type theories are among the most thoroughly developed logical foundations (in
particular with well developed computer proof software systems). Instead, math-
ematicians write in a kind of common mathematical language (CML) (sometimes
called a mathematical vernacular), for a number of reasons:

• Mathematicians have developed conventional ways of using nouns, adjectives,
verbs, sentences, and larger chunks of text to express mathematical meaning.
However, the existing logical foundations do not address the convenient use
of natural language text to express mathematical meanings.

• Using a foundation requires picking one specific foundation, and any foun-
dation commits to some number of fixed choices. Such choices include what
kinds of mathematical objects to take as the primitives (e.g., sets, functions,
types, categories, etc.), what kinds of logical rules to use (e.g., “natural de-
duction” vs. “logical deduction”, whether to allow the full power of classical
logic, etc.), what kinds of syntax and semantics to allow for logical propo-
sitions (first-order vs. higher-order), etc. Having made some initial choices,
further choices follow, e.g., for a set theory one must then choose the axioms
(Zermelo/Fraenkel, Tarski/Grothendieck, etc.), or for a type theory the kinds
of types and the typing rules (Calculus of Constructions, Martin-Löf, etc.).
Fixed choices make logical foundations undesirable to use for three reasons:

– Much of mathematics can be built on top of all of the different foun-
dations. Hence, committing to a particular foundation would seem to
unnecessarily limit the applicability of mathematical results.

– The details of how to build some mathematical concepts can vary quite
a bit from foundation to foundation. Issues that cause difficulty include

90 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

how to handle “partial functions”, induction, reasoning modulo equa-
tions, etc. Since these issues can be handled in all foundations, mathe-
maticians tend to see the low-level details of these issues as inessential
and uninteresting, and are not willing to write the low-level details.

– Some mathematics only works for some foundations. Hence, for a math-
ematician to develop the specialised expertise needed to express mathe-
matics in terms of one particular foundation would seem to unnecessar-
ily limit the scope of mathematics he/she could address. A mathemati-
cian is happy to be reassured by a mathematical logician that what they
are doing can be expressed in some foundation, but the mathematician
usually does not care to work out precisely how. Moreover there is no
universal agreement as to which is the best logical foundation.

• In practice, formalising a mathematical text in any of the existing founda-
tions is an extremely time-consuming, costly, and mentally painful activity.
Formalisation also requires special expertise in the particular foundation
used that goes far beyond the ordinary expertise of even extremely good
mathematicians. Furthermore, mathematical texts formalised in any of the
existing foundations are generally structured in a way which is radically
different from what is optimal for the human reader’s understanding, and
which is difficult for ordinary mathematicians to use. (Some proof software
systems like Mizar, which is based on Tarski/Grothendieck set theory, at-
tempt to reduce this problem, and partially succeed.) What is a single step
in a usual human-readable mathematical text may turn into a multitude of
smaller steps in a formalised version. New details completely missing from
the human-readable version may need to be woven throughout the entire
text. The original text may need to be reorganised and reordered so radi-
cally that it seems like it is almost turned inside out in the formal version.

So, although mathematics was a driving force for the research in logic in the
19th or 20th century, mathematics and logic have kept a distance from each other.
Practising mathematicians do not use mathematical logic and have for centuries
done most mathematical work outside of the strict boundaries of formal logic.

1b Computerisation of Mathematical Knowledge

Our second question, of how to use mechanical computers to support mathemat-
ical knowledge, is more recent but is unavoidable since automation and compu-
tation can provide tremendous services to mathematics. There are also extensive
opportunities for combining progress in logic and computerisation not only in
mathematics but also in other areas: bio-informatics, chemistry, music, etc.

Mechanical computers have been used from their beginning for mathematical
purposes. Starting in the 1960s, computers began to play a role in handling not
just computations, but abstract mathematical knowledge. Nowadays, computers
can represent mathematical knowledge in various ways:

Computerising Mathematical Text 91

• Pixel map images of pages of mathematical articles may be stored on the
computer. While useful, it is very difficult for computer programs to access
the semantics of mathematical knowledge presented this way [Autexier et al.,
2010]. Even keyword searching is hard, since OCR (Optical Character Recog-
nition) must be performed and high quality OCR for mathematical texts is
an area with significant research challenges rather than a proven technology
(e.g., there is great difficulty with matrices [Kanahori et al., 2006]).

• Typesetting systems like LATEX or TEXMACS
[van der Hoeven, 2004], can

be used with mathematical texts for editing them and formatting them for
viewing or printing. The document formats of these systems can also be used
for storage and archiving. Such systems provide good defaults for visual
appearance and allow fine control when needed. They support commonly
needed document structures and allow custom structures to be created, at
least to the extent of being able to produce the correct visual appearance.

Unfortunately, unless the mathematician is amazingly disciplined, the logical
structure of symbolic formulas is not directly represented. Furthermore, the
logical structure of mathematics as embedded in natural language text is not
represented at all. This makes it difficult for computer programs to access
document semantics because fully automated discovery of the semantics of
natural language text still performs too poorly to use in practical systems.
Even human-assisted semi-automated semantic analysis of natural language
is primitive, and we are aware of no such systems with special support for
mathematical text. As a consequence, there is generally no computer support
for checking the correctness of mathematics represented this way or for doing
searching based on semantics (as opposed to keywords).

• Mathematical texts can be written in more semantically oriented document
representations like OpenMath [Abbott et al., 1996] and OMDoc [Kohlhase,
2006], Content MathML [W3C, 2003], etc. There is generally support for
converting from these representations to typesetting systems like LATEX or
Presentation MathML in order to produce readable/printable versions of
the mathematical text. These systems are 1) better than the typesetting
systems at representing the knowledge in a computer-accessible way, and 2)
can represent Some aspects of the semantics of symbolic formulas.

• There are software systems like proof assistants (also called proof check-
ers, these include Coq [Team, 1999–2003], Isabelle [Nipkow et al., 2002],
NuPrL [Constable and others, 1986], Mizar [Rudnicki, 1992], HOL [Gordon
and Melham, 1993], etc.) and automated theorem provers (Boyer-Moore,
Otter, etc.), which we collectively call proof systems. Each proof system
provides a formal language (based on some foundation of logic and mathe-
matics) for writing/mechanically checking logic, mathematics, and computer
software. Work on computer support for formal foundations began in the
late 1960s with work by de Bruijn on Automath (AUTOmating MATHe-

92 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

matics) [Nederpelt et al., 1994]. Automath supported automated checking
of the full correctness of a mathematical text written in Automath’s formal
language. Generally, most proof systems support checking full correctness,
and it is possible in theory (although not easy) for computer programs to
access and manipulate the semantics of the mathematical statements.

Closely related to proof systems, we find proof development/planning sys-
tems (e.g., Ωmega [Siekmann et al., 2002; Siekmann et al., 2003] and λClam

[Bundy et al., 1990]) which are mathematical assistant tools that support
proof development in mathematical domains at a user-friendly level of ab-
straction. An additional advantage of these systems is that they focus on
proof planning and hence can provide different styles of proof development.

Unfortunately, there are great disadvantages in using proof systems. First,
all of the problems mentioned for logical foundations in section 1a are in-
curred, e.g., the enormous expense of formalisation. Furthermore, one must
choose a specific proof system (Isabelle, Coq, Mizar, PVS, etc.) and each
software system has its own advantages and pitfalls and takes quite some
time to learn. In practice, some of these systems are only ever learnt from a
“master” in an “apprenticeship” setting. Most proof systems have no mean-
ingful support for the mathematical use of natural language text. A notable
exception is Mizar, which however requires the use of natural language in a
rigid and somewhat inflexible way. Most proof systems suffer from the use
of proof tactics, which make it easier to construct proofs and make proofs
smaller, but obscure the reasoning for readers because the meaning of each
tactic is often ad hoc and implementation-dependent. As a result of these
and other disadvantages, ordinary mathematicians do not generally read
mathematics written in the language of a proof system, and are usually not
willing to spend the effort to formalise their own work in a proof system.

• Computer algebra systems (CAS: e.g., Maxima, Maple, Mathematica, etc.)
are widely used software environments designed for carrying out computa-
tions, primarily symbolic but sometimes also numeric. Each CAS has a
language for writing mathematical expressions and statements and for de-
scribing computations. The languages can also be used for representing
mathematical knowledge. The main advantage for such a language is inte-
gration with a CAS. Typically, a CAS language is not tied to any specific
foundation and has little or no support for guaranteeing correctness of math-
ematical statements. A CAS language also typically has little or no support
for embedded natural language text, or for precise control over typesetting.
So a CAS is often used for calculating results, but these results are usually
converted into some other language or format for dissemination or verifica-
tion. Nonetheless, there are useful possibilities for using a CAS for archiving
and communicating mathematical knowledge.

It is important to build a bridge between more than one of the above categories
of ways of representing mathematical knowledge, and to make easier (without re-

Computerising Mathematical Text 93

quiring) the partial or full formalisation of mathematical texts in some foundation.
In this paper, we discuss two approaches aimed at achieving this: Barendregt’s
approach [Barendregt, 2003] towards an interactive mathematical proof mode and
Kamareddine and Wells’ MathLang approach [Kamareddine and Wells, 2008] to-
wards the gradual computerisation of mathematics.

2 INTRODUCTION

Mathematical assistants are workstations running a program that verifies the cor-
rectness of mathematical theorems, when provided with enough evidence. Systems
for automated deduction require less evidence or even none at all; proof-checkers
on the other hand require a fully formalised proof. In the pioneering systems
Automath1 (of N.G. de Bruijn, based on dependent type theory), and Mizar (of
Andrzej Trybulec based on set-theory), proofs had to be given ready and well. On
the other hand for systems like NuPrl, Isabelle, and Coq, the proofs are obtained
in an interactive fashion between the user and the proof-checker. Therefore one
speaks about an interactive mathematical assistant. The list of statements that
have to be given to such a checker, the proof-script , is usually not mathematical in
nature, see e.g. table 8. The problem is that the script consists of fine-grained steps
of what should be done, devoid of any mathematical meaning. Mizar is the only
system having a substantial library of certified results in which the proof-script
is mathematical in nature. Freek Wiedijk [Wiedijk, 2006] speaks of the declara-
tive style of Mizar. In [de Bruijn, 1987] a plea was given to use a mathematical
vernacular for formalising proofs.

This paper discusses two approaches influenced by de Bruijn’s mathematical
vernacular: MathLang [Kamareddine and Wells, 2008] and MPL (Mathematical
Proof Language) [Barendregt, 2003]. These approaches aim to develop a frame-
work for computerising mathematical texts which is flexible enough to connect the
different approaches to computerisation, which allows various degrees of formali-
sation, and which is compatible with different logical frameworks (e.g., set theory,
category theory, type theory, etc.) and proof systems. Both approaches aim to
bridge informal mathematics and formalized mathematics via automatic transla-
tions into the formalised language of interactive proof-assistants. In particular:

• MPL aims to provide an interactive script language for an interactive proof
assistant like Coq, that is declarative and hence mathematical in flavor.2

• MathLang is embodied in a computer representation and associated software
tools, and its progress and design are driven by the need for computerising
representative mathematical texts from various branches of mathematics.

At this stage, MPL remains a script language and has no associated software tools.
MathLang on the other hand, supports entry of original mathematical texts either

1<www.cs.kun.nl/~freek/aut>
2A similar approach to MPL is found in Isar3, with an implemented system.

94 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

in an XML format or using the TEXMACS editor and these texts are manipulated by
a number of MathLang software tools. These tools provide methods for adding,
checking, and displaying various information aspects. One aspect is a kind of
weak type system that assigns categories (term, statement, noun (class), adjective
(class modifier), etc.) to parts of the text, deals with binding names to meanings,
and checks that a kind of grammatical sense is maintained. Another aspect allows
weaving together mathematical meaning and visual presentation and can associate
natural language text with its mathematical meaning. Another aspect allows
identifying chunks of text, marking their roles (theorem, definition, explanation,
example, section, etc.), and indicating relationships between the chunks (A uses
B, A contradicts B, A follows from B, etc.). Software tool support can use this
aspect to check and explain the overall logical structure of a text.

Further aspects are being designed to allow adding additional formality to a text
such as proof structure and details of how a human-readable proof is encoded into
a fully formalised version (previously [Kamareddine et al., 2007b; Lamar, 2011]

we used Mizar and Isabelle but here, for the first time we develop the MathLang
formalisation into Coq). [Kamareddine and Wells, 2008] surveyed the status of the
MathLang project up to November 2007. This paper picks on from that survey, fills
in a number of formalisation and implementation gaps and creates a formalisation
path via MathLang into Coq. We show for the first time how the DRa information
can be used to automatically generate proof skeletons for different theorem provers,
we formalise and implement the textual order of a text and explain how it can be
derived from the original text. Our proposed generic algorithm (for generating the
proof skeleton which depends on the original mathematical text and the desired
theorem prover), is highly configurable and caters for arbitrary theorem provers.
This generic algorithm as well as all the new algorithms and concepts we present
here, are implemented in our software tool. We give hints for the development of
an algorithm which is able to convert parts of a CGa annotated text automatically
into the syntax of a special theorem prover.

To test our approaches we specify using MPL a feasible interactive mathemat-
ical proof development for Newman’s Lemma and we create the complete path of
encoding in and formalising through MathLang, for the first chapter of Landau’s
book ”Grundlagen der Analysis”. For Newman’s Lemma in MPL, we show that
the declarative interactive mathematical mode is more pleasant than the opera-
tional mode of Coq. For Landau’s chapter in MathLang, we show that the entire
path from the informal text into the fully formalised Coq text is much easier to
construct and comprehend in MathLang than in Coq. For this, we show how the
plain text document of Landau’s chapter, can be easily annotated with categories
and mathematical roles and how a Coq and a Mizar proof skeletons can be au-
tomatically generated for the chapter. We then use hints to convert parts of the
annotated text of Landau’s first chapter into Coq. Both the Coq proof skeleton
and the converted parts into Coq, simplified the process of the full formalisation
of the first chapter of Landau’s book in Coq.

Computerising Mathematical Text 95

Although in this paper we only illustrate MPL and MathLang for Coq, the
proposed approaches should work equally well for other proof systems (indeed, we
have previously illustrated MathLang for Mizar and Isabelle [Kamareddine et al.,
2007a; Kamareddine et al., 2007b]).

