
The Review of Modern Logic

Volume 10 Numbers 3 & 4 (March 2005–May 2007) [Issue 32], pp. 219–224.

Fairouz Kamareddine, Twan Laan, and Rob Nederpelt
A Modern Perspective on Type Theory: From its Origins until Today
Applied Logic Series, Vol. 29
Dordrecht/Boston: Kluwer Academic Publishers, 2004
xiv + 357 pp. ISBN 1402023340

REVIEW

VLADIK KREINOVICH

In 1902, Bertrand Russell discovered a famous paradox of naive set
theory—that for the set S = {x : x �∈ x}, S ∈ S if and only if S �∈ S.
The paradox comes from the fact that traditional set theory allows self-
reference: once we have defined a new set (such as Russell’s set S), we
can then ask whether the new set is an element of itself. To avoid this
(and similar) self-reference paradoxes and still allow mathematically
useful constructions of sets of sets etc., Russell introduced the following
idea.
We start with known consistent sets of the standard type. Based on

these sets, we can form new sets, e.g., by considering all standard sets
that satisfy a given property P : {x is of standard type : P (x)}. By
definition, these sets only contain sets of the standard type; so while
we can legitimately consider a new set S = {x is of standard type : x �∈
x}, this set will contain only standard sets and not new sets (like the
set S itself). These new sets form the first level in the set hierarchy.
We can also consider sets of such first level sets, i.e., sets of the

form {x is of first level : P (x)}; these sets form the next (2nd) level,
etc. Formally, we must explicitly assign to each variable x an integer
value called its type, with the understanding that possible values of this
variable x are sets of this type. The set {xa : P (xa)} is then of type
a+ 1, the set {xa : ∀yb∃zcP (xa, yb, zc)} is of type max(a, b, c) + 1, and
the formula xa ∈ yb only makes sense if a < b.
In this theory, if elements of the set A are of type a, then subsets of

A are of type a+1. If elements of the set B are of type b, then pairs—
i.e., elements of the Cartesian product A×B—have a type max(a, b).
A function f : A → B is usually defined as a set of pairs f ⊆ A × B,

c© 2007 The Review of Modern Logic.

219



220 VLADIK KREINOVICH

so a function is an object of type max(a, b) + 1. The resulting Type
Theory became the first successful formalization of set theory.
The idea that, e.g., a set of real numbers or a function from real

numbers to real numbers are objects of higher type than real numbers
themselves is very natural and in good accordance with mathematical
practice. Similarly, a real number—naturally defined as a function from
natural numbers to natural numbers—is an object of higher type than
a natural number itself.
However, the fact that we must distinguish between, e.g., real num-

bers of type 1, of type 2, etc.—depending on the complexity of their
definitions—is troubling and mathematically counter-intuitive. For ex-
ample, in mathematics, it is natural to ask whether a certain property
holds for all real numbers. However, in the original Russell’s type the-
ory, we cannot even ask this question—we can only ask whether some
property holds for all real numbers of type 0, or type 1, etc. To re-
solve this problem, Russell introduced a special Axiom of Reducibility
according to which, crudely speaking, the truth of a statement should
not change if we simply add a constant to the level of all the variables.
Thus, to check that a certain property holds for real numbers, it is
sufficient to check this property on some level – although we must still
make sure that within the formulas, there is a proper relation between
levels (types) of different variables. This axiom is very helpful math-
ematically, but it is no longer as intuitively clear as the original type
theory idea.
From the purely logical viewpoint, the resulting type theory was very

