The A-cube with classes which approximate reductional
equivalence®

Roel Bloo! Fairouz Kamareddine! Rob Nederpelt?

December 5, 1995

Abstract

We study lambda calculus and refine the notions of g-reduction and S-equality. In
particular, we define the operation T'S (term reshuffling) on A-terms which reshuffles
a term in such a way that more redexes become visible. Two terms are called shuffle-
equivalent if they have syntactically equivalent 7'S-images. The shuffle-equivalence classes
are shown to divide the classes of -equal terms into smaller classes consisting of terms
with similar reduction behaviour. The refinement of S-reduction from a relation on terms
to a relation on shuffle classes, called shuffle-reduction, allows one to make more redexes
visible and to contract these newly visible redexes. This enables one to have more freedom
in choosing the reduction path of a term, which can result in smaller terms along the
reduction path if a clever reduction strategy is used. Moreover, this gain in reductional
breadth is not at the expense of reductional length.

We show that the A-cube of [Barendregt 92] extended with shuffle-reduction satisfies
all its properties such as Church Rosser, Strong Normalisation and Subject Reduction
(the latter depends on allowing definitions in contexts).

1 Introduction

1.1 Term reshuffling and reductional equivalence

[B-equality of two terms A and B is by the Church-Rosser property equivalent to the existence
of a common reduct C. Nothing can be said about the nature of the two reductions A —+5 C
and B =3 C. It can be that both reductions consist of the same number of steps, or
that one of them is larger than the other. Also, the reduction behaviour of A and B can
be very different, as is the case if A = KIQ2 and B = KII. We think it is an interesting
problem to characterize terms with equal reduction behaviour. In this paper we try to give
an approximation to the reductional equivalence between two terms.

*We are grateful for the Netherlands Computer Science Research Foundation (SION), the Netherlands
Organisation for Scientific Research (NWO), the universities of Glasgow and Eindhoven, to the Basic Action
for Research ESPRIT project “Types for Proofs and Programs”, and to the EPSRC Grant nb GR/K 25014
for their financial support.

fDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,
5600 MB Eindhoven, the Netherlands, email: bloo@Qwin.tue.nl

tDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, email: fairouzQdcs.glasgow.ac.uk

Ssame address as Bloo. email: wsinrpn@win.tue.nl

Consider in a typed A-calculus of the A-cube as described in [Barendregt 92], the terms

A = (AswAypArgos-fy)ar
B = (Asi-(Ayip-Ariop-fy)r)e

Both terms have the term A;.,_,,.fz as a reduct, so A =5 B. However, B has two redexes
whereas A has only one. Here are the redexes of B and their corresponding results in B:

L 71 = (Agos-(Ay:g-As. 55 fy)z)a which when contracted in B results in (Ay.0.Af.asa-fY)T
2. r3 = (Ay5-Ar.55-fy)x which when contracted in B results in (Ag...A\p.55.f2)

Here is the only redex in A and the result of contracting this redex in A:
L. r] = (Mg Ays- Ao fy)a which when contracted in A results in (Ay.o-Af.asa-fY)T

Note that 7 in B and 7| in A are both based on (As...—)« and contracting r, in B results in
the same term as contracting r| in A.

A closer look at A however, enables us to see that in A (as in B), \,._ will get matched
with z resulting in a redex r5 = (\,._.—)x. There are differences however between r, in B and
rh in A. ry in B is completely visible and may be contracted before r; in B. 7} on the other
hand is a future redex in A. In fact, it is not a redex of A itself but a redex of a contractum
of A, namely (A,.a-Af.asa-fy)2, the result of contracting the redex r| in A.

We could however guess from A itself the presence of the future redex. That is, looking
at A itself, we see that \g is matched with o and A, is matched with z.

In this paper, and in order to discuss reductional equivalence between terms, redexes will
be extended so that a future redex like (A,._.—)z will be treated as a first class redex and
will be contracted in A even before the originator (As...\,.5.Ar.5-5.fy)a has been contracted.
Hence, with our extended notion of redexes and reduction we get in A:

Ty = (Ay:-Ar.pmp-fy)z which when contracted in A results in (Ag...Af55.f2)

This is remarkable. Note that 7} is A,z matched with = (exactly as 7 in B). Note moreover
that contracting r} in A gives the same result as contracting r» in B.

With this notion of extended redex, we can observe that there is a bijective correspondence
between the (extended) redexes of A and B. That is, r; corresponds to r} and r, corresponds
to r;,. Moreover, if one redex is contracted in A, the reduct is syntactically equal to the reduct
which results from contracting the corresponding redex in B and vice versa. That is, ; and
r] yield the same values; similarly r, and 7}, yield the same values.

If on the other hand, we consider the term C' = (A;5.(Agix-Appp-fy)a)x, we see that
there is no such correspondence between (extended) redexes of A and C: contracting the
outermost redex in C gives the same result as contracting the mentioned extended redex in
A, but contracting the innermost redex in C yields (A,.5.A f.a— - fy)2z which is not syntactically
equivalent to (Ay.o-Afama-fY)T.

These considerations lead us to define reductional equivalence ~;,; informally by:

Definition 1.1 We say that A and B are reductionally equivalent and write A ~¢ B iff

1. There is a bijective correspondence between the (extended) redezes of A and B.

2. Contracting an (extended) redex in A results in a value syntactically equal (=) or re-
ductionally equivalent (~i,s) to the result of contracting the corresponding redex in B
and vice versa.

Alas however, it may not be easy to decide on the reductional equivalence of two terms. We
conjecture that in general it is undecidable whether two terms are reductionally equivalent.

Conjecture 1.2 It is undecidable whether two terms are reductionally equivalent.

It seems interesting to find notions that are more easy to decide which approximate ~;,;. One
approach could be to define degrees of reductional equivalence (~, with n > 0 for short) in
the following way:

o M~ Niff M = N.

e M ~,.; N iff there is a bijective correspondence between the (extended) redexes of
M and N such that contracting one in M yields a term ~,,, m < n to the result of
contracting the corresponding redex in V.

These are not very well behaved notions since the notions ~, for n > 2 are not compatible.
This can be seen as follows!:

Arig-(Azie-Agaa-€)ba ~1 ALy (Ape.(Ay.q-€)a)b but

(Asig-(Aiie-Ayea-€)ba) f o (Al g (Apee-(Ayea-€)a)b) £

For this reason we follow a different approach and consider what we call shuffle-equivalence.
Our notion of shuffle-equivalence will be decidable but it is incomparable to reductional
equivalence of any degree ~,,, n > 0. It is however a good approximation to ~.

Term reshuffling (see [KN 95]) amounts to rewriting a term so that more redexes than
usual become visible. Observe that extended redexes can be shuffled to “classical” (i.e., non
extended) redexes without loosing reductional equivalence. This can be seen by our terms A,
B, and C above. The extended redex r in A becomes classical in B. We call B the reshuffled
version of A. We have seen that A ~;,;y B. C on the other hand is not equivalent to either A
or B, either shuffle-wise or reductional wise.

Now to decide on the shuffle-equivalence of two terms A and B, we reshuffle both A and B
and if we get in both cases the same result, then we say that A and B are shuffle-equivalent.
We denote the reshuffled version of a term A by T'S(A); a concise definition of T'S will be
given in subsection 3.2. Now, we go back to the terms given above and see what we mean:

Example 1.3 Consider the terms A, B and C' given above. We see that all redexes in B are
visible and so T'S(B) = B. On the other hand, we see that A has a redex (\,.3.—)z which
becomes visible after (Ag...—)a has been contracted. The idea of term reshuffling is to make
this redex visible even before the other redex has been contracted. When we do so (via the
function T'S of Definition 3.5), we get T'S(A) = B. Now, T'S(A) = T'S(B). Moreover, we
have seen that A ~;,; B. C on the other hand, has all its redexes visible, hence T'S(C) = C,
and we see that T'S(C) # T'S(A) or T'S(B).

It will be easier to understand what the operation T'S does if we change the classical notation
we have been using so far. For now, let us provide another example where we have more
extended redexes than above.

!This counterexample will be better understood if it is translated into the item-notation of Section 2.

