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Abstract

In this paper, a notation influenced by de Bruijn’s syntax of the A-calculus is used to
describe canonical forms of terms and an equivalence relation which divides terms into classes
according to their reductional behaviour. We show that this notation helps describe canonical
forms more elegantly than the classical notation. We define reduction modulo equivalence
classes of terms up to the permutation of redexes in canonical forms and show that this
reduction contains other notions of reductions in the literature including the o-reduction of
Regnier. We establish all the desirable properties of our reduction modulo equivalence classes
for the untyped A-calculus.
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1 Introduction

The basic operations for building terms in the A-calculus are abstraction and application. The
basic reduction operation in the A-calculus is S-reduction where

(B) (A\e-A)B —4 Alz := B].

The S-redex (\,.A)B is characterised by the matching of A\, with the argument B. We say that
Az and B match or that each has the other as a partner. However, not all A\’s of a A-term have
partners and not all arguments match a A. We call such items with no partners, bachelors.

Example 1 In A,.((A,.A)B)C, the items A\, and C are bachelors whereas A, and B are partners.
Similarly, in ((Az.Ay.A)B)C, the items X\, and C are bachelors whereas A\, and B are partners.

After S-reductions take place in a term, items that are bachelor may well find a partner. For
example, in the second term of Example 1, a new redex based on the then matching A, and C' is
created after the reduction based on the matching of A\, and B takes place:

((Ae-Ay.A)B)C =5 (Ay.Alz := B])C.

Many researchers noted the need to rewrite terms like ((A;.Ay.A4)B)C' to either (A,.(A;.4)B)C
or (Az.(Ay.A)C)B where it is seen that the bachelor A\, and C' become partnered and the future
redex based on Ay and C' becomes a present redex. We refer to such new notions of reductions as
auziliary reductions. These auxiliary reductions can be summarized by four axioms:
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(0) (Ae.A)B)C -9 (A.AC)B
(7) (Az-Ay.A)B =y Ay ()‘ A)B
(9) (Az-Ay-A)B)C =4 (M. Aly:=C])B
(ve)  ((Ae. >\ A)B)C =, (A y( A)B)C

Note that g is a combination of a #-step with a B-step. ¢ makes sure that A\, and C form a
redex even before the redex based on )\, and B is contracted. By compatibility, v implies y¢.
Moreover, ((Az.Ay.-A)B)C —4 (Az.(Ay.A)C)B and hence both 6 and ¢ put A,.A adjacently next
to its matching argument C. In this case, # moves the argument C (inwards) next to its matching
Ay whereas v moves the A, (outwards) next to its matching argument. For a discussion of where
these reductions have been used see [14, 10]. We give here a very brief summary.

[19] introduces the notion of a premier redex which is similar to the redex based on A, and C in
the left hand side of rule (g) above (which we call generalised redez). [20] uses 6 and + (and calls
the combination o) to show that the perpetual reduction strategy finds the longest reduction path
when the term is Strongly Normalizing (SN). [23] also introduces reductions similar to those of
[20]. Furthermore, [12] uses 6 (and other reductions) to show that typability in ML is equivalent
to acyclic semi-unification. [21] uses a reduction related to § where ((A;.\y.2)a)b) is transformed
into Ag.((Az-((Ay.kx)b))a). [3] identified the extra power of the CPS transformations of [21] to
enable a more effective treatment of S-redexes. [18] and [4] use § whereas [15] uses v to reduce
the problem of S-strong normalization to the problem of weak normalization (WN) for related
reductions. [13] uses € and v to reduce typability in the rank-2 restriction of the 2nd order A-
calculus to the problem of acyclic semi-unification. [17, 24, 22, 16] use related reductions to reduce
SN to WN and [11] uses similar notions in SN proofs. [9] uses a more extended version of 6 (called
term-reshuffling) and of g (called generalised reduction) where C and N are not only separated
by the redex (A;.—)B but by many redexes (ordinary and generalised). [5] shows that generalised
reduction satisfies both the postponement of K-reductions and the conservation properties and
also preserves the strong normalisation of the ordinary A-calculus.

Looking at these four axioms, one notes that auxiliary reduction can help relate A-terms
according to their present and potential redexes. After all, auxiliary reduction turns redexes
that are not immediately visible but yet implicitly present, into clearly visible ones:

Example 2 Let A = (A\,yr.fy)ax and B = (\,.(Ays-fy)x)a. Both terms have \s.fx as a reduct,
so A =3 B. However, B has two redezes whereas A has only one. Here are the redezes of B:

o 1 = (\,.(A\ys-fy)z)a. Observe that B =5 (\yz.fy)z.

o 1y = (Ayr.fy)x. Observe that B —T>25 (Apg-fo)a.

In A, the only redez is: 7, = (A\pys-fy)o. Here A —55 (\ys.fy)z. Note that r1 in B and v, in A
are both based on the redex (\,.—)a and contracting r1 in B or r| in A results in the same term.

A closer look at A enables us to see that in A (as in B), A\, will get matched with x resulting
in a redex vy = (A\y.—)x. There are differences however between r» in B and rj in A. On one
hand, ro in B is completely visible and may be contracted before r1 in B. On the other hand, 1)
is a future redex in A. In fact, v}y is not a redex of A itself but a redex of a contractum of A,
namely (Ayr.fy)z, the result of contracting the redex ri in A. We could guess from A itself the
presence of the future redex. That is, looking at A itself, we see that \, is matched with o and X\,
is matched with x. This can be made visible via rules like (0) above where

A= (Apyr-fy)axz =g (Ap-(A\ys.fy)x)a = B.

Regnier in [20] and Kfoury and Wells in [15] went further and used the above mentioned axioms
to find for each term its so-called canonical form. The canonical form shows which parts of the
term are partnered, now or in the future. This canonical form has the shape:

A1 A OOz (- (Agmoz Ay - A)Cp) -+ )C2) O



where Az; and A; are bachelor and each Cj matches Ay for 1 <i<mn,1<j<land 1<k <m.

In addition to canonical forms, [20] provided the notion of o-equivalence which identifies terms
only differing by permutations of redexes, and showed that none of the standard operational
classification criteria on A-calculus (e.g., length of longest reduction) can separate two o-equivalent
terms. [20] concluded by asking if there existed a syntax that can faithfully represent o-equivalence.

In this paper, we attempt to answer the question by using the item notation [8] inspired by de
Bruijn’s notation of the A-calculus where both the rewriting of terms to create more redexes and the
canonical forms of terms are clearer than in classical notation. In item notation, abstraction and
application are written respectively as (A;)A and (B0)C with C the function and B the argument
(see [8] and Section 2 of this paper). In item notation, canonical forms have the following shape:

(Az1) - (A )(C10)(Ay,) - - (Cmd) (Ay,, ) (Aid) - - (A16)z.

