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1 IntroductionA system of lambda calculus consists of a set of terms (lambda terms) and a setof relations between these terms (reductions). Terms are constructed on the basisof two general principles: abstraction, by means of which free variables are bound,thus generating some sort of functions; and application, being in a sense the oppositeoperation, formalizing the application of a function to an argument. By observingthese two operations, we provide a new notation for lambda terms which will bevery inuential for many notions of interest in the lambda calculus, such as typetheory and logic. In order to avoid the well-known problems caused by variables, wemake use of de Bruijn-indices rather than variables (see [5]). Section 2 introducesboth de Bruijn's indices and the new notation. Results concerning this new notationand illustrative examples are given throughout.The use of our framework as the most general vehicle for describing the wellknown type theories (such as those of the Barendregt's �-cube in [3]) is discussedin [24]. In fact, [24] shows that our approach enables a uni�ed framework forrepresenting all the systems of the �-cube in that any of these systems is just acopy of ours but where some parameters are changed.It seems natural to study the framework further in order to see what it can o�erto a very important notion of the �-calculus: substitution. In fact, substitutionis the most basic operation of the �-calculus. Manipulation of �-terms dependson substitution. The �- and �-axioms are given in terms of substitution. Whatsubstitution are we talking about? Substitution in the �-calculus is usually de�ned(up to some variation) as follows (see [2]):De�nition 1.1 (Substitution in the �-calculus)If t; t0 are lambda terms and x is a variable, then we de�ne the result of substi-tuting t0 for all the free occurrences of x in t as follows:
t[x := t0] =8>>>>>>>>>>>><>>>>>>>>>>>>:

t0 if t � xy if t � y 6� xt1[x := t0]t2[x := t0] if t � t1t2�x:t2[x:=t0]:t1 if t � �x:t2 :t1�y:t2[x:=t0]:(t1[x := t0]) if t � �y:t2[x:=t0]:t1; x 6� y;(x 62 FV (t1) or y 62 FV (t0))�z:t2[x:=t0]:(t1[y := z][x := t0]) if t � �y:t2 :t1; x 6� y;(x 2 FV (t1) and y 2 FV (t0));and z 62 FV (t1t0)Here FV (t) is the set of free variables of t.So what is happening in t[x := t0]? We are replacing all free occurrences of xin t by t0, but without any disastrous side e�ects such as binding occurrences ofvariables which were originally free. Take for example xx[x := y]. This will result inyy. (�y:u:xy)[x := y] will result in �z:u:yz. So this process of substitution works �ne.



It is a metalevel process however. That is, this substitution takes t; x; t0 and returnsa �nal result t[x := t0]. The various stages of moving from the t; x; t0 to t[x := t0]are lost and nothing matters but the result. This works �ne for many applicationsbut fails in areas which are now becoming vital in Computer Science. In functionalprogramming for example, there is an interest in partial evaluation. That is, givenxx[x := y], we may not be interested in having yy as the result of xx[x := y] butrather only yx[x := y]. In other words, we only substitute one occurrence of x by yand continue the substitution later. This issue of being able to follow substitutionand decide how much to do and how much to postpone, has become a major onein functional language implementation (see [25]). However, in order to have thisspreading control over substitution and to be able to manipulate those partiallysubstituted terms, we must render the latter from being a metalevel notion to anobject level notion. It turns out that our new notation will enable such renderinge�ciently and will enable the representation of various forms of substitution: local,global, implicit and explicit.Based on this discussion, this paper will introduce substitution which is objectlevel but which can evaluate �-terms fully obtaining the result of the metalevelsubstitution. More precisely, in section 3 we introduce the process of stepwisesubstitution, which is meant to re�ne reduction procedures. Since substitution is thefundamental operation in �-reduction, being in its turn the most important relationin lambda calculus, we are in the heart of the matter. The stepwise substitutionis embedded in the calculus, thus giving rise to what is nowadays called explicitsubstitution. It is meant as the �nal re�nement of �-reduction, which has { to ourknowledge { not been studied before to this extent.This substitution relation, being the formalization of a process of stepwise sub-stitution, leads to a natural distinction between a global and a local approach.With global substitution we mean the intended replacement of a whole class ofbound variables (all bound by the same abstraction-�) by a given term; for localsubstitution we have only one of these occurrences in view. Both kinds of sub-stitution play a role in mathematical applications, global substitution in the caseof function application and local substitution for the \unfolding" of a particularinstance of a de�ned name. We discuss several versions of stepwise substitution andthe corresponding reductions. We also extend the usual notion of �-reduction, anextension which is an evident consequence of local substitution. The framework forthe description of terms, as explained before, is very adequate for this matter.Finally in section 4, we interpret the approach of [1] in our framework concludingthat ours is more general. In fact, we believe that our account of substitution is themost re�ned and general one to date.



2 The CalculusIn this section, we start by introducing the reader to the lambda calculus augmentedwith de Bruijn's indices. We will explain the use of these indices in both the typedand untyped �-calculus. As the type free �-calculus can be considered as a specialcase of the typed �-calculus, we concentrate on the latter in this paper but willbe able to account for the type free �-calculus very easily as will be mentioned(via "). We move on to provide a translation of the typed �-calculus in a novelrepresentation. The novel representation will be generalised to a new notation thatwill prove to be a powerful vehicle for the representation of substitution, implicitly,explicitly, locally and globally, together with the ability of tracing all stages ofsubstitution, stepwise substitution.2.1 The lambda calculus with de Bruijn's indicesTerms of the untyped lambda calculus are constructed as follows: t ::= x j (�x:t) j(tt). Parentheses are omitted if no confusion can arise. Terms of the typed lambdacalculus are similar except that the type information is contained in the abstraction.That is, instead of �x:t we restrict x to have some type say t1 by writing �x:t1 :t.Of course special attention has to be paid in order to construct well-typed terms.Moreover, in the typed calculus, we can abstract over types as well as over terms.For example, �A:�x:A:x is the polymorphic identity function for every type A.The basic axiom of the (typed or untyped) lambda calculus, is �-conversionwhich is as follows:a (�x:t1)t2 = t1[x := t2],b where substitution has been de�nedin a way which deals with the problem of variable clashes (see De�nition 1.1). Forexample, (�x:�y:xy)y = (�y :xy)[x := y] = �z :xy[y := z][x := y] = �z:xz[x := y] =�z :yz. This process of renaming variables such as changing �y :xy to �z :xz canbe avoided by the use of de Bruijn's indices. In fact, de Bruijn noted that dueto the fact that terms as �x:x and �y:y are the \same", we can �nd a �-notationmodulo �-conversion, where the axiom (�) is: �x:t = �y:t[x := y] for y not free int. That is, following de Bruijn, we can abandon variables and use indices instead.Examples 2.1, 2.2 below show how lambda terms can be denoted using de Bruijn'sindices and example 2.3 illustrates how �-conversion works using such indices.Example 2.1 Consider (in \classical" notation) the lambda term (�x:x). In thisterm, the x following �x is a variable bound by this �. In de Bruijn's notation,�x:x and all its �-equivalent expressions can be written as �:1. The bond betweenthe bound variable x and the operator � is expressed by the number 1; the positionof this number in the term is that of the bound variable x, and the value of thenumber (\one") tells us how many lambda's we have to count, going leftwards inaFor the sake of clarity, we ignore in this section abstraction over types.bIn the case of the typed calculus, the principle is: (�x:t:t1)t2 = t1[x := t2] where t and t2 arerelated.



the term, starting from the mentioned position, to �nd the binding place (in thiscase: the �rst � to the left is the binding place).Moreover, de Bruijn's notation can be used for the typed �-calculus. We illus-trate here how the two terms (�x:y:x)u and �A:�x:A:x can be represented using deBruijn's indices.Example 2.2 The term (�x:y:x)u is written as (�2.1)1 under the assumption thaty comes before u in the free variable list (see below). As in Example 2.1, the �nalx in �x:y:x is represented by the �nal index 1 in �2:1 since the binding � is the �rstto the left. The free variables u and y in the typed lambda term are translated intothe number 1 (occurring after the term in parentheses), and the number 2: theyrefer to \invisible" lambda's that are not present in the term, but may be thoughtof to preceed the term, binding the free variables in some arbitrary, but �xed order(these invisible lambda's form a free variable list).Some type theories insist on distinguishing types and terms and so use � toabstract over terms and � over types. Hence the typed term �A:�x:A:x can bewritten as �.�1.1 where the 1 adjacent to �, says that � is the binding operatorand the �nal 1 replaces the variable bound by �.The described way of omitting binding variables, and rendering bound and freevariables by means of so-called reference numbers, is precisely how de Bruijn'snotation works. Next we see how �-reduction works in this notation.Example 2.3 In ordinary lambda calculus, the term (�x:z :(xy))u �-reduces to uy,i.e. the result of substituting \argument" u for x in xy. In de Bruijn's notation thisbecomes, | under the assumption that the free variable list is �y; �z ; �u: (�2. 14)1reduces to 13. Here the contents of the subterm 14 changes: 4 becomes 3. This isdue to the fact that a �-item, viz. (�2), disappeared (together with the argument1). The �rst variable 1 did not change; note, however, that the � binding thisvariable has changed \after" the reduction; it is the last � in the free variable list(\�u") and no longer the � inside the original term (\�x"). The reference changed,but the number stayed (by chance) the same.cWe have in examples 2.1, 2.2 and 2.3 introduced de Bruijn's indices and howthey work for �-reduction. In what follows we shall introduce a new notation whichuses de Bruijn's indices but assumes a layered representation of terms and whichgroups term constituents (so-called \items") together in a novel way. This newnotation will prove powerful for many applications, of which we study substitutionsin detail in this paper.cIn more complicated examples, there are more cases in which variables must be \updated".This updating of variables is an unpleasant consequence of the use of de Bruijn-indices. It is theprice we have to pay for the banishing of actual variable names (taking reference numbers instead).We will however provide an update function which does the work for us.