Example 1.4 Let A = ((Ar,.. 1.0 (Aza-Ayia-fry)m)+)n.

The redexes in A are: (Afq1,.. 11,.0.0-(Aea-Aya-fZY)M)+, (Apa-Aya-fry)m and (A,.q.fzy)n.
The third redex is not classical, is not immediately visible, and is not subject to contraction
without having first unfolded in A,.,.fzy the two definitions that f is 4+ and z is m.

Now, take B = (A1, Mo a-(Aeia-(Ayia-f2y)n)m)+.

The (classical) redexes in B are: (Ar,.. 11,..0-(Aeia-(Ayia-f2y)n)m)+, (Aeia-(Ayea- fTy)n)m
and (Ay.o.fzy)n. All these redexes are classical, immediately visible and subject to contrac-
tion. Moreover, A =5 B.

All the three redexes of A are needed in order to get its normal form and correspond to the
redexes of B. B is already in reshuffled form, B = T'S(B). Moreover, reshuffling A so that all
redexes become visible results in B. I.e. T'S(A) = B. Hence as TS(A) = TS(B), A ~i.¢ B.

Now, consider A above and C' = (((Afa1,.. 1y .a-Aea-Agia-STY)+)m)n. Both A and C
have a bijective correspondence between their extended redexes and A =5 C. A ~yy C
but this is hardly visible. Reshuffling A and C however, makes this claim visible. That is,
TS(A) =TS(C) =TS (B) and so all three terms A, B and C are reductionally equivalent.

The classical notation cannot extend the notion of redexes or enable reshuffling in an easy way.
Item notation however (see [KN 93], [KN 94] and [KN 96b]), can. In item notation, complex
terms of the A-cube are of the form (Aw)B where w € {§}U{O,;x is a variable, a * or a O and
O = Mor II}. We call (Aw) an item and (Ad)B means apply B to A (note the order). A
redex starts with a d-item next to a A-item ([KN 96b] discusses various advantages of this
notation).

Example 1.5 A of Example 1.4 reads (nd)(+9)((all,)(all,)ad;)(md)(ar,)(aX,)(yd) (o) f
in item notation (see Section 2). Here, the first two redexes, the classical redexes, correspond
to 0 A-pairs followed by the body of the abstraction as follows: (Ay.q1,., 11,..0-(Aea-Aya-fTY)m)+
corresponds to (40)((odl,)(all,)ad;)(md)(aX,)(aA,)(yd)(zd) f and (As.a-Ay.a-fTy)m corre-
sponds to (md)(aX,)(aX,)(yd)(zd)f. Note that the so-called é-item (+J) and the so-called
A-item ((oll,)(all,)a)s) are adjacent, showing the presence of a redex. Similarly, note the
adjacency of (md) and (aA,).

The third redex of A is obtained by matching ¢ and A-items. (\,...fzy)n is visible as it
corresponds to the matching (nd)(a),) where (nd) and (a),) are separated by the segment
(+0)((oIL,) (oIL,)ar s) (md) (A,) which has the bracketing structure [][] (see Figure 1 which

represents A).

(nd) (+0) ((allu)(adl,)ads) (md) (ads) (ady) (yd)(wd)f

Figure 1: (Extended) redexes in item notation: A

Term reshuffling amounts to moving d-items to occur next to their matching A-items.
Hence A of Example 1.4 is reshuffled to (+9)((all,)(adl,)a))(mé)(ar,)(nd)(aX,)(yd)(xd) f
and Figure 1 changes to Figure 2 (which represents B). Furthermore, Figure 3 (which repre-
sents C') also changes to Figure 2 when reshuffled.

(+9) ((all)(edL,)ads) (md) (ak.) (nd) (ady) (yd)(zd)f
Figure 2: The reshuffled term A in item notation: B

(nd) (méd) (+0) ((edL)(adl,)ads) (eedz) (ady) (yo)(xd) f
Figure 3: More extended redexes: C

1.2 Reduction modulo term classes

Having noted above that terms like A, B and C of Example 1.4 are shuffle-equivalent and
that for both A and C, we could find their T'S form which makes more redexes visible, we
decide to study the classes of these shuffle-equivalent terms. For this reason, we define [¢],
the class of ¢, to be {¢/|T'S(t) = T'S(t')}. Hence, A, B and C above belong to the same class.

All elements of [A] are =5 and have somehow the same redexes. We say A ~5 A’ iff
dB € [A]3B’ € [A] such that B —4 B’. Note that from this definition, —;C~»zC=5.

1.3 The need for definitions

Recall that in Example 1.4 when we explained the third redex of A, we said that two definitions
were unfolded in A,.,.fzry. It turns out that this observation is necessary in order to show
that the A-cube extended with term reshuffling and ~»4 satisfies Subject Reduction. But
then definitions are important on their own (see [BKN 9y], [Con 86], [Dow 91], [KBN 9-],
NGV 94] and [SP 93]). We show that the A-cube extended with TS, ~»5 and definitions,
preserves its original properties including Strong Normalisation and Subject Reduction and
that term reshuffling preserves typing.

2 The item notation and the formal machinery

7 translates terms from classical notation to item notation such that (O ranges over {\,II}):

Z(A) = A if A is a variable or a constant
Z(0..4.B) = (I(A)O.)I(B) where O € {\II}
Z(AB) = (Z(B)d)Z(A)

Bound and free variables and substitution are defined as usual. We write BV (A) and FV(A)
to represent the bound and free variables of A respectively. We write A[z := B] to denote
the term where all the free occurrences of z in A have been replaced by B. We take terms to
be equivalent up to variable renaming and use = to denote syntactical equality of terms. We
assume moreover, the Barendregt variable convention which is formally stated as follows:

Convention 2.1 (BC': Barendregt’s Convention)

Names of bound variables will always be chosen such that they differ from the free ones in a
term. Moreover, different X’s have different variables as subscript. Hence, we will not have
(x0) (AXe) (zAy) (yAy)y, but (x0)(AX,)(uX,)(yA,)v instead.

The systems of the A-cube are based on a set of pseudo-ezpressions T (also called terms)
defined by:

T =8|V I(TOT [(TOV)T

where O ranges over {\,II} and V is an infinite collection of variables over which z,y, z, ...

range. * and O are special constants called sorts over which S,.51,95,... range. We take
A,B,C,a,b,... to range over pseudo-expressions.
A relation — on terms is compatible iff the following holds for all w € {§}U{O, |z € V}:
Al — AQ Bl — B2

Definition 2.2 ((main) items, (main, 00-)segments, heart, weight)

e If x is a variable and A is a pseudo-expression then (AN,), (AIL,) and (Ad) are items
(called A-item, Il-item and 0-item respectively); A is called the body of the item. We
use s, 81, 8;, ... to range over items.

e Each pseudo-expression A is the concatenation of zero or more items and a variable or
constant: A = s185---5,B where B € V U {x,0}. These items $i, Sa,...,S, are called
the main items of A, B is called the heart of A, notation Q(A).

e A concatenation of zero or more items $18» - - - S, 1s called a segment. We uses,5,,5;, ...
as meta-variables for segments. We write () for the empty segment. The items sy, Sz, ..., Sn
(if any) are called the main items of the segment. A concatenation of adjacent main
items Sy -+ Smak, 48 called o main segment. A §O-segment is a §-item immediately
followed by an O-item.

e The weight of a segment 5, weight(3), is the number of main items that compose the
segment. Moreover, we define weight(st) = weight(s) fort € V U {x,O}.

When one desires to start a reduction on the basis of a d-item and a A-item, the matching
of the § and the A in question is the important thing, even when the items are adjacent.
Well-balanced segments separate matching ¢ and A-items.

Definition 2.3 (well-balanced segments)
e The empty segment () is a well-balanced segment.
e If 3 is well-balanced, then (Ad)s(BO,) is well-balanced.
e The concatenation of well-balanced segments is a well-balanced segment.

A well-balanced segment has the same structure as a matching composite of opening and
closing brackets, each 0- (or O-)item corresponding with an opening (resp. closing) bracket.

Definition 2.4 (match, §O- (reducible) couple, partner, partnered, bachelor)
Let A€ T. Let s = s, --- s, be a segment occurring in A.

