
De Bruijn's syntax and redu
tional behaviour of �-terms:the untyped 
ase�Fairouz Kamareddineyand Roel Bloo zAbstra
tIn this paper, a notation in
uen
ed by de Bruijn's syntax of the �-
al
ulus is used todes
ribe 
anoni
al forms of terms and an equivalen
e relation whi
h divides terms into 
lassesa

ording to their redu
tional behaviour. We show that this notation helps des
ribe 
anoni
alforms more elegantly than the 
lassi
al notation. We de�ne redu
tion modulo equivalen
e
lasses of terms up to the permutation of redexes in 
anoni
al forms and show that thisredu
tion 
ontains other notions of redu
tions in the literature in
luding the �-redu
tion ofRegnier. We establish all the desirable properties of our redu
tion modulo equivalen
e 
lassesfor the untyped �-
al
ulus.Keywords: 
lass redu
tion, 
anoni
al forms, redu
tional behaviour.1 Introdu
tionThe basi
 operations for building terms in the �-
al
ulus are abstra
tion and appli
ation. Thebasi
 redu
tion operation in the �-
al
ulus is �-redu
tion where(�) (�x:A)B !� A[x := B℄:The �-redex (�x:A)B is 
hara
terised by the mat
hing of �x with the argument B. We say that�x and B mat
h or that ea
h has the other as a partner. However, not all �'s of a �-term havepartners and not all arguments mat
h a �. We 
all su
h items with no partners, ba
helors.Example 1 In �x:((�y :A)B)C, the items �x and C are ba
helors whereas �y and B are partners.Similarly, in ((�x:�y :A)B)C, the items �y and C are ba
helors whereas �x and B are partners.After �-redu
tions take pla
e in a term, items that are ba
helor may well �nd a partner. Forexample, in the se
ond term of Example 1, a new redex based on the then mat
hing �y and C is
reated after the redu
tion based on the mat
hing of �x and B takes pla
e:((�x:�y:A)B)C !� (�y:A[x := B℄)C:Many resear
hers noted the need to rewrite terms like ((�x:�y :A)B)C to either (�y :(�x:A)B)Cor (�x:(�y:A)C)B where it is seen that the ba
helor �y and C be
ome partnered and the futureredex based on �y and C be
omes a present redex. We refer to su
h new notions of redu
tions asauxiliary redu
tions. These auxiliary redu
tions 
an be summarized by four axioms:�This arti
le builds on and extends the results and proofs of [7℄ but only for the untyped 
ase. The typed 
ase 
anbe found in [6℄. We are grateful for enlightening dis
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(�) ((�x:A)B)C !� (�x:AC)B(
) (�x:�y:A)B !
 �y:(�x:A)B(g) ((�x:�y:A)B)C !g (�x:A[y := C℄)B(
C) ((�x:�y:A)B)C !
C (�y :(�x:A)B)CNote that g is a 
ombination of a �-step with a �-step. 
C makes sure that �y and C form aredex even before the redex based on �x and B is 
ontra
ted. By 
ompatibility, 
 implies 
C .Moreover, ((�x:�y:A)B)C !� (�x:(�y :A)C)B and hen
e both � and 
C put �y:A adja
ently nextto its mat
hing argument C. In this 
ase, � moves the argument C (inwards) next to its mat
hing�y whereas 
C moves the �y (outwards) next to its mat
hing argument. For a dis
ussion of wherethese redu
tions have been used see [14, 10℄. We give here a very brief summary.[19℄ introdu
es the notion of a premier redex whi
h is similar to the redex based on �y and C inthe left hand side of rule (g) above (whi
h we 
all generalised redex). [20℄ uses � and 
 (and 
allsthe 
ombination �) to show that the perpetual redu
tion strategy �nds the longest redu
tion pathwhen the term is Strongly Normalizing (SN). [23℄ also introdu
es redu
tions similar to those of[20℄. Furthermore, [12℄ uses � (and other redu
tions) to show that typability in ML is equivalentto a
y
li
 semi-uni�
ation. [21℄ uses a redu
tion related to � where ((�x:�y:x)a)b) is transformedinto �k:((�x:((�y :kx)b))a). [3℄ identi�ed the extra power of the CPS transformations of [21℄ toenable a more e�e
tive treatment of �-redexes. [18℄ and [4℄ use � whereas [15℄ uses 
 to redu
ethe problem of �-strong normalization to the problem of weak normalization (WN) for relatedredu
tions. [13℄ uses � and 
 to redu
e typability in the rank-2 restri
tion of the 2nd order �-
al
ulus to the problem of a
y
li
 semi-uni�
ation. [17, 24, 22, 16℄ use related redu
tions to redu
eSN to WN and [11℄ uses similar notions in SN proofs. [9℄ uses a more extended version of � (
alledterm-reshu�ing) and of g (
alled generalised redu
tion) where C and N are not only separatedby the redex (�x:�)B but by many redexes (ordinary and generalised). [5℄ shows that generalisedredu
tion satis�es both the postponement of K-redu
tions and the 
onservation properties andalso preserves the strong normalisation of the ordinary �-
al
ulus.Looking at these four axioms, one notes that auxiliary redu
tion 
an help relate �-termsa

ording to their present and potential redexes. After all, auxiliary redu
tion turns redexesthat are not immediately visible but yet impli
itly present, into 
learly visible ones:Example 2 Let A � (��yf :fy)�x and B � (��:(�yf :fy)x)�. Both terms have �f :fx as a redu
t,so A =� B. However, B has two redexes whereas A has only one. Here are the redexes of B:� r1 = (��:(�yf :fy)x)�. Observe that B r1!� (�yf :fy)x.� r2 = (�yf :fy)x. Observe that B r2!� (��f :fx)�.In A, the only redex is: r01 = (��yf :fy)�. Here A r01�!� (�yf :fy)x. Note that r1 in B and r01 in Aare both based on the redex (��:�)� and 
ontra
ting r1 in B or r01 in A results in the same term.A 
loser look at A enables us to see that in A (as in B), �y will get mat
hed with x resultingin a redex r02 = (�y:�)x. There are di�eren
es however between r2 in B and r02 in A. On onehand, r2 in B is 
ompletely visible and may be 
ontra
ted before r1 in B. On the other hand, r02is a future redex in A. In fa
t, r02 is not a redex of A itself but a redex of a 
ontra
tum of A,namely (�yf :fy)x, the result of 
ontra
ting the redex r01 in A. We 
ould guess from A itself thepresen
e of the future redex. That is, looking at A itself, we see that �� is mat
hed with � and �yis mat
hed with x. This 
an be made visible via rules like (�) above whereA � (��yf :fy)�x!� (��:(�yf :fy)x)� � B:Regnier in [20℄ and Kfoury and Wells in [15℄ went further and used the above mentioned axiomsto �nd for ea
h term its so-
alled 
anoni
al form. The 
anoni
al form shows whi
h parts of theterm are partnered, now or in the future. This 
anoni
al form has the shape:�x1 � � ��xn:(�y1:(�y2:(� � � :(�ym:zA1 � � �Al)Cm) � � � )C2)C12