As the new notation might prove unreadable at �rst, and as it is very general soas to accommodate not only the �-calculus described above but all of the �-systemsof the �-cube of Barendregt (see [24]), we would rather introduce this notationin steps. We start by introducing a less general representation LT in which wetranslate the above �-calculus and then we give the generalised new notation whichis based on LT but also includes de Bruijn's indices. We call this calculus BLT ,and we give its abstract de�nition, and the various notions related to its terms.2.2 Translating �-terms into layered structures2.2.1 The classical calculus T�Usually, the typed �-calculus is considered in this form:De�nition 2.4 (T�)We consider T� to be the set of the following terms:t ::= x j (�x:t:t) j (tt)We drop parentheses when no confusion occurs.These �-terms are then drawn using binary trees which are de�ned below, TREEbeing the collection of these trees and tree being the association from a �-term toa binary tree.De�nition 2.5 (TREE)We de�ne the domain TREE to be the domain of binary trees which have forleaves x; y; : : : and for nodes �; �x; �y; : : :. We let !; !1; : : : range over these nodes,which we also call operators.Let us associate with each term of T�, its binary tree in TREE as follows:De�nition 2.6 (tree)If t is a term of the typed lambda calculus T�, then tree(t) is de�ned recursivelyas follows: tree(x) = xtree(t1t2) = �(tree(t1); tree(t2))tree(�x:t1 :t2) = �x(tree(t2); tree(t1))Example 2.7 tree((�x:z :xy)u) is �(�x(�(x; y); z); u) and its graphical representa-tion is to be found in Figure 1.Of course these trees are all binary trees:Lemma 2.8 For every term t in T�, tree(t) is a binary tree.Proof: Left to the reader. 2
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Figure 1: binary tree of (�x:z:xy)u
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Figure 2: term tree of (�x:z:xy)uNow, instead of drawing trees as above, we will rotate them anticlockwise by 135degree hence obtaining for Example 2.7, the picture given in Figure 2.The proposed way of drawing trees will turn out to have essential advantages indeveloping a term, theoretically as well as in practical applications of typed lambdacalculi.d We call such trees term trees. Note that these trees will help to visualizethe structure of the terms. They are not however formal components of the calculus.2.2.2 The layered terms LTNow the concepts tree and term tree of a term t in T� are quite obvious. However,we like to consider the set of layered terms by itself.De�nition 2.9 (LT )Let us de�ne LT to be the set of layered terms as follows:� Variables, x; y; : : : are in LT .� If t1; t2 are in LT and ! is an operator which is either � or any of �x; �y; : : :,then (t1!t2) is in LT .dThis observation is due to de Bruijn, see [4] or [6].



Note that we use the same variables for both T� and LT and that we use t; t1; : : : todenote both terms in T� and layered terms in LT . Note that in discussing T� andLT , we will not make a distinction between object and meta-variables. We will doso however in BLT .Example 2.10 The term rendered in Figure 2 has the following representation inLT : (u�(z�x(y�x))).What we are looking for further is a way of writing the term t which will be moreadvantageous and e�cient. In fact, note that in t � (�x:z :xy)u, the term �x:z:xyis applied to u. This application provokes �-conversion and hence will result inreducing the term. In fact, applying an abstraction (as in �x:z:xy) to an element(such as u) is important in the �-calculus. This however, is not obvious in the waywe have written terms as in (�x:z:xy)u. If we mimic tree(t) in a di�erent mannerand write t as (u�)(z�x)(y�)x, then we can give a special name to the pair (u�)(z�x).We will call them ��-items and they will be the pairs which enable us to carry out�-reduction.Notation 2.11 (Item Notation)We shall place parentheses in LT in an unorthodox manner: we write (t1!)t2instead of (t1!t2). The reason for using this format is, that both abstraction andapplication can be seen as the process of �xing a certain part (an \item") to aterm:� the abstraction �x:t0 :t is obtained by pre�xing the abstraction-item �x:t0 tothe term t. Hence, (t0�xt) is obtained by pre�xing t0�x to t.� the application tt0 is obtained by post�xing the argument-item t0 to the termt. Now (t0�t) is obtained by pre�xing t0� to t.In item-notation we write in these cases (t0�x)t and (t0�)t, respectively. Here both(t0�x) and (t0�) are pre�xed to the term t.eDe�nition 2.12 (Items)If t is a layered term in item-notation and ! is an operator, then (t!) is anitem. We use s; s1; si; : : : as meta-variables for items.Notation 2.13 (parentheses) Note the intended parsing convention:In (s1 : : : snx!)s01 : : : s0my, the operator ! combines the full term s1 : : : snx withthe full term s01 : : : s0my.Example 2.14 The term (x!1(y!2z)) becomes in item-notation: (x!1)(y!2)z.Analogously, the term ((x!2y)!1z) becomes ((x!2)y!1)z.eIn the Automath-tradition (see [6]), an abstraction-item �x:t0 (or (t0�x) in our new notation)is called and abstractor and denoted as [x : t0]. An argument-item t0 (or (t0�) in our notation) iscalled an applicator and denoted either as ft0g or as < t0 >.



Lemma 2.15 Every layered term has the form (t1!1) : : : (tn!n)x for t1; : : : ; tn lay-ered terms, !1; : : : ; !n operators, n � 0 and x a variable. In other words, everylayered term is either a variable or has the form s1; s2; : : : ; snx, for s1; s2; : : : ; snitems and x a variable.Proof: Easy. 2De�nition 2.16 For any tree t in TREE, we de�ne lin(t) in LT as follows:lin(t) = � t if t is a leaf(lin(t1)!1)lin(t2) if t � !1(t2; t1)Example 2.17 If t is the tree of Example 2.7, thenlin(t) = (u�)lin(�x(�(x; y); z))= (u�)(z�x)lin(�(x; y))= (u�)(z�x)(y�)xNow let us see the relation between tree(t) and lin(t), for every term t. Recall thatin TREE, we deviate from the normal way to depict a tree; for example: we positionthe root of the tree in the lower left hand corner. We have chosen this manner ofdepicting a tree in order to maintain a close resemblance with the layered terms.This has also advantages in the sections to come. The item-notation suggests apartitioning of the term tree in vertical layers (see Figure 3). For (x!1)(y!2)z, theselayers are: the parts of the tree corresponding with (x!1), (y!2) and z (connectedin the tree with two edges). For ((x!2)y!1)z these layers are: the part of the treecorresponding with ((x!2)y!1) and the one corresponding with z.
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(x!1(y!2z))(x!1)(y!2)z ((x!2y)!1z)((x!2)y!1)zFigure 3: Term trees, with normal layered notation and item-notationLemma 2.18 lin : TREE �! LT is well de�ned.Proof: Obvious. 2Note that in the rest of this paper we will write terms of LT in item-notation.