We say that s; and s; match, when 1 <i < j <mn, s; is a 6-item, s; is an O-item, and
Sit1 - 8j—1 15 a well-balanced segment.

If s; and s; match, we call s;s; a 6O-couple. A d\-couple is called a reducible couple.
If s; and s; match, we call s; and s; partners or partnered items.

All non-partnered O- (or 0-)items s, in A are called bachelor O- (resp. §-)items in A;
a segment consisting of bachelor items only is called o bachelor segment.

Definition 2.5 (definitions, unfolding)

e If 5 is well-balanced not containing dI1-couples, then a segment (Ad)S(BA,) occurring

in a context is called a definition.

Let s be a well-balanced segment, We define the unfolding of s in A, [Als, inductively
as follows: [Alyp = A, [A](ssysr(co.) = [Alr := Bllsy and [Als;s = [[Alss]sr. Note that
substitution takes place from right to left and that when none of the binding variables of
S are free in A, then [A]lz = A.

We now introduce some general notions concerning typing rules which are the same as the
usual ones when we do not allow definitions in the context (as is the case in the A-cube). When
definitions are present however, the notions are more general. Let - be a typing relation and
let —+ be a reduction relation whose equivalence closure is =g.

Definition 2.6 (declarations, pseudocontezts, C', —»)

1.
2.

A declaration d is a A-item (A)X,). subj(d), pred(d) and d are x, A and () respectively.

For a definition d = (B§)S(A\,) we define subj(d), pred(d), d and def(d) to be z, A,
s and B respectively.

We use d,d,,ds, ... to range over declarations and definitions.

A pseudocontezt is a concatenation of declarations and definitions such that if (AX,)
and (B\,) are two different main items of the pseudocontext, then x # y. We use
LA I, T, [y, ... to range over pseudocontexts.

For I" a pseudocontext we define

dom(I') ={z € V' | (AX;) is a main A-item in I" for some A},

I'-decl = {s | s is a bachelor main \-item of '},

[-def = {5|35 = (AJ)5,(BA,) is a main segment of I' where 5, is well-balanced },
Note that dom(I") = {subj(d) | d € I'-decl UI'-def}.

Define C' between pseudocontexts as the least reflexive transitive relation satisfying:

o I'A C'T'(CX,)A if no A-item in A matches a 6-item in I’
e I'dA C'T'dA if d is a definition

o I'S(AX,)A C'T(D0)s(AXN)A if (AX,) is bachelor in I's(AN,)A, 5 is well-balanced
7. If A — B then I'(Aw)I" — I'(Bw)I" for w € {0} U{A, : v € V'}. —» between contexts

is the reflexive transitive closure of —.

Definition 2.7 (Definitional equality) For all contexts I' we define the binary relation T' -
- =4et * to be the equivalence relation generated by

o if A=5 B then ' - A =4¢ B

o ifd € '-def and A, B € T such that B arises from A by substituting one particular
occurrence of subj(d) in A by def(d), then '+ A =4.¢ B.

Definition 2.8 (statements, judgements, <)

1. A statement is of the form A : B, A and B are called the subject and the predicate of
the statement respectively.

2. When U is a pseudocontext and A : B is a statement, we call ' - A : B o judgement,
meaning A : B is derivable from the context ', and we write ' = A : B : C' to mean
'FA:BATFB:C.

3. For T’ a pseudocontert and d € I'-def UT'-decl, I invites d, notation I' < d, iff

e I'd is a pseudocontext
e I'dtF pred(d) : S for some sort S.
e if d is a definition then I'd - def(d) : pred(d) and FV (def(d)) C dom(I")

Remark 2.9 Note that binding variables in d may occur free in pred(d) but not in def(d)
ifI' < d.

Definition 2.10 Let I' be a pseudocontext and A a pseudo-expression.

1. Let d,dy,...,d, be declarations and definitions. We define ' F d and I' & d,---d,
simultaneously as follows:
e Ifd is a declaration: Tk d iff T - subj(d) : pred(d).

o If d is a definition: I' F d iff I' F subj(d) : pred(d) AT' - def(d) : pred(d)A
I'FdAT F subj(d) =4 def(d).

e 'Hdi---d, iff THd; for all 1 < i <n.
2. T s caolled legal if AP,Q € T such that '+ P : Q.

3. AeT is called a T™-term if IBEeT'HFA:B orT'F B: Al
We take I'"-terms ={A €T |ABeT['+- A: BV + B: A]}.
A €T is called legal if AT[A € T" -terms.

4. We say that A is strongly normalising with respect to a reduction relation — (written
SN_,(A)) iff every —-reduction path starting at A terminates.

Definition 2.11 We say that two terms A and B are semantically equivalent iff A =5 B.

In the A-cube of [Barendregt 92], the only declarations allowed are of the form (A\,). There-
fore, I" < d is of the form I' < (A\,) and means that I' = A : S for some S and that z is fresh
in T'; A. Moreover, for any d = (A\,), d = (), subj(d) = z and pred(d) = A. Hence, in the
next definition, d is a meta-variable for declarations only, =4 is the same as =g
(which is independent of I-) and the reduction relation is —4.

Definition 2.12 (Azioms and rules of the X-cube: d is a declaration, =4e¢ is =)

(axziom) <>Fx:0
['<d

(start rule) I'd subj(d) : pred(d)

: I'<d I'd+-D:F
(weakening rule) I D E
(application rule) I'FF: (AH’”)B‘ _F Fa: A

I'F (ad)F : Blz := d]

; L(AX,)Fb:B [k (AI,)B: S
(abstraction rule) (42.) = YWIE (AH,E()B)

; '-A:B r-B':S ' B=4: B
(conversion rule) AR def
(formation rute) TEAS_ LA ED 5 ip (5, 5,) s e

I'F (AIL,)B: S,

Each of the eight systems of the A-cube is obtained by taking the (S, Ss) rules allowed from
a subset of {(x*,x), (x,0),(0,x*),(0,0)}. The basic system is the one where (57, S,) = (x, *)
is the only possible choice. All other systems have this version of the formation rules, plus
one or more other combinations of (x,0), (O,%) and (O,0) for (S;,S5,). Here is the table
which presents the eight systems of the A-cube:

System Set of specific rules

AL (%, %)

A2 (*,%) | (O,x%)

AP (%, %) (x,0)

AP2 (,%) | (O,%) | (x,0)

AW (%, %) (O,0)
Aw (*,%) | (O,x%) (O0,0)
APw (%, %) (x,0) | (O,0)
APw = AC | (x,%) | (O,%) | (x,0) | (O,0)

3 Term reshuflling

In this section we rewrite terms so that all the newly visible redexes can be subject to — 3.
We shall show in this section that this term rewriting function is correct in the sense that
A=5TS5(A), ie., A and T'S(A) are semantically equivalent. In Section 4, we show that this
term reshuffling preserves reduction in the sense that if A —5 B then T'S(A) ~»3 T'S(B) and

dB' € [B] [TS(A) —3 B']. In Section 5, we show that this term reshuffling preserves typing
in the sense that if I' =" A : B then I' F* T'S(A) : B.

Let us go back to the definition of §dO-couples. Recall that if s = s;---s,, for m > 1
where s;,, is a dO-couple then s, - -- s, ; is a well-balanced segment, s; is the J-item of the
0O0-couple and s, is its O-item. Now, we can move §; in § so that it occurs adjacently to
Sm. That is, we may rewrite § as S - - S;n_1515m- As legal terms and contexts of the A-cube
contain no dll-couples, we focus only on dA-couples.

Example 3.1 The term A = (ud)(wd)(PA,)(vd)(QN,)(RA,)(20)(yd)z reshuffles to T'S(A) =
(wd) (PA,)(v0)(QA,) (ud)(RA.)(26)(yd)z by moving the item (ud) to the right. Such a reshuf-
fling is not easy to describe in the classical notation. That is, it is difficult to describe how
((Aep-(Ay:@-Asr-zyz)v)w)u is reshuffled to (A,.p.(Ay.q-(Ao.r-2y2)u)v)w.

Note furthermore that the shuffling is not problematic because we use the Barendregt Con-
vention which means that no free variable will become unnecessarily bound after reshuffling
due to the fact that names of bound and free variables are distinct.

