
Explicit substitutions calculi with

de Bruijn indices and intersection

type systems

DANIEL LIMA VENTURA, Instituto de Informática, Universidade
Federal de Goiás, Goiânia GO, Brazil. E-mail: daniel@inf.ufg.br

FAIROUZ KAMAREDDINE, Heriot-Watt University, School of
Mathematical and Computer Sciences, Mountbatten building, Riccarton
Edinburgh EH14 4ASQ, Scotland UK. E-mail: fairouz@macs.hw.ac.uk

MAURICIO AYALA-RINCÓN, Departamentos de Ciência da
Computação e Matemática, Universidade de Braśılia, Braśılia D.F.,
Brazil. E-mail: ayala@unb.br

Abstract

Explicit substitution calculi propose solutions to the main drawback of the λ-calculus: substitution
defined as a meta-operation in the system. By making explicit the process of substitution, the

theoretical system gets closer to an eventual implementation. Furthermore, for implementation
purposes, many explicit substitution systems are written with de Bruijn indices. The λ-calculus

with de Bruijn indices, called λdB , assembles each α-class of λ-terms in a unique term, which is

more “machine-friendly” than the classical version with variables. Intersection types (IT) provide
finitary type polymorphism satisfying important properties like principal typing (PT), which allows

the type system to include features such as data abstraction (modularity) and separate compilation.

Although some explicit substitution calculi with simple type systems are well investigated, providing
nice applications such as specialised implementations of higher order unification, more elaborated

type systems such as IT have not been proposed/studied for these calculi. In an earlier work,

we introduced IT systems for two explicit substitution calculi, λσ and λse, conjecturing them to
satisfy the basic property of subject reduction, which guarantees the preservation of types during

computations. In this paper, we take a deeper look at these systems, providing an insight into

their development which helps us construct for the first time the proofs of subject reduction omitted
before. This new result also 1) enables us to prove another new result: subject reduction for an IT

system for λdB , and 2) allows us to introduce for the first time an IT system for the λυ-calculus.

Keywords: intersection types, lambda calculus, explicit substitution, de Bruijn indices

1 Introduction

In the λ-calculus [8], β-contraction is defined with an implicit notion of substitution.
Explicit substitution calculi are extensions of the λ-calculus which include the speci-
fication of how the substitution process is to be performed, breaking down the whole
process in minor steps. The λ-calculus à la de Bruijn [12], λdB for short, was invented
by the Dutch mathematician N.G. de Bruijn in the context of the project Automath
[45] and de Bruijn presented in [13] the first explicit substitution calculus, called

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–46 0000 c© Oxford University Press

2 Explicit substitutions calculi with de Bruijn indices and intersection type systems

Cλξφ, based on λdB . Term variables are represented by indices instead of names in
λdB , assembling each α-class of terms in the λ-calculus into a unique term with de
Bruijn indices, thus turning it into more “machine-friendly” than its counterparts.
De Bruijn indices have been adopted for several calculi of explicit substitutions ever
since, e.g. [1, 10, 31]. The λσ- [1] and the λse-calculus [31] have different approaches
for dealing with substitutions and both have applications of the respective simply
typed versions in higher order unification, HOU for short [24, 3]. Although simply
typed versions of λσ and λse have been studied in detail, neither calculus has been ex-
tended with an intersection type system before our work. This paper studies the type
systems introduced in [58], which to the best of our knowledge are the first systems
with intersection types proposed for both λσ and λse. Proofs of subject reduction
for both intersection type systems are given here for the first time. We also establish
subject reduction for an intersection type system for λdB and introduce for the first
time such a system for the λυ-calculus [10].

Intersection types, IT for short, were introduced as an extension to simple types,
in order to provide a characterisation of strongly normalising λ-terms [16, 17, 46].
In programming, the IT discipline is of interest because λ-terms corresponding to
correct programs not typeable in the standard Curry type assignment system [20],
or in some polymorphic extensions as the Hindley/Milner type system1 [43], HM for
short, are typeable with IT. For instance, a strongly normalising λ-term not typeable
in system Fω [55] and typeable with IT is presented in [14]. Moreover, some IT
systems satisfy the principal typing property, PT for short, meaning that for any
typeable term M there is a type judgement Γ ` M : τ representing all possible
typings 〈Γ′ ` τ ′〉 of M in the corresponding type system. T. Jim discussed in [28]
the importance of this property in computational type systems, in providing support
to features such as separate compilation, including smartest recompilation [53, 2], and
recursive definitions [27]. In [59] J. Wells proved that HM does not have the PT
property. Principal typings have been studied for some IT systems [18, 48, 49, 5, 35]
and it was shown in [18, 48] that for a term M , the principal typing of M ’s β-normal
form, β-nf for short, is principal for M itself.

IT in the typing systems presented here are non-idempotent, i.e. σ ∧ σ 6= σ. D.
de Carvalho established in [15] a relation between the size of a typing derivation in a
non-idempotent IT system for the λ-calculus and the head/weak-normalisation execu-
tion time of head/weak-normalising λ-terms, respectively, through abstract machines.
Resource-aware semantics rising from such systems have been explored [11, 22], in or-
der to prove normalisation properties about typeable terms by such a combinatorial
argument, i.e. counting things, instead of the usual reducibility argument [38, 29, 6]2.
Non-idempotent IT are represented by multiset of types in [15] as the idempotent ones
are represented by set of types in [17] and, in [41, 42], is pointed out that multisets
are the proper abstraction regarding the relevant implication. In fact, in [23] a tight
relation is showed between the minimal positive relevant logic B+ and the intersection
types discipline, even though an idempotent IT is presented. For this reason the rel-

1Hindley/Milner is the typing system present in the SML [44].
2The reducibility argument in order to prove termination of typed terms in [54], then called convertibility, was ex-

tended by Girard to the notion of reducible candidates to prove strong normalisation for the System F [25]. Krivine

presented in [37] (the original French version is from 1990) a more general argument, sometimes referenced as realis-

ability, to prove a variety of termination properties, such as head-/weak-normalisation, beside strong normalisation.

The technique in [37] is also called stable sets (cf. [9]).

Explicit substitutions calculi with de Bruijn indices and intersection type systems 3

evance in the sense of [21], a property allowing to obtain a non-trivial typing system
“as restricted as possible”, should be considered while developing a non-idempotent
IT system. Contexts in relevant type systems have only types that are needed while
inferring a typing for some term thus no weakening rule is admissible3. For instance,
in a non-relevant IT system both x : α ` λy.x : β → α and ∅ ` λx.x : (α ∧ β)→α are
derivable while in relevant systems only x : α ` λy.x : ω → α and ∅ ` λx.x : α→α can
be derived, where ω is the universal type of [19] (cf. [6]). Relevance is also explored
in the study of PT for IT systems [18] and in a functional characterisation of terms
in the λ-calculus [19].

Previous work
In [56] we introduced an IT system for λdB , based on the type system given in [29]
which characterises termination in the λ-calculus, and proved it to satisfy the subject
reduction property, SR for short. SR states preservation of typings under β-reduction:
whenever Γ `M : σ and M β-reduces into N , then Γ ` N : σ. However, the system
in [56] is not relevant in the sense of [21], a property of the system in [29], due to the
interaction between sequential type contexts and the subtyping relation4. Hence, to
avoid this drawback, in [57] we introduced a relevant IT system λSMdB for λdB . The
system in [57] is a de Bruijn version of the system originally introduced in [50] to char-
acterise the syntactic structure of PT for β-nfs in the λ-calculus. We also established
a characterisation of PT for β-nfs in λdB . In [58] we introduced the IT systems for
λσ and λse, based on the IT system λ∧dB thus called λσ∧ and λse

∧, respectively. The
system λ∧dB is a de Bruijn version of the system in [52] and was presented as a varia-
tion of λSMdB , in a discussion about the SR property. We focused on SR and relevance
properties, in order to obtain a proper non-idempotent IT system. Furthermore, an
IT system λsSM was proposed for λs, based on λSMdB , as an intermediate step towards
the IT system for λse.

Present results
In this paper, IT systems for λs and λse are presented with proof-sketches of SR,
omitted in [58]. Besides, different from [58], the IT systems for λdB are presented
here as restrictions of those systems to pure terms, i.e. terms without pending sub-
stitutions, thus deriving their properties from the systems for λs and λse. Although
λ∧dB was already introduced in [58], the SR property is proved here for the first time,
derived from the system λse

∧. The build up to how the IT system for λσ was ob-
tained is also given and the proof for its SR, omitted in [58], is included here for the
first time. Furthermore, λυ∧ is introduced, an IT system for λυ [10] that is proved
to satisfy SR. Below, we describe the work done in each section:

• In Section 2 the untyped versions of the λdB , λs, λse, λσ and λυ calculi are
presented. The notion of available indices for λs is presented and proved to be
an extension of the free indices concept introduced in [32]5 for λdB . Those are
the counterparts of available [38] and free variables notions for the λ-calculus with
names. They play an essential role in the discussion of relevance for the systems

3An admissible rule in a formal system is a rule that can be derived from the inference rules in the system.
4The subtyping relation in [29] is crucial in obtaining a complete IT system with respect to realisability semantics

but also guarantees SR on both systems (see Remark 4.14 for further discussion about the issue).
5Under the name of free variables.

4 Explicit substitutions calculi with de Bruijn indices and intersection type systems

presented here and the definition of an appropriate notion of SR for relevant type
systems.

• In Section 3, the set of intersection types used by all IT systems in the present
work, and the sequential contexts required in those systems, are presented.

• The following two sections have basically the same structure, consisting of two
subsections, in each of which an IT system and its properties are presented. Hence:

– In Section 4, the IT system λsSM is presented in Subsection 4.1 while in Sub-
section 4.2 the IT system λse

∧ is presented.

– In Section 5, the system λSMdB is presented in Subsection 5.1 and in Subsection
5.2 the system λ∧dB .

• In Section 6, the process of obtaining the IT system λσ∧ is presented in Subsection
6.1 while in Subsection 6.2 its properties, and respective proofs, are given.

• Finally, Section 7 gives the system λυ∧ and its properties.

• Conclusion and future work are presented in Section 8.

Related work
In [38] an IT system is presented for λx, an ES calculus without composition, and in
[33] an IT system is presented for λex, the ES calculus with safe composition which
preserves strong normalisation, PSN for short. Each IT system proposed characterises
strong normalisation in the corresponding calculus. However, both calculi are defined
with named variables while in the present work calculi with de Bruijn indices and
explicit substitutions with compositions not satisfying PSN are investigated.

About non-idempotent IT, in [15] a relevant IT system characterising head/weak-
normalisation was used to prove the relation between the size of typing derivations and
execution time in the respective normalisation process as mentioned before, while in
[11, 22] IT systems were used to prove the relation between typing derivations and the
number of steps for the normalisation of strong-normalising terms in the λ-calculus.
Since the system in [11] is non-relevant, the notions of optimality and principality for
typing derivations are introduced, which are in fact relevant derivations, to present
the quantitative aspects of typeable terms. There are also some results about explicit
substitution/resource calculi [11, 34]. However, only calculi with names were inves-
tigated with such an IT system and, in the explicit versions, only composition free
substitutions were considered.

2 Type free calculi

Calculi in the present section are defined as term rewriting systems, TRS for short,
and standard rewriting notions and notations are used [4]. For instance, given a TRS
R,→+

R denotes its transitive closure while→∗R denotes its reflexive transitive closure.

2.1 λ-calculus with de Bruijn indices

Definition 2.1 (Set ΛdB)
The set of λdB-term, denoted by ΛdB , is inductively defined for n ∈ N∗=Nr{0} by:

M,N ∈ ΛdB ::= n | (M N) |λ.M .

Explicit substitutions calculi with de Bruijn indices and intersection type systems 5

Terms like ((. . . ((M1 M2) M3) . . .) Mn) are written (M1M2 · · · Mn), as usual. An
index i is bound if it occurs inside the scope of at least i λ’s and it is free otherwise.
The following subsets are introduced in order to formally define the set of free indices
of a term.

Definition 2.2
Let N ⊂ N∗ and k ≥ 0. Define:

1.N\k = {n− k |n ∈ N} 3.N + k = {n+ k |n ∈ N}

2.N>k = {n ∈ N |n > k} 4.N≤k = {n ∈ N |n ≤ k}, N<k = {n ∈ N |n < k}

Definition 2.3
FI(M), the set of free indices of M ∈ ΛdB , is defined by:

FI(n) = {n } FI(M1 M2) = FI(M1) ∪ FI(M2) FI(λ.M) = FI(M)\1

Free indices correspond to the notion of free variables in the λ-calculus with names
and M is thus called closed whenever FI(M) = ∅. The greatest index value of FI(M)
is denoted by sup(M).

In this notation, a β-contraction definition needs a mechanism which detects and
updates free indices of terms. Intuitively, the i-lift ofM , denoted byM+i, corresponds
to an increment by 1 of all free indices greater than i occurring in M . A more general
mechanism is introduced in [30, 31], presented below.

Definition 2.4
Updating functions U ik : ΛdB → ΛdB for i ∈ N∗ and k ∈ N are inductively defined
as follows:

1 . U ik(M N) = (U ik(M) U ik(N)) 3 . U ik(n) =

{
n+i−1 , if n > k
n , if n ≤ k.

2 . U ik(λ.M) = λ.U ik+1(M)

Therefore, U ik(M) represents i−1 applications of the k-lift on term M . Now, it is
possible to present the substitution definition used by β-contractions as introduced
in [30, 31].

Definition 2.5
Let m,n ∈ N∗. The β-substitution for free occurrences of n in M ∈ ΛdB by term
N , denoted as {n /N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

m−1 , if m > n

Un0 (N), if m = n
m , if m < n2 . {n /N}(λ.M1) = λ.{n+1 /N}M1

β-contraction can then be defined.

Definition 2.6
β-contraction in λdB is defined by:

(λ.M N)→β {1 /N}M

6 Explicit substitutions calculi with de Bruijn indices and intersection type systems

Item 3 in Definition 2.5 is the mechanism which does the substitution and updates free
indices in M as a consequence of the elimination of the lead abstractor. The updating
function is used to avoid the capture of free indices in N . The formal definition of
β-reduction is given below.

Definition 2.7
β-reduction in λdB is defined by:

(λ.M N)→β { 1 /N}M
M→βN

λ.M→β λ.N

M1→βN1

(M1 M2)→β (N1 M2)

M2→βN2

(M1 M2)→β (M1 N2)

In other words, the β-reduction is defined to be the λ-compatible closure of β-
contraction. A term is in β-normal form, β-nf for short, if there is no β-reduction
to be done.

If i /∈ FI(M) then one has { i /N}M = M−i, where M−i is the term M in which
indices greater than i are decreased by one. We call this an empty substitution
because no index is replaced by an instance of term N . A β-contraction (λ.M N)
when 1 /∈ FI(M) is thus called an empty application.

2.2 The λse-calculus

The λs-calculus is a proper extension of λdB . Two operators σ and ϕ are intro-
duced for substitution and updating, respectively, to control the atomisation of β-
substitutions by arithmetic constraints.

Definition 2.8 (Set Λs)
The set of λs-terms, denoted by Λs, is inductively defined for n, i, j ∈ N∗ and k ∈ N
by:

M,N ∈Λs ::= n | (M N) |λ.M |MσiN |ϕjkM

A term of the form MσiN represents the procedure to obtain the term { i /N}M ; i.e.,
the substitution of the free occurrences of i in M by N , updating the free indices on
both terms. Similarly, the term ϕjkM represents the procedure for U jk(M). Table 1
contains the rewriting rules of λse as given in [31]. The bottom six rules of Table 1 are
those which extend λs [30] to λse [31]. They ensure the confluence of the λse-calculus
on open terms thus its application to the HOU problem [3]. In this paper we work
with the same set Λs of terms for both calculi.

An associated substitution calculus, denoted by se, is induced by all the rules except
(σ-generation). The rewriting system obtained by removing from se the bottom six
rules presented in Table 1 is called the s-calculus, which is the substitution calculus
associated with λs. For any M ∈ Λs, by confluence and strong normalisation of s [30]
there exists a unique s-normal form, denoted by s(M). The set of s-nfs is exactly the
set ΛdB [30] then called pure terms. The following lemma states significant relations
between s and both the term structure and the β-substitution.

Lemma 2.9 ([30])
Let M,N ∈ Λs:

Explicit substitutions calculi with de Bruijn indices and intersection type systems 7

Table 1. The rewriting system of the λse-calculus

(λ.M N) −→ M σ1N (σ-generation)
(λ.M)σiN −→ λ.(Mσi+1N) (σ-λ-transition)

(M1 M2)σiN −→ ((M1σiN) (M2σiN)) (σ-app-trans.)

nσiN −→

n− 1 if n > i

ϕi0N if n = i

n if n < i

(σ-destruction)

ϕik(λ.M) −→ λ.(ϕik+1M) (ϕ-λ-trans.)

ϕik(M1 M2) −→ ((ϕikM1) (ϕikM2)) (ϕ-app-trans.)

ϕik n −→
{

n+ i− 1 if n > k

n if n ≤ k (ϕ-destruction)

(M1σiM2)σjN −→ (M1σj+1N)σi(M2σj−i+1N) if i ≤ j (σ-σ-trans.)

(ϕikM)σjN −→ ϕi−1
k M if k < j < k + i (σ-ϕ-trans. 1)

(ϕikM)σjN −→ ϕik(Mσj−i+1N) if k + i ≤ j (σ-ϕ-trans. 2)
ϕik(MσjN) −→ (ϕik+1M)σj(ϕik+1−jN) if j ≤ k + 1 (ϕ-σ-trans.)

ϕik(ϕjlM) −→ ϕjl (ϕ
i
k+1−jM) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕik(ϕjlM) −→ ϕj+i−1
l M if l ≤ k < l + j (ϕ-ϕ-trans. 2)

1. s(M N) = (s(M) s(N)).

2. s(λ.M) = λ.s(M).

3. s(ϕikM) = U ik(s(M)).

4. s(MσiN) = { i /s(N)}s(M).

In order to have a syntactic characterisation related to empty applications and
substitutions, as with free indices for λdB , we present the definition of available indices,
a notion analogous to that of available variables introduced in [38].

Definition 2.10
AI(M), the set of available indices of M ∈ Λs is defined by:

AI(n) = {n } AI(λ.M) = AI(M)\1 AI(M1 M2) = AI(M1) ∪AI(M2)

and

AI(ϕikM) = AI(M)≤k ∪ (AI(M)>k + (i− 1))

AI(MσiN) =

{
AI(M−i) ∪AI(ϕi0N), if i ∈ AI(M)

AI(M−i), if i /∈ AI(M)

where AI(M−i) denotes AI(M)<i ∪ (AI(M)>i)\1.

The greatest value of AI(M) is denoted by sav(M). Below, the relation between AI
and FI is presented.

Lemma 2.11
If M ∈ Λs then AI(M) = FI(s(M)).

Proof. By induction on the structure of M ∈ Λs.

Corollary 2.12
If M ∈ ΛdB , then AI(M)=FI(M).

8 Explicit substitutions calculi with de Bruijn indices and intersection type systems

Below, lemmas stating the relation between set AI, its greatest value sav and the
structure of terms are presented.

Lemma 2.13
1. n ∈ AI(λ.M) iff n+1 ∈ AI(M).

2. sav(M1 M2) = max(sav(M1), sav(M2)).

3. If sav(M)=0, then sav(λ.M)=0. Otherwise, sav(λ.M)=sav(M)− 1.

4. If sav(N)>k then sav(ϕikN) = sav(N) + (i−1). If sav(N)≤k then sav(ϕikN) =
sav(N).

5. Let sav(M−i)=max(AI(M−i))=max(AI(M)<i ∪ (AI(M)>i)\1). If sav(M)<i,
then sav(M−i)=sav(M). If sav(M)>i, then sav(M−i)=sav(M)− 1.

6. If i∈ sav(M) then sav(MσiN) =max(sav(M−i), sav(ϕi0N)) and sav(MσiN) =
sav(M−i) otherwise.

Proof. 1. By Definition 2.10. 2,3,4,5,6. Analysing the AI definition and its relation
with the max function.

Remark 2.14
By Corollary 2.12 the statements 1, 2, 3 and 5 above are valid for FI(M) and sup(M)
when M ∈ΛdB .

Properties relating free indices and β-reduction in λdB can then be derived from
Lemmas 2.9 and 2.11.

Lemma 2.15
Let M,N ∈ ΛdB :

1. If i /∈FI(M) then FI({ i /N}M)= FI(M−i).

2. If i∈FI(M) then FI({ i /N}M)= FI(M−i) ∪ FI(U i0(N)).

Proof. By Lemma 2.9.4 and Lemma 2.11 one has AI(MσiN) =FI({ i /N}M) and
by Corollary 2.12 one has FI(M)=AI(M) and FI(N)=AI(N).

1. Suppose i /∈ FI(M). Therefore, FI({ i /N}M) = AI(MσiN) = AI(M−i) =
FI(M−i).

2. Suppose i∈FI(M). Therefore, FI({ i /N}M)=AI(MσiN)=AI(M−i)∪AI(ϕi0N)=
FI(M−i)∪FI(s(ϕi0N))=FI(M−i)∪FI(U i0(N)).

Corollary 2.16
If 1 ∈ FI(M), then FI({ 1 /N}M) = FI(λ.M N). Otherwise, FI({ 1 /N}M) =
FI(λ.M).

Therefore, we can state that the β-reduction in λdB does not create new indices.

Lemma 2.17
If M →β N then FI(N) ⊆ FI(M).

Proof. By induction on the derivation of M →β N and Corollary 2.16.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 9

2.3 The λσ-calculus

The λσ-calculus is given by a first-order rewriting system, which makes substitutions
explicit by extending the language with two sorts of objects: terms and substitu-
tions which are called λσ-expressions.

Definition 2.18 (Set Λσ)
The set of λσ-expressions, denoted by Λσ, is formed by the set Λσt of terms and the
set Λσs of substitutions, inductively defined by:

M,N ∈ Λσt ::= 1 | (M N) |λ.M |M [S] S ∈ Λσs ::= id | ↑ |M.S |S ◦ S

Substitutions can intuitively be thought of as lists of the form N/ i indicating that
index i ought to be replaced by term N . The expression id represents a substitution
of the form {1 /1 , 2 /2 , . . . } whereas the shift, denoted by ↑, is the substitution
{ i+1/ i | i∈N∗}. The expression S ◦ S represents the composition of substitutions.
Moreover, 1 [↑n], where n ∈ N∗, codifies the de Bruijn index n+1 and i [S] represents
the value of i through the substitution S, which can be seen as a function S(i). The
substitution M.S has the form {M/1 , S(i)/i+ 1 } and is called the cons of M in
S. M [N.id] starts the β-reduction simulation of (λ.M N) in λσ. Thus, in addition
to the substitution of free occurrences of index 1 by the corresponding term, free
occurrences of any other index should be decremented because of the elimination of
the abstractor. Table 2 lists the rewriting system of the λσ-calculus, as presented in
[24], without the (Eta) rule.

Table 2. The rewriting system for the λσ-calculus

(λ.M N) −→ M [N.id] (Beta)
(M N)[S] −→ (M [S] N [S]) (App)
1 [M.S] −→ M (V arCons)
(λ.M)[S] −→ λ.(M [1 .(S◦↑)]) (Abs)
M [id] −→ M (Id)
(M [S])[T] −→ M [S ◦ T] (Clos)
id ◦ S −→ S (IdL)
↑◦ (M.S) −→ S (ShiftCons)
(S1 ◦ S2) ◦ S3 −→ S1 ◦ (S2 ◦ S3) (AssEnv)
(M.S) ◦ T −→ M [T].(S ◦ T) (MapEnv)
S ◦ id −→ S (IdR)
1 .↑ −→ id (V arShift)
1 [S].(↑◦S) −→ S (Scons)

This system is equivalent to that of [1]. An associated substitution calculus, denoted
by σ, is induced by all the rules except (Beta).

