
De Bruijn's syntax and redutional behaviour of �-terms:the untyped ase�Fairouz Kamareddineyand Roel Bloo zAbstratIn this paper, a notation inuened by de Bruijn's syntax of the �-alulus is used todesribe anonial forms of terms and an equivalene relation whih divides terms into lassesaording to their redutional behaviour. We show that this notation helps desribe anonialforms more elegantly than the lassial notation. We de�ne redution modulo equivalenelasses of terms up to the permutation of redexes in anonial forms and show that thisredution ontains other notions of redutions in the literature inluding the �-redution ofRegnier. We establish all the desirable properties of our redution modulo equivalene lassesfor the untyped �-alulus.Keywords: lass redution, anonial forms, redutional behaviour.1 IntrodutionThe basi operations for building terms in the �-alulus are abstration and appliation. Thebasi redution operation in the �-alulus is �-redution where(�) (�x:A)B !� A[x := B℄:The �-redex (�x:A)B is haraterised by the mathing of �x with the argument B. We say that�x and B math or that eah has the other as a partner. However, not all �'s of a �-term havepartners and not all arguments math a �. We all suh items with no partners, bahelors.Example 1 In �x:((�y :A)B)C, the items �x and C are bahelors whereas �y and B are partners.Similarly, in ((�x:�y :A)B)C, the items �y and C are bahelors whereas �x and B are partners.After �-redutions take plae in a term, items that are bahelor may well �nd a partner. Forexample, in the seond term of Example 1, a new redex based on the then mathing �y and C isreated after the redution based on the mathing of �x and B takes plae:((�x:�y:A)B)C !� (�y:A[x := B℄)C:Many researhers noted the need to rewrite terms like ((�x:�y :A)B)C to either (�y :(�x:A)B)Cor (�x:(�y:A)C)B where it is seen that the bahelor �y and C beome partnered and the futureredex based on �y and C beomes a present redex. We refer to suh new notions of redutions asauxiliary redutions. These auxiliary redutions an be summarized by four axioms:�This artile builds on and extends the results and proofs of [7℄ but only for the untyped ase. The typed ase anbe found in [6℄. We are grateful for enlightening disussions and useful feedbak and omments reeived from HenkBarendregt, Twan Laan, Rob Nederpelt and Joe Wells. An anonymous referee provided useful reommendation forwhih we are grateful.yShool of Mathematial and Computational Sienes, Heriot-Watt University, Riarton, Edinburgh EH14 4AS,Sotland, fairouz�mas.hw.a.ukzMathematis and Computing Siene, Tehnishe Universiteit Eindhoven, P.O.Box 513, 5600 MB Eindhoven,the Netherlands, .j.bloo�tue.nl 1



(�) ((�x:A)B)C !� (�x:AC)B() (�x:�y:A)B ! �y:(�x:A)B(g) ((�x:�y:A)B)C !g (�x:A[y := C℄)B(C) ((�x:�y:A)B)C !C (�y :(�x:A)B)CNote that g is a ombination of a �-step with a �-step. C makes sure that �y and C form aredex even before the redex based on �x and B is ontrated. By ompatibility,  implies C .Moreover, ((�x:�y:A)B)C !� (�x:(�y :A)C)B and hene both � and C put �y:A adjaently nextto its mathing argument C. In this ase, � moves the argument C (inwards) next to its mathing�y whereas C moves the �y (outwards) next to its mathing argument. For a disussion of wherethese redutions have been used see [14, 10℄. We give here a very brief summary.[19℄ introdues the notion of a premier redex whih is similar to the redex based on �y and C inthe left hand side of rule (g) above (whih we all generalised redex). [20℄ uses � and  (and allsthe ombination �) to show that the perpetual redution strategy �nds the longest redution pathwhen the term is Strongly Normalizing (SN). [23℄ also introdues redutions similar to those of[20℄. Furthermore, [12℄ uses � (and other redutions) to show that typability in ML is equivalentto ayli semi-uni�ation. [21℄ uses a redution related to � where ((�x:�y:x)a)b) is transformedinto �k:((�x:((�y :kx)b))a). [3℄ identi�ed the extra power of the CPS transformations of [21℄ toenable a more e�etive treatment of �-redexes. [18℄ and [4℄ use � whereas [15℄ uses  to reduethe problem of �-strong normalization to the problem of weak normalization (WN) for relatedredutions. [13℄ uses � and  to redue typability in the rank-2 restrition of the 2nd order �-alulus to the problem of ayli semi-uni�ation. [17, 24, 22, 16℄ use related redutions to redueSN to WN and [11℄ uses similar notions in SN proofs. [9℄ uses a more extended version of � (alledterm-reshu�ing) and of g (alled generalised redution) where C and N are not only separatedby the redex (�x:�)B but by many redexes (ordinary and generalised). [5℄ shows that generalisedredution satis�es both the postponement of K-redutions and the onservation properties andalso preserves the strong normalisation of the ordinary �-alulus.Looking at these four axioms, one notes that auxiliary redution an help relate �-termsaording to their present and potential redexes. After all, auxiliary redution turns redexesthat are not immediately visible but yet impliitly present, into learly visible ones:Example 2 Let A � (��yf :fy)�x and B � (��:(�yf :fy)x)�. Both terms have �f :fx as a redut,so A =� B. However, B has two redexes whereas A has only one. Here are the redexes of B:� r1 = (��:(�yf :fy)x)�. Observe that B r1!� (�yf :fy)x.� r2 = (�yf :fy)x. Observe that B r2!� (��f :fx)�.In A, the only redex is: r01 = (��yf :fy)�. Here A r01�!� (�yf :fy)x. Note that r1 in B and r01 in Aare both based on the redex (��:�)� and ontrating r1 in B or r01 in A results in the same term.A loser look at A enables us to see that in A (as in B), �y will get mathed with x resultingin a redex r02 = (�y:�)x. There are di�erenes however between r2 in B and r02 in A. On onehand, r2 in B is ompletely visible and may be ontrated before r1 in B. On the other hand, r02is a future redex in A. In fat, r02 is not a redex of A itself but a redex of a ontratum of A,namely (�yf :fy)x, the result of ontrating the redex r01 in A. We ould guess from A itself thepresene of the future redex. That is, looking at A itself, we see that �� is mathed with � and �yis mathed with x. This an be made visible via rules like (�) above whereA � (��yf :fy)�x!� (��:(�yf :fy)x)� � B:Regnier in [20℄ and Kfoury and Wells in [15℄ went further and used the above mentioned axiomsto �nd for eah term its so-alled anonial form. The anonial form shows whih parts of theterm are partnered, now or in the future. This anonial form has the shape:�x1 � � ��xn:(�y1:(�y2:(� � � :(�ym:zA1 � � �Al)Cm) � � � )C2)C12