Hence, a canonical form is clearly divided into a sequence of bachelor A-items (A;,) followed by a
sequence of partnered pairs (C;d)(A,;) followed by a sequence of bachelor d-items (Ayd) which is
finally followed by the heart of the term z. This is clearer than the canonical form of [15, 20].

When working on the rewriting of terms to make more redexes visible, we were keen to detect
when two terms A and B can be defined to be reductionally equivalent in the sense that there
is a bijective correspondence between reduction paths starting at A and those starting at B. We
believe that such a notion of reductional equivalence (which we call ~equi) is hard to define and
that it would be undecidable. However, in this paper, we find a decidable approximation ~Requ; to
reductional equivalence on strongly normalising terms, which we call semi reductional equivalence.
We build classes of terms modulo 6, v and permutation of redexes and say that A ~equi B when
A and B are in the same class. We show that ~.qu; coincides with o-equivalence. Armed with our
classes which represent the present and future redexes in a term, we extend the usual S-reduction to
reduction modulo classes. We show that the reduction modulo satisfies all the desirable properties
and that it generalises other notions of generalised reduction in the literature.

This paper is divided as follows:

e In Section 2 we introduce what is needed of the item notation and other formal machinery

in order to give a transparent view on the canonical forms of terms.

e In Section 3 we explain how one can achieve the canonical forms of terms so that an approx-
imation of the reductional behaviour is immediately visible.

e In Section 4 we give our decidable notion ~.qui of semi reductional equivalence. We show
that Atequi coincides with the o-equivalence of [20]. We also define reduction modulo o-
equivalence.

e In Section 5 we extend the usual fS-reduction —g on A-terms to ~»g on classes of terms
modulo Requ; reductional equivalence. We establish that ~»3 is Church-Rosser and that ~ g
subsumes other notions of reduction including —3 and the reduction modulo o-equivalence.
We also show that if A ~»3 B is based on a redex (A,.—)—, and if A’ Requ; A, then there
exists B’ Requi B such that A’ ~»3 B’ and A' ~»3 B’ is based on a corresponding redex
(Az.—)—. In other words, A and A’ have isomorphic reductional paths. We also show that
Rlequi 15 a good approximation to the reductional equivalence ~.q; on strongly normalising
terms. Finally, we show that SN.,, and SN_,, are equivalent and that all semi reductionally
equivalent terms have the same normalisation behaviour.

2 Some formal machinery

We assume familiarity with the A-calculus and its notions such as compatibility and reduction
(see [2]). Bound and free variables and substitution are defined as usual. We write BV (A) and
FV(A) to represent the bound and free variables of A respectively. We write A[z := B] to denote
the term where all the free occurrences of x in A have been replaced by B. We take terms to be



equivalent up to variable renaming and use = to denote syntactical equality of terms. We assume
the usual Barendregt variable convention BC (which says that bound variables are always chosen
distinct from free variables and that whenever necessary, variables are renamed to ensure this) (cf.
[2]). For any reduction relation —,., we write —+, for its reflexive transitive closure and =, for
its reflexive transitive and symmetric closure. We say that A is strongly normalizing with respect
to a reduction relation — (written SN_, (A4)) iff every —-reduction path starting at A terminates.
As usual, we use SN and CR to stand respectively for strong normalisation and Church Rosser.

The classical notation cannot extend the notion of redexes in a simple way. Item notation
however can ([8] discusses various advantages of this notation). In item notation, one writes the
argument before the function so ab becomes (bd)a. Similarly, in item notation, one writes (A;)a
instead of \;.a. This way, a term becomes a sequence of A-items like (\;) and d-items like (b0)
followed by a variable. Moreover, a S-redex becomes in item notation a dA-pair: namely, a d-item
adjacent to a A-item. Le., (A\;.A)B becomes in item notation: (Bd)(A;)A. Note that in item
notation, the scope of the z in a A-item (A;) is everything to the right of it.

Let V' be an infinite collection of variables over which z,y, z, ... range. Terms are given by:
T o=V (TOT | (A)T

We take A, B,C, ... to range over 7. We call (Ad) a d-item, whose body is A. By (AJ)B one
means apply B to A (note the order). The item ().) is called a A-item. A redex starts with a
d-item next to a A-item. Here we repeat rules (3), (8), (), (9), (7¢) but in item notation:

(B)  (BI)(A)A =5 Alz:= B

(6) (C0)(Bd)(A;)A =0 (BO)(A\:)(CH)A

() (BI)(A)(Ay)A = (4)(BI)(A)A

(9)  (COBY)A)A)A =y (BO(A){Aly := Cl}
(o) (COBIA) M)A —=5e (CO)(A)(BI)(Az)A

Note that the rules (8), (7), (9), (7¢) are not problematic because we use the Barendregt
Convention, which means that no free variable will become unnecessarily bound after reshuffling
due to the fact that renaming of bound variables can be activated at any time to ensure that
names of bound and free variables are distinct.

In item notation, each term A is the concatenation of zero or more items and a variable:
A = 5189 -+ - s, where each s; is either a A-item or a d-item, and € V. These items s1, s2,..., S,
are called the main items of A, x is called the heart of A, notation Q(A4).! We use s, sy, s;, ...
to range over items. A concatenation of zero or more items s;8s---s, is called a segment.
We use 3,51,3;,. .. as meta-variables for segments. We write () for the empty segment. The items
S1,82,...,5y, (if any) are called the main items of the segment. A dA-pair is a d-item immediately
followed by a A-item. The weight of a segment 5, weight(3), is the number of main items that
compose the segment. Moreover, we define weight(5z) = weight(3s) for z € V.

In reduction, the matching of the § and the A\ in question is the important thing. Well-
balanced segments (w-b) are constructed inductively from matching ¢ and A-items as follows:

(i) 0 is w-b,
(i) if 5 is w-b then (A40)s(A;) is w-b,
(iii) if 51, 53, - . .5, are w-b, then the concatenation 57 53, - -5, is w-b.

In Figures 1 and 2, all segments that occur under a hat are w-b.
Let E = 57(A0)52(A\y)532. We say that the items (AJ) and (A\,) match or are partners or
partnered if 55 is well-balanced. If an item s has no partner in a term, we say that s is bachelor.

INote that the term head variable used in [1] is a special case of our notion of heart. The head variable of a
term in head normal form is the heart of the term. It is not the case however that the heart of a term is always a
head variable.



For example, in the term E; of Figure 1, (+J) and (A;) match or are partnered. So are the items
(nd) and (A,). On the other hand, (yd) and (zd) are bachelor. The pair of adjacent items (+6)(Ay)
is called a d\-pair and the non-adjacent partnered items (md)(A;) and (nd)(A,) form dA-couples.

The next remark shows that an order needs to be followed to move items next to their partners
using the rules 6 and . For example, in (Ad)S(\,)B where 5 is well-balanced, each of the #-rule
and the ~-rule states that each main d-item of § must be moved next to its A-partner before (Ad)
can be moved next to its partner (A;).