3 THE GOALS OF MATHLANG AND MPL

Sections 1a and 1b described issues with the practice of mathematics: the diffi-
culty for the normal mathematician in directly using a formal foundation, and the
disadvantages of the various computer representations of mathematics. To address
these issues, we set out to develop two new mathematical languages, so that texts
written in CML (the common mathematical language, expressed either with pen
and paper, or LATEX) is written instead in a way that satisfies these goals:

1. A MathLang/MPL text should support the usual features of CML: natural
language text, symbolic formulas, images, document structures, control over
visual presentation, etc. And the usual computer support for editing such
texts should be available.

2. It should be possible to write a MathLang/MPL text in a way that is signifi-
cantly less ambiguous than the corresponding CML text. A MathLang/MPL
text should somehow support representing the text’s mathematical semantics
and structure. The support for semantics should cover not just individual
pieces of text and symbolic formulas but also the entire document and the
document’s relationship to other documents (to allow building connected li-
braries). The degree of formality in representing the mathematical semantics
should be flexible, and at least one choice of degree of formality should be
both inexpensive and useful. There should be some automated checking of
the well-formedness of the mathematical semantics.

3. The structure of a MathLang/MPL text should follow the structure of the
corresponding CML, so that the experience of reading and writing Math-
Lang/MPL should be close to that of reading and writing CML. This should
make it easier for an author to see and have confidence that a MathLang/MPL
text correctly represents their intentions. Thus, if any foundational formal
systems are used in MathLang/MPL, then the latter should somehow adapt
the formal systems to the needs of the authors and readers, rather than
requiring the authors and readers to adapt their thinking to fit the rigid
confines of any existing foundations.

4. The structure of a MathLang/MPL text should make it easier to support fur-
ther post-authorship computer manipulations that respect its mathematical
structure and meaning. Examples include semantics-based searches, com-
putations via computer algebra systems, extraction of proof sketches (to be
completed into a full formalisation in a proof system), etc.

96 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

5. A particular important case of the previous point is that MathLang/MPL
should support (but not require) interfacing with proof systems so that a
MathLang/MPL text can contain full formal details in some foundation and
the formalisation can be automatically verified.

6. Authoring of a MathLang/MPL text should not be significantly harder for
the ordinary mathematician than authoring LATEX. Features that the author
does not want (such as formalisation in a proof system) should not require
any extra effort from an author.

7. The design of MathLang/MPL should be compatible with (as yet undeter-
mined) future extensions to support additional uses of mathematical knowl-
edge. Also, the design of MathLang/MPL should make it easy to com-
bine with existing languages (e.g., OMDoc, TEXMACS). This way, Math-
Lang/MPL might end up being a method for extending an existing language
in addition to (or instead of) a language on its own.

None of the previously existing representations for mathematical texts satisfies our
goals, so we have been developing new techniques. In this paper we discuss where
we are with both MathLang and MPL.

MathLang/MPL are intended to support different degrees of formalisation. Fur-
thermore, for those documents where full formalisation is a goal, we intend to allow
this to be accomplished in gradual steps. Some of the motivations for varying de-
grees of formalisation have already been discussed in sections 1a and 1b. Full
formalisation is sometimes desirable, but also is often undesirable due to its ex-
pense and the requirement to commit to many inessential foundational details.
Partial formalisation can be desirable for various reasons; as examples, it has the
potential to be helpful with automated checking, semantics-based searching and
querying, and interfacing with computer algebra systems (and other mathematical
computation environments). In both our languages, MathLang and MPL, partial
formalisation can be carried out to different degrees. For example:

• The abstract syntax trees of symbolic formulas can be represented accu-
rately. This is usually missing when using systems like LATEX or Presenta-
tion MathML, while more semantically oriented systems provide this to some
degree. This can provide editing support for algebraic rearrangements and
simplifications, and can help interfacing with computer algebra systems.

• The mathematical structure of natural language text can be represented in a
way similar to how symbolic formulas are handled. Furthermore, mixed text
and symbols can be handled. This can help in the same way as capturing
the structure of symbolic formulas can help. Nearly all previous systems do
not support handling natural language text in this way.

• A weak type system can be used to check simple grammatical conditions
without checking full semantic sensibility.

Computerising Mathematical Text 97

• Justifications (inside proofs and between formal statements) can be linked
(without necessarily always indicating precisely how they are used). Some
examples of potential uses of this feature include the following:

– Extracting only those parts of a document that are relevant to specific
results. (This could be useful in educational systems.)

– Checking that each instance of apparently circular reasoning is actually
handled via induction.

– Calculating proof gaps as a first step toward fuller formalisation.

• If one commits to a foundation (or in some cases, to a family of founda-
tions), one can start to use more sophisticated type systems in formulas and
statements for checking more aspects of well-formedness.

• And there are further possibilities.

4 AN OVERVIEW OF MATHLANG

The design of MathLang is gradually being refined based on experience testing the
use of MathLang for representative mathematical texts. Throughout the devel-
opment, the design is tested by evaluating encodings of real mathematical texts,
during which issues and difficulties are encountered, which lead to new needs being
discovered and corresponding design adjustments. The design includes formal rules
for the representation of mathematical texts, as well as patterns and methodology
for entering texts in this representation, and supporting software.

The choice of mathematical texts for testing is primarily oriented toward texts
that represent the variety of mathematical writing by ordinary mathematicians
rather than texts that represent the interests of formalists and mathematical logi-
cians. Much of the testing has been with pre-existing texts. In some cases, texts
that have previously been formalised by others were chosen in order to compare
representations, e.g., A Compendium of Continuous Lattices [Gierz et al., 1980] of
which at least 60% has been formalised in Mizar [Rudnicki, 1992], and Landau’s
Foundations of Analysis [Landau, 1951] which was fully formalised in Automath
[van Benthem Jutting, 1977a]. In other cases, texts of historical value which are
known to have errors were chosen to ensure that MathLang’s design will not ex-
clude them, e.g., Euclid’s Elements [Heath, 1956]. Other texts were chosen to
exercise other aspects of MathLang. Authoring new texts has also been tested.

In addition to the design of MathLang itself, there has been work on relating
a MathLang text to a fully formalised version of the text. Using the information
in the CGa and DRa aspects of a MathLang text, [Kamareddine et al., 2007b;
Retel, 2009] developed a procedure for producing a corresponding Mizar document,
first as a proof sketch with holes and then as a fully completed proof. [Lamar,
2011] attempted to follow suit with Isabelle. In this paper, we make further
progress in completing the path in MathLang in order to reach full formalisation
and we introduce a third theorem prover (Coq) as a test bed for MathLang (in
addition to Mizar and Isabelle). We develop the proof skeleton idea presented

98 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Figure 1. Overall situation of work in MathLang

earlier in [Kamareddine et al., 2007b] specifically for Mizar, into an automatically
generated proof skeleton in a choice of theorem provers (including Mizar, Isar and
Coq). To achieve this, we give a generic algorithm for proof skeleton generation
which takes the required prover as one of its arguments. We also give hints for the
development of a generic algorithm which automatically converts parts of a CGa
annotated text into the syntax of the theorem prover it is given as an argument.

Figure 1 (adapted from [Kamareddine et al., 2007b]) diagrams the overall cur-
rent situation of work on MathLang. In the rest of this paper, we discuss the
aspects CGa, TSa, and DRa in more detail, we introduce the generic automatic
proof skeleton generator and how parts of the CGa annotated text can be for-
malised into a theorem prover. We also discuss interfacing MathLang with Coq.

4a The Core Grammatical aspect (CGa)

The Core Grammatical aspect (CGa) [Kamareddine et al., 2004c; Kamareddine
et al., 2006; Maarek, 2007] is based on the Weak Type Theory (WTT) of Ned-
erpelt [Nederpelt, 2002] whose metatheory was established by Kamareddine [Ka-
mareddine and Nederpelt, 2004]. WTT in turn was heavily inspired by the Math-
ematical Vernacular (MV) [de Bruijn, 1987].

In WTT, a document is a book which is a sequence of lines, each of which is
a pair of a sentence (a statement or a definition) and a context of facts (declara-
tions or statements) assumed in the sentence. WTT has four ways of introducing
names. A definition introduces a name whose scope is the rest of the book and
associates the name with its meaning. A name introduced by a definition can have
parameters whose scope is the body of the definition. A declaration in a context
introduces a name (with no parameters) whose scope is only the current line. Fi-

Computerising Mathematical Text 99

nally, a preface gives names whose scope is the document; names introduced by
prefaces have parameters but unlike definitions their meanings are not provided
(and thus presumed to be given externally to the document). Declarations, defini-
tions, and statements can contain phrases which are built from terms, sets, nouns,
and adjectives. Using the terminology of object-oriented programming languages,
nouns act like classes and adjectives act like mixins (a special kind of function
from classes to classes). WTT uses a weak type system with types like noun,
set, term, adjective, statement definition, context, and book to check basic
well-formedness. Sets are used when something is definitely known to be a set and
the richer structure of a noun is not needed, and terms are used for things that
are not sets (and sometimes for sets in cases where the type system is too weak).

Although WTT provides many useful ideas, the definition of WTT has many
limitations. The many different ways of introducing names are too complicated and
awkward. WTT provides no way to indicate which statements are used to justify
other statements and in general does not deal with proofs and logical correctness.
WTT provides no ways to present the structure of a text to human readers; there
is no way of grouping statements and identifying their mathematical/discourse
roles such as theorem, lemma, conjecture, proof, section, chapter. WTT provides
no way to give human names to statements (e.g., “Newman’s Lemma”). WTT
provides no way to use in one document concepts defined in another document.

The Core Grammatical aspect (CGa) was shaped by repeated experiences of
annotating mathematical texts. CGa simplifies difficult aspects of WTT, and
enhances the nouns and adjectives of WTT with ideas from object-oriented pro-
gramming so that nouns are more like classes and adjectives are more like mixins.
In CGa, the different kinds of name-introducing forms of WTT are unified; all def-
initions by default have indefinite forward scope and a local scope operator allows
local definitions. The basic constructs of CGa are the step and the expression.
The tasks handled in WTT by books, prefaces, lines, declarations, definitions, and
statements are all represented as steps in CGa. A step can be a block {s1 , . . . , sn},
which is merely a sequence of steps. A step can be a local scoping s1 ⊲ s2, which is
a pair of steps s1 and s2 where the definitions and declarations of s1 are restricted
in scope to s2 and the assertions of s1 are assumptions of s2. A step can also be a
definition, a declaration, or an expression (which asserts a truth). Expressions are
also used for the bodies of definitions and inside the types in declarations. The
possibilities for expressions include uses of defined identifiers, identifier declara-
tions, and noun descriptions. A noun description allows specifying characteristics
of a class of entities. For example,
{M : set; y : natural number; x : natural number; ∈(x,M)}⊲=(+(x, y),+(y, x))
is an encoding of this (silly) CML text:

“Given that M is a set, y and x are natural numbers, and x belongs to
M, it holds that x + y = y + x.”

This example assumes that earlier in the document there are declarations like:

. . . ; ∈(term, set) : stat; =(term, term) : stat; natural number : noun;
+ (natural number, natural number) : natural number; . . .

100 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Here, M, y, x, ∈, =, and + are identifiers4 while term, set, stat, and noun

are keywords of CGa. The semicolon, colon, comma, parentheses, braces, and
right triangle (⊲) symbols are part of the syntax of CGa. The statements like
∈(term, set) : stat are declarations; this example declares ∈ to be an operator
that takes two arguments, one of type term and one of type set, and yields a
result of type stat (statement). The statement M : set is an abbreviation for
M() : set which declares the identifier M to have zero parameters.

CGa uses grammatical/linguistic/syntactic categories (also called types) to make
explicit the grammatical role played by the elements of a mathematical text. In
the above example, we see the category expressions term, set, stat, noun, and
natural number. In fact, the category expression natural number acts as an ab-
breviation for term(natural number), and term, set, and noun are abbreviations
for term(Noun {}), set(Noun {}), and noun(Noun {}), which all use the uncharac-
terised noun description Noun {}. A noun description is of the form Noun s and
describes a class of entities with characteristics (declared operations and true facts)
defined by the step s. The arguments of the category constructors term, set, and
noun are expressions which evaluate to noun descriptions. The category term(e)
describes individual entities belonging to the class described by the noun expres-
sion e, and the category set(e) describes any set of such entities. The category
noun(e) describes any noun which defines all the operations described by e with
the same types. So in the above example, the abbreviation term is the type of all
mathematical entities, the abbreviation set is the type of any set, noun is the type
of any noun (and specifies no characteristics for it), and natural number is the
type of any mathematical entity having the characteristics described by the noun
natural number.5 The behaviour of nouns in CGa is similar to that of classes in
object-oriented programming languages. CGa also has adjectives which are like
object-oriented mixins and act as functions from nouns to nouns. These linguistic
levels and syntactic elements are summarised in the following definitions.

DEFINITION 1 (Linguistic levels). The syntax of CGa is based on a hierarchy of
the five different linguistic levels given below. Elements from I and C are part of
E, expressions are part of the phrases of P and steps S are built from phrases.

1. Identifier level I 2. Category level C 3. Expression level E

4. Phrase level P 5. Step level S

DEFINITION 2 (Syntactic elements). The syntactic elements at each level are:

1. At identifier level: term identifiers IT , set identifiers IS , noun identifiers IN ,
adjective identifiers IA and statement identifiers IP .

2. At category level: term categories T , set categories S, noun categories N ,
adjective categories A, statement categories P and declaration categories D.

4Our current implementation only allows ASCII characters in identifiers, but we plan to
support any graphic Unicode characters.

5CGa has other mechanisms that allow specifying additional characteristics of the noun
natural number separate from its declaration, and we assume in this example that this is done.

Computerising Mathematical Text 101

3. At expression level: declaration expressions DEC, instantiation expressions
INST, description expressions DSC, refinement expressions REF and the
self expression SEL.

4. At phrase level: sub refinement phrases SUB, definition phrases DEF, dec-
laration expressions DEC and statement expressions P.

5. At step level: local scoping steps LOC, block steps BLO and each phrase
of P is a basic step.

For details of the rules of CGa see [Kamareddine et al., 2006; Maarek, 2007].
Here, it is crucial to mention the following colour codings for these CGa categories:
term set noun adjective statement definition declaration step context .

The types of CGa are more sophisticated than the weak types of WTT and
allow tracking which operations are meaningful in some additional cases. Although
CGa’s types are more powerful than WTT’s, there are still significant limitations.
One limitation is that higher-order types are not allowed. For example, although
CGa allows the type (term, term) → term, which is the type of an operator that
takes two arguments of type term and returns a result of type term, CGa does not
allow using the type ((term) → term, term) → term, which would be the type of an
operator that takes another operator as its first argument. Higher-order types can
be awkwardly and crudely emulated in CGa by encapsulation with noun types, but
this emulation does not work well due to the fact that CGa’s type polymorphism
is shallow, which is another significant limitation. To work around the weakness
of CGa’s type polymorphism, in practice we find ourselves often giving entities
the type term instead of a more precise type. We continue to work on making
the type system more flexible without making it too complex. It is important to
understand that the goal of CGa’s type system is not to ensure full correctness, but
merely to check whether the reasoning parts of a document are coherently built in
a sensible way. CGa provides a kind of grammar for well-formed mathematics with
grammatical categories and allows checking for basic well-formedness conditions
(e.g., the origin of all names/symbols can be tracked).