2.2.3 Translating T� in LTNow we are ready to translate terms of T� into layered terms of LT (in item-notation) as follows:De�nition 2.19 If t is in T� then l(t) = lin(tree(t)).Lemma 2.20 For any t in T�, l(t) is well de�ned and l : T� �! LT is bijective.Proof: We shall only prove the surjectivity of l.For this, we prove by induction that for any t in LT , (9t0 in T�)[l(t0) = t].� If t is x then t0 = x.� If t = (t1�)t2 where (9t01; t02 2 T�)[l(t01) = t1 ^ l(t02) = t2] then let t0 = (t02t01).Now, l(t0) = lin(tree(t02t01))= lin(�(tree(t02); tree(t01)))= (lin(tree(t01))�)lin(tree(t02))= (l(t01)�)l(t02) = (t1�)t2 = t� If t = (t1�x)t2 where (9t01; t02 2 T�)[l(t01) = t1^l(t02) = t2] then let t0 = �x:t01 :t02.Now, l(t0) = lin(tree(�x:t01 :t02))= lin(�x(tree(t02); tree(t01)))= (lin(tree(t01))�x)lin(tree(t02))= (l(t01)�x)l(t02) = (t1�x)t2 = t 2So far, we have translated all terms from the usual �-calculus into layered terms.This translation is moreover bijective, so we can take any layered term into a termof the usual �-calculus. The following are examples:Example 2.21 l((�x:y:x)u) = (u�)(y�x)xl(u(�x:y:x)) = ((y�x)x�)ul((�y:z:�x:z:y)u) = (u�)(z�y)(z�x)y2.3 A notation based on layered structures and de Bruijn'sindicesNow that we have a bijective translation from T� to LT , let us see how we can getrid of the variables and replace them by de Bruijn's indices. This would mean ofcourse that we no longer would need each � to carry the index x; y or so on with it,but rather, the number would point to which � binds which occurrence. The bestway here is to start with an example. We take the layered term t with its graph



in term tree as in Figure 2. We need to remove x; y; z; u and to replace them bynumbers. For this, as we see that u; z; y are free variables, we need a free variablelist. We take the convention (arbitrarily)f that y comes before z which in turncomes before u in the free variable list. This list is represented by three extra �'s:�y; �z and �u (in this order), intended to \bind" the free variables y; z and u. Weappend three extra nodes and dashed lines to our term tree to show this.Now for each variable, we draw thin lines ending in arrows, pointing at the �binding the variable. These lines follow the path which leads from the variable tothe root following the left side of the branches of the tree. Only �'s count, the �'sdo not. For example, we draw the thin line going from x following the path whichleads from x to the root, until we reach �x, the � binding x. We end the arrowthere and as we have only passed one �, the x should be replaced by 1. This is theonly x we have in the tree, so we replace �x by �. For y, in drawing the thin linegoing from y following the path which leads from y to the root, keeping to the leftside of the branches until we reach �y , we see that we pass four �s. Hence, the yshould be replaced by 4. Now replacing u and z will be left as exercises. Figure 4is now self explanatory.
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Figure 4: Term tree with de Bruijn's indices2.3.1 Layered terms with de Bruijn's indices, BLTOur new notation will be exactly that of layered terms, but increased with deBruijn's indices. Let us start by giving the de�nition of our layered terms with deBruijn's indices.De�nition 2.22 (BLT )Let us de�ne BLT to be the set of layered terms using de Bruijn's indices as follows:fNote that we lose bijectivity here, since a di�erent order in the variable list gives a di�erentrepresentation for the same term.



� Every element in � is in BLT . Here, we take � to be the set of variables:� = f"; 1; 2; : : :g and use x; x1; y; : : : to denote variables.� If t; t0 are in BLT and ! is an operator which is either � or �, then (t!t0) isin BLT .Remark 2.23 " is a special variable that denotes the \empty term". It can be usedfor rendering ordinary (untyped) lambda calculus; take all types to be ". Anotheruse is as a \�nal type", like 2 in Barendregt's cube or in Pure Type Systems (PTS's).Note moreover that, as " can be used to render ordinary (untyped) lambda calculus,we were �ne in concentrating on the typed calculus in this paper.Now we take the same notational conventions as those for LT given in Nota-tions 2.11 and 2.13, and we de�ne items similarly. Simple examples of terms are:", 3, (2�)("�)1.g Moreover, in (t!), we may drop t in case t � ". Hence the lastmentioned example can also be written as (2�)(�)1. Here is another example:Example 2.24 Consider the typed lambda term (�x:z:x)u. In item-notation withname-carrying variables this term becomes (u�)(z�x)x. In item-notation with deBruijn-indices, it is denoted as (1�)(2�)1.The typed lambda term u(�x:z:x) is denoted as ((z�x)x�)u in our name-carryingitem-notation and as ((2�)1�)1 in item-notation with de Bruijn-indices. The freevariable list, in the name-carrying version, is �z , �u, in both examples.The term trees of these lambda terms are given in �gure 5. In each of the twopictures, the references of the three variables in the term have been indicated: thinlines, ending in arrows, point at the �'s binding the variables in question.
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Figure 5: Term trees with explicit free variable lists and reference numbersgThere can be di�erent (�nitely many) �'s and/or �'s in terms. In the present paper we shallconsider only one of each, denoted � and �, respectively. Di�erent �'s can be used, for example,in second-order theories: write � = �2 and � = �1.



Now it is obvious that Lemma 2.15 holds also for BLT , where the terms arenow terms of BLT . More precisely:Lemma 2.25 Every layered term has the form (t1!1) : : : (tn!n)x for t1; : : : ; tn lay-ered terms, !1; : : : ; !n operators, n � 0 and x a variable.Proof: Easy. 22.4 �- and �-reduction in T�; LT and BLTThe fundamental axioms of the �-calculus are (�) and (�). Other axioms suchas (�) (which is needed together with another axiom to derive extensionality) areoptional. Therefore, we shall only concentrate on (�) and (�).2.4.1 Reduction in T�In T�, the axioms (�) and (�) are as follows:(�) �x:t:t0 !� �y:t:t0[x := y] where y 62 FV (t0)(�) (�x:t:t0)t00 !� t0[x := t00]We say that t !� t0 (respectively t !� t0) just in case (�) (respectively (�))takes t to t0. We call the reexive transitive closure of !� (respectively !�), !!�(respectively !!�).2.4.2 Reduction in LTIn LT , these axioms are the same but written in item notation as follows:(�0) (t�x)t0 !�0 (t�y)t0[x := y]0 where y 62 FV (t0)(�0) (t00�)(t�x)t0 !�0 t0[x := t00]0Of course t[x := t0]0 is the substitution in LT of t0 for all free occurrences of xin t. Free and bound variables/occurrences in LT are easy to de�ne and we will ofcourse obtain the following lemma:Lemma 2.26 For any t 2 T�, FV (t) = FV (l(t)).Proof: Obvious. 2The notion of substitution in LT is also easy to de�ne. This is done as follows:De�nition 2.27 (Substitution in LT )



If t; t0 are layered terms and x is a variable we de�ne the result of substitutingt0 for all the free occurrences of x in t as follows:
t[x := t0]0 = 8>>>>>>>>>>>><>>>>>>>>>>>>:

t0 if t � xy if t � y 6� x(t1[x := t0]0�)t2[x := t0]0 if t � (t1�)t2(t2[x := t0]0�x)t1 if t � (t2�x)t1(t2[x := t0]0�y)(t1[x := t0]0) if t � (t2�y)t1; x 6� y;(x 6 � 2 FV (t1) or y 62 FV (t0))(t2[x := t0]0�z)(t1[y := z]0[x := t0]0) if t � (t2�y)t1; x 6� y;(x 2 FV (t1) and y 2 FV (t0));and z 62 FV (t1t0)Now the following lemma holds:Lemma 2.28� If t; t0 are in T� then l(t[x := t0]) = l(t)[x := l(t0)]0� If t; t0 are in LT then l�1(t[x := t0]0) = l�1(t)[x := l�1(t0)]Proof: Left to the reader. 2In LT , we de�ne !�0 (respectively !�0 ;!!�0 ;!!�0) similarly to that of T�, butusing (�0) and (�0) instead. Now the following lemma holds:Lemma 2.29 For t; t0 2 T�, we have: t!� t0 (respectively !� ;!!�;!!�) i�l(t)!�0 l(t0) (respectively !�0 ;!!�0 ;!!�0) .Proof: Left to the reader. 2Of course now, all the theorems of T�, such as the Church-Rosser theorem, the �xedpoint theorems, the unde�nability results, and so on, hold for LT . Let us see nowwhat would happen to BLT .2.4.3 Reduction in BLT�-reduction is not needed forBLT , precisely because we no longer have variables (deBruijn's indices got rid of them). So now, we no longer have di�erent ways of writingthe same term as we have taken the equivalent classes so that �x:t:x; �y:t:y; : : : allare represented by (t�)1. For �-reduction, this is a bit more complicated. Let usstart by an example:Example 2.30 Now for �-reduction, the term (�x:z :(xy))u of T�, �-reduces to uy.In LT , this becomes: (u�)(z�x)(y�)x reduces to (y�)u (see �gure 6). Note thatthe presence of a so-called �-�-segment (i.e. a �-item immediately followed by a�-item), in this example: (u�)(z�x) is the signal for a possible �-reduction. Usingde Bruijn's indices, this becomes: (1�)(2�)(4�)1 reduces to (3�)1.
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Figure 6: �-reduction in our notationWe can see from the above example that the convention of writing the argumentbefore the function has a practical advantage: the �-item and the �-item involved ina �-reduction occur adjacently in the term; they are not separated by the \body"of the term, that can be extremely long! It is well-known that such a �-�-segmentcan code a de�nition occurring in some mathematical text; in such a case it is verydesirable for legibility that the coded de�niendum and de�niens occur very close toeach other in the term.Before we de�ne �-conversion in BLT , we need to de�ne substitution and freeoccurrences of variables. For this, and for the next section on explicit substitution,we need to give a number of de�nitions regarding certain substrings of terms. Thisis done next.2.5 The formal machinery of BLT2.5.1 Items and SegmentsRecall that we de�ned items in De�nition 2.12. Items together with the followingnotion are basic for our machinery.De�nition 2.31 (segments)A concatenation of zero or more items is a segment.hRemark 2.32 Note that if s is a segment of BLT , then either s = ; or s =s1s2 : : : sn where 1 � n and si is an item for 1 � i � n.Recall that we use s; s1; : : : as meta-variables for items. Moreover, we uses; s1; si; : : : as meta-variables for segments. Now we are ready to give an abstractformulation (de�nition 2.33) of all the notions that have been de�ned so far. Welet V stand for the set of variables, O for operators, T for terms, I for items and Sfor segments.De�nition 2.33 (variables, operators, terms, items, segments)hIn [8] an item is called a wagon and a segment is called a train.