Lemma 3.2 Let 5 be a well-balanced segment not containing 011-couples.
1. [Alz =5 5A.
2. If none of the binding variables of s is free in A, then [Alz = A and for any segment 5y,
51(A0)SB =5 57 5(A0)B.
Proof: [A]; =5 5A is by induction on weight(3); the other statement is now obvious. O

To reshuffle terms, we study the classes of partnered and bachelor items in a term.

3.1 Partitioning the term into bachelor and well-balanced segments

With Definition 2.4, we may categorize the main items of a term A into different parts to
which the partnered or bachelor items belong:

Lemma 3.3 Let 5 be a segment. Then the following holds:

1. Each bachelor main O-item in S precedes each bachelor main §-item in 3.
2. The remowval from 3 of all bachelor main items, leaves behind a well-balanced segment.

3. The removal from 5 of all main 6§O-couples, leaves behind a O---OJ---§-segment,
——— ——

consisting of all bachelor main O- and j-items.

Proof: 1 is by induction on weight(s') for 3 = s'(BO,)s" and (BO,) bachelor in'5. 2
and 8 are by induction on weight(s). O

Note that we have assumed () well-balanced. We assume it moreover non-bachelor. The
following lemma is informative on the form of the terms:

Lemma 3.4 FEvery term has one of the following three forms:
e (AO.)B
o (A10)---(A,0)C, where C € VU {%,0} andn >0
o (A10)---(A,0)(BY)(CO,)D, where n >0

10

3.2 A reshuffling procedure and its properties
Definition 3.5 The reshuffling function T'S is defined such that:

TS((BO,)C) =y (TS(B)O.)TS(C)
TS((B10)--- (Bn0)A) =y (TS(B)S) - (TS(B,)OA if AcVU{x 0}
TS((B.6) -+ (Bud)(C8)(DONE) =4 (TS(C)8)(TS(D)ONTS((B,6) - (B.6)E)

Note that the second and third clauses also apply for n = 0.

TS can be viewed to work in the following way: if a term starts with a main bachelor O-
item, the body of this item is reshuffled and the rest of the term is reshuffled. If a term
does not start with a (bachelor) O-item, then either it consists of (possibly zero) bachelor
main d-items followed by the heart of the term, in which case only the bodies of the main
items are reshuffled, or it starts with some (possibly zero) bachelor §-items followed by a
well-balanced segment. Then T'S looks for the leftmost dA-segment and shifts all preceeding
d-items (bachelor as well as partnered) to the right of it. The bodies of the d\-segment are
reshuffled and the new, longer, term to the right of the jA-segment is reshuffled.

Note that partnered J-items which were to the left of the d\-segment are now still part-
nered and next to their matching A-items, and there are no bachelor d-items to the left of a
dA-segment.

Hence, for any A, T'S(A) is of the form 5557A4" where A’ € V U {,0}, 37 consists of all
bachelor main J-items of A and §j is of the form 53 53 - - - 5, where 5 is either a §0-segment
or a bachelor main O-item.

As an example, the term

(w0h) (w8) (#3)(53) ((£5) (55) (=ha)uhe) (00) (8)(0A) (WAL (o) (5Dt

will be reshuffled to the term

" "

(w0,) (59) (59) (=) (@) Xu) (0)(0X,)(00) (wA,) (20) (yA.) (wd)(s0)t

One might wonder why 7'S moves bachelor d-items but doesn’t move bachelor O-items.
Consider P = (AX,)(B0)(CA;)(DA,)z. Can we move a bachelor main O-item (to the left or
right)? The answer is no. For example, D may contain variables bound by the A, and we
cannot rewrite P as (AX,)(DA,)(B6)(CA;)x. Moreover, in P, B and C' may contain variables
bound by A. so \. cannot move to the right of (Bd§)(C\,). Hence, in a term, the order of the
main O-items is fixed and cannot in general be changed without changing the meaning of the
term. Now, let us show the properties of T'S.

Lemma 3.6 (Decidability of T'S) For any A, B, it is decidable whether TS(A) =TS(B).
Proof: This is obvious as = is decidable. o

Lemma 3.7
1. For all pseudo-expressions M, TS(M) is well defined.
2. FV(M)=FV(TS(M))
3. If 5 is well-balanced, then T'S((A10)---(A,0)sB) =TS(5(A.0) - (A,0)B).

11

Proof: 1. Every time at most one case of the definition of TS(M) is applicable, and
weights of the resulting terms to which T'S is applied become smaller or T'S disappears. 2.
Induction on the structure of M. 3. By induction on weight(3s). O

Lemma 3.8 For a term A, TS(A) =35,51V(A), where 57 consists of the term reshufflings of
all bachelor main §-items of A and Sq is o sequence of term reshufflings of main §O-segments
and bachelor main O-items.

Proof: Induction on weight(A).

o A= (BO,)C, use IH on C.
e A= (B, -(B,d)C, C € VU{x,0}. Then 3y is empty.

o A= (B1d)--- (Bnd)(CO)(DO,)E.

J
ThenTS(A) = (TS(C)O)(TS(D)O,)TS((B1d)--- (Bnd)E). By the induction hypothesis
TS((B16) - (B,0)E) is of the form 33 510(E) = 30 5:0(A). O

)
0) -

Lemma 3.9 For all pseudo-expressions A, B and variable x:
1. TS(A) =TS(TS(A))
2. TS(Alx := B]) =TS(TS(A)[z :=TS(B)])
3. If A doesn’t contain partnered Il-items then A =5 TS(A)

Proof: 1. By induction on the structure of A.

2. Induction on the number of symbols in A, using 1.

3. By induction on the number of symbols in A. If A = (A16)---(A,0)A" where A’ €
VU {x,0} or A= (A,0,)A, then use the induction hypothesis.

If A= (A1) (A.0)(BJ)(CA,)D then

TS(A) = (TS(B)S)(TS(C)A)TS((AL0) - (A.0)D) £
(BO)(CA)(A16) -+ (4,0)D =5 ((A419) -+ (4,0)D)[z == B] e
(A10) -+ (A,0)D[x := B] =5 (A10)---(A,0)(BS)(CA,)D

Corollary 3.10 For all pseudo-expressions A, B without partnered Il-items: T'S(A) =5 T'S(B)

Remark 3.11 Our notion of term reshuffling is related to the canonical forms and o-equi-
valence of [Reg 92] and [Reg 94]. The difference is that Regnier studies untyped A-terms and
a Curry-style type system whereas we study Church-style type systems. Therefore, terms
like (Ad)(BA,)(CA,)D and (CA,)(Ad)(BA,)D which have the same canonical form when
the types C, B are omitted, cannot have the same term reshuffling due to the possibility of
corruption of variable bindings.

12

4 Equivalence classes and shuffle fII-reduction

Definition 4.1 (Shuffle Class, shuffle-reduction, exstended redezes and —4)

e For a pseudo-expression A, we define [A], the shuffle class of A, to be {B | TS(A) =
TS(B)}.

o One-step shuffle-reduction ~ 3 is the least compatible relation generated by:
A~p A iff 3B € [A]3B' € [A'][B —4 B']

Note that ~5 1is compatible and transitive because —5 is. Many-step shuffle-reduction
B B

~» 5 15 the reflexive and transitive closure of ~5 and ~gz is the least equivalence relation

generated by ~ 3.

o An extended redex starts with the d-item of a 6 A-couple (i.e. is of the form (C6)3(BA,)A
where 5 is well-balanced).

o — g is the least compatible relation generated by (B10)S(BaA.)Bs —s 5(Bslx = By))
for 5 well-balanced, that is, —gz-reduction contracts an (extended) redex. <5 is the
reflexive and transitive closure of <5 and ~g be the least equivalence relation closed
under < g.

<5 has been used in [BKN 9y] and [KN 95]. We will use [BKN 9y]| to obtain Strong Nor-
malisation for the present paper.

Example 4.2 Let A = (26)(wd)(uX;)(zA,)y. Then [A] = {4, (wd)(ur,)(z0)(zA,)y}. More-
over, A ~»5 (wd)(uX,)z and A~z (20)(wA,)y.

