
De Bruijn's syntax and redutional behaviour of �-terms:the typed ase�Fairouz Kamareddineyand Roel Bloo zAbstratIn this paper, we onsider the typed versions of the �-alulus written in a notation whihhelps desribe anonial forms more elegantly than the lassial notation, and enables to divideterms into lasses aording to their redutional behaviour. In this notation, �-redution anbe generalised from a relation on terms to one on equivalene lasses. This lass redutionovers many known notions of generalised redution. We extend the Barendregt ube with ourlass redution and show that the subjet redution property fails but that this is not unique toour lass redution. We show that other generalisations of redution (suh as the �-redutionof Regnier) also behave badly in typed versions of the �-alulus. Nevertheless, solution isat hand for these generalised redutions by adopting the useful addition of de�nitions in theontexts of type derivations. We show that adding suh de�nitions enables the extensions oftype systems with lass redution and �-redution to satisfy all the desirable properties of typesystems, inluding subjet redution and strong normalisation. Our proposed typing relation` is the most general relation in the literature that satis�es all the desirable properties oftype systems. We show that lasses ontain all the desirable information related to a termwith respet to typing, strong normalisation, subjet redution, et.Keywords: lass redution, type theory, subjet redution, strong normalisation.1 IntrodutionGeneralised redution has reeived muh attention in the literature in the past deade wherevarious uses and bene�ts of generalising redution have been illustrated (f. [16, 17, 12, 11, 18, 2,3, 14, 21, 20, 13, 10, 4, 9℄). In [5℄ we gave the most general form of redution ;� whih on onehand is �ne grained, and on the other, works on lasses rather than terms. We showed that thisgeneral notion of lass redution does indeed generalise existing ones.Yet, if suh a redution is to be useful in pratie (and espeially in omputation), we needto use it in type systems. In partiular, we need to show that indeed using ;� with type theorywould satisfy the basi requirements of a typed system. In partiular, the issues of safety andtermination are a priority. A safe type system must give all the intermediate (and �nal) values ofa program, the same type. Similarly, a type systems should not type non terminating programs.And indeed this is the ase if we extend simple type theory with ;� . But, simple types are easy.The real test is those useful powerful type systems suh as dependent or polymorphi type theory.In this paper, we set out to provide useful type systems whih use our general lass redution.Sine we are interested in the behaviour of lass redution with all sorts of types (simple, poly-morphi and dependent), we take the ube of eight di�erent systems [1℄ as the basi framework.�This artile builds on and extends the results and proofs of [7℄ for the typed ase. The untyped ase an befound in [5℄. We are grateful for enlightening disussions and useful feedbak and omments reeived from HenkBarendregt, Twan Laan, Rob Nederpelt and Joe Wells. An anonymous referee provided useful reommendation forwhih we are grateful.yShool of Mathematial and Computational Sienes, Heriot-Watt University, Riarton, Edinburgh EH14 4AS,Sotland, fairouz�mas.hw.a.ukzMathematis and Computing Siene, Tehnishe Universiteit Eindhoven, P.O.Box 513, 5600 MB Eindhoven,the Netherlands, .j.bloo�tue.nl 1



The initial step we followed was to simply add lass redution to the ube. Alas, when extendingthe systems of the ube with ;�, we �nd that the subjet redution property (SR) whih statesthat if A;;� B then B has the same type as A, no longer holds for six of the systems of the ube,although it holds for the weaker systems �! and �!. This problem however an be solved by alsoextending the ube with de�nitions whih avoid the loss of information in the ontexts needed totype terms. In this way, subjet redution will hold for all the systems of the ube. De�nitionsare a useful mehanism in manipulating ontexts and we see them already used in programminglanguages under the name let expressions. Hene, in this way, our extension with de�nitions andlass redution gives type systems whih are more useful for omputation. We extend the ubewith the new typing relation `, the de�nition mehanism and lass redution ;� and show that` is the most general relation that satis�es all the desirable properties of type systems. We alsoshow that our notion of lasses ontains all the desirable information related to a term with respetto typing, strong normalisation, subjet redution, et. The artile is divided as follows:� In Setion 2, we adapt the de�nitions of [5℄ needed to introdue our new typing relations.� In Setion 3, we illustrate that our redution is not unique in losing subjet redutionwhen mixed with powerful type systems. We extend the eight type systems of the ube withredution 7!� modulo �-equivalene of [17℄ and show that, in general, subjet redution (SR)fails. [17℄ showed that �-quivalene enjoys desirable properties with respet to normalisationand the length of redutions. In [5℄, we showed that ;� subsumes redution modulo �-equivalene 7!� . So, even a weaker redution than ;� loses SR in the systems of the ube.We explain how SR an be restored to the ube with 7!� , from the restored ube with ;� .� In Setion 4 we extend the Barendregt ube with ;� and show that subjet redution holdsfor �! and �! but fails for the six other systems.� In Setion 5, in addition to ;� , we add de�nitions in ontexts of the ube. We show thatall the desirable properties inluding SR and strong normalisation hold for all the systemsof the extended ube with ;� and de�nitions. Using lasses means that we annot use theusual methods for establishing SR. The vital point is that lasses preserve types and thatthe ube with de�nitions only enjoys SR. As for the proof of strong normalisation (SN), wetranslate typing judgements of the extended ube into the ordinary ube by removing thede�nitions from the ontexts and unfolding them in terms. In this way, SN of the extendedube is a result of that of the ordinary ube.2 Adapting the results and notation of [5℄ for typesLet V be an in�nite olletion of variables over whih x; y; z; : : : range and let � 2 f�;�g. Theset of pseudo-expressions T (also alled terms) is de�ned by: T = � j2 j V j (T Æ)T j (T �V )T .We take A;B;C;D;E;M;N; a; b; : : : , resp. S; S1; S2 to range over T resp. f�;2g.We assume familiarity with the �-alulus and notions like ompatibility and redution (f.[1℄). We use the item notation (f. [8℄) where one writes the argument before the funtion soab beomes (bÆ)a, and one writes �x:B :a as (B�x)a. This way, a term A is a sequene (possiblyempty) of �-items (B�x), �-items (B�x) and Æ-items (bÆ), followed by a variable alled theheart of A, notation ~(A). We use s1; s2; : : : to range over items and all b the body of theÆ-item (bÆ). A sequene of items is alled a segment. We use s; s1; s2; : : : to range over segmentsand write ; for the empty segment. If s � s1s2 : : : sn, we all the si's (for 1 � i � n) the mainitems of s; these si's are also the main items of sx. The weight of a segment s, weight(s), is thenumber of its main items. We de�ne weight(sx) to be weight(s). Terms have now spei� forms:Lemma 1 Every term has one of the three forms: 1. (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,2. (B�x)A, and 3. (A1Æ) � � � (AnÆ)(BÆ)(D�x)C, where n � 0.2



Well-balaned segments (w-b) are onstruted indutively from mathing Æ- and �-items:� ; is w-b, � if s is w-b then (AÆ)s(B�x) is w-b,� if s1, s2, . . . sn are w-b, then the onatenation s1 s2; � � � sn is w-b.Let E � s1(AÆ)s2(B�y)s3x. We say that (AÆ) and (B�y) math or are partners or part-nered if s2 is w-b. If s2 � ;, then (AÆ) and (B�y) are Æ�-pairs, else, they are Æ�-ouples.Hene, we speak of Æ�-pairs/ouples, Æ�-pairs/ouples, and Æ�-pairs/ouples. If an item s has nopartner, we say that s is bahelor. In item notation, a �-redex is a Æ�-pair. Bound and freevariables and substitution are de�ned as usual. We write BV (A) and FV (A) to represent thebound and free variables of A respetively. We write A[x := B℄ to denote the term where all thefree ourrenes of x in A have been replaed by B. We take terms to be equivalent up to variablerenaming and use � to denote syntatial equality of terms. We assume the usual Barendregtvariable onvention (whih says that bound variables are always hosen distint from free variablesand that whenever neessary, variables are renamed to ensure this) (f. [1℄). The next de�nitionis basi for this paper:De�nition 2 � A term is in anonial form if it has the form:(B1�x1) : : : (Bn�xn)(C1Æ)(D1�y1) : : : (CmÆ)(Dm�ym)(A1Æ) : : : (AlÆ)x.1� For r 2 f�; �; ; pg, we de�ne !r as the ompatible losure of the rule (r)2:(�) (BÆ)(C�x)A !� A[x := B℄(�) (CÆ)(BÆ)(D�x)A !� (BÆ)(D�x)(CÆ)A() (BÆ)(D�x)(E�y)A ! (E�y)(BÆ)(D�x)A(p) (A1Æ)(B1�y1)(A2Æ)(B2�y2)B !p (A2Æ)(B2�y2)(A1Æ)(B1�y1)Bif y1 =2 FV (A2) [ FV (B2)� We de�ne !� to be !� [ ! and !�p to be !� [ ! [ !p.� We de�ne �-redution !� as the smallest ompatible relation ontaining (�) and ().� For a redution relation !r where r 2 f�; �; ; p; �; �p; �g, we write !!r for its reexivetransitive losure and =r for its equivalene losure. A and B are �-equivalent if A =� B.� 7!� is the least ompatible relation generated by: A 7!� B i� 9C =� A suh that C !� B.� 7!7!� is the reexive transitive losure of 7!� and �=� its reexive transitive symmetri losure.� The lass [A℄ of terms that are semi redutionally equivalent to A, is fB j �((A)) =p�((B))g. We say that B is semi redutionally equivalent to A, and write B �equi A, i�B 2 [A℄.� One-step lass-redution ;� is the least ompatible relation generated by:A;� B i� 9A0 2 [A℄ (i.e., A0 �equi A) 9B0 2 [B℄ (i.e., B0 �equi B) suh that A0 !� B0.� ;;� is the reexive transitive losure of;� and �� its reexive transitive symmetri losure.A is strongly normalizing with respet to ! (written SN!(A) or A 2 SN!(A)) i� every !-redution path from A terminates. As usual, we use CR for Churh Rosser.Lemma 3 � !�;! ;= ;=�;=p(�equi(=�. Moreover, �equi = =�p = =� = =�.� 7!�;;�(=�. Moreover, !� ( 7!� (;� and !!� ( 7!7!� (;;�. Also, �=� = �� = =�.� !�, ! and !� are strongly normalising. Moreover, !�, !, 7!� and ;� are CR.� If A;� B then for all A0 �equi A, for all B0 �equi B, A0 ;� B0.� Let !2 f!� ;;�g. If A 2 SN! and A0 2 [A℄ then A0 2 SN!. Moreover, SN;� = SN!� .1Note that, for 1 � p; q � m, 1 � i � n and 1 � j � l, Dp, Cq , Bi and Aj are not required to be anonialforms themselves, and that (Bi�xi) and (AjÆ) are bahelor.2In (), the Barendregt onvention on the right hand side ensures that the redutions are only allowed whenx =2 FV (E). Moreover, we keep to tradition and do not allow redution to take plae for a Æ�-pair although [6, 15℄give good reasons why this tradition needs to hange and why �-redution is useful.3