The design of CGa is due to Kamareddine, Maarek and Wells [Kamareddine et
al., 2006]. The implementation of CGa is due to Maarek [Maarek, 2007].

4b The Text and Symbol aspect (TSa)

The Text and Symbol aspect (TSa) [Kamareddine et al., 2004b; Kamareddine
et al., 2007a; Maarek, 2007; Lamar, 2011] allows integrating normal typesetting
and authoring software with the mathematical structure represented with CGa.
TSa allows weaving together usual mathematical authoring representations such
as LATEX, XML, or TEXMACS with CGa data. Thanks to a notion of souring rules
(called “souring” because it does the opposite of syntactic sugar), TSa allows the
structure of the mathematical text to follow that of the CML text as conceived
by the mathematician. TSa allows interleaving pieces of CGa with pieces of CML
in the form of mixtures of natural language, symbolic formulas, and formatting
instructions for visual presentation. The interleaving can be at any level of gran-
ularity: meanings can be associated at a coarse grain with entire paragraphs or

102 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

<> <∃ >There is <> <0>an element 0 in <R>R such that <=> <+> <a>a + <0>0 = <a>a

∃(0 : R, = (+ (a, 0), a))
Figure 2. Example of CGa encoding of CML text

sections, or at a fine grain with individual words, phrases, and symbols. Arbitrary
amounts of mathematically uninterpreted text can be included. The TSa represen-
tation is inspired by the XQuery/XPath Data Model (XDM) [WC3, 2007] used for
representing the information content of XML documents. In TSa, a document d
is built from the empty document ([]) by sequencing (d1, d2) and labelling (ℓ〈d〉).

For example, the CML text and its CGa representation given in figure 2 could be
represented in TSa by the following fine-grained interleaving of CGa6 and LATEX:

“There is #1 such that #2.”
〈∃〈“#1 in #2”〈:〈“an element 0”〈0〉, “R”〈R〉〉〉,

“$#1 = #2$”〈=〈“#1 + #2”〈+〈“a”〈a〉, “0”〈0〉〉〉, “a”〈a〉〉〉〉

This example (see [Kamareddine et al., 2007a]) uses the abbreviation that ℓ stands
for ℓ〈[]〉. For example, “a”〈a〉 actually stands for “a”〈a〈[]〉〉.

Associated with TSa are methods for extracting separately the CGa and the
typesetting instructions or other visual representation. E.g., from the TSa above
can be extracted the following TSa representation of just the CGa portion:

∃〈:〈0, R〉,=〈+〈a, 0〉, a〉〉

The CGa portion of this text can be type checked and used for processing that
needs to know the mathematical meaning of the text. Similarly, the following
pieces of LATEX can also be extracted:

“There is #1 such that #2.”
〈“#1 in #2”〈“an element 0”, “R”〉,
“$#1 = #2$”〈“#1 + #2”〈“a”, “0”〉, “a”〉〉

This tree of LATEX typesetting instructions can be further flattened for actual
processing by LATEX into a string such as:

“There is an element 0 in R such that $a + 0 = a$.”

The idea of the TSa representation is independent of the visual formatting language
used. Although we use LATEX in our example here, in our implementations so far
we have used the TEXMACS internal representation and also XML.

As part of using TSa to interleave CGa and more traditional natural language
and typesetting information, we needed to develop techniques for handling certain
challenging CML formations where the mathematical structure and the CML rep-
resentation do not nicely match. For example, in the text 0+a0 = a0 = a(0+0) =

6The representation shown here omits type/category annotations that we usually include with
the CGa identifiers used in the TSa representation.

Computerising Mathematical Text 103

<=> <>0 + a0= <shared> <>a0 <=> = <shared> <>a(0 + 0) <=> = <>a0 + a0

<eq> <>0 + a0 <>a0 <eq> <>a0 <>a(0 + 0) <eq> <>a(0 + 0) <>a0 + a0

Figure 3. Example of using souring in TSa to support sharing

a0 + a0, the terms a0 and a(0 + 0) are each shared between two equations. Most
formal representations would require either duplicating these shared terms, like
for example 0 + a0 = a0 ∧ a0 = a(0 + 0) ∧ a(0 + 0) = a0 + a0, or explicitly
abstracting the shared terms. To allow the TSa representation to be as close to
CML as possible, we instead solve this by using “souring” annotations in the TSa
representation [Kamareddine et al., 2007a]. These annotations are a third kind of
node label used in TSa, in addition to the CGa and formatting labels. Souring
annotations are used to extract the correct mathematical meaning and the nice
visual presentation in the CML style. For the above example, see figure 3.

We have developed more sophisticated annotations that can handle more com-
plicated cases of sharing of terms between equations. Souring annotations have also
been developed to support several other common CML formulations. Support for
folding and mapping over lists allows using forms like ∀a, b, c ∈ S.P as shorthand
for ∀a ∈ S.∀b ∈ S.∀c ∈ S.P and {a, b, c} as shorthand for {a}∪({b}∪({c}∪∅)). We
have not yet developed folding that is sophisticated enough to handle ellipsis (. . .)
as in CML formulations like the next example (from [Sexton and Sorge, 2006]):

f [x, . . . , x
︸ ︷︷ ︸

n + 1 arguments

] =
f (n)(x)

n!

We have implemented a user interface as an extension of the TEXMACS editor
for entering the TSa MathLang representation. The author can use mouse and
keyboard commands to annotate CML text entered in TEXMACS with boxes rep-
resenting the CGa grammatical categories in order to assign CGa identifiers and
explicitly indicate mathematical meanings. The user interface allows displaying
either a pure CML view which hides the TSa and CGa information, a pure CGa
view, or various combined views including a view like that of figure 2. This inter-
face allows adding souring annotations like those of figure 3. We plan to develop
techniques for not just pairing a single CML presentation with its CGa meaning,
but also allowing multiple parallel visual presentations such as multiple natural
languages (not just English), both natural language and symbolic formulas, and
presentations in different symbolic notations. We plan also to develop better soft-
ware support to aid in semi-automatically converting existing CML texts into
MathLang via TSa and CGa.

The design of TSa is due to Kamareddine, Maarek, and Wells with contribu-
tions by Lamar to the souring rules [Kamareddine et al., 2007a; Maarek, 2007;
Lamar, 2011]. The implementation is primarily by Maarek [Maarek, 2007] with
contributions from Lamar [Lamar, 2011].

104 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

4c The Document Rhetorical aspect (DRa)

The Document Rhetorical aspect (DRa) [Kamareddine et al., 2007c; Retel, 2009;
Zengler, 2008] supports identifying portions of a text and expressing the relation-
ships between them. Any portion of text (e.g., phrase, step, block, etc.) can be
given an identity. Many kinds of relationships can be expressed between identified
pieces of text. E.g., a chunk of text can be identified as a “theorem”, and another
can be identified as the “proof” of that theorem. Similarly, one chunk of text can
be a “subsection” or “chapter” of another. Given these relationships, it becomes
possible to do computations to check whether all dependencies are identified, to
check whether the relationships are sensible or problematic (and whether there-
fore the author should be warned), and to extract and explain the logical structure
of a text. Dependencies identified this way have been used in generating formal
proof sketches and identifying the proof holes that remain to be filled. This paper
presents further formalisation and implementation of notions related to DRa.

DRa is a system for attaching annotations to mathematical documents that
indicate the roles played by different parts of a document. DRa assumes the
underlying mathematical representation (which can be the MathLang aspects CGa
or TSa) has some mechanism for identifying document parts.

Some DRa annotations can be unary predicates on parts; these include annota-
tions indicating ordinary document sectioning roles such as part, chapter, section,
etc. (like the sectioning supported by LATEX, OMDoc, DocBook, etc.) and others
indicating special mathematical roles such as theorem, lemma, proof, etc.

Other DRa annotations can be binary predicates on parts; these include such
relationships between parts as “justifies”, “uses”, “inconsistent with”, and “ex-
ample of ”. Regarding the annotation of justifications, remember that a CML text
is usually incomplete: a mathematical thought process makes jumps from one in-
teresting point to the next, skipping over details. This does not mean that many
mistakes can occur; these details are usually so obvious for the mathematician
that a couple of words are enough (e.g., “apply theorem 35”). The mathematician
knows that too many details hinder concentration. To allow MathLang text to be
close to the CML text, DRa allows informal justifications, which can be seen as
hints about which statements would be used in the proof of another statement.

Figure 4 gives an example (taken from [Kamareddine et al., 2007b] and imple-
mented by Retel [Retel, 2009]) where the mathematician has identified parts of the
text (indicated by letters A through I in the figure). Figure 5, shows the underlying
mathematical representation of some example DRa annotations for the example
in figure 4. Here, the mathematician has given each identified part a structural
(e.g., chapter, section, etc.) and/or mathematical (e.g., lemma, corollary, proof,
etc.) rhetorical role, and has indicated the relation between wrapped chunks of
texts (e.g., justifies, uses, etc.). Note that all the DRa annotations are represented
as triples; this allows using the machinery of RDF [WC3, 2004] (a W3C standard
that is aimed at the “semantic web”) to represent and manipulate them.

The DRa structure of a text can be represented as a tree (which is exactly the

Computerising Mathematical Text 105

Lemma 1.

For m, n ∈ N one has:

m2 = 2n2 =⇒ m = n = 0
A

Proof.

Define on N the predicate:
P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0. E

Claim.

P (m) =⇒ ∃m′ < m.P (m′).F

Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is even, but
then m must be even, as odds square to odds. So m = 2k and we have
2n2 = m2 = 4k2 =⇒ n2 = 2k2 Since m > 0, if follows that m2 > 0,
n2 > 0 and n > 0. Therefore P (n). Moreover, m2 = n2 + n2 > n2,
so m2 > n2 and hence m > n. So we can take m′ = n.

G

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of
natural numbers.

Now suppose m2 = 2n2

with m 6= 0. Then m > 0 and hence P (m). Contradiction.H

Therefore m = 0. But then also n = 0. I
�

B

Corollary 2.

√
2 /∈ QC

Proof. Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n
with m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q. �

D

justifies

justifies

uses

uses

justifies

uses

uses

subpartOf

subpartOf

Figure 4. Wrapping/naming chunks of text and marking relationships in DRa

(A, hasMathematicalRhetoricalRole, lemma) (B, justifies, A)
(E, hasMathematicalRhetoricalRole, definition) (D, justifies, C)
(F, hasMathematicalRhetoricalRole, claim) (D, uses, A)
(G, hasMathematicalRhetoricalRole, proof) (G, uses, E)
(B, hasMathematicalRhetoricalRole, proof) (F, uses, E)
(H, hasMathematicalRhetoricalRole, case) (H, uses, E)
(I, hasMathematicalRhetoricalRole, case) (H, caseOf, B)
(C, hasMathematicalRhetoricalRole, corollary) (H, caseOf, I)
(D, hasMathematicalRhetoricalRole, proof)

Figure 5. Example of DRa relationships between chunks of text in figure 4

tree of the XML representation of the DRa annotated MathLang document). Due
to the tree structure of a DRa annotated document, we refer to an annotated part
of a text as a DRa node. We see an example of such a DRa node in figure 8.
The role of this node is declaration and its name is decA. Note that the content
of a DRa node is the user’s CGa and TSa annotation. In the DRa annotation
of a document, there is a dedicated root node (the Document node) where each
top-level DRa node is a child of this root node. In figure 6, we see a tree consisting
of 10 nodes. The root node (labelled Document) has four children nodes and five
grandchildren nodes (which are all children of B).

We distinguish between proved nodes (theorem, lemma, etc.) with a solid line
in the picture and unproved nodes (axiom, definition, etc.) with a broken line. We
introduce this distinction because with the current implementation of DRa the
user has the possibility to create its own mathematical and structural roles. Since
we want to check a DRa annotated document for validity, the information whether
a node is to be proved or not is important. For example such information would
result in an error if someone tries to prove an unproved node e.g. by proving

106 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Figure 6. Example of a tree of the DRa nodes of a document

Figure 7. Dependency graph for an example DRa tree

a definition or an axiom. When document D2 references document D1 it can
reference the root node of document D1 to include all of its mathematical text.

In figure 4 one can see, that there are four top-level nodes: A, B, C and D,
representing respectively lemma 1, a proof of lemma 1, corollary 2 and a proof of
corollary 2. The proof of lemma 1 has five children: E, F, G, H, I representing
respectively the definition of the predicate, a claim, the proof of the claim, case 1
and case 2. The visual representation of this tree can be seen in figure 6.

By traversing the tree in pre-order we derive the original linear order of the
DRa nodes of the text. Pre-order means that the traversal starts with the root
node and for each node we first visit the parent node before we visit its children.
It is important to mention that we have also an order of the nodes at the same
level from left to right. This means that we enumerate the children of a node form
1 to n and process them in this way. In the example of figure 6, the pre-order
would yield the order A, B, E, F, G, H, I, C, D.

The DRa implementation can automatically extract a dependency graph (as
seen in figure 7) that shows how the parts of a document are related.

Textual Order

To be able to examine the proper structure of a DRa tree we introduce the concept
of textual order between two nodes in the tree. The concept of textual order is
a modification of the logical precedence presented in [Kamareddine et al., 2007c].
In what follows, we formalise this concept of order and show how it can be used
to automatically generate a proof skeleton. The textual order expresses the de-
pendencies between parts of the text. For example if a node A uses a part of a
node B, then in a sequence of reasoning steps, B has to be before A. In order to

Computerising Mathematical Text 107

Figure 8. An example for a single DRa node

formally define textual order, we introduce some notions for DRa nodes.
Recall that the content of a DRa node is its CGa and TSa part and that we have

nine kinds of CGa annotations: term set noun adjective statement declaration

definition step context . A DRa node can also have further DRa nodes as children
(e.g. B in figure 6 has the children E, F, G, H and I). We give different sets for a
DRa node n. All these sets can be automatically generated from the user’s CGa
and TSa annotations of the text. Table 1 defines these sets and gives examples for
the CGa annotated text in figure 9 which is the definition of the subset relation.