Lemma 4.3 TS(A) <=3 B iff T'S(A) =5 B. Proof: This is a direct consequence of 3.8

Lemma 4.4 If A~»5 B then for all A" € [A], for all B' € [B], A’ ~3 B'.
Proof: As A ~45 B then 3A, € [A]3B, € [B][A1 —5 Bi]. Let A',B' € [A],[B] respec-
tively. Then A, € [A'], By € [B'], A; =3 B;. So A' ~45 B'. O

Corollary 4.5 A~y B TS(A)~p TS(B)

Remark 4.6 It is not in general true that A ~»; B = 3A' € [A]3B' € [B][A’ =3 B']. This
can be seen by the following counterexample:

Let A = ((aA,)(aA,)vd)((all,)(all,)ar,) (wé)(wd)x and B = (wd)(ar,)w. Then A ~p
(wo)(wd) (A,) (A,)v ~5 B. But [A] has three elements, namely: A,
(wd) ((aAy,)(ar,)vd) ((all,)(adl,)aX,) (wd)z and (wd)(wd)((aX,)(aX,)vd)((adl,)(all,)ad,)z,
[B] = {B} and if A" € [A] then the only —4 reduct of A’ is (wd)(wd)(aA,)(aA,)v, which
doesn’t —g-reduce to B. In Lemma 4.12 however, we show that there is a correspondance
between ~+3 on classes and —+3 on terms.

Lemma 4.7 —5 C <y C g,

Proof: It suffices to show (Ad)(BX,)C — 5 Clz := A] and (AJ)S(BA,)C ~55C[z := A].
But (Ad)(BX,)C = (A0)D(B,)C <5 0C[x := A] = Clz := A], by induction on weight(s)
we can show that (Ad)s(BA,)C € [5(A0)(BA,)C], and since 5(A0)(BA,)C —5 5C[z := A] we
have (A6)S(BX,)C ~55C[x := Al. O

13

Remark 4.8 Note that A —3; B # TS(A) <»s TS(B) nor do we have A —5 B =
TS(A) =5 TS(B). Take for example A and B where A = ((2A,)(zA,)vd)(vA;)(yd)(yd)x and
B = (yd)(yd)(2A.)(2A,)v. It is obvious that A —5 B (hence A — 43 B) yet TS(A) = A 5
and A5 TS(B) = (yd)(zAu)(yd) (zA,)v.

Lemma 4.9 If A~3 B or A —3 B then A =3 B.

Proof: For ~5: say A' € [A], B' € [B], A' =3 B'. Then by lemma 3.9: A =5 TS(A) =
TS(A") =3 A'=3 B'=3TS(B') =TS(B) =3 B.
For —4: it suffices to consider the case A = 57(C6)s5(DN,)E where the contracted redex is
based on (Co)(DA,), B =51 5(E[z := C]), and 5 is well-balanced (hence weight(s) is even).
We shall prove the lemma by induction on weight(3). If weight(3) = 0 then it is obvious as
—5 coincides with —5 in this case. Assume the property holds when Weight(E) = 2n. Take
S such that weight(s) = 2n + 2. Now, 5 = (C'0)s'(D'A,)s" where s, s" are well-balanced.
Assume x £y (if necessary, use renaming).

o As 5(E[x = C]) =4 ?(?(E[:c = C])[y = C'"]), we get by IH and compatibility that
B = 5 57 (Els = C)ly = C')) = 5 51"y i= C')(Ele := Clfy = C']) = B".

(s
DX,)E —4 50(CH)s'(s" (D) Ely = C"]) —=BC
:=C"]) = B'. Hence by IH, A =3 B'.

e Moreover, A = 57(CH)(C')s'(D'\,)s" (D
51(C0)s'(s"y := C"))(D[y :== C"IA) (Ely :
e Now, B' ~ ;518 (s"[y := C'"))(Ely := C'][z := C)).
But by BC, z, y ¢ FV(C)U FV() Hence, by IH and substitution,
B' =5 515'(s"[y == C'])(E[z == Cly := C"]) = B".

Therefore, A =3 B',B' =35 B" and B =3 B", hence A =5 B. O
Corollary 4.10

1. If A~»5 B or A <5 B then A =5 B.

2. Arg B iff A=3 B iff A~s B iff TS(A) =5 TS(B). 0

Theorem 4.11 (The general Church Rosser theorem for ~»5) Let —» be ~»5 or <> 4.
If A — B and A — C, then there exists D such that B —> D and C —+ D.

Proof: As A —+ B and A — C then by Corollary 4.10, A =5 B and A =5 C. Hence,
B =45 C and by CR for —+3, there exists D such that B =5 D and C' =43 D. But, M —»5 N
implies M —» N. Hence we are done. O

As we noted in Remark 4.8, we can have T'S(C') —5 D where D # T'S(D). But we still can
show that in a certain sense, term reshuffling preserves S-reduction.

Lemma 4.12 If A,B € T and A ~3 B then (3B’ € [B])[T'S(A) =4 B']. In other words,
the following diagram commutes:

A v*[gB

TS(A) y5 B € [B]

14

Proof: We prove by induction on the structure of A’ that if A’ =5 B' € [B], then for
some B", TS(A") =5 B" € [B]. The compatibility cases are easy, distinguish cases according
to the definition of TS. If A' = (C0)(DA,)E and B' = Elx := (] € [B] then TS(A') =
(TS(C))(TS(D)A)TS(E) =5 TS(E)[x := TS(C)] and by Lemma 3.9, TS(TS(E)[x =
TS(C)]) = TS(E[z :=C]) € [B].

|
Corollary 4.13 If A ~»3 B then there exist Ay, A, ..., A, such that
[(A=A) ANTS(Ag) =5 A1) AN(TS(Ay) =5 A) AN N(TS(An—1) =5 An € [B])]
Proof: By induction on ~»g. O

Lemma 4.14 Let A€ SN..,. Then for all A" € [A], A" ~i¢ A.

Proof: It is sufficient to show that (B)SC is reductionally equivalent to 5(B0)C if 5 is
well-balanced and (B6§)sC € SN..,. We prove this by induction on the mazimal length of
~»g-reduction paths of (Bd)sC.

If (B6)3C is in normalform then 3 = 0 so (Bd)SC = 3(Bo)C. If (Bd)sSC is not in
normalform then contraction of some redex yields a term which is either of the form (B'6)s'C’
(if the redex was inside B, 5 or C) or of the form SC' if the redex consisted of (B0) and its
partnered item.

Then in the first case S(B&)C can reduce to s'(B'0)C" by contracting the corresponding
redex, now by the induction hypothesis (B'8)s'C" is reductionally equivalent to s'(B'6)C". In
the second case, 5(BJ)C also reduces to 5C".

Hence (Bd)sC is reductionally equivalent to S(B§)C. O

Hence we have provided a relation between terms which approximates reductional equivalence.
Here are some facts on this relation and on reductional equivalence:

1. Let A € SN_.,. If TS(A) = TS(B) then A ~ip¢ B (Lemma 4.14).
2. TS(A) = TS(B) #= A ~inr B (Example 4.15).

3. A ~iy¢ B does not imply T'S(A) = T'S(B) (Example 4.16 below).
4. TS(A) = TS(B) is decidable (Lemma 3.6).

5. A~ B is not decidable (Conjecture 1.2).

Example 4.15 Take the terms A and B where A = (a0)(bd)(cA,)(dA,)((eX.)(20)z0)(eA.)(z0)z
and B = (bd)(cA;)(ad)(dN,)((eX.)(26)z0)(eX,)(z0)z. These terms read in classical notation
(Azic-Ay:a-2)ba respectively (Ag...(Ay.q.82)a)b. Now, T'S(A) = TS(B) but A 7%, B. This
example shows that one cannot drop the assumption that A is strongly normalising.

Example 4.16 Let A = ((ad)(bA;)xd)(cAy)y and B = (ad)(bA;)(zd)(cAy)y. A ~ine B but
TS(A) #TS(B). The same holds for the terms (ad)(bA,)(yd)y and (ad)(bA,)(yd)a.

We shall now show that due to the fact that shuffle-reduction on classes makes more redexes
visible, it allows for smaller terms during reductions.