Remark 3 Assume that 3 is well-balanced.

e [t is not necessarily the case that (A6)5(\;)B —3 5(Ad)(\,)B.2
For example, (A10)(A26)(A36)(Az)(Ay)(Az)As 73 (A20)(A30)(Ae) (Ay)(A10)(A:) A
but instead, (A10)(A26)(As )( o) (Ay)(A2)As = (A30)(Ae) (A 25)(>\y (A10)(A:)As
e It is not necessarily the case that (A6)s(\;)B —» (A0)(A\;)SB
For ezample, (410)(A28)(438) (A) (A )(A2)As 7> (416)(X:)(428) (A58) A (Ay) As
but instead (A10)(A20)(As30 )( 2)Ag)(Az)As = (A10)(A2)(A2 )( )( 30)(Ae) Aa.

e Note finally that using the rules 8 and v together will not solve the problem:
(A10)(A20)(A30)(Ae)(Ay)(Az) Ay A6 (A20)(A30)(Ae)(Ay)(A10)(A;) Ay and
(A10)(A20)(A30)(Ae)(Ay) (A=) As Aoy (A10)(AX2)(A20)(A30)(Ae)(Ay) As.

2.1 Making redexes visible via ¢ and v

Transformations like () and () are rather powerful in that they can group together terms with
equal reductional behavior. Let us start with (8):

Example 4 Consider Ey, Es, E3, Ey as follows:
E1 = (E(Afwy fry)+)m)n,

= ((Ar-(Aay-foy)m)+)n,
E3 = (Ar-((Aay-fry)m)n)+,
Ei = Ar.(Ap-(Ay-foy)n)m) + .

Note that By, =3 Ey =3 E3 =g E4. Moreover, the visible redezes are as follows:
In Ev: (Apayfry)+
In Ey: (Ar.(Agy-foy)m)+ and (Agy-foy)m
In Es: (Ar.((Agy-fry)m)n)+ and (Agy.foy)m
In Ey: (Ar.(Ag-(Ay-fay)n)m)+, (M. (Ay-fry)n)m and (N\,.fzy)n.
Furthermore, one can see potential future redexes as follows:
In Ey: Ap.— will eventually be applied to m and Ay.— will be eventually be applied to n.
In Ey: Ay.— will eventually be applied to n.
In Ej3: )\ — will eventually be applied to n.
Note that E'1 —9 By =9 E3 —¢ E4 and that by 0-reducing Ey to Es (resp. Es to E4), an extra
redex becomes visible. In E, all redexes are visible and E4 is in 6-normal form.

Applying the item notation to Example 4 we get:

Example 5 E; of Ezample 4 reads in item notation: (nd)(md)(+0)(Af)(Az)(Ay)(yd)(z0)f. The
(classical) redex corresponds to a ‘9A-pair’, viz. (+0)(Ayp), followed by the body of the abstraction.

Note that the 0-item (+6) and the A-item (A\f) are now adjacent, which is characteristic for
the presence of a classical redex in item notation. (Cf. Figure 1). The second and third redexes of
E; are obtained by matching 0 and A-items which are not adjacent:

o (A\y.fay)n is visible as it corresponds to the matching (nd)(\,) where (nd) and (A\,) are
separated by the segment (mo)(+0)(Af)(Az) which has the bracketing structure [[]].

2For instance, it is not possible to have the bracketing structure [1[2[3]]] =6 [2[3]][1]-
3For instance, it is not possible to have the bracketing structure [1[2[3]]] =g [1][2[3]]-



N |
B mmia0) () (o)

| |
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Figure 1: #-reduction on Ey: Ey =g Es —y E3 —¢g Ey
L |
Ei:(nd)  (md) O )y 98) (@0) £

| |
Bymd) o) (o) (o))

| |
Ey:(md) (o)) ) (y6) (26)

E: () )mioy ) (sl (y6) (26) f

Figure 2: y-reduction on Ey: Ey =, E}Y — El -, E}

o (Agy-foy)m is visible as it corresponds to the matching (md)(A;) where (md) and (A;) are
separated by the segment (+6)(Af).

f-reduction amounts to moving é-items, from left to right,? in the direction of their matching
A-items, until they form a pair (cf. Figure 1). As —4 is Church Rosser (CR) and Strongly
Normalizing (SN), then the §-normal form (M) of a term M is unique (cf. Proposition 16).

Looking back at examples 4 and 5, it is possible to use 7 instead of 6 in order to make more
redexes visible (cf. Figure 2). ~-reduction amounts to moving M-items from right to left, in the
direction of their matching d-items until they form a pair. Also, similarly to —¢, — is Church
Rosser and Strongly Normalizing, and hence, the y-normal form (M) of a term M is unique.

This paper will establish a method that shows that terms like Ei, Es, EY, E3, ES, Ey, E} in
Figures 1 and 2 are reductionally equivalent.

2.2 Generalising reductions to take care of # and v

Look again at the rules (6), () and (g). One can say that (g) is one of the following steps:

e A f-step followed by S-reduction where
(C0)(B0)(Ae)(Ay)A =0 (B6)(A)(C6)(Ay)A =5 (B)(Ae){Aly := C]}.

4This is not only for main items at the top level, but also inside the items.




e A v-step followed by S-reduction where
(C0)(BO)(Az)(Ay)A =+ (CO)(Ay)(BO)(Ax)A =5 (BS)(Ae){Aly := CT}.

So, following this, one can generalise S-reduction so that many steps € or v are simulated. This
was done in [9] where reduction was generalised as follows:

Definition 6 (Extended redexes, —3)

e An extended redex starts with the d-item of a d\-couple (i.e. is of the form (Ad)s(A\,;)B
where § is well-balanced).

e 3 is the least compatible relation generated by (Ad)S(\y)B —p s{B[z := A]} for s well-
balanced, that is, < g-reduction contracts an (extended) redet.

o <33 is the reflexive and transitive closure of —g and ~g the least equivalence relation closed
under <g.

Following [3], —s-reduction is the more effective treatment of S-redexes which identifies the
power of the CPS transformations of [21]. Note furthermore, that — g-reduction is more refined
than —¢ followed by — 3. In fact, recall Remark 3 and check that

A = (A19)(A26)(A36) (M) () (M) As 5 (426) (As8) Ao) (A {Ad[z = AL} = B
and that we cannot find a path of =4, -, and —3 steps starting at A and ending in B.

In this paper we show that our new notion of reduction based on classes is even more refined
than and subsumes — g-reduction.

3 Reductional Equivalence and Canonical Forms

3.1 Reductional equivalence

Ideally, we would like reductional equivalence to be an equivalence relation which satisfies that
terms A and B are reductionally equivalent if for every redex r in A, there is a corresponding redex

' in B where A -5 A', B 55 B, and A’ and B’ are reductionally equivalent. Unfortunately, this
relation seems hard to define in a non-involved manner; the notion of corresponding redex has to
involve the position of the redex in the term for example. This section discusses those difficulties.