2.4 The λυ-calculus

P. Lescanne introduced in [39] the λυ-calculus. The calculus was originally presented
as a rewriting system with three sort of objects where, besides terms and substitutions,

10 Explicit substitutions calculi with de Bruijn indices and intersection type systems

an inductively defined setN represents the natural numbers. However, λυ is presented
here as a two sorted calculus similar to λσ.

Definition 2.19 (Set Λυ)
The set of λυ-expressions, denoted by Λυ, is formed by the set Λυt of terms and the
set Λυs of substitutions inductively defined for n ∈ N∗ by:

M,N ∈ Λυt ::= n | (M N) |λ.M |M [S] S ∈ Λυs ::= M/ | ⇑(S) | ↑
The λυ-calculus is intended to describe the minimal substitution mechanism, where

features such as composition of substitutions and the representation of compound
substitution as lists are considered to be implementation choices. Hence, the cons (.)
and the composition (◦), essential to satisfy the confluence property for open terms,
i.e. terms with meta-variables, are removed and new constructors for substitutions are
introduced, in order to have as few forms of substitutions as possible. Therefore, M/
can be seen as the substitution M.id and the lift, denoted by ⇑(S), as the substitution
1 .(S ◦↑). The rewriting rules of λυ are in Table 3.

Table 3. The rewriting system for the λυ-calculus

(λ.M N) −→ M [N/] (B)
(M N)[S] −→ (M [S] N [S]) (App)
(λ.M)[S] −→ λ.(M [⇑(S)]) (Lambda)
1 [M/] −→ M (FV ar)
n+1 [M/] −→ n (RV ar)
1 [⇑(S)] −→ 1 (FV arLift)
n+1[⇑(S)] −→ n [S][↑] (RV arLift)
n[↑] −→ n+1 (V arShift)

An associated substitution calculus, denoted by υ, is induced by all the rules of
Table 3 but (B). Lescanne et al. proved in [10] the properties of λυ such as the
simulation of the β-reduction, confluence for terms without meta-variable and the
preservation of strong normalisation, PSN for short. The PSN property means that
any strongly normalising term, SN for short, in the λ-calculus is SN in the λυ-calculus.
Although it seems to be a property any calculus intended to simulate β-reduction
should satisfy, after some years of the introduction of the λσ-calculus P.-A. Melliès
presented in [40] a counter-example where some term, corresponding to a simply typed
term in the λ-calculus, has an infinity reduction strategy. B. Guillaume presented in
[26] an analogous counter-example for the λse-calculus.

The proof of PSN in [10] relies on the fact that only the rule (B) creates new closures
thus any closure occurring in a term can have the corresponding (B) rule traced
back. Interesting enough, Melliès pointed out the rule (MapEnv) as the responsible
for the failure of PSN by the λσ-calculus. In [47], E. Ritter proved that the kind
of composition of substitutions allowed in λσ, and in λse, was the characteristic
determining the failure w.r.t. PSN.

Analogous to the s-calculus, for any M ∈ Λυt and by confluence and termination
of υ [10] there is a unique υ-nf, denoted by υ(M). Note that υ(M) is a pure term,
i.e. a term without closures [10].

Explicit substitutions calculi with de Bruijn indices and intersection type systems 11

3 The non-idempotent intersection types

All intersection type systems presented in this paper have the same set of types
T , of the so called restricted intersection types, in which intersections do not occur
immediately on the right of an →. Moreover, the intersection is non-idempotent, i.e.
σ ∧ σ 6= σ. In addition, type contexts in type systems with de Bruijn indices are
sequences of types instead of sets of type assignments. Below, all these concepts are
defined.

Definition 3.1
1. Let A be a denumerably infinite set of type variables and let α, β range over
A.

2. The set T of non-idempotent intersection types is defined by:

τ, σ ∈ T ::= A |U→T u ∈ U ::= ω | U ∧ U | T

Types are quotiented by taking ∧ to be commutative, associative and to have ω
as the neutral element.

3. Sequential contexts are ordered lists of u ∈ U , defined by:

Γ ::= nil |u.Γ

Γi denotes the i-th element of Γ and |Γ| denotes the length of Γ, where |nil|= 0.
Γ<i denotes the first i−1 types in the sequence. Γ>i, Γ≤i and Γ≥i are similarly
defined. If i=0, then Γ≤0.Γ=Γ<0.Γ=Γ.

An omega context ω n denotes the context ω.ω. · · · .ω.nil of length n. If n∈N
and m∈N∗, then Γ 6= ∆.ωm denotes that Γ does not end with an omega context
different than nil and Γ 6=∆.ω n stands for Γ 6=nil and Γ 6=∆.ωm.

An extension of ∧ to contexts is obtained by taking nil as the neutral element and
(u1.Γ) ∧ (u2.∆) = (u1 ∧ u2).(Γ ∧∆). Hence, ∧ is commutative and associative on
contexts.

4. Let u′ v u if there exists v such that u=u′ ∧ v and u′ < u if v 6= ω. Let Γ′ v Γ if
there exists ∆ such that Γ = Γ′ ∧∆, where neither Γ′ nor ∆ are omega contexts
different than nil and Γ′ < Γ if ∆ 6= nil.

The set T defined here is equivalent to the one originally defined in [50] and also
used in [15]. Type judgements will be of the form M : 〈Γ `S τ〉, instead of the usual
Γ `S M : τ notation, meaning M has type τ with context Γ in system S. Briefly, M
has type τ with Γ in S or 〈Γ ` τ〉 is a typing of M in S. The subscript S is omitted
whenever it is clear to which system the typing belongs.

Below, some properties about the extension of ∧ to contexts, straightforward from
its definition, are presented.

Lemma 3.2
Let Γ1, . . . ,Γm be contexts different than nil:

1. Γ1 ∧ · · · ∧ Γm = (Γ1
1 ∧ · · · ∧ Γm1).(Γ1

>1 ∧ · · · ∧ Γm>1).

2. If i ≤ min(|Γ1|, . . . , |Γm|), then (Γ1 ∧ · · · ∧ Γm)i = Γ1
i ∧ · · · ∧ Γmi . Else, (Γ1 ∧

· · · ∧ Γm)i = Γj1i ∧ · · · ∧ Γjki , where k ≤ m and ∀1≤ l≤k, Γjli ∈ U .

12 Explicit substitutions calculi with de Bruijn indices and intersection type systems

3. (Γ1 ∧ · · · ∧ Γm)<i = Γ1
<i ∧ · · · ∧ Γm<i. If i ≥ |Γj | then (Γ1 ∧ · · · ∧ Γm)<i = Γ1

<i ∧
· · · ∧ Γj ∧ · · · ∧ Γm<i. (Γ ∧∆)≤i has similar properties.

4. (Γ1 ∧ · · · ∧ Γm)>i = Γ1
>i ∧ · · · ∧ Γm>i. If i ≥ |Γj | then (Γ1 ∧ · · · ∧ Γm)>i = Γ1

>i ∧
· · · ∧ Γj−1>i ∧ Γj+1

>i ∧ · · · ∧ Γm>i. (Γ ∧∆)≥i has similar properties.

5. (Γ1 ∧ · · · ∧ Γm)<i.(Γ
1 ∧ · · · ∧ Γm)>i = (Γ1

<i.Γ
1
>i) ∧ · · · ∧ (Γm<i.Γ

m
>i).

6. |Γ1 ∧ · · · ∧ Γm| = max(|Γ1|, . . . , |Γm|).
Notation 3.3

- A list of typings denoted by either M :〈Γ1 ` σ1〉 . . .M :〈Γm ` σm〉 or ∀1≤i≤m,M :
〈Γi ` σi〉.

- A list of typing derivations D1 · · · Dm is denoted by Di,∀1≤i≤m

4 Intersection type systems for λs and λse

In order to have an IT system for λse, we introduce a system for λs as an intermediate
step. In both cases, we focus in two properties while developing the typing rules:
relevance [21, 23], where the available indices play an essential role, and subject
reduction. The latter is a basic property which any type assignment system should
satisfy while the former was the way to obtain such a system as restricted as possible.

The alternative for relevance would be an IT system isomorphic modulo idempo-
tency to an extension of a simple type assignment system as in [46, 17, 7]. While
the λs-calculus has the preservation of strong normalisation property [30], PSN for
short, the rules allowing the composition of substitutions in λse invalidate the prop-
erty for the calculus. B. Guillaume presents in [26] a counter-example of some simply
typed term in λse with an infinite reduction strategy. Therefore, any typing sys-
tem extending the simple type system for λse (c.f. [3]) would automatically inherits
the Guillaume’s counter-example. We then consider whether the relevant systems
presented in this paper are able to characterise SN for λse.

Moreover, we introduced the system λSMdB in [58], proving its properties and then
proposing the IT system for λs based on those results. Here, we first present the IT
system λsSM , deriving the very same properties of the system λSMdB from it. We take
the same approach with the system proposed for λse, denoted by λse

∧, to prove for
the first time the SR property for system λ∧dB , which is a variation of system λSMdB .
See Section 5 for more details on the IT systems for λdB .

Proofs of SR in the present section follows a standard procedure, where generation
lemmas are stated beforehand. The SR property is then verified for each rule in the
respective calculus. Since the system for λs is relevant, we introduce an appropriate
notion of SR.

4.1 The system λsSM

Definition 4.1 (The system λsSM)
The typing rules of system λsSM are given in Figure 1.

Compared with the simple type system for λs and λse, which introduces one type
inference rule for each operator (cf. [3]), there are multiple rules introduced in Figure
1 for the σ and ϕ operators. Below an example is presented to illustrate the necessity
of more rules than just (∧-σ) in our typing system.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 13

1:〈τ.nil ` τ〉
var

n :〈Γ ` τ〉
n+1:〈ω.Γ ` τ〉

varn
M :〈u.Γ ` τ〉

λ.M :〈Γ ` u→τ〉
→i

M1 :〈Γ ` ω→τ〉 M2 :〈∆ ` σ〉
(M1 M2) :〈Γ ∧∆ ` τ〉

→′e
M :〈nil ` τ〉

λ.M :〈nil ` ω→τ〉
→′i

M1 :〈Γ ` ∧ni=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉
(M1 M2) :〈Γ ∧∆1 ∧ · · · ∧∆n ` τ〉

→e

(ω-ϕ)
M :〈Γ ` τ〉

ϕikM :〈Γ≤k.ω i−1.Γ>k ` τ〉
, |Γ| > k (ω-σ)

N :〈∆ ` ρ〉 M :〈Γ ` τ〉
MσiN :〈Γ<i.Γ>i ` τ〉

,Γi = ω

(nil-ϕ)
M :〈Γ ` τ〉
ϕikM :〈Γ ` τ〉

, |Γ| ≤ k (nil-σ)
N :〈∆ ` ρ〉 M :〈Γ ` τ〉

MσiN :〈Γ ` τ〉
, |Γ| < i

(∧-nil-σ)
N :〈nil ` σ1〉 . . . N :〈nil ` σm〉 M :〈ω i−1. ∧mj=1 σj .nil ` τ〉

MσiN :〈nil ` τ〉

(∧-ω-σ)
N :〈nil ` σ1〉 . . . N :〈nil ` σm〉 M :〈Γ ` τ〉

MσiN :〈Γ<(i−k).nil ` τ〉
, Γi = ∧mj=1σj (*)

(∧-σ)
N :〈∆1 ` σ1〉 . . . N :〈∆m ` σm〉 M :〈Γ ` τ〉
MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` τ〉

, Γi = ∧mj=1σj (**)

(*) Γ = Γ<(i−k).ω
k. ∧mj=1 σj .nil and Γ(i−k−1) 6=ω (**) ∆k 6= nil, for some 1≤k≤m,

or Γ>i 6= nil

Fig. 1. Typing rules of the system λsSM

Example 4.2
Let 3 : 〈ω 2.α→α ` α→α〉 and λ.1 : 〈nil ` α→α〉. Applying the rule (∧-σ), ignoring
its side condition, one has 3σ3(λ.1) :〈ω 2 ` α→α〉.

Hence, we need the rules (∧-ω-σ) and (∧-nil-σ) to satisfy the relevance property.
In fact, this multiplicity corresponds to the cases for the updating and substitution
lemmas for λSMdB (see Section 5 for further details).

Another important thing to note is that the typing information related to empty
substitutions, handled by the rules (ω-σ) and (nil-σ), is discharged. In other words,
the typing information related to an empty application is forgotten as soon as the
substitution procedure is started. In a non-idempotent intersection type system this
is necessary in order to have SR, as seen in the following example.

Example 4.3
Suppose that the rule (ω-σ) is defined as

N :〈∆ ` ρ〉 M :〈Γ ` τ〉
MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.∆ ` τ〉

,Γi = ω

Let M ≡ (λ.(2 3) 3) and M ′ ≡ ((2σ13) (3σ13)) thus M →+
λs M ′. If M :

〈α1→α2.α1.β.nil ` α2〉 then M ′ : 〈α1→α2.α1.(β ∧ β).nil ` α2〉. Let Γ and Γ′ be
the contexts in the typings of M and M ′, respectively. Note that Γ′ = Γ∧ (ω 2.β.nil).

14 Explicit substitutions calculi with de Bruijn indices and intersection type systems

Hence, although the typing information related to the empty substitution disappears
in the s-nf, it is duplicated after each reduction with the (σ-app-transition) rewriting
rule.

The system λsSM is relevant w.r.t. available indices, as stated below.

Lemma 4.4 (Relevance for λsSM)
If M :〈Γ `λsSM τ〉, then |Γ|=sav(M) and ∀1≤ i≤|Γ|, Γi 6= ω iff i∈AI(M).

Proof. By induction on the derivation of M : 〈Γ `λsSM τ〉. We present the case for
the application of the rule (nil-ϕ). Then, ϕikM :〈Γ ` τ〉 where M :〈Γ ` τ〉 and |Γ| ≤ k.
By the induction hypothesis (IH) one has that |Γ| = sav(M) and ∀1 ≤ j ≤ |Γ|, Γj 6= ω
iff j ∈ AI(M). Observe that AI(ϕikM) = AI(M)≤k ∪ (AI(M)>k + (i− 1)) = AI(M)

thus sav(ϕikM) = sav(M).

The relevance of λsSM does not allow the system to satisfy SR in the usual sense.
The following example in the λdB-calculus illustrates the issue.

Example 4.5
For SR, we need to prove the statement: If (λ.M N) :〈Γ ` τ〉 then { 1 /N}M :〈Γ ` τ〉.

Let M ≡ λ.1 and N ≡ 3, hence { 1 / 3 }λ.1 = λ.1. We have that (λ.λ.1 3) :
〈ω.ω.β.nil ` α→α〉. Hence, λ.λ.1 : 〈nil ` ω→α→α〉 and 3 : 〈ω.ω.β.nil ` β〉 thus
λ.1:〈nil ` α→α〉.

In other words, one has a restriction on the original context after the β-reduction,
since the typing information regarding N ≡ 3 vanishes.

Notions of expansion and restriction of contexts are an interesting way to talk
about subject expansion and reduction in relevant typing systems. These concepts
were presented in [29] for environments. We introduce the notion of restriction for
sequential contexts related to available indices to prove SR for one step of the β-
simulation in the λs-calculus. This approach of restriction/expansion for contexts
is not sufficient to have the subject expansion property because the rule →′e has
the typeability of the argument as a premiss. Hence, for any non-typeable term N ,
{ 1 /N} 2 is typeable while (λ.2 N) is not typeable in system λsSM .

Although the relevant type system, SR holds for the full s-calculus. Some generation
lemmas are stated in order to proof the SR property in λsSM .

Lemma 4.6 (Generation for λsSM)
1. If n :〈Γ `λsSM τ〉 then Γn=τ .

2. If λ.M : 〈nil `λsSM τ〉, then τ = ω→ σ and M : 〈nil `λsSM σ〉 or τ =∧ni=1σi→ σ,
n > 0, and M :〈∧ni=1σi.nil `λsSM σ〉 for σ, σ1, . . . , σn∈T .

3. If λ.M : 〈Γ `λsSM τ〉 and |Γ| > 0, then τ =u→σ for some u∈U and σ∈T , where
M :〈u.Γ `λsSM σ〉.

4. If (M N) : 〈Γ `λsSM τ〉 then Γ = Γ1 ∧ Γ2 s.t. M : 〈Γ1 `λsSM ω→τ〉 and N :
〈Γ2 `λsSM ρ〉 or M : 〈Γ1 `λsSM (∧mi=1σi)→τ〉 where Γ2 = ∆1 ∧ · · · ∧∆m and
∀1≤ i≤m, N :〈∆i `λsSM σi〉.

Proof. 1. By induction on the derivation n :〈Γ `λsSM τ〉 (note that (ω.Γ)n+1 = Γn).
2, 3, 4. By case analysis on the respective derivation.

Below, we present the generation lemmas for typings related to substitution and
update operators in λs.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 15

Lemma 4.7 (Generation for operators in λsSM)
1. Let ϕikN : 〈Γ `λsSM τ〉. If |Γ| ≤ k, then N : 〈Γ `λsSM τ〉. If |Γ| > k then N :
〈Γ≤k.Γ≥k+i `λsSM τ〉, where Γ=Γ≤k.ω

i−1.Γ≥k+i.

2. If MσiN : 〈nil `λsSM τ〉, then M : 〈nil `λsSM τ〉 and N : 〈∆ `λsSM ρ〉 or M :
〈ω i−1. ∧mj=1 σj .nil `λsSM τ〉 where ∀1≤j≤m, N :〈nil `λsSM σj〉.

3. If MσiN : 〈Γ `λsSM τ〉 and 0< |Γ|<i, then M : 〈Γ `λsSM τ〉 and N : 〈∆ `λsSM ρ〉
or M : 〈Γ.ω n. ∧mj=1 σj .nil `λsSM τ〉 where |Γ.ω n. ∧mj=1 σj .nil| = i, n ≥ 0 and
∀1≤j≤m, N :〈nil `λsSM σj〉.

4. If MσiN : 〈Γ `λsSM τ〉 and |Γ|≥ i then M : 〈Γ<i.ω.Γ≥i `λsSM τ〉 and N : 〈∆ `λsSM
ρ〉 or M : 〈Γ<i. ∧mj=1 σj .Γ

′ `λsSM τ〉 where, for |Γ≥i|>0, Γ≥i=Γ′ ∧∆1 ∧ · · · ∧∆m

and ∀1≤j≤m, N :〈∆j `λsSM σj〉.

Proof. 1, 2, 3, 4. By case analysis on the respective derivation.

Remark 4.8
Possibilities considered in each item on Lemma 4.7 above are mutually exclusive by
syntactic characteristics. For instance, let MσiN : 〈Γ ` τ〉. The item to be applied
is uniquely determined by the relation between i and |Γ|. Suppose that 0< |Γ|< i.
Hence, by the item 3 above one has two possibilities. The proper one in system λsSM

is determined by the value of sav(M). Therefore, if sav(M)<i, then M :〈Γ ` τ〉 and
N :〈∆ ` ρ〉. Otherwise, the alternative described in item 3 is the one to be applied.

Theorem 4.9 (SR for s in λsSM)
Let M :〈Γ `λsSM τ〉. If M →s M

′, then M ′ :〈Γ `λsSM τ〉.

Proof. By the verification of SR for each rewriting rule of the s-calculus.
We present the proof-sketch for the rewriting rule (σ-app-transition). Hence, if

(M1 M2)σiN : 〈Γ ` τ〉 we might prove that ((M1σ
iN) (M2σ

iN)) : 〈Γ ` τ〉. Therefore
we need to consider the three possibilities for Γ: Γ = nil, 0 < |Γ| < i or |Γ| ≥ i.
Each one of them is related to one generation lemma, Lemmas 4.7.2, 4.7.3 and 4.7.4
respectively. We present the case where Γ = nil while the proofs for 0≤ |Γ|< i and
|Γ| ≥ i are analogous. Hence, by Lemma 4.7.2 the last rule applied is either (1) the
(nil-σ) or (2) the (∧-nil-σ) rule.

(1) If the last rule applied is (nil-σ) then:
N :〈∆ ` ρ〉 (M1 M2) :〈nil ` τ〉

(M1 M2)σiN :〈nil ` τ〉
For (M1 M2) :〈nil ` τ〉, one has by Lemma 4.6.4 that the last rule applied is either
(a) the rule →′e or (b) the rule →e. Hence:

(a)

N :〈∆ ` ρ〉
M1 :〈nil ` ω→τ〉 M2 :〈nil ` σ〉

(M1 M2) :〈nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

thus
N :〈∆ ` ρ〉 M1 :〈nil ` ω→τ〉

M1σ
iN :〈nil ` ω→τ〉

N :〈∆ ` ρ〉 M2 :〈nil ` σ〉
M2σ

iN :〈nil ` σ〉
((M1σ

iN) (M2σ
iN)) :〈nil ` τ〉

16 Explicit substitutions calculi with de Bruijn indices and intersection type systems

(b)

N :〈∆ ` ρ〉
M1 :〈nil ` ∧mj=1σj→τ〉 ∀1≤j≤m,M2 :〈nil ` σj〉

(M1 M2) :〈nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

thus

N :〈∆ ` ρ〉 M1 :〈nil ` ∧mj=1σj→τ〉
M1σ

iN :〈nil ` ∧mj=1σj→τ〉
N :〈∆ ` ρ〉 M2 :〈nil ` σj〉

M2σ
iN :〈nil ` σj〉

, ∀1≤j≤m

((M1σ
iN) (M2σ

iN)) :〈nil ` τ〉

(2) If the last rule applied is (∧-nil-σ) then:

∀1≤j≤n,N :〈nil ` τj〉 (M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

For (M1 M2) : 〈ω i−1. ∧nj=1 τj .nil ` τ〉, one has by Lemma 4.6.4 that the last rule
applied is either (a) the rule →′e or (b) the rule →e. Hence:

(a) For some Γ1 ∧ Γ2 = ω i−1. ∧nj=1 τj .nil one has:

∀1≤j≤n,N :〈nil ` τj〉
M1 :〈Γ1 ` ω→τ〉 M2 :〈Γ2 ` ρ〉
(M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉

(M1 M2)σiN :〈nil ` τ〉

Note that Γ1 and Γ2 can be either a partition both with length i or one of them
is nil. Suppose w.l.o.g. that Γ2 = nil thus Γ1 = ω i−1. ∧nj=1 τj .nil and

∀1≤j≤n,N :〈nil ` τj〉 M1 :〈Γ1 ` ω→τ〉
M1σ

iN :〈nil ` ω→τ〉
N :〈nil ` τ1〉 M2 :〈nil ` ρ〉

M2σ
iN :〈nil ` ρ〉

((M1σ
iN) (M2σ

iN)) :〈nil ` τ〉

(b) For some Γ′ ∧∆1 ∧ · · · ∧∆m = ω i−1. ∧nj=1 τj .nil one has:

∀1≤j≤n,N :〈nil ` τj〉
M1 :〈Γ′ ` ∧mh=1σh→τ〉 ∀1≤h≤m,M2 :〈∆h ` σh〉

(M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

Suppose that Γ′=nil, ∆1=ω i−1.∧n1
j=1τj .nil, ∆2=ω i−1.∧nj=(n1+1)τj .nil and that

∆j = nil,∀n<j≤m. Any other possibility is handled similarly. Hence, one has

D1 =
∀1≤j≤n1, N :〈nil ` τj〉 M2 :〈∆1 ` σ1〉

M2σ
iN :〈nil ` σ1〉

D2 =
∀n1<j≤n,N :〈nil ` τj〉 M2 :〈∆2 ` σ2〉

M2σ
iN :〈nil ` σ2〉

and for each n<j≤m one has Dj =
N :〈nil ` τ1〉 M2 :〈nil ` σi〉

M2σ
iN :〈nil ` σi〉

thus

N :〈nil ` τ1〉 M1 :〈nil ` ∧mh=1σh→τ〉
M1σ

iN :〈nil ` ∧mh=1σh→τ〉 Dh, ∀1≤h≤m
((M1σ

iN) (M2σ
iN)) :〈nil ` τ〉

Explicit substitutions calculi with de Bruijn indices and intersection type systems 17

Type information associated with the empty application disappears when becomes
an empty substitution, since the rules (nil-σ) and (ω-σ) discard the corresponding
contexts. Therefore, we need a restriction notion, related to available indices, to have
an SR statement for the simulation of β-contraction.