where �xi and Aj are bahelor and eah Ck mathes �yk for 1 � i � n, 1 � j � l and 1 � k � m.In addition to anonial forms, [20℄ provided the notion of �-equivalene whih identi�es termsonly di�ering by permutations of redexes, and showed that none of the standard operationallassi�ation riteria on �-alulus (e.g., length of longest redution) an separate two �-equivalentterms. [20℄ onluded by asking if there existed a syntax that an faithfully represent �-equivalene.In this paper, we attempt to answer the question by using the item notation [8℄ inspired by deBruijn's notation of the �-alulus where both the rewriting of terms to reate more redexes and theanonial forms of terms are learer than in lassial notation. In item notation, abstration andappliation are written respetively as (�x)A and (BÆ)C with C the funtion and B the argument(see [8℄ and Setion 2 of this paper). In item notation, anonial forms have the following shape:(�x1) � � � (�xn)(C1Æ)(�y1) � � � (CmÆ)(�ym)(AlÆ) � � � (A1Æ)z:Hene, a anonial form is learly divided into a sequene of bahelor �-items (�xi) followed by asequene of partnered pairs (CjÆ)(�yj ) followed by a sequene of bahelor Æ-items (AkÆ) whih is�nally followed by the heart of the term z. This is learer than the anonial form of [15, 20℄.When working on the rewriting of terms to make more redexes visible, we were keen to detetwhen two terms A and B an be de�ned to be redutionally equivalent in the sense that thereis a bijetive orrespondene between redution paths starting at A and those starting at B. Webelieve that suh a notion of redutional equivalene (whih we all �equi) is hard to de�ne andthat it would be undeidable. However, in this paper, we �nd a deidable approximation �equi toredutional equivalene on strongly normalising terms, whih we all semi redutional equivalene.We build lasses of terms modulo �,  and permutation of redexes and say that A �equi B whenA and B are in the same lass. We show that �equi oinides with �-equivalene. Armed with ourlasses whih represent the present and future redexes in a term, we extend the usual �-redution toredution modulo lasses. We show that the redution modulo satis�es all the desirable propertiesand that it generalises other notions of generalised redution in the literature.This paper is divided as follows:� In Setion 2 we introdue what is needed of the item notation and other formal mahineryin order to give a transparent view on the anonial forms of terms.� In Setion 3 we explain how one an ahieve the anonial forms of terms so that an approx-imation of the redutional behaviour is immediately visible.� In Setion 4 we give our deidable notion �equi of semi redutional equivalene. We showthat �equi oinides with the �-equivalene of [20℄. We also de�ne redution modulo �-equivalene.� In Setion 5 we extend the usual �-redution !� on �-terms to ;� on lasses of termsmodulo �equi redutional equivalene. We establish that ;� is Churh-Rosser and that ;�subsumes other notions of redution inluding !� and the redution modulo �-equivalene.We also show that if A ;� B is based on a redex (�x:�)�, and if A0 �equi A, then thereexists B0 �equi B suh that A0 ;� B0 and A0 ;� B0 is based on a orresponding redex(�x:�)�. In other words, A and A0 have isomorphi redutional paths. We also show that�equi is a good approximation to the redutional equivalene �equi on strongly normalisingterms. Finally, we show that SN;� and SN!� are equivalent and that all semi redutionallyequivalent terms have the same normalisation behaviour.2 Some formal mahineryWe assume familiarity with the �-alulus and its notions suh as ompatibility and redution(see [2℄). Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respetively. We write A[x := B℄ to denotethe term where all the free ourrenes of x in A have been replaed by B. We take terms to be3



equivalent up to variable renaming and use � to denote syntatial equality of terms. We assumethe usual Barendregt variable onvention BC (whih says that bound variables are always hosendistint from free variables and that whenever neessary, variables are renamed to ensure this) (f.[2℄). For any redution relation !r, we write !!r for its reexive transitive losure and =r forits reexive transitive and symmetri losure. We say that A is strongly normalizing with respetto a redution relation ! (written SN!(A)) i� every !-redution path starting at A terminates.As usual, we use SN and CR to stand respetively for strong normalisation and Churh Rosser.The lassial notation annot extend the notion of redexes in a simple way. Item notationhowever an ([8℄ disusses various advantages of this notation). In item notation, one writes theargument before the funtion so ab beomes (bÆ)a. Similarly, in item notation, one writes (�x)ainstead of �x:a. This way, a term beomes a sequene of �-items like (�x) and Æ-items like (bÆ)followed by a variable. Moreover, a �-redex beomes in item notation a Æ�-pair: namely, a Æ-itemadjaent to a �-item. I.e., (�x:A)B beomes in item notation: (BÆ)(�x)A. Note that in itemnotation, the sope of the x in a �-item (�x) is everything to the right of it.Let V be an in�nite olletion of variables over whih x; y; z; : : : range. Terms are given by:T ::= V j(T Æ)T j (�V )T :We take A;B;C; : : : to range over T . We all (AÆ) a Æ-item, whose body is A. By (AÆ)B onemeans apply B to A (note the order). The item (�x) is alled a �-item. A redex starts with aÆ-item next to a �-item. Here we repeat rules (�), (�), (), (g), (C) but in item notation:(�) (BÆ)(�x)A !� A[x := B℄(�) (CÆ)(BÆ)(�x)A !� (BÆ)(�x)(CÆ)A() (BÆ)(�x)(�y)A ! (�y)(BÆ)(�x)A(g) (CÆ)(BÆ)(�x)(�y)A !g (BÆ)(�x)fA[y := C℄g(C) (CÆ)(BÆ)(�x)(�y)A !C (CÆ)(�y)(BÆ)(�x)ANote that the rules (�), (), (g), (C) are not problemati beause we use the BarendregtConvention, whih means that no free variable will beome unneessarily bound after reshu�ingdue to the fat that renaming of bound variables an be ativated at any time to ensure thatnames of bound and free variables are distint.In item notation, eah term A is the onatenation of zero or more items and a variable:A � s1s2 � � � snx where eah si is either a �-item or a Æ-item, and x 2 V . These items s1; s2; : : : ; snare alled the main items of A, x is alled the heart of A, notation ~(A).1 We use s; s1; si; : : :to range over items. A onatenation of zero or more items s1s2 � � � sn is alled a segment.We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment. The itemss1; s2; : : : ; sn (if any) are alled themain items of the segment. A Æ�-pair is a Æ-item immediatelyfollowed by a �-item. The weight of a segment s, weight(s), is the number of main items thatompose the segment. Moreover, we de�ne weight(sx) = weight(s) for x 2 V .In redution, the mathing of the Æ and the � in question is the important thing. Well-balaned segments (w-b) are onstruted indutively from mathing Æ and �-items as follows:(i) ; is w-b,(ii) if s is w-b then (AÆ)s(�x) is w-b,(iii) if s1, s2, . . . sn are w-b, then the onatenation s1 s2; � � � sn is w-b.In Figures 1 and 2, all segments that our under a hat are w-b.Let E � s1(AÆ)s2(�y)s3x. We say that the items (AÆ) and (�y) math or are partners orpartnered if s2 is well-balaned. If an item s has no partner in a term, we say that s is bahelor.1Note that the term head variable used in [1℄ is a speial ase of our notion of heart. The head variable of aterm in head normal form is the heart of the term. It is not the ase however that the heart of a term is always ahead variable. 4