First, note that in order to discuss reductional equivalence between terms, auxilliary redexes
must be included so that a potential future redex like (Ay.—)z in A of Example 2 can be treated
as a present (rather than potential) redex which could possibly be contracted in A even before the
originator (A,ys.fy)a has been contracted. Hence, with this extended notion of reduction we get
in A another redex:

ry = (Ays.fy)x, which when contracted in A results in (A, . fz)a.

Note that r) is Ay matched with 2 (exactly as ry in B). Note moreover that contracting ry in A
gives the same result as contracting r» in B.

With this notion of extended redex, we observe that there is a bijective correspondence between
the (extended) redexes of A and B of Example 2. That is, r; corresponds to r; and ro corresponds
to rh. Moreover, if one redex is contracted in A, the reduct is syntactically equal to the reduct
which results from contracting the corresponding redex in B and vice versa. That is, r; and |
yield the same values; similarly r» and 7} yield the same values. This is seen as follows:

Example 7 The reduction paths from A and B of Example 2 are as follows:
A-Pathy: (A\pys-fy)ax =5 (A\yr-fy)x —s Ap.fa
A-Pathy: (Apyr.fy)ax —T>23 (Apg-fr)a =g Ap.fo
T
B-Pathy: (A\,.(Ays-fy)z)a =5 N\ys-fy)z =5 Ap.fo
B-Paths: (A\,.(A\ys-fy)x)a =55 \pp-fr)a —5 As.fo
It is clear that A and B have the same number of possible paths before reaching the normal

form and that there is a bijective correspondence between the paths A-Path; and B-Path, and
between A-Paths and B-Paths.



Using auxiliary redexes, we came up with an informal definition of what we call ~qqui:

Definition 8 (Reductional equivalence ~cqu;)
We say that A and B are reductionally equivalent and write A ~equi B iff A = B or there is a

bijective correspondence f between the (extended) redexes of A and B such that if A 5 A’ and
B’ B’ then A ~oqu B'.
Note that if A is in normal form then A ~.qu; B iff A = B.
Example 9 ® A~equi B for A, B as in Example 2.
o Also By ~equi By ~equi B3 ~equi Eu for Ei, Es, Es, By as in Example 4.

e However, because there is no bijective correspondence f between the (extended) redezes, it is
not the case that KII ~qq; KIQ where K is Mgy, I is Ay, and Q is (Ap.xx)(Ay.22).

Remark 10 Note that Definition 8 has some limitations:
e We have that (A DI ~equi (Ao I)K although this is not desirable.

® ~equi 5 not compositional. That is: if Ay ~equi Aa then it is necessarily the case that
A1B ~equi A2B and My A1 ~equi Ap-Asx. For ezample, if A1 = X..(A\y.y)z and Ay =
AZ()\J;:I/)I, then A1 ~equi A2 but A1 (II) 7Lequi A2 (II)

In order to deal with these limitations, we need to add the following condition to Definition 8:
If r = (A;.—)C is a (extended) redex of A and f(r) = (A;.—)D then C ~equi D.

This extra condition solves the problems raised by the above two situations. However, we will
not be concerned with these situations in this paper and we will therefore not include clause 4 in
Definition 8.

We conjecture that in general it is undecidable whether two terms are reductionally equivalent
according to Definition 8.

Conjecture 11 (Undecidability of ~equi) It is in general undecidable whether two terms are
reductionally equivalent.

Note that we can define ~equ; to be the infinite limit of decidable relations as suggested by Henk
Barendregt, in personal communications. The idea is to define degrees of reductional equivalence
(~p with n > 0 for short) in the following way:

e M ~yNiff M =N.

o M ~, 1 N iff there is a bijective correspondence between the (extended) redexes of M and
N such that contracting one in M yields a term ~,, m < n to the result of contracting the
corresponding redex in N.

It is easy to show that ~equi= U, >0 ~n- Similarly to ~equi, ~p for fixed n > 2 is not compositional.
This can be seen as follows®:

Azig-(Azic-Ayia-€)ba ~1 Azig.(Agic.(Ay:a.€)a)b but

(Azig-(Azic-Ayia.€)ba) f ~a (Asig.(Azic-(Ayia-€)a)b) f.

In short, reductional equivalence ~equ; is cumbersome to define. We will instead show that an
approximation of reductional equivalence Requi, called semi reductional equivalence, exists and is
decidable. We will show that o-equivalence and our equivalent decidable notion Requ; are both
incomparable to reductional equivalence of any degree ~,,, n > 0. We will however show that they
are both good approximations to ~equi on strongly normalizing terms (cf. Fact 57). Canonical
forms will be basic for our notion of reductional equivalence.

5This counterexample will be better understood if it is translated into the item-notation of Section 2.



Table 1: The Canonical Form of terms
bachelor A-items | dA-pairs bachelor §-items | end var

Aey) - (Azy) (A10)(A\yy) - - (Am0)(N\y,.) | (B10) ... (Bpd) x

3.2 Canonical forms

Consider two terms A and B. Obviously, if either A =y B or A =, B, then A and B are
reductionally equivalent. But, what about if A =y C' and B =, C7 Would it still be the case that
A and B are reductionally equivalent? The answer is yes. Look at E4 and E) of Figures 1 and 2.
We want the reduction equivalence relation to capture the reductional equivalence of these terms.

Observing E4 and Ej, leads us to note that using € alone or y alone will not be comprehensive
enough to capture as many cases as possible of reductional equivalence. We obviously want F,
E,, E3 and E4 of Example 4 to be reductionally equivalent, and also E;, E}, E} and E}. But,
how do we relate E; to E} for 2 < i < 4?7 This is simple, combine the relations 6 and v and aim
to find a canonical form of terms that helps establish semi reductional equivalence.

Note that 6(y(E1)) = E} and v(0(E1)) = E4 and that E, # Ej. However, looking at E4 and
E}, we see that they have the shape which we call canonical form (see Table 1):

Definition 12 (Canonical forms) We say that a term is in canonical form if it has the form:
(Az1) - - (A2 ) (C10)(Ayy) - - - (Crad) (Mg, ) (A16) . .. (Ard).

Note that here, C; and A; are not required to be canonical forms themselves, and that for 1 <i <n

and 1 <j <1, (As;) and (A;0) are bachelor .

Remark 13 Note that canonical forms correspond in classical notation to the following:

)‘931 N Azn (Ayl (Ay2 e ()\ym .ZL“AZ e Al)Cm) e )02)01
where again it can be seen that A\, and A; are bachelor for 1 <i < n and1 < j <I. These are
exactly the canonical forms given in [20] and represented in [20] by Figure 3 below. Note that our
item notation as is seen in Definition 12 permits a more elegant representation than the one given
in classical notation in Figure 3.