similar to the λ-calculus, a formalism introduced by Alonzo Church in
the 1930s. One of the motivations behind λ-calculus is the desire to
bring precision to mathematics and mathematical logic. In traditional
mathematical practice, the notation f(x) may mean a real number that
is obtained by applying a function f to the value x, or it can mean a
function that transforms a real number x into a new real number f(x).
This particular ambiguity is usually resolved by using f as a notation
of a function, but in more complex cases such as f(x, y), this simple
idea does not work well: f(x, y) can mean a real number, it can mean
a function of one variable x, it can mean a function of one variable y,
and it can also mean a function of two variables x and y. To avoid
this ambiguity, Church proposed to keep f(x) as a notation for a real
number, and to denote a function f by λx.f(x). In Church’s notations,
the four possible interpretations of f(x, y) are clearly distinguished as
f(x, y), λx.f(x, y), λy.f(x, y), and λx, y.f(x, y).
In Church’s approach, these different objects have a different type:

f(x, y) is one of the original objects (type ι); a function λx.f(x, y) is



REVIEW: A MODERN PERSPECTIVE ON TYPE THEORY 221

a function from original objects to original objects, i.e., an object of
type ι → ι, and a function λx, y.f(x, y) transforms pairs into objects,
i.e., is of type 〈ι, ι〉 → ι. A function of two variables can be viewed,
equivalently, as a function that maps x into a function λy.f(x, y) of
one variable, i.e., as an object of type ι → (ι → ι).
Correct interpretation of logical formulas requires an even more com-

plex description of types. For example, a closed formula P is an object
whose values can be “true” or “false” (type o, in Church’s notations);
a proposition P (x) with a free variable x can be viewed as a function
that maps objects x into truth values, i.e., as an object of type ι → o.
A logical connective such as ∨ is an object of type 〈o, o〉 → o, and a
quantifier ∀x is a function that takes a predicate λx.P (x) and returns
a truth value, i.e., a quantifier is an object of type (ι → o)→ o.
Because of this complexity, Church’s λ-notations were not adapted

by mainstream mathematicians. At present, when we are all familiar
with programming and algorithms, Church’s description—which may
have sounded counterintuitive to the 1930s mathematicians—is per-
fectly natural. For example, in the 1930s, a logical operation could
sound like something completely different from a normal function (such
as addition), but inside the computer, “and” is simply an operation
that transforms real values into real values—and moreover, in a natu-
ral representation where “true” is 1 and “false” is 0, “and” is simply
multiplication. Church’s notations did lead to a notion of a recursive
function—one of the first general descriptions of algorithms, and even-
tually, to the appearance of modern programming languages, in which
types are explicitly defined, and a type of a function is usually pre-
sented in its header. Since Church interprets all objects as functions,
Church’s notations led to functional languages, starting with the fa-
mous (and very successful) AI language LISP—which is, in a nutshell,
nothing else but an effectively implemented λ-calculus.
In late 1920s and 1930s, the relation between types and efficient

computations also appeared in the analysis of intuitionistic (and what
we would now call constructive) mathematics. While both Church’s
approach and constructive mathematics serve similar goals—analyzing
and designing efficient algorithms—their approach was drastically dif-
ferent: Church wanted to introduce new notations that will be perfectly
suited to describe computability, while constructive mathematics tried
to retain as much as possible from the traditional mathematical nota-
tions, trying to achieve efficiency by changing the rule of the game. In
other words, Church started from logic and tried to translate mathe-
matics into logical terms, while constructive mathematics started with
mathematical notions and ideas and tried to match logic as needed.



222 VLADIK KREINOVICH

Surprisingly, both approaches led to similar results—including the ef-
ficient use of types. We have already mentioned how types appeared
in Church’s approach; let us briefly describe how types appeared in
constructive mathematics.
In constructive mathematics, the truth of a statement like ∃xP (x)

means that we not only know that P (x) holds for some value x, we
actually know a value x for which P (x) is true. Thus, a constructive
proof of ∃xP (x) must include a description of this object x (or, at
least, an algorithm for computing x) and a proof that P (x) is true.
Similarly, an implication A → B (“A implies B”) is constructively true
if, whenever we know that A is true, we must be able to constructively
imply B. Thus, we must have an algorithm that, given a constructive
proof of A, returns a constructive proof of B. So, a constructive proof
of an implication A → B is a (constructively defined) function that
transforms each proof of A into a proof of B.
In this approach, first proposed by Heyting (Mathematische Grund-