Definition 4.10 (AI restriction)
Let Γ�M be a Γ′ v Γ s.t. |Γ′| = sav(M) and that ∀1≤ i≤|Γ′|, Γ′i 6= ω iff i∈AI(M).

Remark 4.11
Since the manner in which intersection types are partitioned may vary, the restric-
tion in Definition 4.10 above is not uniquely defined. For instance, (α ∧ β.nil)� 1=
α.nil, β.nil or the context itself.

Below, some properties of the AI restriction are presented.

Lemma 4.12
Let M,M ′ ∈ Λs:

1. If AI(M) = ∅ then Γ�M= nil, for any context Γ.

2. If M :〈Γ `λsSM τ〉 and AI(M) = AI(M ′) then (Γ ∧∆)�M ′= Γ, for any context ∆.

Proof. Straightforward from Definition 4.10 in both cases.

Theorem 4.13 (SR for simulation of β-contraction in λsSM)
If (λ.M M ′) :〈Γ `λsSM τ〉 then { 1/M ′}M :〈Γ�{ 1/M ′}M `λsSM τ〉, for any (λ.M M ′) ∈
ΛdB .

Proof. The proof consists in the verification of SR with context restriction for
(λ.M M ′) : 〈Γ `λsSM τ〉 when the rule (σ-generation) is applied and then of SR
for the s-calculus. Let (λ.M M ′) :〈Γ ` τ〉. By Lemma 4.6.4 one has two cases.

On the first case one has λ.M :〈Γ1 ` ω→τ〉 and M ′ :〈Γ2 ` ρ〉, where Γ=Γ1 ∧ Γ2.
If Γ1 = nil, then by Lemma 4.6.2 one has that M : 〈nil ` τ〉 thus, by the rule

(nil-σ), Mσ1M ′ : 〈nil ` τ〉. By Theorem 4.9 one has that N : 〈nil ` τ〉 for any
N s.t. Mσ1M ′ →s N . Hence, by induction on the number of reduction steps in s
one has that s(Mσ1M ′) : 〈nil ` τ〉, where s(Mσ1M ′) ≡ { 1 /M ′}M . Note that, by
Lemma 4.4, AI(M) = ∅ thus AI({ 1 /M ′}M) =AI(Mσ1M ′) =AI(M−1) = ∅. Hence,
(Γ1 ∧ Γ2)�{ 1 /M ′}M = nil.

If |Γ1|> 0, then by Lemma 4.6.3 one has that M : 〈ω.Γ1 ` τ〉 hence, by the rule
(ω-σ), Mσ1M ′ :〈Γ1 ` τ〉. Hence, by Theorem 4.9, s(Mσ1M ′) :〈Γ1 ` τ〉. Note that, by
Lemma 4.4, 1 /∈AI(M) thus AI({ 1 /M ′}M) =AI(Mσ1M ′) =AI(M−1) =AI(λ.M).
Hence, (Γ1 ∧ Γ2)�{ 1 /M ′}M = (Γ1 ∧ Γ2)�λ.M = Γ1.

On the second case one has λ.M :〈Γ1 ` ∧mj=1σj→τ〉 and ∀1≤j≤m, M ′ :〈∆j ` σj〉,
where Γ=Γ1 ∧ Γ2 for Γ2 =∆1 ∧ · · · ∧∆m.

If Γ1 =nil, then by Lemma 4.6.2 one has that M1 :〈∧mj=1σj .nil ` τ〉. If sav(M ′)=0

then by Lemma 4.4 one has that ∀1 ≤ j ≤ m, ∆j = nil. Hence, by the rule (∧-
nil-σ) one has that Mσ1M ′ : 〈nil ` τ〉 thus, by Theorem 4.9, s(Mσ1M ′) : 〈nil `
τ〉. Note that Γ1 ∧ Γ2 = nil. If sav(M ′) > 0, then by the rule (∧-σ) one has that
Mσ1M ′ :〈∆1 ∧ · · · ∧∆m ` τ〉. Hence, by Theorem 4.9, s(Mσ1M ′) :〈∆1 ∧ · · · ∧∆m `
τ〉. Note that AI({ 1 /M ′}M) =AI(Mσ1M ′) =AI(ϕ1

0M
′) =AI(M ′). Hence, (Γ1 ∧

Γ2)�{ 1/M ′}M= (Γ1 ∧ Γ2)�M ′= Γ2.

18 Explicit substitutions calculi with de Bruijn indices and intersection type systems

If |Γ1| > 0, then by Lemma 4.6.3 one has that M : 〈∧mj=1σj .Γ
1 ` τ〉 thus, by

the rule (∧-σ), Mσ1M ′ : 〈Γ1 ∧ (∆1 ∧ · · · ∧∆m) ` τ〉. Hence, by Theorem 4.9 one
has that s(Mσ1M ′) : 〈Γ1 ∧ Γ2 ` τ〉. Note that AI({ 1 /M ′}M) = AI(Mσ1M ′) =
AI(M−1) ∪AI(ϕ1

0M
′) = AI(λ.M) ∪AI(M ′) = AI(λ.M M ′).

Remark 4.14
Note that, w.r.t. β-reduction, the type information lost after β-contractions can affect

the type as well. For instance, λ.(λ.2 1) : 〈nil ` (α ∧ β)→α〉, λ.(λ.2 1)→+
λs λ.1 and

λ.1:〈nil ` α→α〉. Therefore, one would need a subtyping relation, and an associated
inference rule, in order to obtain SR for β-reduction In the example above, α∧β ≤ α
thus α → α ≤ (α ∧ β) → α6 and 〈nil ` α→α〉 ≤ 〈nil ` (α ∧ β)→α〉. Therefore
λ.1:〈nil ` (α ∧ β)→α〉 (cf. [11]).

4.2 The system λse
∧

When applying λsSM to the λse-calculus, the system does not satisfy SR due to the
composition of operators. We present an example below, giving an intuition to how
we changed the system λsSM , and why, to obtain an IT system for λse with the SR
property.

Example 4.15
Let A ≡ (1 1), M ≡ (3σ1A)σ1λ.A, M ′ ≡ (3σ2λ.A)σ1(Aσ1λ.A). One has M →λse

M ′, where M is typeable in λsSM and M ′ is not typeable. One cannot obtain M ′

from M in λs while M is obtained from term M0 ≡ (λ.(λ.3 A) λ.A) in both calculi.

Remark 4.16
Non-typeability of the term M0 above in λsSM is due to the inclusion, by the rule
→′e, of type information from the context of an argument to an empty application.

Typeability of both M0 and Aσ1λ.A in λsSM reduces to typeability of Ω ≡ (λ.A λ.A)
which has no type in systems like the Barendregt et al. [7] other than the universal
ω type. Hence, we drop the typeability requirement on rules →′e, (nil-σ) and (ω-σ) ,
obtaining the system λse

∧ below.

Definition 4.17 (The system λse
∧)

The inference rules for λse
∧ are given by the rules of the system λsSM in Figure 1,

where the inference rules →′e, (nil-σ) and (ω-σ) are replaced by the rules below:

M :〈Γ ` ω→τ〉
(M N) :〈Γ ` τ〉

→ω
e (nil-σ)

M :〈Γ ` τ〉
MσiN :〈Γ ` τ〉

, |Γ| ≤ i

(ω-σ)
M :〈Γ ` τ〉

MσiN :〈Γ<i.Γ>i ` τ〉
, Γi = ω

The system λse
∧ is presented in the Figure 2.

The consequence of those changes is that the system λse
∧ does not have a tight

correspondence relating some syntactic characterisation and relevance. However, the
system has a property related to relevance, stated below.

6counter-variant in the argument of functional types

Explicit substitutions calculi with de Bruijn indices and intersection type systems 19

1:〈τ.nil ` τ〉
var

n :〈Γ ` τ〉
n+1:〈ω.Γ ` τ〉

varn
M :〈u.Γ ` τ〉

λ.M :〈Γ ` u→τ〉
→i

M1 :〈Γ ` ω→τ〉
(M1 M2) :〈Γ ` τ〉

→ω
e

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉

→′i

M1 :〈Γ ` ∧ni=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉
(M1 M2) :〈Γ ∧∆1 ∧ · · · ∧∆n ` τ〉

→e

(nil-σ)
M :〈Γ ` τ〉

MσiN :〈Γ ` τ〉
, |Γ| < i (ω-σ)

M :〈Γ ` τ〉
MσiN :〈Γ<i.Γ>i ` τ〉

, Γi = ω

(∧-nil-σ)
N :〈nil ` σ1〉 . . . N :〈nil ` σm〉 M :〈ω i−1. ∧mj=1 σj .nil ` τ〉

MσiN :〈nil ` τ〉

(∧-ω-σ)
N :〈nil ` σ1〉 . . . N :〈nil ` σm〉 M :〈Γ ` τ〉

MσiN :〈Γ<(i−k).nil ` τ〉
, Γi = ∧mj=1σj (*)

(∧-σ)
N :〈∆1 ` σ1〉 . . . N :〈∆m ` σm〉 M :〈Γ ` τ〉
MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` τ〉

, Γi = ∧mj=1σj (**)

(ω-ϕ)
M :〈Γ ` τ〉

ϕikM :〈Γ≤k.ω i−1.Γ>k ` τ〉
, |Γ| > k (nil-ϕ)

M :〈Γ ` τ〉
ϕikM :〈Γ ` τ〉

, |Γ| ≤ k

(*) Γ = Γ<(i−k).ω
k. ∧mj=1 σj .nil and Γ(i−k−1) 6=ω (**) ∆k 6= nil, for some 1≤k≤m,

or Γ>i 6= nil

Fig. 2. Typing rules of the system λse
∧

Lemma 4.18
If M : 〈Γ `λse∧ τ〉 for |Γ| = m > 0, then m ≤ sav(M), Γm 6= ω and ∀1 ≤ i ≤ m,
Γi 6= ω implies that i ∈ AI(M).

Proof. By induction on the derivation of M : 〈Γ `λse∧ τ〉 when Γ 6= nil. We present
the case for the application of the rule (ω-σ). Then, one has MσiN : 〈Γ<i.Γ>i ` τ〉
where M :〈Γ ` τ〉 and Γi=ω. Let m= |Γ| and Γ′ = Γ<i.Γ>i. By IH one has that m≤
sav(M), Γm 6=ω and ∀1≤j≤m, Γj 6=ω implies that j∈AI(M). Hence, m ∈ AI(M)
and m > i thus m ∈ AI(M)>i. One has that |Γ′|=m−1 and that Γ′m−1 = Γm 6=ω.
By Definition 2.10 one has that AI(MσiN)⊇AI(M−i) =AI(M)<i ∪ (AI(M)>i\1)
thus sav(MσiN)≥ sav(M−i)≥m−1. For any 1≤ j < i one has Γ′j = Γj 6=ω implies

that j ∈AI(M)<i ⊆AI(MσiN) and for any i≤ j < (m−1) one has Γ′j = Γj+1 6= ω

implies that j+1∈AI(M)>i thus j∈AI(MσiN).

Since in the case of empty applications, handled by the rule→ω
e , no type information

about the argument is added to the context, the system satisfies the usual notion of
the SR property. We prove the property in a standard way, proving some generation
lemmas first, where only the Γm 6= ω piece of the Lemma 4.18 above is needed.

Lemma 4.19 (Generation for λse
∧)

1. If n :〈Γ `λse∧ τ〉 then Γ=ω n−1.τ.nil.

20 Explicit substitutions calculi with de Bruijn indices and intersection type systems

2. If λ.M : 〈nil `λse∧ τ〉, then τ = ω→ σ and M : 〈nil `λse∧ σ〉 or τ = ∧ni=1σi→ σ,
n > 0, and M :〈∧ni=1σi.nil `λse∧ σ〉 for σ, σ1, . . . , σn∈T .

3. If λ.M : 〈Γ `λse∧ τ〉 and |Γ| > 0, then τ =u→σ for some u∈U and σ∈T , where
M :〈u.Γ `λse∧ σ〉.

4. If (M N) : 〈Γ `λse∧ τ〉 then M : 〈Γ `λse∧ ω→τ〉 or Γ = Γ′ ∧ ∆1 ∧ · · · ∧∆m s.t.
M :〈Γ′ `λse∧ ∧mi=1σi→τ〉 and ∀1≤ i≤m, N :〈∆i `λse∧ σi〉.

Proof. 1. By induction on n. If n = 1, nothing to prove. Let n+1 : 〈Γ ` τ〉. By
the rule varn one has that Γ = |ω.Γ′|, where n : 〈Γ′ ` τ〉. Hence, by IH one has that
Γ′ = ω n−1.τ.nil thus Γ = ω n.τ.nil. 2, 3, 4. By case analysis in the respective
derivation.

Remark 4.20
- Observe that the item 1 on Lemma 4.19 above is equivalent to Lemma 4.6.1

combined with Lemma 4.4 in system λsSM .

- Even though items 2 and 3 are similar to Lemmas 4.6.2 and 4.6.3 for system λsSM ,
the proper alternative in each case is linked to the sets AI(λ.M) and AI(M) on
the latter ones, while we do not have this correspondence in the items above. The
loss of this relation is a consequence of the rule →ω

e , described by the property in
item 4 above.

Lemma 4.21 (Generation for operators in λse
∧)

1. Let ϕikN : 〈Γ `λse∧ τ〉. If |Γ| ≤ k, then N : 〈Γ `λse∧ τ〉. If |Γ| > k then N :
〈Γ≤k.Γ≥k+i `λse∧ τ〉, where Γ=Γ≤k.ω

i−1.Γ≥k+i.

2. If MσiN : 〈nil `λse∧ τ〉, then M : 〈ω i−1. ∧mj=1 σj .nil `λse∧ τ〉 where ∀1≤ j ≤m,
N :〈nil `λse∧ σj〉 or M :〈nil `λse∧ τ〉.

3. If MσiN :〈Γ `λse∧ τ〉 and 0< |Γ|<i, then M :〈Γ′ `λse∧ τ〉 where Γ′ = Γ.ω n. ∧mj=1

σj .nil for n ≥ 0 s.t. |Γ′| = i and ∀1≤j≤m, N :〈nil `λse∧ σj〉 or M :〈Γ `λse∧ τ〉.
4. If MσiN : 〈Γ `λse∧ τ〉 and |Γ| ≥ i then M : 〈Γ<i.ω.Γ≥i `λse∧ τ〉 or Γ≥i = Γ′ ∧

∆1 ∧ · · · ∧∆m for |Γ≥i| > 0 s.t. M : 〈Γ<i. ∧mj=1 σj .Γ
′ `λse∧ τ〉 and ∀1 ≤ j ≤ m,

N :〈∆j `λse∧ σj〉.

Proof. 1, 2, 3, 4. By case analysis on the respective derivation.

Below, we present the subject reduction theorem for system λse
∧.

Theorem 4.22 (SR for λse
∧)

If M :〈Γ `λse∧ τ〉 and M →λse M
′, then M ′ :〈Γ `λse∧ τ〉.

Proof. By the verification of SR for each λse rewriting rule.
We present the proof for the rule (σ-generation), to allow a comparison with the

proof in Theorem 4.13 and for the rule (σ-app-transition), to compare with the proof
for the same rule for system λsSM presented in Theorem 4.9.
• (σ-generation): If (λ.M N) : 〈Γ ` τ〉 we might prove that Mσ1N : 〈Γ ` τ〉. By
Lemma 4.19.4 the last rule applied for (λ.M N) : 〈Γ ` τ〉 is either →e or →ω

e . We
present the latter, which represents the key to obtain SR for the simulation of β-
reduction. Therefore, λ.M : 〈Γ ` ω→τ〉 thus we need to consider the cases (1)
Γ = nil and (2) |Γ| > 0, related with Lemmas 4.19.2 and 4.19.3 respectively.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 21

(1) If Γ=nil then, by Lemma 4.19.2, the last rule applied is →′i then

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉
(λ.M N) :〈nil ` τ〉

thus
M :〈nil ` τ〉

Mσ1N :〈nil ` τ〉

(2) If |Γ|>0 then, by Lemma 4.19.3, the last rule applied is →i then

M :〈ω.Γ ` τ〉
λ.M :〈Γ ` ω→τ〉
(λ.M N) :〈Γ ` τ〉

thus
M :〈ω.Γ ` τ〉
Mσ1N :〈Γ ` τ〉

• (σ-app-transition): We might prove that ((M1σ
iN) (M2σ

iN)) : 〈Γ ` τ〉 whenever
(M1 M2)σiN : 〈Γ ` τ〉. Hence, we need to consider the three possibilities for Γ, each
one of them related with one generation lemma, the Lemmas 4.21.2, 4.21.3 and 4.21.4.
Similarly to the proof in Theorem 4.9, we present here the case for Γ = nil. Then, by
Lemma 4.21.2 the last rule applied is either (1) the (nil-σ) or (2) the (∧-nil-σ) rule.

(1) If the last rule applied is (nil-σ) then:
(M1 M2) :〈nil ` τ〉

(M1 M2)σiN :〈nil ` τ〉
For (M1 M2) : 〈nil ` τ〉, one has by Lemma 4.19.4 that the last rule applied is
either (a) the rule →ω

e or (b) the rule →e. Hence:
(a)

M1 :〈nil ` ω→τ〉
(M1 M2) :〈nil ` τ〉

(M1 M2)σiN :〈nil ` τ〉

thus
M1 :〈nil ` ω→τ〉

M1σ
iN :〈nil ` ω→τ〉

((M1σ
iN) (M2σ

iN)) :〈nil ` τ〉

(b)
M1 :〈nil ` ∧mj=1σj→τ〉 ∀1≤j≤m,M2 :〈nil ` σj〉

(M1 M2) :〈nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

thus
M1 :〈nil ` ∧mj=1σj→τ〉

M1σ
iN :〈nil ` ∧mj=1σj→τ〉

M2 :〈nil ` σj〉
M2σ

iN :〈nil ` σj〉
, ∀1≤j≤m

((M1σ
iN) (M2σ

iN)) :〈nil ` τ〉

(2) If the last rule applied is (∧-nil-σ) then:

∀1≤j≤n,N :〈nil ` τj〉 (M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

22 Explicit substitutions calculi with de Bruijn indices and intersection type systems

For (M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉, one has by Lemma 4.19.4 that the last rule
applied is either (a) the rule →ω

e or (b) the rule →e. Hence:
(a)

∀1≤j≤n,N :〈nil ` τj〉
M1 :〈ω i−1. ∧nj=1 τj .nil ` ω→τ〉

(M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

thus

∀1≤j≤n,N :〈nil ` τj〉 M1 :〈ω i−1. ∧nj=1 τj .nil ` ω→τ〉
M1σ

iN :〈nil ` ω→τ〉
((M1σ

iN) (M2σ
iN)) :〈nil ` τ〉

(b) For some Γ′ ∧∆1 ∧ · · · ∧∆m = ω i−1. ∧nj=1 τj .nil one has:

∀1≤j≤n,N :〈nil ` τj〉
M1 :〈Γ′ ` ∧mh=1σh→τ〉 ∀1≤h≤m,M2 :〈∆h ` σh〉

(M1 M2) :〈ω i−1. ∧nj=1 τj .nil ` τ〉
(M1 M2)σiN :〈nil ` τ〉

As for the similar case in Theorem 4.9, suppose that Γ′ = nil, ∆1 = ω i−1.∧n1
j=1

τj .nil, ∆2 = ω i−1.∧nj=(n1+1) τj .nil and that ∀n<j≤m,∆j = nil. Then, one has

D1 =
∀1≤j≤n1, N :〈nil ` τj〉 M2 :〈∆1 ` σ1〉

M2σ
iN :〈nil ` σ1〉

D2 =
∀n1<j≤n,N :〈nil ` τj〉 M2 :〈∆2 ` σ2〉

M2σ
iN :〈nil ` σ2〉

and for each n<j≤m one has Dj =
M2 :〈nil ` σi〉

M2σ
iN :〈nil ` σi〉

thus

M1 :〈nil ` ∧mh=1σh→τ〉
M1σ

iN :〈nil ` ∧mh=1σh→τ〉 Dh,∀1≤h≤m
((M1σ

iN) (M2σ
iN)) :〈nil ` τ〉

Since the proof of SR is stated inspecting each rule of the λse-calculus, this property
holds when restricted to the λs-calculus. Therefore, we can state the SR for the system
λs∧ defined below as a corollary from the Theorem 4.22 above.

Definition 4.23 (The system λs∧)
Let the system λs∧ be the system λse

∧, introduced in Definition 4.17, restricted to
the λs-calculus.

Corollary 4.24
The system λs∧ has the SR property.

Moreover, all generation lemmas stated in Lemmas 4.19 and 4.21 are satisfied by
the system λs∧. In Subsection 5.2 we derive the properties for system λ∧dB from the
properties of system λs∧.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 23

Remark 4.25
Differently from λsSM , λse

∧ (and consequently λs∧) owns the contextual closure for
SR. Intuitively, for any reduction in a typeable term one needs to replace the subterm
and its typing information by its reduct. Hence, either the corresponding typing tree,
holding exactly the same conclusion as the original one since SR holds in the usual
sense, or the term in the rules →ω

e , (nil-σ) or (ω-σ) is replaced.
For instance, 〈nil ` (α ∧ β)→α〉 is not a typing of λ.(λ.2 1) in λs∧ but 〈nil `

α→α〉 is a typing for both λ.(λ.2 1) and λ.1 in the system.
As a result, SR holds for the simulation of β-reduction in λ∧dB . See Subsection 5.2

for further discussion.

5 Intersection type systems for the λdB-calculus

In [57] we introduced an IT system for λdB called SM, based on the system of Sayag
and Mauny [50], to characterise principal typings for β-nfs in the λdB-calculus. In
[58] this system, then called λSMdB , is the base for the system proposed for λs, called
λsSM . As presented in the previous section, when applying the system λsSM to λse,
the SR property is not satisfied. Hence, the system obtained satisfying SR is called
λse
∧ and its base is the system λ∧dB .

The system λSMdB was proved to be relevant w.r.t. free indices thus a special notion
of SR was proposed. Then, updating and substitution lemmas were proved in order to
establish SR for the β-contraction in the λdB-calculus. Typing rules for operators in
λsSM were then based on the statements from those lemmas for λSMdB . In the present
work, we derive the properties of system λSMdB from the system λsSM . Although not
necessary to prove SR here, we present both updating and substitution lemmas to
show the correspondence with the typing rules of λsSM .

The system λ∧dB was introduced in [58] in a discussion regarding recovering the SR
property in the usual sense. However, the property was not proved for λ∧dB due to
the missing of a strong relation between some syntactic characteristic and relevance.
Hence, for the first time we prove SR for both β-contraction and β-reduction in the
system. The proof is derived from system λs∧, the restriction of system λse

∧ to the
λs-calculus. The system λ∧dB is a de Bruijn version of the IT system in [52] and
although is claimed it owns SR, the proof presented in [51] has a mistake (cf. [57]).

5.1 The system λSMdB
In contrast to the work in [58], the system λSMdB is here presented as a restriction of
system λsSM to the λdB-calculus.

Definition 5.1 (The system λSMdB)
The system λSMdB is formed by the rules var, varn, →e, →′e, →i and →′i, introduced in
Figure 1.

Hence, any typing of M in λSMdB is a typing in λsSM . The lemma below states that
the inverse is also true whenever M ∈ ΛdB .

Lemma 5.2
If M ∈ ΛdB , then M :〈Γ `λsSM τ〉 iff M :〈Γ `λSMdB τ〉.

Proof. By induction on the derivation M :〈Γ `λsSM τ〉 for M ∈ ΛdB .