Figure 9. CGa annotations for the definition of the subset relation

Set Description Example of Fig. 9

T (n) {x | x is part of n and x is annotated as term } {x}
S(n) {x | x is part of n and x is annotated as set } {A, B}
N (n) {x | x is part of n and x is annotated as noun } {}
A(n) {x | x is part of n and x is annotated as adjective } {}
ST (n) {x | x is part of n and x is annotated as statement } {A ⊂ B, x ∈ A, x ∈

B, x ∈ A =⇒ x ∈
B, ∀x(x ∈ A =⇒ x ∈
B)}

DC(n) {x | ∃q part of n, q is annotated as declaration and
x is the declared symbol of q }

{x}

DF(n) {x | ∃q part of n, q is annotated as definition and
x is the defined symbol of q }

{⊂}

SP(n) {x | x is part of n and x is annotated as step } {A ⊂ B ⇐⇒ ∀x(x ∈
A =⇒ x ∈ B)}

C(n) the set of all parts of n annotated as context {}
ENV(n) {x|∃m 6= n, m is a node in the pre-order path from

the root node to the node n, x is a part of m, and
x is annotated as statement }

Table 1. Sets for a DRa node n and examples

Let us give further examples of DC(n) and DF(n). In section 4a we had the
following example of a list of declarations (call it ex):

. . . ; ∈(term, set) : stat; =(term, term) : stat; natural number : noun;
+ (natural number, natural number) : natural number; . . .

For ex, we have that DC(ex) = {∈, =, natural number, +}.
Now take the example of figure 10 (and call it ex′). This example introduces

the definition of ¬ (Definition 1). We have that DF(ex′) = {¬}.

108 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

The syntax of a definition in the internal representation of CGa (which is not
necessarily the same as that given by the reader), is an identifier with a (possibly
empty list of arguments) on the left-hand side followed by “:=” and an expression.
The introduced symbol is the identifier of the left-hand side. For the example of
figure 9 (call it ex′′), the introduced symbol is ⊂, hence DF(ex′′) = {⊂} and the
internal CGa representation is: ⊂(A, B) := forall(a, impl(in(a, A), in(a, B))).

Note that ENV(n) is the environment of all mathematical statements that occur
before the statements of n (from the root node). Note furthermore that in the
CGa syntax of MathLang, a definition or a declaration can only introduce a term ,
set , noun , adjective , or statement . Furthermore, recall that mathematical
symbols or notions can only be introduced by definition or declaration and that
mathematical facts can only be introduced by a statement . We define the set
IN (n) of introduced symbols and facts of a DRa node n as follows:
IN (n) := DF(n) ∪ DC(n) ∪ {s|s ∈ ST (n) ∧ s 6∈ ENV(n)} ∪

⋃

c childOf n

IN (c)

At the heart of a context , step , definition , or declaration , is a set of statement ,
set , noun , adjective , and term . A DRa node n uses the set USE(n) where:

USE(n) := T (n) ∪ S(n) ∪N (n) ∪ A(n) ∪ ST (n) ∪
⋃

c childOf n

USE(c)

Lemma 1. For every DRa node n we have:
1. DF(n) ∪ DC(n) ⊆ T (n) ∪ S(n) ∪N (n) ∪ A(n) ∪ ST (n).
2. IN (n) ⊆ USE(n).

Proof. We prove 2 by induction on the depth of parenthood of n. If n has no
children then use lemma 1. Assume the property holds for all children c of n. By
lemma 1 and the induction hypothesis, we have IN (n) ⊆ USE(n). �

We demonstrate these notions with an example. Consider a part of a mathe-
matical text and its corresponding DRa tree with relations as in figure 10.

We assume the document starts with an environment which contains two state-
ments, <True>True and <False>False . Hence ENV(def1) = {True, False}. When
traversing the tree we start with the given environment for the node def1:

ENV(def1) = {True, False}

The environment for case1 consists of the environment of def1 and all new state-
ments of def1. In def1 there is only the new statement ¬ which is added to the
environment: ENV(case1) = {¬} ∪ ENV(def1). After case1 all the statements of
this node are added to the environment. These are ¬True and ¬True = False:

ENV(case2) = {¬True,¬True = False} ∪ ENV(case1)

We can proceed with the building of the environment in the same way and get the
last two environments of lem1 and pr1:

ENV(lem1) = {¬False,¬False = True} ∪ ENV(case2)

ENV(pr1) = {¬¬True,¬¬True = True} ∪ ENV(lem1)

With this information we derive the sets as shown in table 2 for the single nodes.
We can now formalise three different kinds of textual order ≺, � and ↔:

Computerising Mathematical Text 109

Document

Case

case1
Case

case2

Definition

def1
Lemma

lem1
Proof

pr1

uses

uses justifies

caseOf caseOf

Figure 10. Example of an annotated text and its corresponding DRa tree

Node n IN (n) USE(n)

def1 {¬} ∪ IN (Case 1) ∪ IN (Case 2) {¬} ∪ USE(Case 1) ∪ USE(Case 2)

case1 {¬True,¬True = False} {True, False,¬,¬True,¬True =
False}

case2 {¬False,¬False = True} {True, False,¬,¬False,¬False =
True}

lem1 {¬¬True,¬¬True = True} {True,¬,¬True,¬¬True, ¬¬True =
True}

pr1 {¬¬True = ¬False} {True, False,¬,¬True,¬¬True,
¬False,¬¬True = ¬False,
¬False = True}

Table 2. The sets IN and USE for the example

• Strong textual order ≺: If a node A uses a declared/defined symbol x or
a statement x introduced by a node B, we say that A succeeds B and write
B ≺ A. More formally: B ≺ A := ∃x(x ∈ IN (B) ∧ x ∈ USE(A)).

• Weak textual order �: This order describes a subpart relation between
two nodes (A is a subpart of B, written as A � B). More formally:

A � B := IN (A) ⊆ IN (B) ∧ USE(A) ⊆ USE(B)

• Common textual order ↔: This order describes the relation that two
nodes use at least one common symbol or statement. More formally:

A ↔ B := ∃x(x ∈ USE(A) ∧ x ∈ USE(B))

When B ≺ A (resp. A � B) we also write A ≻ B (resp. B � A). A DRa relation
induces a textual order. Table 3 gives some relations and their textual order.

We can now verify the relations of the example of figure 10 and their textual
orders (Table 4). It is obvious that all five conditions hold and hence the relations
are valid. For example the relation (case2, uses, lem1) would not be valid, because
¬∃x(x ∈ USE(case1) ∧ x ∈ IN (lem1)).

Note that these conditions are only of a syntactical form. There is no semantical
checking if e.g. a “justifies” relation really connects a proved node and its proof.

110 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Relation Meaning Order

A uses B A uses a statement or a symbol of B B ≺ A

A inconsistentWith
B

some statement in A contradicts a statement in B B ≺ A

A justifies B A is the proof for B A ↔
B

A relatesTo B There is a connection between A and B but no de-
pendence

A ↔
B

A caseOf B A is a case of B A � B

Table 3. Example of DRa relations and their textual order
Relation Condition Order

(case1, caseOf, def1) IN (case1) ⊆ IN (def1) ∧ USE(case1) ⊆
USE(def1)

case1 � def1

(case2, caseOf, def1) IN (case2) ⊆ IN (def1) ∧ USE(case2) ⊆
USE(def1)

case2 � def1

(pr1, justifies, lem1) ∃x(x ∈ USE(pr1) ∧ x ∈ USE(lem1)) pr1 ↔ lem1

(lem1, uses, def1) ∃x(x ∈ USE(lem1) ∧ x ∈ IN (def1)) def1 ≺ lem1

(pr1, uses, def1) ∃x(x ∈ USE(pr1) ∧ x ∈ IN (def1)) def1 ≺ pr1

Table 4. Conditions for the relations of the example

The GoTO

The GoTO is the Graph of textual order. For each kind of relation in the depen-
dency graph (DG) of a DRa tree we can provide a corresponding textual order
≺,� or ↔. These different kinds of order can be interpreted as edges in a directed
graph. So we can transform the dependency graph into a GoTO by transforming
each edge of the DG. So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g.
loops in the structure of the document).

2. The GoTO is used to automatically produce a proof skeleton for a prover.

To transform an edge of the DG we need to know which textual order it induces.
Each relation has a specific order ≺,≻,�,�,↔. Table 5 shows the graphical
representation of such edges and an example relation we have seen in our examples.
There is also a relation between a DRa node and its children: For each child c of

(A, uses, B) A ≻ B

(A, caseOf, B) A � B

(A, justifies, B) A ↔ B

Table 5. Graphical representation of edges in the GoTO

a node n we have the edge c � n in the GoTO. This “childOf” relation is added
automatically when producing the GoTO. But it can be added manually by the
user. This can be useful e.g. in papers with a page restriction, where some parts

Computerising Mathematical Text 111

of the text are relocated in the appendix but would be originally within the main
text. The algorithm for producing the GoTO from the DG works in two steps:

1. transform each relation of the DG into its corresponding edge in the GoTO

2. for each child c of a node n add the edge c � n to the GoTO
When performing this algorithm on the example of figure 7 we get the GoTO as
demonstrated in figure 11. Each relation of the DG which induces a ↔ textual
order is replaced by the corresponding edge in the GoTO. We can see these edges
between a proved node and its proof where the “justifies” relation induces a ↔
order (e.g. between A and B, C and D, and F and G). The children of the node
B are connected to B via � edges in the GoTO. For the “caseOf” relation, the
user has manually specified the relation, the other edges were added automatically
by the algorithm generating the GoTO. The relations which induce the order ≺
are transformed into the corresponding directed edges in the GoTO. We see that
the direction of the nodes has changed with respect to the DG. This is because
we only have “uses” relations, and for a relation (A, uses, B) we have the textual
order B ≺ A which means, that the direction of the edge changes.

Figure 11. Graph of Textual Order for an example DRa tree

Automatic checking of DG and GoTO

We implemented two kinds of failures: warnings and errors. At the current devel-
opment of DRa we check for four different kinds of failures:

1. Loops in the GoTO (error)

2. Proof of an unproved node (error)

3. More than one proof for a proved node (warning)

4. Missing proof for a proved node (warning)
The checks for 2) – 4) are performed in the DG. For 2) we check for every node of
type “unproved” if there is an incoming edge of type “justifies”. If so, an error is
returned (e.g. when someone tries to prove an axiom or a definition). For 3) and
4) we check for each node of type “proved” if there is an incoming edge of type
“justifies”. If not, we return a warning (this can be a deliberate omission of the
proof or just a mistake). If there is more than one proof for one node we return
also a warning (most formal systems cannot handle multiple proofs).

For 1) we search for cycles in the GoTO. Therefore we have to define how we
treat the three different kinds of edges. Edges of type ≺ and � are treated as
directed edges. Edges of type ↔ are in principal undirected edges, which means

112 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

for an edge A ↔ B, one can get from A to B and from B to A in the GoTO. It is
vital, that within one cycle such an edge is only used in one direction. Otherwise
we would have a trivial cycle between two nodes connected by a ↔ edge.

As we will see in the next section, a single node in the DRa tree can first be
translated when all its children nodes are ready to be translated. To reflect this
circumstance we have to add certain nodes in the GoTO for the cycle check. Let
us demonstrate this with an example. Consider a DG and GoTO as in figure 12.

Figure 12. Example of a not recognised loop in a DRa (left DG, right GoTO)

Apparently there is a cycle in this tree, because to be able to translate C we
need to translate its children D and E. Since C uses A, A must be translated before
translating C. But the child D of C is used by A leading to a deadlock. Neither
A nor C can be processed. To recognise such cycles we add certain edges to the
GoTO when checking for cycles. Therefore we have to look at the children of a
node n: hidden cycles can only evolve, when there are edges ei from a child node
ci to a target node ti which is not a sibling of ci. Hence we add an edge ci ≻ n for
each such node ei to the GoTO. This can be done via algorithm 1. We could also

foreach node n of the tree do

foreach child c of n do

foreach outgoing edge e of c do

if target node t of e is no sibling of c then
add a Strong textual precedence edge from n to t;

end

end

end

end

Algorithm 1: Adding additional edges to the GoTO

add new edges for all incoming edges of the children ci but this is not necessary
since the textual order of the “childOf” relation is a directed edge from each child
ci to its parent node n and the transitivity of the edges helps find a cycle anyway.

In the example from figure 12, algorithm 1 would add one edge to the GoTO:
The child node D of C has an outgoing node to the non-sibling node A. So a new
directed edge from C to A is added which yields the result of figure 13 where a
cycle between the nodes A, C and A with the edges A-C and C-A appears.

Figure 13. GoTO graph of the example of figure 12 with added edges

Computerising Mathematical Text 113

Document

Case 2

F

Case 1

E

uses

justifies

caseOf

Lemma 1

A

Proof 1

B

Lemma 2

C

Proof 2

D

justifies

caseOf

uses

Figure 14. Example of a loop in the GoTO (DG left, GoTO right)

Figure 14 demonstrates another situation of a cycle in a DRa annotated text.
The problem is mainly, that lemma 1 uses lemma 2 but the proof of lemma 2
uses a part of the proof of lemma 1. This situation would end up in a deadlock
when processing the GoTO e.g. when producing the proof skeleton. We see a cycle
between the nodes A, C, D, F, B and A with the edges A-C, C-D, D-F, F-B, and
B-A. Here we also see why we do not need to add incoming edges to the parent
nodes. For node F we have an incoming edge but due to the direction of the
“childOf” edge from F to B, we can use the transivity. In both examples, an error
would be returned with the corresponding nodes and edges.

The design and implementation of DRa were the subject of Retel’s thesis [Retel,
2009]. Further additions have since been carried out by Zengler as reported here.

5 CONNECTING MATHLANG TO FORMAL FOUNDATIONS

Current approaches to formalising CML texts generally involve rewriting the text
from scratch; there is no clear methodology in which the text can gradually change
in small steps into its formal version. One of MathLang’s goals is to support
formalising a text in small steps that do not require radically reorganising the text.
Also, a text with fully formal content should continue to be able to be presented
in the same way as a less formal version originally developed by a mathematician.
We envision formalisation as working by adding additional layers of information to
a MathLang document to support embedding formal proofs. Ideally, there should
be flexible control over how much of the additional information is presented to the
reader; the additional information could form part of the visual presentation, or
could exist “behind the scenes” to provide assurance of correctness.