Table 1: Systems of the ubeSystem Set of (S1; S2)-rules System Set of (S1; S2)-rules�! (�; �) �! (�; �) (2;2)�2 (�; �) (2; �) �! (�; �) (2; �) (2;2)�P (�; �) (�;2) �P2 (�; �) (2; �) (�;2)�P! (�; �) (�;2) (2;2) �P! = �C (�; �) (2; �) (�;2) (2;2)3 The ube with the redution modulo �-equivalene 7!�In this setion we extend the ube of [1℄ with �-redution modulo �-equivalene, 7!� , and showthat subjet redution fails. First, we give the typing rules of the original ube.The systems of the ube are based on a the set of terms T and a set of rules R � f�;2g2. Theredution relation of the ube is !� . We de�ne a ontext to be a sequene (possibly empty) of�-items. We use �;�0;�1; : : : to denote ontexts. We denote the empty ontext by <>.De�nition 4 (The typing rules of the ube in item notation)(axiom) <> ` � : 2(start) � ` A : S�(A�x) ` x : A if x is fresh(weak) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(onv) � ` A : B � ` B0 : S B =� B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) 2 RA ontext or a term is alled legal with respet to a type system if it ours as suh in atype-derivation in that system.Eah of the eight systems of the ube is obtained by taking the (S1; S2) rules from a subsetR of f(�; �); (�;2); (2; �); (2;2)g. The basi system is the one where (S1; S2) = (�; �) is the onlypossible hoie. All other systems have this version of the formation rules, plus one or more otherombinations of (�;2), (2; �) and (2;2) for (S1; S2). Table 1 presents those eight systems.To introdue �-redution modulo �-equivalene to the ube, we simply use 7!� instead of !� .This means that none of the typing rules hanges and that our extended ube of this subsetionis exatly that of Barendregt in [1℄ with the only di�erene that we use 7!� instead of !� .The next two examples show that if our type derivation rules are those of De�nition 4 and ourredution relation is 7!� instead of !� , then we lose the subjet redution property (SR) whihstates that if � ` A : B and A 7!7!� A0 then � ` A0 : B.Example 5 (With 7!�, SR fails in �2, �P2; �! and �C)Let � � (���)(��y0 ), A � (y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x and B � (�Æ)(���)(y0Æ)(��x)x. Then,� `�2 A : � and A 7!� B. Yet, � 6`�2 B : �. Even, � 6`�2 B : � for any � .This is beause (��x)x : (��x)� and y : � yet � and � are unrelated and hene we fail in �ring theappliation rule to �nd the type of (y0Æ)(��x)x. Looking loser however, one �nds that (�Æ)(���)4



is de�ning � to be �, yet no suh information an be used to ombine (��x)� with �. De�nitionstake suh information into aount, but de�nitions are not part of the ube. Finally note thatfailure of SR in �2, means its failure in �P2; �! and �C.Example 6 (With 7!�, SR fails in �P , �P2; �P! and �C)Let � � (���)(��t)((��q) � �C)((tÆ)C�A), A � (AÆ)(tÆ)(��x)((xÆ)C�y)(yÆ)((xÆ)C�Z )Z andB � (tÆ)(��x)(AÆ)((xÆ)C�Z )Z. Then, � `�P A : (tÆ)C and A 7!� B but � 6`�P B : � for any � ,sine as A : (tÆ)C; y : (xÆ)C; (tÆ)C 6= (xÆ)C.Here again the reason of failure is similar to the above example. At one stage, we need to math(xÆ)C with (tÆ)C but this is not possible even though we do have the de�nition segment: (tÆ)(��x)whih de�nes x to be t. All this alls for the need to use these de�nitions. Finally note that failureof SR in �P , means its failure in �P2; �P! and �C.The above two examples show that SR fails in six systems of the ube when �-redution modulo�-equivalene, 7!� , is used. However, SR does not fail for the other two systems �! and �!.Furthermore, SR an be re-established for all the eight systems by allowing de�nitions in theontext. We will not show this for this partiular extension, but instead, we show it for a moregeneral extension of the ube, that with lass redution ;� rather than redution modulo �-equivalene. In fat, sine 7!��;� and hene, as de�nitions restore subjet redution in the ubewith ;� (f. Setion 4), they will also restore subjet redution in the ube with 7!� .4 The ube with lass redution ;�Alas, when extending the systems of the ube with;� , we �nd that the subjet redution propertywhih states that if A;;� B then B has the same type as A, no longer holds for six of the systemsof the ube, although it holds for the systems �! and �!. This problem however an be solvedby also extending the ube with de�nitions whih avoid the loss of information in the ontextsneeded to type terms. In this way, subjet redution will hold for all the systems of the ube.In Setion 4.1 we extend the ube with lass redution and show that that subjet redutionfails for 6 systems of the ube with lass redution. In Setion 4.2 we show that subjet redutionholds for �! and �! with ;;� (without de�nitions). We show furthermore that in �! and �!with ;;�, redutionally equivalent terms have the same type in the sense that if � ` A : B thenfor all A0 2 [A℄, for all B0 2 [B℄, we have � ` A0 : B0 (see Theorem 20).4.1 Extending the ube with ;;�In this setion, we introdue lass-redution to the ube of [1℄. This means that our redutionrelation now is not !� but ;� and that our extended ube of this subsetion is exatly that ofBarendregt in [1℄ with the only di�erene that we use ;� instead of !�.The same two examples (Examples 5 and 6) given for 7!� show that if our type derivationrules are those of De�nition 4 and our redution relation is ;;� instead of !!� , then we lose thesubjet redution property (SR) whih states that if � ` A : B and A;;� A0 then � ` A0 : B.Lemma 7 In the ube with lass redution ;;�, we have:SR fails in �2, �P2; �! and �C and also in �P , �P2; �P! and �C.Proof: Examples 5 and 6 also hold for ;;�. 2The rest of this setion proves that subjet redution holds for �! and �!.Remark 8 Beause the extension of the ube in this setion with;;� does not involve any hangesto the syntax or typing rules of the ube of [1℄, we assume the same notational onvention of [1℄.In partiular, we take dom(�), subontexts and � � � to have the usual meaning.The �rst three lemmas and orollary are exatly those of the ube of [1℄ beause ;;� does notplay any role in them. Only �� (whih is the same as =�) is involved.5



Lemma 9 (Thinning for ` and ;;�) Let � and � be legal ontexts suh that � �0 �. Then� ` A : B ) � ` A : B.Proof: Indution on the length of derivations � ` A : B. 2Lemma 10 (Generation Lemma for ` and ;;�)1. � ` x : C ) 9S1; S2 2 S 9B =� C[� ` B : S1 ^ (B�x) 20 � ^ � ` C : S2℄.2. � ` (A�x)B : C ) 9S1; S2 2 S [� ` A : S1 ^ �(A�x) ` B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ [C 6� S2 ) 9S[� ` C : S℄℄℄3. � ` (A�x)b : C ) 9S;B [� ` (A�x)B : S ^ �(A�x) ` b : B ^ C =� (A�x)B^C 6� (A�x)B ) 9S0 2 S[� ` C : S0℄℄.4. � ` (aÆ)F : C ) 9A;B; x[� ` F : (A�x)B ^ � ` a : A ^ C =� B[x := a℄^(B[x := a℄ 6� C ) 9S 2 S[� ` C : S℄)℄.Proof: Indution on the derivation rules using thinning. 2Corollary 11 (Generation Corollary for ` and ;;�)1. Corretness of Types: If � ` A : B then 9S[B � S or � ` B : S℄.2. If � ` A : (B1�x)B2 then 9S[� ` (B1�x)B2 : S℄.3. If A is a �`-term, then A is 2, a �`-kind or a �-element.Lemma 12 (Substitution for ` and ;;�) If �(B�x)� ` C : D and � ` A : B, then ��[x :=A℄ ` C[x := A℄ : D[x := A℄.Proof: By indution on the derivation rules, using the thinning lemma. 24.2 Subjet redution and preservation of types by lasses in �! and�!Sine ;� is de�ned on lasses instead of terms, we annot use the usual methods for establishingSubjet Redution. For this, we need to establish that lasses preserve types (Theorem 20).Subjet Redution will then be a orollary of the fat that lasses preserve types. We start witha de�nition:De�nition 13 (Context Redution and equivalene in the ube with ` and ;;�)1. We de�ne � !r �0 for r 2 f�; ; �g by � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !r A0.We de�ne !!r on ontexts to be the reexive transitive losure of !r.2. We de�ne � )� �0 by � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !!� A0. Note that onontexts, =� is the equivalene relation of )�.3. We say that �0 2 [�℄ if �0 results from � by substituting some main items (C�x) of � by(C 0�x) where C 0 2 [C℄ . Note that �0 2 [�℄ i� � =� �0.In order to prove Theorem 20, whih works for lasses modulo =� , we will show Lemmas 15..18whih deal with �-redution and -redution. Lemma 14 is a help lemma (proved in the appendix).Item 1 simpli�es the proofs by indution on the derivation rules sine we an work with B insteadof B[x := C℄ for some C (it is used in the proofs of Item 2 and Lemmas 15..18). Item 2 ombinesvarious steps of Lemma 10 and is used in the proofs of Lemmas 16..18). Item 3 eliminates the asethat � might be a � when some typing ondition holds. As a result of item 3, in what follows,when a term (aÆ)(b�x) is typable, we write it as (aÆ)(b�x). Items 4 resp. 5 are needed in theproofs of Lemmas 17 and 18 resp. Lemma 17. Throughout, IH stands for Indution Hypothesis.6



Lemma 141. Sine we only use rules (�; �) and (2;2), if � ` (A�x)B : S then x 62 FV (B).2. [Redex Generation℄ If � ` (AÆ)(B�x)C : D then�(B�x) ` C : D, � ` A : B and � ` (B�x)D : S for some sort S.3. If � ` (aÆ)(b�x) : A then � is �.4. [Interhange℄ If �(A�x)(B�y)� ` C : D and x 62 FV (B) then also �(B�y)(A�x)� ` C : D.5. If � ` A : e and e =� S for some sort S, then e � S.Lemmas 15..18 are the basi building bloks to proving Theorem 20. In these lemmas, 1 and 2 areproven simultaneously by a tedious indution on the derivation of � ` A : B. See the appendix.Lemma 15 (One step SR for !� in the ube with ` and ;;�) Let � ` A : B.1. If A!� A0 then � ` A0 : B. 2. If �!� �0 then �0 ` A : B.Lemma 16 (One step SR for  � in the ube with ` and ;;�) Let � ` A : B.1. If A0 !� A then � ` A0 : B. 2. If �0 !� � then �0 ` A : B.Lemma 17 (One step SR for ! in the ube with ` and ;;�) Let � ` A : B.1. If A! A0 then � ` A0 : B. 2. If �! �0 then �0 ` A : B.Lemma 18 (One step SR for   in the ube with ` and ;;�) Let � ` A : B.1. If A0 ! A then � ` A0 : B. 2. If �0 ! � then �0 ` A : B.Corollary 19 (SR for lasses, !!�,   � in the ube with ` and ;;�) Let � ` A : B.1. If A!!� A0 then � ` A0 : B. 2. If A0 !!� A then � ` A0 : B.3. If �)� �0 then �0 ` A : B. 4. If �0 )� � then �0 ` A : B.5. If A0 2 [A℄ then � ` A0 : B. 6. If � ` A : B and �0 2 [�℄ then �0 ` A : B.Proof: Items 1 and 2 are by indution on the length of the redution !!� using Lemmas 15..18.Items 3 and 4 are by indution on the derivation � ` A : B using 1 and 2. For 5, if A0 2 [A℄ thenA0 =� A by Proposition 3 and 9A00 where A0 !!� A00 and A !!� A00; by 1, � ` A00 : B (asA !!� A00 and � ` A : B) and hene by 2, � ` A0 : B. For 6, as �0 2 [�℄, there are main items(C1�x1); : : : ; (Cn�xn) of � (for n � 0) whih are replaed in �0 by (C 01�x1); : : : ; (C 0n�xn) whereC 0i 2 [Ci℄ and otherwise, � and �0 are the same. The proof is by indution on n.� Case n = 0 nothing to prove as � � �0.� If n = 1 then assume �0 2 [�℄ is due to (C 0�x) 2 �0 and (C�x) 2 � where C 0 2 [C℄ andthis is the only di�erene between � and �0. Then as for 1. C 0 =� C and 9C 00 suh thatC 0 !!� C 00 and C !!� C 00. Let �00 be the same as � but where (C�x) is replaed by(C 00�x). Then, � )� �00 and �0 )� �00. By Item 3, �00 ` A : B (beause � )� �00 and� ` A : B). Also, by Item 4, �0 ` A : B (beause �0 )� �00 and �00 ` A : B) and we aredone.� Assume the property holds for some n � 1 and take � and �0 whih di�er by n + 1 suh(Ci�xi). Let �00 be �0 but where (C 0n+1�xn+1) is replaed by the original item (Cn+1�xn+1)of �. Hene �00 and � di�er only in n items. Hene, by IH �00 ` A : B. But �00 and �0 di�erby 1 item only and hene, again by IH, �0 ` A : B. 2Theorem 20 (Classes preserve types in the ube with ` and ;;�)� ` A : B () 8�0 2 [�℄;8A0 2 [A℄;8B0 2 [B℄; we have �0 ` A0 : B0.Proof: (=) is obvious. =)) By Corollary 19.6, �0 ` A : B and Corollary 19.5, �0 ` A0 : B. ByCorretness of Types (Corollary 11.1) B � 2 or �0 ` B : S for some sort S.� If B � 2 then as B0 2 [B℄, we also have B0 � 2 and hene �0 ` A0 : B0.7