For example, in the term E1 of Figure 1, (+Æ) and (�f ) math or are partnered. So are the items(nÆ) and (�y). On the other hand, (yÆ) and (xÆ) are bahelor. The pair of adjaent items (+Æ)(�f )is alled a Æ�-pair and the non-adjaent partnered items (mÆ)(�x) and (nÆ)(�y) form Æ�-ouples.The next remark shows that an order needs to be followed to move items next to their partnersusing the rules � and . For example, in (AÆ)s(�x)B where s is well-balaned, eah of the �-ruleand the -rule states that eah main Æ-item of s must be moved next to its �-partner before (AÆ)an be moved next to its partner (�x).Remark 3 Assume that s is well-balaned.� It is not neessarily the ase that (AÆ)s(�x)B !!� s(AÆ)(�x)B.2For example, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!� (A2Æ)(A3Æ)(�x)(�y)(A1Æ)(�z)A4but instead, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 !!� (A3Æ)(�x)(A2Æ)(�y)(A1Æ)(�z)A4:� It is not neessarily the ase that (AÆ)s(�x)B !! (AÆ)(�x)sB.3For example, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!! (A1Æ)(�z)(A2Æ)(A3Æ)(�x)(�y)A4but instead (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 !! (A1Æ)(�z)(A2Æ)(�y)(A3Æ)(�x)A4.� Note �nally that using the rules � and  together will not solve the problem:(A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!� (A2Æ)(A3Æ)(�x)(�y)(A1Æ)(�z)A4 and(A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!� (A1Æ)(�z)(A2Æ)(A3Æ)(�x)(�y)A4.2.1 Making redexes visible via � and Transformations like (�) and () are rather powerful in that they an group together terms withequal redutional behavior. Let us start with (�):Example 4 Consider E1; E2; E3; E4 as follows:E1 � (((�fxy:fxy)+)m)n;E2 � ((�f :(�xy:fxy)m)+)n;E3 � (�f :((�xy :fxy)m)n)+;E4 � (�f :(�x:(�y :fxy)n)m) + :Note that E1 =� E2 =� E3 =� E4. Moreover, the visible redexes are as follows:In E1: (�fxyfxy)+.In E2: (�f :(�xy:fxy)m)+ and (�xy:fxy)m.In E3: (�f :((�xy:fxy)m)n)+ and (�xy :fxy)m.In E4: (�f :(�x:(�y :fxy)n)m)+, (�x:(�y:fxy)n)m and (�y :fxy)n.Furthermore, one an see potential future redexes as follows:In E1: �x:� will eventually be applied to m and �y:� will be eventually be applied to n.In E2: �y:� will eventually be applied to n.In E3: �y:� will eventually be applied to n.Note that E1 !� E2 !� E3 !� E4 and that by �-reduing E1 to E2 (resp. E3 to E4), an extraredex beomes visible. In E4 all redexes are visible and E4 is in �-normal form.Applying the item notation to Example 4 we get:Example 5 E1 of Example 4 reads in item notation: (nÆ)(mÆ)(+Æ)(�f )(�x)(�y)(yÆ)(xÆ)f . The(lassial) redex orresponds to a `Æ�-pair', viz. (+Æ)(�f ), followed by the body of the abstration.Note that the Æ-item (+Æ) and the �-item (�f ) are now adjaent, whih is harateristi forthe presene of a lassial redex in item notation. (Cf. Figure 1). The seond and third redexes ofE1 are obtained by mathing Æ and �-items whih are not adjaent:� (�y:fxy)n is visible as it orresponds to the mathing (nÆ)(�y) where (nÆ) and (�y) areseparated by the segment (mÆ)(+Æ)(�f )(�x) whih has the braketing struture [ [ ℄ ℄.2For instane, it is not possible to have the braketing struture [1[2[3℄℄℄!!� [2[3℄℄[1℄.3For instane, it is not possible to have the braketing struture [1[2[3℄℄℄!!� [1℄[2[3℄℄.5



-E1: (nÆ)(mÆ)(+Æ)(�f ) (�x) (�y)(yÆ)(xÆ)f-E2: (nÆ) (+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)f-E3: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fE4: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fFigure 1: �-redution on E1: E1 !� E2 !� E3 !� E4�E1: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y)(yÆ)(xÆ)f�E02: (nÆ) (mÆ) (+Æ)(�f )(�x) (�y)(yÆ)(xÆ)f�E03: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y) (yÆ)(xÆ)fE04: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y) (yÆ)(xÆ)fFigure 2: -redution on E1: E1 ! E02 ! E03 ! E04� (�xy:fxy)m is visible as it orresponds to the mathing (mÆ)(�x) where (mÆ) and (�x) areseparated by the segment (+Æ)(�f ).�-redution amounts to moving Æ-items, from left to right,4 in the diretion of their mathing�-items, until they form a pair (f. Figure 1). As !� is Churh Rosser (CR) and StronglyNormalizing (SN), then the �-normal form �(M) of a term M is unique (f. Proposition 16).Looking bak at examples 4 and 5, it is possible to use  instead of � in order to make moreredexes visible (f. Figure 2). -redution amounts to moving �-items from right to left, in thediretion of their mathing Æ-items until they form a pair. Also, similarly to !�, ! is ChurhRosser and Strongly Normalizing, and hene, the -normal form (M) of a term M is unique.This paper will establish a method that shows that terms like E1; E2; E02; E3; E03; E4; E04 inFigures 1 and 2 are redutionally equivalent.2.2 Generalising redutions to take are of � and Look again at the rules (�), () and (g). One an say that (g) is one of the following steps:� A �-step followed by �-redution where(CÆ)(BÆ)(�x)(�y)A!� (BÆ)(�x)(CÆ)(�y)A!� (BÆ)(�x)fA[y := C℄g.4This is not only for main items at the top level, but also inside the items.6