As part of the goal of supporting formalisation in MathLang, we desire to keep
MathLang independent of any particular formal foundation. However, as proofs
embedded in a MathLang document become more formal, it will be necessary to
tie them more closely to a particular proof system. It might be possible that
fully formal documents could be kept independent of any particular foundation
by allowing the most formal parts of a document to be expressed redundantly in
multiple proof systems. (This is similar in spirit to the way the natural language
portion of a document might be expressed simultaneously in multiple natural lan-
guages.) In this section we report on a methodology and software for connecting
a MathLang document with formal versions of its content. We mainly concen-
trate on a formal foundation in Coq but for Mizar see [Kamareddine et al., 2007b;
Retel, 2009] and for Isabelle see [Lamar, 2011]. Our formalisation into Mizar, in-
volved constructing a skeleton of a Mizar document (e.g. figure 15) from a Math-

114 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Lemma 1.

For m, n ∈ N one has:

m2 = 2n2 =⇒ m = n = 0
A

Proof.

Define on N the predicate:
P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0. E

Claim.

P (m) =⇒ ∃m′ < m.P (m′).F

Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is
even, but then m must be even, as odds square to odds. So
m = 2k and we have 2n2 = m2 = 4k2 =⇒ n2 = 2k2 Since
m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore
P (n). Moreover, m2 = n2 + n2 > n2, so m2 > n2 and hence
m > n. So we can take m′ = n.

G

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences
of natural numbers.

Now suppose m2 = 2n2

with m 6= 0. Then m > 0 and hence P (m). Contradiction.H

Therefore m = 0. But then also n = 0. I
�

B

Corollary 2.

√
2 /∈ QC

Proof. Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then√
2 = m/n with m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then

n = 0 by the lemma. Contradiction shows that
√

2 /∈ Q. �

D

justifies

justifies

uses

uses

justifies

uses

uses

subpartOf

subpartOf

18Lemma:

19 proof

21 defpred

22 Claim:

23 proof

54 end;

63 per cases;
64 suppose

71 end;
72 suppose

77 end;
78 end;

80Corollary:

81 proof

95 end;

Figure 15. Generating a Mizar Text-Proper skeleton from DRa and CGa

Lang document, and then completing the Mizar skeleton separately. A Mizar
document consists of an Environment-Declaration and a Text-Proper. In Mizar,
the Environment-Declaration is used to generate the Environment which has the
needed knowledge from MML (Mizar’s Mathematical Library). The Text-Proper
is checked for correctness using the knowledge in the Environment.

In this paper, we present the automation of the skeleton generation for arbitrary
theorem provers and we give a generic algorithm for transforming the DRa tree
into a proof skeleton. Since at this stage of formalisation we do not want to tie
to any particular foundation, the algorithm is highly configurable which means it
takes the desired theorem prover as an argument and generates the proof skeleton
within this theorem prover. The aim of this skeleton generation is once again to
stay as close as possible to the mathematician’s original CML text. But due to
certain restrictions for different theorem provers the original order cannot always
be respected. We give some classical examples when this can happen:

• Nested lemmas/theorems: Sometimes mathematicians define new lemmas
or theorems inside proofs. Not every theorem prover can handle such an
approach (e.g. Coq). In the case of such theorem provers, it is necessary to
“de-nest” the theorems/lemmas.

• Forward references: Sometimes a paper first gives an example for a theorem
before it states the theorem. Some theorem provers (e.g. Mizar) do not
support such forward references. The text has to be rewritten so that it only
has backward references (i.e. to already stated mathematical constructs).

• Outsourced proofs: The practise in mathematical writing is to outsource in
the appendix complex proofs that are not mandatory for the main results.

Computerising Mathematical Text 115

When formalising such texts, these proofs need to be put in the right place.

The algorithm for re-arranging the parts of the text and generating the proof
skeleton performs reordering only when necessary for the theorem prover at hand.

5a The generic automated Skeleton Generation Algorithm (gSGA)
The proof skeleton generation algorithm takes as arguments (cf. table 6):

1. the input MathLang XML file with DRa annotations; and

2. a configuration file (in XML format) for the theorem prover.

Table 6. The skeleton generation algorithm

This algorithm works on the DRa tree as seen in the last section. A DRa node
can have one of three states: processed (black), in-process (grey) and unprocessed
(white). A processed node has already been translated into a part of the proof
skeleton, a node in-process is one that is being checked, while an unprocessed node
is still awaiting translation. This information allows to identify which nodes have
already been translated and which are still to be translated. The method for gen-
erating the output of a single node is shown in algorithm 2. The algorithm starts

while foundwhite do

foreach child c of the node do

if c is unprocessed && isReady(c) then
processNode(c);
generateOutput(c);
foundwhite := true;
break;

end

end

end

Algorithm 2: generateOuput(Node node)

at the Document root node, recursively searches for nodes in need of processing,
and processes them so that the node at hand is translated and added to the proof
skeleton. The decision whether a node is ready to be processed or not is only
dependent on the GoTO of the DRa tree. A node is ready to be processed if:

1. It has no incoming ≺ edges (in the GoTO) of unprocessed (white) nodes.

2. All its children are ready to be processed.

3. If it is a proved node: its proof is ready to be processed.

Algorithm 3 tests these three properties of a node and returns the result. It is
important when checking if each child of the n children is ready, to perform the
test n times because a rearrangement can also be required for the children. If there

116 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

foreach incoming edge e of the node do

if type of e is ≺ && source of e is unprocessed (white) then
return false

end

end

mark node n as grey;
n = number of children of the node;
for 1..n do

foreach child c of the node do

if c is not processed && isReady(c) then
mark c as grey;
break;

end

end

end

if still a white node is among the children of the node then
reset all grey nodes back to white;
return false

end

if node is a proved node then
proof = proof of the node;
if not isReady(proof) then

reset all grey nodes back to white;
return false

end

end

reset all grey nodes back to white;

return true

Algorithm 3: isReady(Node node)

are still white children after n steps, then the children cannot be yet processed
and so the node cannot be processed.

To illustrate algorithm 3 we look at a (typical and not well structured) mathe-
matical text whose DG and GoTO edges are in figure 16.

Figure 16. To illustrate Skeleton generation (DG at top, GoTO at bottom)

The root node of the document can be marked as processed and the algorithm starts at this node. The

first child is Lemma 1. Criterion 1) is fulfilled, since the node has no incoming ≺ edges in the GoTO.

Criterion 2) is fulfilled because the node has no children. For criterion 3) Proof 1 has to be ready to

be processed before we can mark Lemma 1 as ready to be processed. Proof 1 has no incoming ≺ edges.

So criterion 1) is fulfilled. For criterion 2) the children of the proof have to be ready to be processed.

Definition 1 is ready, but the proof of Claim 1, Proof C1 has an incoming node of an unprocessed node

(Lemma 2). So Claim 1 is not ready and hence, neither are Proof 1 and Lemma 1.

Computerising Mathematical Text 117

The next Node to check is Lemma2. Criteria 1) and 2) are fulfilled, for criterion 3) the proof Proof 2 has

to be ready to be processed. Criteria 1) and 3) of the proof are fulfilled, so its children are ready to

be processed. The first child that can be processed is Definition 2. So it is marked as in-process (grey).

In a second run of the for loop for checking the children of Proof 2, Claim 2 and its proof are now ready,

because Definition 2 is not white anymore but grey. This situation is the reason, why we must perform

the check whether the n children of a node are ready n times exactly.

Output:

Lemma 2
Proof 2

Definition 2
Claim 2
Proof C2Since now all the children of Proof 2 are ready, the complete proof is ready and so is Lemma 2. The

grey flags are unassigned and the output for Lemma 2 is generated. In this step all nodes Lemma 2,

Proof 2, Claim 2, Proof C2 and Definition 2 are permanently marked as processed (black).

Since now a node has been processed, the algorithm starts again with the first white node. So Lemma

1 is checked again. Now the children of its proof can be processed because Lemma 2 is now processed

and does not prevent the processing of Proof C1.

118 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Output:

Lemma 1
Proof 1

Definition 1
Claim 1
Proof C1

At the end Lemma 1 and its proof can be processed. The final order of the nodes is:

Lemma 2
Proof 2

Definition 2
Claim 2
Proof C2

Lemma 1
Proof 1

Definition 1
Claim 1
Proof C1

We see that with this order no node references other nodes which are not already translated.

Lemma 2 is translated first. Its proof follows immediately. Definition 2 is reordered, because

Claim 1 and its proof refer to it. So it has to be written in front of them. Lemma 1 can then

be translated because now Lemma 2 which it refers to, is already translated.

5b The configuration of gSGA
The transformation of the DRa annotated text into a proof skeleton has two steps:

• Reorder the text to satisfy the constraints of the particular theorem prover.

• Translate each DRa annotation into the language of the theorem prover.

The configuration file for a particular theorem prover for the gSGA reflects these
two steps: there is a dictionary part and a constraints part. The dictionary con-
tains a rule for each mathematical or structural role of DRa. A single DRa node
has two important properties: a name and a content. This information is used in
the translation. Within the configuration file we can refer to the name of a node
with %name and to the body with %body. A new line (for better readability) can
be inserted with %nl. Consider the example of the DRa node from figure 8. The
role of this node is declaration and its name is decA. The body of this node is the
sentence Let A be a set or its CGa annotation. A translation into Mizar could be:
reserve <body of decA> ;

The rule for this translation would be:
reserve %body ;

Such a kind of declaration in Coq would be:
Variable <body of decA> .

And the for this translation would be:
Variable %body .

Here, we let a single rule be embedded in an XML tag whose attribute ”name” is
the corresponding keyword:
<skeleton:keyword name="declaration">

reserve %body ;

</skeleton:keyword>

Computerising Mathematical Text 119

The constraints section of the configuration file for a theorem prover configures two
main properties: the allowance of forward properties and of nested mathematical
constructs. Forward references can be allowed via the tag:
<skeleton:forwardrefs>true</skeleton:forwardrefs>

Changing the content of the tag to ”false” forbids forward references. If there is
no such tag, the default value is ”false”.

For a configuration of nested constructs there are two possibilities:
• Either allow in general the nesting of constructs defining those exceptions

for which nesting is not allowed;

• Or forbid in general the nesting of constructs defining those exceptions for
which nesting is allowed.

The next configuration allows nesting in general but not for definitions and axioms:

<skeleton:nesting>true</skeleton:nesting>

<skeleton:nest role="definition">false</skeleton:nest>

<skeleton:nest role="axiom">false</skeleton:nest>

5c The flattening of the DRa graph

The next question we have to deal with, is how to perform changes to the tree
when certain nestings are not allowed. We call this a flattening of the graph,
because certain nodes are removed from their original position and inserted as
direct children of the DRa top-level node. Algorithm 4 achieves this effect.

foreach (child c of the node) do
flattenNode(c);
if c cannot be nested then

nodelist := transitive closure of incoming nodes of c;
foreach node n of nodelist do

remove n of list of children of node;
add n in front of node as a sibling;

end

end

end

Algorithm 4: flattenNode(Node node)

We refer to every child of the DRa top-level node as a node at level 1. Every
child of such a node is at level 2 and so on. If a mathematical role must not be
nested, it can only appear at level 1. So we check for each node at a level greater
than level 1, if its corresponding mathematical role can be nested. If not, then the
node and all its required siblings are removed from this level and put in front of
their parent node. Since there is no “childOf” relation between this no-longer-child
and its parent node, the relation between child and parent changes form � to ≺.

The required sibling nodes are determined in the GoTO. When a node is moved
in front of its parent node, there is a ≺ edge between this node and its former
parent. Each sibling of the removed node from whom there is a incoming node
must be moved with the node. This includes its children or - for a proved node -
its proof. Since for these children we have to move the related nodes too, we can

120 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Figure 17. A flattened graph of the GoTO of figure 16 without nested definitions

Figure 18. A flattened graph of the GoTO of figure 16 without nested claims

build the transitive closure over the incoming nodes of the node which has to be
moved. All nodes in this closure have to be relocated in front of the parent node.

We demonstrate this algorithm again on the example from figure 16. For a
first demonstration we assume that the nesting of definitions is not allowed. So
Definition 1 and Definition 2 have to be removed from level 2 and be relocated
in front of their parent nodes. The transitive closure over incoming edges in the
GoTO yields no new nodes for removing (because the definitions have no incoming
edges in the GoTO). The resulting new flattened graph can be seen in figure 17.
We see that the two definition are now at level 1 and their edges to their former
parent nodes have changed from � to ≺. The output for this graph according to
the algorithm from the last section is given on the left-hand side of table 7.

Definition 1
Definition 2
Lemma 2
Proof 2

Claim 2
Proof C2

Lemma 1
Proof 1

Claim 1
Proof C1

Definition 2
Claim 2
Proof C2
Lemma 2
Proof 2
Claim 1
Proof C1
Lemma 1
Proof 1

Definition 1

Table 7. Outputs of the graphs of figures 17 (left-hand side) and 18 (right-hand
side)

On the other hand, if we allow definitions to be nested but forbid nested claims,
we get the graph of figure 18. The first claim which is found in the graph is Claim 1.
The transitive closure yields that Proof C1 needs also to be removed since there is
a ↔ edge to the claim. The second claim which is found is Claim 2. The transitive
closure yields again that its proof as well as Definition 2 have to be removed.

The output for this graph is given on the right-hand side of table 7.

Computerising Mathematical Text 121

6 CONNECTING MPL TO FORMAL FOUNDATION

6a Newman’s Lemma

As a case study we specify for Newman’s Lemma a feasible interactive mathemat-
ical proof development. It should be accepted by an interactive proof assistant,
if these are to be accepted by a working mathematician. Table 8 gives an actual
proof development in Coq for the main lemma is given. We start with the informal
statement and proof.

Let A be a set and let R be a binary relation on A. R+ is the transitive closure
of R and R∗ is the transitive reflexive closure of R.

Confluence of R, notation CR(R) (Church-Rosser property), is defined as follows
(the notion cr(R, a) denotes confluence from a ∈ A). WCR(R) stands for weak
confluence.

1. crR(a) ⇐⇒ ∀b1, b2 ∈ A.[aR∗b1 /\ aR∗b2 ⇒ ∃c.b1R
∗c /\ b2R

∗c].

2. CR(R) ⇐⇒ ∀a ∈ A.crR(a).

3. WCR(R) ⇐⇒ ∀a, b1, b2 ∈ A.[aRb1 /\ aRb2 ⇒ ∃c.b1R
∗c /\ b2R

∗c].

Newman’s lemma states that for well-founded relations weak confluence implies
strong confluence. The notion of well-foundedness is formulated as the possibility
to prove statements by transfinite induction. Let P ∈ P(A).