24 Explicit substitutions calculi with de Bruijn indices and intersection type systems

Therefore, one can obtain the properties of system λSMdB , regarding the β-contraction
as in Definition 2.6, from the properties of system λsSM . Relevance [21, 23] w.r.t. free
indices is the first one to be presented.

Lemma 5.3 (Relevance for λSMdB [57])
If M :〈Γ `λSMdB τ〉, then |Γ|=sup(M) and ∀1≤ i≤|Γ|, Γi 6= ω iff i∈FI(M).

Proof. If M :〈Γ `λSMdB τ〉, then 〈Γ ` τ〉 is a typing of M in λsSM . Hence, by Lemma
4.4 one has that |Γ|= sav(M) and ∀1≤ i≤|Γ|, Γi 6=ω iff i∈AI(M). Since M ∈ΛdB
one has by Corollary 2.12 that AI(M) =FI(M) thus sav(M) = sup(M). Therefore,
we have the relevance property for system λSMdB regarding FI.

Lemma 5.4 (Updating)
Let M :〈Γ `λSMdB τ〉, k∈N and i∈N∗. If k≥|Γ| then U ik(M) :〈Γ `λSMdB τ〉. If 0≤k< |Γ|
then U ik(M) :〈Γ≤k.ω i−1.Γ>k `λSMdB τ〉.

Proof. If M : 〈Γ `λSMdB τ〉 then M : 〈Γ `λsSM τ〉. By Lemma 2.9.3 one has that

s(ϕikM) = U ik(s(M)) and since M ∈ ΛdB one has s(M) =M . If k ≥ |Γ| then by the
rule (nil-ϕ) one has that ϕikM :〈Γ `λsSM τ〉 thus by SR of the s-calculus one has that
U ik(M) : 〈Γ `λsSM τ〉. Observe that U ik(M) ∈ ΛdB thus 〈Γ ` τ〉 is a typing of U ik(M)
in λSMdB . The case when 0≤k< |Γ| is analogous, where the rule (nil-ϕ) is applied.

The substitutions lemmas stated below are similar to the ones presented in [58].

Lemma 5.5 (Substitution for λSMdB)
Let M :〈Γ `λSMdB τ〉.

1. If i > |Γ| then, for any N ∈ΛdB typeable in λSMdB , { i /N}M :〈Γ `λSMdB τ〉.
2. If Γi = ω where 0 < i < |Γ| then, for any N ∈ ΛdB typeable in λSMdB , { i /N}M :
〈Γ<i.Γ>i `λSMdB τ〉.

3. Let Γi = ∧mj=1σj , where 0 < i ≤ |Γ|, and ∀1 ≤ j ≤ m, N : 〈nil `λSMdB σj〉. If
sup(M) = i then { i /N}M : 〈Γ≤k.nil `λSMdB τ〉 for k = sup({ i /N}M). Otherwise,
{ i /N}M :〈Γ<i.Γ>i `λSMdB τ〉.

4. Let Γi = ∧mj=1σj , where 0 < i ≤ |Γ|, and N ∈ ΛdB s.t. sup(N) > 0. If ∀1 ≤
j ≤m, N : 〈∆j `λSMdB σj〉 then for ∆′ = ∆1 ∧ · · · ∧ ∆m one has that { i /N}M :

〈(Γ<i.Γ>i) ∧ ω i−1.∆′ `λSMdB τ〉.

Proof. If M :〈Γ `λSMdB τ〉 then M :〈Γ `λsSM τ〉.

1. If N : 〈∆ `λSMdB ρ〉 and i > |Γ| then by the rule (nil-σ) one has MσiN : 〈Γ `λsSM
τ〉. Then, by SR for s one has that s(MσiN) : 〈Γ `λsSM τ〉 where s(MσiN) =
{ i /s(N)}s(M)={ i /N}M ∈ ΛdB . Hence, { i /N}M :〈Γ `λSMdB τ〉

2. Analogous to lemma 5.5.1, with the applications of the rule (ω-σ).

3. Note that FI({ i /N}M) = AI(MσiN) and by the relevance lemma 5.3 one has
that i∈FI(M) and that sup(N)=0.

If sup(M) = i then by relevance one has |Γ| = i. If FI(M) = { i } then also
by the relevance of system λSMdB one has that Γ = ω i−1.∧mj=1σj . Hence, by the

rule (∧-nil-σ) one has that MσiN : 〈nil `λsSM τ〉. Note that FI({ i /N}M) =

Explicit substitutions calculi with de Bruijn indices and intersection type systems 25

∅7 thus k = sup({ i /N}M) = 0. If FI(M) 6= { i } then let k = sup({ i /N}M).
Observe that FI({ i /N}M) = FI(M)<i. Hence, by relevance one has that Γ =
Γ≤k.ω

i−k−1. ∧mj=1σj .nil where Γk 6= ω. Hence, by the rule (∧-ω-σ) one has that

MσiN :〈Γ≤k.nil `λsSM τ〉.
If sup(M) 6= i then sup(M)>i thus by relevance Γ>i 6=nil. Therefore, by the rule
(∧-σ) one has that MσiN : 〈(Γ<i.Γ>i) ∧ ω i−1.∆′ `λsSM τ〉 where ∆′= ∆1 ∧ · · · ∧
∆m. Observe that ∆′ = nil thus MσiN :〈Γ<i.Γ>i `λsSM τ〉.
In each case, if MσiN : 〈Γ′ `λsSM τ〉 then by SR for s, from the fact that
s(MσiN) = { i /N}M and from Lemma 5.2 one has that { i /N}M :〈Γ′ `λSMdB τ〉.

4. If sup(N) > 0 then by the relevance lemma 5.3 one has ∀1 ≤ j ≤ m, ∆k 6= nil.
Therefore, by the rule (∧-σ) one has for ∆′ = ∆1 ∧ · · · ∧ ∆m that MσiN :
〈(Γ<i.Γ>i) ∧ ω i−1.∆′ `λsSM τ〉. Be Lemma 2.9.4 one has that s(MσiN) =
{ i /N}M thus by SR for the s-calculus { i /N}M :〈(Γ<i.Γ>i) ∧ ω i−1.∆′ `λsSM τ〉.
Therefore, by Lemma 5.2 this typing is in system λSMdB .

Among the differences from the substitution lemmas in [58], we have the ones
related with empty substitutions in items 1 and 2 above. In [58] the property was
stated for any N ∈ ΛdB while we only state them for some typeable N on items 1
and 2 above. This is due to the correspondence of each item to the rules (nil-σ) and
(ω-σ), respectively. In fact, as in the case for lemma 5.4 above and the ϕ operator,
each item in the substitution lemma 5.5 corresponds to some typing rule of λsSM

for the σ operator. Besides that, we have the β-contraction defined differently, using
the updating function in Definition 2.4 instead of the i-lift as in [58]. The change is
reflected on the statement of item 4 above.

Since N is typeable, items 1 and 2 represent the loss of its type information. There-
fore, as for λsSM , we need the restriction notion introduced below to establish SR.

Definition 5.6 (FI restriction)
Let Γ and M be a context and a term. The FI restriction of Γ to M , denoted by Γ�M ,
is a context Γ′ v Γ s.t. |Γ′| = sup(M) and that ∀1≤ i≤|Γ′|, Γ′i 6= ω iff i∈FI(M).

Although one has by Corollary 2.12 that AI and FI define the same set for terms
in ΛdB , we use a different notation to remark when the restriction is based on AI and
on FI. The properties stated in Lemma 4.12 for Γ�M are inherited by Γ�M defined
above. Now, one can state SR for β-contraction.

Theorem 5.7 (SR for β-contraction in λSMdB)
If (λ.M N) :〈Γ `λSMdB τ〉 then { 1 /N}M :〈Γ�{ 1 /N}M `λSMdB τ〉.

Proof. If (λ.M N) : 〈Γ `λSMdB τ〉 then (λ.M N) : 〈Γ `λsSM τ〉. By Theorem 4.13
one has that { 1 /N}M : 〈Γ�{ 1 /N}M `λsSM τ〉. One has that { 1 /N}M ∈ ΛdB thus

Γ�{ 1 /N}M= Γ�{ 1 /N}M and, by Lemma 5.2, { 1 /N}M :〈Γ�{ 1 /N}M `λSMdB τ〉.

As remarked for system λsSM , the type information lost during β-contraction de-
mands a subtyping relation, and an associated inference rule, in order to obtain the
SR property for the β-reduction.

7see Definition 2.10

26 Explicit substitutions calculi with de Bruijn indices and intersection type systems

5.2 The system λ∧dB
Analogous to the previous subsection, we now derive the properties of a system called
λ∧dB from the properties of λse

∧. In fact, we only need the system λs∧, which is the
restriction of system λse

∧ to the λs-calculus.

Definition 5.8 (The system λ∧dB)
The system λ∧dB is obtained from system λSMdB , replacing the rule →′e by the rule →ω

e

introduced in Figure 2.

Hence, λ∧dB is defined to be a variation of system λSMdB . Below we state that system
λ∧dB is a restriction of system λs∧ to the λdB-calculus.

Lemma 5.9
If M ∈ ΛdB then M :〈Γ `λ∧dB τ〉 iff M :〈Γ `λs∧ τ〉.

Therefore, we can derive the properties for λ∧dB from the system λs∧. The first
property to be presented is related to relevance.

Lemma 5.10
If M : 〈Γ `λ∧dB τ〉 and |Γ|=m> 0 then m ≤ sup(M), Γm 6=ω and ∀1≤ i≤|Γ|, Γi 6=ω
implies that i∈FI(M).

Proof. If M :〈Γ `λ∧dB τ〉 then M :〈Γ `λs∧ τ〉. If |Γ|=m>0 then by Lemma 4.18 one
has that m ≤ sav(M), Γm 6=ω and ∀1≤ i≤|Γ|, Γi 6=ω implies that i∈AI(M). Since
M ∈ΛdB one has that AI(M)=FI(M) and sav(M)=sup(M).

Theorem 5.11 (SR for β-contraction in λ∧dB)
If (λ.M N) :〈Γ `λ∧dB τ〉 then { 1 /N}M :〈Γ `λ∧dB τ〉.
Proof. The proof is similar to the one for Theorem 4.13. The main difference is that
we have the SR property for the (σ-generation) rule in λs∧.

If (λ.M M ′) : 〈Γ `λ∧dB τ〉 then (λ.M M ′) : 〈Γ `λs∧ τ〉. By Corollary 4.24 one has

Mσ1M ′ : 〈Γ `λs∧ τ〉. Note that M,M ′ ∈ΛdB thus s(Mσ1M ′) = { 1 /M ′}M . Hence,
by Corollary 4.24, { 1 /M ′}M : 〈Γ `λs∧ τ〉. Since { 1 /M ′}M ∈ ΛdB , by Lemma 5.9
one has that { 1 /M ′}M :〈Γ `λ∧dB τ〉.

In contrast to λSMdB , we can establish the SR property for the β-reduction in system
λ∧dB without a definition of some subtyping relation.

Remark 5.12
All items in Lemma 4.19 are valid for system λ∧dB .

Theorem 5.13 (SR for β-reduction in λ∧dB)
If M :〈Γ `λ∧dB τ〉 and M →β N then N :〈Γ `λ∧dB τ〉.

Proof. By induction on the derivation of M →β N (see Definition 2.7).

6 An intersection type system for λσ

P.-A. Melliès presented in [40] a counter-example in the λσ-calculus for the PSN
property where some term, corresponding to a simply typed term in the λ-calculus,
has an infinity reduction strategy. Therefore, as in Section 4 we aim for a typing
system satisfying SR which is as restricted as possible. We end up with an IT system,
called λσ∧, with a property related to relevance (cf. Lemma 6.5). To begin with, the
development process to obtain the system is presented.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 27

S :〈Γ � Γ′〉 M :〈Γ′ ` τ〉
M [S] :〈Γ ` τ〉

(clos)
M :〈Γ ` τ〉 S :〈∆ � ∆′〉

M.S :〈Γ ∧∆ � τ.∆′〉
(cons)

id :〈Γ � Γ〉
(id)

↑ :〈ω.Γ � Γ〉
(ω-shift)

S :〈Γ � Γ′′〉 S′ :〈Γ′′ � Γ′〉
S′ ◦ S :〈Γ � Γ′〉

(comp)

Fig. 3. Typing rules for system λσ∧r

6.1 Towards an IT system for λσ

The first approach to obtain an IT system for λσ is to extend the system λSMdB to
type the expressions of sort substitution and the closure term, presented in Figure 3,
obtaining the system λσ∧r .

The only difference from the typing rules for λσ→, the simple type system for λσ
(cf. [24]), is the rule (ω-shift): only ω’s are shifted here in order to guarantee the
context ω n.τ.nil in a typing of 1 [↑n]. Now, by the semantics of cons and the previous
experience with the systems for λs/λse, we need typing rules for intersection types
and empty substitutions. The first modification in system λσ∧r is to replace the rule
(cons) by the following two rules:

M :〈Γ ` τ〉 S :〈∆ � ∆′〉
M.S :〈Γ ∧∆ � ω.∆′〉

(ω-cons)

M :〈∆1 ` σ1〉 . . . M :〈∆n ` σn〉 S :〈∆ � ∆′〉
M.S :〈∆1 ∧ · · · ∧∆n ∧∆ � (∧ni=1σi).∆

′〉
(∧-cons)

In fact, if the rule (ω-cons) is defined as above, one would have a problem of du-
plication of contexts analogous to the one discussed in Subsection 4.1. However, we
present a counter-example below exploring the semantics of the sort substitution,
which represents a list of substitutions.

Example 6.1
Let Γ = α.nil and suppose that

λ.2:〈Γ ` ω→α〉 1 .id :〈Γ � Γ〉
(λ.2)[1 . id] :〈Γ ` ω→α〉

where 2 denotes 1 [↑].

One has (λ.2)[1 . id]→(Abs) λ.2 [1 .(1 . id) ◦↑] and, by the rules (ω-shift) and (comp),
(1 . id) ◦↑ : 〈ω.Γ � Γ〉. By the rule (var) one has 1 : 〈σ.nil ` σ〉 for any σ∈T . Hence,
by the rule (ω-cons), 1 .(1 . id) ◦↑ : 〈σ.Γ � ω.Γ〉. One also has 2 : 〈ω.Γ ` α〉 thus, by
the rules (clos) and →i, one has that λ.2 [1 .(1 . id) ◦↑] :〈Γ ` σ→α〉.

Consequently, besides that SR is not satisfied, a kind of weakening is introduced in
the type system. As done before for the system λsSM , the solution is to “forget” the
context information of a term associated with ω thus related to an empty substitution.
Therefore, we introduce the new (ω-cons) rule:

M :〈Γ ` τ〉 S :〈∆ � ∆′〉
M.S :〈∆ � ω.∆′〉

(ω-cons)

One is still not able to type a closure when the typing of the corresponding term
has context nil. At this point, there are two ways to change the system to allow this
typing inference.

28 Explicit substitutions calculi with de Bruijn indices and intersection type systems

One way is to add the side condition ∆′ 6= ω n, ∀n ∈ N to the rule (ω-cons),
introducing the following rule:

M :〈Γ ` τ〉 S :〈∆ � nil〉
M.S :〈∆ � nil〉

(nil-cons)

In this case, we need to change the rule (ω-shift) in a similar way, obtaining the two
rules below:

Γ 6= ∆.ω n

↑ :〈ω.Γ � Γ〉
(ω-shift) ↑ :〈nil � nil〉 (nil-shift)

If we do not change the rule (ω-shift), we would have 1 .↑ :〈ω.nil� nil〉 even though
1 .↑→(V arShift) id.

The second way is to change both rules (clos) and (comp) as follows:

S :〈Γ � Γ′.ω n〉 M :〈Γ′ ` τ〉
M [S] :〈Γ ` τ〉

(ω-clos)

S :〈Γ � Γ′.ω n〉 S′ :〈Γ′ � Γ′′〉
S′◦ S :〈Γ � Γ′′〉

(ω-comp)

Let λσ∧SM be the system with the nil rules and λσ∧ω be the system with the rules (ω-
comp) and (ω-clos). Both approaches have similar properties thus similar problems.
The SR property is satisfied to all but the rule (MapEnv)8 in the λσ-calculus in both
cases. Let (M.S) ◦ S′ be such that, in either system λσ∧SM or system λσ∧ω :

M.S :〈Γ′ � ω.Γ′′〉 S′ :〈Γ � Γ′〉
(M.S) ◦ S′ :〈Γ � ω.Γ′′〉

By the rule (ω-cons) one has S : 〈Γ′ � Γ′′〉 and M typeable. Hence, S ◦ S′ : 〈Γ � Γ′′〉
but there is no guarantee that M [S′] is typeable in any of those two system. We
present a counter-example in λσ∧ω as follows.

Example 6.2
Let A be the self-application (1 1), S1 ≡ A.id and S2 ≡ (λ.A).id. We then have
that S1 : 〈ω.nil �λσ∧ω

ω 2.nil〉 and S2 : 〈nil �λσ∧ω
ω.nil〉. Therefore, by the rule (ω-

comp), S1◦ S2 : 〈nil � ω 2.nil〉. Observe that S1 ◦ S2 →(MapEnv) A[S2].(id ◦ S2) and
id ◦ S2 :〈nil `λσ∧ω nil〉. Typeability of A[S2] depends on the unification of the context
in the typing of term A with the type in the typing of substitution S2, which reduces
to the unification of (α→β) ∧ α with (α′→β′) ∧ α′→β′. Therefore, the typeability
problem for A[S2] reduces to the typeability of the self-replicator Ω ≡ (λ.A λ.A) in
IT systems thus not typeable but with ω (cf. [19]).

The example above would not occur as a subexpression of any term derived by
the λσ rewriting rules from a term corresponding to a typed term in the λ-calculus.
Let M be any term such that M : 〈nil `λσ∧ω τ〉. Hence, for S1 and S2 as in the
Example 6.2 above, one has (M [S1])[S2] : 〈nil `λσ∧ω τ〉 and λ.M : 〈nil `λσ∧ω ω→τ〉.
Analysing the rewriting rules in λσ, the only way to obtain (M [S1])[S2] is from term
M ′ ≡

(
λ.
(
λ.M A

)
λ.A

)
, where A is the self-application. Let

λ.M :〈nil ` ω→τ〉 A :〈(α→β) ∧ α.nil ` β〉
(λ.M A) :〈(α→β) ∧ α.nil ` τ〉

λ.(λ.M A) :〈nil ` ((α→β) ∧ α)→τ〉

8The rule is pointed out by Melliès as the reason why λσ is not PSN (cf. [40]).

Explicit substitutions calculi with de Bruijn indices and intersection type systems 29

Typeability of M ′ is reduced to the typeability problem of the self-replicator in
IT thus M ′ is not typeable. The same expressions in λσ compounds an analogous
counter-example for system λσ∧SM .

Remark 6.3
Non-typeability of M ′ in both systems presented here is due to the definition of the
rule→′e, which adds the type information from the context in a typing of an argument
to an empty application.

We can then change the rules (ω-cons) and (nil-cons), dropping from the respective
premises the requirement that M has to be typeable, obtaining:

(nil-cons)
S :〈∆ � nil〉
M.S :〈∆ � nil〉

(ω-cons)
S :〈∆ � ∆′〉

M.S :〈∆ � ω.∆′〉
,where ∆′ 6= ω n

Although WN expressions in λσ, corresponding to terms in the λ-calculus, are not
typeable neither in λσ∧ω nor in λσ∧SM , the Melliés example [40] is typeable in both
systems.

Since a characterisation of SN terms in λσ is not possible, we replace the rule →′e
by →ω

e below:
M :〈Γ ` ω→τ〉
(M N) :〈Γ ` τ〉

→ω
e

Similar to λse
∧ in relation to λsSM , there is no straightforward relation between typ-

ing contexts and syntactic properties of terms, because we have no type information
about free indices of a term applied to ω. In Subsection 6.2 we present the system
λσ∧, based on λσ∧SM with the rule →ω

e described above. Even though we do not have
the exact notion of what should relevance be for a system such as λσ∧, we prove a
property similar to Lemma 4.18 for λse

∧, about the last element of a non-nil context.

6.2 The system λσ∧

Similar to the IT system proposed for λse, the system for λσ discards any type
information from contexts of terms related to empty applications.

Definition 6.4 (The system λσ∧)
The typing rules for λσ∧ are presented in Figure 4, where m > 0 and n ≥ 0 .

Note that both rules (id) and (ω-shift) include side conditions such that contexts
ending with an omega context are precluded. Note also that the context nil is excluded
from (ω-shift) but allowed on rule (id).

Below, a lemma stating a property of λσ∧ related to relevance.

Lemma 6.5
If M : 〈Γ `λσ∧ τ〉 and |Γ|=m> 0, then Γm 6=ω. In particular, if S : 〈Γ �λσ∧ Γ′〉 and
|Γ|=m>0 then Γm 6=ω and if |Γ′|=m′>0 then Γ′m′ 6=ω.

Proof. By induction on the derivation of M : 〈Γ `λσ∧ τ〉 when Γ 6= nil, with subin-
duction on the derivation of S :〈Γ �λσ∧ Γ′〉 when Γ 6= nil or Γ′ 6= nil.

Corollary 6.6
If M : 〈Γ `λσ∧ τ〉 then Γ 6= ∆.ωm, for any context ∆ and m> 0. In particular, if
S : 〈Γ �λσ∧ Γ′〉 then Γ 6= ∆.ωm and Γ′ 6= ∆′.ωm, for any contexts ∆ and ∆′, and
m > 0.

30 Explicit substitutions calculi with de Bruijn indices and intersection type systems

1:〈τ.nil ` τ〉
(var)

M :〈u.Γ ` τ〉
λ.M :〈Γ ` u→τ〉

→i

M1 :〈Γ ` ω→τ〉
(M1 M2) :〈Γ ` τ〉

→ω
e

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉

→′i

M1 :〈Γ ` ∧mi=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆m ` σm〉
(M1 M2) :〈Γ ∧∆1 ∧ · · · ∧∆m ` τ〉

→e

(clos)
S :〈Γ � Γ′〉 M :〈Γ′ ` τ〉

M [S] :〈Γ ` τ〉

(∧-cons)
M :〈∆1 ` σ1〉 . . . M :〈∆m ` σm〉 S :〈∆ � ∆′〉

M.S :〈∆ ∧∆1 ∧ · · · ∧∆m � (∧mi=1σi).∆
′〉

(id)
Γ 6= ∆.ωm

id :〈Γ � Γ〉
(comp)

S :〈Γ � Γ′′〉 S′ :〈Γ′′ � Γ′〉
S′ ◦ S :〈Γ � Γ′〉

(nil-shift)
↑ :〈nil � nil〉

(nil-cons)
S :〈∆ � nil〉
M.S :〈∆ � nil〉

(ω-shift)
Γ 6= ∆.ω n

↑ :〈ω.Γ � Γ〉
(ω-cons)

S :〈∆ � ∆′〉
M.S :〈∆ � ω.∆′〉

,∆′ 6= ω n

Fig. 4. The inference rules for the system λσ∧

Side conditions for rules (id) and (ω-shift) guarantee the property described on
Corollary 6.6 for every typeable substitution in λσ∧. This property is not necessary
in order to obtain SR for the typing system, in which the side condition Γ 6= ωm for
(id), where m > 0, would be enough. In this case, Lemma 6.5, and consequently the
corollary above, would be satisfied by terms and only by substitutions when applied
to terms.

The proof of SR for system λσ∧ is standard, where some generation lemmas are
stated before. The lemmas for substitutions are presented first and then the ones for
terms.

Lemma 6.7 (Generation for substitutions in λσ∧)
1. S :〈nil � nil〉 for any substitution S.

2. If M.S :〈Γ � nil〉 then S :〈Γ � nil〉.
3. If M.S :〈Γ � ω.Γ′〉 then S :〈Γ � Γ′〉 and Γ′ 6= ω n.

4. If M.S :〈Γ�Γ′〉 for Γ′=∧mi=1σi.Γ
′′ then S :〈Γ′′′�Γ′′〉 and ∀1≤ i≤m, M :〈Γi ` σi〉

such that Γ=Γ′′′ ∧ Γ1 ∧ · · · ∧ Γm.