� A -step followed by �-redution where(CÆ)(BÆ)(�x)(�y)A! (CÆ)(�y)(BÆ)(�x)A!� (BÆ)(�x)fA[y := C℄g.So, following this, one an generalise �-redution so that many steps � or  are simulated. Thiswas done in [9℄ where redution was generalised as follows:De�nition 6 (Extended redexes, ,!�)� An extended redex starts with the Æ-item of a Æ�-ouple (i.e. is of the form (AÆ)s(�x)Bwhere s is well-balaned).� ,!� is the least ompatible relation generated by (AÆ)s(�x)B ,!� sfB[x := A℄g for s well-balaned, that is, ,!�-redution ontrats an (extended) redex.� ,!,!� is the reexive and transitive losure of ,!� and �� the least equivalene relation losedunder ,!,!� .Following [3℄, ,!�-redution is the more e�etive treatment of �-redexes whih identi�es thepower of the CPS transformations of [21℄. Note furthermore, that ,!�-redution is more re�nedthan !!� followed by !� . In fat, reall Remark 3 and hek thatA � (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 ,!� (A2Æ)(A3Æ)(�x)(�y)fA4[z := A1℄g � Band that we annot �nd a path of !�, ! and !� steps starting at A and ending in B.In this paper we show that our new notion of redution based on lasses is even more re�nedthan and subsumes ,!�-redution.3 Redutional Equivalene and Canonial Forms3.1 Redutional equivaleneIdeally, we would like redutional equivalene to be an equivalene relation whih satis�es thatterms A and B are redutionally equivalent if for every redex r in A, there is a orresponding redexr0 in B where A r!� A0, B r0!� B0, and A0 and B0 are redutionally equivalent. Unfortunately, thisrelation seems hard to de�ne in a non-involved manner; the notion of orresponding redex has toinvolve the position of the redex in the term for example. This setion disusses those diÆulties.First, note that in order to disuss redutional equivalene between terms, auxilliary redexesmust be inluded so that a potential future redex like (�y:�)x in A of Example 2 an be treatedas a present (rather than potential) redex whih ould possibly be ontrated in A even before theoriginator (��yf :fy)� has been ontrated. Hene, with this extended notion of redution we getin A another redex:r02 = (�yf :fy)x, whih when ontrated in A results in (��f :fx)�.Note that r02 is �y mathed with x (exatly as r2 in B). Note moreover that ontrating r02 in Agives the same result as ontrating r2 in B.With this notion of extended redex, we observe that there is a bijetive orrespondene betweenthe (extended) redexes of A and B of Example 2. That is, r1 orresponds to r01 and r2 orrespondsto r02. Moreover, if one redex is ontrated in A, the redut is syntatially equal to the redutwhih results from ontrating the orresponding redex in B and vie versa. That is, r1 and r01yield the same values; similarly r2 and r02 yield the same values. This is seen as follows:Example 7 The redution paths from A and B of Example 2 are as follows:A-Path1: (��yf :fy)�x r01!� (�yf :fy)x!� �f :fxA-Path2: (��yf :fy)�x r02!� (��f :fx)�!� �f :fxB-Path1: (��:(�yf :fy)x)� r1!� (�yf :fy)x!� �f :fxB-Path2: (��:(�yf :fy)x)� r2!� (��f :fx)�!� �f :fxIt is lear that A and B have the same number of possible paths before reahing the normalform and that there is a bijetive orrespondene between the paths A-Path1 and B-Path1, andbetween A-Path2 and B-Path2. 7



Using auxiliary redexes, we ame up with an informal de�nition of what we all �equi:De�nition 8 (Redutional equivalene �equi)We say that A and B are redutionally equivalent and write A �equi B i� A � B or there is abijetive orrespondene f between the (extended) redexes of A and B suh that if A r! A0 andB f(r)! B0 then A0 �equi B0.Note that if A is in normal form then A �equi B i� A � B.Example 9 � A �equi B for A;B as in Example 2.� Also E1 �equi E2 �equi E3 �equi E4 for E1; E2; E3; E4 as in Example 4.� However, beause there is no bijetive orrespondene f between the (extended) redexes, it isnot the ase that KII �equi KI
 where K is �xy:x, I is �x:x, and 
 is (�x:xx)(�x:xx).Remark 10 Note that De�nition 8 has some limitations:� We have that (�x:I)I �equi (�x:I)K although this is not desirable.� �equi is not ompositional. That is: if A1 �equi A2 then it is neessarily the ase thatA1B �equi A2B and �x:A1 �equi �x:A2. For example, if A1 � �z :(�x:y)z and A2 ��z:(�x:y)I, then A1 �equi A2 but A1(II) 6�equi A2(II).In order to deal with these limitations, we need to add the following ondition to De�nition 8:If r � (�x:�)C is a (extended) redex of A and f(r) � (�x:�)D then C �equi D.This extra ondition solves the problems raised by the above two situations. However, we willnot be onerned with these situations in this paper and we will therefore not inlude lause 4 inDe�nition 8.We onjeture that in general it is undeidable whether two terms are redutionally equivalentaording to De�nition 8.Conjeture 11 (Undeidability of �equi) It is in general undeidable whether two terms areredutionally equivalent.Note that we an de�ne �equi to be the in�nite limit of deidable relations as suggested by HenkBarendregt, in personal ommuniations. The idea is to de�ne degrees of redutional equivalene(�n with n � 0 for short) in the following way:� M �0 N i� M � N .� M �n+1 N i� there is a bijetive orrespondene between the (extended) redexes of M andN suh that ontrating one in M yields a term �m, m � n to the result of ontrating theorresponding redex in N .It is easy to show that�equi= Sn�0 �n. Similarly to�equi, �n for �xed n � 2 is not ompositional.This an be seen as follows5:�z:g:(�x::�y:d:e)ba �1 �z:g :(�x::(�y:d:e)a)b but(�z:g :(�x::�y:d:e)ba)f �2 (�z:g :(�x::(�y:d:e)a)b)f .In short, redutional equivalene �equi is umbersome to de�ne. We will instead show that anapproximation of redutional equivalene �equi, alled semi redutional equivalene, exists and isdeidable. We will show that �-equivalene and our equivalent deidable notion �equi are bothinomparable to redutional equivalene of any degree �n, n � 0. We will however show that theyare both good approximations to �equi on strongly normalizing terms (f. Fat 57). Canonialforms will be basi for our notion of redutional equivalene.5This ounterexample will be better understood if it is translated into the item-notation of Setion 2.8



Table 1: The Canonial Form of termsbahelor �-items Æ�-pairs bahelor Æ-items end var(�x1) : : : (�xn) (A1Æ)(�y1) : : : (AmÆ)(�ym) (B1Æ) : : : (BpÆ) x3.2 Canonial formsConsider two terms A and B. Obviously, if either A =� B or A = B, then A and B areredutionally equivalent. But, what about if A =� C and B = C? Would it still be the ase thatA and B are redutionally equivalent? The answer is yes. Look at E4 and E04 of Figures 1 and 2.We want the redution equivalene relation to apture the redutional equivalene of these terms.Observing E4 and E04, leads us to note that using � alone or  alone will not be omprehensiveenough to apture as many ases as possible of redutional equivalene. We obviously want E1,E2, E3 and E4 of Example 4 to be redutionally equivalent, and also E1, E02, E03 and E04. But,how do we relate Ei to E0i for 2 � i � 4? This is simple, ombine the relations � and  and aimto �nd a anonial form of terms that helps establish semi redutional equivalene.Note that �((E1)) = E04 and (�(E1)) = E4 and that E4 6� E04. However, looking at E4 andE04, we see that they have the shape whih we all anonial form (see Table 1):De�nition 12 (Canonial forms) We say that a term is in anonial form if it has the form:(�x1) : : : (�xn)(C1Æ)(�y1) : : : (CmÆ)(�ym)(A1Æ) : : : (AlÆ)x.Note that here, Ci and Ai are not required to be anonial forms themselves, and that for 1 � i � nand 1 � j � l, (�xi) and (AjÆ) are bahelor .Remark 13 Note that anonial forms orrespond in lassial notation to the following:�x1 : : : �xn :(�y1 :(�y2 : : : (�ym :xAl : : : A1)Cm) : : : )C2)C1where again it an be seen that �xi and Aj are bahelor for 1 � i � n and 1 � j � l. These areexatly the anonial forms given in [20℄ and represented in [20℄ by Figure 3 below. Note that ouritem notation as is seen in De�nition 12 permits a more elegant representation than the one givenin lassial notation in Figure 3.
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AlFigure 3: Canonial forms in lassial notationThe shape of anonial forms will allow us to introdue a redution relation!p on them whihwill help us show that terms like E4 and E04 are redutionally equivalent. In fat, note that E4 andE04 are equivalent up to the permutation of their Æ�-pairs. We follow this observation to de�nethe redution relation !p on anonial forms as follows:9