where �xi and Aj are ba
helor and ea
h Ck mat
hes �yk for 1 � i � n, 1 � j � l and 1 � k � m.In addition to 
anoni
al forms, [20℄ provided the notion of �-equivalen
e whi
h identi�es termsonly di�ering by permutations of redexes, and showed that none of the standard operational
lassi�
ation 
riteria on �-
al
ulus (e.g., length of longest redu
tion) 
an separate two �-equivalentterms. [20℄ 
on
luded by asking if there existed a syntax that 
an faithfully represent �-equivalen
e.In this paper, we attempt to answer the question by using the item notation [8℄ inspired by deBruijn's notation of the �-
al
ulus where both the rewriting of terms to 
reate more redexes and the
anoni
al forms of terms are 
learer than in 
lassi
al notation. In item notation, abstra
tion andappli
ation are written respe
tively as (�x)A and (BÆ)C with C the fun
tion and B the argument(see [8℄ and Se
tion 2 of this paper). In item notation, 
anoni
al forms have the following shape:(�x1) � � � (�xn)(C1Æ)(�y1) � � � (CmÆ)(�ym)(AlÆ) � � � (A1Æ)z:Hen
e, a 
anoni
al form is 
learly divided into a sequen
e of ba
helor �-items (�xi) followed by asequen
e of partnered pairs (CjÆ)(�yj ) followed by a sequen
e of ba
helor Æ-items (AkÆ) whi
h is�nally followed by the heart of the term z. This is 
learer than the 
anoni
al form of [15, 20℄.When working on the rewriting of terms to make more redexes visible, we were keen to dete
twhen two terms A and B 
an be de�ned to be redu
tionally equivalent in the sense that thereis a bije
tive 
orresponden
e between redu
tion paths starting at A and those starting at B. Webelieve that su
h a notion of redu
tional equivalen
e (whi
h we 
all �equi) is hard to de�ne andthat it would be unde
idable. However, in this paper, we �nd a de
idable approximation �equi toredu
tional equivalen
e on strongly normalising terms, whi
h we 
all semi redu
tional equivalen
e.We build 
lasses of terms modulo �, 
 and permutation of redexes and say that A �equi B whenA and B are in the same 
lass. We show that �equi 
oin
ides with �-equivalen
e. Armed with our
lasses whi
h represent the present and future redexes in a term, we extend the usual �-redu
tion toredu
tion modulo 
lasses. We show that the redu
tion modulo satis�es all the desirable propertiesand that it generalises other notions of generalised redu
tion in the literature.This paper is divided as follows:� In Se
tion 2 we introdu
e what is needed of the item notation and other formal ma
hineryin order to give a transparent view on the 
anoni
al forms of terms.� In Se
tion 3 we explain how one 
an a
hieve the 
anoni
al forms of terms so that an approx-imation of the redu
tional behaviour is immediately visible.� In Se
tion 4 we give our de
idable notion �equi of semi redu
tional equivalen
e. We showthat �equi 
oin
ides with the �-equivalen
e of [20℄. We also de�ne redu
tion modulo �-equivalen
e.� In Se
tion 5 we extend the usual �-redu
tion !� on �-terms to ;� on 
lasses of termsmodulo �equi redu
tional equivalen
e. We establish that ;� is Chur
h-Rosser and that ;�subsumes other notions of redu
tion in
luding !� and the redu
tion modulo �-equivalen
e.We also show that if A ;� B is based on a redex (�x:�)�, and if A0 �equi A, then thereexists B0 �equi B su
h that A0 ;� B0 and A0 ;� B0 is based on a 
orresponding redex(�x:�)�. In other words, A and A0 have isomorphi
 redu
tional paths. We also show that�equi is a good approximation to the redu
tional equivalen
e �equi on strongly normalisingterms. Finally, we show that SN;� and SN!� are equivalent and that all semi redu
tionallyequivalent terms have the same normalisation behaviour.2 Some formal ma
hineryWe assume familiarity with the �-
al
ulus and its notions su
h as 
ompatibility and redu
tion(see [2℄). Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respe
tively. We write A[x := B℄ to denotethe term where all the free o

urren
es of x in A have been repla
ed by B. We take terms to be3



equivalent up to variable renaming and use � to denote synta
ti
al equality of terms. We assumethe usual Barendregt variable 
onvention BC (whi
h says that bound variables are always 
hosendistin
t from free variables and that whenever ne
essary, variables are renamed to ensure this) (
f.[2℄). For any redu
tion relation !r, we write !!r for its re
exive transitive 
losure and =r forits re
exive transitive and symmetri
 
losure. We say that A is strongly normalizing with respe
tto a redu
tion relation ! (written SN!(A)) i� every !-redu
tion path starting at A terminates.As usual, we use SN and CR to stand respe
tively for strong normalisation and Chur
h Rosser.The 
lassi
al notation 
annot extend the notion of redexes in a simple way. Item notationhowever 
an ([8℄ dis
usses various advantages of this notation). In item notation, one writes theargument before the fun
tion so ab be
omes (bÆ)a. Similarly, in item notation, one writes (�x)ainstead of �x:a. This way, a term be
omes a sequen
e of �-items like (�x) and Æ-items like (bÆ)followed by a variable. Moreover, a �-redex be
omes in item notation a Æ�-pair: namely, a Æ-itemadja
ent to a �-item. I.e., (�x:A)B be
omes in item notation: (BÆ)(�x)A. Note that in itemnotation, the s
ope of the x in a �-item (�x) is everything to the right of it.Let V be an in�nite 
olle
tion of variables over whi
h x; y; z; : : : range. Terms are given by:T ::= V j(T Æ)T j (�V )T :We take A;B;C; : : : to range over T . We 
all (AÆ) a Æ-item, whose body is A. By (AÆ)B onemeans apply B to A (note the order). The item (�x) is 
alled a �-item. A redex starts with aÆ-item next to a �-item. Here we repeat rules (�), (�), (
), (g), (
C) but in item notation:(�) (BÆ)(�x)A !� A[x := B℄(�) (CÆ)(BÆ)(�x)A !� (BÆ)(�x)(CÆ)A(
) (BÆ)(�x)(�y)A !
 (�y)(BÆ)(�x)A(g) (CÆ)(BÆ)(�x)(�y)A !g (BÆ)(�x)fA[y := C℄g(
C) (CÆ)(BÆ)(�x)(�y)A !
C (CÆ)(�y)(BÆ)(�x)ANote that the rules (�), (
), (g), (
C) are not problemati
 be
ause we use the BarendregtConvention, whi
h means that no free variable will be
ome unne
essarily bound after reshu�ingdue to the fa
t that renaming of bound variables 
an be a
tivated at any time to ensure thatnames of bound and free variables are distin
t.In item notation, ea
h term A is the 
on
atenation of zero or more items and a variable:A � s1s2 � � � snx where ea
h si is either a �-item or a Æ-item, and x 2 V . These items s1; s2; : : : ; snare 
alled the main items of A, x is 
alled the heart of A, notation ~(A).1 We use s; s1; si; : : :to range over items. A 
on
atenation of zero or more items s1s2 � � � sn is 
alled a segment.We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment. The itemss1; s2; : : : ; sn (if any) are 
alled themain items of the segment. A Æ�-pair is a Æ-item immediatelyfollowed by a �-item. The weight of a segment s, weight(s), is the number of main items that
ompose the segment. Moreover, we de�ne weight(sx) = weight(s) for x 2 V .In redu
tion, the mat
hing of the Æ and the � in question is the important thing. Well-balan
ed segments (w-b) are 
onstru
ted indu
tively from mat
hing Æ and �-items as follows:(i) ; is w-b,(ii) if s is w-b then (AÆ)s(�x) is w-b,(iii) if s1, s2, . . . sn are w-b, then the 
on
atenation s1 s2; � � � sn is w-b.In Figures 1 and 2, all segments that o

ur under a hat are w-b.Let E � s1(AÆ)s2(�y)s3x. We say that the items (AÆ) and (�y) mat
h or are partners orpartnered if s2 is well-balan
ed. If an item s has no partner in a term, we say that s is ba
helor.1Note that the term head variable used in [1℄ is a spe
ial 
ase of our notion of heart. The head variable of aterm in head normal form is the heart of the term. It is not the 
ase however that the heart of a term is always ahead variable. 4