15

Example 4.17 Let M = (Ap.u-Apuy(Cxx---x))B(A,.y.u) where B is a BIG term. Then
M =5 (A y(CBB---B))(Aswtt) =5 (Asu)(CBB---B) =5 u and u is in normal form.
Now the first and second reducts both contain the segment CBB - - - B, so they are very, very
long terms. Shuffle reduction however allows us to reduce M in the following way: T'S(M) =
Aeru-Aywy(Czz - - 2)) M) B =5 (ANpiu-(Aiwv) (Czz -+ -) B =5 (Apw-t) B —5 u, and in
this reduction all the terms are of smaller size than M! So shuffle reduction might allow us to
define clever strategies that reduce terms via paths of relatively small terms. Note also that
the length of the reduction path to normal form doesn’t change.

5 The A-cube with equivalence classes, definitions and shuffle
BlI-reduction

If we extend the A-cube with ~»5 then Subject Reduction fails. That is: I' = A : B and
A~»g A" ATHA:B

Example 5.1 (SR does not hold in A2 using ~»z)

($A5) (BAy) Faz (4'0)(80) (X0) (@A) (y0) (@Xe)z : 3.

Moreover, (y'0)(80)(xXa) (A)(y5)(a>\)z~ (80)(xXa) (y'0) (a)s) 3.

Yet, (xAg)(BAy) 7az2 (B0)(xXa)(y'0)(aXe)z : B.

Even, (xA5)(BAy) Fa2 (80) (%o) (y'0) (X)) = 7 for any 7.

This is because (aX,)z : (all,)a and y : B yet o and [are unrelated and hence we fail in
firing the application rule to find the type of (y'd)(a\,)z. Looking closer however, one finds
that (30)(x\,) is defining « to be 3, yet no such information can be used to combine (all,)«
with 3. Definitions take such information into account. Finally note that failure of SR in A2,
means its failure in AP2, A\w and AC.

Example 5.2 (SR does not hold in AP using ~»g)

(¥As) (0 A) (o1l)* AQ) (#0)QAN) Fap (NO)(t0) (A) ((20) QA) (40) ((20)QAZ) Z = (t6)Q-
And (N6)(t0)(oXa) ((z6)QA) (y0) (20)QA2) Z =5 (£6)(0Ae) (N) ((20)QA2) Z

Now, N : (t5)Q y : (20)Q, (10)Q # (20)Q-

(#As) (0 A) ((oIly) * Ag) ((E)QAN) ap (£6)(0Ae)(IN)((x0)QAz)Z : T for any 7.
Here again the reason of failure is similar to the above example. At one stage, we need

to match (20)Q with (£6)Q but this is not possible even though we do have the definition
segment: (td)(o),) which defines = to be t. All this calls for the need to use these definitions.
Finally note that failure of SR in AP, means its failure in AP2, \Pw and A\C.

We conjecture that Subject Reduction is valid for A_, and Aw with ~»5 and that the proof is
similar to the one in [BKN 9y] for <.

We extend the A-cube with definitions, ~» 5 and equivalence classes modulo T'S. Contexts
now consist of declarations (A\,) and definitions. We take the typing rules " to be exactly
those of - with the addition of the definition rule:

(def rule) L4 C:D

m if d is a definition

JFrom the point of view of efficiency, it may seem unsatisfactory that in the (def rule) defini-

tions are being unfolded in D, since this will usually mean a size explosion of the predicate.
The unfolding is not necessary for non-topsorts (i.e. for D # O) however:

16

Lemma 5.3 The following rule is a derived rule:

(derived def rule) Ld= C :FDI—E 10 dFlC)l = D:S if d is a definition

Proof: IfI'd-° C : D then by the (def rule), I' =° dC : [D]y; if 'd ¢ D : S then by the (def
rule) ' dD : S. Now by conversion I' F¢ dC' : dD since I' F° dD =4.¢ [D]g4.

If D is a sort then of course unfolding d in D is not inefficient since d will disappear.

Due to the possibility of using the (def rule) to type a redex, by using the (derived def
rule), in some cases it is even possible to circumvent a size explosion: suppose we want to
derive in AC' a type for the term (B0)(*A\z)(BA.)((BIL,)BAs)(xd) f.

In AC without definions, we will have to derive first the type (xIlz)(511,)((511,)B11;)5 for
the subterm (xA\5)(8A,)((BIL,)BAs)(xd)f, and by the application rule we will finally derive
the type (BIL,)((BIL,)BII;)B. Note that due to the last applied application rule the term B
has been copied four times, which could make the resulting type very large.

Using our type system extended with definitions however, we would first derive the type
(P11,) ((B1L,)BL1,) 3 for the term (BA,)((BIL,)BAf)(x0)f, and then by the derived definition
rule we would derive the type (B¢)(xA\g)(BIL,)((BII,)5I1;) 3 and avoid the substitution of B
for 3. This is a further evidence for the advantage of using definitions.

Now, we proceed to show the properties of 58,

Lemma 5.4 (Free Variable Lemma for ")
Let T be a legal context such that T' +°* B : C'. Then the following holds:

1. If d and d' are two different elements of I'-decl UT'-def, then subj(d) # subj(d').

2. FV(B),FV(C) C dom(T).

3. If ' =115,y then FV(s;) C dom(T'y).

Proof: All by induction on the derivation of I' F* B : C. O

Lemma 5.5 (Start Lemma for -°")
Let T be a legal context. Then I' " x: O and Yd € I'[l" - d].
Proof: T is legal = 3B, C[I' =" B : C]; use induction on the derivation T'+* B : C. O

Lemma 5.6 (Transitivity Lemma for ")
Let T and A be legal contexts and define T' H** A as usual. Then we have:
CHF*AANARF®"A:B]|=TF"A:B.
Proof: Induction on the derivation A F* A : B. Note that by the compatibility of
[B C =4 D it follows that if d € A and D arises from C by substituting one particular
free occurrence of subj(d) in C' by def(d), then T' F* C' =4 D and hence A F* C =4¢ D
implies ' F52 C =44 D. O

Lemma 5.7 (Definition-shuffling for F°*) Let d be a definition.
1. If TdAA F** C =4e¢ D then I'd(def(d)d)(pred(d)Asuj(a)) A F* C =4es D.
2. If TdA F=* C : D then I'd(def(d)¢)(pred(d) Asuvj(a)) A =" C': D.
Proof: 1. is by induction on the generation of TdA F* C' =4¢ D. 2. is by induction on the

derivation of DdA F=* C : D using 1. for conversion. O

17

Lemma 5.8 (Thinning for -")
1. If T Ty " A =4.¢ B, T'1AT; is a legal context, then Ty ATy 2 A =4 B.
2. If T and A are legal contexts such that T C'" A and T H* A : B, then A" A : B.
Proof: 1. is by induction on the derivation T'\T'y F* A =4s B. 2. is done by showing:

o fTAF®A:B, I F*C: S, xis fresh, and no \-item in A is partnered by a J-
item in T, then also T(CA,)A F* A : B. We show this by induction on the derivation
LA =2 A: B using 1. for conversion.

o IfTSAF®*A:B,Ist"C:D:S, FV(C) Cdom(l), x is fresh, 5 is well-balanced, then
also T(CO)S(DAX,)A F* A : B. We show this by induction on TSA F* A : B. In the
case of (start) for instance where '(Ad)3(BA,) F*" y : A comes from I'sH" A:B: S,y
fresh and FV (A) C dom(T), then T'(CH)s(DA,) F* A: B : S by IH so again by (start),
L(CH)(A0)S(BA,)(DA,) F*x @ A.

o IfTS(AN,)A =" B : C,(AN,) bachelor, 5 well-balanced, I's ** D : A, FV (D) C dom(T,
then T'(D§)s(AN,)A F=2 B : C. We show this by induction on T's(AN,)AF"*B:C. O

Lemma 5.9 (Substitution lemma for F*") Let d be a definition.