De�nition 14 We de�ne !p on anonial forms as the ompatible losure on anonial forms ofthe rule: (A1Æ)(�y1)(A2Æ)(�y2)B !p (A2Æ)(�y2)(A1Æ)(�y1)B if y1 =2 FV (A2)We de�ne !!p and =p as the reexive, transitive respetively equivalene losures of !p.We de�ne !� to be !� [ ! and !�p to be !� [ ! [ !p. Furthermore, !!�, !!�p,=� and =�p are de�ned similarly to !!p and =p.Intuitively, !p transposes two adjaent Æ�-pairs in a term if the variable bindings allow this.There is a nie orrespondene between !p, !� and ! .Lemma 15 Let A and B be two anonial forms. If A!p B then 9C[C !� A ^ C ! B℄.Proof: Indution on the struture of A. We take the ase A � (A1Æ)(�y1)(A2Æ)(�y2)A3 andB � (A2Æ)(�y2)(A1Æ)(�y1)A3. In this ase, take C � (A2Æ)(A1Æ)(�y1 )(�y2)A3. 2Proposition 16 !� and ! are SN, CR and �=�. Moreover, !� is also SN. Also, =�p and=� are the same relation.Proof: SN is a simple ombinatorial exerise. For CR we note that !� as well as ! alone areorthogonal. !��=� and !�=� are easy. Finally, the equality of =�p and =�is a onsequeneof Lemma 15. 2Notation 17 Let M be a term. We use the following notation:� �(M) denotes the �-normal form of M� (M) denotes the -normal form of M� We all �((M)) the �-normal form of M� We all (�(M)) the �-normal form of MCorollary 18 For eah term M , the r-normal form of M for r 2 f�; ; �; �g is unique.Note that it is not neessarily the ase that �((A)) = (�(A)) as Example 28 shows. However,we will show in Lemma 25 that �((A)) =p (�(A)).The following two lemmas enable us to syntatially desribe �- and -normal forms.Lemma 19 Every term has one of the three forms:(i) (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,(ii) (�x)A, and(iii) (A1Æ) � � � (AnÆ)(BÆ)(�x)C, where n � 0.Proof: A term has either zero main �-items and ase (i) applies, or at least one of them. In thelatter ase: the �rst main �-item an our in the �rst plae in the sequene of all main items(ase (ii)) or not in the �rst plae (ase (iii)). 2Lemma 20 Every term has one of the four forms:(i) s(�x)A where s is w-b,(ii) (AÆ)B, where B has no bahelor main �-items,(iii) (AÆ)s(�x)B where s is w-b and B has no bahelor main �-items,(iv) x. 10



Proof: A term has at least one bahelor main �-item (ase (i)), or none at all. In the last ase,the term may start with a bahelor Æ-item (ase (ii)), a partnered Æ-item (ase (iii)) or is only avariable (ase (iv)). 2Now, we an syntatially haraterise �- and -normal forms via the following two lemmas whoseproof is by indution on the struture of terms as given in Lemmas 19 and 20 resp.:Lemma 21 The �-normal form �(M) of a term M is:�((A1Æ) � � � (AnÆ)x) � (�(A1)Æ) � � � (�(An)Æ)x if x 2 V and n � 0�((�x)A) � (�x)�(A)�((A1Æ) � � � (AnÆ)(BÆ)(�x)C) � (�(B)Æ)(�x)�((A1Æ) � � � (AnÆ)C)Lemma 22 The -normal form (M) of a term M is:(s(�x)A) � (�x)(sA) if s is w-b;((AÆ)B) � ((A)Æ)(B) if B has no bahelor main �-items;((AÆ)s(�x)B) � ((A)Æ)(�x)(sB) where s is w-b and B has no bahelor main �-items(x) � xExample 23 In this example, we will deorate some items with various symbols (like �, �, et.).Items that have the same deorations are partnered.If we take A to be (�q) �(jÆ) �(�p) (�x)(wÆ) +(xÆ) �(yÆ) ( ��v) �(vÆ) 00(xÆ) 00(�w) �(�t) +(�s) (sÆ)t then:� �(A) is (�q) �(jÆ) �(�p) (�x) �(yÆ) ( ��v) 00(xÆ) 00(�w) �(vÆ) �(�t) +(xÆ) +(�s) (wÆ)(sÆ)t� (A) is (�q)(�x) �(jÆ) �(�p) (wÆ) +(xÆ) +(�s) �(yÆ) ( ��v) �(vÆ) �(�t) 00(xÆ) 00(�w) (sÆ)tNotation 24 Let A be a term. We de�ne the following:� A� is the sequene of all bahelor main �-items of A in the order in whih they appeared inA.� A�(Æ) is the sequene of the �-normal form of all bahelor main Æ-items of A in the order inwhih they appeared in A.� A�(Æ�)+� is the sequene of the �-normal form of all the main Æ�-pairs (obtained from theÆ�-ouples) and all the main bahelor �-items. All the �-items are in the order in whihthey appeared in A and eah Æ-item ours adjaent and to the left of its partner.� A(Æ�+Æ) is the sequene of the -normal form of all the main Æ�-pairs (obtained from theÆ�-ouples) and of all the main bahelor Æ-items. All the Æ-items are in the order in whihthey appeared in A and eah �-item ours adjaent and to the right of its partner.� A�(Æ�) is the sequene of the �-normal forms of all the main Æ�-pairs (obtained from theÆ�-ouples).� A�(Æ) is the sequene of the �-normal forms of all the main bahelor Æ-items in the orderin whih they appeared in A.� A�(Æ�) is the sequene of the �-normal forms of main Æ�-pairs (obtained from the Æ�-ouples).� A�(Æ) is the sequene of the �-normal forms of all the main bahelor Æ-items in the orderin whih they appeared in A.The following lemma shows that �-, -, and �-normal forms satisfy Table 2. In partiular, all�-normal forms are in anonial form. It is interesting to note how item notation enables thelear lassi�ation of these various normal forms. Compare with [15, 20℄ where the lassial syntaxmakes these normal forms umbersome to desribe.11