� If �0 ` B : S, then as B0 2 [B℄ we have by Corollary 19.5, that �0 ` B0 : S. Now, as=��=�, we use (onv) to get �0 ` A0 : B0. 2Now with Theorem 20, we an establish SR using ` with ;;�, via SR of ` with !!� .Corollary 21 (Subjet Redution for ` and ;;�)If � ` A : B and A;;� A0 then � ` A0 : B.Proof: We prove � ` A : B, A;� A0 =) � ` A0 : B. By de�nition of ;� , there are A1, A01 suhthat A1 2 [A℄, A01 2 [A0℄ and A1 !� A01. By Theorem 20, � ` A1 : B. By subjet redution forthe usual !� we have � ` A01 : B. Again by Theorem 20, � ` A0 : B. 2Although SR fails for the six remaining systems of the ube with ` of De�nition 4 and;;�, strongnormalisation holds for all the systems of the ube with ` of De�nition 4 and ;;� . Instead ofproving this here, we move to the version that indeed satis�es SR and all other properties.5 Extending the ube with ;;� and de�nitionsIn this setion we add de�nitions to our extension of Setion 4 and show in that all the desirableproperties inluding SR hold for all the systems of the extended ube with ;� and de�nitions.Looking bak at, for instane, Example 5, one noties that when reduing using ;� , theinformation that y0 has replaed y of type � is lost. All we know after the redution is that y0has type �. But we need y0 of type � to be able to type the subterm (y0Æ)(��x)x of the redut.De�nitions enable us to have extra information in our ontexts suh as \� and � an be identi�ed".We do this by writing in our ontext: (�Æ)(���) whih expresses that � is de�ned to be � andis of type �. Next, we give the notion of de�nitions and how they an be unfolded. A de�nitionidenti�es a variable with a whole term. The unfolding of the de�nition, undoes this identi�ationand the variable will be replaed everywhere it ours free by the term it identi�es.De�nition 22 (de�nitions, unfolding)� If s is a well-balaned segment not ontaining Æ�-ouples, then a segment (BÆ)s(C�x) o-urring in a ontext is alled a de�nition.� For s well-balaned segment, we de�ne the unfolding of s in A, jAjs, indutively as follows:jAj; � A, jAj(BÆ)s1(C�x) � jA[x := B℄js1 and jAjs1 s2 � jjAjs2 js1 . Note that substitutiontakes plae from right to left.Lemma 23 Let s be a well-balaned segment not ontaining main Æ�-ouples.1. j(AÆ)A0js � (jAjsÆ)jA0js and jAjs =� sA.2. If none of the binding variables of s is free in A, then jAjs � A.3. If none of the binding variables of s is free in A, then for any segment s1,s1(AÆ)sB =� s1 s(AÆ)B.Proof: 1. and 2. are by indution on weight(s).3. is now obvious as s1(AÆ)sB 3� s1(jAjsÆ)sB 2=� s1(jAjsÆ)jBjs 1� s1 s(AÆ)B. 2We now introdue some notions onerning typing rules whih oinide with the usual ones whenwe do not allow de�nitions in the ontext (as is the ase in the ube). When de�nitions are presenthowever, the notions are more general. Let ` be a typing relation and let! be a redution relationwhose reexive transitive losure is !! and whose equivalene losure is =�.De�nition 24 (delarations, pseudoontexts, �0, ;;�, de�nitional equality =def)1. A delaration d is a �-item (A�x); we de�ne subj(d), pred(d) and d to be x, A and ; resp.2. For a de�nition d � (BÆ)s(A�x) let subj(d), pred(d), d and def(d) be x, A, s and B resp.3. We use d; d1; d2; : : : to range over delarations and de�nitions.8



4. A pseudoontext � is a onatenation of delarations and de�nitions suh that if (A�x) and(B�y) are di�erent main items of � then x 6� y. We range �;�;�0;�1; : : : over pseudoon-texts.5. For � a pseudoontext, de�ne dom(�) = fx 2 V j (A�x) is a main �-item in � for some Ag,�-def = fs j s � (AÆ)s1(B�x) is a main segment of � where s1 is well-balaned g, �-del =fs j s is a bahelor main �-item of �g. Note that dom(�) = fsubj(d) j d 2 �-del[�-defg.6. De�ne �0 between pseudoontexts as the least reexive transitive relation satisfying:� �� �0 �(C�x)� if no �-item in � mathes a Æ-item in �� �d� �0 �d� if d is a de�nition� �s(A�x)� �0 �(DÆ)s(A�x)� if (A�x) is bahelor in �s(A�x)� and s is well-balaned7. Redution on pseudoontexts is de�ned by:� �(A!)�0 ;� �(B!)�0 if A;;� B, for ! 2 fÆg [ f�v : v 2 V g.� �(A!)�0 !� �(B!)�0 if A!!� B, for ! 2 fÆg [ f�v : v 2 V g.� ;;� (resp. !!�) on ontexts is the reexive transitive losure of ;� (resp. !�).8. We de�ne the binary relation � ` � =def � to be the equivalene relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T suh that B arises from A by substituting one partiularourrene of subj(d) in A by def(d), then � ` A =def B.De�nition 25 (Statement, judgement, �)1. A statement is of the form A : B, A and B are alled the subjet and the prediate resp.2. For pseudoontext � and statement A : B, we all � ` A : B a judgement, meaning A : B isderivable from the ontext �, and we write � ` A : B : C to mean � ` A : B ^ � ` B : C.3. For pseudoontext � and de�nition/delaration d, we say that � invites d, notation � � d,i�� �d is a pseudoontext, � �d ` pred(d) : S for some sort S,3 and� if d is a de�nition then �d ` def(d) : pred(d) and FV (def(d)) � dom(�).4. For delarations/de�nitions d; d1; : : : ; dn, de�ne � ` d and � ` d1 � � � dn simultaneously by:� If d is a de�nition: � ` d i� � ` subj(d) : pred(d)^ � ` def(d) : pred(d)^ � ` d^� `subj(d) =def def(d). If d is a delaration: � ` d i� � ` subj(d) : pred(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.5. A is �`-term if 9B[� ` A : B or � ` B : A℄. �`-terms = fA j 9B[� ` A : B _ � ` B : A℄g.A is alled legal if 9�[A 2 �`-terms℄. � is alled legal if 9A;B suh that � ` A : B.6. We take �`-kinds = fA j � ` A : 2g and �`-types = fA 2 T j � ` A : �g.7. A is a �-element if 9B, S[� ` A : B and � ` B : S℄.Now we will in the de�nition below present the rules of De�nition 4 di�erently. Note that inDe�nition 26, if one takes d to be a meta-variable for delarations only, =def the same as =�(whih is independent of `) and the redution relation as!� , then one gets the known ube of [1℄given in De�nition 4. We invite the reader to hek this.3Note that binding variables in d may our free in pred(d) but not in def(d) if � � d.9



Table 2: De�nitions solve subjet redution(���)(��y0) ` y0 : � : � : 2(���)(��y0)(�Æ)(���) ` y0 : �; � : � (weakening resp. start)(���)(��y0)(�Æ)(���) ` � =def � (use the de�nition in the ontext)(���)(��y0)(�Æ)(���) ` y0 : � (onversion)(���)(��y0)(�Æ)(���)(y0Æ)(��x) ` x : � (start)(���)(��y0) ` (�Æ)(���)(y0Æ)(��x)x : �[x := y℄[� := �℄ � � (de�nition rule)De�nition 26 (Axioms and rules of the ube with the � notation)(axiom) <> ` � : 2(start) � � d�d ` subj(d) : pred(d)(weak) � � d �d ` D : E�d ` D : E(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B if (A�x) is bahelor in �(A�x)(onv) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a rule and (A�x) is bahelor in �(A�x)If we did not use the � notation, we would have needed for the ube with de�nitions, two rules for(start) and two rules for (weak) as follows (in (start-def) and (weak-def), take d � (BÆ)d(A�x)):(start-de) � ` A : S�(A�x) ` x : A if x is fresh(start-def) �d ` A : S �d ` B : A�(BÆ)d(A�x) ` x : A if �d is a pseudoontext, FV (B) � dom(�)(weak-de) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(weak-def) �d ` A : S �d ` B : A �d ` D : E�(BÆ)d(A�x) ` D : E if �d is a pseudoontext, FV (B) � dom(�)In order to solve the SR problem for the six systems of the ube, we extend the ube with de�ni-tions, ;;� and equivalene lasses modulo =� . Contexts now have delarations and de�nitions.De�nition 27 (Axioms and rules of the ube with both ;;� and de�nitions) The typingrules ` are exatly those of ` of De�nition 26 but with the addition of the de�nition rule:(def rule) �d ` C : D� ` dC : jDjd if d is a de�nitionIn this new system, the problem of subjet redution is solved, and all the other desirable propertieshold too. The reason that subjet redution holds now whereas it did not hold in Examples 5and 6 an be intuitively seen by showing that the ounterexample given in Example 5 no longerholds. Table 2 shows how the redut of Example 5 an now be typed.10



From the point of view of eÆieny, it may seem unsatisfatory that in the (def rule) de�nitionsare being unfolded in D, sine this will usually mean a size explosion of the prediate. However,the unfolding is not neessary for non-topsorts (i.e. for D 6� 2) as the following lemma shows:Lemma 28 The following rule is a derived rule:(derived def rule) �d ` C : D �d ` D : S� ` dC : dD if d is a de�nitionProof: If �d ` C : D then by the (def rule), � ` dC : jDjd; if �d ` D : S then by the (def rule)� ` dD : S. Now by onversion � ` dC : dD sine � ` dD =def jDjd. 2If D is a sort then of ourse unfolding d in D is not ineÆient sine d will disappear.Due to the possibility of using the (def rule) to type a redex, by using the (derived def rule),in some ases it is even possible to irumvent a size explosion: suppose we want to derive in �Ca type for the term (BÆ)(���)(��x)((��y)��f )(xÆ)f .In �C without de�nions, we will have to derive �rst the type (���)(��x)((��y)��f )� for thesubterm (���)(��x)((��x)��f )(xÆ)f , and by the appliation rule we will �nally derive the type(B�x)((B�y)B�f )B. Note that due to the last applied appliation rule the term B has beenopied four times, whih ould make the resulting type very large.Using our type system extended with de�nitions however, we would �rst derive the type(��x)((��y)��f )� for the term (��x)((��y)��f )(xÆ)f , and then by the derived de�nition rulewe would derive the type (BÆ)(���)(��x)((��y)��f )� and avoid the substitution of B for �.This is a further evidene for the advantage of using de�nitions.5.1 Properties of the ube with ;;� and de�nitionsLemma 29 (Free Variable Lemma for ` and ;;�) Assume � ` B : C. The followingholds:1. If d and d0 are two di�erent elements of �-del [ �-def, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. If � = �1s1�2 then FV (s1) � dom(�1).Proof: All by indution on the derivation of � ` B : C. 2Lemma 30 (Start Lemma for ` and ;;�)Let � be a legal ontext. Then � ` � : 2 and 8d 2 �[� ` d℄.Proof: � is legal ) 9B;C[� ` B : C℄; use indution on the derivation � ` B : C. 2Lemma 31 (Transitivity Lemma for ` and ;;�)Let � and � be legal ontexts and de�ne � ` � as usual. Then we have:[� ` � ^� ` A : B℄) � ` A : B.Proof: Indution on the derivation � ` A : B. By the ompatibility of � ` C =def D it followsthat if d 2 � and D arises from C by substituting one partiular free ourrene of subj(d) in Cby def(d), then � ` C =def D and hene � ` C =def D implies � ` C =def D. 2By the next lemma, nested de�nitions like (AÆ)(BÆ)(C�x)(D�y) work as linear de�nitions like(BÆ)(C�x)(AÆ)(D�y). Moreover, abstrations an be interhanged with de�nitions.Lemma 32 Let d be a de�nition and note that subj(d) 62 FV (d).1. If �d� ` C =def D then �d(def(d)Æ)(pred(d)�subj(d))� ` C =def D and�(def(d)Æ)(pred(d)�subj(d))d� ` C =def D.2. If x =2 FV (d) then �(A�x)d� ` C =def D i� �d(A�x)� ` C =def D.3. Let d0 be a de�nition. If �d� � d0 then �d(def(d)Æ)(pred(d)�subj(d))� � d0and �(def(d)Æ)(pred(d)�subj(d))d� � d0. 11