Figure 3: Canonical forms in classical notation

The shape of canonical forms will allow us to introduce a reduction relation —, on them which
will help us show that terms like F4 and Ej are reductionally equivalent. In fact, note that E4 and
E} are equivalent up to the permutation of their §A-pairs. We follow this observation to define
the reduction relation —, on canonical forms as follows:



Definition 14 We define —, on canonical forms as the compatible closure on canonical forms of
the rule: (A10)(Ay1)(A20)(Ay2) B —p (A20)(Ay2)(A19)(Ay1)B if y1 ¢ FV(A2)
We define =+, and =, as the reflexive, transitive respectively equivalence closures of —,.

We define =4, to be =9 U — and —g,, to be =9 U =, U —=,. Furthermore, =49, —g+p,
=g and =g, are defined similarly to =+, and =,.

Intuitively, —, transposes two adjacent dA-pairs in a term if the variable bindings allow this.
There is a nice correspondence between —,, —¢ and —.

Lemma 15 Let A and B be two canonical forms. If A —, B then 3C[C —9 ANC —, B].

Proof: Induction on the structure of A. We take the case A = (A410)(Ay,)(A20)(Ay,)As and
B = (A20)(Ay,)(A19)(Ay,)As. In this case, take C = (A29)(A19)(Ay, ) (Ays)As. O

Proposition 16 —4 and —, are SN, CR and C=g. Moreover, —4, is also SN. Also, =4, and
=y, are the same relation.

Proof: SN is a simple combinatorial exercise. For CR we note that —4 as well as —, alone are
orthogonal. —9C=g and —,C=p are easy. Finally, the equality of =4,, and =4,is a consequence
of Lemma 15. |

Notation 17 Let M be a term. We use the following notation:
e (M) denotes the 8-normal form of M
e y(M) denotes the y-normal form of M
o We call 0(y(M)) the 8y-normal form of M
o We call v(6(M)) the v8-normal form of M

Corollary 18 For each term M, the r-normal form of M for r € {0,v,0v,76} is unique.

Note that it is not necessarily the case that 6(y(A4)) = v(0#(A)) as Example 28 shows. However,
we will show in Lemma 25 that 6(y(A)) =, v(0(4)).
The following two lemmas enable us to syntactically describe - and ~y-normal forms.

Lemma 19 Every term has one of the three forms:
(i) (A19)---(And0)x, where x € V and n >0,
(i) (Az)A, and

(iii) (A10)---(Ap0)(Bd)(N\;)C, where n > 0.

Proof: A term has either zero main A-items and case (i) applies, or at least one of them. In the
latter case: the first main A-item can occur in the first place in the sequence of all main items
(case (ii)) or not in the first place (case (iii)). a

Lemma 20 Every term has one of the four forms:
(1) 3(Ag)A where s is w-b,
(ii) (A0)B, where B has no bachelor main A-items,

(iii) (Ad)s(Az)B wheres is w-b and B has no bachelor main \-items,
(iv) x.

10



Proo

f: A term has at least one bachelor main A-item (case (i)), or none at all. In the last case,

the term may start with a bachelor d-item (case (ii)), a partnered d-item (case (iii)) or is only a
variable (case (iv)). m|

Now,
proof

Lemma 21 The 8-normal form 8(M) o

we can syntactically characterise #- and «y-normal forms via the following two lemmas whose
is by induction on the structure of terms as given in Lemmas 19 and 20 resp.:

a term M 1s:
(B(A1)d)---(8(An)d)z  ifx eV andn >0
(A2)B(A)
(0(B)0)(A2)0((A10) - - - (Ar0)C)

~

B((A16) - (Aud)z)
6((M)A)
0((A10) - (4,0)(BO)(A,)C)

Lemma 22 The y-normal form v(M) of a term M is:

WEAA) = (A(EA) i3 is w,

v((Ad)B) = (v(4)0)y(B) if B has no bachelor main \-items,

Y((A0)5(\)B) = (v(A)0)(Az)Y(SB) wheres is w-b and B has no bachelor main A-items
~(x) =

Example 23 In this example, we will decorate some items with various symbols (like X, o, etc.).

Items

If

Nota

that have the same decorations are partnered.

" "
L)

we take A to be (\g) (]_(5)()\_p) ()\,J.)(wé”) (:;_(151)(3;6) (M) (vxé)(aré)(/\w)())\(t)()j;) (s0)t then:

B(A) is (M) (76) () (Ae) (13) (X) (26) (M) (00) (Ae) (28) (Ae) (18)(s68)t

" "

Y(4) is (A)(As) (78)(Ap) (wS) (;5)(;5)(31.5) (%) (8)(A)(@d) (Ao (s0)¢
tion 24 Let A be a term. We define the following:

A> is the sequence of all bachelor main \-items of A in the order in which they appeared in

A.

A%0) s the sequence of the 0-normal form of all bachelor main 6-items of A in the order in
which they appeared in A.

APCNTX s the sequence of the 8-normal form of all the main d\-pairs (obtained from the
0A-couples) and all the main bachelor A-items. All the \-items are in the order in which
they appeared in A and each d-item occurs adjacent and to the left of its partner.

AYON) s the sequence of the y-normal form of all the main S\-pairs (obtained from the
dA-couples) and of all the main bachelor §-items. All the d-items are in the order in which
they appeared in A and each \-item occurs adjacent and to the right of its partner.

AP0 s the sequence of the 8y-normal forms of all the main S\-pairs (obtained from the
dA-couples).

A7) s the sequence of the 8y-normal forms of all the main bachelor §-items in the order
in which they appeared in A.

AY0N s the sequence of the y@-normal forms of main S\-pairs (obtained from the S\-
couples).

A7) s the sequence of the y8-normal forms of all the main bachelor §-items in the order
in which they appeared in A.

The following lemma shows that 6-, -, and #vy-normal forms satisfy Table 2. In particular, all
fvy-normal forms are in canonical form. It is interesting to note how item notation enables the
clear classification of these various normal forms. Compare with [15, 20] where the classical syntax
makes these normal forms cumbersome to describe.

11



Table 2: 8-, v- and #y-normal forms

0-nf: dA-pairs in 6-nf and bachelor A-items, | bachelor d-items in #-nf | end var
(415) ) ) ) (26) ) - (B16)(B2o) ... z

~v-nf: | bachelor A-items | d\-pairs and bachelor §-items in -nf end var
Mey)Aes) - - (B16)(A16)(\s)(B29) ... x

0v-nf: | bachelor A-items | dA-pairs in §y-nf bachelor §-items in fv-nf | end var
o) aa) o+ | (10O (A50) M) - (And) Ag) | (B10)(Bod) ... z

Lemma 25 For any term A, we have:

1. B(A) = APGN+ALICG)Q(A).

v(A)
(

Proof: 1), 2) 3) and 4) are by induction on weight(A), distinguishing cases according to Lem-

AN AT QO (4).