lagenforschung: Intuitionismus – Beweistheorie, Springer-Verlag, Ber-
lin, 1934; revised English translation Intuitionism, North Holland,
1971), and Kolmogorov (“Zur Deutung der intuitionistischen Logik”,
Mathematische Zeitschrift, 35:58–65, 1932), different proofs of A → B
are functions from the set of all proofs of A to the set of all proofs
of B. This relation can be naturally described in type theory terms:
indeed, a type of an object is, crudely speaking, a class to which this
object belongs. So, we can view proofs as objects (“terms”), and the
corresponding propositions as types. Thus, a proof of the implication
A → B is an object of type A → B—in the sense that it is a type
of functions that transform objects of type A (= proofs of A) into ob-
jects of type B (= proofs of B). This “propositions as types”–“proofs
as terms” (PAT) principle turned out to be very useful in automatic
proof verification. It was first successfully used in the late 1960s in the
Automath project that enabled computers to check serious mathemati-
cal proofs—e.g., all the proofs from Grundlagen der Analysis, Edmund
Landau’s classical book on foundations of mathematical analysis. The
ideas developed in Automath made their way into modern proof check-
ers.
This brief description—largely borrowed from the book under re-

view—shows an exciting evolution and convergence of ideas related to
type theory. While many logicians seem to be aware of this story, many
researchers are still only familiar with one side of it. For example, spe-
cialists in foundations of set theory are quite familiar with Russell’s
type theory, and may be aware of intuitionistic mathematics, but they



REVIEW: A MODERN PERSPECTIVE ON TYPE THEORY 223

may not know much about the relation between intutionistic (construc-
tive) logic and type theory. Specialists in theoretical computer science
are usually quite familiar with recursive functions and λ-calculus, but
not with set-theoretical types and the use of PAT in proof checking.
Specialists in programming languages may be familiar with types and
type checking, but are usually not aware of the relation between these
(practical) types and more theoretical work that they may have studied
in Theory of Computations and AI classes. Specialists in AI are usu-
ally familiar with LISP—and maybe with proof checking software, but
they are usually not aware of the deep relation between the two and of
the relation between these subjects and foundations of set theory.
One reason why the relationship is not well known is that up to know,

different aspects of type theory were presented in different forms, some-
times informally. The authors meticulously go over the past formalisms
and approaches and describe them in a similar way, so that modern
readers will be able to understand all the details of each formalism—
and the relation between different type theories and between their var-
ious applications.
The result is a very useful book—but it is not easy reading. The

main audience is computer science and applied logic folks who are al-
ready familiar with λ-calculus. For these folks, the authors provide a
very clear and in-depth introduction to other important areas related
to type theory such as set theory paradoxes and constructive mathe-
matics. While doing this, the authors had to bring perfect clarity and
unambiguity to formalisms like Russell’s type theory which were never
presented in a completely satisfactorily formal way. This required a lot
of work, and the result is definitely of great value to historians of set
theory.
The authors also spend a lot of time explaining how the ideas and

algorithms of the Automath proof checker are, in effect, the same as in
the general type theory approach—and this explanation helps a lot by
clarifying much of the heuristics behind proof checkers.
I would therefore strongly recommend this book to all interested

folks who have at least some idea of Church’s λ-calculus, whether from
a logic course or from the recursive functions notion from a Theory of
Computation course. Moreover, for those who are interested in one of
the aspects of types—in set theory, in AI, in programming languages—
but are not yet familiar with λ-calculus, I would still recommend that



224 VLADIK KREINOVICH

they read this book—the need to understand this book will be a good
motivation to become better acquainted with Church’s techniques.

Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA

E-mail address: vladik@utep.edu