For example, in the term E1 of Figure 1, (+Æ) and (�f ) mat
h or are partnered. So are the items(nÆ) and (�y). On the other hand, (yÆ) and (xÆ) are ba
helor. The pair of adja
ent items (+Æ)(�f )is 
alled a Æ�-pair and the non-adja
ent partnered items (mÆ)(�x) and (nÆ)(�y) form Æ�-
ouples.The next remark shows that an order needs to be followed to move items next to their partnersusing the rules � and 
. For example, in (AÆ)s(�x)B where s is well-balan
ed, ea
h of the �-ruleand the 
-rule states that ea
h main Æ-item of s must be moved next to its �-partner before (AÆ)
an be moved next to its partner (�x).Remark 3 Assume that s is well-balan
ed.� It is not ne
essarily the 
ase that (AÆ)s(�x)B !!� s(AÆ)(�x)B.2For example, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!� (A2Æ)(A3Æ)(�x)(�y)(A1Æ)(�z)A4but instead, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 !!� (A3Æ)(�x)(A2Æ)(�y)(A1Æ)(�z)A4:� It is not ne
essarily the 
ase that (AÆ)s(�x)B !!
 (AÆ)(�x)sB.3For example, (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!
 (A1Æ)(�z)(A2Æ)(A3Æ)(�x)(�y)A4but instead (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 !!
 (A1Æ)(�z)(A2Æ)(�y)(A3Æ)(�x)A4.� Note �nally that using the rules � and 
 together will not solve the problem:(A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!�
 (A2Æ)(A3Æ)(�x)(�y)(A1Æ)(�z)A4 and(A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 6!!�
 (A1Æ)(�z)(A2Æ)(A3Æ)(�x)(�y)A4.2.1 Making redexes visible via � and 
Transformations like (�) and (
) are rather powerful in that they 
an group together terms withequal redu
tional behavior. Let us start with (�):Example 4 Consider E1; E2; E3; E4 as follows:E1 � (((�fxy:fxy)+)m)n;E2 � ((�f :(�xy:fxy)m)+)n;E3 � (�f :((�xy :fxy)m)n)+;E4 � (�f :(�x:(�y :fxy)n)m) + :Note that E1 =� E2 =� E3 =� E4. Moreover, the visible redexes are as follows:In E1: (�fxyfxy)+.In E2: (�f :(�xy:fxy)m)+ and (�xy:fxy)m.In E3: (�f :((�xy:fxy)m)n)+ and (�xy :fxy)m.In E4: (�f :(�x:(�y :fxy)n)m)+, (�x:(�y:fxy)n)m and (�y :fxy)n.Furthermore, one 
an see potential future redexes as follows:In E1: �x:� will eventually be applied to m and �y:� will be eventually be applied to n.In E2: �y:� will eventually be applied to n.In E3: �y:� will eventually be applied to n.Note that E1 !� E2 !� E3 !� E4 and that by �-redu
ing E1 to E2 (resp. E3 to E4), an extraredex be
omes visible. In E4 all redexes are visible and E4 is in �-normal form.Applying the item notation to Example 4 we get:Example 5 E1 of Example 4 reads in item notation: (nÆ)(mÆ)(+Æ)(�f )(�x)(�y)(yÆ)(xÆ)f . The(
lassi
al) redex 
orresponds to a `Æ�-pair', viz. (+Æ)(�f ), followed by the body of the abstra
tion.Note that the Æ-item (+Æ) and the �-item (�f ) are now adja
ent, whi
h is 
hara
teristi
 forthe presen
e of a 
lassi
al redex in item notation. (Cf. Figure 1). The se
ond and third redexes ofE1 are obtained by mat
hing Æ and �-items whi
h are not adja
ent:� (�y:fxy)n is visible as it 
orresponds to the mat
hing (nÆ)(�y) where (nÆ) and (�y) areseparated by the segment (mÆ)(+Æ)(�f )(�x) whi
h has the bra
keting stru
ture [ [ ℄ ℄.2For instan
e, it is not possible to have the bra
keting stru
ture [1[2[3℄℄℄!!� [2[3℄℄[1℄.3For instan
e, it is not possible to have the bra
keting stru
ture [1[2[3℄℄℄!!� [1℄[2[3℄℄.5



-E1: (nÆ)(mÆ)(+Æ)(�f ) (�x) (�y)(yÆ)(xÆ)f-E2: (nÆ) (+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)f-E3: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fE4: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fFigure 1: �-redu
tion on E1: E1 !� E2 !� E3 !� E4�E1: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y)(yÆ)(xÆ)f�E02: (nÆ) (mÆ) (+Æ)(�f )(�x) (�y)(yÆ)(xÆ)f�E03: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y) (yÆ)(xÆ)fE04: (nÆ) (mÆ) (+Æ)(�f )(�x)(�y) (yÆ)(xÆ)fFigure 2: 
-redu
tion on E1: E1 !
 E02 !
 E03 !
 E04� (�xy:fxy)m is visible as it 
orresponds to the mat
hing (mÆ)(�x) where (mÆ) and (�x) areseparated by the segment (+Æ)(�f ).�-redu
tion amounts to moving Æ-items, from left to right,4 in the dire
tion of their mat
hing�-items, until they form a pair (
f. Figure 1). As !� is Chur
h Rosser (CR) and StronglyNormalizing (SN), then the �-normal form �(M) of a term M is unique (
f. Proposition 16).Looking ba
k at examples 4 and 5, it is possible to use 
 instead of � in order to make moreredexes visible (
f. Figure 2). 
-redu
tion amounts to moving �-items from right to left, in thedire
tion of their mat
hing Æ-items until they form a pair. Also, similarly to !�, !
 is Chur
hRosser and Strongly Normalizing, and hen
e, the 
-normal form 
(M) of a term M is unique.This paper will establish a method that shows that terms like E1; E2; E02; E3; E03; E4; E04 inFigures 1 and 2 are redu
tionally equivalent.2.2 Generalising redu
tions to take 
are of � and 
Look again at the rules (�), (
) and (g). One 
an say that (g) is one of the following steps:� A �-step followed by �-redu
tion where(CÆ)(BÆ)(�x)(�y)A!� (BÆ)(�x)(CÆ)(�y)A!� (BÆ)(�x)fA[y := C℄g.4This is not only for main items at the top level, but also inside the items.6



� A 
-step followed by �-redu
tion where(CÆ)(BÆ)(�x)(�y)A!
 (CÆ)(�y)(BÆ)(�x)A!� (BÆ)(�x)fA[y := C℄g.So, following this, one 
an generalise �-redu
tion so that many steps � or 
 are simulated. Thiswas done in [9℄ where redu
tion was generalised as follows:De�nition 6 (Extended redexes, ,!�)� An extended redex starts with the Æ-item of a Æ�-
ouple (i.e. is of the form (AÆ)s(�x)Bwhere s is well-balan
ed).� ,!� is the least 
ompatible relation generated by (AÆ)s(�x)B ,!� sfB[x := A℄g for s well-balan
ed, that is, ,!�-redu
tion 
ontra
ts an (extended) redex.� ,!,!� is the re
exive and transitive 
losure of ,!� and �� the least equivalen
e relation 
losedunder ,!,!� .Following [3℄, ,!�-redu
tion is the more e�e
tive treatment of �-redexes whi
h identi�es thepower of the CPS transformations of [21℄. Note furthermore, that ,!�-redu
tion is more re�nedthan !!�
 followed by !� . In fa
t, re
all Remark 3 and 
he
k thatA � (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)A4 ,!� (A2Æ)(A3Æ)(�x)(�y)fA4[z := A1℄g � Band that we 
annot �nd a path of !�, !
 and !� steps starting at A and ending in B.In this paper we show that our new notion of redu
tion based on 
lasses is even more re�nedthan and subsumes ,!�-redu
tion.3 Redu
tional Equivalen
e and Canoni
al Forms3.1 Redu
tional equivalen
eIdeally, we would like redu
tional equivalen
e to be an equivalen
e relation whi
h satis�es thatterms A and B are redu
tionally equivalent if for every redex r in A, there is a 
orresponding redexr0 in B where A r!� A0, B r0!� B0, and A0 and B0 are redu
tionally equivalent. Unfortunately, thisrelation seems hard to de�ne in a non-involved manner; the notion of 
orresponding redex has toinvolve the position of the redex in the term for example. This se
tion dis
usses those diÆ
ulties.First, note that in order to dis
uss redu
tional equivalen
e between terms, auxilliary redexesmust be in
luded so that a potential future redex like (�y:�)x in A of Example 2 
an be treatedas a present (rather than potential) redex whi
h 
ould possibly be 
ontra
ted in A even before theoriginator (��yf :fy)� has been 
ontra
ted. Hen
e, with this extended notion of redu
tion we getin A another redex:r02 = (�yf :fy)x, whi
h when 
ontra
ted in A results in (��f :fx)�.Note that r02 is �y mat
hed with x (exa
tly as r2 in B). Note moreover that 
ontra
ting r02 in Agives the same result as 
ontra
ting r2 in B.With this notion of extended redex, we observe that there is a bije
tive 
orresponden
e betweenthe (extended) redexes of A and B of Example 2. That is, r1 
orresponds to r01 and r2 
orrespondsto r02. Moreover, if one redex is 
ontra
ted in A, the redu
t is synta
ti
ally equal to the redu
twhi
h results from 
ontra
ting the 
orresponding redex in B and vi
e versa. That is, r1 and r01yield the same values; similarly r2 and r02 yield the same values. This is seen as follows:Example 7 The redu
tion paths from A and B of Example 2 are as follows:A-Path1: (��yf :fy)�x r01!� (�yf :fy)x!� �f :fxA-Path2: (��yf :fy)�x r02!� (��f :fx)�!� �f :fxB-Path1: (��:(�yf :fy)x)� r1!� (�yf :fy)x!� �f :fxB-Path2: (��:(�yf :fy)x)� r2!� (��f :fx)�!� �f :fxIt is 
lear that A and B have the same number of possible paths before rea
hing the normalform and that there is a bije
tive 
orresponden
e between the paths A-Path1 and B-Path1, andbetween A-Path2 and B-Path2. 7