Table 2: �-, - and �-normal forms�-nf: Æ�-pairs in �-nf and bahelor �-items, bahelor Æ-items in �-nf end var(A1Æ)(�x)(�y)(�z)(A2Æ)(�p) : : : (B1Æ)(B2Æ) : : : x-nf: bahelor �-items Æ�-pairs and bahelor Æ-items in -nf end var(�x1)(�x2 ) : : : (B1Æ)(A1Æ)(�x)(B2Æ) : : : x�-nf: bahelor �-items Æ�-pairs in �-nf bahelor Æ-items in �-nf end var(�x1)(�x2 ) : : : (A1Æ)(�y1 )(A2Æ)(�y2) : : : (AmÆ)(�ym) (B1Æ)(B2Æ) : : : xLemma 25 For any term A, we have:1. �(A) � A�(Æ�)+�A�(Æ)~(A).2. (A) � A�A(Æ�+Æ)~(A).3. �((A)) � A�A�(Æ�)A�(Æ)~(A).4. (�(A)) � A�A�(Æ�)A�(Æ)~(A).5. �((A)) and (�(A)) are both in anonial form and we have that �((A)) =p (�(A)).Proof: 1), 2) 3) and 4) are by indution on weight(A), distinguishing ases aording to Lem-mas 19 and 20 using Lemmas 21 and 22. We only prove 1).� Case A � (�x)C, use IH on C.� Case A � (B1Æ) � � � (BnÆ)x, x 2 V , then A�(Æ�)+� is empty.� A � (B1Æ) � � � (BnÆ)(CÆ)(�x)E. Then �(A) � (�(C)Æ)(�x)�((B1Æ) � � � (BnÆ)E). By the in-dution hypothesis �((B1Æ) � � � (BnÆ)E) � s01 A�(Æ)~(E) � s01 A�(Æ)~(A) where s01 is the se-quene of the �-normal form of all the main Æ�-pairs (obtained from the Æ�-ouples) and allthe main bahelor �-items. All the �-items are in the order in whih they appeared in A andeah Æ-item ours adjaent and to the left of its partner. Hene, �(A) � A�(Æ�)+�A�(Æ)~(A).For 5) use 1) : : : 4). 2Reall that both E4 and E04 of Figures 1 and 2 are in anonial form. They both have thesame anonial form as E1. Reall also that �((E1)) � E04, that (�(E1)) � E4 and that byLemma 25.4, E4 =p E04. We group all anonial forms related by =p into one lass:De�nition 26 (Class of anonial forms CCF) We de�ne the lass of anonial forms of M ,CCF(M) as fM 0 jM 0 =p �((M))g.Note that by Lemma 25 we have CCF(M) = fM 0 jM 0 =p (�(M))g.For example, CCF(E1) = fE4; E04g.4 Semi Redutional Equivalene and �-equivalene4.1 The relation �equiNow, we are ready to de�ne our notion of semi redutional equivalene. We say that two termsare semi redutionally equivalent if they have the same anonial form modulo =p:De�nition 27 (�equi) For a term A, we de�ne:� [A℄, the lass of semi redutionally equivalent terms to A, by: fB j �((A)) =p �((B))g.� We say that B is semi redutionally equivalent to A, and write B �equi A, i� B 2 [A℄.12



Note that, by Lemma 25.5, [A℄ = fB j (�(A)) =p (�(B))g.Example 28 Note that in Figures 1 and 2, (E1) = �((E1)) � E04 and �(E1) = (�(E1)) � E4.Note also that E4 =p E04 and all Ei, for 1 � i � 4 and E0j , for 2 � j � 4 belong to [E1℄. All Ei andE0j where 1 � i � 4 and 2 � j � 4 are redutionally equivalent and have the same anonial form(+Æ)(�f )(mÆ)(�x)(nÆ)(�y)(yÆ)(xÆ)f modulo =p. That is: (mÆ)(�x)(+Æ)(�f )(nÆ)(�y)(yÆ)(xÆ)fand (mÆ)(�x)(nÆ)(�y)(+Æ)(�f )(yÆ)(xÆ)f , et., are all anonial forms. Note that the variableondition for permutations of pairs holds beause + ontains no free variables.The following lemma says that semi redutional-equivalene �equi ontains !� and ! .Lemma 29 !���equi and !��equi. Moreover, these inlusions are strit.Proof: If A !� B or A ! B then �((A)) =p �((B)). Example 28 gives terms E4 and E04whih are �equi but whih are not related by !� or ! . 2Remark 30 Note that, as both !� and ! are SN, we an by applying !� and ! to any termA, reah a term A0 whih is free of any �- and -redexes (it is easy to show that the ombinationof �- and -redution is SN). The resulting term A0 however depends on the order of applying �and . It is the ase nonetheless, by Lemma 29 that all terms A0, whih are obtained from A viaarbitrary � and  redutions, are semi redutionally equivalent.The following proposition shows that �equi is deidable and that any �equi redutionallyequivalent terms are �-equal.Proposition 31 �equi is well-de�ned, deidable and is an equivalene relation. Moreover, = ,=�, =p��equi�=�, and these inlusions are strit.Proof: Well-de�nedness and equivalene relation are easy. Similarly, deidability is easy as � and are SN and =p is deidable. For the �rst �, note Lemmas 15 and 29. The seond � followsfrom Proposition 16. 2The next setion gives the de�nition of �-equivalene of [20℄ and establishes its equivalene to�equi. Then, it de�nes �-redution modulo �-equivalene.4.2 �-equivalene and redution modulo �-equivaleneIn [20℄, Regnier de�ned an equivalene relation alled �-equivalene on �-terms whih identi�edterms modulo the permutation of their redexes. [20℄ showed that none of the standard operationallassi�ations of the �-alulus an distinguish two �-equivalent terms. In partiular, [20℄ showedthat any two �-equivalent terms have the same normal form, the same length of head redution, thesame length of normalisation by leftmost redution, and the same length of longest redution. [20℄also used �-equivalene to generalise the theorem of perpetual strategy and to �nd the anonialforms of a term. This setion establishes that our �equi is equivalent to �-equivalene and de�nes�-redution modulo �-equivalene. First, we give the de�nition of �-equivalene:De�nition 32 (�-equivalene)[20℄ de�ned �-redution !� to be the smallest ompatible relation ontaining:(�) ((�x:A)B)C !� (�x:AC)B if x 62 C() (�x:�y:A)B ! �y:(�x:A)B if y 62 BA and B are �-equivalent if A =� B whre =� is the equivalene relation assoiated to !�.The following lemma is needed to establish that �equi and =� are equivalent.Lemma 33 A �equi B i� A =�p B i� A =� B.13