4. If �d� ` C : D then �d(def(d)Æ)(pred(d)�subj(d))� ` C : D and�(def(d)Æ)(pred(d)�subj(d))d� ` C : D.5. Let d0 be a de�nition. If x =2 FV (d) then �(A�x)d� � d0 i� �d(A�x)� � d0.6. If x =2 FV (d) then �(A�x)d� ` C : D i� �d(A�x)� ` C : D.Proof: Note that (A�x) needs not be bahelor. 1. & 2. are by indution on the generation of =def.3. & 4. are proven simultaneously by indution on the derivation �d� ` C : D. 5. & 6. are splitinto impliations and proven simultaneously by indution on the derivation (�(A�x)d� ` C : Dfor one impliation and �d(A�x)� ` C : D for the other). 3 . . . 6. need 1. & 2. for onversion.2 The following three lemmas and orollary are familiar from [1℄, but take de�nitions into aount.Lemma 33 (Thinning for ` and ;;�)1. If �1�2 ` A =def B, �1��2 is a legal ontext, then �1��2 ` A =def B.2. If � and � are legal ontexts suh that � �0 � and � ` A : B, then � ` A : B.Proof: 1. is by indution on the derivation �1�2 ` A =def B. 2. is done by showing:� If �� ` A : B, � ` C : S, x is fresh, and no �-item in � is partnered by a Æ-item in �,then also �(C�x)� ` A : B. By indution on the derivation �� ` A : B using 1. foronversion.� If �s� ` A : B, �s ` C : D : S, FV (C) � dom(�), x is fresh, s is well-balaned,then also �(CÆ)s(D�x)� ` A : B. We show this by indution on �s� ` A : B.For (start) for instane where �(AÆ)s(B�y) ` y : A omes from �s ` A : B : S, yfresh and FV (A) � dom(�), then �(CÆ)s(D�x) ` A : B : S by IH so again by (start),�(CÆ)(AÆ)s(B�y)(D�x) ` x : A.� If �s(A�x)� ` B : C; (A�x) bahelor, s well-balaned, �s ` D : A, FV (D) � dom(�, then�(DÆ)s(A�x)� ` B : C. We show this by indution on �s(A�x)� ` B : C. 2Lemma 34 (Generation Lemma for ` and ;;�)1. If � ` x : A then for some B, S: (B�x) 2 �, � ` B : S, � ` A =def B and � ` A : S0for some S0.2. If � ` (A�x)B : C then for some D, S: �(A�x) ` B : D, � ` (A�x)D : S, � `(A�x)D =def C and if (A�x)D 6� C then � ` C : S0 for a sort S0.3. If � ` (A�x)B : C then for some S1; S2: � ` A : S1, � ` B : S2, (S1; S2) is a rule,� ` C =def S2 and if S2 6� C then � ` C : S for some S.4. If � ` (AÆ)B : C, (AÆ) bahelor in B , then for some D;E, x: � ` A : D, � ` B :(D�x)E, � ` E[x := A℄ =def C and if E[x := A℄ 6� C then � ` C : S for some sort S.5. If � ` sA : B, then �s ` A : B for well balaned s.Proof: 1., 2., 3. and 4. follow by a tedious but straightforward indution on the derivations (useThinning Lemma 33). As to 5., use indution on weight(s). 2Lemma 35 (Substitution Lemma for ` and ;;�) Let d be a de�nition.1. If �d� ` A =def B, A and B are �d�-legal terms, then�d�[subj(d) := def(d)℄ ` A[subj(d) := def(d)℄ =def B[subj(d) := def(d)℄.2. If B is a �d-legal term, then �d ` B =def jBjd.12



3. If �(A�x)� ` B : C, � ` D : A and (A�x) bahelor in �(A�x)� then ��[x := D℄ `B[x := D℄ : C[x := D℄.4. If �(DÆ)s(A�x)� ` B : C and s well-balaned then �s�[x := D℄ ` B[x := D℄ : C[x := D℄.5. If �d� ` C : D, then �j�jd ` jCjd : jDjd.Proof: 1. Indution on the derivation rules of =def. 2. Indution on the struture of B. 3. and 4.Indution on the derivation rules, using 1., 2. and Lemma 33. Finally, 5. is a orollary of 3. 2Corollary 36 (Corretness of Types for ` and ;;�)If � ` A : B then B � 2 or � ` B : S for some sort S.Proof: Indution on the derivation rules. The interesting rules are appliation and de�nition:� Case � ` dA : jBjd results from �d ` A : B, then by IH B � 2 or �d ` B : S for some S.In the �rst ase jBjd � 2, in the seond ase by the Substitution Lemma � ` jBjd : jSjd � S.� Case � ` (aÆ)F : B[x := a℄ results from � ` F : (A�x)B, � ` a : A, then by IH� ` (A�x)B : S for some S and hene by Generation �(A�x) ` B : S. Then by Lemma 33�(aÆ)(A�x) ` B : S, so by the de�nition rule � ` (aÆ)(A�x)B : S[x := a℄ � S. 25.2 Subjet redution and preservation of types by lasses for ` and;;�Similarly to our earlier extension of the ube with lass redution (` and ;;�), we annot usethe usual methods for establishing Subjet Redution for ` and ;;� . For this, we need toestablish that lasses preserve types (Theorem 45) and that Subjet Redution holds for ` and!!� (Theorem 37). Subjet Redution for ` and ;;� will then be a orollary of Theorems 37and 45.Theorem 37 (Subjet Redution for ` and !!�)If � ` A : B and A!!� A0 then � ` A0 : B.Proof: We show by simultaneous indution on the derivation rules that:1. If � ` A : B and �!� �0 then �0 ` A : B and2. If � ` A : B and A!� A0 then � ` A0 : Busing Lemmas 34.5 and 35 when redution is at the root. 2Similarly to Theorem 20, in order to prove Theorem 45 we need to establish four lemmas whihwill be the basi bloks for the proof of Theorem 45. We start with a de�nition:De�nition 38 (Context Redution and equivalene for the ube with ` and ;;�)1. Let r 2 f�; ; �g.� We say �!r �0 if � � �1s�2, �0 � �1s0�2 where� Either s � (A�x), s0 � (A0�x) and A!r A0 or � s is well-balaned and s!r s0.� We say that �)r �0 if � � �1s�2 and �0 � �1s0�2 where� Either s � (A�x), s0 � (A0�x) and A!!r A0 or � s is well-balaned and s!!r s0.� We de�ne !!r (resp. ))r) as the reexive transitive losure of !r (resp. )r).It is easy to show that on ontexts, the equivalene relation based on ))� is =�.2. We say that �0 2 [�℄ i� � =� �0.44Note that this implies that �0 and � are the same exept that both items below hold:� There are d1 : : : dn (n � 0) delarations/de�nitions in � whih are replaed in �0 by delarations/de�nitionsd01 : : : d0n suh that d0i 2 [di℄.� There are main well-balaned segments s1 : : : sn (n � 0) in � whih are replaed in �0 by main well-balanedsegments s10 : : : sn0 suh that si0 2 [sn℄.Note here that we are treating ontexts like terms. If you have any problem with this, use any sort S say, and write�S =� �0S. 13



The following lemma will be used in the proofs of Lemmas 40. . . 43.Lemma 391. If B 2 [A℄ then FV (A) = FV (B).2. If B 2 [A℄ and A doesn't ontain partnered �-items then B doesn't ontain partnered �-items.3. For well balaned segments d; d0, if d =� d0 then jCjd � jCjd0 .Proof: 1. Indution on the struture of A. 2. Indution on the number of symbols in A. 3. Diretonsequene of: A[x := B℄[y := C℄ � A[y := C℄[x := B℄ if y 62 FV (C) and x 62 FV (B). 2Here are now the four lemmas whih form the basi bloks for the proof of Theorem 45. As forLemmas 15. . . 18, the proof of these lemmas is by a tedious simultaneous indution on the lengthof the derivation, distinguishing ases aording to the last rule in 1 and 2. See the appendix.Lemma 40 (One step SR for !� in the ube with ` and ;;�)1. Let � ` A : B. a) If A!� A0 then � ` A0 : B. b) If �!� �0 then �0 ` A : B.2. If � � d and �!� �0 then �0 � d.3. If � � d and d!� d0 then either � � d0 or (there exists s; d00 suh thatd0 � sd00; s well balaned, d00 is a de�nition and �s � d00).Lemma 41 (One step SR for  � in the ube with ` and ;;�)1. Let � ` A : B. a) If A0 !� A then � ` A0 : B. b) If �0 !� � then �0 ` A : B.2. Let � � d. a) If �0 !� � then �0 � d. b) If d0 !� d then � � d0.Lemma 42 (One step SR for ! in the ube with ` and ;;�)1. Let � ` A : B. a) If A! A0 then � ` A0 : B. b) If �! �0 then �0 ` A : B.2. If � � d and �! �0 then �0 � d.3. If � � d and d ! d0 then there exists s; d00 suh that d0 � d00s, s is well balaned, d00 is ade�nition and � � d00.Lemma 43 (One step SR for   in the ube with ` and ;;�)1. Let � ` A : B. a) If A0 ! A then � ` A0 : B. b) If �0 ! � then �0 ` A : B.2. Let � � d a) If �0 ! � then �0 � d. b) If d0 ! d then � � d0.Corollary 44 (SR for lasses, !!�,   � in the ube with ` and ;;�) Let � ` A : B.1. If A!!� A0 then � ` A0 : B. 2. If A0 !!� A then � ` A0 : B.3. If �))� �0 then �0 ` A : B. 4. If �0 ))� � then �0 ` A : B.5. If A0 2 [A℄ then � ` A0 : B. 6. If �0 2 [�℄ then �0 ` A : B.Proof: Items 1 and 2 are by indution on on the length of the redution !!� using Lem-mas 40. . . 43. Item 3: We only show it for )� beause the proof for ))� is by indution on thelength of ))� . If � )� �0 omes from (C�x) !!� (C 0�x) then the proof is by indution onthe length of the derivation (C�x) !!� (C 0�x) using Lemmas 40..43. If � )� �0 omes froms !!� s0 then similar. Item 4 is similar to Item 3. Item 5: Let A0 2 [A℄. Then A0 =� A byProposition 3 and hene 9A00 suh that A0 !!� A00 and A!!� A00. By 1, � ` A00 : B (beauseA !!� A00 and � ` A : B). By 2, � ` A0 : B (beause A0 !!� A00 and � ` A00 : B). Item 6:As �0 2 [�℄ then �0 =� � and hene there is �00 suh that �0 ))� �00 and � ))� �00. Now useitems 3 and 4 to derive that �0 ` A : B. 214