Using auxiliary redexes, we 
ame up with an informal de�nition of what we 
all �equi:De�nition 8 (Redu
tional equivalen
e �equi)We say that A and B are redu
tionally equivalent and write A �equi B i� A � B or there is abije
tive 
orresponden
e f between the (extended) redexes of A and B su
h that if A r! A0 andB f(r)! B0 then A0 �equi B0.Note that if A is in normal form then A �equi B i� A � B.Example 9 � A �equi B for A;B as in Example 2.� Also E1 �equi E2 �equi E3 �equi E4 for E1; E2; E3; E4 as in Example 4.� However, be
ause there is no bije
tive 
orresponden
e f between the (extended) redexes, it isnot the 
ase that KII �equi KI
 where K is �xy:x, I is �x:x, and 
 is (�x:xx)(�x:xx).Remark 10 Note that De�nition 8 has some limitations:� We have that (�x:I)I �equi (�x:I)K although this is not desirable.� �equi is not 
ompositional. That is: if A1 �equi A2 then it is ne
essarily the 
ase thatA1B �equi A2B and �x:A1 �equi �x:A2. For example, if A1 � �z :(�x:y)z and A2 ��z:(�x:y)I, then A1 �equi A2 but A1(II) 6�equi A2(II).In order to deal with these limitations, we need to add the following 
ondition to De�nition 8:If r � (�x:�)C is a (extended) redex of A and f(r) � (�x:�)D then C �equi D.This extra 
ondition solves the problems raised by the above two situations. However, we willnot be 
on
erned with these situations in this paper and we will therefore not in
lude 
lause 4 inDe�nition 8.We 
onje
ture that in general it is unde
idable whether two terms are redu
tionally equivalenta

ording to De�nition 8.Conje
ture 11 (Unde
idability of �equi) It is in general unde
idable whether two terms areredu
tionally equivalent.Note that we 
an de�ne �equi to be the in�nite limit of de
idable relations as suggested by HenkBarendregt, in personal 
ommuni
ations. The idea is to de�ne degrees of redu
tional equivalen
e(�n with n � 0 for short) in the following way:� M �0 N i� M � N .� M �n+1 N i� there is a bije
tive 
orresponden
e between the (extended) redexes of M andN su
h that 
ontra
ting one in M yields a term �m, m � n to the result of 
ontra
ting the
orresponding redex in N .It is easy to show that�equi= Sn�0 �n. Similarly to�equi, �n for �xed n � 2 is not 
ompositional.This 
an be seen as follows5:�z:g:(�x:
:�y:d:e)ba �1 �z:g :(�x:
:(�y:d:e)a)b but(�z:g :(�x:
:�y:d:e)ba)f �2 (�z:g :(�x:
:(�y:d:e)a)b)f .In short, redu
tional equivalen
e �equi is 
umbersome to de�ne. We will instead show that anapproximation of redu
tional equivalen
e �equi, 
alled semi redu
tional equivalen
e, exists and isde
idable. We will show that �-equivalen
e and our equivalent de
idable notion �equi are bothin
omparable to redu
tional equivalen
e of any degree �n, n � 0. We will however show that theyare both good approximations to �equi on strongly normalizing terms (
f. Fa
t 57). Canoni
alforms will be basi
 for our notion of redu
tional equivalen
e.5This 
ounterexample will be better understood if it is translated into the item-notation of Se
tion 2.8



Table 1: The Canoni
al Form of termsba
helor �-items Æ�-pairs ba
helor Æ-items end var(�x1) : : : (�xn) (A1Æ)(�y1) : : : (AmÆ)(�ym) (B1Æ) : : : (BpÆ) x3.2 Canoni
al formsConsider two terms A and B. Obviously, if either A =� B or A =
 B, then A and B areredu
tionally equivalent. But, what about if A =� C and B =
 C? Would it still be the 
ase thatA and B are redu
tionally equivalent? The answer is yes. Look at E4 and E04 of Figures 1 and 2.We want the redu
tion equivalen
e relation to 
apture the redu
tional equivalen
e of these terms.Observing E4 and E04, leads us to note that using � alone or 
 alone will not be 
omprehensiveenough to 
apture as many 
ases as possible of redu
tional equivalen
e. We obviously want E1,E2, E3 and E4 of Example 4 to be redu
tionally equivalent, and also E1, E02, E03 and E04. But,how do we relate Ei to E0i for 2 � i � 4? This is simple, 
ombine the relations � and 
 and aimto �nd a 
anoni
al form of terms that helps establish semi redu
tional equivalen
e.Note that �(
(E1)) = E04 and 
(�(E1)) = E4 and that E4 6� E04. However, looking at E4 andE04, we see that they have the shape whi
h we 
all 
anoni
al form (see Table 1):De�nition 12 (Canoni
al forms) We say that a term is in 
anoni
al form if it has the form:(�x1) : : : (�xn)(C1Æ)(�y1) : : : (CmÆ)(�ym)(A1Æ) : : : (AlÆ)x.Note that here, Ci and Ai are not required to be 
anoni
al forms themselves, and that for 1 � i � nand 1 � j � l, (�xi) and (AjÆ) are ba
helor .Remark 13 Note that 
anoni
al forms 
orrespond in 
lassi
al notation to the following:�x1 : : : �xn :(�y1 :(�y2 : : : (�ym :xAl : : : A1)Cm) : : : )C2)C1where again it 
an be seen that �xi and Aj are ba
helor for 1 � i � n and 1 � j � l. These areexa
tly the 
anoni
al forms given in [20℄ and represented in [20℄ by Figure 3 below. Note that ouritem notation as is seen in De�nition 12 permits a more elegant representation than the one givenin 
lassi
al notation in Figure 3.
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Cm

y1

ym

x1

xn

A1

AlFigure 3: Canoni
al forms in 
lassi
al notationThe shape of 
anoni
al forms will allow us to introdu
e a redu
tion relation!p on them whi
hwill help us show that terms like E4 and E04 are redu
tionally equivalent. In fa
t, note that E4 andE04 are equivalent up to the permutation of their Æ�-pairs. We follow this observation to de�nethe redu
tion relation !p on 
anoni
al forms as follows:9



De�nition 14 We de�ne !p on 
anoni
al forms as the 
ompatible 
losure on 
anoni
al forms ofthe rule: (A1Æ)(�y1)(A2Æ)(�y2)B !p (A2Æ)(�y2)(A1Æ)(�y1)B if y1 =2 FV (A2)We de�ne !!p and =p as the re
exive, transitive respe
tively equivalen
e 
losures of !p.We de�ne !�
 to be !� [ !
 and !�
p to be !� [ !
 [ !p. Furthermore, !!�
, !!�
p,=�
 and =�
p are de�ned similarly to !!p and =p.Intuitively, !p transposes two adja
ent Æ�-pairs in a term if the variable bindings allow this.There is a ni
e 
orresponden
e between !p, !� and !
 .Lemma 15 Let A and B be two 
anoni
al forms. If A!p B then 9C[C !� A ^ C !
 B℄.Proof: Indu
tion on the stru
ture of A. We take the 
ase A � (A1Æ)(�y1)(A2Æ)(�y2)A3 andB � (A2Æ)(�y2)(A1Æ)(�y1)A3. In this 
ase, take C � (A2Æ)(A1Æ)(�y1 )(�y2)A3. 2Proposition 16 !� and !
 are SN, CR and �=�. Moreover, !�
 is also SN. Also, =�
p and=�
 are the same relation.Proof: SN is a simple 
ombinatorial exer
ise. For CR we note that !� as well as !
 alone areorthogonal. !��=� and !
�=� are easy. Finally, the equality of =�
p and =�
is a 
onsequen
eof Lemma 15. 2Notation 17 Let M be a term. We use the following notation:� �(M) denotes the �-normal form of M� 
(M) denotes the 
-normal form of M� We 
all �(
(M)) the �
-normal form of M� We 
all 
(�(M)) the 
�-normal form of MCorollary 18 For ea
h term M , the r-normal form of M for r 2 f�; 
; �
; 
�g is unique.Note that it is not ne
essarily the 
ase that �(
(A)) = 
(�(A)) as Example 28 shows. However,we will show in Lemma 25 that �(
(A)) =p 
(�(A)).The following two lemmas enable us to synta
ti
ally des
ribe �- and 
-normal forms.Lemma 19 Every term has one of the three forms:(i) (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,(ii) (�x)A, and(iii) (A1Æ) � � � (AnÆ)(BÆ)(�x)C, where n � 0.Proof: A term has either zero main �-items and 
ase (i) applies, or at least one of them. In thelatter 
ase: the �rst main �-item 
an o

ur in the �rst pla
e in the sequen
e of all main items(
ase (ii)) or not in the �rst pla
e (
ase (iii)). 2Lemma 20 Every term has one of the four forms:(i) s(�x)A where s is w-b,(ii) (AÆ)B, where B has no ba
helor main �-items,(iii) (AÆ)s(�x)B where s is w-b and B has no ba
helor main �-items,(iv) x. 10