V = f"; 1; 2; : : :gO = f�; �; : : :gT = V j I TI = (T O)S = ; j I SFor the next section, when we introduce substitution, we will assume the samesets V , T , I, and S. O however will be increased by two more operators � and 'which will deal with substitution. In other applications, we use more than one �and one �. [24] is an example where di�erent �'s and �'s are introduced and needed.It was mentioned earlier moreover that we may take two �'s, �1 and �2 where insecond order theories, the �rst represents � and the second represents �.We de�ne a number of concepts connected with terms, items and segments.These will be used in the rest of the paper.De�nition 2.34 (main items, main segments, empty segments, !-items, !1 : : : !n-segments)� Each term t is the concatenation of zero or more items and a variable: t �s1 : : : snx (see Lemma 2.25). These items s1 : : : sn are called the main itemsof t.� Analogously, a segment s is a concatenation of zero or more items: s �s1 : : : sn (see Remark 2.32); again, these items s1 : : : sn (if any) are calledthe main items, this time of s.� A concatenation of adjacent main items (in t or s), sm : : : sm+k, is called amain segment (in t or s).� An item (t !) is called an !-item. Hence, we may speak about �-items,�-items (and later on about �-items and '-items).� A segment s such that s � ; is called an empty segment; other segmentsare non-empty. A context is a segment consisting of only �-items.� If a segment consists of a concatenation of an !1-item up to an !n-item, thissegment may be referred to as being an !1-: : :-!n-segment. An importantcase is that of a �-�-segment, being a �-item immediately followed by a �-item.All these de�nitions are easy and obvious. The reader can now think more of thestructure of terms and see some enligthening but trivial results such as: every termis of the form sx where s is a segment and x is a variable. The following is anexample of some of these notions.



Example 2.35 Let the term t be de�ned as ("�)((1�)("�)1�)(2�)1 and let thesegment s be ("�)((1�)("�)1�)(2�). Then the main items of both t and s are ("�),((1�)("�)1�) and (2�), being a �-item, a �-item, and another �-item. Moreover,((1�)("�)1�)(2�) is an example of a main segment of both t and s, which is not acontext (i.e. not a purely �-segment), but a �-�-segment. Also, s is a �-�-�-segment,which is a main segment of t.De�nition 2.36 (body, end variable, end operator)� Let t � sx be a term. Then we call s the body of t, denoted body(t), and xthe end variable of t, or endvar(t). It follows that t � body(t) endvar(t).� Let s � (t!) be an item. Then we call t the body of s, denoted body(s), and! the end operator of s, or endop(s). Hence, s � (body(s) endop(s)).Note that we use the word `body' in two meanings: the body of a term is asegment, and the body of an item is a term.Items and segments play an important role in many applications. As explainedbefore, a �-item is the part joined to a term in an abstraction, and a �-item is thepart joined in an application. In using typed lambda calculi for e.g. mathematicalreasoning, �-items may be used for assumptions or variable introductions and a�-�-segment may express a de�nition or a theorem (See [22], [23] and [24]).2.5.2 Bound and free variablesAfter de�ning our items and segments and the various notions related to them, weneed to discuss the notion of free and bound variables. In LT , these notions aresimilarly de�nable to that of T�. In BLT , variables are indices and �'s do not haveany reference to the variables they bind. Rather it is the number which is indicativeof the binding �. Calculating bound and free variables in BLT will turn out to bean easy, mechanisable and e�cient a�air.We start by de�ning sieveseg! which will gather all the main !-items in a term,in the order in which they occur in the term.De�nition 2.37 (sieveseg)Let s be a segment, or let t be a term with body s.Then sieveseg!(s) = sieveseg!(t) = the segment consisting of all main !-items of s, concatenated in the same order in which they appear in s.Example 2.38 In the term t = ("�)((1�)("�)1�)(2�)1,sieveseg�(t) � ("�)(2�) and sieveseg�(t) � ((1�)("�)1�).Lemma 2.39 Let s be a segment, then all variables in sieveseg�(s) will point tothe same �'s that they pointed at in s.Proof: Easy. 2



Let us now de�ne the restriction of a term to a particular variable occurrence. Wewill not give the formal de�nition here, but it can be found in [23]. We shall onlyexplain what it is and how we get it without the formal machinery.De�nition 2.40 (term restriction)Let t be a term in BLT and x� be a particular occurrence of a variable in t. Wede�ne t j��x� the term restriction of t to x� to be the original term, from which weremove all the things to the right of x� and then we remove all extra parentheses.Example 2.41 Let t be the term ("�x)((x�u)((u�)(x�t)x��y)(u�z)y�v)u. t j��x�,the restriction of t to x� is ("�x)(x�u)(u�)(x�t)x�.De�nition 2.42 (bound and free variables, type, open and closed terms)� Let x� be a variable occurrence in t such that x 6� " and sieveseg�(t j��x�) �sm : : : s1 (for convenience numbered downwards). Then x� is bound in t ifx � m; the binding item of x� in t is sx and the � that binds x� in t isendop(sx). The type of x� in t is body(sx). Furthermore, x� is free in t ifx > m.� The variable " is neither bound nor free in a term.� Term t is closed when all occurrences of variables in t di�erent from " arebound in t. Otherwise t is open or has free variables.Example 2.43 t � (�)(1�)(2�)(�)((3�)2��)(1�)1 ) t j��2� � (�)(1�)(2�)(�)(3�)2� .So sieveseg�(t j��2�) � s4s3s2s1 � (�)(1�)(�)(3�). Hence, 2� is bound in t since2 � 4. Moreover, the type of 2� in t is body(s2) � ". There are no free variables int, hence t is closed.We see from this example that one can easily account for free and bound vari-ables, just by calculation. Note that restriction does not a�ect whether a variableoccurrence is free or bound.Now, we have all the machinery to de�ne substitution in our system, not only asthe known substitution described in De�nition 1.1 but in all its forms, local, global,explicit and implicit. From substitution, we can de�ne �-reduction, again local andglobal.3 ReductionRecall that in Def 1.1, substitution t[x := t0] was de�ned by certain metarules. Suchmetalevel substitution however, is unsatisfactory for many reasons, some of whichwe mention in 3.1. In the rest of the section, we make substitution a part of theformal language for our terms, providing thereby a means by which we avoid thedisadvantages mentioned in 3.1.