5. If S :〈Γ � nil〉 then Γ = nil.

6. ↑m :〈Γ � Γ′〉 iff either Γ = Γ′ = nil or Γ = ωm.Γ′, where Γ′ 6= ∆.ω n.

7. If S :〈Γ � Γ′〉 and S :〈∆ � ∆′〉 then S :〈Γ ∧∆ � Γ′ ∧∆′〉.
8. If S :〈Γ�∆1 ∧∆2〉 for ∆1 6=∆′.ωm and ∆2 6=∆′′.ωm, then Γ = Γ1 ∧Γ2 such that
S :〈Γ1 � ∆1〉 and S :〈Γ2 � ∆2〉.

Proof. 1,5,7,8. By induction on the structure of S. 2,3,4. By case analysis on the
respective derivation. 6. By induction on m taking item 5 as the induction base.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 31

Lemma 6.8 (Generation for terms in λσ∧)
1. 1 [↑m] :〈Γ `λσ∧ τ〉 iff Γ = ωm.τ.nil.

2. If λ.M :〈nil `λσ∧ τ〉, then τ=ω→σ and M :〈nil `λσ∧ σ〉 or τ=∧ni=1σi→σ, n > 0,
and M :〈∧ni=1σi.nil `λσ∧ σ〉 where σ, σ1, . . . , σn∈T .

3. If λ.M : 〈Γ `λσ∧ τ〉 and |Γ| > 0, then τ =u→σ for some u∈U and σ∈T , where
M :〈u.Γ `λσ∧ σ〉.

4. If (M N) : 〈Γ `λσ∧ τ〉 then M : 〈Γ `λσ∧ ω→τ〉 or M : 〈Γ′ `λσ∧ ∧mi=1σi→τ〉 and
∀1≤ i≤m, N :〈Γi `λσ∧ σi〉 where Γ = Γ′ ∧ Γ1 ∧ · · · ∧ Γm.

Proof. 1. Suppose that 1 [↑m] :〈Γ ` τ〉. By the rule (comp) one has ↑ :〈Γ�Γ′〉 and
1 : 〈Γ′ ` τ〉. Therefore, by the rule (var) one has Γ′ = τ.nil thus, by Lemma 6.7.6,
Γ = ωm.τ.nil. 2,3,4. By case analysis on the respective derivation.

Now the SR property can be established for λσ∧.

Theorem 6.9 (SR for λσ∧)
If M :〈Γ `λσ∧ τ〉 and M →λσ M

′ then M ′ :〈Γ `λσ∧ τ〉. In particular, if S :〈Γ�λσ∧ Γ′〉
and S →λσ S

′ then S′ :〈Γ �λσ∧ Γ′〉.

Proof. By the verification of SR for each λσ rewriting rule. We present the proof-
sketch for the (Beta) and (App) rules.
• Beta: If (λ.M N) :〈Γ ` τ〉 we might prove that M [N.id] :〈Γ ` τ〉. By Lemma 6.8.4
the last rule applied is either →e or →ω

e . We present the proof for the latter one thus
λ.M :〈Γ ` ω→τ〉. We need to consider the cases (1) Γ = nil and (2) |Γ| > 0, related
with Lemmas 6.8.2 and 6.8.3 respectively.

(1) If Γ=nil then, by Lemma 6.8.2, the last rule applied is →′i then

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉
(λ.M N) :〈nil ` τ〉

thus
id :〈nil � nil〉
N.id :〈nil � nil〉 M :〈nil ` τ〉

M [N.id] :〈nil ` τ〉

(2) If |Γ|>0 then, by Lemma 6.8.3, the last rule applied is →i then

M :〈ω.Γ ` τ〉
λ.M :〈Γ ` ω→τ〉
(λ.M N) :〈Γ ` τ〉

thus
id :〈Γ � Γ〉

N.id :〈Γ � ω.Γ〉 M :〈ω.Γ ` τ〉
M [N.id] :〈Γ ` τ〉

• App: If (M1 M2)[S] : 〈Γ ` τ〉 we might prove that (M1[S] M2[S]) : 〈Γ ` τ〉. By

the rule (clos):
S :〈Γ � ∆〉 (M1 M2) :〈∆ ` τ〉

(M1 M2)[S] :〈Γ ` τ〉
. Hence, by Lemma 6.8.4 the last rule

applied for (M1 M2) :〈∆ ` τ〉 is either (1) →ω
e or (2) →e.

32 Explicit substitutions calculi with de Bruijn indices and intersection type systems

(1) If the last rule applied is →ω
e then

S :〈Γ � ∆〉
M1 :〈∆ ` ω→τ〉

(M1 M2) :〈∆ ` τ〉
(M1 M2)[S] :〈Γ ` τ〉

thus
S :〈Γ � ∆〉 M1 :〈∆ ` ω→τ〉

M1[S] :〈Γ ` ω→τ〉
(M1[S] M2[S]) :〈Γ ` τ〉

(2) If the last rule applied is →e then, for ∆=∆′ ∧∆1 ∧ · · · ∧∆m, one has

S :〈Γ � ∆〉
M1 :〈∆′ ` ∧mi=1σi→τ〉 ∀1≤i≤m,M2 :〈∆i ` σi〉

(M1 M2) :〈∆ ` τ〉
(M1 M2)[S] :〈Γ ` τ〉

By Corollary 6.6 one has that ∆′,∆1, . . . ,∆m 6=∆′′′.ω n, for any context ∆′′′ and
n>0. Hence, by induction on m and Lemma 6.7.8 one has Γ = Γ′ ∧Γ1 ∧ · · · ∧ Γm

s.t. S :〈Γ′ � ∆′〉 and ∀1≤ i≤m, S :〈Γi � ∆i〉. Hence,

S :〈Γ′ � ∆′〉 M1 :〈∆′ ` ∧mi=1σi→τ〉
M1[S] :〈Γ′ ` ∧mi=1σi→τ〉

S :〈Γi � ∆i〉 M2 :〈∆i ` σi〉
M2[S] :〈Γi ` σi〉

, ∀1≤i≤m

(M1[S] M2[S]) :〈Γ ` τ〉

7 Some considerations about intersection types and λυ

Although in [10] the relation of the λυ-calculus and de Bruijn’s Cλξφ calculus ([13])
was investigated, in counterposition with what was called λσ family, λυ can be seen
as a λσ without composition of substitutions. Therefore, as for the systems presented
in Section 4, we would like to investigate a relevant IT system for λυ, and compare
with both systems λsSM and λσ∧.

However, as in λσ, is not easy to define some syntactic characteristic similar to
the available indices for λs. Even though we could prove the SR property for the
υ-calculus in an IT system called λυSM , it was not possible to present an appropriate
notion of relevance and thus an appropriate notion of SR for it. Instead, we present
the system λυ∧, very much similar to λσ∧, and prove SR for the full λυ-calculus.

7.1 The system λυ∧

Definition 7.1 (The system λυ∧)
The typing rules for λυ∧ are presented in Figure 5, where m > 0 and n ≥ 0.

Lemma 7.2
If M : 〈Γ `λυ∧ τ〉 and |Γ|=m> 0, then Γm 6=ω. In particular, if S : 〈Γ �λυ∧ Γ′〉 and
|Γ|=m>0 then Γm 6=ω and if |Γ′|=m′>0 then Γ′m′ 6=ω.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 33

1:〈τ.nil ` τ〉
var

n :〈Γ ` τ〉
n+1:〈ω.Γ ` τ〉

varn
M :〈u.Γ ` τ〉

λ.M :〈Γ ` u→τ〉
→i

M1 :〈Γ ` ω→τ〉
(M1 M2) :〈Γ ` τ〉

→ω
e

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉

→′i

M1 :〈Γ ` ∧ni=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉
(M1 M2) :〈Γ ∧∆1 ∧ · · · ∧∆n ` τ〉

→e

(clos)
S :〈Γ � Γ′〉 M :〈Γ′ ` τ〉

M [S] :〈Γ ` τ〉

(∧-B)
M :〈Γ1 ` σ1〉 . . . M :〈Γm ` σm〉

M/ :〈Γ ∧ Γ1 ∧ · · · ∧ Γm � (∧mi=1σi).Γ〉
,Γ 6= ∆.ωm

(nil-B)
M/ :〈nil ` nil〉

(ω-B)
Γ 6= ∆.ω n

M/ :〈Γ ` ω.Γ〉

(nil-shift)
↑ :〈nil � nil〉

(ω-shift)
Γ 6= ∆.ω n

↑ :〈ω.Γ � Γ〉

(nil-lift)
S :〈nil � nil〉
⇑(S) :〈nil � nil〉

(u-lift)
S :〈Γ � Γ′〉

⇑(S) :〈u.Γ � u.Γ′〉
(∗)

(∗) either Γ′ 6= nil or u 6= ω.

Fig. 5. The inference rules for the system λυ∧

Proof. By induction on the derivation of M : 〈Γ `λυ∧ τ〉 when Γ 6= nil, with subin-
duction on the derivation of S :〈Γ �λυ∧ Γ′〉 when Γ 6= nil or Γ′ 6= nil.

Corollary 7.3
If M : 〈Γ `λυ∧ τ〉 then Γ 6= ∆.ωm, for any context ∆ and m> 0. In particular, if
S : 〈Γ �λυ∧ Γ′〉 then Γ 6= ∆.ωm and Γ′ 6= ∆′.ωm, for any contexts ∆ and ∆′, and
m > 0.

Lemma 7.4 (Generation for substitutions in λυ∧)
1. S :〈nil � nil〉 for any S ∈ Λυs.

2. If S :〈Γ � nil〉 then Γ = nil.

3. M/ :〈nil � nil〉 and M/ :〈Γ � ω.Γ〉 for any M ∈ Λυt and Γ 6= ∆.ω n.

4. If S :〈Γ�∆1 ∧∆2〉 for ∆1 6=∆′.ωm and ∆2 6=∆′′.ωm, then Γ = Γ1 ∧Γ2 such that
S :〈Γ1 � ∆1〉 and S :〈Γ2 � ∆2〉.

Proof. 1. By induction on the structure of S.

2. By case analysis. Note that for each S ≡ ↑,⇑(S′) and M/ the result is straight-
forward.

3. By case analysis one the derivation of M/ :〈Γ � Γ′〉.
4. By induction on the structure of S. Let S : 〈Γ � ∆1 ∧∆2〉. Note that if ∆j ≡ nil

for j ∈ {1, 2} them, by the item 1 above, S :〈Γj ` ∆j〉 for Γj = nil thus the result
holds trivially. Below, we consider only the cases where ∆1,∆2 6= nil.

34 Explicit substitutions calculi with de Bruijn indices and intersection type systems

• Let S ≡↑. By the rule (ω-shift) one has that Γ =ω.(∆1 ∧∆2). By hypothesis
one has ∆1 6= ∆′.ωm and ∆2 6= ∆′′.ωm. Hence, for Γj =ω.∆j where j ∈{1, 2}
one has by the rule (ω-shift) that ↑ :〈Γj � ∆j〉.
• Let S ≡⇑(S′). By the rule (u-lift) one has that Γ=u.Γ′ and that ∆1∧∆2 =u.Γ′′

s.t. S′ :〈Γ′�Γ′′〉. Hence, ∆1 =u1.∆
3 and ∆2 =u2.∆

4 where Γ′′=∆3∧∆4 and u=
u1 ∧ u2. Observe that ∆3,∆4 6= ∆′.ωm. Therefore, by IH one has S′ :〈Γ3 �∆3〉
and S′ :〈Γ4�∆4〉 s.t. Γ′=Γ3∧Γ4 thus, by the rule (u-lift), ⇑(S′) :〈u1.Γ3�u1.∆

3〉
and ⇑(S′) :〈u2.Γ4 � u2.∆

4〉 and (u1.Γ
3)∧ (u2.Γ

4)=(u1 ∧ u2).(Γ3 ∧Γ4)=u.Γ′=Γ

• Let S ≡M/. If ∆1 ∧∆2 =(∧mi=1σi).∆
′ then by the rule (∧-B) one has that ∀1≤

i≤m, M : 〈Γi ` σi〉 where Γ = ∆′ ∧ Γ1 ∧ · · · ∧ Γm. Suppose w.l.o.g. that ∆1 =
(∧mi=1σi).∆

3 and that ∆2 = ω.∆4 thus ∆′=∆3∧∆4. Note that ∆3,∆4 6=∆′′.ωm.
Hence, by the rule (∧-B) one has M/ :〈∆3 ∧ Γ1 ∧ · · · ∧ Γm�(∧mi=1σi).∆

3〉 and by
the rule (ω-B) one has M/ :〈∆4 � ω.∆4〉 where (∆3 ∧ Γ1 ∧ · · · ∧ Γm) ∧∆4 = Γ.
If ∆1 ∧∆2 =ω.∆′ the proof is analogous.

Lemma 7.5 (Generation for terms in λυ∧)
1. n :〈Γ `λυ∧ τ〉 iff Γ = ω n−1.τ.nil.

2. If λ.M :〈nil `λυ∧ τ〉, then τ=ω→σ and M :〈nil `λυ∧ σ〉 or τ=∧ni=1σi→σ, n > 0,
and M :〈∧ni=1σi.nil `λυ∧ σ〉 where σ, σ1, . . . , σn∈T .

3. If λ.M : 〈Γ `λυ∧ τ〉 and |Γ| > 0, then τ =u→σ for some u∈U and σ∈T , where
M :〈u.Γ `λυ∧ σ〉.

4. If (M N) : 〈Γ `λυ∧ τ〉 then M : 〈Γ `λυ∧ ω→τ〉 or M : 〈Γ′ `λυ∧ ∧mi=1σi→τ〉 and
∀1≤ i≤m, N :〈Γi `λυ∧ σi〉 where Γ = Γ′ ∧ Γ1 ∧ · · · ∧ Γm.

Proof. 1. By induction on n. 2,3,4. By case analysis on the respective derivation.

Theorem 7.6 (SR for λυ∧)
If M : 〈Γ `λυ∧ τ〉 and M →λυ M

′ then M ′ : 〈Γ `λυ∧ τ〉. Similarly, if S : 〈Γ �λυ∧ Γ′〉
and S →λυ S

′ then S′ :〈Γ �λυ∧ Γ′〉.

Proof. We proof the property for each rule of the λυ-calculus.

• B: Let (λ.M N) :〈Γ ` τ〉. By Lemma 7.5.4 one has two cases.

In the first case, λ.M : 〈Γ ` ω→τ〉. If Γ = nil then by Lemma 7.5.2 one has
M : 〈nil ` τ〉. Hence, by the rule (nil-B) one has that N/ : 〈nil � nil〉 thus by
the rule (clos) one has M [N/] : 〈nil ` τ〉. If |Γ|>0 then by Lemma 7.5.3 one has
M :〈ω.Γ ` τ〉. By Corollary 7.3 one has that Γ 6=∆.ωm. Hence, by the rule (ω-B)
one has that N/ :〈Γ � ω.Γ〉 thus by the rule (clos) one has M [N/] :〈Γ ` τ〉.
In the second case, Γ = Γ′ ∧ Γ1 ∧ · · · ∧ Γm where λ.M : 〈Γ′ ` ∧mi=1σi→τ〉 and
∀1≤ i≤m, N :〈Γi ` σi〉. By Lemma 7.5.2 or 7.5.3 one has that M :〈∧mi=1σi.Γ

′ ` τ〉.
By Corollary 7.3 one has that Γ′ 6= ∆.ωm. Therefore, by the rule (∧-B) one has
N/ :〈Γ � ∧mi=1σi.Γ

′〉 thus, by the rule (clos), M [N/] :〈Γ ` τ〉.
• App: Let (M N)[S] : 〈Γ ` τ〉. By the rule (clos) one has (M N) : 〈Γ′ ` τ〉 and
S :〈Γ � Γ′〉. By Lemma 7.5.4 one has two cases.

In the first case, M : 〈Γ′ ` ω→τ〉. Hence, by the rule (clos) one has M [S] : 〈Γ `
ω→τ〉 thus by the rule →ω

e one has (M [S] N [S]) :〈Γ ` τ〉.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 35

In the second case, M : 〈Γ′′ ` ∧mi=1σi→τ〉 and ∀1 ≤ i ≤m, N : 〈Γi ` σi〉 where
Γ′=Γ′′∧Γ1 ∧ · · · ∧ Γm. By Corollary 7.3 one has that Γ′′ 6=∆′′.ωm. and ∀1≤ i≤m,
Γi 6= (∆′)i.ωmi . Hence, by Lemma 7.4.4 with an induction on m+1 one has that
Γ = ∆ ∧∆1 ∧ · · · ∧∆m s.t. S : 〈∆ � Γ′′〉 and ∀1≤ i≤m, S : 〈∆i � Γi〉. Then, by
the rule (clos) one has M [S] : 〈∆ ` ∧mi=1σi→τ〉 and ∀1≤ i≤m, N [S] : 〈∆i ` σi〉.
Hence, by the rule →e one has (M [S] N [S]) :〈Γ ` τ〉.
• Lambda: Let (λ.M)[S] : 〈Γ ` τ〉. By the rule (clos) one has λ.M : 〈Γ′ ` τ〉 and
S :〈Γ � Γ′〉.
If Γ′ = nil then by Lemma 7.4.2 one has that Γ = nil and, by Lemma 7.5.2,
either τ =ω→σ and M : 〈nil ` σ〉 or τ =∧mi=1σi→σ and M : 〈∧mi=1σi.nil ` σ〉. If
M :〈nil ` σ〉 then by the rule (nil-lift) one has ⇑(S) :〈nil�nil〉. Therefore, by the
rules (cons) and →′i one has that λ.(M [⇑(S)]) : 〈nil ` ω→σ〉. If M : 〈∧mi=1σi.nil `
σ〉 then by the rule (u-lift) one has ⇑(S) :〈∧mi=1σi.nil�∧mi=1σi.nil〉. Therefore, by
the rules (cons) and →i one has that λ.(M [⇑(S)]) :〈nil ` ∧mi=1σi→σ〉.
If |Γ′|>0 then, by Lemma 7.5.3, τ=u→σ and M :〈u.Γ′ ` σ〉. By the rule (u-lift)
one has that ⇑(S) : 〈u.Γ � u.Γ′〉 thus, by the rules (cons) and →i, λ.(M [⇑(S)]) :
〈Γ ` u→σ〉.
• FV ar: Let 1 [M/] :〈Γ ` τ〉. By the rule (clos) one has 1:〈Γ′ ` τ〉 and M/ :〈Γ�Γ′〉.

By Lemma 7.5.1 one has Γ′ = τ.nil. Hence, by the rule (∧-B) one has that
M :〈Γ ` τ〉.
• RV ar: Let n+1 [M/] : 〈Γ ` τ〉. By the rule (clos) one has n+1 : 〈Γ′ ` τ〉 and
M/ : 〈Γ � Γ′〉. By Lemma 7.5.1 one has Γ′=ω n.τ.nil. Hence, by the rule (ω-B)
one has that Γ′=ω.Γ thus Γ=ω n−1.τ.nil. Therefore, n :〈Γ ` τ〉.
• FV arLift: Let 1 [⇑(S)] : 〈Γ ` τ〉. By the rule (clos) one has 1 : 〈Γ′ ` τ〉 and
⇑(S) : 〈Γ � Γ′〉. By Lemma 7.5.1 one has Γ′ = τ.nil. Hence, by the rule (u-lift)
one has that S :〈Γ′′�nil〉, where Γ=τ.Γ′′. By Lemma 7.4.2 one has that Γ′′=nil
thus 1:〈Γ ` τ〉.
• RV arLift: Let n+1 [⇑(S)] : 〈Γ ` τ〉. By the rule (clos) one has n+1 : 〈Γ′ ` τ〉

and ⇑(S) : 〈Γ � Γ′〉. By Lemma 7.5.1 one has Γ′ = ω n.τ.nil. By the rule (u-lift)
one has that S : 〈Γ′′ � ω n−1.τ.nil〉, where Γ = ω.Γ′′. By Lemma 7.5.1 one has
that n : 〈ω n−1.τ.nil ` τ〉 thus by the rule (cons) one has n [S] : 〈Γ′′ ` τ〉. By
Corollary 7.3 one has that Γ=ω.Γ′′ 6= ∆.ωm thus Γ′′ 6= ∆.ω n. Therefore, by the
rule (ω-shift) one has that ↑ :〈Γ � Γ′′〉 and, by the rule (cons), n [S][↑] :〈Γ ` τ〉.
• V arShift: Let n [↑] :〈Γ ` τ〉. By the rule (clos) one has n :〈Γ′ ` τ〉 and ↑ :〈Γ�Γ′〉.

By Lemma 7.5.1 one has Γ′ = ω n−1.τ.nil. Hence, by the rule (ω-shift) one has
that Γ=ω n.τ.nil thus n+1:〈Γ ` τ〉.

8 Conclusion

In this paper, we presented the first intersection type (IT) systems for the λs-, λse-
, λσ- and λυ-calculi. We aimed for relevant IT systems [21, 23] satisfying subject
reduction (SR) in order to obtain a typing system “as restricted as possible”. Our
interest in IT systems for these explicit substitution calculi is in the investigation of
termination properties. Already the characterisation of strong normalisation (SN)

36 Explicit substitutions calculi with de Bruijn indices and intersection type systems

through IT systems is a successful venture and it is already known neither λse nor λσ
preserve SN. To emphasise this, we give examples to show that our IT systems are not
able to characterise SN neither in λse nor in λσ. However, a characterisation of SN in
λs thus λdB might be obtained through either an extension of the present system with
a subtyping relation or a Klop-like version of the calculus [36]. In addition, a non-
idempotent IT system allows one to consider termination properties by combinatorial
arguments similar to the systems of [11, 22], with a complexity result as a consequence.
In doing so, a relevant type system is very convenient to obtain tight upper bounds.

Our interest in IT systems for explicit substitutions is related to the need of poly-
morphism in programming languages and computational systems. The simply typed
version of the λse- and λσ-calculi have applications on the HOU problem [24, 3] and,
to the best of our knowledge, the IT systems presented here are the first polymorphic
type systems proposed for them. The IT system for λs was originally based on the
system λSMdB [58] and thus called λsSM . Similarly, the systems for λse and λσ were
based on the system λ∧dB and hence called λse

∧ and λσ∧, respectively.
We proved the SR property for the simulation of β-contraction in the system λsSM ,

using an adaptation for sequential contexts of the restricted environments, introduced
in [29] to prove SR in a relevant IT system for the λ-calculus. The concept of available
indices, needed in the definition of relevance for λs, was introduced based on the
available variables in [38] and proved to be the correct generalisation of free indices for
the λdB-calculus. We then obtained the SR for relevant type systems of β-contraction
in λSMdB from the property for λsSM . The IT system λse

∧ was proposed after some
considerations and we proved SR in the usual sense for the full λse-calculus. Although
not relevant, the system λse

∧ has a property related to relevance. We then proved SR
for the system λ∧dB , deriving it from the system λs∧, the restriction of system λse

∧

to the λs-calculus.
We presented the process of developing the system λσ∧ from an extension of λSMdB

to infer typings for closures and substitutions. The system obtained is actually an
extension of system λ∧dB . We proved a property related to relevance and the SR
property for the full λσ-calculus. The system λυ∧ is very similar to the IT system
for λσ, as can be noted by its properties.

We intend to use the systems presented here as the basic system for studying the
PT property in IT systems in each calculus. The PT property allows one to support
features in a computational type system which include separate compilation, as in
the smartest recompilation, and recursive definitions [28]. Partial typing inference
algorithms can also be proposed once PT is established for the systems along with
an IT version of the HOU problem. The system λ∧dB is a de Bruijn version of the
system in [52], were the PT property for β-nfs described in [50] is extended for any
normalisable term. Hence, as a first step towards the PT for explicit substitutions,
we need to extend the results presented in [57] to normalisable terms in λdB . Besides,
we believe the systems λSMdB and λsSM are able to provide a characterisation for SN
in λdB and λs, respectively. On the other hand, it seems that λ∧dB , λse

∧ and λσ∧

can provide a characterisation of weak normalisation (WN) for λdB , λse and λσ,
respectively. Another interesting line of investigation is to propose a relevant IT
system for a de Bruijn version of the λex-calculus [33].