Proof: A term has at least one ba
helor main �-item (
ase (i)), or none at all. In the last 
ase,the term may start with a ba
helor Æ-item (
ase (ii)), a partnered Æ-item (
ase (iii)) or is only avariable (
ase (iv)). 2Now, we 
an synta
ti
ally 
hara
terise �- and 
-normal forms via the following two lemmas whoseproof is by indu
tion on the stru
ture of terms as given in Lemmas 19 and 20 resp.:Lemma 21 The �-normal form �(M) of a term M is:�((A1Æ) � � � (AnÆ)x) � (�(A1)Æ) � � � (�(An)Æ)x if x 2 V and n � 0�((�x)A) � (�x)�(A)�((A1Æ) � � � (AnÆ)(BÆ)(�x)C) � (�(B)Æ)(�x)�((A1Æ) � � � (AnÆ)C)Lemma 22 The 
-normal form 
(M) of a term M is:
(s(�x)A) � (�x)
(sA) if s is w-b;
((AÆ)B) � (
(A)Æ)
(B) if B has no ba
helor main �-items;
((AÆ)s(�x)B) � (
(A)Æ)(�x)
(sB) where s is w-b and B has no ba
helor main �-items
(x) � xExample 23 In this example, we will de
orate some items with various symbols (like �, �, et
.).Items that have the same de
orations are partnered.If we take A to be (�q) �(jÆ) �(�p) (�x)(wÆ) +(xÆ) �(yÆ) ( ��v) �(vÆ) 00(xÆ) 00(�w) �(�t) +(�s) (sÆ)t then:� �(A) is (�q) �(jÆ) �(�p) (�x) �(yÆ) ( ��v) 00(xÆ) 00(�w) �(vÆ) �(�t) +(xÆ) +(�s) (wÆ)(sÆ)t� 
(A) is (�q)(�x) �(jÆ) �(�p) (wÆ) +(xÆ) +(�s) �(yÆ) ( ��v) �(vÆ) �(�t) 00(xÆ) 00(�w) (sÆ)tNotation 24 Let A be a term. We de�ne the following:� A� is the sequen
e of all ba
helor main �-items of A in the order in whi
h they appeared inA.� A�(Æ) is the sequen
e of the �-normal form of all ba
helor main Æ-items of A in the order inwhi
h they appeared in A.� A�(Æ�)+� is the sequen
e of the �-normal form of all the main Æ�-pairs (obtained from theÆ�-
ouples) and all the main ba
helor �-items. All the �-items are in the order in whi
hthey appeared in A and ea
h Æ-item o

urs adja
ent and to the left of its partner.� A
(Æ�+Æ) is the sequen
e of the 
-normal form of all the main Æ�-pairs (obtained from theÆ�-
ouples) and of all the main ba
helor Æ-items. All the Æ-items are in the order in whi
hthey appeared in A and ea
h �-item o

urs adja
ent and to the right of its partner.� A�
(Æ�) is the sequen
e of the �
-normal forms of all the main Æ�-pairs (obtained from theÆ�-
ouples).� A�
(Æ) is the sequen
e of the �
-normal forms of all the main ba
helor Æ-items in the orderin whi
h they appeared in A.� A
�(Æ�) is the sequen
e of the 
�-normal forms of main Æ�-pairs (obtained from the Æ�-
ouples).� A
�(Æ) is the sequen
e of the 
�-normal forms of all the main ba
helor Æ-items in the orderin whi
h they appeared in A.The following lemma shows that �-, 
-, and �
-normal forms satisfy Table 2. In parti
ular, all�
-normal forms are in 
anoni
al form. It is interesting to note how item notation enables the
lear 
lassi�
ation of these various normal forms. Compare with [15, 20℄ where the 
lassi
al syntaxmakes these normal forms 
umbersome to des
ribe.11



Table 2: �-, 
- and �
-normal forms�-nf: Æ�-pairs in �-nf and ba
helor �-items, ba
helor Æ-items in �-nf end var(A1Æ)(�x)(�y)(�z)(A2Æ)(�p) : : : (B1Æ)(B2Æ) : : : x
-nf: ba
helor �-items Æ�-pairs and ba
helor Æ-items in 
-nf end var(�x1)(�x2 ) : : : (B1Æ)(A1Æ)(�x)(B2Æ) : : : x�
-nf: ba
helor �-items Æ�-pairs in �
-nf ba
helor Æ-items in �
-nf end var(�x1)(�x2 ) : : : (A1Æ)(�y1 )(A2Æ)(�y2) : : : (AmÆ)(�ym) (B1Æ)(B2Æ) : : : xLemma 25 For any term A, we have:1. �(A) � A�(Æ�)+�A�(Æ)~(A).2. 
(A) � A�A
(Æ�+Æ)~(A).3. �(
(A)) � A�A�
(Æ�)A�
(Æ)~(A).4. 
(�(A)) � A�A
�(Æ�)A
�(Æ)~(A).5. �(
(A)) and 
(�(A)) are both in 
anoni
al form and we have that �(
(A)) =p 
(�(A)).Proof: 1), 2) 3) and 4) are by indu
tion on weight(A), distinguishing 
ases a

ording to Lem-mas 19 and 20 using Lemmas 21 and 22. We only prove 1).� Case A � (�x)C, use IH on C.� Case A � (B1Æ) � � � (BnÆ)x, x 2 V , then A�(Æ�)+� is empty.� A � (B1Æ) � � � (BnÆ)(CÆ)(�x)E. Then �(A) � (�(C)Æ)(�x)�((B1Æ) � � � (BnÆ)E). By the in-du
tion hypothesis �((B1Æ) � � � (BnÆ)E) � s01 A�(Æ)~(E) � s01 A�(Æ)~(A) where s01 is the se-quen
e of the �-normal form of all the main Æ�-pairs (obtained from the Æ�-
ouples) and allthe main ba
helor �-items. All the �-items are in the order in whi
h they appeared in A andea
h Æ-item o

urs adja
ent and to the left of its partner. Hen
e, �(A) � A�(Æ�)+�A�(Æ)~(A).For 5) use 1) : : : 4). 2Re
all that both E4 and E04 of Figures 1 and 2 are in 
anoni
al form. They both have thesame 
anoni
al form as E1. Re
all also that �(
(E1)) � E04, that 
(�(E1)) � E4 and that byLemma 25.4, E4 =p E04. We group all 
anoni
al forms related by =p into one 
lass:De�nition 26 (Class of 
anoni
al forms CCF) We de�ne the 
lass of 
anoni
al forms of M ,CCF(M) as fM 0 jM 0 =p �(
(M))g.Note that by Lemma 25 we have CCF(M) = fM 0 jM 0 =p 
(�(M))g.For example, CCF(E1) = fE4; E04g.4 Semi Redu
tional Equivalen
e and �-equivalen
e4.1 The relation �equiNow, we are ready to de�ne our notion of semi redu
tional equivalen
e. We say that two termsare semi redu
tionally equivalent if they have the same 
anoni
al form modulo =p:De�nition 27 (�equi) For a term A, we de�ne:� [A℄, the 
lass of semi redu
tionally equivalent terms to A, by: fB j �(
(A)) =p �(
(B))g.� We say that B is semi redu
tionally equivalent to A, and write B �equi A, i� B 2 [A℄.12