B(y(A)) = ANAITON 497D (A),
Y(B(A)) = ANAION 479 Q(A),
0(v(A)) and v(A(A)) are both in canonical form and we have that 8(y(A)) =, v(6(A4)).

mas 19 and 20 using Lemmas 21 and 22. We only prove 1).

e Case A= (\;)C, useIH on C.

e Case A= (By6) - (Bnd)x, x € V, then A’OVFA is empty.

e A= (B1d) - (Bpd)(CO)(Ay)E. Then 6(A) = (6(C)8)(A\:)0((B16) - -+ (Bpd)E). By the in-
duction hypothesis 8((B10) --- (B,0)E) = s A’OQ(E) = s} A’®)Q(A) where s} is the se-
quence of the #-normal form of all the main d\-pairs (obtained from the dA-couples) and all
the main bachelor A-items. All the A-items are in the order in which they appeared in A and
each d-item occurs adjacent and to the left of its partner. Hence, (A) = A?(ON+AAP()Q(4).

For 5) use 1) ... 4).

Recall that both E; and E) of Figures 1 and 2 are in canonical form. They both have the
same canonical form as E;. Recall also that 6(y(Ey)) = Ej, that v(6(E,)) = E4 and that by

Lemma 25.4, By =, E}. We group all canonical forms related by =, into one class:

Definition 26 (Class of canonical forms CCF) We define the class of canonical forms of M,

CCF(M) as {M' | M’ =, 6((M))}.
Note that by Lemma 25 we have CCF(M) = {M' | M' =, v(6(M))}.

For example, CCF(E,) = {Ey, E} }.

4 Semi Reductional Equivalence and o-equivalence

4.1 The relation ~.q;

Now, we are ready to define our notion of semi reductional equivalence. We say that two terms

are semi reductionally equivalent if they have the same canonical form modulo =:

Definition 27 (Requi) For a term A, we define:

o [A], the class of semi reductionally equivalent terms to A, by: {B | 0(v(A)) =, 0(v(B))}.

o We say that B is semi reductionally equivalent to A, and write B Requi A, iff B € [A].

12




Note that, by Lemma 25.5, [A] = {B | 7(6(A)) =, v(8(B))}.

Example 28 Note that in Figures 1 and 2, v(Ev) = 0(y(E1)) = Ej} and 0(E,) = v(0(Ey)) = E4.
Note also that Ey =, Ej and all E;, for 1 <i <4 and E}, for 2 < j < 4 belong to [E1]. All E; and
E' where 1 <i <4 and 2 < j <4 are reductionally equivalent and have the same canonical form
(£8) (A1) (md) (X,) (n8) () (0) (28)f modulo =p. That is: (md)(A,)(+6)(\r)(nd) (A, ) (y5) (28) f
and (md)(Az)(nd)(Ay)(+0)(Ap)(yd)(xd) f, etc., are all canonical forms. Note that the variable
condition for permutations of pairs holds because + contains no free variables.

The following lemma says that semi reductional-equivalence Requi contains —¢ and —.
Lemma 29 —)CRequi and = CRequi- Moreover, these inclusions are strict.

Proof: If A -y B or A —, B then §(v(4)) =, 6(v(B)). Example 28 gives terms E, and Ej
which are ~equi but which are not related by —9 or —,. O

Remark 30 Note that, as both =y and —~ are SN, we can by applying —¢ and — to any term
A, reach a term A" which is free of any 0- and y-redexes (it is easy to show that the combination
of 8- and ~y-reduction is SN). The resulting term A' however depends on the order of applying 6
and . It is the case nonetheless, by Lemma 29 that all terms A, which are obtained from A via
arbitrary 0 and -y reductions, are semi reductionally equivalent.

The following proposition shows that Rvequ; is decidable and that any Requ; reductionally
equivalent terms are S-equal.

Proposition 31 ~.q; is well-defined, decidable and is an equivalence relation. Moreover, =,
=y, =pCRequiC=3, and these inclusions are strict.

Proof: Well-definedness and equivalence relation are easy. Similarly, decidability is easy as 6 and
v are SN and =, is decidable. For the first C, note Lemmas 15 and 29. The second C follows
from Proposition 16. a

The next section gives the definition of o-equivalence of [20] and establishes its equivalence to
Rlequi- Then, it defines B-reduction modulo o-equivalence.

4.2 o-equivalence and reduction modulo o-equivalence

In [20], Regnier defined an equivalence relation called o-equivalence on A-terms which identified
terms modulo the permutation of their redexes. [20] showed that none of the standard operational
classifications of the A-calculus can distinguish two o-equivalent terms. In particular, [20] showed
that any two o-equivalent terms have the same normal form, the same length of head reduction, the
same length of normalisation by leftmost reduction, and the same length of longest reduction. [20]
also used o-equivalence to generalise the theorem of perpetual strategy and to find the canonical
forms of a term. This section establishes that our Requs is equivalent to o-equivalence and defines
B-reduction modulo o-equivalence. First, we give the definition of g-equivalence:

Definition 32 (o-equivalence)
[20] defined o-reduction —, to be the smallest compatible relation containing:

@) (M- A)B)C —y (M. AC)B if c ¢ C

(M (A Ay A)B =, Ay (A A)B ify ¢ B
A and B are o-equivalent if A =, B whre =, is the equivalence relation associated to —.
The following lemma is needed to establish that ~Requ; and =, are equivalent.

Lemma 33 A xequi B iff A =6p B iff A =4, B.
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Proof: =) Note that Requi C=0¢+p and that by Lemma 15, =¢,,C=¢,.
<=) By Lemma 29, we have =p,CRequi and so, also =g, C_equi O
Hence, we have provided a fine grained notion of o-equivalence:

Corollary 34 o-equivalence and ~oqui are the same relation. Proof: This holds because o-
equivalence is the same as =¢. i

Now we define S-reduction modulo o-equivalence:
Definition 35 (Reduction modulo o, +3)

e One-step reduction modulo o, —3 1is the least compatible relation generated by:
A =g B iff 3C =, A such that C —3 B.

e Many-step class-reduction modulo o, w»3 is the reflexive and transitive closure of —3 and
=3 is the least equivalence relation generated by —g3.

The next Lemma and its Corollary help establish that ##3 is Church Rosser.
Lemma 36 If A—3 B then A =3 B.

Proof: If A =3 B then C —3 B for some C' =, A. Hence, C' =3 B and by o-equivalence,
C =5 A. Hence A =3 B. O

Corollary 37 1. If Aw»g B then A =3 B. 2. A=3 B iff A =3 B.

Theorem 38 (Church Rosser theorem for +»3)
If Awss B and A wsg C, then there exists D such that B w»g D and C w»g D.

Proof: As A w»s B and A w»3 C then by Corollary 37, A =3 B and A =3 C. Hence, B =3 C
and by CR for —3, there exists D such that B =g D and C —3 D. But, M —+3 A implies
M ~»g A (cf. Corollary 42). Hence we are done. a

5 Class Reduction

In this section, we introduce class-reduction ~»g, show that it is Church-Rosser and that it is more
general than (i.e., subsumes) other notions of reduction including —3 and the reduction relation
based on the g-equivalence. We also show that if A ~»3 B is based on a redex (—J)(\;) then for
every A’ Requi A, there exists B’ Requi B such that A’ ~» 5 B’ and this latter reduction is also based
on a corresponding redex (—d)(\;). In other words, A and A’ have isomorphic reduction paths.
We also show that SN.,, and SN_,, are equivalent and that all semi reductionally equivalent
terms have the same normalisation behaviour.