Proof: =)) Note that �equi�=�p and that by Lemma 15, =�p�=�.(=) By Lemma 29, we have =���equi and so, also =�p��equi 2Hene, we have provided a �ne grained notion of �-equivalene:Corollary 34 �-equivalene and �equi are the same relation. Proof: This holds beause �-equivalene is the same as =�. 2Now we de�ne �-redution modulo �-equivalene:De�nition 35 (Redution modulo �, 7!�)� One-step redution modulo �, 7!� is the least ompatible relation generated by:A 7!� B i� 9C =� A suh that C !� B.� Many-step lass-redution modulo �, 7!7!� is the reexive and transitive losure of 7!� and�=� is the least equivalene relation generated by 7!�.The next Lemma and its Corollary help establish that 7!7!� is Churh Rosser.Lemma 36 If A 7!� B then A =� B.Proof: If A 7!� B then C !� B for some C =� A. Hene, C =� B and by �-equivalene,C =� A. Hene A =� B. 2Corollary 37 1. If A 7!7!� B then A =� B. 2. A �=� B i� A =� B.Theorem 38 (Churh Rosser theorem for 7!7!�)If A 7!7!� B and A 7!7!� C, then there exists D suh that B 7!7!� D and C 7!7!� D.Proof: As A 7!7!� B and A 7!7!� C then by Corollary 37, A =� B and A =� C. Hene, B =� Cand by CR for !!�, there exists D suh that B !!� D and C !!� D. But, M !!� A impliesM ;;� A (f. Corollary 42). Hene we are done. 25 Class RedutionIn this setion, we introdue lass-redution;� , show that it is Churh-Rosser and that it is moregeneral than (i.e., subsumes) other notions of redution inluding !� and the redution relationbased on the �-equivalene. We also show that if A ;� B is based on a redex (�Æ)(�x) then foreveryA0 �equi A, there exists B0 �equi B suh that A0 ;� B0 and this latter redution is also basedon a orresponding redex (�Æ)(�x). In other words, A and A0 have isomorphi redution paths.We also show that SN;� and SN!� are equivalent and that all semi redutionally equivalentterms have the same normalisation behaviour.De�nition 39 (Class-redution ;�)� One-step lass-redution ;� is the least ompatible relation generated by:A;� B i� 9A0 2 [A℄ (i.e., A0 �equi A) 9B0 2 [B℄ (i.e., B0 �equi B) suh that A0 !� B0.� Many-step lass-redution ;;� is the reexive and transitive losure of ;� and �� is theleast equivalene relation generated by ;;�.� We write A !(EÆ)(�x)� B for the �-redution based on a �-redex starting with (EÆ)(�x) inA. We write A;(EÆ)(�x)� B for 9A0 2 [A℄, 9B0 2 [B℄, 9E0 2 [E℄ suh that A0 !(E0Æ)(�x)� B0.Example 40 Let A � (zÆ)(wÆ)(�x)(�y)y. Then [A℄ = fA; (wÆ)(�x)(zÆ)(�y)y; (zÆ)(�y)(wÆ)(�x)yg.Moreover, A;� (wÆ)(�x)z and A;� (zÆ)(�y)y.14



The following lemma shows that;� aptures various other notions of redution inluding lassial�-redution and redution modulo �-equivalene.Lemma 41 !� �!g � ,!� � 7!� �;�, and all these inlusions are strit.Proof: If we show (AÆ)(�x)C !g C[x := A℄, (CÆ)(BÆ)(�x)(�y)A ,!� (BÆ)(�x)fA[y := C℄g, and(AÆ)s(�x)C 7!� sC[x := A℄, this would be suÆient for the �rst three inlusions.� First note that (AÆ)(�x)C � (AÆ);(�x)C !g ;C[x := A℄ � C[x := A℄.� Also, by De�nition 6, (CÆ)(BÆ)(�x)(�y)A ,!� (BÆ)(�x)fA[y := C℄g.� Finally, we an easily show that (AÆ)s(�x)C =� s(AÆ)(�x)C, and sine s(AÆ)(�x)C !�sC[x := A℄ we have (AÆ)s(�x)C 7!� sC[x := A℄.As for 7!� �;� , then note that if A 7!� B then for some C =� A we have: C !� B. Then byCorollary 34, C 2 [A℄ and hene, as B 2 [B℄ we get A;� B.It is easy to show that these inlusions are strit:� For ;� 6�7!�, take6 A1 � ((�y)(CÆ)(�z)yÆ)(�x)(BÆ)x where x 62 FV (B) en y 62 FV (C),and take A2 � (CÆ)(�z)(BÆ)(�y)y. Then, A1 !� (BÆ)(�y)(CÆ)(�z)y =� A2, but there isno term D suh that A1 =� D !� A2. Hene, A1 ;� A2 but A1 67!� A2.� For 7!� 6�,!� , onstrut for instane terms A1 and A2 with braketing strutures [ [ ℄ [ [ ℄ ℄ ℄and [ [ ℄ [ ℄ ℄ respetively. E.g., if A1 � (AÆ)(BÆ)(�x)(CÆ)(DÆ)(�y)(�z)(�t)E andA2 � (CÆ)(BÆ)(�x)(DÆ)(�y)(�z)fE[t := A℄g then A1 7!� A2 but A1 6,!� A2.� For ,!� 6�!g, note that (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)C ,!� (A2Æ)(A3Æ)(�x)(�y)fC[z :=A1℄g but (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)C 6!g (A2Æ)(A3Æ)(�x)(�y)fC[z := A1℄g.� For !g 6�!� , note that (AÆ)(BÆ)(�x)(�y)C !g (BÆ)(�x)C[y := A℄but (AÆ)(BÆ)(�x)(�y)C 6!� (BÆ)(�x)fC[y := A℄g. 2Corollary 42 !!� �!!g � ,!,!� � 7!7!� �;;�.Remark 43 It is not in general true that A ;;� B ) 9A0 2 [A℄9B0 2 [B℄ suh that A0 !!� B0.This an be seen by the following ounterexample:Let A � ((�u)(�v)vÆ)(�x)(wÆ)(wÆ)x and B � (wÆ)(�u)w.Then A;� (wÆ)(wÆ)(�u)(�v)v ;� B.But [A℄ has three elements: A, (wÆ)((�u)(�v)vÆ)(�x)(wÆ)x and (wÆ)(wÆ)((�u)(�v)vÆ)(�x)x.Moreover, [B℄ = fBg and if A0 2 [A℄ then the only !�-redut of A0 is (wÆ)(wÆ)(�u)(�v)v, whih6!�-redue to B.The next lemma helps prove that ;� is Churh-Rosser:Lemma 44 If A;� B then A =� B.Proof: Say A0 2 [A℄, B0 2 [B℄, A0 !� B0. Now, by Lemma 25 and Proposition 31, A =��((A)) =� �((A0)) =� A0 =� B0 =� �((B0)) =� �((B)) =� B. 2Corollary 45 1. If A;;� B then A =� B. 2. A �� B i� A =� B.Theorem 46 (Churh Rosser theorem for ;;�)If A;;� B and A;;� C, then there exists D suh that B ;;� D and C ;;� D.Proof: As A ;;� B and A ;;� C then by Corollary 45, A =� B and A =� C. Hene, B =� Cand by CR for !!�, there exists D suh that B !!� D and C !!� D. But, M !!� A impliesM ;;� A. Hene we are done. 26This ounterexample is due to Rob Nederpelt. 15