Note that, by Lemma 25.5, [A℄ = fB j 
(�(A)) =p 
(�(B))g.Example 28 Note that in Figures 1 and 2, 
(E1) = �(
(E1)) � E04 and �(E1) = 
(�(E1)) � E4.Note also that E4 =p E04 and all Ei, for 1 � i � 4 and E0j , for 2 � j � 4 belong to [E1℄. All Ei andE0j where 1 � i � 4 and 2 � j � 4 are redu
tionally equivalent and have the same 
anoni
al form(+Æ)(�f )(mÆ)(�x)(nÆ)(�y)(yÆ)(xÆ)f modulo =p. That is: (mÆ)(�x)(+Æ)(�f )(nÆ)(�y)(yÆ)(xÆ)fand (mÆ)(�x)(nÆ)(�y)(+Æ)(�f )(yÆ)(xÆ)f , et
., are all 
anoni
al forms. Note that the variable
ondition for permutations of pairs holds be
ause + 
ontains no free variables.The following lemma says that semi redu
tional-equivalen
e �equi 
ontains !� and !
 .Lemma 29 !���equi and !
��equi. Moreover, these in
lusions are stri
t.Proof: If A !� B or A !
 B then �(
(A)) =p �(
(B)). Example 28 gives terms E4 and E04whi
h are �equi but whi
h are not related by !� or !
 . 2Remark 30 Note that, as both !� and !
 are SN, we 
an by applying !� and !
 to any termA, rea
h a term A0 whi
h is free of any �- and 
-redexes (it is easy to show that the 
ombinationof �- and 
-redu
tion is SN). The resulting term A0 however depends on the order of applying �and 
. It is the 
ase nonetheless, by Lemma 29 that all terms A0, whi
h are obtained from A viaarbitrary � and 
 redu
tions, are semi redu
tionally equivalent.The following proposition shows that �equi is de
idable and that any �equi redu
tionallyequivalent terms are �-equal.Proposition 31 �equi is well-de�ned, de
idable and is an equivalen
e relation. Moreover, =
 ,=�, =p��equi�=�, and these in
lusions are stri
t.Proof: Well-de�nedness and equivalen
e relation are easy. Similarly, de
idability is easy as � and
 are SN and =p is de
idable. For the �rst �, note Lemmas 15 and 29. The se
ond � followsfrom Proposition 16. 2The next se
tion gives the de�nition of �-equivalen
e of [20℄ and establishes its equivalen
e to�equi. Then, it de�nes �-redu
tion modulo �-equivalen
e.4.2 �-equivalen
e and redu
tion modulo �-equivalen
eIn [20℄, Regnier de�ned an equivalen
e relation 
alled �-equivalen
e on �-terms whi
h identi�edterms modulo the permutation of their redexes. [20℄ showed that none of the standard operational
lassi�
ations of the �-
al
ulus 
an distinguish two �-equivalent terms. In parti
ular, [20℄ showedthat any two �-equivalent terms have the same normal form, the same length of head redu
tion, thesame length of normalisation by leftmost redu
tion, and the same length of longest redu
tion. [20℄also used �-equivalen
e to generalise the theorem of perpetual strategy and to �nd the 
anoni
alforms of a term. This se
tion establishes that our �equi is equivalent to �-equivalen
e and de�nes�-redu
tion modulo �-equivalen
e. First, we give the de�nition of �-equivalen
e:De�nition 32 (�-equivalen
e)[20℄ de�ned �-redu
tion !� to be the smallest 
ompatible relation 
ontaining:(�) ((�x:A)B)C !� (�x:AC)B if x 62 C(
) (�x:�y:A)B !
 �y:(�x:A)B if y 62 BA and B are �-equivalent if A =� B whre =� is the equivalen
e relation asso
iated to !�.The following lemma is needed to establish that �equi and =� are equivalent.Lemma 33 A �equi B i� A =�
p B i� A =�
 B.13



Proof: =)) Note that �equi�=�
p and that by Lemma 15, =�
p�=�
.(=) By Lemma 29, we have =�
��equi and so, also =�
p��equi 2Hen
e, we have provided a �ne grained notion of �-equivalen
e:Corollary 34 �-equivalen
e and �equi are the same relation. Proof: This holds be
ause �-equivalen
e is the same as =�
. 2Now we de�ne �-redu
tion modulo �-equivalen
e:De�nition 35 (Redu
tion modulo �, 7!�)� One-step redu
tion modulo �, 7!� is the least 
ompatible relation generated by:A 7!� B i� 9C =� A su
h that C !� B.� Many-step 
lass-redu
tion modulo �, 7!7!� is the re
exive and transitive 
losure of 7!� and�=� is the least equivalen
e relation generated by 7!�.The next Lemma and its Corollary help establish that 7!7!� is Chur
h Rosser.Lemma 36 If A 7!� B then A =� B.Proof: If A 7!� B then C !� B for some C =� A. Hen
e, C =� B and by �-equivalen
e,C =� A. Hen
e A =� B. 2Corollary 37 1. If A 7!7!� B then A =� B. 2. A �=� B i� A =� B.Theorem 38 (Chur
h Rosser theorem for 7!7!�)If A 7!7!� B and A 7!7!� C, then there exists D su
h that B 7!7!� D and C 7!7!� D.Proof: As A 7!7!� B and A 7!7!� C then by Corollary 37, A =� B and A =� C. Hen
e, B =� Cand by CR for !!�, there exists D su
h that B !!� D and C !!� D. But, M !!� A impliesM ;;� A (
f. Corollary 42). Hen
e we are done. 25 Class Redu
tionIn this se
tion, we introdu
e 
lass-redu
tion;� , show that it is Chur
h-Rosser and that it is moregeneral than (i.e., subsumes) other notions of redu
tion in
luding !� and the redu
tion relationbased on the �-equivalen
e. We also show that if A ;� B is based on a redex (�Æ)(�x) then foreveryA0 �equi A, there exists B0 �equi B su
h that A0 ;� B0 and this latter redu
tion is also basedon a 
orresponding redex (�Æ)(�x). In other words, A and A0 have isomorphi
 redu
tion paths.We also show that SN;� and SN!� are equivalent and that all semi redu
tionally equivalentterms have the same normalisation behaviour.De�nition 39 (Class-redu
tion ;�)� One-step 
lass-redu
tion ;� is the least 
ompatible relation generated by:A;� B i� 9A0 2 [A℄ (i.e., A0 �equi A) 9B0 2 [B℄ (i.e., B0 �equi B) su
h that A0 !� B0.� Many-step 
lass-redu
tion ;;� is the re
exive and transitive 
losure of ;� and �� is theleast equivalen
e relation generated by ;;�.� We write A !(EÆ)(�x)� B for the �-redu
tion based on a �-redex starting with (EÆ)(�x) inA. We write A;(EÆ)(�x)� B for 9A0 2 [A℄, 9B0 2 [B℄, 9E0 2 [E℄ su
h that A0 !(E0Æ)(�x)� B0.Example 40 Let A � (zÆ)(wÆ)(�x)(�y)y. Then [A℄ = fA; (wÆ)(�x)(zÆ)(�y)y; (zÆ)(�y)(wÆ)(�x)yg.Moreover, A;� (wÆ)(�x)z and A;� (zÆ)(�y)y.14