Explicit substitutions calculi with de Bruijn indices and intersection type systems 37

9 Funding

This work was supported by the Brazilian Research Council (CNPq) grants Universal
481783/2010-5, Universal 476952/2013-1; and by the Foundation for Research Sup-
port of the Federal District (FAPDF) PRONEX 193.000.580/2009.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien and J.-J. Lévy, Explicit substitutions, J. Funct. Program.

1(4)(1991) 375–416.

[2] D. Ancona, F. Damiani, S. Drossopoulou and E. Zucca, Polymorphic bytecode: compositional

compilation for Java-like languages, in: Proc. POPL’05, ACM Press, 2005, pp. 26–37.

[3] M. Ayala-Rincón and F. Kamareddine, Unification via the λse-style of explicit substitution,
Log. J. IGPL 9(4)(2001) 489–523.

[4] F. Baader and T. Nipkow, Term rewriting and all that, (Cambridge University Press, New York,

1998).

[5] S. van Bakel, Intersection type assignment systems, Theoret. Comput. Sci. 151(1995) 385–435.

[6] S. van Bakel, Strict Intersection Types for the Lambda Calculus, ACM Comput. Surv.

43(3)(2011) 20:1–20:49.

[7] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the complete-
ness of type assignment, J. Symbolic Logic 48(1983) 931–940.

[8] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics (North-Holland, 1984).

[9] H. Barendregt, W. Dekkers and R. Statman, Lambda Calculus with Types, In ASL Perspectives
in Logic, Cambridge University Press, 2013.

[10] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne and J. Rouyer-Degli, λυ, A calculus of explicit sub-

stitutions which preserves strong normalisation, J. Funct. Program. 6(5)(1996) 699–722.

[11] A. Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation. Log.

Methods in CS 9(4:3)(2013). ee: arXiv:1310.1622v2 [cs.LO]

[12] N.G. de Bruijn, Lambda-calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem, Indag. Mat. 34(5)(1972) 381–392.

[13] N.G. de Bruijn, A namefree lambda calculus with facilities for internal definition of expressions

and segments, T.H.-Report 78-WSK-03, Technische Hogeschool Eindhoven, Nederland, 1978.

[14] S. Carlier and J. B. Wells, Expansion: the Crucial Mechanism for Type Inference with Intersec-

tion Types: A Survey and Explanation, Electr. Notes Theor. Comput. Sci., 136(2005), 173–202.

[15] D. de Carvalho. Execution Time of Lambda-Terms via Denotational Semantics and Intersection
Types. CoRR abs/0905.4251, 2009. (to appear in Mathematical Structures in Computer Science).

[16] M. Coppo and M. Dezani-Ciancaglini, A new type assignment for lambda-terms, Archiv für

Mathematische Logik 19(1978) 139–156.

[17] M. Coppo and M. Dezani-Ciancaglini, An extension of the basic functionality theory for the

λ-calculus, Notre Dame J. Formal Log. 21(4)(1980) 685–693.

[18] M. Coppo, M. Dezani-Ciancaglini and B. Venneri, Principal type schemes and λ-calculus se-
mantics, in: J.P. Seldin and J.R. Hindley, eds., To H.B. Curry: Essays on combinatory logic,

lambda calculus and formalism, Academic Press, 1980, pp. 536–560.

[19] M. Coppo, M. Dezani-Ciancaglini and B. Venneri, Functional characters of solvable terms, Math-

ematical Logic Quarterly 27(1981) 45–58.

[20] H.B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North Holland, 1958).

[21] F. Damiani and P. Giannini, A decidable intersection type system based on relevance, in: Proc.
TACS’94, in: LNCS, Vol. 789, Springer-Verlag, 1994, pp. 707-725.

[22] E. De Benedetti and S. Ronchi Della Rocca. Bounding normalization time through intersection

types. ITRS, EPTCS 121, pages 48-57, 2013.

[23] M. Dezani-Ciancaglini, R. K. Meyer and Y. Motohama, The Semantics of Entailment Omega.

Notre Dame Journal of Formal Logic 43(3)(2002), 129–145.

[24] G. Dowek, T. Hardin and C. Kirchner, Higher-order unification via explicit substitutions, Inf.
Comput. 157(1/2)(2000) 183–235.

38 Explicit substitutions calculi with de Bruijn indices and intersection type systems

[25] J.-Y. Girard, P. Taylor and Y. Lafont, Proofs and Types, Cambridge University Press, 1990.

[26] B. Guillaume, The λse-calculus does not preserve strong normalisation, J. Func. Program.

10(4)(2000) 321–325.

[27] J.J. Hallett and A.J. Kfoury. Programming examples needing polymorphic recursion, Electr.
Notes Theor. Comput. Sci. 136(2005) 57–102.

[28] T. Jim, What are principal typings and what are they good for?, in: Proc. POPL’95, ACM

Press, 1996, pp. 42–53.

[29] F. Kamareddine and K. Nour, A completeness result for a realisability semantics for an inter-

section type system, Ann. Pure Appl. Log. 146(2007) 180–198.

[30] F. Kamareddine and A. Ŕıos, A λ-calculus à la de Bruijn with explicit substitutions, in: Proc.

PLILP’95, in: LNCS, Vol. 982, Springer, 1995, pp. 45–62.

[31] F. Kamareddine and A. Ŕıos, Extending a λ-calculus with explicit substitution which preserves
strong normalisation into a confluent calculus on open terms, J. Func. Program. 7(1997) 395–420.

[32] F. Kamareddine and A. Ŕıos, Pure type systems with de Bruijn indices, The Comp. Journal

45(2)(2002) 187–201.

[33] D. Kesner, A Theory of Explicit Substitutions with Safe and Full Composition, Logical Methods

in Computer Science 5(3)(2009).

[34] D. Kesner and D. Ventura, Quantitative Types for the Linear Substitution Calculus, in: Proc.
IFIP-TCS 2014, in: LNCS 8705, Springer-Verlag, 2014, pp. 296–310.

[35] A.J. Kfoury and J.B. Well, Principality and type inference for intersection types using expansion

variables, Theoret. Comput. Sci. 311(1–3)(2004) 1–70.

[36] J. W. Klop, Combinatory reduction systems, phD Thesis, 1980, pp. I-XIII, 1-323.

[37] J.-L. Krivine. Lambda-calculus, types and models, Ellis Horwood, 1993.

[38] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini and S. van Bakel, Intersection

types for explicit substitutions, Inf. Comput. 189(1)(2004) 17-42.

[39] P. Lescanne, From λσ to λυ a journey through calculi of explicit substitutions, in: Proc.
POPL’94, ACM Press, 1994, pp. 60–69.

[40] P.-A. Melliès, Typed lambda-calculi with explicit substitutions may not terminate, in: Proc.

TLCA’95, in: LNCS Vol. 902, Springer, 1995, pp. 328–334.

[41] R. K. Meyer and M. A. McRobbie, Multisets and Relevant Implication I, Australasian Journal

of Philosophy 60(1982), 107–139.

[42] R. K. Meyer and M. A. McRobbie, Multisets and Relevant Implication II, Australasian Journal
of Philosophy 60(1982), 265–281.

[43] R. Milner, A theory of type polymorphism in programming, J. Comput. System Sci. 17(3)(1978)

348–375.

[44] R. Milner, M. Tofte and D. Macqueen, The Definition of Standard ML, MIT Press, 1997.

[45] R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer, Selected papers on Automath, North-Holland,
1994.

[46] G. Pottinger, A type assignment for the strongly normalizable λ-terms, in: J.P. Seldin and J.R.

Hindley, eds., To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism,
Academic Press, 1980, pp. 561–578.

[47] E. Ritter, Characterising explicit substitutions which preserve termination, in: Proc. TLCA’99,

in: LNCS Vol. 1581, Springer, 1999, pp. 325–339.

[48] S. Ronchi Della Rocca and B. Venneri, Principal type scheme for an extended type theory,

Theoret. Comput. Sci. 28(1984) 151–169.

[49] S. Ronchi Della Rocca, Principal type scheme and unification for intersection type discipline,
Theoret. Comput. Sci. 59(1988) 181–209.

[50] E. Sayag and M. Mauny, Characterization of principal type of normal forms in intersection type

system, in: Proc. FSTTCS’96, in: LNCS Vol. 1180, Springer, 1996, pp. 335–346.

[51] E. Sayag and M. Mauny, A new presentation of the intersection type discipline through principal

typings of normal forms, Tech. rep. RR-2998, INRIA, 1996.

[52] E. Sayag and M. Mauny, Structural properties of intersection types, in: Proc. LIRA’97, Novi

Sad, Yugoslavia, 1997, pp. 167-175.

[53] Z. Shao and A.W. Appel, Smartest recompilation, in: Proc. POPL’93, ACM Press, 1993, pp.
439–450.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 39

[54] W. W. Tait, Intensional Interpretations of Functionals of Finite Type I, Journal of Symbolic
Logic 32(2), 1967, 198–212.

[55] P. Urzyczyn, Type Reconstruction in Fomega, Mathematical Structures in Computer Science,
7(4)(1997), pp. 329–358.

[56] D. Ventura, M. Ayala-Rincón and F. Kamareddine, Intersection type system with de Bruijn
indices, The many sides of logic, Studies in logic Vol. 21, College Publications, London, 2009.

pp. 557–576.

[57] D.L. Ventura, M. Ayala-Rincón and F. Kamareddine, Principal typings in a restricted intersec-

tion type system for beta normal forms with de Bruijn indices, in: Proc. WRS’09, in: EPTCS

15(2010) 69–82.

[58] D.L. Ventura, M. Ayala-Rincón and F. Kamareddine, Intersection type systems and explicit sub-

stitutions calculi, in: Proc. WoLLIC’10, in: LNCS (FoLLI-LNAI subseries) Vol. 6188, Springer-
Verlag, Berlin Heidelberg, 2010, pp. 232–246.

[59] J.B. Wells, The essence of principal typings, in: Proc. ICALP’02, in: LNCS, Vol. 2380, Springer,
2002, pp. 913–925.

A Subject reduction proofs

Below, we present the complete proofs of SR omitted in Section 4.

A.1 SR for the s-calculus in system λsSM

Proof. [Theorem 4.9]
• (σ-λ-transition): Let (λ.M)σiN :〈Γ ` τ〉.

If Γ = nil, then by Lemma 4.7.2 one has two possibilities.

In the first case one has λ.M : 〈nil ` τ〉 and N : 〈∆ ` ρ〉 thus, by Lemma 4.6.2, M : 〈nil ` τ ′〉
where τ =ω→ τ ′ or M : 〈∧mj=1σj .nil ` τ ′〉 where τ =∧mj=1σj→ τ ′. Note that i≥ 1 thus i+1≥ 2.

Hence, by the rule (nil-σ) one has Mσi+1N : 〈nil ` τ ′〉 or Mσi+1N : 〈∧mj=1σj .nil ` τ ′〉 thus

λ.(Mσi+1N) :〈nil ` ω→τ ′〉 by the rule →′i or λ.(Mσi+1N) :〈nil ` ∧mj=1σj→τ ′〉 by the rule →i.

In the second case, λ.M : 〈ω i−1. ∧mj=1 σj .nil `λsSM τ〉 where ∀1≤ j ≤m, N : 〈nil ` σj〉. Hence,

by Lemma 4.6.3 one has M : 〈u.ω i−1. ∧mj=1 σj .nil ` τ ′〉 where τ = u→ τ ′. Therefore, if u 6= ω

then by the rule (∧-ω-σ) one has that Mσi+1N : 〈u.nil ` τ ′〉 and if u= ω then by the rule (∧-

nil-σ) one has that Mσi+1N : 〈nil ` τ ′〉. Hence, λ.(Mσi+1N) : 〈nil ` u→τ ′〉 by the rule →i or

λ.(Mσi+1N) :〈nil ` ω→τ ′〉 by the rule →′i.
If 0< |Γ|<i, then by Lemma 4.7.3 one has two cases.

In the first case one has that λ.M :〈Γ ` τ〉 and that N :〈∆ ` ρ〉 thus, by Lemma 4.6.3, M :〈u.Γ ` τ ′〉
where τ=u→τ ′. Note that |Γ|+1<i+1. Hence, by the rule (nil-σ) one has Mσi+1N : 〈u.Γ ` τ ′〉
thus, by the rule →i, λ.(Mσi+1N) :〈Γ ` u→τ ′〉.
In the second case one has that λ.M :〈Γ.ω n. ∧mj=1 σj .nil ` τ〉 where n ≥ 0, |Γ.ω n.∧mj=1 σj .nil|= i
and ∀1≤ j ≤m, N : 〈nil ` σj〉. By Lemma 4.6.3 one has M : 〈u.Γ.ω n. ∧mj=1 σj .nil ` τ ′〉 where

τ = u→ τ ′. Hence, by the rule (∧-ω-σ) one has that Mσi+1N : 〈u.Γ ` τ ′〉 and, by the rule →i,
λ.(Mσi+1N) :〈Γ ` u→τ ′〉.
If |Γ|≥ i, then by Lemma 4.7.4 one has two cases.

In the first case one has that λ.M : 〈Γ<i.ω.Γ≥i ` τ〉 and that N : 〈∆ ` ρ〉 thus, by Lemma 4.6.3,

M : 〈u.Γ<i.ω.Γ≥i ` τ ′〉 where τ = u→ τ ′. Hence, by the rule (ω-σ), Mσi+1N : 〈u.Γ<i.Γ≥i ` τ ′〉
and, by the rule →i, λ.(Mσi+1N) :〈Γ<i.Γ≥i ` u→τ ′〉.
In the second case one has λ.M : 〈Γ<i. ∧mj=1 σj .Γ

′ ` τ〉 where Γ≥i = Γ′ ∧ ∆1 ∧ · · · ∧∆m, for

|Γ≥i|> 0, and ∀1≤ j ≤m, N : 〈∆j ` σj〉. Hence, by Lemma 4.6.3, M : 〈u.Γ<i. ∧mj=1 σj .Γ
′ ` τ ′〉

where τ=u→τ ′. Therefore, by the rule (∧-σ), Mσi+1N :〈(u.Γ<i.Γ′) ∧ ω i.(∆1 ∧ · · · ∧∆m) ` τ ′〉.
Observe that (u.Γ<i.Γ

′)∧ω i.(∆1∧· · ·∧∆m) = u.Γ thus, by the rule→i, λ.(Mσi+1N) :〈Γ ` u→τ ′〉.
• (σ-app-transition): Let (M1 M2)σiN :〈Γ ` τ〉.

If Γ = nil, then by Lemma 4.7.2 one has two cases.

40 Explicit substitutions calculi with de Bruijn indices and intersection type systems

In the first case, (M1 M2) : 〈nil ` τ〉 and N : 〈∆ ` ρ〉. By Lemma 4.6.4 one has that either
M1 : 〈nil ` ω→τ〉 and M2 : 〈nil ` ρ〉 or M1 : 〈nil ` ∧mj=1σj→τ〉 and ∀1≤ j≤m, M2 : 〈nil ` σj〉.
For the former one has, by the rule (nil-σ), that M1σiN : 〈nil ` ω→τ〉 and M2σiN : 〈nil ` ρ〉
thus, by the rule →′e, ((M1σiN) (M2σiN)) :〈nil ` τ〉. The proof for the latter one is analogous.

In the second case, (M1 M2) : 〈ω i−1. ∧lk=1 τk.nil ` τ〉 where ∀1≤k≤ l, N : 〈nil ` τk〉. By Lemma
4.6.4 one has that ω i−1. ∧lk=1 τk.nil = Γ1 ∧ Γ2 s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or

M1 : 〈Γ1 ` ∧mj=1σj→τ〉 where Γ2 = ∆1 ∧ · · · ∧∆m and ∀1≤ j≤m, M2 : 〈∆j ` σj〉. Note that Γ1

and Γ2 are a partition where both have the same length of the original context or one of then is
nil. Suppose w.l.o.g. that Γ2 = nil thus Γ1 = ω i−1. ∧lk=1 τk.nil. Hence, for the first possibility

regarding Lemma 4.6.4 one has by the rule (∧-nil-σ) that M1σiN : 〈nil ` ω→τ〉 and by the rule

(nil-σ) that M2σiN : 〈nil ` ρ〉. Therefore, by the rule →′e, ((M1σiN) (M2σiN)) : 〈nil ` τ〉. The
proof for the second possibility regarding Lemma 4.6.4 is analogous.

If 0≤|Γ|<i, then by Lemma 4.7.3 one has two cases.

In the first case one has that (M1 M2) : 〈Γ ` τ〉 and N : 〈∆ ` ρ〉. By Lemma 4.6.4 one has

that Γ = Γ1 ∧ Γ2 s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or M1 : 〈Γ1 ` ∧mj=1σj→τ〉 where

Γ2 =∆1 ∧ · · · ∧∆m and ∀1≤j≤m, M2 :〈∆j ` σj〉. Observe that max(|Γ1|, |Γ2|)= |Γ|<i. Hence,
for the former one has by the rule (nil-σ) that M1σiN : 〈Γ1 ` ω→τ〉 and that M2σiN : 〈Γ2 ` ρ〉
thus, by the rule →′e, ((M1σiN) (M2σiN)) : 〈Γ1 ∧ Γ2 ` τ〉. The proof for the latter one is

analogous.

In the second case one has that (M1 M2) : 〈Γ.ω n. ∧lk=1 τk.nil ` τ〉 where n ≥ 0, |Γ.ω n. ∧lk=1
τk.nil|= i and ∀1≤k≤ l, N :〈nil ` τk〉. By Lemma 4.6.4 one has that Γ.ω n.∧lk=1 τk.nil = Γ1 ∧Γ2

s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or M1 : 〈Γ1 ` ∧mj=1σj→τ〉 where Γ2 = ∆1 ∧ · · · ∧∆m

and ∀1≤ j ≤m, M2 : 〈∆j ` σj〉. Suppose w.l.o.g. that Γ1 = Γ and that Γ2 = ω i−1 .∧lk=1 τk.nil

thus ∀1 ≤ j ≤m, ∆j = ω i−1 .uj .nil, where uj v ∧lk=1τk and u1 ∧ · · · ∧ um = ∧lk=1τk. Hence,
for the second possibility regarding Lemma 4.6.4 one has by the rule (nil-σ) that M1σiN : 〈Γ `
∧mj=1σj→τ〉 and by the rule (∧-nil-σ) that ∀1≤j≤m, M2σiN :〈nil ` σj〉. Therefore, by the rule

→e, ((M1σiN) (M2 σiN)) : 〈Γ ` τ〉. The proof for the first possibility regarding Lemma 4.6.4 is

analogous.

If |Γ|≥ i, then by Lemma 4.7.4 one has two cases.

In the first case one has that (M1 M2) : 〈Γ<i.ω.Γ≥i ` τ〉 and N : 〈∆ ` ρ〉. By Lemma 4.6.4 one

has that Γ<i.ω.Γ≥i = Γ1 ∧ Γ2 s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or M1 : 〈Γ1 ` ∧mj=1σj→τ〉
where Γ2 = ∆1 ∧ · · · ∧∆m and ∀1≤ j ≤m, M2 : 〈∆j ` σj〉. Suppose w.l.o.g. that |Γ2| < i thus
Γ1 =Γ′.ω.Γ≥i for |Γ′|= i−1 s.t. Γ1∧Γ2 =(Γ′∧Γ2).ω.Γ≥i. Hence, for the first possibility regarding

Lemma 4.6.4 one has by the rule (ω-σ) that M1σiN :〈Γ′.Γ≥i ` ω→τ〉 and by the rule (nil-σ) that

M2σiN :〈Γ2 ` ρ〉. Therefore, by the rule →′e one has that ((M1σiN) (M2σiN)) :〈(Γ′ ∧ Γ2).Γ≥i `
τ〉, where Γ′ ∧Γ2 =Γ<i. The proof for the second possibility regarding Lemma 4.6.4 is analogous.

In the second case one has (M1 M2) : 〈Γ<i. ∧mj=1 σj .Γ
′ ` τ〉 where Γ≥i = Γ′ ∧∆1 ∧ · · · ∧∆m, for

|Γ≥i|> 0, and ∀1≤ j ≤m, N : 〈∆j ` σj〉. By Lemma 4.6.4 one has Γ1 ∧ Γ2 = Γ<i. ∧mj=1 σj .Γ
′

s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or M1 : 〈Γ1 ` ∧lk=1σ
′
k→τ〉 where Γ2 =(∆′)1 ∧ · · · ∧ (∆′)l

and ∀1≤ k ≤ l, M2 : 〈(∆′)k ` σ′k〉. Suppose w.l.o.g. that |Γ2|< i thus Γ1 = Γ1
<i. ∧mj=1 σj .Γ

′ s.t

Γ1
<i ∧ Γ2 = Γ<i. Hence, for the first possibility regarding Lemma 4.6.4 one has by the rule (∧-σ)

that M1σiN : 〈(Γ1
<i.Γ

′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` ω→τ〉 and by the rule (nil-σ) that M2σiN :

〈Γ2 ` ρ〉. Observe that (Γ1
<i.Γ

′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) = Γ1
<i.(Γ

′ ∧∆1 ∧ · · · ∧∆m) = Γ1
<i.Γ≥i.

Therefore, by the rule →′e, ((M1σiN) (M2σiN)) : 〈(Γ1
<i.Γ≥i) ∧ Γ2 ` τ〉, where (Γ1

<i.Γ≥i) ∧ Γ2 =

(Γ1
<i ∧ Γ2).Γ≥i = Γ. The proof for the second possibility regarding Lemma 4.6.4 is analogous.

• (σ-destruction): Let nσiN :〈Γ ` τ〉.
If n<i, then nσiN → n and AI(nσiN)={n } thus, by Lemma 4.4, |Γ|=n. Observe that for any
typing 〈Γ′ ` τ ′〉 of n, |Γ′|=n. Hence, by Lemma 4.7.3 one has that n :〈Γ ` τ〉 and N :〈∆ ` ρ〉.
If n= i, then nσiN → ϕi0N and AI(nσiN) =AI(ϕi0N) thus, by Lemma 4.4, |Γ|= sav(ϕi0N).

By Lemmas 4.4 and 4.6.1 one has that i : 〈ω i−1.τ.nil ` τ〉. If Γ = nil, then by Lemma 4.7.2
one has that N : 〈nil ` τ〉 thus, by the rule (nil-ϕ), ϕi0N : 〈nil ` τ〉. If |Γ|> 0, then by Lemma

2.13.4 one has that sav(ϕi0N) = sav(N) + (i − 1), where sav(N) > 0, thus |Γ| = sav(ϕi0N) ≥ i.
Hence, by Lemma 4.7.4 one has that N :〈Γ≥i ` τ〉, where |Γ≥i|>0. Therefore, by the rule (ω-ϕ),
ϕi0N :〈ω i−1.Γ≥i ` τ〉. Observe that Γ<i = ω i−1 thus ω i−1.Γ≥i=Γ.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 41

If n>i, then nσiN → n−1 and AI(nσiN)={n−1 } thus, by Lemma 4.4, |Γ|=n−1≥ i. One has
that Γ′i =ω, for any context Γ′ from a typing of n, where n> i. Therefore, by Lemma 4.7.4, n :

〈Γ<i.ω.Γ≥i ` τ〉 and N :〈∆ ` ρ〉. By Lemmas 4.4 and 4.6.1 one has that Γ<i.ω.Γ≥i = ω n−1.τ.nil

thus Γ<i.Γ≥i = ω n−2.τ.nil. Therefore, by the rules var and varn one has that n−1:〈Γ ` τ〉.
• (ϕ-λ-transition): Let ϕik(λ.M) :〈Γ ` τ〉.