3.1 Global vs. local �-reductionThe traditional �-reduction causes a substitution for all variables bound by a certain�. This is not always what is desired. In the case when a de�nition is coded, it isclear that this kind of �-reduction is too radical: one sometimes wishes to \unfold"a de�nition at a certain place, but such an unfolding should not concern all placeswhere the same de�nition is used. The following example illustrates the point:Example 3.1 The notion \continuity" of a function may be de�ned as a �-termin constructive mathematics but needs a rather complicated de�nition. Now some-times, e.g. in a proof, one \goes back to the de�nition" by substituting the textbody of this de�nition, in which the de�niens is expressed. In such a case one cer-tainly does not want as a side e�ect that the word \continuity" will be replaced byits de�niens at all places in the text where it appears.This is the reason for admitting another kind of �-reduction, called local �-reduction,where only one bound variable can be replaced (See also [7]). To emphasize thedi�erence between this local �-reduction and the usual one, we shall call the latterglobal �-reduction.Another wish is to execute substitutions only when necessary. For this purposeone may decide to postpone substitutions as long as possible (\lazy evaluations").This can yield pro�ts, since substitution is an ine�cient, maybe even exploding,process by the many repetitions it causes. This is the ground for the so-calledgraph reduction, see e.g. [25].We shall describe substitution as a step-by-step procedure, giving the user thepossibilities to use it as he wishes. Our step-wise treatment of substitution andreduction is connected with the wish to unravel these processes in atomary steps.This is no restriction, since we can also combine these steps into the ordinary �-relations.3.2 Adding substitution itemsRecall that we had two kinds of items, the �-items, of the form (t�) and the �-itemsof the form (t�). In order to be able to push substitutions ahead, step by step, weshall introduce a new kind of items, called substitution items (or �-items). These�-items can move through the branches of the term, step-wise, from one node toan adjacent one, until they reach a leaf of the tree. At the leaf, if appropriate, a�-item can cause the desired substitution e�ect. In this manner these substitutionitems can bring about di�erent kinds of �-reductions.De�nition 3.2 (�BLT )We extend the set of operators with �, whose arity is two. Terms of �BLT areexactly those of BLT except that new terms can now be formed using not only �and � but also �. We keep to the same meta level notation of Section 2.3, but let!; !1; !2; : : : range over �, � and �.



Now, if one goes back to De�nition 2.33, the only set which changes is O which gets� as an extra element. To be more precise, it is not only one � that is added, ratheran in�nite number of them, �(i); i 2 N . Based on this observation, Lemma 2.25holds for �BLT . Moreover, all the de�nitions and results of Section 2.5 (and inparticular Section 2.5.2) hold here.We use � as an indexed operator, numbered with upper indices: �(1); �(2); : : :.Hence a �-item has the form: (t0�(i)).The intended meaning of a �-item (t0�(i)) is: term t0 is a candidate to be sub-stituted for one or more occurrences of a certain variable; the index i selects theappropriate occurrences. In fact, the index i preserves the variable that has to besubstituted for. More on this will follow.3.3 Step-wise substitution3.3.1 One-step �-reductionNow we can give the rules for one-step �-reduction. This relation is denoted bythe symbol !� . The relation �-reduction is the reexive and transitive closure ofone-step substitution. It is denoted by!!�. We introduce!� as a relation betweensegments, although it is meant to be a relation between terms. The rules must beread as follows: rule s !� s0 states that t !� t0 when a segment of the form soccurs in t, where t0 is the result of the replacement of this s by s0 in t. Otherwisesaid, we omit so-called compatibility rules (see [2]).De�nition 3.3 (�-reduction)(�-generation rule:)(t1�)(t2�)!� (t1�)(t2�)(t1�(1))(�-transition rules:)(t1�(i))(t2�)!� ((t1�(i))t2�) (�0� � transition)(t1�(i))(t2�)!� (t2�)(t1�(i+1)) (�1� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�)(t1�(i+1)) (�01� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�) (�0� � transition)(t1�(i))(t2�)!� (t2�)(t1�(i)) (�1� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�)(t1�(i)) (�01� � transition)(�-destruction rules:)(t1�(i))i!� ud(i)(t1)(t1�(i))x!� x if x 6= i.Compare the �-generation rule with (�) . Our rule, does not get rid of (t1�)(t2�)but keeps it because we are not necessarily going to perform a global �-reduction,so some variables may still be bound by the � in (t2�) (see Example 3.18). Theaddition of (t1�(1)) moreover, is to �re substitutions which will, according to thetransition rules be to the right of the tree of the term, upwards in the tree or both.The destruction rule is for the case where we have reached a leaf and � cannot



propagate any longer, then substitution takes place. The following details aboutthese rules elaborate more these points.� Firstly, the �-generation rule adds a �-item to the term, as the start of apossible reduction. Note that in this rule, the so-called �-�-segment or re-ducible segment (t1�)(t2�) stays where it is; this is di�erent from ordinary�-reduction, where both argument and corresponding � disappear. The rea-son for not removing this reducible segment is, of course, that we want to keepa binding � and the corresponding argument (i.e. �-item) in a term, as longas there still are variables in the term that are bound by that �. When thesubstitution process is on its way, existing bonds are maintained. Moreover,when we choose to perform local �-reduction, then one bound variable disap-pears in the substitution process, but other bound occurrences of the samevariable, which are also possible clients for the same substitution, may stay.We shall see in 3.5 how we can dispose of a reducible segment when there areno more customers for the � involved, i.e. when there is no variable bound bythis � in the term.� Secondly, the �-transition rules occur in two triples, one triple for the casethat a �-item meets a �-item, and one for the case where a �-item meets a�-item. In each triple the following three possibilities are covered:1. The �-item can move inside the item met (upwards in the tree; the cases�0), this is when we are interested only in inside reductions.2. The �-item can jump over the item (to the right in the tree; �1), this iswhen we are interested only in reductions to the right of the tree.3. The �-item can do both things at the same time (�01), this is when weare interested in both reductions.For the time being, all possibilities may be e�ectuated. Only in the case thatthe �-item jumps over a �-item (i.e. in the cases �1� and �01�), the index ofthe � increases by one. This is because that index counts the number of �'sactually passed, in order to �nd the right (occurrence of the) variable involved.The index is also of use in the process of updating the substituted term t1(see below).� Thirdly, the �-destruction rules apply when the �-item has reached a leafof the tree. When the index i of the � is in accordance with the value ofthe variable, then we have met an intended occurrence of the variable; thesubstitution of t1 for i takes place, accompanied with an updating (ud) ofthe variables in t1. This updating is necessary, in order to restore the rightcorrespondences between variables in t1 and �'s. When the index of � andthe variable in question do not match, then nothing happens to the variable,and the �-item vanishes without e�ect.



It is not hard to see that the update function ud(i) should have the followinge�ect on term t1: all free variables in t1 must increase by an amount of i. (The�-generation rule initialized i with value 1, for obvious reasons.) This updating isa simple process.The following lemma shows that �-reduction reaches eventually all occurrencesto be substituted. I.e., there is a path for global �-reduction, but we may not takeit.Lemma 3.4 In (t1�)(t2�)t3, �-reduction can substitute t1 for all occurrences of thevariable bound by the � of (t2�) in t3.Proof: The proof is by an easy induction on t3 in (t1�)(t2�)(t1�(1))t3. 2The examples below demonstrate how �-reduction works.3.3.2 Examples of one-step �-reductionExample 3.5 Let us take example 2.30 and see how �-reduction works here too.This example is not very interesting from the point of view of di�erent possibilitiesof substitution, due to the presence of just one occurrence of the x to be substituted.It will however, demonstrate the working of the rules, in the case where a �-itemmeets a �-item.There are 3 cases to consider, depending on the choice concerning the �-transitionrules.case 1 (using �0!-transition rules only)(1�)(2�)(4�)1!�(1�)(2�)(1 �(1))(4�)1!�(1�)(2�)((1 �(1))4�)1!�(1�)(2�)(4�)1case 2 (using �1!-transition rules only)(1�)(2�)(4�)1!�(1�)(2�)(1 �(1))(4�)1!�(1�)(2�)(4�)(1 �(1))1!�(1�)(2�)(4�)ud(1)(1)!�(1�)(2�)(4�)2.case 3 (using �01!-transition rules only)(1�)(2�)(4�)1!�(1�)(2�)(1 �(1))(4�)1!�(1�)(2�)((1 �(1))4�)(1 �(1))1!�(1�)(2�)(4�)ud(1)(1)!�(1�)(2�)(4�)2.The �rst case which only carries out reductions upwards in the tree, has missedthe occurrence of x to the right of the tree, and so no reductions have been carriedout. The second case does the reduction to the right of the tree, so it does substitute



the x. The third case carries out reductions both upwards and to the right. Butupwards results in nothing new so we obtain the same result as in case 2.In the second and third cases, (1�)(2�) is useless and once we remove it, weshould decrease the free variables in (4�)2 obtaining hence (3�)1 (see Figure 7 whichyou should also note its similarity to Figure 6).
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Figure 7: �-reduction when a �-item meets a �-itemThere are, of course, more possibilities than these three cases, if we use a mixtureof the �0!-, �1!- and �01!-transition rules.Example 3.6 Now let us see how �-reduction works when we have that a �-item meets a �-term. Take for example: (�y:z:�x:z:y)u. In BLT notation this is(1�)(2�)(3�)2 and in LT notation, it is: (u�)(z�y)(z�x)y (see Figure 8). This termreduces to �x:z:u or in BLT notation (2�)2 and in LT notation (z�x)u. �-reductionon this term results in the following 3 cases.case 1(1�)(2�)(3�)2!�(1�)(2�)(1 �(1))(3�)2!�(1�)(2�)((1 �(1))3�)2!�(1�)(2�)(3�)2case 2(1�)(2�)(3�)2!�(1�)(2�)(1 �(1))(3�)2!�(1�)(2�)(3�)(1 �(2))2!�(1�)(2�)(3�)ud(2)(1)!�(1�)(2�)(3�)3.case 3(1�)(2�)(3�)2!�(1�)(2�)(1 �(1))(3�)2!�(1�)(2�)((1 �(1))3�)(1 �(2))2!�(1�)(2�)(3�)ud(2)(1)!�(1�)(2�)(3�)3.Again the �rst case didn't carry out any substitutions as there was none inthe upward part of the tree. The second and third cases are similar to those of