The following lemma shows that;� 
aptures various other notions of redu
tion in
luding 
lassi
al�-redu
tion and redu
tion modulo �-equivalen
e.Lemma 41 !� �!g � ,!� � 7!� �;�, and all these in
lusions are stri
t.Proof: If we show (AÆ)(�x)C !g C[x := A℄, (CÆ)(BÆ)(�x)(�y)A ,!� (BÆ)(�x)fA[y := C℄g, and(AÆ)s(�x)C 7!� sC[x := A℄, this would be suÆ
ient for the �rst three in
lusions.� First note that (AÆ)(�x)C � (AÆ);(�x)C !g ;C[x := A℄ � C[x := A℄.� Also, by De�nition 6, (CÆ)(BÆ)(�x)(�y)A ,!� (BÆ)(�x)fA[y := C℄g.� Finally, we 
an easily show that (AÆ)s(�x)C =� s(AÆ)(�x)C, and sin
e s(AÆ)(�x)C !�sC[x := A℄ we have (AÆ)s(�x)C 7!� sC[x := A℄.As for 7!� �;� , then note that if A 7!� B then for some C =� A we have: C !� B. Then byCorollary 34, C 2 [A℄ and hen
e, as B 2 [B℄ we get A;� B.It is easy to show that these in
lusions are stri
t:� For ;� 6�7!�, take6 A1 � ((�y)(CÆ)(�z)yÆ)(�x)(BÆ)x where x 62 FV (B) en y 62 FV (C),and take A2 � (CÆ)(�z)(BÆ)(�y)y. Then, A1 !� (BÆ)(�y)(CÆ)(�z)y =� A2, but there isno term D su
h that A1 =� D !� A2. Hen
e, A1 ;� A2 but A1 67!� A2.� For 7!� 6�,!� , 
onstru
t for instan
e terms A1 and A2 with bra
keting stru
tures [ [ ℄ [ [ ℄ ℄ ℄and [ [ ℄ [ ℄ ℄ respe
tively. E.g., if A1 � (AÆ)(BÆ)(�x)(CÆ)(DÆ)(�y)(�z)(�t)E andA2 � (CÆ)(BÆ)(�x)(DÆ)(�y)(�z)fE[t := A℄g then A1 7!� A2 but A1 6,!� A2.� For ,!� 6�!g, note that (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)C ,!� (A2Æ)(A3Æ)(�x)(�y)fC[z :=A1℄g but (A1Æ)(A2Æ)(A3Æ)(�x)(�y)(�z)C 6!g (A2Æ)(A3Æ)(�x)(�y)fC[z := A1℄g.� For !g 6�!� , note that (AÆ)(BÆ)(�x)(�y)C !g (BÆ)(�x)C[y := A℄but (AÆ)(BÆ)(�x)(�y)C 6!� (BÆ)(�x)fC[y := A℄g. 2Corollary 42 !!� �!!g � ,!,!� � 7!7!� �;;�.Remark 43 It is not in general true that A ;;� B ) 9A0 2 [A℄9B0 2 [B℄ su
h that A0 !!� B0.This 
an be seen by the following 
ounterexample:Let A � ((�u)(�v)vÆ)(�x)(wÆ)(wÆ)x and B � (wÆ)(�u)w.Then A;� (wÆ)(wÆ)(�u)(�v)v ;� B.But [A℄ has three elements: A, (wÆ)((�u)(�v)vÆ)(�x)(wÆ)x and (wÆ)(wÆ)((�u)(�v)vÆ)(�x)x.Moreover, [B℄ = fBg and if A0 2 [A℄ then the only !�-redu
t of A0 is (wÆ)(wÆ)(�u)(�v)v, whi
h6!�-redu
e to B.The next lemma helps prove that ;� is Chur
h-Rosser:Lemma 44 If A;� B then A =� B.Proof: Say A0 2 [A℄, B0 2 [B℄, A0 !� B0. Now, by Lemma 25 and Proposition 31, A =��(
(A)) =� �(
(A0)) =� A0 =� B0 =� �(
(B0)) =� �(
(B)) =� B. 2Corollary 45 1. If A;;� B then A =� B. 2. A �� B i� A =� B.Theorem 46 (Chur
h Rosser theorem for ;;�)If A;;� B and A;;� C, then there exists D su
h that B ;;� D and C ;;� D.Proof: As A ;;� B and A ;;� C then by Corollary 45, A =� B and A =� C. Hen
e, B =� Cand by CR for !!�, there exists D su
h that B !!� D and C !!� D. But, M !!� A impliesM ;;� A. Hen
e we are done. 26This 
ounterexample is due to Rob Nederpelt. 15



Remark 47 [9℄ gave similar properties for ,!,!� where A �� B i� A =� B and ,!,!� is CR.Now we are ready to establish the isomorphism of ;�-redu
tion paths of redu
tionally equivalentterms. The next lemma shows that redu
tional equivalen
e preserves ;� .Lemma 48 If A;� B then for all A0 �equi A, for all B0 �equi B, A0 ;� B0.Proof: As A ;� B then 9A1 2 [A℄9B1 2 [B℄ su
h that A1 !� B1. Let A0 �equi A andB0 �equi B. Then A0; B0 2 [A℄; [B℄ respe
tively. Hen
e A1 2 [A0℄, B1 2 [B0℄, A1 !� B1. SoA0 ;� B0. 2Corollary 49 A;� B i� �(
(A));� �(
(B)).Remark 50 Note that in the above lemma we 
annot repla
e ;� by !�:1. Let A and B be in �Æ-normalform. Let A1 � (AÆ)(BÆ)(�x)(�y)y and A2 � (BÆ)(�x)A. Notethat A2 � �(
(A2)).Now, �(
(A1)) � (BÆ)(�x)(AÆ)(�y)y !� (BÆ)(�x)A � �(
(A2)). But, A1 6!� A2.2. For the other dire
tion, take A1 � ((�x)xÆ)(�y)(AÆ)(BÆ)y where y 62 FV (A) [ FV (B) andboth A and B are in �
-normalform, and take A2 � (AÆ)(BÆ)(�x)x. Then, A1 !� A2.Now, �(
(A1)) � A1, but �(
(A2)) � (BÆ)(�x)(AÆ)x. Hen
e, �(
(A1)) 6!� �(
(A2)).Note also that the above lemma does not hold if we only repla
e the se
ond ;� by !�. In fa
t,the example used in 2 above 
an be used to show that A1 ;� A2 but �(
(A1)) 6!� �(
(A2)). Notehowever of 
ourse that if �(
(A1))!� �(
(A2)) then de�nitely A1 ;� A2.The following remark points out that if we want to preserve redu
tion paths, we need to workwith the redu
tion ;� .Remark 51 Note that7 A ,!� B does not ne
essarily imply �(
(A)) ,!,!� �(
(B)), nor do wehave that A !� B implies �(
(A)) !!� �(
(B)). E.g., take A � ((�u)(�v)vÆ)(�x)(yÆ)(yÆ)x. Itis obvious that A !� B � (yÆ)(yÆ)(�u)(�v)v (hen
e A ,!� B) yet �(
(A)) � A 6,!,!� nor 6!!��(
(B)) � (yÆ)(�u)(yÆ)(�v)v.Finally, here is the theorem that establishes the isomorphism of redu
tion paths of two redu
tion-ally equivalent terms.Theorem 52 For all A0 �equi A, for all B0 �equi B, for all E0 �equi E, if A ;(EÆ)(�x)� B thenwe have A0 ;(E0Æ)(�x)� B0.In other words, the following diagram 
ommutes:A0A �equiB0B(E0Æ)(�x) ;�(EÆ)(�x) ;��equiProof: By de�nition of ;� , A ;(EÆ)(�x)� B implies there exist A00 �equi A, B00 �equi B andC 00 �equi C su
h that A00 !(E00Æ)(�x)� B00. But, as �equi is an equivalen
e relation, A00 �equi A0,B00 �equi B0 and E00 �equi E0. Finally, by de�nition of ;� , A0 ;(E0Æ)(�x)� B0. 2The following two lemmas show that redu
tional equivalen
e preserves both ;�-strong nor-malization and !�-strong normalization:Lemma 53 If A 2 SN!� and A0 2 [A℄ then A0 2 SN!� .7This 
ounterexample is due to Rob Nederpelt. 16