Theorem 45 (Classes preserve types in the ube with ` and ;;�)� ` A : B () 8�0 2 [�℄;8A0 2 [A℄;8B0 2 [B℄ we have �0 ` A0 : B0.Proof: (=) is obvious. =)) By Corollary 44.6, �0 ` A : B and by Corollary 44.5, �0 ` A0 : B.By Corollary 36, B � 2 or �0 ` B : S for some sort S.� If B � 2 then as B0 2 [B℄, we also have B0 � 2 and hene �0 ` A0 : B0.� If �0 ` B : S, then as B0 2 [B℄ we have by Corollary 44.5, that �0 ` B0 : S. Now, as=��=�, we use (onv) to get �0 ` A0 : B0. 2Here is now the proof of SR using ` and ;;� , via the SR of ` and !!� .Corollary 46 (Subjet Redution for ` and ;;�)If � ` A : B and A;;� A0 then � ` A0 : B.Proof: We only prove � ` A : B, A ;� A0 =) � ` A0 : B. By de�nition of ;� , there areA1, A01 suh that A1 2 [A℄, A01 2 [A0℄ and A1 !� A01. By Theorem 45, � ` A1 : B. By subjetredution for ` and !� (Theorem 37), � ` A01 : B. Again by Theorem 45, � ` A0 : B. 2Lemma 47 (Uniity of Types for ` and ;;�)1. If � ` A : B and � ` A : B0 then � ` B =def B02. If � ` A : B and � ` A0 : B0 and A =� A0 then � ` B =def B0Proof: 1. By indution on the struture of A using the Generation Lemma. 2. By Churh-Rosserand Subjet Redution using 1. 2Remark 48 We didn't prove the property � ` B : S, � ` A : B0, B =� B0 ) � ` B0 : S.It seems diÆult to prove beause if � ` B0 : S0 then by Uniity of Types � ` S =def S0 andit is unlear whether S � S0. Also, it would be interesting whether � ` A : B, � ` A0 : B0,� ` A =def A0 implies � ` B =def B0, but to prove this we fae similar problems. We laim thatone an prove it by showing �rst that � ` A : B implies � ` jAj� : jBj�, where jAj� means thatall de�nitions in � are unfolded in A.Fat 49 Subtyping does not hold for `. Consider the following derivable judgement:(���) ` (�Æ)(���)(��y)(yÆ)(��z)z : (��y)�The subterm (���)(��y)(yÆ)(��z)z is not typable: suppose � ` (���)(��y)(yÆ)(��z)z : A, thenby the Generation Lemma, �0 ` z : �0 where �0 � �(���)(��y)(yÆ)(��z) and �0 satis�es �0 `� =def �0 and �0 ` �0 : S.Sine � annot ontain bahelor Æ-items, we know that (���) is not partnered in �0, hene�0 6` � =def �. But sine (yÆ)(��z) 2 �0-def we know that �(���)(��y) ` y : � : S, also�(���)(��y) ` y : � so by Uniity of Types, �(���)(��y) ` � =def �, ontradition.The reason for failure of subtyping is that when we typed the term (�Æ)(���)(��y)(yÆ)(��z)z,we used the ontext (���)(�Æ)(���) to type (��y)(yÆ)(��z)z. In this ontext, � is de�ned to be�. Now, to type (���)(��y)(yÆ)(��z)z, the de�nition (�Æ)(���) annot be used. Hene, we don'thave all the information neessary to derive the type of (���)(��y)(yÆ)(��z)z. We do howeverhave a partial result onerning subtyping:Lemma 50 (Restrited Subtyping in the ube with ` and ;;�) If � ` A : B, A0 is asubterm of A suh that all bahelor items in A0 are also bahelor in A, then A0 is legal.Proof: We prove by indution on the derivations: if A0 is a subterm of � or A suh that allbahelor items in A0 are also bahelor items in � respetively A, then A0 is legal. Note that inthe ase of the (def rule) subterms s2C where d � s1 s2 and s1 is not the empty segment, do notsatisfy the restritions, sine at least one item of s2 is bahelor in s2C but partnered in dC. 2Subterms satisfying the bahelor restrition as in Lemma 50, seem to be more important thanthose not satisfying it. The reason for this is that the latter terms have an extra abstration(the newly bahelor �-item) and hene are �-types whih makes them more involved, whereas thesubterm property is useful beause it tells something about less involved terms.15



5.3 Strong Normalisation of the ube with ;;� and de�nitionsFinally, we establish strong normalisation for the ube extended with de�nitions and lass-redution.The absene of a stepwise de�nition unfolding redution (in ontrast to the work on de�nitionsto the �-ube in [19℄) makes it possible to base the proof on a translation to the ube withoutde�nitions and lass-redution. This way, we avoid the ompliations [19℄ meets. We still needstrong normalisation of �C in order to prove strong normalisation for all systems of the ubeextended with de�nitions and lass-redution, but this is a weaker requirement than that of [19℄.We start by de�ning the translation of judgements in the extended ube. In ontexts, de�nitionsmust be removed. In terms and types, de�nitions from the ontext must be unfolded similar tode�nition unfolding in De�nition 22.De�nition 51 For ontexts �, jj�jj is de�ned indutively byjj�(A�x)jj � jj�jj(A�x), jj�djj � jj�jj.For terms D and ontexts �, jjDjj� is de�ned indutively byjjDjj�(A�x) � jjDjj�, jjDjj�(BÆ)s(A�x) � jjD[x := B℄jj�s.We �rst prove some auxiliary lemmas.Lemma 52 For all terms A;B and ontext � we have jjB[x := A℄jj� � jjBjj�[x := jjAjj�℄.Proof: Indution on the length of � using the substitution lemma whih says that A[x := B℄[y :=C℄ � A[y := C℄[x := B[y := C℄℄. 2Lemma 53 For all terms B;B0 and ontext �, if � ` B =def B0 then jjBjj� =� jjB0jj�.Proof: Indution on the length of �. 2Lemma 54 If � `�C C[x := B℄ : D, and � `�C B : A then also �; x : A `�C C : D.Proof: Tedious indution on the struture of C. 2Lemma 55 If A[x := b℄ 2 SN!� then also A 2 SN!� .Proof: By ontraposition. Suppose A =2 SN!� , say A!� A1 !� A2 !� A3 !� � � � is an in�niteredution. Then also A[x := B℄ !� A1[x := B℄ !� A2[x := B℄ !� � � � , so A[x := B℄ =2 SN!� .2 Now we prove that we have a translation from derivable `-judgements to derivable judgementsin ordinary �C. We need the strong type system �C sine redexes in terms as a result of the (defrule) an have arbitrary abstrations.Theorem 56 For all terms A;B and ontexts �, if � ` A : B then jj�jj `�C jjAjj� : jjBjj�.Proof: Indution on the derivation of � ` A : B. We onsider two ases.(app) � ` (aÆ)F : B[x := a℄ from � ` F : (A�x)B and � ` a : A.By IH we know that jj�jj `�C jjF jj� : jj(A�x)Bjj� and jj�jj `�C jjajj� : jjAjj�.Note that jj(A�x)Bjj� � (jjAjj��x)jjBjj� sine by the variable onvention, x =2 dom(�).Hene by (app) in �C we get jj�jj `�C (jjajj�Æ)jjF jj� : jjBjj�[x := jjajj�℄. Now we have(jjajj�Æ)jjF jj� � jj(aÆ)F jj� and jjBjj�[x := jjajj�℄ � jjB[x := a℄jj� by Lemma 52.(def rule) � ` dC : jjDjjd as a onsequene of �d ` C : D. By IH we have jj�djj `�C jjCjj�d : jjDjj�d.We show by indution on the length of d that now j�j `�C jjdCjj� : jjjDjdjj�.Suppose d is not empty, say d � (BÆ)d(A�x). First note that jjjDjdjj� � jjDjj�d, jj�djj �jj�djj (� jj�jj) and that jjdCjj� � jjC[x := B℄jj�d � jjCjj�d[x := jjBjj�d℄.16



Sine �d is `-legal we have �d ` B : A so by IH we have jj�djj `�C jjBjj�d : jjAjj�d. Thenby Lemma 54 we have jj�djj; x : jjAjj�d `�C jjCjj�d : jjDjj�d, so by the (abs) rule (sinewe are in �C the neessary formation is allowed) we have jj�djj `�C (jjAjj�d�x)jjCjj�d :(jjAjj�d�x)jjDjj�d, whih is equivalent to jj�djj `�C jj(A�x)Cjj�d : (jjAjj�d�x)jjDjj�d. Notethat x =2 FV (jjDjj�d). Now by the seond IH we get jj�jj `�C jjd(A�x)Cjj� : (jjAjj�d�x)jjDjj�d,and sine jjBjj�d � jjBjj�, we also have jj�jj `�C jjBjj� : jjAjj�d. Therefore by the (app)rule, jj�jj `�C (jjBjj�Æ)jjd(A�x)Cjj� : jjDjj�d whih is jj�jj `�C jjdCjj� : jjDjj�d. 2Now we onlude our list of properties of the ube with ` and ;;�.Corollary 57 (Strong Normalisation for ` and ;;�) If � ` A : B then A 2 SN;� .Proof: Suppose � ` A : B. By Theorem 56, jj�jj `�C jjAjj� : jjBjj� and sine �C is stronglynormalising, jjAjj� 2 SN!� . Now jjAjj� � A[x1 := A1℄ � � � [xn := An℄ for some n; x1; : : : ; xn andterms A1; : : : ; An. Therefore, by Lemma 55, also A 2 SN!� . Hene, by Lemma 3, A 2 SN;� .26 ConlusionIn this paper, we extended the ube of eight type systems with lass redution and showed thatsubjet redution fails for six of the eight extended systems. We then established that subjetredution an be regained by adding de�nitions. The importane of de�nitions (also known as\let expressions") is witnessed by their extensive use in programming languages and theoremprovers. Intuitively, de�nitions repair the problem of subjet redution beause they save the typeinformation that otherwise would have been lost as a result of redution.Our typing relation ` is the most general relation so far in the literature that satis�es all thedesirable properties of type systems and whih we have shown to be more general than all therest. We de�ned a notion of lasses of terms whih ontain all the desirable information relatedto a term with respet to normalisation, subjet redution, et., and we showed that this notionis more general than any lassi�ation of terms that exists in the literature. We showed that ifA0 2 [A℄ then A0 and A have the same normalisation behaviour and that if � ` A : B then for any�0 2 [�℄, for any A0 2 A and for any B0 2 B, �0 ` A0 : B0. We believe that our type system basedon lasses is a non-trivial extension of the usual typing relations and that it deserves attention.Referenes[1℄ H.P. Barendregt. �-aluli with types. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook ofLogi in Computer Siene, volume II, pages 118{310. Oxford University Press, 1992.[2℄ Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. In Amr Sabry, editor, Proeedings ofthe Third ACM SIGPLAN Workshop on Continuations, Tehnial report 545, Computer Siene Department,Indiana University, pages 35{39, London, England, January 2001. Also available as the tehnial report BRICSRS-00-35.[3℄ P. de Groote. The onservation theorem revisited. In International Conferene on Typed Lambda Caluli andAppliations, LNCS, volume 664. Springer-Verlag, 1993.[4℄ F. Kamareddine. Postponement, onservation and preservation of strong normalisation for generalised redu-tion. Logi and Computation, 10(5):721{738, 2000.[5℄ F. Kamareddine and R. Bloo. De Bruijn's syntax and redutional equivalene of lambda terms: the untypedase. Logi and Algebrai Programming, 2004.[6℄ F. Kamareddine, R. Bloo, and R. Nederpelt. On �-onversion in the �-ube and the ombination withabbreviations. Annals of Pure and Applied Logi, 97(1{3):27{45, 1999.[7℄ F. Kamareddine, R. Bloo, and R. P. Nederpelt. De Bruijn's syntax and redutional equivalene of lambdaterms. In Pro. 3rd Int'l Conf. Priniples & Pratie Delarative Programming, pages 16{27, 5{7 September2001.[8℄ F. Kamareddine and R. Nederpelt. A useful �-notation. Theoretial Computer Siene, 155:85{109, 1996.[9℄ F. Kamareddine, A. R��os, and J.B. Wells. Caluli of generalised �e-redution and expliit substitution: Typefree and simply typed versions. Journal of Funtional and Logi Programming, 1998.17
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A Proofs of the lemmasProof:[Lemma 14℄1. We �rst prove (by indution on the derivations) that � 6` 2 : A for any A, and that if� ` A : 2 then FV (A) = ;. Then if � ` (A�x)B : 2, by Generation, � ` B : 2, soFV (B) = ;.For the ase � ` A : �, we �rst prove by indution on the derivations that if � ` A : A0 : 2,then FV (A) � fx j 9A00 : � ` x : A00 : 2g. Now we prove that if � ` (A�x)B : � thenx 62 FV (B): sine we are in �!, �(A�x) ` B : � and � ` A : �. Sine �(A�x) is a legalontext, we have � ` x : A : �, but FV (B) � fy j 9A00 : �(A�x) ` x : A00 : 2g, sox 62 FV (B).2. Applying the Generation Lemma 10 twie we get �rst � ` (B�x)C : (A0�y)B0, � ` A : A0,B0[y := A℄ =� D and then �(B�x) ` C : B00, (A0�y)B0 =� (B�x)B00 and � ` (B�x)B00 : S.Now, it follows that B0 =� B00 and by Lemma 14.1, B0[y := A℄ � B0 so B00 =� D.Then by (onv) we have �(B�x) ` C : D. But � ` (B�x)B00 : S implies by GenerationLemma 10 that � ` B00 : S. Also, A0 =� B so by (onv) � ` A : B.3. Note that by Generation Lemma 10, � ` (b�x) : (B�y)D. If � � � then again useGeneration Lemma 10 to get that (B�y)D =� S for some S, whih is absurd.4. By indution on the derivations. (axiom): easy. (app), (abs), (onv), (form): use IH.� (start): if interhanging is in �, use IH. Otherwise, �(A�x)(B�y) ` y : B as a onlusionof �(A�x) ` B : S and x 62 FV (B). We must prove that �(B�y)(A�x) ` y : B. By theonverse of Lemma 9 (for ordinary �-alulus), whih is proven by van Benthem-Juttingand listed in [1℄, we have � ` B : S, so by (start) �(B�y) ` y : B. Now, sine �(A�x) isa legal ontext, � ` A : S0 for some sort S0 and thus by (weak) �(B�y)(A�x) ` y : B.� (weak): if interhanging is in �, use IH. Otherwise, �(A�x)(B�y) ` D : E as aonlusion of �(A�x) ` B : S, �(A�x) ` D : E and y 62 FV (B). We must prove�(B�y)(A�x) ` D : E. Sine, �(A�x) ` D : E and y 62 FV (A) [ FV (D) [ FV (E), byThinning Lemma 9 for the ordinary �-alulus we get �(B�y)(A�x) ` D : E.5. Suppose e =� S and e 6� S. Then e!!+� S so there is an e0 suh that e!!� e0 !� S. Nowby Corollary 11.1, � ` e : S0 for some sort S0 and by Subjet Redution for !!� , � ` e0 : S0.But, e0 !� S means that e0 � (JÆ)(H�x)I for some H; I; J suh that I [x := J ℄ � S. Butthen either I � S or (I � x and J � �). It is easy to hek by Lemma 10 that suhappliation of and abstration over a sort are impossible for any system of the ube. 2Proof:[Lemma 15℄ We prove 1 and 2 simultaneously by indution on the derivation of � ` A : B.� Case (axiom): No �-redution is possible.� Case (start) where �(A�x) ` x : A omes from � ` A : S and x is fresh, then the onlypossible �-redution is in � or (A�x).{ If �-redution is in �, use IH.{ If �-redution is in (A�x), by IH, � ` A0 : S and hene by (start) �(A0�x) ` x : A0. By(onv), A =� A0 (Proposition 3) and �(A0�x) ` A : S (weak), we get �(A0�x) ` x : A.� Case (weak), (onv), (abs) or (form), use IH. For (abs), also use (onv).� Case (app) where � ` (aÆ)F : B[x := a℄ omes from � ` F : (A�x)B and � ` a : A:{ If �-redution is in � or F , use IH.{ If �-redution is in a, then by Corretness of Types (Corollary 11.1), � ` (A�x)B : Sand by Lemma 14.1 x 62 FV (B). Hene, B[x := a℄ � B. Now, use IH.19