Example 3.5. Moreover, (1�)(2�) is useless and once we remove it, we shoulddecrease the free variables in (3�)3 obtaining (2�)2 (see Figure 8). Note that whatactually happens in Figure 8 is that the part of the tree with nodes 1; 2; �; � isremoved and the part of the tree with nodes �; 3; 3 replaces it but with the variablesupdated to point at the correct �'s.
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Figure 8: �-reduction when a �-item meets a �-itemThe de�nition of �-reduction could be simpli�ed further as follows:De�nition 3.7 (�-reduction)(�-generation rule:)(t1�)(t2�)!� (t1�)(t2�)(t1�(1))(�-transition rules:)(t1�(i))(t2�)!� ((t1�(i))t2�)(t1�(i+1)) (�01� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�)(t1�(i)) (�01� � transition)(�-destruction rules:)(t1�(i))i!� ud(i)(t1) (�0 � destruction)(t1�(i))x!� x if x 6= i (�1 � destruction)(t1�(i))!� ; (�2 � destruction)That is, in De�nition 3.3, we get rid of �0! and �1! for ! = � or �, and add�2-destruction.Now it is obvious to see that �0! and �1! are special cases of �01!, in thepresence of �2-destruction. In fact the following lemma holds:Lemma 3.8 For any t1; t2, if t1 !� t2 then t1 !!� t2.Proof: Left to the reader. 23.3.3 Drawbacks of the one-step �-reductionWe want to ensure that references are always maintained correctly, even beforesubstitution takes place. This is not the case as we shall see below.



We note that our updating is less complicated, but also less general than inthe original treatment of de Bruijn-indices (see [5]), where the usual �-reduction isapplied (the global relation) and substitution is not presented as a step-wise process.In explicit substitution procedures as in [1], the more general, but complicatedupdate functions are used.Our loss of generality has the following cause. A �-item (t�(i)) is supposed tobe \cut o�" from the rest of the term. Variables in t may have lost their referencevalue; in case a variable x in t is bound by a � outside t, then this binding � canonly be found by taking also the index i into consideration. That is: variables insidea �-segment are shut o� from the \outer world", meaning that their value need notreect the exact binding place. Only after application of the �-destruction rule,the updating restores the proper value of such variables. The following exampleillustrates the point:Example 3.9 Let us look back at Example 3.6. The term discussed there was(1�)(2�)(3�)2 and its term tree is pictured in Figure 9.
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Figure 9: The term tree of (1�)(2�)(3�)2When adding the �-item (1�(1)), we messed up the references. In fact, the 1 in(1�(1)) tells us that it is bound by the � in (2�) but this is not as it should be: itsreference must be the same as the original one in (1�), namely the second � in thefree variable list. The term tree of (1�)(2�)(1�(1))(3�)2 is to be found in Figure 10.
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Figure 10: A term tree where references are not as intended



In the following subsection we propose a solution for step-wise substitution thatdoes not su�er from the mentioned drawbacks.3.4 A general step-wise substitution3.4.1 Step-by-step update or '-reductionIn order to avoid the disadvantages mentioned in subsection 3.3, we shall describethe e�ect of the update function by means of a step-by-step approach. For thispurpose we use a (unary pre�x) function symbol '(k;i) with two parameters k andi. The intention of the indices is the following.� Index i preserves the value of the update desired (i = `increment').� Index k counts the �'s that are internally passed by (k = `threshold').The e�ect of the updating must be that all free variables in t1 increase with anamount of i; the k is meant to identify the free variables in t1.Now, instead of ud(i)(t1), we write ('(0;i))t1. We extend our set of operators inDe�nition 2.33 with '. As explained above, we use the ''s with a double index:'(k;i); k; i 2 N . We call all ('(k;i))'s '-items. Note that the body of a '-item isalways the empty term.Before we set up the '-rules, let us go back to Example 3.9 and let us show howthe use of ' will �x the references.Example 3.10 In Figure 10, let us replace the 1 above �(1) by a tree which has 2branches, the upwards being empty, the right branch having 1 as a leaf, and the rootbeing '(0;1). Now when tracing from the 1 (above �(1)), the � which binds it, wepass through '(0;1). This is indicative that the � can be found by the combinationof the index 1 and the item '(0;1). The 0 in (0; 1) tests if index 1 is free or bound.If index 1 was bound (i.e. if 1 � 0) then we forget about the 1 in (0; 1) and lookfor the �rst �. 1 however is not � 0 and so it is free and its binding � is the onerefered to by 1+ 1, being the sum of the variable 1 itself and the second projectionof (0; 1). Figure 11 shows the right references.
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Figure 11: A term tree where references are as intended



Now, the use of the '-items is established in the following rules.De�nition 3.11 ('-reduction)(�-destruction/'-generation rule:)(t1�(i))i!' ('(0;i))t1('-transition rules:)('(k;i))(t0�)!' (('(k;i))t0�)('(k+1;i))('(k;i))(t0�)!' (('(k;i))t0�)('(k;i))('-destruction rules:)('(k;i))x!' x+ i if x > k('(k;i))x!' x if x � k or x � ".The following details about these rules are to be noted.� In the '-generation rule, t1 is to substitute i, the variable bound by the ith �to the left of i. t1 has passed these i �'s and so all its free variables must beincreased by i. Therefore, we use '(0;1).� A term of the form ('(k;i))t will be either such that t is a variable or a �-itemor a �-item. In the case of a �-item or a �-item, we have to update all thevariables so that we keep the right references.� The case where ('(k;i)) is to the left of a variable, we use one of two '-destruction rules, the �rst for the case that x is free in t1 (then a real updateoccurs), the second for the case that x is bound in t1 or x � " (then nothinghappens with x).Now, in order to keep the references inside a �-item correct during the process of�-transition, a '-item ('(k;i)) is added inside the �-item, as follows: (('(k;i))t�(j)).We shall give the rules of this general �-reduction below.For convenience sake, we may drop the �rst index or both indices of the ',according to the following de�nition:De�nition 3.12 ('-abbreviation)For all i 2 N , '(i) denotes '(0;i). Moreover, ' denotes '(1) (hence = '(0;1)).3.4.2 General �-reductionNow the rules for �-items can be adapted as follows (cf. De�nition 3.3):De�nition 3.13 (general �-reduction)(general �-generation rule:)(t1�)(t2�)!� (t1�)(t2�)((')t1�(1))(general �-transition rules:)



(t1�(i))(t2�)!� ((t1�(i))t2�) (�0� � transition)(t1�(i))(t2�)!� (t2�)((')t1�(i+1)) (�1� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�)((')t1�(i+1)) (�01� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�) (�0� � transition)(t1�(i))(t2�)!� (t2�)(t1�(i)) (�1� � transition)(t1�(i))(t2�)!� ((t1�(i))t2�)(t1�(i)) (�01� � transition)(general �-destruction rules:)(t1�(i))i!� t1(t1�(i))x!� x if x 6= i.Note that a term t1 � t0 changes into (')t0 when passing a �; see e.g. the �1�-rule. The reason is that the free variables in t0 must be increased by an amount of 1(remember that ' = '(0;1), hence the increment is 1). The obtained (')t0 is againa term, so one may take t1 � (')t0 in the next step.Now the following lemma shows that the right bond between variables and theirbinding �'s are maintained.Lemma 3.14 In s(t1�)(t2�)((')t1�(1))t3, all variable occurrences are bound by thesame �'s which bound them in s(t1�)(t2�)t3.Proof: We will only show how some cases can be carried out. The rest willbe an easy exercise left to the reader. Let x be a variable in (t1�)(t2�)((')t1�(1)).There are only two cases to consider.� case x occurs in (t1�)(t2�), then nothing to prove, as nothing has changed forthat occurrence.� case x occurs in (('(0;1))t1�(1)), in particular in t1, then a bound variable int1 clearly remains bound by the same � in t1. A free variable x in t1 becomesupdated by 1 by the '(0;1). This is exactly what is intended, since there is oneextra � that one has to go through on the way from x to its �. That is, the �of (t2�). 2Example 3.15 Let us go through example 3.6 but using '-reduction.case 1(1�)(2�)(3�)2!�(1�)(2�)((')1 �(1))(3�)2!�(1�)(2�)(((')1 �(1))3�))2!�(1�)(2�)(3�)2case 2(1�)(2�)(3�)2!�(1�)(2�)((')1 �(1))(3�)2!�



(1�)(2�)(3�)((')(')1 �(2))2!�(1�)(2�)(3�)(')(')1 !!'(1�)(2�)(3�)3case 3(1�)(2�)(3�)2!�(1�)(2�)((')1 �(1))(3�)2!�(1�)(2�)(((')1 �(1))3�)((')(')1 �(2))2!!�;'(1�)(2�)(((')1 �(1))3�)3!�(1�)(2�)(3�)3It is not hard to see that this de�nition gives the same results as De�nition 3.3in the case that we apply the '-transition rules after all possible �-transition ruleshave been applied. However, we have now the possibility to \update" the �-itemat any instance, thus re-establishing the correct bond between bound variable andbinding �. It is also more easy now to �nd the binding � of a certain variable in t1before updating: following the path from the variable to the root, we just add j forevery ('(j)) encountered.Again here, we may use the simpli�ed version of general �-reduction, whichconsists of the same �-generation rule, only of �01� and �01� as �-transition rules,and the same destruction rules together with (t1�(i))!� ;.Finally, we note that our transition rules as given here do not allow for �-itemsto \pass" other �-items. The reason for this is, that we wish to prevent undesirede�ects, like an in�nite exchange of two adjacent �-items.3.4.3 Remarks on 'The mentioned ('(j)) may originate as combinations of \simple" (')-items. Let usassume for a moment that only one-step �-reductions are applied to a given term,and no '-reductions. Then a �-item, \travelling" through this term, \collects" asmany '-items (') as it has passed �-items. These '-items may be combined, since(') : : : (') (i times) = (')i = ('(i)).We can make a few more remarks in this respect.1. First, it is not necessary to update t1 completely. One can easily convinceoneself that '-items with equal �rst index are additive, in the sense that('(k;m))('(k;n)) has the same e�ect as ('(k;m+n)), for all k;m; n 2 N . Inparticular, ('(m))('(n)) \is" ('(m+n)). Hence, one may split up ('(j)) into('(j0)) and ('(j00)) in case j > 1 and j0 + j00 = j, and update with ('(j00)).This process can be repeated at many places. Moreover, a '-transition canbe executed for one or more steps, or left alone, whichever one likes.Things become more complicated if we desire to combine two adjacent '-itemslike ('(k;i)) and ('(l;m)) in one new update function. We do not consider thesematters, in order to maintain a simple system.



2. Second, we note, that it is quite natural to add a third '-transition rule forthe case that we desire to update a term starting with a �-item:De�nition 3.16 ('-transition rule for �-items:)('(k;i))(t0�(l))!' (('(k;i))t0�(l))('(k;i)) if l � k and('(k;i))(t0�(l))!' (('(k;i))t0�(l+i))('(k;i)) if l > k.So far, we showed that �-items and '-items have obtained the same statusas the original �- and �-items. The �- and '-items have become, so to say,\�rst class citizens". There is, however, still a slight scent of discrimination,in the sense that some items can blockade the transition of other items. Forexample, �-items cannot pass '-items. These matters have to be investigated,especially as regards the consequences for normalization. At this moment,these questions are not yet solved.3. A third remark is, that there is with this general �-reduction a feasible possi-bility for the addition of a �01�-transition. This can be done, since the bodiesof �-items now contain the correct references, by the extra '-items added.Hence, we can allow that �-items intrude other �-items:De�nition 3.17 (�01�-transition)(t1�(i))(t2�(k))!� ((t1�(i))t2�(k))(t1�(i)) if i 6= k3.5 Substitution and �-reductionSo far, we have explained using our reduction !!�, how a term containing a �-�-segment can be transformed to another term. We have not yet explained how wecan get local and global �-reduction out of such reduction. Moreover, so far in ourapproach, the reducible segment is not removed. We still have to supply the toolsfor eliminating useless reducible segments. In this section we explain how reduciblesegments are removed and how local and global �-reduction are obtained.3.5.1 Local and global substitutionWe recall here that with global substitution we mean the intended replacementof a whole class of bound variables (all bound by the same abstraction-�) by agiven term; for local substitution we have only one of these occurrences in view.By restricting the choice we have in the �-transition rules we get local and globalreduction. Let us give an example.Example 3.18 Take the term (�x:z:xx)u. There are three possibilities here, eitherwe can have global �-reduction and then obtain uu, or we can have local �-reductionwhere the �rst x of the body xx is replaced by u, or we can have local �-reduction



where the second x is replaced by u. Those three cases are easily obtainable fromour �-reduction. Here is how:The term in our notation is (1�)(2�)(1�)1. Applying �-reduction we get thefollowing cases:case 1(1�)(2�)(1�)1!�(1�)(2�)((')1 �(1))(1�)1!�(1�)(2�)(((')1 �(1))1�)1!�(1�)(2�)((')1�)1!'(1�)(2�)(2�)1case 2(1�)(2�)(1�)1!�(1�)(2�)((')1 �(1))(1�)1!�(1�)(2�)(1�)((')1 �(1))1!�(1�)(2�)(1�)(')1!'(1�)(2�)(1�)2.case 3(1�)(2�)(1�)1!�(1�)(2�)((')1 �(1))(1�)1!�(1�)(2�)(((')1 �(1))1�)((')1 �(1))1!!�;'(1�)(2�)(2�)2� Case one comes from using �0!-transition and is the local substitution for thesecond x in xx resulting in (�x:zxu)u.� Case 2 comes from using �1!-transition and is the local substitution of the�rst x resulting in (�x:zux)u.� The third case comes from using �01!-transition and is the global substitutionresulting in (�x:z:uu)u which should of course be rewritten as uu (we still havenot removed useless segments). That is: the reducible segment (1�)(2�) inthe result of case 3 should be removed and (2�)2 should be changed to (1�)1.Below we will see how to do this.Note however that in cases 1 and 2, we cannot remove (1�)(2�) because we onlycarried out local substitution on one occurrence of the bound variable and there areoccurrences that are still bound by the same �.3.5.2 E�ciency considerationsFor local �-reduction, as is seen from the example above, we have to make a choicebetween either �0 or �1, both when meeting a �- or a �- item, in order to followthe right path to the intended (occurrence of the) variable. Such a path may becoded by a string of 0's and 1's in an obvious manner. For global �-reductionwe also have a choice. Syntactically the simplest thing is to choose always the



�01-rules, dispersing the �-item over all branches to come. However, in the casethat we know beforehand which branches lead to an occurrence of the substitutablevariable in question, and which do not, we can, at each �- or �-item met, makethe appropriate choice between �0, �1 or �01. The last possibility is e�cient asregards the �-transitions; it depends, however, on the implementation whether thementioned information about branches and variables is present. Alas however, thegeneration and maintenance of this information has its price as well.Of course, there exists a scale of possibilities between local and global: e.g.,one may formalize substitution for a number of designated occurrences of a certainvariable.A one-step local �-reduction of a term consists of one �-generation and a localreduction as described above, executed until the � in question (and the correspond-ing ''s) have disappeared. Cases 1 and 2 of example 3.18 are instances of a one-steplocal �-reduction. A one-step global �-reduction is de�ned analogously. Case 3 ofexample 3.18 is an instance of a one-step global reduction. Note that, in both cases,the reducible segment is not (yet) removed.An option is to distinguish from the beginning between (possible) local andglobal �-reductions, by using di�erent �'s and/or �'s (see [24], for the use of various�'s and �'s).Example 3.19 We could use �loc for a future destination in local reductions and�glo for global reductions. A \de�nition" then could be rendered as a �-�-segment(t1�loc)(t2�loc), ready for local reduction. A \function" could start with a �-item(t2�glo), whereas an \argument" for this function could have the form of a �-item(t1�glo).iNow, for example, the general �-generation rule of De�nition 3.13 obtains twoversions:De�nition 3.20 (local vs. global �-generation)(t1�i)(t2�i)!� (t1�i)(t2�i)((')t1�(1)i ), for i = loc; glo.As regards the �-transition rules, either the �0-transition or the �1-transition ischosen for �loc's, according to the path in the tree that has been prescribed. And�01-transition is reserved for �glo's. The �-destruction rules are adapted with anindex to the �, in an obvious manner.The possibility of labelling �'s and �'s as above is an evidence of the exibilityof our account.3.5.3 Removing the useless reducible segmentsLet us keep in mind the two reductions strategies (local and global) and rememberthat they can overlap. For example, when we have one unique occurrence of theiSee [22] for an explanation of these notions \de�nition", \function" and \ argument" withrespect to typed lambda calculus.