Proof: If A0 2 [A℄ then A0 �equi A. Hen
e, by Lemma 33, A0 =� A. Now, we use a result of [20℄whi
h says that if A =� A0 then the length of the longest redu
tion sequen
e starting from A isequal to the length of the longest redu
tion sequen
e starting from A0. 2Lemma 54 If A 2 SN;� and A0 2 [A℄ then A0 2 SN;� .Proof: 8B;A0 ;� B implies A;� B by Lemma 48. Hen
e, A0 is in SN;� . 2Finally, we show that ;�-strong normalization and !�-strong normalization are equivalent:Lemma 55 A 2 SN;� i� A 2 SN!� .Proof: As !��;�, =) is immediate.(= is by indu
tion on M(A) where M(A) = maxfmaxred�(A0) j A0 2 [A℄g; maxred�(A0) isthe maximal length of !�-redu
tion paths starting from A0. Note that M(A) is well-de�ned ifA 2 SN!� by Lemma 53.Suppose A ;� A0 and A 2 SN!� . It is suÆ
ient to prove that A0 2 SN;� . Take A1 2 [A℄and A01 2 [A0℄ su
h that A1 !� A01. Then also A0 2 [A01℄, so by Lemma 54 it is suÆ
ient to provethat A01 2 SN;� . By Lemma 53, A1 2 SN!� , and sin
e A1 !� A01 we have A01 2 SN!� . Thenalso M(A01) <M(A1) =M(A), so by the indu
tion hypothesis: A01 2 SN;� . 2Now we show that semi redu
tional equivalen
e for SN terms implies redu
tional equivalen
e:Lemma 56 Let A 2 SN;� . If A0 �equi A then A0 �equi A.Proof: It is suÆ
ient to show that:1. (BÆ)sC is redu
tionally equivalent to s(BÆ)C if s is well-balan
ed and (BÆ)sC 2 SN;� .2. s(�x)C is redu
tionally equivalent to (�x)sC if s is well-balan
ed and s(�x)C 2 SN;� .We only prove 1. The proof is by indu
tion on the maximal length of ;�-redu
tion paths of(BÆ)sC.If (BÆ)sC is in normal form then s � ; so (BÆ)sC � s(BÆ)C. If (BÆ)sC is not in normalformthen 
ontra
tion of some redex yields a term whi
h is either of the form (B0Æ)s0C 0 (if the redexwas inside B, s or C) or of the form sC 0 if the redex 
onsisted of (BÆ) and its partnered item.Then in the �rst 
ase s(BÆ)C 
an redu
e to s0(B0Æ)C 0 by 
ontra
ting the 
orresponding redex,now by the indu
tion hypothesis (B0Æ)s0C 0 is redu
tionally equivalent to s0(B0Æ)C 0. In the se
ond
ase, s(BÆ)C also redu
es to sC 0.Hen
e (BÆ)sC is redu
tionally equivalent to s(BÆ)C. 2Hen
e we have provided a relation between terms whi
h approximates redu
tional equivalen
e.Here are some fa
ts on this relation and on redu
tional equivalen
e:Fa
t 57 The following holds:1. Let A 2 SN;� . If A �equi B then A �equi B (Lemma 56).2. A �equi B does not imply A �equi B (Example 58 below).3. A �equi B does not imply A �equi B (Example 59 below).4. A �equi B is de
idable (Proposition 31).5. Let A 2 SN;� . Then for all A0 �equi A, A0 2 SN;� (Lemma 54).Example 58 Let 
 � ((�z)(zÆ)zÆ)(�z)(zÆ)z. Take A and B where A � (aÆ)(bÆ)(�x)(�y)
and B � (bÆ)(�x)(aÆ)(�y)
. These terms read in 
lassi
al notation (�x:�y :
)ba respe
tively(�x:(�y:
)a)b. Now, A �equi B but A 6�equi B. This example shows in 1. of Fa
t 57 that one
annot drop the assumption that A is strongly normalising.Example 59 Let A � ((aÆ)(�x)xÆ)(�y)y and B � (aÆ)(�x)(xÆ)(�y)y. A �equi B but A 6�equi B.The same holds for the terms (aÆ)(�y)(yÆ)y and (aÆ)(�y)(yÆ)a. This shows that the 
onverse of1. in Fa
t 57 does not hold. 17



6 Con
lusionIn this paper, we attempted to understand the redu
tional behaviour of 
al
ulations (or programs).We looked at two 
al
ulations and wanted to be able to tell whether there is an isomorphismbetween the two 
orresponding redu
tion paths. We provided a notion of redu
tional equivalen
ewhere we de�ne a 
lassi�
ation of terms so that elements that belong to the same 
lass 
an besaid to have the same redu
tional behaviour.[20℄ already gave a notion of redu
tional equivalen
e 
alled �-equivalen
e for whi
h it showedthat none of the standard 
lassi�
ation 
riteria on �-
al
ulus (e.g., length of the longest redu
tion)
an separate two �-equivalent terms. Our paper presented a �ne grained redu
tion relation whose
ongruen
e is �-equivalen
e.Another attra
tive feature of our work is that we managed to give a 
lear representation of the
anoni
al forms of terms given in [20℄ whi
h transparently shows where redexes o

ur and wherethey do not. Table 1 shows that every �-term 
an be written in 
anoni
al form. Su
h a 
anoni
alform 
an be 
onsidered as a well-organised variant of the original term, yet having a similarredu
tional behaviour. A 
anoni
al form of a term M lists the overall (ba
helor) abstra
tionsof M , followed by a permutable list of redex-heads (whi
h 
an also be 
onsidered as possiblesubstitutions), followed by a list of \idle" or ba
helor arguments for a single variable x. The idlearguments 
an however be
ome a
tive in new redex-heads after a substitution of some term forx, e.g., by �-redu
tion. Furthermore, although 
anoni
al forms are not unique, we 
an still �ndfor ea
h �-term, the unique 
lass of its 
anoni
al forms whi
h are all equal modulo some simplepermutation.Referen
es[1℄ H. P. Barendregt. The Lambda Cal
ulus: Its Syntax and Semanti
s. North-Holland, revised edition, 1984.[2℄ H.P. Barendregt. �-
al
uli with types. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook ofLogi
 in Computer S
ien
e, volume II, pages 118{310. Oxford University Press, 1992.[3℄ Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. In Amr Sabry, editor, Pro
eedings ofthe Third ACM SIGPLAN Workshop on Continuations, Te
hni
al report 545, Computer S
ien
e Department,Indiana University, pages 35{39, London, England, January 2001. Also available as the te
hni
al report BRICSRS-00-35.[4℄ P. de Groote. The 
onservation theorem revisited. In International Conferen
e on Typed Lambda Cal
uli andAppli
ations, LNCS, volume 664. Springer-Verlag, 1993.[5℄ F. Kamareddine. Postponement, 
onservation and preservation of strong normalisation for generalised redu
-tion. Logi
 and Computation, 10(5):721{738, 2000.[6℄ F. Kamareddine and R. Bloo. De Bruijn's syntax and redu
tional equivalen
e of lambda terms: the typed
ase. Logi
 and Algebrai
 Programming, 2004.[7℄ F. Kamareddine, R. Bloo, and R. P. Nederpelt. De Bruijn's syntax and redu
tional equivalen
e of lambdaterms. In Pro
. 3rd Int'l Conf. Prin
iples & Pra
ti
e De
larative Programming, pages 16{27, 5{7 September2001.[8℄ F. Kamareddine and R. Nederpelt. A useful �-notation. Theoreti
al Computer S
ien
e, 155:85{109, 1996.[9℄ F. Kamareddine and R. P. Nederpelt. Re�ning redu
tion in the �-
al
ulus. Journal of Fun
tional Programming,5(4):637{651, 1995.[10℄ F. Kamareddine, A. R��os, and J.B. Wells. Cal
uli of generalised �e-redu
tion and expli
it substitution: Typefree and simply typed versions. Journal of Fun
tional and Logi
 Programming, 1998.[11℄ M. Karr. Delayability in proofs of strong normalizability in the typed �-
al
ulus. InMathemati
al Foundationsof Computer Software, LNCS, volume 185. Springer-Verlag, 1985.[12℄ A.J. Kfoury, J. Tiuryn, and P. Urzy
zyn. An analysis of ML typability. ACM, 41(2):368{398, 1994.[13℄ A.J. Kfoury and J.B. Wells. A dire
t algorithm for type inferen
e in the rank-2 fragment of the se
ond order�-
al
ulus. Pro
eedings of the 1994 ACM Conferen
e on LISP and Fun
tional Programming, 1994.[14℄ A.J. Kfoury and J.B. Wells. Addendum to new notions of redu
tion and non-semanti
 proofs of �-strongnormalisation in typed �-
al
uli. Te
hni
al report, Boston University, 1995.[15℄ A.J. Kfoury and J.B. Wells. New notions of redu
tions and non-semanti
 proofs of �-strong normalisation intyped �-
al
uli. LICS, 1995. 18



[16℄ Z. Khasidashvili. The longest perpetual redu
tions in orthogonal expression redu
tion systems. Pro
. of the3rd International Conferen
e on Logi
al Foundations of Computer S
ien
e, Logi
 at St Petersburg, 813, 1994.[17℄ J. W. Klop. Combinatory Redu
tion Systems. Mathemati
al Center Tra
ts, 27, 1980. CWI.[18℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Sele
ted papers on Automath. North-Holland, Amsterdam,1994.[19℄ L. Regnier. Lambda 
al
ul et r�eseaux. PhD thesis, University Paris 7, 1992.[20℄ L. Regnier. Une �equivalen
e sur les lambda termes. Theoreti
al Computer S
ien
e, 126:281{292, 1994.[21℄ A. Sabry and M. Felleisen. Reasoning about programs in 
ontinuation-passing style. Pro
eedings of the 1992ACM Conferen
e on LISP and Fun
tional Programming, pages 288{298, 1992.[22℄ M. H. S�rensen. Strong normalisation from weak normalisation in typed �-
al
uli. Information and Compu-tation, 133(1), 1997.[23℄ D. Vidal. Nouvelles notions de r�edu
tion en lambda 
al
ul. PhD thesis, Universit�e de Nan
y 1, 1989.[24℄ H. Xi. On weak and strong normalisations. Te
hni
al Report 96-187, Carnegie Mellon University, 1996.

19