{ If F � (bÆ)(�y)d and (aÆ)F !� (bÆ)(�y)(aÆ)d, we must show that � ` (bÆ)(�y)(aÆ)d :B (note again by Lemma 14.1, B[x := a℄ � B). By Lemma 10 we get from � `F : (A�x)B that �(�y) ` d : (A0�x)B0 for some A0; B0 suh that (A0�x)B0[y :=b℄ =� (A�x)B. Sine we are in �! or �!, y 62 FV ((A0�x)B0) by Lemma 14.1 soA0 =� A and B0 =� B, and by (onv) �(�y) ` d : (A�x)B. Now, by (weak) also�(�y) ` a : A so by (app) �(�y) ` (aÆ)d : B[x := a℄, i.e., �(�y) ` (aÆ)d : B. But� ` (�y)B : S for some sort S, sine B and (A�x)B have the same type, and so by(abs) � ` (�y)(aÆ)d : (�y)B and by (app) � ` (bÆ)(�y)(aÆ)d : B[y := b℄ � B. 2Proof:[Lemma 16℄ We prove 1 and 2 simultaneously by indution on the derivation of � ` A : B.As all ases are similar to Lemma 15, we only onsider (app) where � ` (aÆ)F : e[y := a℄ omesfrom � ` F : (A�y)e and � ` a : A. The ases where �-redution is to either � or F or a aresimilar to the orresponding ases in the proof of Lemma 15. We onsider the ruial ase whereF � (b�x)(Æ)d and (Æ)(aÆ)(b�x)d !� (aÆ)F . By Lemma 14.1, y 62 FV (e) so e[y := a℄ � e. Wemust therefore show that � ` (Æ)(aÆ)(b�x)d : e. By Lemma 14.2, �(b�x) ` (Æ)d : e, � ` a : band � ` (b�x)e : S for a sort S. By Lemma 10 on �(b�x) ` (Æ)d : e, there are B;C suh that�(b�x) ` d : (C�y)B, �(b�x) `  : C, e =� B[y := ℄ and B[y := ℄ 6� e implies � ` e : S0 for somesort S0. Now by Lemma 14.1, y 62 FV (B) so e =� B and if e 6� B then � ` e : S0.In order to show that � ` (b�x)(C�y)B : S00 for some sort S00, note from above that � ` (b�x)e :S00 for some sort S00 and both (A�y)e and (C�y)B are legal. Sine the only formation rulesare (�; �) and (2;2), this implies that b; e; C, and B are all typable and have type S00. Then,also (b�x)(C�y)B has type S00. Hene, we an apply (abs) on �(b�x) ` d : (C�y)B to get� ` (b�x)d : (b�x)(C�y)B. Sine � ` a : b, by (app) we get � ` (aÆ)(b�x)d : ((C�y)B)[x := a℄.Sine �(b�x) `  : C, by the Substitution Lemma 12 we have � ` [x := a℄ : C[x := a℄.But, [x := a℄ :=  beause (Æ)(aÆ)(b�x)d !� (aÆ)(b�x)(Æ)d. So we get by (app) that � `(Æ)(aÆ)(b�x)d : B[x := a℄[y := ℄ and sine x; y 62 FV (B) and e =� B we are done by (onv). 2Proof:[Lemma 17℄ We prove 1 and 2 simultaneously by indution on the derivation of � ` A : B.� Case (axiom): nothing to prove.� Case (start) where �(A�x) ` x : A omes from � ` A : S and x is fresh, then the onlypossible -redution is in � or (A�x). In the �rst ase use IH, in the seond, use IH, (start),(onv), (weak) and Proposition 3.� Case (weak), (onv), (abs) or (form), use IH. For (abs), use also (onv).� Case (app) where � ` (aÆ)F : e[x := a℄ omes from � ` F : (A�x)e and � ` a : A. If -redution is in a, F or �, apply IH (if -redution is in a, note that by Lemma 14.1, x 62 FV (e)so e[x := a℄ � e). Now we onsider the ruial ase where � ` (aÆ)(b�x)(�y)d : e (i.e., F �(b�x)(�y)d) with � 2 f�; �g and x 62 FV (). We must prove that � ` (�y)(aÆ)(b�x)d : e.By Lemma 14.2, �(b�x) ` (�y)d : e, � ` a : b and � ` (b�x)e : S for some sort S.{ Suppose � � �. By Lemma 10 on �(b�x) ` (�y)d : e we get �(b�x)(�y) ` d : S2,�(b�x) `  : S1, (S1; S2) is a rule and e =� S2 (and if e 6� S2 then �(b�x) ` e : S0). ByLemma 14.4 (note that x 62 FV ()) we also have �(�y)(b�x) ` d : S2. If needed, we use(onv) to get �(�y)(b�x) ` d : e and by (abs) �(�y) ` (b�x)d : (b�x)e. As � ` a : bthen by (weak) �(�y) ` a : b and by (app) �(�y) ` (aÆ)(b�x)d : e[x := a℄ � e. ByLemma 14.5, e � S2 so we an use formation to get that � ` (�y)(aÆ)(b�x)d : e.{ Suppose � � �. By Lemma 10 on �(b�x) ` (�y)d : e we have for some f that�(b�x)(�y) ` d : f , �(b�x) ` (�y)f : S0 and (�y)f =� e. By Lemma 14.4,�(�y)(b�x) ` d : f . By Corollary 11.1, � ` (b�x)e : S for some S. Hene by Lemma 10,� ` b : S1, �(b�x) ` e : S for some S1 where (S1; S) is a rule. Similarly, �(b�x) `  : S3,�(b�x)(�y) ` f : S0 for some S3 where (S3; S0) is a rule. Sine e =� (�y)f , then by thetermination of all the ube systems for!� we have S =� S0 and hene S � S0. Also byLemma 14.4, �(�y)(b�x) ` f : S0 � S. By (weak) �(�y) ` b : S1. Hene sine (S1; S)is a rule, (form) gives �(�y) ` (b�x)f : S. So by (abs) �(�y) ` (b�x)d : (b�x)f .20