1. IfTdA F* A =4.¢ B, A and B are T'dA-legal terms, then
I'dA[subj(d) := def(d)] F* A[subj(d) := def(d)] =q4.¢ B[subj(d) := def(d)]

2. If B is a I'd-legal term, then T'd F** B =4.¢ [Ba
3. If T(A0)3(BA.)A F2 C : D then I's(Alz := A]) F* Cz := A] : D[z := A

4. IfT(BA,)AF=2C : D, T'F" A: B, (BX,) bachelor in T, then
FAfz := A =" Clz := A] : D[z := A]

5. IfTdA + C : D, then T[A]; F* [Clq : [D]4

Proof: 1. Induction to the derivation rules of =4.¢. 2. Induction on the structure of B. 3.
Induction to the derivation rules, use 1., 2. and the thinning lemma. 4. Idem. 5. Corollary
of 3. O

Lemma 5.10 (Generation Lemma for H")

1. IfT' "z : A then for some B: (BA\,) e, TF*"B:S, I'F* A= BandF"* A: Y5
for some sort 5.

2. If T B3 (AN,)B : C then for some D and sort S: T'(AX,) F** B : D, T = (AIl,)D : S,
[Fot (AIL)D =4 C and if (AIl,)D # C then T F* C : 8" for some sort S'.

3. IfT F=* (AIL,)B : C then for some sorts S;,So: TH* A: S, T " B:S,, (51,5) € R,
[C =46 Sy and if Sy £ C then T =2 C : S for some sort S.

4. IfT " (A0)B : C, (Ad) bachelor in B , then for some terms D, E, variable z: T'F* A :
D, TF"B: (DIL)E, I' V" Elx := A] =4t C and if E[lx := A] Z#C thenT -+ C : S
for some sort S.

18

5. IfTF"3SA: B, thenT'st" A: B

Proof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the deriva-
tions (use the thinning lemma). As to 5., use induction on weight(s). O

Corollary 5.11 (Correctness of Types)

IfT 2 A: B then B=0O or T'F" B: S for some sort S.

Proof: By induction to the derivation rules. The interesting cases are the definition and
application rules. In case I' F°* dA : [B], as a consequence of Td -** A : B, then by IH B =0
or I'd F°* B : S for some sort S. In the first case also [Bl; = O, in the second case by the
Substitution Lemma I =" [B], : [S]y = S.

In case T F°* (ad)F : Blz := a] as a consequence of I' " F : (AIl,)B, I' F** a : A,
then by the induction hypothesis T' F°* (AIl,)B : S for some sort S and hence by Generation
[(AX,) F® B : S. Then by Thinning T'(ad)(AN,) F* B : S, so by the definition rule
LF® (ad)(AlL)B : S[z:=a] =S O

Now, firstly we prove SR for F*" using —; rather than ~ ;.

Theorem 5.12 (Subject Reduction for =" and —5)
IfTF*A:B and A =5 A' then I F* A" : B.
Proof: By simultaneous induction on the derivation rules:

1. IfTHF*A:B and I =5 I then I" " A: B
2. IFTH"A:Band A =5 A" then'F* A" : B O

Lemma 5.13 IfT'F" A: B and A’ € [A], I results from I by substituting some main items
(Cw) by (C'w) where C' € [C], then I" F** A" : B.
Proof: Induction on the derivation rules. We treat two cases:
o (start): T'(Ad)d(BO,) " = : B as a consequence of Td F* A: B, I'd " B : S and
FV(A) Cdom(T).
We must show I'"(A'8)d (B'O,) F** z : B. By the induction hypothesis I'd' - A’ : B,
['d' =2 B': S, by Lemma 3.9, B =5 B' so by conversion I'd' +** A" : B', by Lemma 3.7
FV(A") = FV(A) C dom(T'), hence by the start rule I'(A'8)d'(B'O,) - z : B' and by
conversion I'"(A'8)d' (B'O,) F** z : B.

e (definition): T =" dA : [B]4 as a consequence of Td " A: B.

By the induction hypothesis T'd" F* A’ : B, where d" is the items of d' in the order of
d. Now by Lemma 5.7 T'd' F°* A" : B and by the definition rule I' =" d'A’ : [B]y. By
the induction hypothesis also I'd =" A : B, hence I'" - dA : [B|4, so by Lemma 5.11
[Bla =0 or I'" =" [B], : S for some sort S. In the first case also [B]ly = O and we are
done, in the second case by Lemma 3.9 [Blq =p [Bla so by conversion I'" =" d'A’ : [B],.

O

Corollary 5.14 (T'S preserves typing)
L. TF"A4: BesTFaTS(A4) : B.
2. IfT - A: B and A’ € [A], B' € [B] then T - A’ : ',

19

Proof:
1. By lemma 5.18 as A € [TS(A)] and TS(A) € [A].

2. By lemma 5.13 using Correctness of Types and conversion. O

Here is now the proof of SR using " and ~»g.

Corollary 5.15 (Subject Reduction for =" and ~»3)

IfTF* A:B and A~»5 A’ then T F=* A" : B.

Proof: We proveI' m* A: B, A~sg A'=TF"A": B.

By Corollary 5.14 T +" TS(A) : B, by Lemma 4.12 there is a term C such that TS(A) —5
C and C € [A], now by Theorem 5.12 T +* C': B and by Lemma 5.1, T " A" : B. O

Lemma 5.16 (Unicity of Types for ")
I.TF*A:BATF*A:B' =T F*B =B
2.TF"A:BATF* A" :BNA=3 A =>THF"B=4: B

Proof:

1. By induction on the structure of A using the Generation Lemmoa.

2. By Church-Rosser and Subject Reduction using 1. O

Remark 5.17 We didn’t prove the property I' * B : S, ' " A : B', B =53 B' =
[F* B": S. Tt seems difficult to prove because if I' F* B’ : §” then by Unicity of Types
't S =, S’ and it is unclear whether S = S'.

Also, it would be interesting whether ' - A : B, ' = A’ : B', I' F=* A =4,; A’ implies
I' =2 B =4 B’, but to prove this we face similar problems. We claim that one can prove it
by showing first that I" =" A : B implies I F°* [A]p : [B]r, where [A]r means all definitions
in I to be unfolded in A.

We don’t need these properties for our theory however.

Now we shall prove Strong Normalisation for the A-cube with definitions and shuffle 3-
reduction. The proof is based on Strong Normalisation of the A-cube extended with definitions
and <»5 as in [BKN 9y].

Lemma 5.18 IfI' " A: B then I' ¢ A : B, where ¢ is the typing relation of systems of
the A-cube extended with definitions and generalised reduction.

Proof: Induction on the derivation rules of F°. All rules are trivial since they are also
rules in =°. O

Corollary 5.19 If A is a F*"-legal term then A is strongly normalising with respect to < 4.
Proof: If A is F="-legal then A is F¢-legal by Lemma 5.18 and hence A is strongly nor-
malising with respect to <5 (see [BKN 9y]). O

Definition 5.20 For a +"-legal term A, define the natural number height(A) to be the
mazimal length of a < -reduction path starting with A.

20

Lemma 5.21

1. If A is legal and A —5 B, then height(A) > height(DB).
2. If A is legal and A" € [A], then height(A') = height(A).
3. If A is legal and A ~»5 B, then height(A) > height(B).
Proof: Long but straightforward. O
Corollary 5.22 Ewvery legal term is strongly normalising with respect to ~g. O

Fact 5.23 Subtyping does not hold for =°". Consider the following derivable judgement:

(+Aa) 5% (0) (xA5) (BA,) (y6) (@A2)z : (oIT,)a

The subterm (xAg)(BA,)(yd)(aA.)z is not typable: suppose T' F=" (xXg)(BA,)(yd)(aA.)z = A,
then by the Generation Lemma, I F* z : o' where I" = T'(xAg)(BA,) (yd)(a\.) and o' satisfies
I"FPf o =gs @ and T/ 52/ : S.

Since I' cannot contain bachelor §-items, we know that (x\g) is not partnered in I, hence
I " o =46 B. But since (yo)(a\,) € I'-def we know that T'(x\g)(BA,) F** y : a : S, also
L(xXg)(BA,) F="y : B so by Unicity of Types, I'(xAg)(BA,) F** o =q4er B, contradiction.