Definition 39 (Class-reduction ~»3)

e One-step class-reduction ~g is the least compatible relation generated by:
A~p Biff JA" € [A] (i.e., A" Requi A) AB' € [B] (i.e., B' Xequi B) such that A' =3 B'.

e Many-step class-reduction ~»g is the reflexive and transitive closure of ~g and ~g is the
least equivalence relation generated by ~»g.

e We write A —)éEé)()‘””) B for the B-reduction based on a S-redex starting with (E0)(A\z) in

A. We write AM(BE(S)()‘””) B for 3A' € [A], 3B' € [B], 3E' € [E] such that A’ —>(BE16)()"”) B'.

Example 40 Let A = (20)(wd)(Az)(Ay)y. Then [A] = {A, (wd)(Az)(20)(Ay)y, (20)(Ay)(wd)(Az)y}.
Moreover, A~sg (w6)(Az)z and A~rpg (20)(Ay)y.
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The following lemma shows that ~+3 captures various other notions of reduction including classical
B-reduction and reduction modulo o-equivalence.

Lemma 41 —3 C =+, C =g C =g C~g, and all these inclusions are strict.

Proof: If we show (Ad)(A;)C —4 Clz := A], (C6)(BI)(Az)(Ay)A =35 (B)(Az){Aly := C]}, and
(A6)5(A\y)C 5 SC[x := A], this would be sufficient for the first three inclusions.

e First note that (A0)(A\;)C = (A9)0(A\;)C —4 0C[z := A] = Clz := A].
e Also, by Definition 6, (C§)(Bd)(Az)(Ay)A =3 (B)(A:){Aly := C]}.

e Finally, we can easily show that (40)5(\;)C =, 5(A40)(A;)C, and since 5(AJ)(N\;)C —5
5C|[x := A] we have (A9)5(A\;)C 5 5C[x := A].

As for 3 C ~»3, then note that if A —g B then for some C' =, A we have: C' =g B. Then by
Corollary 34, C € [A] and hence, as B € [B] we get A~»s3 B.
It is easy to show that these inclusions are strict:

e For ~ g7, take® A1 = ((A)(C)(X:)yd)(A\z)(Bd)x where x ¢ FV(B) en y & FV(C),
and take Ay = (C9)(A;)(BJ)(Ay)y. Then, A1 =35 (BJ)(Ay)(CO)(A\;)y =, A2, but there is
no term D such that 4; =, D =3 A,. Hence, A; ~g Ay but A; 45 As.

e For =g g3, construct for instance terms A; and A with bracketing structures [[][[]]]
and [[][]] respectively. E.g., if Ay = (A0)(B0)(A)(CH)(D)(Ay)(Az)(M)E and
Ay = (CO)(BO)( M) (D) (Ay)A){E[t := A]} then A; —g Az but A; ¥p As.

o For <s5¢—,, note that (4;6)(A26)(A30)(As)(A\y)(A=)C <5 (A26)(A30)(Ae)(\){C[z =
A} but (418)(426) (As0)(As) (A (A)C £g (A20)(A36)(Ae)(A{Cz == AL},

o For —,7 3, note that (48)(B38)(Ae)(Ay)C =4 (BS)(Ae)Cly == A]
but (A6)(B6)(Az)(Ay)C A5 (B6)(A:){Cly := A]}. 0

Corollary 42 —+3 C =, C «<»g CHwg C~»g.

Remark 43 It is not in general true that A ~»3 B = 3A’' € [A]3B' € [B] such that A" -3 B'.
This can be seen by the following counterexample:

Let A= (M) A)vd)(A)(wd)(wd)z and B = (wd)(Ay,)w.
Then A~pg (W) (wd)(Ay)(Ay)v ~p B.
But [A] has three elements: A, (wd)((Aw)(Ay)vd)(Az)(wd)z and (wd)(wd)((Ay)(Ay)vd)(Az)z.
Moreover, [B] = {B} and if A" € [A] then the only —g-reduct of A" is (wd)(wd)(Ay)(Ay)v, which
#pg-reduce to B.

The next lemma helps prove that ~»3 is Church-Rosser:

Lemma 44 If A~3 B then A =3 B.

Proof: Say A’ € [A], B’ € [B], A’ =3 B'. Now, by Lemma 25 and Proposition 31, A =g
0(7(A4)) =5 0(v(A")) =5 A" =5 B' =5 0(v(B')) =5 0(v(B)) =5 B. O
Corollary 45 1. If A~»g B then A =3 B. 2. A~ B iff A =3 B.

Theorem 46 (Church Rosser theorem for ~»3)
If A~»3 B and A~»g C, then there exists D such that B ~»3 D and C ~»3 D.

Proof: As A ~»3 B and A ~»3 C then by Corollary 45, A =3 B and A =3 C. Hence, B =3 C
and by CR for —3, there exists D such that B =g D and C —+3 D. But, M —+3 A implies
M ~»3 A. Hence we are done. i

6This counterexample is due to Rob Nederpelt.
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Remark 47 [9] gave similar properties for <»z where A ~g B iff A =3 B and <»g is CR.

Now we are ready to establish the isomorphism of ~»z-reduction paths of reductionally equivalent
terms. The next lemma shows that reductional equivalence preserves ~» 3.

Lemma 48 If A~»3 B then for all A' Requi A, for all B' Requs B, A' ~p5 B'.

Proof: As A ~3 B then 34; € [A]3B; € [B]such that A; —g B;. Let A’ ~equi A and
B' Xequi B. Then A', B’ € [A],[B] respectively. Hence A; € [A'], By € [B'], A1 =3 B;. So
A ~3 B'. O

Corollary 49 A~ B iff 0(y(A)) ~3 6(v(B)).

Remark 50 Note that in the above lemma we cannot replace ~g by —g:

1. Let A and B be in 66-normalform. Let Ay = (A0)(B6)(Az)(Ay)y and Ay = (BJ)(As)A. Note
Now, 6(+(41)) = (B8)(\) (A8)(\)y —5 (B8) (M)A = 8(v(A2)). But, Ay s A,

2. For the other direction, take A1x = ((Az)x0)(Ay)(AS)(BS)y where y ¢ FV(A) U FV(B) and
both A and B are in 8y-normalform, and take Ay = (Ad)(B0)(Ag)xz. Then, Ax —p As.
Now, 0(v(A1)) = A1, but 0(y(A2)) = (B0)(A\g)(Ad)x. Hence, 8(v(A1)) /A5 0(v(A42)).