4. INDR(P) ⇐⇒ ∀a ∈ A.(∀y ∈ A.aRy ⇒ P (y)) ⇒ P (a).

5. WF(R) ⇐⇒ ∀P ∈ P(A).[INDR(P) ⇒ ∀a ∈ A.P (a)].

Lemma 3 (Main Lemma.). WCR(R) ⇒ INDR(crR).

Proof.Assume WCR(R). Remember INDR(crR) ⇔

(∀a : A.(∀y : A.a R y→cr(R, y))→(crR(a)).

Let a : A and assume

∀y : A.a R y→crR(y), (IH)

in order to show crR(a), i.e.

∀b1, b2 : A.a R∗ b1 /\ a R∗ b2→(∃c A.b1 R∗ c /\ b2 R∗ c).

So let b1, b2 : A with a R∗ bi, in order to show ∃c.bi R∗ c.
If a = b1 or a = b2, then the result is trivial (take c = b2 or c = b1 respectively).

So by lemma p7 (below) we may assume a R+ bi,
which by lemma p6 (below) means a R xi R∗ bi, for some x1, x2.

122 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

a // //

��
��

b2

��
��

b1
// // c

a //

��

x2

��
��

// // b2

��
��

x1 // //

��
��

x

��
��

b1
// // b // // c

By WCR(R) there is an x such that xi R∗ x.
By (IH) one has crR(x1). So x R∗ b /\ b1 R∗ b, for some b.
Again crR(x2). As x2 R∗ x R∗ b one has b R∗ c /\ b2 R∗ c, for some c.
Then b1 R∗ b R∗ c and we are done. �

PROPOSITION 3 (Newman’s Lemma). WCR(R) /\ WF(R) ⇒ CR(R).

Proof.By WCR(R) and the main lemma we have INDR(crR). Hence by WF(R)
it follows that for P (a) = crR(a), one has ∀a ∈ A.crR(a). This is CR(R). �

Now we will start a proof development for Newman’s lemma.

Variable A:Set.

Definition Bin:=[B:Set](B->B->Prop).

Inductive TC [R:(Bin A)]: (Bin A) :=

TCb: (x,y:A)(R x y)->(TC R x y)|

TCf: (x,y,z:A)((R x z)->(TC R z y)->(TC R x y)).

Inductive TRC [R:(Bin A)]: (Bin A) :=

TRCb: (x:A)(TRC R x x)|

TRCf: (x,y,z:A)((R x z) -> (TRC R z y)->(TRC R x y)).

Definition Trans [R:(Bin A)]: Prop:=

(x,y,z:A)((R x y)->(R y z)->(R x z)).

Definition IND [R: (Bin A);P:(A->Prop)]: Prop :=

((a:A)((y:A)(a R y)-> (P y))->(P a)).

Definition cr [R:(Bin A);a:A]:=

(b1,b2:A)(TRC R a b1)/\(TRC R a b2)->(EX c:A|(TRC R b1 c)/\(TRC R b2 c)).

Definition CR [R:(Bin A)]:=(a:A)(cr R a).

Definition WCR [R:(Bin A)]:=

(a,b1,b2:A)(a R b1)->(a R b2)->(EX c:A|(TRC R b1 c)/\(TRC R b2 c)).

Definition WF [R:(Bin A)]:Prop:= (P:A->Prop)(IND R P)->(a:A)(P a).

Computerising Mathematical Text 123

Variable R:(Bin A).

Lemma p0: (x,y:A)((R x y) -> (TC R x y)).

Lemma p1: (x,y:A)((R x y) -> (TRC R x y)).

Lemma p2: (x,y:A)((TC R x y) -> (TRC R x y)).

Lemma p3: (Trans (TC R)).

Lemma p4: (Trans (TRC R)).

Lemma p5: (x,y,z:A)(R x y)->(TRC R y z)->(TRC R x z).

Lemma p6: (x,y:A)((TC R x y)->(EX z:A | (R x z)/\(TRC R z y))).

Lemma p7: (x,y:A)((TRC R x y)-> (eq A x y)\/(TC R x y)).

The proof-script for these lemmas are not shown. The main lemma is as follows.

Lemma main : (WCR R)->(IND R (cr R)).

The proof-script in Coq is given in table 8. Now we will give an interactive
mathematical proof script, for which we claim that it should essentially be accept-
able by a mathematician-friendly proof-assistant. On the left we find the math-
ematical script, on the right the proof-state. These may contain some Coq-like
statements, like “Intros”, but these disappear and are replaced by mathematical
statements. For an interactive version see www.cs.kun.nl/~henk/mathmode.{ps,
dvi}. The dvi version has to be viewed in advi obtainable from pauillac.inria.

fr/~miquel.
First we introduce some user-friendly notation.

Notation 4. For a,b:A we write

(i) a R b := (R a b).

(ii) a R+ b := (TC R a b).

(iii) a R* b := (TRC R a b).

Proof. Assume WCR(R). Remember IND. Let a:A. Assume

(y:A)((aRy)->(cr R y)). (IH)

Remember cr. Let a,b1,b2:A. Assume a R* bi, i=1,2.

We have

[a=b1 \/ a R+ b1],

[a=b2 \/ a R+ b2],

by lemma p6.

Case a=b1, take c=b2. Trivial. Hence wlog (a R+ b1).

Case a=b2, take c=b1. Trivial. Hence wlog (a R+ b2).

Therefore (EX xi:A|a R xi R* bi), i=1,2, by lemma p7.

Pick x1. Pick x2.

We have (EX x.xi R* x), i=1,2, by (WCR R). Pick x.

124 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

We have (cr R x1), by IH. Hence

(EX b.b1 R* b /\ x R* b).

Pick b. Moreover (cr R x2), by IH. Hence

(EX c.b R* c /\ b2 R* c),

by x2 R* b. Pick c. Since b1 R* c, by (Trans R*), we have

(bi R* c), i=1,2. Thus c works. QED

Newman’s Lemma. WCR(R)/\WF(R)->CR(R).

Proof. Assume WCR(R) and WF(R). Then (IND R(cr R)),

by WCR(R) and main. Remember CR and WF. We have

(P:(A->Prop))((a:A)((y:A)(a R y)-> (P y))->(P a)). (+)

Apply (+) to (cr R). Then CR(R). QED

6b Towards a Mathematical Proof Language MPL

We will now sketch rather loosely a language that may be called MPL: Mathe-
matical Proof Language. The language will need many extensions, but this kernel
may be already useful.

DEFINITION 5. The phrases used in MPL for the proposed proof-assistant with
interactive mathematical mode belong to the following set.

Assume B Then B [, by C]

Towards A Suffices

Remember t Wlog B, [since B \/ C]

Let x:D

Pick [in L] x and

Case B QED

Take x=t [in B]

Apply B to t

As to

Here A,B, C are propositions in context Gamma, D is a type, x is a variable and
t is a term of the right type. “Wlog” stands for “Without loss of generality”.

DEFINITION 6 (Synonyms).

Suffices = In order to show = We must show = Towards;

Let = Given;

Then = We have = It follows that = Hence = Moreover = Again;

and = with;

by = since.

Before giving a grammar for tactic statements we will give their semantics.
They have a precise effect on the proof-state. In the following definition we show
what the effect is of a statement on the proof-state. In some cases the tactic has
a side-effect on the proof-script, as we saw in the case of Newman’s lemma.

Computerising Mathematical Text 125

DEFINITION 7.

(i) A proof-state (within a context Gamma) is a set of statements Delta and a
statement A, such that all members of Delta are well-formed in Gamma and
A is well-formed in Gamma, Delta. If the proof-state is (Delta;A), then the
goal is to show Delta ⊢ A.

(ii) The initial proof-state of a statement A to be proved is of course (∅;A).

(iii) A tactic is map from proof-states to a list of proof-states, usually having a
formula or an element as extra argument.

DEFINITION 8.

Assume C (Delta,C->B) = (Delta,C;B), and ‘‘Towards B’’

may be left in the script.

Let a:D (Delta,(x:D.P)) = (Delta,a:A;P[x =a]).

Remember name (Delta;A) = (Delta;A’), where A’ results

from A by unfolding the defined

concept ‘name’. This can be

applied to an occurrence of

‘name’, by clicking on it. Other

occurrences remain closed but

become transparent (as if opened).

Pick [in L] x (Delta,L;A) = (Delta,x:D,B(x);A), where L is

a formula reference of (EX x:D.B).

Take x=name (Delta;EX x:D.A) = (Delta;A[x =name]),

if Delta|- name:D.

Apply B to name (Delta;A) = (Delta,P[y =name];A), where B of

the form ((y:D).P) is in Delta.

Case B (Delta;A) = (Delta,B;A),(Delta,C;A),

if B \/ C in Delta; the second

proof-state represents

the next subgoal.

As to Bi (Delta;B0 /\ B1) = (Delta;Bi),(Delta;B(1-i)), the

second proof-state represents

the next subgoal;

As to B (Delta; B) = (Delta; B);

QED (Delta,B) = <proof terminated> if B in Delta.

In all cases nothing happens if the side conditions are not satisfied. One should
be able to refer to a statement C in two ways: either by naming C directly of by
referring to a label for C, like “IH” in the proof of the main lemma above. We
say that L is a formula reference of formula B if L is B or if L is a label for B.
Labels are sometimes handy, but they should also be suppressed in order to keep
the proof-state clean. If the argument of a tactic occurs at several places the
system should complain. Then reference should be made to a unique label. It is
assumed that proof-states (Delta,A) are in normal form, that is, if B /\ C is in
Delta, then it is replaced by the pair B,C. If the final QED is accepted, then all

126 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

the statements in the proof that did not have an effect on the proof-state will be
suppressed in the final lay-out of the proof (or may be kept in color orange as an
option in order to learn where one did superfluous steps).

The following tactics require some automated deduction. If the proof-assistant
cannot prove the claimed result, an extra proof-state will be generated so that this
result will be treated as the next subgoal.

DEFINITION 9.

[Since B\/C] wlog C (Delta;A) = (Delta,C;A), if B\/C in Delta

and the assistant can establish

Delta|-B->A.

Then B[, by C] (Delta;A) = (Delta,B;A), if C is a known

lemma and the assistant

can establish Delta,C|-B.

Suffices B (Delta;A) = (Delta;B) and the assistant

can establish Delta|-B->A.

May assume B (Delta,A) = (Delta,B;A) if the assistant

can establish Delta|-~B->A and

Delta|- B \/~B.

The tactic language MPL is defined by the following grammar.

formref := label | form

form+ := formref | form+ and formref

tactic := Assume form+ | Towards form | Remember name |

Let var:set | Pick [in formref] var | Case form |

Take var = term [in formref] |

Apply formref to term | Then form[, by form+] |

Suffices formref | Wlog form[, since form\/form]

tactic+ := tactic. | tactic, tactic+ | tactic. tactic+

Here label is the proof-variable, used as a name for a statement (like IH in the
proof of the main lemma), form is a Gamma, Delta inhabitant of Prop, name is
any defined notion during the proof development, and var is an variable.

An extension of MPL capable of dealing with computations will be useful.

We have A(t). Then A(s), since t=s.

Another one:

Then t=s, by computation.

It would be nice to have this in an ambiguous way: computation is meant to
be pure conversion or an application of reflection. This corresponds to the actual
mathematical usage:

Computerising Mathematical Text 127

5!=120, by computation.
In a commutative ring, (x + y)2 = x2 + 2xy + y2, by computation.

In type theory the first equality would be an application of the conversion rule,
but for the second one reflection, see e.g. [Constable, 1995], is needed.

6c Procedural statements in the implementation of MPL

As we have seen in section 6a it is handy to have statements that modify the proof
state, but are not recorded as such. For example if the proof state is

(Delta; (x : D)(A(x)− > B(x)),

then Intros is a fast way to generate
Let x:D. Assume A(x), in order to prove B(x).

in the proof. Another example is Clear L which removes formula L in the assump-
tions of the current subgoal. Also renaming variables is useful, as some statements
may come from libraries and have a “wrong” choice of bound variables.

7 A FULL FORMALISATION IN COQ VIA MATHLANG: CHAPTER 1 OF
LANDAU’S “GRUNDLAGEN DER ANALYSIS”

Landau’s “Grundlagen der Analysis” [Landau, 1951] remains the only book which
has been fully formalised in a theorem prover [van Benthem Jutting, 1977b]. This
section summarises the encoding of the first chapter (natural numbers) of Landau’s
book into all aspects of MathLang up to a full formalisation in Coq. We give a
complete CGa, TSa and DRa annotation for the chapter, we generate a proof
skeleton automatically with the gSGA forboth Mizar and Coq and then we give a
complete formalised version of the chapter in Coq. To accomplish this, we have
used the MathLang TEXMACS plugin to annotate the existing plaintext of the book.

To clarify the path we took, we look once again at the overall diagram of the
different paths in MathLang (figure 1). We first used path a© and annotated the
complete text with CGa, TSa and DRa annotations with the help of the MathLang
TEXMACS plugin. The second step was to automatically generate a proof skeleton
of the annotated text. With the help of the proof skeleton and the CGa annotations
we fully formalised the proofs in Coq completing the paths d© and e©. The final
result is a fully formalised version of the first chapter of Landau’s book in Coq.

7a CGa and TSa annotations
The Preface
In the preface of a MathLang document we introduce symbols that are not defined
in the text but are used throughout it. These are often quantifiers or Boolean
connectives like ∧ or ∨. These symbols are often pre-encoded in theorem provers
(e.g. Coq has special symbols for the logical and, or, implication, etc.). The preface

128 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

of the first chapter of Landau’s book consists of 17 different symbols as given in
table 7a. Two functions deserve further explanation:

1. The “is a” function is used to express that a particular term is an instance
of a noun. E.g. the first axiom of the book is that 1 is a natural number, so
the encoding of this axiom is

<isa> <1>1 is a <<natural number>>natural number
2. The “index” function is used to express a notion in the style of ab = c which

can be defined as a function index(a, b) = c. So the index function has two
terms as argument and yields a term as a result.

The first section
The first section of the first chapter introduces the natural numbers, equality on
natural numbers and five axioms (an extension of the Peano axioms). We intro-
duce a noun <natural numbers>natural numbers and the set <N>N of natural numbers.