If |Γ|≤k then by Lemma 4.7.1 one has λ.M :〈Γ ` τ〉. If Γ = nil, then by Lemma 4.6.2 one has that

M : 〈nil ` τ ′〉 where τ =ω→ τ ′ or that M : 〈∧mj=1σj .nil ` τ ′〉 where τ =∧mj=1σj→ τ ′. Note that

1≤k+1. Hence, by the rule (nil-ϕ), ϕik+1M : 〈nil ` τ ′〉 or ϕik+1M : 〈∧mj=1σj .nil ` τ ′〉. Therefore,

one has that λ.(ϕik+1M) :〈nil ` ω→τ ′〉 by the rule →′i or that λ.(ϕik+1M) :〈nil ` ∧mj=1σj→τ〉 by
the rule →i. The proof for |Γ|>0 is analogous.

If |Γ|>k then by Lemma 4.7.1 one has that λ.M : 〈Γ≤k.Γ≥k+i ` τ〉 where Γ = Γ≤k.ω
i−1.Γ≥k+i.

Hence, by Lemma 4.6.3, M : 〈u.Γ≤k.Γ≥k+i ` τ ′〉 where u→ τ ′ and, by the rule (ω-ϕ), ϕik+1M :

〈u.Γ≤k.ω i−1.Γ≥k+i ` τ〉. Therefore, by the rule →i one has λ.(ϕik+1M) : 〈Γ≤k.ω i−1.Γ≥k+i `
u→τ ′〉.
• (ϕ-app-transition): Let ϕik(M1 M2) :〈Γ ` τ〉.

If |Γ|≤k then by Lemma 4.7.1 one has (M1 M2) :〈Γ ` τ〉. By Lemma 4.6.4 one has that Γ=Γ1∧Γ2

s.t. M1 :〈Γ1 ` ω→τ〉 and M2 :〈Γ2 ` ρ〉 or that M1 :〈Γ1 ` ∧mj=1σj→τ〉 where Γ2 =∆1 ∧ · · · ∧∆m

and ∀1 ≤ j ≤ m, M2 : 〈∆j ` σj〉. One has that max(|Γ1|, |Γ2|) = |Γ| ≤ k. Hence, for the first
possibility regarding Lemma 4.6.4 one has, by the rule (nil-ϕ), that ϕikM1 :〈Γ1 ` ω→τ〉 and that

ϕikM2 : 〈Γ2 ` ρ〉. Therefore, by the rule →′e, ((ϕikM1) (ϕikM2)) : 〈Γ1 ∧ Γ2 ` τ〉. The proof for the

second possibility regarding Lemma 4.6.4 is analogous.

If |Γ|>k then by Lemma 4.7.1 one has (M1 M2) : 〈Γ≤k.Γ≥k+i ` τ〉 where Γ = Γ≤k.ω
i−1.Γ≥k+i.

By Lemma 4.6.4 one has Γ≤k.Γ≥k+i = Γ1 ∧ Γ2 s.t. M1 : 〈Γ1 ` ω→τ〉 and M2 : 〈Γ2 ` ρ〉 or

M1 :〈Γ1 ` ∧mj=1σj→τ〉 where Γ2 =∆1∧· · · ∧∆m and ∀1≤j≤m, M2 :〈∆j ` σj〉. Suppose w.l.o.g.

that |Γ2|≤k thus Γ1 =Γ1
≤k.Γ≥k+i where Γ1

≤k∧Γ2 = Γ≤k. Hence, for the first possibility regarding

Lemma 4.6.4 one has by the rule (ω-ϕ) that ϕikM1 :〈Γ1
≤k.ω

i−1.Γ≥k+i ` ω→τ〉 and by the rule (nil-

ϕ) that ϕikM2 :〈Γ2 ` ρ〉. Therefore, by the rule→′e, (ϕikM1 ϕikM2) :〈(Γ1
≤k.ω

i−1.Γ≥k+i) ∧ Γ2 ` τ〉,
where (Γ1

≤k.ω
i−1.Γ≥k+i) ∧ Γ2 = (Γ1

≤k ∧ Γ2).ω i−1.Γ≥k+i. The proof for the second possibility
regarding Lemma 4.6.4 is analogous.

• (ϕ-destruction): Let ϕik n :〈Γ ` τ〉.
If n ≤ k, then ϕik n→ n and AI(ϕik n)={n }. Hence, |Γ|=sav(ϕik n)=sav(n)≤k. Therefore, by

Lemma 4.7.1 one has that n :〈Γ ` τ〉.
If n > k, then ϕik n → n+i−1 and AI(ϕik n) = {n+i−1 }. Hence, |Γ|= sav(ϕik n) =n+(i−1)>k.

Therefore, by Lemma 4.7.1 one has that n : 〈Γ≤k.Γ≥k+i ` τ〉, where Γ = Γ≤k.ω
i−1.Γ≥k+i. By

Lemmas 4.4 and 4.6.1 one has that Γ≤k.Γ≥k+i =ω n−1.τ.nil. Therefore, Γ =ω n+i−2.τ.nil thus,
by the rules var and varn, one has that n+i−1:〈Γ ` τ〉.

A.2 SR for system λse
∧

Proof. [Theorem 4.22]
• (σ-generation): Let (λ.M N) :〈Γ ` τ〉. By Lemma 4.19.4 there exist two possibilities.

Suppose that λ.M :〈Γ ` ω→τ〉.
If Γ=nil, then by Lemma 4.19.2 one has that M :〈nil ` τ〉. Therefore, by the rule (nil-σ) one has
that Mσ1N :〈nil ` τ〉.
If |Γ|>0, then by Lemma 4.19.3 one has that M :〈ω.Γ ` τ〉. Therefore, by the rule (ω-σ) one has

that Mσ1N :〈Γ ` τ〉.
Suppose that Γ=Γ′ ∧∆1 ∧ · · · ∧∆m s.t. λ.M :〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤j≤m, N :〈∆j ` σj〉.
If Γ′ = nil, then by Lemma 4.19.2 one has M : 〈∧mj=1σj .nil ` τ〉. If ∀1≤ j ≤m, ∆j = nil, then

by the rule (∧-nil-σ) one has that Mσ1N : 〈nil ` τ〉. Otherwise, by the rule (∧-σ) one has that

Mσ1N :〈∆1 ∧ · · · ∧∆m ` τ〉, where Γ=∆1 ∧ · · · ∧∆m.

If |Γ′|>0, then by Lemma 4.19.3 one has that M : 〈∧mj=1σj .Γ
′ ` τ〉. Therefore, by the rule (∧-σ)

one has that Mσ1N :〈Γ′ ∧∆1 ∧ · · · ∧∆m ` τ〉.

42 Explicit substitutions calculi with de Bruijn indices and intersection type systems

• (σ-λ-transition): analogous to the proof of SR for the same rule in λsSM (Theorem 4.9).

• (σ-app-transition): Let (M1 M2)σiN :〈Γ ` τ〉.
If Γ = nil, then by Lemma 4.21.2 there exist two possibilities.

Suppose that (M1 M2) : 〈nil ` τ〉. Hence, by Lemma 4.19.4 one has that M1 : 〈nil ` ω→τ〉 or

M1 : 〈nil ` ∧mj=1σj→τ〉 and ∀1 ≤ j ≤ m, M2 : 〈nil ` σj〉. For the latter one has, by the rule

(nil-σ), that M1σiN :〈nil ` ∧mj=1σj→τ〉 and ∀1≤j≤m, M2σiN :〈nil ` σj〉 thus, by the rule →e,

((M1σiN) (M2σiN)) :〈nil ` τ〉. The proof for the former one is analogous.

Suppose that (M1 M2) :〈ω i−1. ∧lk=1 τk.nil ` τ〉 where ∀1≤k≤ l, N :〈nil ` τk〉. By Lemma 4.19.4
one has that M1 : 〈ω i−1. ∧lk=1 τk.nil ` ω→τ〉 or ω i−1. ∧lk=1 τk.nil = Γ′ ∧ ∆1 ∧ · · · ∧∆m s.t.

M1 : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j≤m, M2 : 〈∆j ` σj〉. Note that Γ′,∆1, . . . ,∆m is a partition
where each context has the same length as the original context or it is nil. Suppose w.l.o.g. that

Γ′ = nil. Hence, for the the second possibility w.r.t. Lemma 4.19.4 one has by the rule (nil-σ)

that M1σiN : 〈nil ` ∧mj=1σj→τ〉 and ∀1≤ j≤m, if ∆j =nil then M2σiN : 〈nil ` σj〉 by the rule

(nil-σ) and if ∆j 6=nil then M2σiN : 〈nil ` σj〉 by the rule (∧-nil-σ). Therefore, by the rule →e,
((M1σiN) (M2σiN)) : 〈nil ` τ〉. The proof is analogous for the first possibility regarding Lemma

4.19.4.

If 0≤|Γ|<i, then by Lemma 4.21.3 there exist two possibilities.

Suppose that (M1 M2) : 〈Γ ` τ〉. By Lemma 4.19.4 one has that M1 : 〈Γ ` ω→τ〉 or Γ =

Γ′ ∧ ∆1 ∧ · · · ∧∆m s.t. M1 : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j ≤m, M2 : 〈∆j ` σj〉. Observe that

max(|Γ′|, |∆1|, . . . , |∆m|)= |Γ|<i. Hence, for the second possibility w.r.t. Lemma 4.19.4 one has
by the rule (nil-σ) that M1σiN : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j≤m, M2σiN : 〈∆j ` σj〉 thus, by

the rule →e, ((M1σiN) (M2σiN)) :〈Γ′ ∧∆1 ∧ · · · ∧∆m ` τ〉. The proof is analogous for the first

possibility regarding Lemma 4.19.4.

Suppose that (M1 M2) : 〈Γ′ ` τ〉 where Γ′=Γ.ω n. ∧lk=1 τk.nil for n≥0 s.t. |Γ′|= i and ∀1≤k≤ l,
N : 〈nil ` τk〉. By Lemma 4.19.4 one has that M1 : 〈Γ′ ` ω→τ〉 or Γ′ = Γ′ ∧ ∆1 ∧ · · · ∧∆m s.t.
M1 :〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤j≤m, M2 :〈∆j ` σj〉. Suppose w.l.o.g. that Γ′=Γ. Hence, for the

second possibility w.r.t. Lemma 4.19.4 one has by the rule (nil-σ) that M1σiN :〈Γ ` ∧mj=1σj→τ〉
and ∀1≤ j≤m, by either the rule (∧-nil-σ) or the rule (nil-σ) one has that M2σiN : 〈nil ` σj〉.
Therefore, by the rule →e, ((M1σiN) (M2σiN)) : 〈Γ ` τ〉. The proof is analogous for the first
possibility regarding Lemma 4.19.4.

If |Γ|≥ i, then by Lemma 4.21.4 there exist two possibilities.

Suppose that (M1 M2) :〈Γ<i.ω.Γ≥i ` τ〉. By Lemma 4.19.4 one has that M1 :〈Γ<i.ω.Γ≥i ` ω→τ〉
or Γ<i.ω.Γ≥i = Γ′ ∧∆1 ∧ · · · ∧∆m s.t. M1 : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j≤m, M2 : 〈∆j ` σj〉.
Suppose w.l.o.g. that |Γ′| < i thus ∀1 ≤ j ≤ m, if |∆j | > i then ∆j

i = ω. Observe that, by

Lemma 4.18, ∀1 ≤ j ≤ m, |∆j | 6= i. Hence, for the second possibility w.r.t. Lemma 4.19.4

one has by the rule (nil-σ) that M1σiN : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1 ≤ j ≤ m, if |∆j | > i then

M2σiN : 〈∆j
<i.∆

j
>i ` σj〉 by the rule (ω-σ) and if |∆j |< i then M2σiN : 〈∆j ` σj〉 by the rule

(nil-σ). Note that Γ′ ∧ (∆1
<i.∆

1
>i) ∧ · · · ∧ (∆m

<i.∆
m
>i) = Γ<i.Γ≥i. Therefore, by the rule →e one

has that ((M1σiN) (M2σiN)) : 〈Γ ` τ〉. The proof is analogous for the first possibility regarding
Lemma 4.19.4.

Suppose that Γ≥i = Γ′ ∧ ∆1 ∧ · · · ∧∆m, for |Γ≥i|> 0, s.t. (M1 M2) : 〈Γ<i. ∧mj=1 σj .Γ
′ ` τ〉 and

∀1 ≤ j ≤m, N : 〈∆j ` σj〉. By Lemma 4.19.4 one has that M1 : 〈Γ<i. ∧mj=1 σj .Γ
′ ` ω→τ〉 or

Γ<i. ∧mj=1 σj .Γ
′ = Γ′′ ∧ (∆′)1 ∧ · · · ∧ (∆′)l s.t. M1 : 〈Γ′′ ` ∧lk=1σ

′
k→τ〉 and ∀1 ≤ k ≤ l, M2 :

〈(∆′)k ` σ′k〉. Hence, for the first possibility w.r.t. Lemma 4.19.4 one has by the rule (∧-σ) that
M1σiN :〈(Γ<i.Γ′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` ω→τ〉 thus, by the rule →ω

e , ((M1σiN) (M2σiN)) :
〈(Γ<i.Γ′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` τ〉. Note that (Γ<i.Γ

′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) = Γ<i.(Γ
′ ∧

∆1 ∧ · · · ∧∆m). The proof is analogous for the second possibility regarding Lemma 4.19.4.

• (σ-destruction): By Lemma 4.19.1 one has that n : 〈ω n−1.τ.nil ` τ〉. Below, the possible typings
for nσiN are analysed.

If n<i then by the rule (nil-σ) one has that nσiN :〈ω n−1.τ.nil ` τ〉 and nσiN → n.

If n= i then nσiN → ϕi0N . Note that N must have type τ in order to i σiN be typeable. If

N : 〈nil ` τ〉, then by the rule (∧-nil-σ) one has that i σiN : 〈nil ` τ〉 and, by the rule (nil-ϕ),

ϕi0N :〈nil ` τ〉. If N :〈Γ ` τ〉, for |Γ|>0, then by the rule (∧-σ) one has that i σiN :〈ω i−1.Γ ` τ〉
and, by the rule (ω-ϕ), ϕi0N :〈ω i−1.Γ ` τ〉.

Explicit substitutions calculi with de Bruijn indices and intersection type systems 43

If n>i then by the rule (ω-σ) one has that nσiN :〈ω n−2.τ.nil ` τ〉 and nσiN → n−1. Therefore,
by the rules var and varn one has that n−1:〈ω n−2.τ.nil ` τ〉.
• (ϕ-λ-transition): analogous to the proof of SR for the same rule in λsSM (Theorem 4.9).

• (ϕ-app-transition): Let ϕik(M1 M2) :〈Γ ` τ〉.
If |Γ| ≤ k then by Lemma 4.21.1 one has (M1 M2) : 〈Γ ` τ〉. By Lemma 4.19.4 one has M1 : 〈Γ `
ω→τ〉 or Γ=Γ′ ∧∆1 ∧ · · · ∧∆m s.t. M1 :〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤j≤m, M2 :〈∆j ` σj〉. One

has that max(|Γ′|, |∆1|, . . . , |∆m|)= |Γ|≤k. Hence, for the second possibility w.r.t. Lemma 4.19.4
one has, by the rule (nil-ϕ), that ϕikM1 : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j ≤m, ϕikM2 : 〈∆j ` σj〉.
Therefore, by the rule →e one has that ((ϕikM1) (ϕikM2)) : 〈Γ′ ∧∆1 ∧ · · · ∧∆m ` τ〉. The proof

is analogous for the first possibility regarding Lemma 4.19.4.

If |Γ|>k then by Lemma 4.21.1 one has (M1 M2) : 〈Γ≤k.Γ≥k+i ` τ〉 where Γ=Γ≤k.ω
i−1.Γ≥k+i.

By Lemma 4.19.4 one has that M1 :〈Γ≤k.Γ≥k+i ` ω→τ〉 or Γ≤k.Γ≥k+i=Γ′ ∧∆1 ∧ · · · ∧∆m s.t.
M1 : 〈Γ′ ` ∧mj=1σj→τ〉 and ∀1≤ j ≤m, M2 : 〈∆j ` σj〉. Let ∆′ = ∆1 ∧ · · · ∧∆m and suppose

w.l.o.g. that |Γ′| ≤ k, thus ∆′ = ∆′≤k.Γ≥k+i where Γ′ ∧ ∆′≤k = Γ≤k. Hence, for the second

possibility w.r.t. Lemma 4.19.4 one has by the rule (nil-ϕ) that ϕikM1 : 〈Γ′ ` ∧mj=1σj→τ〉 and

∀1≤ j≤m, if |∆j |>k then ϕikM2 : 〈∆j
≤k.ω

i−1.∆j
>k ` σj〉 by the rule (ω-ϕ) and if |∆j |≤k then

ϕikM2 : 〈∆j ` σj〉 by the rule (nil-ϕ). Note that ∆1
>k ∧ · · · ∧∆m

>k = ∆′>k = Γ≥k+i. Therefore,

by the rule →e, (ϕikM1 ϕikM2) : 〈Γ′ ∧ (∆′≤k.ω
i−1.∆′>k) ` τ〉, where Γ′ ∧ (∆′≤k.ω

i−1.∆′>k) =

(Γ′ ∧∆′≤k).ω i−1.Γ≥k+i. The proof is analogous for the first possibility regarding Lemma 4.19.4.

• (ϕ-destruction): The possible typings for ϕik n are analysed below, similar to the analysis for
(σ-destruction) above. Let n :〈ω n−1.τ.nil ` τ〉.
If n≤k then by the rule (nil-ϕ) one has that ϕik n :〈ω n−1.τ.nil ` τ〉 and ϕik n→ n.

If n > k then by the rule (ω-ϕ) one has that ϕik n : 〈ω n+i−2.τ.nil ` τ〉 and ϕik n → n+i−1.
Therefore, by the rules var and varn one has that n+i−1:〈ω n+i−2.τ.nil ` τ〉.
• (σ-σ-transition): Let (M1σiM2)σjM3 :〈Γ ` τ〉, for i≤j.

If Γ=nil, then by Lemma 4.21.2 one has two possibilities.

Suppose that (M1σiM2) :〈nil ` τ〉. Hence, by Lemma 4.21.2 one has two subcases.

In the first subcase one has that M1 :〈nil ` τ〉. Hence, by the rule (nil-σ) one has that M1σj+1M3 :

〈nil ` τ〉 and (M1σj+1M3)σi(M2 σj−i+1M3) :〈nil ` τ〉.
In the second subcase one has that M1 : 〈ω i−1 .∧mk=1 σk.nil ` τ〉 where ∀1≤ k ≤m, M2 : 〈nil `
σk〉. One has that i ≤ j thus i < j+1. Hence, by the rule (nil-σ) one has that M1σj+1M3 :

〈ω i−1 .∧mk=1 σk.nil ` τ〉 and, since j−i+1> 0, ∀1≤k≤m, M2 σj−i+1M3 : 〈nil ` σk〉. Therefore,

by the rule (∧-nil-σ) one has that (M1σj+1M3)σi(M2 σj−i+1M3) :〈nil ` τ〉.
Suppose that (M1σiM2) :〈ω j−1 .∧mk=1 σk.nil ` τ〉 where ∀1≤k≤m, M3 :〈nil ` σk〉. One has that

i≤j= |ω j−1 .∧mk=1 σk.nil| thus by Lemma 4.21.4 one has two subcases.

In the first subcase one has that M1 :〈ω j .∧mk=1 σk.nil ` τ〉. Hence, by the rule (∧-nil-σ) one has
that M1σj+1M3 :〈nil ` τ〉 thus, by the rule (nil-σ), (M1σj+1M3)σi(M2 σj−i+1M3) :〈nil ` τ〉.
In the second subcase one has that (ω j−1 .∧mk=1 σk.nil)≥i = Γ′ ∧∆1 ∧ · · · ∧∆m′

such that M1 :

〈(ω j−1 .∧mk=1 σk.nil)<i. ∧
m′
l=1 σ

′
l.Γ
′ ` τ〉 and ∀1≤ l ≤m′, M2 : 〈∆l ` σ′l〉. Observe that ω i−1 =

(ω j−1 .∧mk=1 σk.nil)<i and suppose w.l.o.g. that Γ′ = nil thus ∀1 ≤ l ≤m′, ∆l = nil or |∆l| =
j−(i−1). Hence, by the rule (nil-σ) one has M1σj+1M3 :〈ω i−1 .∧m′

l=1 σ
′
l.nil ` τ〉 and ∀1≤ l≤m′, if

|∆l|=0 then M2 σj−i+1M3 :〈nil ` σ′l〉 by the rule (nil-σ) and if |∆l|>0 then M2 σj−i+1M3 :〈nil `
σ′l〉 by the rule (∧-nil-σ). Hence, by the rule (∧-nil-σ), (M1σj+1M3)σi(M2 σj−i+1M3) :〈nil ` τ〉.
If 0< |Γ|<j, then by Lemma 4.21.3 one has two possibilities.

Suppose that (M1σiM2) :〈Γ ` τ〉. Note that either |Γ|<i or |Γ|≥ i.
If |Γ|<i then by Lemma 4.21.3 one has two subcases.

In the first subcase one has that M1 : 〈Γ ` τ〉. Observe that |Γ|< i≤ j < j+1. Therefore, by the
rule (nil-σ) one has that M1σj+1M3 :〈Γ ` τ〉 and (M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ ` τ〉.
In the second subcase one has M1 : 〈Γ′ ` τ〉 where Γ′ = Γ.ω n.∧mk=1 σk.nil for n≥ 0 s.t. |Γ′|= i

and ∀1≤ k≤m, M2 : 〈nil ` σk〉. One has that i≤ j < j+1 thus by the rule (nil-σ) one has that

M1σj+1M3 : 〈Γ′ ` τ〉 and ∀1≤k≤m, M2 σj−i+1M3 : 〈nil ` σk〉. Therefore, by the rule (∧-ω-σ),
(M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ ` τ〉.

44 Explicit substitutions calculi with de Bruijn indices and intersection type systems

If |Γ|≥ i then by Lemma 4.21.4 one has two subcases.

In the first subcase one has M1 : 〈Γ<i.ω.Γ≥i ` τ〉. Note that |Γ<i.ω.Γ≥i| = |Γ|+1 < j+1.
Hence, by the rule (nil-σ) one has that M1σj+1M3 : 〈Γ<i.ω.Γ≥i ` τ〉 thus, by the rule (ω-σ),

(M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ ` τ〉.
In the second subcase one has Γ≥i=Γ′ ∧∆1 ∧ · · · ∧∆m for |Γ≥i|>0 s.t. M1 :〈Γ<i. ∧mk=1 σk.Γ

′ `
τ〉 and ∀1 ≤ k ≤ m, M2 : 〈∆k ` σk〉. Note that |Γ<i. ∧mk=1 σk.Γ

′| ≤ |Γ|+1 < j+1 and
that ∀1 ≤ k ≤ m, |∆k| ≤ |Γ|− (i−1) < j− (i−1). Hence, by the rule (nil-σ), M1σj+1M3 :

〈Γ<i. ∧mk=1 σk.Γ
′ ` τ〉 and ∀1 ≤ k ≤ m, M2 σj−i+1M3 : 〈∆k ` σk〉. Hence, by the rule (∧-

σ), (M1σj+1M3)σi(M2 σj−i+1M3) : 〈(Γ<i.Γ′) ∧ ω i−1.(∆1 ∧ · · · ∧∆m) ` τ〉 where (Γ<i.Γ
′) ∧

ω i−1.(∆1 ∧ · · · ∧∆m)=Γ<i.(Γ
′ ∧∆1 ∧ · · · ∧∆m).

Suppose that (M1σiM2) : 〈Γ′ ` τ〉, where Γ′ = Γ.ω n .∧mk=1 σk.nil for n ≥ 0 s.t. |Γ′| = j and

∀1≤k≤m, M3 :〈nil ` σk〉. Note that |Γ′|=j≥ i. Hence, by Lemma 4.21.4 one has two subcases.