Now by (weak) �(�y) ` a : b so by (app) �(�y) ` (aÆ)(b�x)d : f [x := a℄. Sine byLemma 14.1 x 62 FV (f), �(�y) ` (aÆ)(b�y)d : f . From �(b�x) ` (�y)f : S0, S � S0,x 62 FV () [ FV (f) and by the reverse of Thinning (Jutting, see [1℄) it follows that� ` (�y)f : S. So by (abs) we get: � ` (�y)(aÆ)(b�x)d : (�y)f . Now use (onv) toget � ` (�y)(aÆ)(b�x)d : e. 2Proof:[Lemma 18℄ We prove 1 and 2 simultaneously by indution on the derivation of � ` A : B.� Case (axiom): nothing to prove.� Case (start) where �(A�x) ` x : A omes from � ` A : S and x is fresh, then the onlypossible -redution is to � or (A�x). In the �rst ase use IH. In the seond, use IH, (start),(onv), (weak) and Proposition 3.� Case (weak) or (onv), use IH.� Case (app) where � ` (aÆ)F : e[x := a℄ omes from � ` F : (A�x)e and � ` a : A. If-redution is to a, F or �, apply IH (for the ase where -redution is in a, note that byLemma 14.1, x 62 FV (e) so e[x := a℄ � e).� Case (abs) where � ` (A�x)b : (A�x)B omes from �(A�x) ` b : B and � ` (A�x)B : S. Ifredution is to � or b use IH. If redution is to A use IH and (onv). Now take the ruialase where b � (Æ)(d�y)e (reall Lemma 14.3) and (Æ)(d�y)(A�x)e ! (A�x)(Æ)(d�y)e.We must show that � ` (Æ)(d�y)(A�x)e : (A�x)B. Note that y 62 FV (A) and y 62 FV (B)(the latter holds sine FV (B) � dom(�) and by the Barendregt Convention, as y is boundin b we would not hoose it in dom(�)). By Lemma 14.2 on �(A�x) ` b � (Æ)(d�y)e : Bwe get: �(A�x)(d�y) ` e : B, �(A�x) `  : d and �(A�x) ` (d�y)B : S0 for a sort S0. Noteby -redution that x 62 FV () [ FV (d) and hene by the onverse of the Thinning Lemmaon �(A�x) `  : d we get � `  : d. Note by -redution that x 62 FV (d) and hene byLemma 14.4 on �(A�x)(d�y) ` e : B we get �(d�y)(A�x) ` e : B. But also by Lemma 9 on� ` (A�x)B : S we get �(d�y) ` (A�x)B : S. Hene, by (abs) we get �(d�y) ` (A�x)e :(A�x)B. Reall that we have � ` (A�x)B : S and �(A�x) ` (d�y)B : S0. We want toshow that � ` (d�y)(A�x)B : S00 for some sort S00. By Lemma 10 on �(A�x) ` (d�y)B : S0we get that �(A�x) ` d : S1, �(A�x)(d�y) ` B : S0 and (S1; S0) is a rule. As y 62 FV (B)then by the onverse of Thinning, �(A�x) ` B : S0. By Lemma 10 on � ` (A�x)B : Swe get �(A�x) ` B : S. Hene, S � S0. Also from � ` (A�x)B : S we get by Lemma 9�(d�y) ` (A�x)B : S. But � ` d : S1 and (S1; S) is a rule, hene we get by (form) that� ` (d�y)(A�x)B : S. Now as �(d�y) ` (A�x)e : (A�x)B and � ` (d�y)(A�x)B : S we getby (abs) that � ` (d�y)(A�x)e : (d�y)(A�x)B. Finally, reall that y 62 FV (A)[FV (B) andhene ((A�x)B)[y := ℄ � (A�x)B. Now, as � `  : d and � ` (d�y)(A�x)e : (d�y)(A�x)Bwe use (app) to get the onlusion that � ` (Æ)(d�y)(A�x)e : (A�x)B.� Case (form) where � ` (A�x)B : S2 omes from � ` A : S1, �(A�x) ` B : S2 and (S1; S2)rule. If -redution is in either � or A or B then use IH. Now take the ruial ase whereB � (CÆ)(D�y)E (reall Lemma 14.3) and (CÆ)(D�y)(A�x)E ! (A�x)(CÆ)(D�y)E, wemust show that � ` (CÆ)(D�y)(A�x)E : S2. By Lemma 14.2 on �(A�x) ` (CÆ)(D�y)E : S2we get �(A�x)(D�y) ` E : S2, �(A�x) ` C : D and �(A�x) ` (D�y)S2 : S0 for some sortS0.As x 62 FV (D), we get by Lemma 14.4 that �(D�y)(A�x) ` E : S2. By Lemma 9 on� ` A : S1, we have �(D�y) ` A : S1. Now use the fat that (S1; S2) is a rule to get by (form)that �(D�y) ` (A�x)E : S2. By onverse of Thinning Lemma, as x 62 FV (D) we get from�(A�x) ` (D�y)S2 : S0 that � ` (D�y)S2 : S0. � ` (D�y)S2 : S0 and �(D�y) ` (A�x)E :S2 give by (abs) � ` (D�y)(A�x)E : (D�y)S2. As x 62 FV (C) [ FV (D), we get by theonverse of Thinning Lemma on �(A�x) ` C : D that � ` C : D. Now use (app) on � ` C : Dand � ` (D�y)(A�x)E : (D�y)S2 to get � ` (CÆ)(D�y)(A�x)E : S2[y := C℄ � S2. 221



Proof: [Lemma 40℄ By simultaneous indution on the length of the derivation. We distinguishases aording to the last rule in 1.� (axiom): nothing to prove.� (onv), (abs) or (form): use IH. For (abs) use also (onv).� (start): Assume �d ` subj(d) : pred(d) omes from � � d. If redution is in � or in dwhere d is a de�nition then use IH. If d is a delaration and redution is in d then use IH and(onv). Else, if d � (aÆ)(Æ)(e�y)(b�x) and d!� d0 � (Æ)(e�y)(aÆ)(b�x) then by IH � � d0,so by (start) �d0 ` subj(d0) : pred(d0). Now it is easy to show that �(Æ)(e�y) � (aÆ)(b�x)so by (start) �(Æ)(e�y)(aÆ)(b�x) ` x : b.� (weak): Assume �d ` D : E omes from �d ` D : E and � � d. If redution is in �d,in D, or in a main item of d, use IH and (onv). Otherwise, d � (aÆ)(bÆ)(�x)s(e�y) forsome a; b; ; e; s well balaned and d0 � (bÆ)(�x)(aÆ)s(e�y) where d !� d0. We must showthat �(bÆ)(�x)(aÆ)s(e�y) ` D : E. Sine � � d we have that �d is a pseudoontext,�(bÆ)(�x)s ` e : S for some sort S and �(bÆ)(�x)s ` a : e and FV (a) � dom(�). Now itfollows that also �(bÆ)(�x) � (aÆ)s(e�y), so by (weak) �(bÆ)(�x)(aÆ)s(e�y) ` D : E.� (app): If redution is in �; a or F , use IH (also (onv), Corollary 36 and Lemma 35 for a).Otherwise, � ` (aÆ)(bÆ)(�x)F : B[y := a℄ is a onlusion from � ` (bÆ)(�x)F : (A�y)Band � ` a : A. Then by Lemma 34, �(bÆ)(�x) ` F : (A�y)B and by Lemma 33 on� ` a : A we have �(bÆ)(�x) ` a : A. So by (app) �(bÆ)(�x) ` (aÆ)F : B[y := a℄ and by(def rule) � ` (bÆ)(�x)(aÆ)F : jB[y := a℄j(bÆ)(�x). Sine x 62 FV (B[y := a℄) we are done.� (def rule) where � ` dC : jDjd omes from �d ` C : D where d is a de�nition. Sine d iswell-balaned, and � ontains only partnered Æ-items, redution must be in �, or d or C.y If redution is in C use IH. y If redution is in � where �!� �0 then:{ Use IH to dedue by (def rule) that �0 ` dC : jDjd.{ Now suppose � � d and �!� �0. Then �0d is a pseudoontext, �0d ` pred(d) : S and�0d ` def(d) : pred(d) follow from IH. Moreover, FV (def(d0)) � dom(�) sine !�does not hange binders in �. Hene, �0 � d.y If redution is in d, say d!� d0, then:{ Either d0 is still a de�nition or d � (aÆ)(bÆ)(�x)s(e�y) and d0 � (bÆ)(�x)(aÆ)s(e�y).In the �rst ase, � ` d0C : jDjd follows from IH and (onv). In the seond ase, sineby IH, �d0 ` C : D, we get by (def rule) �(bÆ)(�x) ` (aÆ)s(e�y)C : jDj(aÆ)s(e�y). Byapplying (def rule) again, we get � ` d0C : jDjd0 , and by Lemma 39 we are done.{ Lastly, suppose � � d. Then �d0 is a pseudoontext. If the redution is in d or not on themain items of d, use IH and (onv) to get � � d0. Otherwise, d � (aÆ)(bÆ)(�x)s(e�y)and d0 � (bÆ)(�x)(aÆ)s(e�y) for some a; b; ; e and well balaned s. It is easy to showthat �d0 is a pseudoontext and that FV (a) � dom(�(bÆ)(�x)). Also, beause � � dwe have that �(bÆ)(�x)s ` e : S and �(bÆ)(�x)s ` a : e. Hene, �(bÆ)(�x) �(aÆ)s(e�y). 2Proof:[Lemma 41℄ By simultaneous indution on the length of the derivation. We distinguishases aording to the last rule in the derivation for 1.� (axiom): nothing to prove.� (onv), (abs) or (form): use IH.
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� (start): Assume �d ` subj(d) : pred(d) omes from � � d. If redution is to � or to d whered is a de�nition then use IH. If d is a delaration and redution is to d then use IH and (onv).Else, if d � (aÆ)s(b�x), � � �1(Æ)(e�y) where (aÆ)(Æ)(e�y)s(b�x)!� (Æ)(e�y)(aÆ)s(b�x),and �1(Æ)(e�y)(aÆ)s(b�x) ` x : a omes from �1(Æ)(e�y) � (aÆ)s(b�x) then we need toshow that �1(aÆ)(Æ)(e�y)s(b�x) ` x : a. It is easy to show that �1 � (aÆ)(Æ)(e�y)s(b�x)and hene by (start) �1(aÆ)(Æ)(e�y)s(b�x) ` x : a.� (weak): Assume �d ` D : E omes from �d ` D : E and � � d. If redutionis either to �, d, D, or to a main item of d, use IH and (onv) if needed. Else, ifd � (aÆ)s(b�x), � � �1(Æ)(e�y) where (aÆ)(Æ)(e�y)s(b�x) !� (Æ)(e�y)(aÆ)s(b�x), and�1(Æ)(e�y)(aÆ)s(b�x) ` D : E omes from �1(Æ)(e�y) � (aÆ)s(b�x) and �1(Æ)(e�y)s `D : E, then use IH to show �1 � (aÆ)(Æ)(e�y)s(b�x) and use �1(Æ)(e�y)s ` D : E toonlude by (weak) that �1(aÆ)(Æ)(e�y)s(b�x) ` D : E.� (app): � ` (aÆ)F : B[x := a℄ omes from � ` F : (A�x)B and � ` a : A.{ If �-redution is to � or F , use IH.{ If �-redution is to a use IH, Corretness of Types Corollary 36 and (onv).{ If F � (b�x)(Æ)F 0 and (Æ)(aÆ)(b�x)F 0 !� (aÆ)F (where x 62 FV ()), we must showthat � ` (Æ)(aÆ)(b�x)F 0 : B[x := a℄. By Lemma 34 on � ` (aÆ)(b�x)(Æ)F 0 : B[x :=a℄ we have �(aÆ)(b�x) ` (Æ)F 0 : B[x := a℄. Again by Lemma 34 �(aÆ)(b�x) `F 0 : (C�y)D and �(aÆ)(b�x) `  : C for some C; y;D suh that �(aÆ)(b�x) ` D[y :=℄ =def B[x := a℄. By (def rule), � ` (aÆ)(b�x)F 0 : ((C�y)D)[x := a℄ and by Lemma 35on �(aÆ)(b�x) `  : C (note x 62 FV ()), we get � `  : C[x := a℄. Now by(app) on � ` (aÆ)(b�x)F 0 : ((C�y)D)[x := a℄ and � `  : C[x := a℄ we get � `(Æ)(aÆ)(b�x)F 0 : D[x := a℄[y := ℄.Sine x 62 FV (), D[x := a℄[y := ℄ � D[y := ℄[x := a℄ =� B[x := a℄[x := a℄ � B[x :=a℄. Therefore by (onv), � ` (Æ)(aÆ)(b�x)F 0 : B[x := a℄.� (def rule): where � ` dC : jDjd omes from �d ` C : D where d is a de�nition. Sine dis well-balaned, and � ontains only partnered Æ-items, redution must be to �, to d or toC or we must have C � (Æ)e and d � (aÆ)(b�x) where (Æ)(aÆ)(b�x)e !� (aÆ)(b�x)(Æ)e.The �rst three ases are an easy appliation of IH. In the last ase, � ` (aÆ)(b�x)(Æ)e :jDj(aÆ)(b�x) omes from �(aÆ)(b�x) ` (Æ)e : D. We need to show that � ` (Æ)(aÆ)(b�x)e :jDj(aÆ)(b�x). By Lemma 34 on �(aÆ)(b�x) ` (Æ)e : D we have, �(aÆ)(b�x) ` e : (G�y)E,�(aÆ)(b�x) `  : G and �(aÆ)(b�x) ` E[y := ℄ =def D. Then by the (def rule), � `(aÆ)(b�x)e : ((G�y)E)[x := a℄ and by Lemma 35.4, � ` [x := a℄ : G[x := a℄. But[x := a℄ �  and hene by (app) we get � ` (Æ)(aÆ)(b�x)e : E[x := a℄[y := ℄. But asy 62 FV (a), we have E[x := a℄[y := ℄ � E[y := ℄[x := a℄ =� D[x := a℄ and now use (onv)on � ` (Æ)(aÆ)(b�x)e : E[x := a℄[y := ℄ and Corollary 36 to obtain � ` (Æ)(aÆ)(b�x)e :D[x := a℄.Now suppose � � d and �0 !� � then by IH, also �0 � d.Lastly, suppose � � d and d0 !� d. If d is a de�nition, then redution must be in a mainitem of d0 or on the main items of d0. Hene by IH, we get � � d0. 2Proof:[Lemma 42℄ By simultaneous indution on the length of the derivation. We distinguishases aording to the last rule in the derivation for 1.� (axiom): nothing to prove. (onv), (abs) or (form): use IH. For (abs) also use (onv).� (start): Assume �d ` subj(d) : pred(d) omes from � � d. If redution is in � or in dwhere d is a de�nition then use IH. If d is a delaration and redution is in d then use IHand (onv). Else, if d � (aÆ)s(Æ)(e�y)(b�x) and d ! d0 � (aÆ)s(b�x)(Æ)(e�y) then byLemma 32, �(aÆ)s(b�x)(Æ)(e�y) ` subj(d) : pred(d) beause x 62 FV () [ FV (e).23