Equality <eq> <#> = <#> and inequality <neq> <#> = <#> between natural numbers
are declared rather than defined. Three properties of equality are encoded. We
will show one encoding of these to recapitulate TSa annotations with sharing and
to see how to use the symbols given in the preface. The original statement is

x = x for every x

We see that this is a universal quantification of x and a well formed equivalent
statement would be: ∀x(x = x). Since the positions are swapped in Landau’s text
we use the position souring. The souring annotation of this statement is:

<forall> <2>x = x for every <1> x

This yields the final statement

<> <forall> <2> <eq> <x>x = <x>x for every <1> <> <x>x

Next we show how to encode axiom 2 showing that “wordy” parts of a text can
also be annotated, not only mathematical statements. The original statement is:

For each x there exists exactly one natural number, called the successor of x,
which will be denoted by x′

The “for each” can be translated with a universal quantifier, the “exactly one”
with the ∃! quantifier. So we get the general structure:

The complete statement can be e.g. encoded corresponding to the following formal
statement ∀x(∃!x′(succ(x) = x′)):

Computerising Mathematical Text 129

Sections 2 - 4
Within the next sections, addition (section 2), ordering (section 3) and multi-
plication (section 4) are introduced. There are 36 theorems with proofs and 6
definitions: addition, greater than, less then, greater or equal than, less or equal
than and multiplication. There are many simple structured theorems like that of
figure 19. We want to examine our way of annotating these theorems. The main

Figure 19. Simple Theorem of the second section

theorem x + y = y + x is annotated in a straightforward manner. x and y are an-
notated as terms, plus as a function, taking two terms as arguments and yielding
a term as a result. The equality between these terms is a statement. Since we did
not declare x and y in the preface or in a global context we do this with a local
scoping. This information is added in the first annotated line where we declare x
and y as terms and put these two annotations into a context which means that
this binding holds within the whole step.

Figure 20. Souring in chains of equations

Landau often used chains of equations for proofs as in this proof for the equality
of x(y + z′) and xy + xz′ in the proof of Theorem 30 of the first chapter:

x(y + z′) = x((y + z)′) = x(y + z)+x = (xy +xz) = x = xy = (xz +x) = xy +xz′

Here we benefit from our souring methods - especially the sharing of variables (See
figure 20). There are also often hidden quantification like the one in the example
x = x for every x, where we need the souring for swapping positions. These TSa
functionalities save a lot of time in annotating mathematical documents.

For some theorems we use the Boolean connectives although they are not men-
tioned explicitly in the text. E.g. Theorem 16 states:

If x ≤ y, y < z or x < y, y ≤ z

then x < z

We annotate the premise of the theorem as a disjunction of two conjunctions as
seen in figure 21. Another use of Boolean connectives is when we have formulations
like “exactly one of the following must be the case...”. There we use the exclusive
or ⊕ to annotate the fact that exactly one of the cases must hold. We defined
the exclusive or in the preface and therefore have to take care that we find a
corresponding construct in the used theorem prover (see table 7a).

130 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Figure 21. The annotated Theorem 16 of the Landau’s first chapter

Figure 22. The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book
7b DRa annotation
The structure of Landau’s “Grundlagen der Analysis” is very clear: in the first sec-
tion he introduces five axioms. We annotate these axioms with the mathematical
role “axiom”, give them the names “ax11” - “ax15” and classify them as unproved
nodes. In the following sections we have 6 definitions which we annotate with the
mathematical role “definition”, give them names “def11” - “def16” and classify as
unproved nodes. We have 36 proved nodes with the role “theorem”, named “th11”
- “th136” and with proofs “pr11” - “pr136”.

Some proofs are partitioned into an existential part and a uniqueness part. This
partitioning can be useful e.g. for Mizar where we have keywords for these parts of
a proof. In the Coq formalisation, we used this partitioning to generate two single
proofs in the proof skeleton which makes it easier to formalise. Other proofs consist
of different cases which we annotate as unproved nodes with the mathematical
role “case”. This can be translated in the Mizar “per cases” statement or in single
proofs in Coq. The DRa tree for sections 1 and 2 can be seen in figure 22.

The relations are annotated in a straightforward manner. Each proof justifies
its corresponding theorem. Some of the axioms depend on each other. Axiom
5 (“ax15”) is the axiom of induction. So every proof which uses induction, uses
also this axiom. Definition 1 (“def11”) is the definition of addition. Hence every
node which uses addition also uses this definition. Some theorems use other
theorems via texts like: “By Theorem ...”. In total we have 36 justifies relations,
154 uses relations, 6 caseOf, 3 existencePartOf and 3 uniquenessPartOf relations.
Figures 23 and 24 give the DG and GOTO of sections 1 and 2 resp. of the whole
book. The DGs and GOTOs are automatically produced from the DRa annotated
text. There are no errors or warning in the document which means we have no
loops in the GoTO, no proofs for unproved nodes, no double proofs for a node and
no missing proofs for proved nodes.

7c Generation of the proof skeleton
Since there are no errors in the GoTO, the proof skeleton can be produced without
warnings. We have 8 mathematical roles in the document: axioms, definitions,
theorems, proofs, cases, case, existenceParts and uniquenessParts. We make a

Computerising Mathematical Text 131

Figure 23. DG (top) and GOTO (bottom) of sections 1 and 2 of chapter 1 of
Landau’s book

distinction between cases and case because e.g. in Mizar we have a special keyword
introducing cases (per cases;) and then keywords for each case (suppose ...).
So we annotated the cases as child nodes of the case node. Table 10 gives an
overview of the rules that were used to generate the Mizar and the Coq proof
skeleton. Since in Coq there are no special keywords for uniqueness, existence or
cases, these rules translate only the body of these nodes and add no keywords.

In table 11 we give a part of the Mizar and Coq skeletons for section 4.7

7d Completing the proofs in Coq
As we already explained, MathLang aims to remain as independent as possible of
a particular foundation, while in addition facilitating the process of formalising
mathematics in different theorem provers. Two PhD students of the MathLang
project (Retel, respectively Lamar) are concerned with the MathLang paths into
Mizar, respectively Isar. In this paper we study for the first time the MathLang
path into Coq. We show how the CGa, TSa and DRa encoding of chapter one of
Landau’s book is taken into a fully formalised Coq code.

Currently we use the proof skeleton produced in the last section and fill all the
%body parts by hand. We intend to investigate in the future how parts of the CGa
and DRa annotations can be transformed automatically to Coq. In this section
we explain why the process of formalising a mathematical text into Coq through
MathLang is simpler than the formalisation of the text directly into Coq.

To begin with, we code the preface of the document (see table 7a). The most
complicated section to code in Coq was the first one, because we had to translate
the axioms in a way we can use them productively in Coq. We defined the natural
numbers as an inductive set - just as Landau does in his book.

Inductive nats : Set :=

| I : nats

7The complete output of the skeleton for Mizar and Coq for the whole chapter can be found
in the extended article on the web pages of the authors.

132 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Figure 24. DG (top) and GOTO (bottom) of all of chapter 1 of Landau’s book

| succ : nats -> nats

Then we translate axioms 2 - 4 almost literally from our CGa annotations. For
example the annotation of Axiom 3 (“ax13”) in our document is:

<forall>We always have <> <x> <neq> <succ> <x>x ′ 6= <1>1

By just viewing the interpretations of the annotations we get:

forall x (neq (succ(x), 1)) (a)

The automatically generated Coq proof skeleton for this axiom is:

Axiom ax13 : <ax13> . (b)

Now, we simply replace the <ax13> placeholder of (b) with the literal translation
of the interpretations in (a) to get the valid Coq axiom (this literal translation
could also be done by an algorithm that we plan to implement soon):

Axiom ax13 : forall x:nats, neq (succ x) I .

The other axioms could be completed in a similar way and as seen, this is a very
simple process that can be carried out using automated tools that reduce the bur-
den on the user (the proof skeleton is automated, the interpretations are obtained
automatically from the CGa annotations which are simple to do, and for many
parts of the text, the combination of the proof skeleton with the interpretations
can also be automated).

Computerising Mathematical Text 133

Similarly for the theorems of chapter 1 of Landau’s book, full formalisation is
straightforward: E.g. Theorem 1 is written by Landau as:

If x 6= y then x′ 6= y′

Its annotation in MathLang CGa is:

<> <> <> <x>x <> <y>y If <neq> <x>x 6= <y>y then <neq> <succ> <x>x ′ 6= <succ> <y>y ′

The CGa annotation of the context (called local scoping) can also be seen as the
premise of an implication. So the upper statement can be translated via a simple
rewriting of the interpretations of the annotations to:

decl(x), decl(y) : neq x y -> neq (succ x) (succ y)

And when we compare this line with its Coq translation we see again, it is just
a literal transcription of the interpretation parts of CGa and therefore could be
easily performed by an algorithm.

Theorem th11 (x y:nats) : neq x y -> neq (succ x) (succ y) .

From the 36 theorems of the chapter 28 could be translated literally into their
corresponding Coq theorems.

Now, we want also to look at a simple proof and how it can be translated into
Coq. The encoding of Theorem 2 of the first chapter in Coq is

theorem th12 (x:nats) : neq (succ x) x .

Landau proves this theorem with induction. He first shows, that 1′ 6= 1 and then
that with the assumption of x′ 6= x it also holds that (x′)′ 6= x′.

Since we defined the natural numbers as an inductive set, we can also do our
proof in the Landau style. We introduce the variable x and eliminate it, which
yields two subgoals that we need to prove. These subgoals are exactly the induction
basis and the induction step.

Proof.

intro x. elim x.

2 subgoals

x : nats

___________________________________(1/2)

neq (succ I) I

___(2/2)

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

To prove the first case, Landau used Axiom 3 which states, that for all x it
holds that x′ 6= 1. We can just apply this axiom in Coq to prove the first case:

apply ax13.

1 subgoal

x : nats

___(1/1)

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

The next step is to introduce n as natural number and the induction hypothesis:

134 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

intros N H.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ (succ n)) (succ n)

We see that this is exactly the second case of Landau’s proof. He proved this
case with Theorem 1 - we do the same:

apply th11.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ n) n

And of course this is exactly the induction hypotheses which we already have
as an assumption and we can finish the proof:

assumption.

Proof completed.

The complete theorem and its proof in Coq finally look like this:
Theorem th12 (x:nats) : neq (succ x) x .

Proof.

intro x. elim x.

apply ax13.

intros n H.

apply th11.

assumption.

Qed.

We also used another hint for translating from the CGa part to the Coq for-
malisation. When we have a Theorem of the following kind:

Theorem th11 (x y:nats) : neq x y -> neq (succ x) (succ y) .

This is equivalent to:
Theorem th11 : forall x y:nats, neq x y -> neq (succ x) (succ y) .

A proof of such a theorem always starts with the introduction of the universal
quantified variables, so in this case x and y. In terms of Coq this means:

intros x y.

We can do this for every proof. If it is a proof by induction we can also choose the
induction variable in the next step. For example if we have an induction variable
x we would write:

elim x.

We took the proof skeleton for Coq and extended it with these hints and the
straightforward encoding of the 28 theorems. The result can be found in the
extended article on the authors’ web pages. With the help of these hints we
were able to produce 234 lines of correct Coq lines. The completed proof has 957

Computerising Mathematical Text 135

lines. In other words, we could automatically generate one fourth of the complete
formalised text. This is a large simplification of the formalisation process, even
for an expert in Coq who can then better devote his attention to the important
issues of formalisation: the proofs.

Of course there are some proofs within this chapter whose translation is not as
straightforward as the proof of Theorem 2 given above. But with the help of the
CGa annotations and the automatically generated proof skeleton, we have com-
pleted the Coq proofs of the whole of chapter one in a couple of hours. Moreover,
the combination of interpretations and proof skeletons can be implemented so that
it leads for parts of the text, into automatically generated Coq proofs. This will
speed further the formalisation and again will remove more burdens from the user.
The complete Coq proof of chapter 1 of landau’s book can again be found in the
extended article on the authors’ web pages.

8 CONCLUSION

MathLang and MPL are long-term projects and we expect there will be years of
design, implementation, and evaluation, followed by repeated redesign, reimple-
mentation, and re-evaluation. There are many areas which we have identified as
needing more work and investigation. One area is improvements to the MathLang
and MPL software (currently MathLang is based on the TEXMACS editor) to make
it easier to enter information for the core MathLang aspects (currently CGa, TSa
and DRa). This is likely to include work on semi-automatically recognising the
mathematical meaning of natural language text. A second area is further design-
ing and developing the portions of MathLang and MPL needed for better support
of formalisation. An issue here is how much expertise in any particular target
proof system will be needed for authoring. It may be possible to arrange things
in MathLang and MPL to make it easy for an expert in a proof system to col-
laborate with an ordinary mathematician in completing a formalisation. A third
area where work is needed is in the overall evaluation process needed to ensure
MathLang and MPL meet actual needs. This will require testing MathLang and
MPL with ordinary mathematicians, mathematics students, and other users. And
there are additional areas where work will be needed, including areas we have not
yet anticipated.

The MathLang and MPL projects aim for a number of outcomes. MathLang
aims to support mathematics as practised by the ordinary mathematician, which
is generally not formalised, as well as work toward full formalisation. MPL aims
to improve the interactive mathematical mode for proof assistants so that they
can be user-friendly. We expect that after further improvements on the MathLang
and MPL designs and software, writing MathLang documents (without formalis-
ing them) will be easy for ordinary mathematicians. MathLang and MPL aim to
support various kinds of consistency checking even for non-formalised mathemat-
ics. MathLang and MPL will be independent of any particular logical foundation
of mathematics; individual documents will be able to be formal in one or more

136 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

particular foundations, or not formalised.
MathLang and MPL hope to open a new useful era of collaboration between

ordinary mathematicians, logicians (who ordinarily stay apart from other math-
ematicians), and computer science researchers working in such areas as theorem
proving and mathematical knowledge management who can develop tools to link
them together. MathLang and MPL’s document representation are intended to
help with various kinds of automated computerised processing of mathematical
knowledge. It should be possible to link MathLang and MPL documents together
to form a public library of reusable mathematics. MathLang and MPL aim to
better support translation between natural languages of mathematical texts and
multi-lingual texts. They also aim to better support the differing uses of mathe-
matical knowledge by different kinds of people, including ordinary practising math-
ematicians, students, computer scientists, logicians, linguists, etc.

BIBLIOGRAPHY

[Abbott et al., 1996] J. Abbott, A. van Leeuwen, and A. Strotmann. Objectives of openmath.
Technical Report 12, RIACA (Research Institute for Applications of Computer Algebra),
1996. The TR archives of RIACA are incomplete. Earlier versions of this paper can be found
at the “old OpenMath Home Pages” archived at the Uni. Köln.

[Autexier et al., 2010] Serge Autexier, Petr Sojka, and Masakazu Suzuki. Foreword to the spe-
cial issue on authoring, digitalization and management of mathematical knowledge. Mathe-
matics in Computer Science, 3(3):225–226, 2010.

[Barendregt et al., 2013] H Barendregt, Will Dekker, and Richard Statman. Lambda Calculus
with Types. Cambridge University Press, 2013.