In the first subcase one has that M1 : 〈Γ′<i.ω.Γ′≥i ` τ〉. Suppose w.l.o.g. that |Γ| < i thus

Γ′<i.ω.Γ
′
≥i = Γ.ω n+1. ∧mk=1 σk.nil. Hence, by the rule (∧-ω-σ), M1σj+1M3 : 〈Γ ` τ〉. Therefore,

by the rule (nil-σ) one has (M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ ` τ〉.
In the second subcase one has that Γ′≥i = Γ′′ ∧ (∆′)1 ∧ · · · ∧ (∆′)m

′
for |Γ′≥i| > 0 s.t. M1 :

〈Γ′<i. ∧m
′

l=1 σ
′
l.Γ
′′ ` τ〉 and ∀1≤ l≤m′, M2 :〈(∆′)l ` σ′l〉. Suppose w.l.o.g. that |Γ|≥ i and Γ′′=Γ≥i

thus Γ′<i. ∧m
′

l=1 σ
′
l.Γ
′′ = Γ<i. ∧m

′
l=1 σ

′
l.Γ≥i and ∀1≤ l ≤m′, (∆′)l = nil or (∆′)l = ω j−i+1 . ul.nil

where ω 6= ul v ∧mk=1σk and u1 ∧ · · · ∧ um′ = ∧mk=1σk. Hence, by the rule (nil-σ) one has that

M1σj+1M3 : 〈Γ<i. ∧m
′

l=1 σ
′
l.Γ≥i ` τ〉 and ∀1≤ l≤m′, if (∆′)l=nil then M2 σj−i+1M3 : 〈nil ` σ′l〉

by the rule (nil-σ) and if |(∆′)l|= j−i+1 then M2 σj−i+1M3 : 〈nil ` σ′l〉 by the rule (∧-nil-σ).

Note that (Γ<i.Γ≥i) ∧ ω i−1.(nil ∧ · · · ∧ nil) = Γ<i.(Γ≥i ∧ nil) = Γ. Therefore, by the rule (∧-σ),
(M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ ` τ〉.
If |Γ|≥j, then by Lemma 4.21.4 one has two possibilities.

Suppose that (M1σiM2) : 〈Γ<j .ω.Γ≥j ` τ〉. Note that |Γ<j .ω.Γ≥j |= |Γ|+1≥ j+1>j≥ i. Hence,

by Lemma 4.21.4 one has two subcases.

In the first subcase one hasM1 :〈(Γ<j .ω)<i.ω.(Γ<j .ω)≥i.Γ≥j ` τ〉. Note that (Γ<j .ω)<i=Γ<i and

(Γ<j .ω)≥i= (Γ<j)≥i.ω. Hence, by the rule (ω-σ) one has M1σj+1M3 : 〈Γ<i.ω.(Γ<j)≥i.Γ≥j ` τ〉
where (Γ<j)≥i.Γ≥j=Γ≥i. Hence, by the rule (ω-σ), (M1σj+1M3)σi(M2 σj−i+1M3) :〈Γ<i.Γ≥i `
τ〉.
In the second subcase one has that (Γ<j)≥i.ω.Γ≥j=Γ′∧∆1 ∧ · · · ∧∆m s.t. M1 :〈Γ<i. ∧mk=1 σk.Γ

′ `
τ〉 and ∀1≤k≤m, M2 :〈∆k ` σk〉. Suppose w.l.o.g. that Γ′=Γ′′.ω.Γ≥j thus Γ′′∧∆1 ∧ · · · ∧∆m=
(Γ<j)≥i. Hence, by the rule (ω-σ) one has M1σj+1M3 :〈Γ<i. ∧mk=1 σk.Γ

′′.Γ≥j ` τ〉 and by the rule

(nil-σ) one has that ∀1≤ k≤m, M2 σj−i+1M3 : 〈∆k ` σk〉. Let ∆′= ∆1 ∧ · · · ∧∆m. Therefore,

by the rule (∧-σ) one has (M1σj+1M3)σi(M2 σj−i+1M3) : 〈(Γ<i.Γ′′.Γ≥j) ∧ ω i−1.∆′ ` τ〉, where
(Γ<i.Γ

′′.Γ≥j) ∧ ω i−1.∆′=Γ<i.((Γ
′′.Γ≥j) ∧∆′)=Γ<i.(Γ

′′ ∧∆′).Γ≥j .

Suppose that Γ≥j = Γ′ ∧∆1 ∧ · · · ∧∆m for |Γ≥j |> 0 s.t. (M1σiM2) : 〈Γ<j . ∧mk=1 σk.Γ
′ ` τ〉 and

∀1 ≤ k ≤m, M3 : 〈∆k ` σk〉. Hence, by Lemma 4.21.4 one has two subcases, analogous to the
subcases presented right above.

• (σ-ϕ-transition 1): Let (ϕikM)σjN :〈Γ ` τ〉, for k<j<k+i.

If Γ =nil, then by Lemma 4.21.2 one has that ϕikM : 〈nil ` τ〉. Hence, by Lemma 4.21.1 one has

that M : 〈nil ` τ〉. Therefore, by the rule (nil-ϕ) one has that ϕi−1
k M : 〈nil ` τ〉. Observe that

the other possibility regarding Lemma 4.21.2 is s.t. ϕikM :〈ω j−1 .∧ml=1 σl.nil ` τ〉 and ∀1≤ l≤m,

N : 〈nil ` σl〉. However, by Lemma 4.21.1 one has that k+(i−1) ≤ j−1 thus k+i ≤ j and by
hypothesis one has j<k+i.

If 0< |Γ|<j, then by Lemma 4.21.3 one has that ϕikM :〈Γ ` τ〉. Hence, by Lemma 4.21.1 one has

that |Γ|≤k thus M : 〈Γ ` τ〉. Therefore, by the rule (nil-ϕ), ϕi−1
k M : 〈Γ ` τ〉. Note that if |Γ|>k

then, by Lemma 4.21.1, k+i≤|Γ|<j<k+i. Observe that the other possibility regarding Lemma

4.21.3 is s.t. ϕikM : 〈Γ′ ` τ〉, where Γ′ = Γ.ω n. ∧ml=1 σl.nil for n≥ 0 s.t. |Γ′|= j and ∀1≤ l≤m,
N : 〈nil ` σl〉. However, by Lemma 4.21.1 one has that k+i≤ |Γ′|= j and by hypothesis one has

j<k+i .

If |Γ| ≥ j, then by Lemma 4.21.4 one has that ϕikM : 〈Γ<j .ω.Γ≥j ` τ〉. Hence, by Lemma

4.21.1 and by the hypothesis that k < j < k+i, one has that M : 〈Γ≤k.Γ≥k+i ` τ〉 where
(Γ<j)>k.ω.(Γ<k+i)≥j = ω i−1. Therefore, (Γ<j)>k.(Γ<k+i)≥j = (Γ<k+i)>k = ω i−2. Hence,

Explicit substitutions calculi with de Bruijn indices and intersection type systems 45

by the rule (ω-ϕ) one has that Mϕi−1
k M : 〈Γ≤k.ω i−2.Γ≥k+i ` τ〉, where Γ≤k.ω

i−2.Γ≥k+i =
Γ≤k.(Γ<k+i)>k.Γ≥k+i = Γ. Note that the other possibility in Lemma 4.21.4 is s.t. Γ≥j = Γ′ ∧
∆1 ∧ · · · ∧∆m for |Γ≥j |>0 s.t. ϕikM : 〈Γ<j . ∧ml=1 σl.Γ

′ ` τ〉 and ∀1≤ l≤m, N : 〈∆l ` σl〉. How-

ever, by Lemma 4.21.1 and by the hypothesis that k<j<k+i, one has that (Γ<j .∧ml=1 σl.Γ
′)j=ω.

• (σ-ϕ-transition 2): Let (ϕikM)σjN :〈Γ ` τ〉, for k+i≤j.
If Γ=nil, then by Lemma 4.21.2 one has two possibilities.

Suppose that ϕikM : 〈nil ` τ〉. Hence, by Lemma 4.21.2 one has that M : 〈nil ` τ〉. Therefore, by

the rule (nil-σ) one has that Mσj−i+1N :〈nil ` τ〉 and, by the rule (nil-ϕ), that ϕik(Mσj−i+1N) :
〈nil ` τ〉.
Suppose that ϕikM :〈ω j−1 .∧ml=1 σl.nil ` τ〉 and ∀1≤ l≤m, N :〈nil ` σl〉. Hence, by Lemma 4.21.1

and by the hypothesis that k+i≤ j one has that M : 〈ω (j−1)−(i−1) .∧ml=1 σl.nil ` τ〉. Therefore,
by the rule (∧-nil-σ) one has that Mσj−i+1N : 〈nil ` τ〉 and by the rule (nil-ϕ) one has that

ϕik(Mσj−i+1N) :〈nil ` τ〉.
If 0< |Γ|<j, then by Lemma 4.21.3 one has two possibilities.

Suppose that ϕikM :〈Γ ` τ〉. Note that either |Γ|≤k or |Γ|>k.

If |Γ| ≤ k, then by Lemma 4.21.1 one has that M : 〈Γ ` τ〉. One has that k+i≤ j thus |Γ| ≤ k≤
j−i < j−i+1. Therefore, by the rule (nil-σ) one has that Mσj−i+1N : 〈Γ ` τ〉 and by the rule
(nil-ϕ) one has that ϕik(Mσj−i+1N) :〈Γ ` τ〉.
If |Γ|>k, then by Lemma 4.21.1 one has that M : 〈Γ≤k.Γ≥k+i ` τ〉, where Γ=Γ≤k.ω

i−1.Γ≥k+i.

One has that |Γ≤k.Γ≥k+i| = |Γ| − (i− 1) < j − (i− 1). Therefore, by the rule (nil-σ) one

has that Mσj−i+1N : 〈Γ≤k.Γ≥k+i ` τ〉 and by the rule (ω-ϕ) one has that ϕik(Mσj−i+1N) :
〈Γ≤k.ω i−1.Γ≥k+i ` τ〉.
Suppose that ϕikM : 〈Γ′ ` τ〉, where Γ′= Γ.ω n. ∧ml=1 σl.nil for n≥ 0 s.t. |Γ′|= j and ∀1≤ l≤m,
N : 〈nil ` σl〉. Note that, by Lemma 4.18, Γ|Γ| 6=ω thus by Lemma 4.21.1 one has that k + i≤|Γ|
or |Γ|<k. Suppose w.l.o.g. that k + i≤|Γ|. Hence, M : 〈Γ≤k.Γ≥k+i.ω

n. ∧ml=1 σl.nil ` τ〉, where

Γ=Γ≤k.ω
i−1.Γ≥k+i. Therefore, by the rule (∧-ω-σ) one has that Mσj−i+1N : 〈Γ≤k.Γ≥k+i ` τ〉

and, by the rule (ω-ϕ), ϕik(Mσj−i+1N) :〈Γ≤k.ω i−1.Γ≥k+i ` τ〉.
If |Γ|≥j, then by Lemma 4.21.4 one has two possibilities.

Suppose that ϕikM : 〈Γ<j .ω.Γ≥j ` τ〉. Observe that k+i≤ j. Hence, by Lemma 4.21.1 one has
that M : 〈Γ≤k.(Γ<j)≥k+i.ω.Γ≥j ` τ〉 where Γ<j = Γ≤k.ω

i−1.(Γ<j)≥k+i. Therefore, by the rule

(ω-σ) one has Mσj−i+1N : 〈Γ≤k.(Γ<j)≥k+i.Γ≥j ` τ〉 and, by the rule (ω-ϕ), ϕik(Mσj−i+1N) :

〈Γ≤k.ω i−1.(Γ<j)≥k+i.Γ≥j ` τ〉, where Γ≤k.ω
i−1.(Γ<j)≥k+i.Γ≥j=Γ.

Suppose that ϕikM : 〈Γ<j . ∧ml=1 σl.Γ
′ ` τ〉 where, for |Γ≥j |> 0, Γ≥j = Γ′ ∧ ∆1 ∧ · · · ∧∆m and

∀1≤ l≤m, N : 〈∆l ` σl〉. The proof that ϕik(Mσj−i+1N) : 〈Γ ` τ〉 is similar to the proof for the
first possibility regarding Lemma 4.21.4, presented right above.

• (ϕ-σ-transition): Let ϕik(MσjN) :〈Γ ` τ〉, for j≤k+1.

If |Γ|≤k, then by Lemma 4.21.1 one has that MσjN :〈Γ ` τ〉.
If Γ=nil then by Lemma 4.21.2 one has two subcases.

In the first subcase one has that M :〈nil ` τ〉. Hence, by the rule (nil-ϕ) one has ϕik+1M :〈nil ` τ〉
and, by the rule (nil-σ), (ϕik+1M)σj(ϕik+1−jN) :〈nil ` τ〉.
In the second subcase one has that M : 〈ω j−1 .∧ml=1 σl.nil ` τ〉 where ∀1≤ l≤m, N : 〈nil ` σl〉.
Hence, by the rule (nil-ϕ) one has ϕik+1M : 〈ω j−1 .∧ml=1 σl.nil ` τ〉 and ∀1≤ l≤m, ϕik+1−jN :

〈nil ` σl〉. Therefore, by the rule (∧-nil-σ), (ϕik+1M)σj(ϕik+1−jN) :〈nil ` τ〉.
If 0< |Γ|<j then by Lemma 4.21.3 one has two subcases.

In the first subcase one has that M : 〈Γ ` τ〉. Note that |Γ| ≤ k < k+1 thus, by the rule (nil-ϕ),

ϕik+1M :〈Γ ` τ〉. Therefore, by the rule (nil-σ), (ϕik+1M)σj(ϕik+1−jN) :〈Γ ` τ〉.
In the second subcase one has M : 〈Γ′ ` τ〉 where Γ′ = Γ.ω n .∧ml=1 σl.nil for n≥ 0 s.t. |Γ′|= j
and ∀1 ≤ l ≤ m, N : 〈nil ` σl〉. Note that |Γ′| = j ≤ k+1. Hence, by the rule (nil-ϕ) one

has ϕik+1M : 〈Γ′ ` τ〉 and ∀1 ≤ l ≤ m, ϕik+1−jN : 〈nil ` σl〉. Therefore, by the rule (∧-ω-σ),

(ϕik+1M)σj(ϕik+1−jN) :〈Γ ` τ〉.
If |Γ|≥j then by Lemma 4.21.4 one has two subcases.

In the first subcase one has M : 〈Γ<j .ω.Γ≥j ` τ〉. Note that |Γ<j .ω.Γ≥j | = |Γ|+1 ≤ k+1.

Hence, by the rule (nil-ϕ) one has ϕik+1M : 〈Γ<j .ω.Γ≥j ` τ〉. Therefore, by the rule (ω-σ),

(ϕik+1M)σj(ϕik+1−jN) :〈Γ<j .Γ≥j ` τ〉.

46 Explicit substitutions calculi with de Bruijn indices and intersection type systems

In the second subcase one has that Γ≥j = Γ′∧∆1 ∧ · · · ∧∆m for |Γ≥j |>0 s.t. M :〈Γ<j . ∧ml=1 σl.Γ
′ `

τ〉 and ∀1 ≤ l ≤m, N : 〈∆l ` σl〉. Observe that ∀1 ≤ l ≤m, |∆l| ≤ |Γ| − (j−1) ≤ k − (j−1) =

k+1 − j. Hence, by the rule (nil-ϕ) one has ϕik+1M : 〈Γ<j . ∧ml=1 σl.Γ
′ ` τ〉 and ∀1 ≤ l ≤ m,

ϕik+1−jN : 〈∆l ` σl〉. Therefore, by the rule (∧-σ) one has that (ϕik+1M)σj(ϕik+1−jN) :

〈(Γ<j .Γ′) ∧ ω j−1 .(∆1 ∧ · · · ∧∆m) ` τ〉, where (Γ<j .Γ
′) ∧ ω j−1 .(∆1 ∧ · · · ∧∆m) = Γ<j .(Γ

′ ∧
∆1 ∧ · · · ∧∆m).

If |Γ|>k, then by Lemma 4.21.1 one has thatMσjN :〈Γ≤k.Γ≥k+i ` τ〉, where Γ=Γ≤k.ω
i−1.Γ≥k+i.

Note that |Γ≤k.Γ≥k+i|≥k+1≥j thus, by Lemma 4.21.4, one has two possibilities.

Suppose that M : 〈(Γ≤k.Γ≥k+i)<j .ω.(Γ≤k.Γ≥k+i)≥j ` τ〉. Observe that (Γ≤k.Γ≥k+i)<j = Γ<j ,

that (Γ≤k.Γ≥k+i)≥j = (Γ≤k)≥j .Γ≥k+i and that |Γ<j .ω.(Γ≤k)≥j .| = k+1. Hence, by the rule

(ω-ϕ) one has that ϕik+1M : 〈Γ<j .ω.(Γ≤k)≥j .ω
i−1.Γ≥k+i ` τ〉. Therefore, by the rule (ω-σ) one

has (ϕik+1M)σj(ϕik+1−jN) :〈Γ<j .(Γ≤k)≥j .ω
i−1.Γ≥k+i ` τ〉. Observe that Γ<j .(Γ≤k)≥j=Γ≤k.

Suppose that (Γ≤k.Γ≥k+i)≥j = (Γ≤k)≥j .Γ≥k+i = Γ′ ∧ ∆1 ∧ · · · ∧∆m for |(Γ≤k.Γ≥k+i)≥j | > 0
s.t. M : 〈Γ<j . ∧ml=1 σl.Γ

′ ` τ〉 and ∀1 ≤ l ≤ m, N : 〈∆l ` σl〉. Suppose w.l.o.g. that Γ′ =

nil thus (Γ≤k)≥j = (∆1 ∧ · · · ∧∆m)≤k+1−j and Γ≥k+i = (∆1 ∧ · · · ∧∆m)>k+1−j . Hence,

by the rule (nil-ϕ) one has that ϕik+1M : 〈Γ<j . ∧ml=1 σl.nil ` τ〉 and ∀1 ≤ l ≤ m, if |∆l| ≤
k+1 − j then ϕik+1−jN : 〈∆l ` σl〉 by the rule (nil-ϕ) and if |∆l| > k+1 − j then ϕik+1−jN :

〈∆l
≤k+1−j .ω

i−1.∆l
>k+1−j ` σl〉 by the rule (ω-ϕ). Since ∀1 ≤ l ≤ m, if |∆l| ≤ k+1 − j then

∆l
>k+1−j = nil, one has that the intersection ∆′ of contexts for ϕik+1−jN can be described as

∆′ = (∆1 ∧ · · · ∧∆m)≤k+1−j .ω
i−1.(∆1 ∧ · · · ∧∆m)>k+1−j . Hence, ∆′ = (Γ≤k)≥j .ω

i−1.Γ≥k+i.

Therefore, by the rule (∧-σ) one has that (ϕik+1M)σj(ϕik+1−jN) : 〈(Γ<j .nil) ∧ ω j−1.∆′ ` τ〉
where (Γ<j .nil) ∧ ω j−1.∆′=Γ<j .∆

′=Γ<j .(Γ≤k)≥j .ω
i−1.Γ≥k+i=Γ≤k.ω

i−1.Γ≥k+i=Γ.

• (ϕ-ϕ-transition 1): Let ϕik(ϕjlM) :〈Γ ` τ〉, for l+j≤k.

If |Γ|≤k, then by Lemma 4.21.1 one has that ϕjlM :〈Γ ` τ〉. Hence, by Lemma 4.21.1 one has two
possibilities.

If |Γ|≤ l, then by Lemma 4.21.1 one has M :〈Γ ` τ〉. Note that k+1−j≥(l+j)+1−j= l+1>l> |Γ|.
Therefore, by the rule (nil-ϕ) one has that ϕik+1−jM :〈Γ ` τ〉 and ϕjl (ϕ

i
k+1−jM) :〈Γ ` τ〉.

If |Γ|>l then, by Lemma 4.21.1, one has M : 〈Γ≤l.Γ≥l+j ` τ〉 where Γ≤l.ω
j−1 .Γ≥l+j = Γ. One

has that |Γ≤l.Γ≥l+j | = |Γ| − (j−1) ≤ k − (j−1). Therefore, by the rule (nil-ϕ) one has that

ϕik+1−jM :〈Γ≤l.Γ≥l+j ` τ〉 and, by the rule (ω-ϕ), ϕjl (ϕ
i
k+1−jM) :〈Γ≤l.ω j−1 .Γ≥l+j ` τ〉.

If |Γ| > k then, by Lemma 4.21.1, ϕjlM : 〈Γ≤k.Γ≥k+i ` τ〉 where Γ = Γ≤k.ω
i−1.Γ≥k+i. One

has that |Γ| > k ≥ l+j > l. Hence, by Lemma 4.21.1 one has that M : 〈(Γ′)≤l.(Γ′)≥l+j ` τ〉
where Γ′ = (Γ′)≤l.ω

j−1.(Γ′)≥l+j = Γ≤k.Γ≥k+i. Note that (Γ′)≤l = Γ≤l and that (Γ′)≥l+j =

(Γ≤k)≥l+j .Γ≥k+i. Hence, (Γ′)≤l.(Γ
′)≥l+j = Γ≤l.(Γ≤k)≥l+j .Γ≥k+i and |Γ≤l.(Γ≤k)≥l+j | = l +

(k−(l+j−1))=k+1−j. Hence, ϕik+1−jM : 〈Γ≤l.(Γ≤k)≥l+j .ω
i−1.Γ≥k+i ` τ〉 and ϕjl (ϕ

i
k+1−jM) :

〈Γ≤l.ω j−1.(Γ≤k)≥l+j .ω
i−1.Γ≥k+i ` τ〉, where Γ≤k = Γ≤l.ω

j−1.(Γ≤k)≥l+j , by the rule (ω-ϕ).

• (ϕ-ϕ-transition 2): Let ϕik(ϕjlM) :〈Γ ` τ〉, for l≤k<l+j.
If |Γ| ≤ k, then by Lemma 4.21.1 one has that ϕjlM : 〈Γ ` τ〉. Observe that if |Γ| > l then by

Lemma 4.21.1 one has that |Γ|>l+(j−1) thus |Γ|≥ l+j>k. Hence, for |Γ|≤ l one has, by Lemma
4.21.1, that M :〈Γ ` τ〉. Therefore, by the rule (nil-ϕ), ϕj+i−1

l M :〈Γ ` τ〉.
If |Γ|>k then, by Lemma 4.21.1, ϕjlM : 〈Γ≤k.Γ≥k+i ` τ〉 where Γ = Γ≤k.ω

i−1.Γ≥k+i. One has
that |Γ≤k.Γ≥k+i|>k≥ l. Hence, by Lemma 4.21.1, M : 〈(Γ≤k.Γ≥k+i)≤l.(Γ≤k.Γ≥k+i)≥l+j ` τ〉
where (Γ≤k.Γ≥k+i)≤l=Γ≤l, (Γ≤k)>l=ω k−l, (Γ≤k.Γ≥k+i)≥l+j=(Γ≥k+i)≥l+j−k=Γ≥l+(j+i)−1

and (Γ<l+(j+i)−1)≥k+i=ω (j−1)−(k−l). Hence ϕj+i−1
l M :〈Γ≤l.ω j+i−2.Γ≥l+(j+i)−1 ` τ〉, by the

rule (ω-ϕ), where Γ≤l.ω
j+i−2.Γ≥l+(j+i)−1 =Γ≤l.(Γ≤k)>l.ω

i−1.(Γ<l+(j+i)−1)≥k+i.Γ≥l+(j+i)−1.

Observe that Γ≤k = Γ≤l.(Γ≤k)>l and that (Γ<l+(j+i)−1)≥k+i.Γ≥l+(j+i)−1 = Γ≥k+i. Therefore,

Γ≤l.ω
j+i−2.Γ≥l+(j+i)−1 =Γ.

Received November 24, 2014