Remark 47 [9℄ gave similar properties for ,!,!� where A �� B i� A =� B and ,!,!� is CR.Now we are ready to establish the isomorphism of ;�-redution paths of redutionally equivalentterms. The next lemma shows that redutional equivalene preserves ;� .Lemma 48 If A;� B then for all A0 �equi A, for all B0 �equi B, A0 ;� B0.Proof: As A ;� B then 9A1 2 [A℄9B1 2 [B℄ suh that A1 !� B1. Let A0 �equi A andB0 �equi B. Then A0; B0 2 [A℄; [B℄ respetively. Hene A1 2 [A0℄, B1 2 [B0℄, A1 !� B1. SoA0 ;� B0. 2Corollary 49 A;� B i� �((A));� �((B)).Remark 50 Note that in the above lemma we annot replae ;� by !�:1. Let A and B be in �Æ-normalform. Let A1 � (AÆ)(BÆ)(�x)(�y)y and A2 � (BÆ)(�x)A. Notethat A2 � �((A2)).Now, �((A1)) � (BÆ)(�x)(AÆ)(�y)y !� (BÆ)(�x)A � �((A2)). But, A1 6!� A2.2. For the other diretion, take A1 � ((�x)xÆ)(�y)(AÆ)(BÆ)y where y 62 FV (A) [ FV (B) andboth A and B are in �-normalform, and take A2 � (AÆ)(BÆ)(�x)x. Then, A1 !� A2.Now, �((A1)) � A1, but �((A2)) � (BÆ)(�x)(AÆ)x. Hene, �((A1)) 6!� �((A2)).Note also that the above lemma does not hold if we only replae the seond ;� by !�. In fat,the example used in 2 above an be used to show that A1 ;� A2 but �((A1)) 6!� �((A2)). Notehowever of ourse that if �((A1))!� �((A2)) then de�nitely A1 ;� A2.The following remark points out that if we want to preserve redution paths, we need to workwith the redution ;� .Remark 51 Note that7 A ,!� B does not neessarily imply �((A)) ,!,!� �((B)), nor do wehave that A !� B implies �((A)) !!� �((B)). E.g., take A � ((�u)(�v)vÆ)(�x)(yÆ)(yÆ)x. Itis obvious that A !� B � (yÆ)(yÆ)(�u)(�v)v (hene A ,!� B) yet �((A)) � A 6,!,!� nor 6!!��((B)) � (yÆ)(�u)(yÆ)(�v)v.Finally, here is the theorem that establishes the isomorphism of redution paths of two redution-ally equivalent terms.Theorem 52 For all A0 �equi A, for all B0 �equi B, for all E0 �equi E, if A ;(EÆ)(�x)� B thenwe have A0 ;(E0Æ)(�x)� B0.In other words, the following diagram ommutes:A0A �equiB0B(E0Æ)(�x) ;�(EÆ)(�x) ;��equiProof: By de�nition of ;� , A ;(EÆ)(�x)� B implies there exist A00 �equi A, B00 �equi B andC 00 �equi C suh that A00 !(E00Æ)(�x)� B00. But, as �equi is an equivalene relation, A00 �equi A0,B00 �equi B0 and E00 �equi E0. Finally, by de�nition of ;� , A0 ;(E0Æ)(�x)� B0. 2The following two lemmas show that redutional equivalene preserves both ;�-strong nor-malization and !�-strong normalization:Lemma 53 If A 2 SN!� and A0 2 [A℄ then A0 2 SN!� .7This ounterexample is due to Rob Nederpelt. 16



Proof: If A0 2 [A℄ then A0 �equi A. Hene, by Lemma 33, A0 =� A. Now, we use a result of [20℄whih says that if A =� A0 then the length of the longest redution sequene starting from A isequal to the length of the longest redution sequene starting from A0. 2Lemma 54 If A 2 SN;� and A0 2 [A℄ then A0 2 SN;� .Proof: 8B;A0 ;� B implies A;� B by Lemma 48. Hene, A0 is in SN;� . 2Finally, we show that ;�-strong normalization and !�-strong normalization are equivalent:Lemma 55 A 2 SN;� i� A 2 SN!� .Proof: As !��;�, =) is immediate.(= is by indution on M(A) where M(A) = maxfmaxred�(A0) j A0 2 [A℄g; maxred�(A0) isthe maximal length of !�-redution paths starting from A0. Note that M(A) is well-de�ned ifA 2 SN!� by Lemma 53.Suppose A ;� A0 and A 2 SN!� . It is suÆient to prove that A0 2 SN;� . Take A1 2 [A℄and A01 2 [A0℄ suh that A1 !� A01. Then also A0 2 [A01℄, so by Lemma 54 it is suÆient to provethat A01 2 SN;� . By Lemma 53, A1 2 SN!� , and sine A1 !� A01 we have A01 2 SN!� . Thenalso M(A01) <M(A1) =M(A), so by the indution hypothesis: A01 2 SN;� . 2Now we show that semi redutional equivalene for SN terms implies redutional equivalene:Lemma 56 Let A 2 SN;� . If A0 �equi A then A0 �equi A.Proof: It is suÆient to show that:1. (BÆ)sC is redutionally equivalent to s(BÆ)C if s is well-balaned and (BÆ)sC 2 SN;� .2. s(�x)C is redutionally equivalent to (�x)sC if s is well-balaned and s(�x)C 2 SN;� .We only prove 1. The proof is by indution on the maximal length of ;�-redution paths of(BÆ)sC.If (BÆ)sC is in normal form then s � ; so (BÆ)sC � s(BÆ)C. If (BÆ)sC is not in normalformthen ontration of some redex yields a term whih is either of the form (B0Æ)s0C 0 (if the redexwas inside B, s or C) or of the form sC 0 if the redex onsisted of (BÆ) and its partnered item.Then in the �rst ase s(BÆ)C an redue to s0(B0Æ)C 0 by ontrating the orresponding redex,now by the indution hypothesis (B0Æ)s0C 0 is redutionally equivalent to s0(B0Æ)C 0. In the seondase, s(BÆ)C also redues to sC 0.Hene (BÆ)sC is redutionally equivalent to s(BÆ)C. 2Hene we have provided a relation between terms whih approximates redutional equivalene.Here are some fats on this relation and on redutional equivalene:Fat 57 The following holds:1. Let A 2 SN;� . If A �equi B then A �equi B (Lemma 56).2. A �equi B does not imply A �equi B (Example 58 below).3. A �equi B does not imply A �equi B (Example 59 below).4. A �equi B is deidable (Proposition 31).5. Let A 2 SN;� . Then for all A0 �equi A, A0 2 SN;� (Lemma 54).Example 58 Let 
 � ((�z)(zÆ)zÆ)(�z)(zÆ)z. Take A and B where A � (aÆ)(bÆ)(�x)(�y)
and B � (bÆ)(�x)(aÆ)(�y)
. These terms read in lassial notation (�x:�y :
)ba respetively(�x:(�y:
)a)b. Now, A �equi B but A 6�equi B. This example shows in 1. of Fat 57 that oneannot drop the assumption that A is strongly normalising.Example 59 Let A � ((aÆ)(�x)xÆ)(�y)y and B � (aÆ)(�x)(xÆ)(�y)y. A �equi B but A 6�equi B.The same holds for the terms (aÆ)(�y)(yÆ)y and (aÆ)(�y)(yÆ)a. This shows that the onverse of1. in Fat 57 does not hold. 17
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