[Barendregt, 2003] Henk Barendregt. Towards an interactive mathematical proof mode. In
Kamareddine [2003], pages 25–36.

[Bundy et al., 1990] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The
oyster-clam system. In Mark E. Stickel, editor, CADE, volume 449 of Lecture Notes in
Computer Science, pages 647–648. Springer, 1990.

[Cantor, 1895] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (part 1).
Mathematische Annalen, 46:481–512, 1895.

[Cantor, 1897] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (part 2).
Mathematische Annalen, 49:207–246, 1897.

[Cauchy, 1821] Augustin-Louis Cauchy. Cours d’Analyse de l’École Royale Polytechnique. De-
bure, Paris, 1821. Also in Œuvres Complètes (2), volume III, Gauthier-Villars, Paris, 1897.

[Constable and others, 1986] R. Constable et al. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, 1986.

[Constable, 1995] Robert L. Constable. Using reflection to explain and enhance type theory.
In H. Schwichtenberg, editor, Proof and Computation, Computer and System Sciences 139,
pages 109–144. Springer, 1995.

[de Bruijn, 1987] N.G. de Bruijn. The mathematical vernacular, a language for mathematics
with typed sets. In Workshop on Programming Logic, 1987. Reprinted in [Nederpelt et al.,
1994, F.3].

[Dedekind, 1872] Richard Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn, Braun-
schweig, 1872. Fourth edition published in 1912.

[Frege, 1879] Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Nebert, Halle, 1879. Can be found on pp. 1–82 in [van Heijenoort,
1967].

[Frege, 1893] Gottlob Frege. Grundgesetze der Arithmetik, volume 1. Hermann Pohle, Jena,
1893. Republished 1962 (Olms, Hildesheim).

[Frege, 1903] Gottlob Frege. Grundgesetze der Arithmetik, volume 2. Hermann Pohle, Jena,
1903. Republished 1962 (Olms, Hildesheim).

Computerising Mathematical Text 137

[Gierz et al., 1980] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and
D. S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, 1980.

[Gordon and Melham, 1993] M. Gordon and T. Melham. Introduction to HOL – A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[Heath, 1956] Thomas L. Heath. The 13 Books of Euclid’s Elements. Dover, 1956. In 3 volumes.
Sir Thomas Heath originally published this in 1908.

[Kamareddine and Nederpelt, 2004] Fairouz Kamareddine and Rob Nederpelt. A refinement of
de Bruijn’s formal language of mathematics. J. Logic Lang. Inform., 13(3):287–340, 2004.

[Kamareddine and Wells, 2008] Fairouz Kamareddine and J. B. Wells. Computerizing mathe-
matical text with mathlang. Electron. Notes Theor. Comput. Sci., 205:5–30, 2008.

[Kamareddine et al., 2004a] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern
Perspective on Type Theory from Its Origins Until Today, volume 29 of Kluwer Applied Logic
Series. Kluwer Academic Publishers, May 2004.

[Kamareddine et al., 2004b] Fairouz Kamareddine, Manuel Maarek, and J. B. Wells. Flexible
encoding of mathematics on the computer. In Mathematical Knowledge Management, 3rd
Int’l Conf., Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 160–174.
Springer, 2004.

[Kamareddine et al., 2004c] Fairouz Kamareddine, Manuel Maarek, and J. B. Wells. Math-
lang: Experience-driven development of a new mathematical language. In Proc. [MKMNET]
Mathematical Knowledge Management Symposium, volume 93 of ENTCS, pages 138–160,
Edinburgh, UK (2003-11-25/---29), February 2004. Elsevier Science.

[Kamareddine et al., 2006] Fairouz Kamareddine, Manuel Maarek, and J. B. Wells. Toward an
object-oriented structure for mathematical text. In Mathematical Knowledge Management,
4th Int’l Conf., Proceedings, volume 3863 of Lecture Notes in Artificial Intelligence, pages
217–233. Springer, 2006.

[Kamareddine et al., 2007a] Fairouz Kamareddine, Robert Lamar, Manuel Maarek, and J. B.
Wells. Restoring natural language as a computerised mathematics input method. In MKM
’07 [2007], pages 280–295.

[Kamareddine et al., 2007b] Fairouz Kamareddine, Manuel Maarek, Krzysztof Retel, and J. B.
Wells. Gradual computerisation/formalisation of mathematical texts into Mizar. In Roman
Matuszewski and Anna Zalewska, editors, From Insight to Proof: Festschrift in Honour of
Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 95–120.
University of Bia lystok, 2007. Under the auspices of the Polish Association for Logic and
Philosophy of Science.

[Kamareddine et al., 2007c] Fairouz Kamareddine, Manuel Maarek, Krzysztof Retel, and J. B.
Wells. Narrative structure of mathematical texts. In MKM ’07 [2007], pages 296–311.

[Kamareddine, 2003] Fairouz Kamareddine, editor. Thirty Five Years of Automating Mathe-
matics, volume 28 of Kluwer Applied Logic Series. Kluwer Academic Publishers, November
2003.

[Kanahori et al., 2006] Toshihiro Kanahori, Alan Sexton, Volker Sorge, and Masakazu Suzuki.
Capturing abstract matrices from paper. In Mathematical Knowledge Management, 5th
Int’l Conf., Proceedings, volume 4108 of Lecture Notes in Computer Science, pages 124–138.
Springer, 2006.

[Kohlhase, 2006] Michael Kohlhase. An Open Markup Format for Mathematical Documents,
OMDoc (Version 1.2), volume 4180 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2006.

[Lamar, 2011] Robert Lamar. A Partial Translation Path from MathLang to Isabelle. PhD
thesis, Heriot-Watt University, Edinburgh, Scotland, May 2011.

[Landau, 1930] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.
[Landau, 1951] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation of [Lan-

dau, 1930] by F. Steinhardt.
[Maarek, 2007] Manuel Maarek. Mathematical Documents Faithfully Computerised: the Gram-

matical and Text & Symbol Aspects of the MathLang Framework. PhD thesis, Heriot-Watt
University, Edinburgh, Scotland, june 2007.

[MKM ’07, 2007] Towards Mechanized Mathematical Assistants (Calculemus 2007 and MKM
2007 Joint Proceedings), volume 4573 of Lecture Notes in Artificial Intelligence. Springer,
2007.

138 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

[Nederpelt et al., 1994] Rob Nederpelt, J. H. Geuvers, and Roel C. de Vrijer. Selected Papers
on Automath, volume 133 of Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, 1994.

[Nederpelt, 2002] Rob Nederpelt. Weak Type Theory: a formal language for mathematics.
Technical Report 02-05, Eindhoven University of Technology, 2002.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[Peano, 1889] Giuseppe Peano. Árithmetices Principia, Nova Methodo Exposita. Bocca, Turin,
1889. An English translation can be found on pp. 83–97 in [van Heijenoort, 1967].

[Retel, 2009] Krzysztof Retel. Gradual Computerisation and verification of Mathematics:
MathLang’s Path into Mizar. PhD thesis, Heriot-Watt University, Edinburgh, Scotland, April
2009.

[Rudnicki, 1992] P. Rudnicki. An overview of the Mizar project. In Proceedings of the 1992
Workshop on Types for Proofs and Programs, 1992.

[Sexton and Sorge, 2006] Alan Sexton and Volker Sorge. The ellipsis in mathematical docu-
ments. Talk overhead images presented at the IMA (Institute for Mathematics and its Ap-
plications, University of Minnesota) “Hot Topic” Workshop The Evolution of Mathematical
Communication in the Age of Digital Libraries held on 2006-12-08/---09, 2006.

[Siekmann et al., 2002] Jörg H. Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad
Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek, Michael Kohlhase, Andreas
Meier, Erica Melis, Markus Moschner, Immanuel Normann, Martin Pollet, Volker Sorge,
Carsten Ullrich, Claus-Peter Wirth, and Jürgen Zimmer. Proof development with omega. In
Andrei Voronkov, editor, CADE, volume 2392 of Lecture Notes in Computer Science, pages
144–149. Springer, 2002.

[Siekmann et al., 2003] Siekmann, Benzmüllerand Fiedler, Meier, Normann, and Pollet. Proof
development with Ωmega: The irrationality of

√

2. In Kamareddine [2003], pages 271–314.
[Team, 1999–2003] Coq Development Team. The coq proof assistant reference manual. INRIA,

1999–2003.
[van Benthem Jutting, 1977a] Lambert S. van Benthem Jutting. Checking Landau’s “Grundla-

gen” in the AUTOMATH System. PhD thesis, Eindhoven, 1977. Partially reprinted in [Ned-
erpelt et al., 1994, B.5,D.2,D.3,D.5,E.2].

[van Benthem Jutting, 1977b] Lambert S. van Benthem Jutting. Checking Landau’s “Grund-
lagen” in the AUTOMATH system. PhD thesis, Eindhoven, 1977.

[van der Hoeven, 2004] Joris van der Hoeven. GNU TeXmacs. SIGSAM Bulletin, 38(1):24–25,
2004.

[van Heijenoort, 1967] J. van Heijenoort. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, 1967.

[W3C, 2003] W3C. Mathematical markup language (MathML) version 2.0. W3C Recommen-
dation, October 2003. W3C (World Wide Web Consortium).

[WC3, 2004] WC3. RDF Primer. W3C Recommendation, February 2004. W3C (World Wide
Web Consortium).

[WC3, 2007] WC3. XQuery 1.0 and XPath 2.0 data model (XDM). W3C Recommendation,
2007. W3C (World Wide Web Consortium).

[Whitehead and Russel, 1910–1913] Alfred North Whitehead and Bertrand Russel. Principia
Mathematica. Cambridge University Press, 1910–1913. In three volumes published from 1910
through 1913. Second edition published from 1925 through 1927. Abridged edition published
in 1962.

[Wiedijk, 2006] F. Wiedijk, editor. The Seventeen Provers of the World, foreword by Dana S.
Scott, volume 3600 of LNCS. Springer Berlin, Heidelberg, 2006.

[Zengler, 2008] Christoph Zengler. Research report. Technical report, Heriot-Watt University,
November 2008.

[Zermelo, 1908] Ernst Zermelo. Untersuchungen über die Grundlagen der Mengenlehre (part
1). Mathematische Annalen, 65:261–281, 1908. An English translation can be found on pp.
199–215 in [van Heijenoort, 1967].

Computerising Mathematical Text 139

Lemma main :

(WCR R)->(IND R (cr R)).

Proof.

Intros.

Unfold IND.

Intro a.

Intro IH.

Unfold cr.

Intuition.

Assert

(a=b1\verb+\/+(TC R a b1))\verb+/\+

(a=b2\verb+\/+(TC R a b2)).

Split.

Apply p7.

Assumption.

Apply p7.

Assumption.

Tactic Definition

Get x :=

Elim x; Intros; Clear x.

Get H0; Get H3.

Exists b2.

Split.

Rewrite <- H0.

Assumption.

Apply TRC_b.

Get H4.

Exists b1.

Split.

Apply TRC_b.

Rewrite <- H3.

Assumption.

Assert

(EX x1|(a R x1)/\(TRC R x1 b1)).

Apply p6.

Assumption.

Assert

(EX x2|(a R x2)/\(TRC R x2 b2)).

Apply p6.

Assumption.

Tactic Definition

Pick x y :=

Elim x; Intro y; Intros; Clear x.

Pick H4 x1; Pick H5 x2.

Intuition.

Assert

(EX x|(TRC R x1 x)/\(TRC R x2 x)).

Unfold WCR in H.

Apply (H a x1 x2).

Assumption.

Assumption.

Pick H4 x.

Intuition.

Assert (cr R x1).

Apply IH.

Assumption.

Assert

(EX b|(TRC R b1 b)/\(TRC R x b)).

Unfold cr in H.

Apply (IH x1).

Assumption. Split.

Assumption.

Assumption.

Pick H4 x.

Intuition.

Assert (cr R x1).

Apply IH.

Assumption.

Assert

(EX b|(TRC R b1 b)/\(TRC R x b)).

Unfold cr in H.

Apply (IH x1).

Assumption. Split.

Assumption.

Assumption.

Pick H10 b.

Intuition.

Assert (cr R x2).

Apply IH.

Assumption.

Assert

(EX c:A|(TRC R b2 c)/\(TRC R b c)).

Apply (H11 b2 b).

Split.

Assumption.

Apply (p4 x2 x b).

Assumption.

Assumption.

Pick H13 c.

Intuition.

Exists c.

Intuition.

Apply (p4 b1 b c).

Assumption.

Assumption.

Qed.

Theorem newman :

((WF R)/\(WCR R))->(CR R).

Proof.

Intros.

Intuition.

Assert (Ind R (cr R)).

Apply main.

Assumption.

Unfold CR.

Unfold WF in H0.

Apply (H0 (cr R)).

Assumption.

Qed.

Table 8. The Coq Script of Newman’s Lemma

140 Fairouz Kamareddine, Joe Wells, Christoph Zengler and Henk Barendregt

Group Meaning Encoding

Quantifiers ∀ for all <forall>∀ <#> <#> . <#>

∃ exists <exists>∃ <#> <#> . <#>

∃! exists exactly one <exists one>∃! <#> <#> . <#>

Boolean connectives ∧ and <and> <#> ∧ <#>

∨ or <or> <#> ∨ <#>

=⇒ implication <impl> <#> =⇒ <#>

⊕ exclusive or <xor> <#> ⊕ <#>

Set theory ∈ element of <in> <#> ∈ <#>

⊂ subset of <subset> <#> ⊂ <#>

{|} constructor for a set <<Set>>{ <#> <#> | <#> }

∅ empty set <emptyset>∅

= equality of sets <seteq> <#> = <#>

6= inequality of sets <setneq> <#> 6= <#>

Special functions := is a <isa> <#> isa <#>

1 one <1>1

S(x) the successor function <succ> <#>

function for indexing <index> <#> <#>

Table 9. The preface for the first chapter of Landau’s book

Role Mizar rule Coq rule

axiom %name : %body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition : %body .

theorem theorem %name: %nl %body Theorem %name : %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

Table 10. The Mizar and Coq rules for the dictionary

theorem th131:
<th131>
proof
<pr131>
end;

theorem th132:
<th132>
proof

per cases;
suppose
<pr132case1>
end;
suppose
<pr132case2>
end;
suppose
<pr132case3>
end;

end;

Theorem th131: <th131> .

Proof.
<pr131>
Qed.

Theorem th132: <th132> .

Proof.

<pr132case1>

<pr132case2>

<pr132case3>

Qed.

Table 11. Part of the Mizar (left) and Coq (right) output from gSGA