� (weak): Assume �d ` D : E omes from �d ` D : E and � � d. If redution is in �d, inD, or in a main item of d, use IH and (onv). Otherwise, d � (aÆ)s(bÆ)(�x)(e�y) for somea; b; ; e; s and d0 � (aÆ)s(e�y)(bÆ)(�x) where d! d0. Now, use Lemma 32.� (app): Assume � ` (aÆ)F : B[x := a℄ omes from � ` F : (A�x)B and � ` a :A. If redution is in �; a or F , use IH (also (onv), Corollary 36 and Lemma 35 for a).Else if � ` (aÆ)(b�x)(�y)F 0 : B[x := a℄ omes from � ` (b�x)(�y)F 0 : (A�x)B and� ` a : A where (aÆ)(b�x)(�y)F 0 ! (�y)(aÆ)(b�x)F 0 then we need to show that � `(�y)(aÆ)(b�x)F 0 : B[x := a℄. By Lemma 34 on � ` (aÆ)(b�x)(�y)F 0 : B[x := a℄ we havethat �(aÆ)(b�x) ` (�y)F 0 : B[x := a℄ and again by Lemma 34, for some term D and sort S,�(aÆ)(b�x)(�y) ` F 0 : D, �(aÆ)(b�x) ` (�y)D : S, �(aÆ)(b�x) ` (�y)D =def B[x := a℄and if (�y)D 6� B[x := a℄ then �(aÆ)(b�x) ` B[x := a℄ : S0 for some S0. By Lemma 32on �(aÆ)(b�x)(�y) ` F 0 : D, �(�y)(aÆ)(b�x) ` F 0 : D and hene by (def rule) we have�(�y) ` (aÆ)(b�x)F 0 : D[x := a℄. But �(aÆ)(b�x) ` (�y)D : S gives by Lemma 35.4,� ` ((�y)D)[x := a℄ : S. But x 62 FV () and hene � ` (�y)D[x := a℄ : S. Nowuse (abs) on � ` (�y)D[x := a℄ : S and �(�y) ` (aÆ)(b�x)F 0 : D[x := a℄ to get� ` (�y)(aÆ)(b�x)F 0 : (�y)D[x := a℄. But as �(aÆ)(b�x) ` (�y)D =def B[x := a℄ andx 62 FV (), Lemma 35.1 gives � ` (�y)D[x := a℄ =def B[x := a℄[x := a℄ � B[x := a℄. Wetreat two ases:{ If (�y)D � B[x := a℄ then (�y)D[x := a℄ � B[x := a℄ and we are done.{ If (�y)D 6� B[x := a℄ then � ` B[x := a℄ : S0. By (onv) � ` (�y)(aÆ)(b�x)F 0 :B[x := a℄.� (def rule) where � ` dC : jDjd omes from �d ` C : D where d is a de�nition.{ If redution is in C or in � use IH.{ If redution is in d, say d!� d0, then if d0 is still a de�nition use IH and (onv).{ If redution is in d, say d!� d0 and d0 is not a de�nition then d � (aÆ)s(bÆ)(�x)(e�y)for some a; b; ; e; s well balaned and d0 � (aÆ)s(e�y)(bÆ)(�x) where d ! d0. Sineby IH, �d0 ` C : D, we get by (def rule) �(aÆ)s(e�y) ` (bÆ)(�x)C : jDj(bÆ)(�x). By(def rule) again, � ` (aÆ)s(e�y)(bÆ)(�x)C : jjDj(bÆ)(�x)j(aÆ)s(e�y) � jDjd0 . Now useLemma 39.{ If redution is in dC where � ` (aÆ)(b�x)(�y)e : D[x := a℄ omes from �(aÆ)(b�x) `(�y)e : D and (aÆ)(b�x)(�y)e! (�y)(aÆ)(b�x)e. We must show � ` (�y)(aÆ)(b�x)e :D[x := a℄. By Lemma 34 on �(aÆ)(b�x) ` (�y)e : D we get �(aÆ)(b�x)(�y) ` e : E,�(aÆ)(b�x) ` (�y)E : S, �(aÆ)(b�x) ` (�y)E =def D, and if (�y)E 6� Dthen �(aÆ)(b�x) ` D : S0. By Lemma 32 on �(aÆ)(b�x)(�y) ` e : E we get�(�y)(aÆ)(b�x) ` e : E. By (def rule) we get �(�y) ` (aÆ)(b�x)e : E[x := a℄.As x 62 FV (), we get by Substitution Lemma 35 on �(aÆ)(b�x) ` (�y)E : S that� ` (�y)E[x := a℄ : S. Hene, by (abs) � ` (�y)(aÆ)(b�x)e : (�y)E[x := a℄.� If (�y)E � D then (�y)E[x := a℄ � D[x := a℄ and we are done.� If (�y)E 6� D then �(aÆ)(b�x) ` D : S0 and hene by Lemma 35 � ` D[x :=a℄ : S0. As �(aÆ)(b�x) ` (�y)E =def D, then by Lemma 35 �(aÆ)(b�x) `(�y)E[x := a℄ =def D[x := a℄. Now use (onv) to get that � ` (�y)(aÆ)(b�x)e :D[x := a℄.Lastly, suppose � � d. Then �d0 is a pseudoontext. If the redution is in d or not onthe main items of d, use IH and (onv) to get � � d0. Otherwise, d � (aÆ)s(bÆ)(�x)(e�y)for some a; b; ; e; s well balaned and d0 � (aÆ)s(e�y)(bÆ)(�x) where d ! d0. Take d00 �(aÆ)s(e�y). It is easy to show that �d00 is a pseudoontext and that FV (a) � dom(�). Also,beause � � d we have that �s(bÆ)(�x) ` e : S and �s(bÆ)(�x) ` a : e and so by onverseof thinning �s ` e : S and �s ` a : e. Hene, � � (aÆ)s(e�y) � d00. 224



Proof:[Lemma 43℄ By simultaneous indution on the length of the derivation. We distinguishases aording to the last rule in the derivation for 1.� (axiom): nothing to prove. (onv): use IH.� (abs): Assume � ` (A�x)b : (A�x)B omes from �(A�x) ` b : B and � ` (A�x)B : S. Ifredution is to � or b use IH. If redution is to A use IH and (onv). Now take the ruialase where b � (Æ)(d�y)e and (Æ)(d�y)(A�x)e ! (A�x)(Æ)(d�y)e. We must show that� ` (Æ)(d�y)(A�x)e : (A�x)B. By Generation Lemma 34 on �(A�x) ` (Æ)(d�y)e : B weget �(A�x)(Æ)(d�y) ` e : B. By Lemma 32 �(Æ)(d�y)(A�x) ` e : B. By Lemma 33 on� ` (A�x)B : S we get �(Æ)(d�y) ` (A�x)B : S. By (abs) we get �(Æ)(d�y) ` (A�x)e :(A�x)B. by (def rule) � ` (Æ)(d�y)(A�x)e : ((A�x)B)[y := ℄. But by -redution,y 62 FV (A). Also, y 62 FV (B) beause by Lemma 29 on �(A�x) ` (Æ)(d�y)e : B,FV (B) � dom(�(A�x)) and as �(A�x)(Æ)(d�y) is a pseudoontext, y 62 dom(�(A�x)).Hene, ((A�x)B)[y := ℄ � (A�x)B and we have � ` (Æ)(d�y)(A�x)e : (A�x)B.� (form): If � ` (A�x)B : S2 omes from � ` A : S1, �(A�x) ` B : S2 and (S1; S2)rule. If -redution is in either � or A or B then use IH. Now take the ruial ase where� ` (A�x)(aÆ)(b�y)C : S2 omes from � ` A : S1, �(A�x) ` (aÆ)(b�y)C : S2, (S1; S2) and(aÆ)(b�y)(A�x)C ! (A�x)(aÆ)(b�y)C. We need to show that � ` (aÆ)(b�y)(A�x)C : S2.By Lemma 34 on �(A�x) ` (aÆ)(b�y)C : S2, we get �(A�x)(aÆ)(b�y) ` C : S2. ByLemma 32 we get �(aÆ)(b�y)(A�x) ` C : S2 beause x 62 FV (a)[FV (b). By Lemma 33 on� ` A : S1, we get �(aÆ)(b�y) ` A : S1. Now use (form) to get �(aÆ)(b�y) ` (A�x)C : S2.Finally, by (def rule) � ` (aÆ)(b�y)(A�x)C : S2.� (start): Assume �d ` subj(d) : pred(d) omes from � � d. If redution is to � or to dwhere d is a de�nition then use IH. If d is a delaration and redution is to d then use IHand (onv). Else, if �1(aÆ)(b�x)(Æ)(e�y) ` y :  omes from �1(aÆ)(b�x) � (Æ)(e�y) where(aÆ)(Æ)(e�y)(b�x)! (aÆ)(b�x)(Æ)(e�y) then by Lemma 32 �1(aÆ)(Æ)(e�y)(b�x) ` y : .� (weak): Assume �d ` D : E omes from �d ` D : E and � � d. If redutionis either to �, d, D, or to a main item of d, use IH and (onv) if needed. Else, if�1(aÆ)(b�x)(Æ)(e�y) ` D : E omes from �1(aÆ)(b�x) � (Æ)(e�y) and �1(aÆ)(b�x) `D : E where (aÆ)(Æ)(e�y)(b�x)! (aÆ)(b�x)(Æ)(e�y) then by Lemma 32,�1(aÆ)(Æ)(e�y)(b�x) ` D : E.� (app): If redution is to �; a or F , use IH (also (onv) Corollary 36 and Lemma 35 for a).� (def rule): Assume � ` dC : jDjd omes from �d ` C : D where d is a de�nition.{ If redution is to C or to � use IH.{ If redution is to d, say d!� d0, then d0 must be a de�nition and we use IH.{ Assume redution is to dC where � ` (aÆ)s(e�y)(bÆ)(d�x)f : jDj(aÆ)s(e�y) omes from�(aÆ)s(e�y) ` (bÆ)(d�x)f : D with (aÆ)s(bÆ)(d�x)(e�y)f ! (aÆ)s(e�y)(bÆ)(d�x)f .We show � ` (aÆ)s(bÆ)(d�x)(e�y)f : jDj(aÆ)s(e�y). By Lemma 34,�(aÆ)s(e�y)(bÆ)(d�x) ` f : D. By Lemma 32, �(aÆ)s(bÆ)(d�x)(e�y) ` f : Dbeause y 62 FV (b) [ FV (d). The segment (aÆ)s(bÆ)(d�x)(e�y) is well balaned.Case (e�y) is partnered by (aÆ), use the (def rule) and Lemma 39. Else, assume(aÆ)s(bÆ)(d�x)(e�y) � (aÆ)s1(hÆ)s2(bÆ)(d�x)(e�y) where (hÆ) is the partner of (e�y).Apply the (def rule) to get �(aÆ)s1 ` (hÆ)s2(bÆ)(d�x)(e�y)f : jDj(hÆ)s2(bÆ)(d�x)(e�y).As (aÆ)s1 is well balaned, ontinue applying the (def rule) and using Lemma 39 untilyou get � ` (aÆ)s(bÆ)(d�x)(e�y)f : jDj(aÆ)s(e�y). 2
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