Note also that the above lemma does not hold if we only replace the second ~5 by —3. In fact,
the example used in 2 above can be used to show that A; ~5 Az but 0(y(A1)) A5 0(7(A2)). Note
however of course that if 0(y(A1)) —s 0(v(Az)) then definitely Ay ~ 5 As.

The following remark points out that if we want to preserve reduction paths, we need to work
with the reduction ~ 3.

Remark 51 Note that” A <3 B does not necessarily imply 0(y(A)
have that A —g B implies 0(y(A)) =3 0(y(B)). E.g., take A = ((A
is obvious that A —3 B = (yJ)(yd)(Au)(Ay)v (hence A <3 B) yet 6
0(7(B)) = (y0)(Xu)(yd) (Av)v.

Finally, here is the theorem that establishes the isomorphism of reduction paths of two reduction-
ally equivalent terms.

«“»g 0(y(B)), nor do we
w) (Ao)v8) (A) (y0) (yd)z. It
(7(A)) = A 5 nor /g

Theorem 52 For all A' Nequi A, for all B Nequ B, for all B' Sequ E, if A~$*) B then
we have A’ M(BE"S)()‘”) B'.

In other words, the following diagram commutes:

E6§)(Ae
EY)
%equi , %equi
)
(E6)(A=)

Proof: By definition of ~3, A ~r B implies there exist A" Requi A, B" Requi B and
C" Requi C such that A" —)éE Na) pn, But, as Requi is an equivalence relation, A" ~Requi A,

B" Nequi B and E" Requ; E'. Finally, by definition of ~5, A' ~ 7 V%) B/, O
The following two lemmas show that reductional equivalence preserves both ~»g-strong nor-
malization and —g-strong normalization:

Lemma 53 If A€ SN, and A" € [A] then A" € SN_,,.

7This counterexample is due to Rob Nederpelt.
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Proof: If A’ € [A] then A’ equi A. Hence, by Lemma 33, A’ =, A. Now, we use a result of [20]
which says that if A =, A’ then the length of the longest reduction sequence starting from A is
equal to the length of the longest reduction sequence starting from A'. a

Lemma 54 If A€ SN.,, and A" € [A] then A" € SN.,.

B

Proof: VB, A' ~5 B implies A ~5 B by Lemma 48. Hence, A" is in SN . O
Finally, we show that ~»g-strong normalization and —g-strong normalization are equivalent:

Lemma 55 A€ SN, iff A€ SN.,,.

Proof: As —3C~5, = is immediate.

<= is by induction on M(A) where M(A) = max{maxredg(A’) | A" € [A]}; maxredg(A4') is
the maximal length of —-reduction paths starting from A’. Note that M(A) is well-defined if
A€ SN, by Lemma 53.

Suppose A ~»5 A’ and A € SN_,,. It is sufficient to prove that A" € SN.,,. Take A; € [4]
and A} € [A'] such that A; —3 A]. Then also A’ € [A]], so by Lemma 54 it is sufficient to prove
that A} € SN..,. By Lemma 53, 4; € SN_,, and since A; —5 A} we have A} € SN_,,. Then
also M(A}) < M(A;) = M(A), so by the induction hypothesis: A} € SN+, ,. O

Now we show that semi reductional equivalence for SN terms implies reductional equivalence:
Lemma 56 Let A€ SN..,. If A’ Requi A then A" ~equi A.

Proof: It is sufficient to show that:

1. (B§)5C is reductionally equivalent to 5(BJ)C if 5 is well-balanced and (BJ)5C' € SN..,.

2. 5(A¢)C is reductionally equivalent to (A;)5C if 5 is well-balanced and 5(\;)C € SN..,.

We only prove 1. The proof is by induction on the maximal length of ~»g-reduction paths of
(Bd)sC.

If (B6)sC is in normal form then 5 = () so (B§)sC =3(BJ)C. If (BJ)sC is not in normalform
then contraction of some redex yields a term which is either of the form (B'8)s’C’ (if the redex
was inside B, 5 or C) or of the form SC" if the redex consisted of (Bd) and its partnered item.

Then in the first case 3(B§)C can reduce to s'(B’'8)C’ by contracting the corresponding redex,
now by the induction hypothesis (B'6)s’C" is reductionally equivalent to s’(B’6)C". In the second
case, $(Bd)C also reduces to sC".

Hence (B6)sC is reductionally equivalent to 5(Bd)C. O

Hence we have provided a relation between terms which approximates reductional equivalence.
Here are some facts on this relation and on reductional equivalence:

Fact 57 The following holds:
1. Let A€ SN..,. If A Requi B then A ~equi B (Lemma 56).
2. A Requi B does not imply A ~equs B (Example 58 below).
3. A ~equi B does not imply A Requi B (Example 59 below).
4. A Requi B is decidable (Proposition 31).
5. Let A€ SN..,. Then for all A' Requs A, A" € SN, (Lemma 54).

Example 58 Let @ = ((A\.)(26)20)(\;)(20)z. Take A and B where A = (ad)(bd)(As)(Ay)€2
and B = (b0)(Ag)(ad)(Ay)2.  These terms read in classical notation (Ay.Ay.Q)ba respectively
(Az-(Ay.2)a)b. Now, A Requi B but A tbequi B. This example shows in 1. of Fact 57 that one
cannot drop the assumption that A is strongly normalising.

Example 59 Let A = ((ad)(Az)2d)(Ay)y and B = (ad)(As)(x0)(Ay)y. A ~equi B but A Fequi B.
The same holds for the terms (ad)(Ay)(yd)y and (ad)(Ay)(yd)a. This shows that the converse of
1. in Fact 57 does not hold.
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6 Conclusion

In this paper, we attempted to understand the reductional behaviour of calculations (or programs).
We looked at two calculations and wanted to be able to tell whether there is an isomorphism
between the two corresponding reduction paths. We provided a notion of reductional equivalence
where we define a classification of terms so that elements that belong to the same class can be
said to have the same reductional behaviour.

[20] already gave a notion of reductional equivalence called o-equivalence for which it showed
that none of the standard classification criteria on A-calculus (e.g., length of the longest reduction)
can separate two o-equivalent terms. Our paper presented a fine grained reduction relation whose
congruence is o-equivalence.

Another attractive feature of our work is that we managed to give a clear representation of the
canonical forms of terms given in [20] which transparently shows where redexes occur and where
they do not. Table 1 shows that every A-term can be written in canonical form. Such a canonical
form can be considered as a well-organised variant of the original term, yet having a similar
reductional behaviour. A canonical form of a term M lists the overall (bachelor) abstractions
of M, followed by a permutable list of redex-heads (which can also be considered as possible
substitutions), followed by a list of “idle” or bachelor arguments for a single variable z. The idle
arguments can however become active in new redex-heads after a substitution of some term for
x, e.g., by f-reduction. Furthermore, although canonical forms are not unique, we can still find
for each A-term, the unique class of its canonical forms which are all equal modulo some simple
permutation.
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