The reason for failure of subtyping is that when we typed the term (ad)(*A\z)(8A,) (y0) (aX.)z,
we used the context (x\,)(ad)(*Ag) to type (BA,)(yd)(aA,)z. In this context, 3 is defined to
be a. Now, to type (xAg)(8A,)(yd)(aA.)z, the definition (ad)(*Az) cannot be used. Hence,
we don’t have all the information necessary to derive the type of (xAg)(8A,)(yd)(aX,)z. We
do however have a partial result concerning subtyping:

Lemma 5.24 (Restricted Subtyping) IfI' =" A: B, A’ is a subterm of A such that all
bachelor items in A’ are also bachelor in A, then A' is legal.

Proof: We prove by induction on the derivations: if A" is a subterm of I' or A such that
all bachelor items in A" are also bachelor items in I' respectively A, then A’ is legal.

Note that in the case of the (def rule) subterms 53C where d = 37 33 and 37 is not the
empty segment, do not satisfy the restrictions, since at least one item of S5 is bachelor in 5;C
but partnered in dC'. O

Subterms satisfying the bachelor restriction as in Lemma 5.24 above, seem to be more impor-
tant than those not satisfying the bachelor restriction. The reason for this is that the latter
terms have an extra abstraction (the newly bachelor A-item) and hence are II-types which
makes them more involved, whereas the subterm property is usefull because it tells something
about less involved terms.

6 Conclusion and Comparison

We have proposed an extension of 3-reduction called shuffle-reduction, which makes more
redexes visible and hence allows for more flexibility in reducing a term. It seems a feasible
approximation of the informal notion of reductional equivalence.

We used the item-notation to give a clearer description of term shuffling and shuffle-
reduction and to be able to add nested definitions to typing systems. We think that the

21

item-notation is a good candidate for answering the two questions posed in the conclusions
of [Reg 94] concerning the existence of a syntax for terms realising shuffle-equivalence (which
Regnier calls o-equivalence, see below).

Shuffle reduction is shown to behave well with respect to several aspects of the typed
A-calculi of the Barendregt cube. As far as reduction is concerned, shuffle-reduction has
the Church-Rosser property, shuffle-equivalence classes partition [-equivalence classes into
smaller parts and the equivalence relation generated by shuffle-reduction is just (-equality.

Furthermore the typing systems with shuffle-reduction are shown to have the same nice
properties as the typing systems with S-reduction possess, providing that they are extended
with definitions.

We showed that using shuffle-reduction we indeed may avoid size explosion without the
cost of a longer reduction path.

Before closing, it is worth mentioning where reductions related to our generalised notion
have been used elsewhere. At the time of writing this paper, we were unaware of many related
work and we are grateful to Joe Wells who has compiled most of the following details. We
will be short in what follows but we refer to [KW 95b] which discusses the subject in detail.

Here are two rules related to our term reshuffling:

(6) (QI)(PO)(Ae)N = (P0) (X)) (QI)N
(7) (P0)(Ae) (AN = (X)) (PO)(Ae) N

It is obvious that # may move the d-item (Q0) next to a A-item in N if N = (\,)M, and hence
the d-couple (QJ)(A,) becomes a d-pair making the generalised redex a classical one (visible)
and subject to contraction. The rule « is unrelated to what we do here yet has almost always
been used with @ for technical reasons. Furthermore, the transfer of rule v to explicitly typed
lambda calculus is not straightforward, since the type of y may be affected by the reducible
pair (P0)(A,). This is our reason for avoiding v. In fact, in explicitly typed A-calculi, v does
not return reductionally equivalent terms.

Regnier’s notion of ‘premier redex’ (see [Reg 92]) is the same as our notion of generalised
redex on untyped terms. We study it for Church-style type systems whereas Regnier studies
Curry-style type systems. [Reg 94] uses € and v (and calls the combination o) to show
that the perpetual reduction strategy finds the longest reduction path when the term is SN.
[Vid 89] also introduces reductions similar to those of [Reg 94]. Furthermore, [KTU 94] uses 6
(and other reductions) to show that typability in ML is equivalent to acyclic semi-unification.
[SF 92] uses a reduction which has some common themes to 6. [dG 93] uses a restricted version
of and [KW 95a] uses ~y to reduce the problem of strong normalisation for S-reduction to the
problem of weak normalisation for related reductions. [KW 94] uses amongst other things,
0 and ~ to reduce typability in the rank-2 restriction of system F to the problem of acyclic
semi-unification. [AFM 95] uses 6 (which they call “let-C”) as a part of an analysis of how
to implement sharing in a real language interpreter in a way that directly corresponds to a
formal calculus.

7 Acknowledgements

We are grateful for the useful discussions with Henk Barendregt, Bob Constable, Jan-Willem
Klop and Joe Wells.

22

References

[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P., A call by need lambda
calculus, Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM, 1995.

[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.

[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction and
spine strategies for the A-calculus, Information and Computation 75 (8), 1191-231, 1987.

[BKN 9y] Bloo, R., Kamareddine, F., Nederpelt, R., The Barendregt Cube with Definitions and
Generalised Reduction, Computing Science Note, University of Glasgow, Computing Science de-
partment, 1994. To appear in Information and Computation.

[Con 86] Constable, R.L. et al., Implementing Mathematics with the Nuprl proof development system,
Prentice Hall 1986.

[Dow 91] Dowek, G. et al. The Coq proof assistant version 5.6, users guide, rapport de recherche 134,
INRIA, 1991.

[Gardner 94] Gardner, P., Discovering Needed Reductions Using Type Theory, TACS, 1994.

[dG 93] de Groote, P., The conservation theorem revisited, Int’l Conf. Typed Lambda Calculi and
Applications, vol. 664 of LNCS, 163-178, Springer-Verlag, 1993.

[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (3), 197-240, 1993.

[KN 94] Kamareddine, F., and Nederpelt, R.P., A unified approach to type theory through a refined
A-calculus, Theoretical Computer Science 136, 183-216, 1994.

[KN 95] Kamareddine, F., and Nederpelt, R.P., Generalising reduction in the A-calculus, Journal of
Functional Programming 5 (4), 1995.

[KN 96a] Kamareddine, F., and Nederpelt, R.P., On II-conversion in the Barendregt Cube, Journal
of Functional Programming 6 (2), 1996.

[KN 96b] Kamareddine, F., and Nederpelt, R.P., A useful A-notation, Theoretical Computer Science
155, 1996.

[KBN 9-] Kamareddine, F., Bloo, R., and Nederpelt, R.P., Definitions and II-reductions in type theory,
submitted.

[KTU 94] Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., An analysis of ML typability, J. ACM 41(2),
368-398, 1994.

[KW 94] Kfoury, A.J. and Wells, J.B., A direct algorithm for type inference in the rank-2 fragment
of the second order A-calculus, Proc. 199/ ACM Conf. LISP Funct. Program., 1994.

[KW 95a] Kfoury, A.J. and Wells, J.B., New notions of reductions and non-semantic proofs of 8-strong
normalisation in typed A-calculi, LICS, 1995.

[KW 95b] Kfoury, A.J. and Wells, J.B., Addendum to new notions of reduction and non-semantic
proofs of f-strong normalisation in typed A-calculi, Boston University.

[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,
1993.

[Lévy 80] Lévy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: FEssays on
Combinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, Academic
Press, 1980.

23

[NGV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., (eds) Selected papers on Automath,
Studies in Logic and the Foundations of Mathematics, 133, North Holland, 1994.

[Reg 92] Regnier, L., Lambda calcul et réseaux, Theése de doctorat de l'université Paris 7, 1992.

[Reg 94] Regnier, L., Une équivalence sur les lambda termes, Theoretical Computer Sci. 126, 281-292,
1994.

[SF 92] Sabry, A., and Felleisen, M., Reasoning about programs in continuation-passing style, Proc.
1992 ACM Conf. LISP Funct. Program., 288-298, 1992.

[SP 93] Severi, P., and Poll, E., Pure Type Systems with Definitions, Computing Science Note 93/24,
Eindhoven University of Technology, Department of Mathematics and Computing Science, 1993.

[Vid 89] Vidal, D., Nouvelles notions de réduction en lambda calcul, Theése de doctorat, Université de
Nancy 1, 1989.

24