variable to be substituted, as in (�x:x)u where we have one unique occurrence ofthe x in the body, then both local and global substitutions are the same. Let ushence take some standpoints as to how we are going to treat such an overlap andwhen we should remove the useless segments.It will be clear that, in applying local �-reduction, we have a certain reduciblesegment and an occurrence of one goal-variable in view, connected by means of apath in the tree. Hence we know that the reducible segment has actual reductionalpotencies, i.e. the main � of the segment binds at least one occurrence of a variable.As regards global �-reduction, the situation is di�erent. Here the reduciblesegment may be \without customers". Then �-generation is undesirable since thisleads to useless e�orts. Hence it seems a wise policy to restrict the use of the�-generation rule to those cases where the main � of the reducible segment doesactually bind at least one variable. When this is not the case, we shall speak of avoid �-�-segment. Such a segment may be removed. One may compare this caseto the application of a constant function to some argument; the result is always the(unchanged) body of the function in question. For this purpose we de�ne the void�-reduction:



De�nition 3.21 (void �-reduction)Assume that a �-�-segment s occurs in a layered term t, where the �nal operator�� of s does not bind any variable in t. Let t1 be the scope of s, i.e. rightarg(��).Then t reduces to the term t0, obtained from t by removing s and replacing t1 by('(�1))t1.Notation: t!; t0.jWe can also describe void �-reduction in the previously given format:De�nition 3.22 (��-destruction rule)(t0�)(t00�)!; ('(�1)) if (t0�)(t00�) is void.Note the fact that updating here occurs with a negative amount of �1. Thereason is that the disappearance of the � has to be compensated. We note that thisnegative updating is not without complications. For example:� The second '-transition rule of De�nition 3.16 is no longer valid.� Additivity of '-items (see Section 3.4) does not hold for negative indices. E.g.('(1;1))('(1;�1)) is not equal to ('(1;0)) (the identity), since('(1;1))('(1;�1))(2�)1!!' (1�)1� The same example shows that negative indices can have the e�ect that di�er-ent variables become identi�ed:('(1;�1))(2�)1!!' (1�)1Hence, updating is no longer an injection, which can be highly undesirable.We note, however, that the mentioned unpleasant e�ects do not occur in thesetting presented above: a '-item with a negative exponent only occurs after theclean-up of a void �-�-segment, hence with a � that does not bind any variable.Therefore, the injective property of updating is not threatened.We shall give an example which demonstrates how void segments can disappear.Example 3.23 Take example 3.5. After �-reduction we obtained (1�)(2�)(4�)2 inthe cases 2 and 3 (see Figure 7). In this latter term, call it t, the �-�-segment(1�)(2�) occurs and its � does not bind any variable in t. Moreover, (4�)2 is thescope of (1�)(2�) and if in t we remove (1�)(2�) and replace (4�)2 by ('(�1))(4�)2we get (3�)1. Hence t reduces to (3�)1.Lemma 3.24 If t !; t0 then all occurrences of variables in t0 are bound by thesame �'s that bind them in t.Proof: Left to the reader. 2jThis reduction was introduced in [21], where it was called �2-reduction. De Bruijn de�nes amini-reduction as being either a one-step local �-reduction or a void reduction; see [7].



Now we can describe the usual one-step �-reduction as a combination of �-stepsand '-steps:De�nition 3.25 (one-step �-reduction)One-step �-reduction of a layered term is the combination of one �-generationfrom a �-�-segment s, the transition of the generated �-item through the appropriatesubterm in a global manner, followed by a number of destructions, and updated by'-items until again a layered term is obtained.Finally, there follows one void �-reduction for the disposal of s.Notation 3.26 We denote one-step �-reduction by t !�� t0, and (ordinary) �-reduction | its reexive and transitive closure | by t !!�� t0. We write =� forthe equivalence relation generated by !!�� .Remark 3.27 About the normalisation properties of our system (concerning thetermination of �-reduction sequences) we note the following.We �rst recall some well-known concepts:A redex in a term is a subterm which starts with a �-�-segment.A normal form is a term without a redex (hence without a �-�-segment).A term t is strongly normalizing if all �-reduction sequences, starting from t, ter-minate (in a normal form).A term t is weakly normalizing if some �-reduction sequence, starting from t, doesterminate (in a normal form).In general: the property strong normalization refers to the necessary termination,for each term, of all �-reduction sequences starting from that term, and the propertyweak normalization refers to the possible termination, for each term, of a �-reductionsequence starting from that term.Now we discuss normalization with respect to our system of rules.The �-generation rule, as given in De�nition 3.3, can be applied inde�nitelymany times. A similar remark holds for the �01�-transition rule, which permits aneternal reshu�ing between adjacent �-items. Hence, strong normalization is notguaranteed without extra provisions.This may be an awkward matter, especially in (typed) systems that \normally"do strongly normalize. Hence, it may be advisable to restrict the use of these rulesin order to prevent the mentioned e�ects. For the latter rule (the �01�-transitionrule) this is easy: just forbid its use, maybe with the exception that it can be used inone-step local �-reductions. For the former rule one might formulate the conditionthat a �-item may only be generated by a �-�-segment if this segment is not void,and if it cannot become void by substitutions which are \on the way", i.e. by theapplication of '- and �- reductions which are due to '- and �-items which arealready present in the term under consideration.It will be clear that our rules do not hamper weak normalization . Indeed, ifa terminating sequence exists, starting from a term t, we can always choose an



appropriate strategy for step-wise substitution in order to \follow the path" of thisnormalizing �-reduction sequence.4 Comparison with the explicit substitution of Abadi,Cardelli, Curien and L�evy4.1 The calculus of Abadi, Cardelli, Curien and L�evyIn [1], the ��-calculus is introduced, where explicit substitutions are dealt with inan algebraic manner. We give a short survey of the operators that the authorsintroduce and we discuss some features of the equational theory that is proposed inthe paper.The authors use de Bruijn-indices and de�ne substitutions as index manipula-tions. A substitution is an in�nite list of substitution instructions, one for eachnatural number greater than 0. For example, s = fa1=1; a2=2; a3=3; : : :g is a nota-tion for the substitution of the terms ai for the indices i. When s is considered as afunction, then s(i), the \substituand" for i, is ai. Another notation for s(i) is i[s].Such an in�nite substitution must be thought of as being a simultaneous substi-tution of all ai for i.It will be clear that in�nite substitutions are meant as meta-notations for actualsimultaneous substitutions, the latter ones being �nite and therefore executable. Infact, for any term with de Bruijn-indices there is a maximal number N that canoccur as an index; as one can easily see, this number N is equal to the number of�'s occurring in the term plus the maximal reference place in the free variable list,of the di�erent free variables that occur in the term. Hence, an in�nite substitutionfor a given term can always be pruned to a �nite explicit substitution.Apart from id | the identity substitution fi=ig or f1=1; 2=2; : : :g | [1] intro-duces three other index manipulations:k� " (shift), the substitution f(i+ 1)=ig.� �, as in a � s, the cons of a onto s; here a is a term and s a substitution. Thesubstitution a � s is the substitution fa=1; s(i)=(i + 1)g, that is to say: a isalloted to index 1, and all substituands s(i) are alloted to an index which isone more than the original one (i). For example:1� "= f1=1; " (1)=2; " (2)=3; : : :g = id.� �, as in s � t, the composition of s and t; here both s and t are substitutions,and s � t = ft(s(i))=ig. For example:" �(a � s) = f(a � s)(" (i))=ig = f(a � s)(i+ 1)=ig = fs(i)=ig = s.kThe examples are taken from [1]. Note how the operations can be used for algebraicmanipulations.



4.2 A soundness proofWith the help of our system, we can give a soundness proof for the equality axiomsin [1]. Therefore we translate the above operations into the notation introduced inthe present paper. We have no direct means to render in�nite substitutions, butwe introduce parallel �-items for this purpose. Such a parallel �-item is an in�nityof �(i)-items, one for each number i > 0. The notation that we use is (ti�({)).The \vector" upper bar ({) abbreviates a universal quanti�cation. By (ti�({)) wemean the same as Abadi et al. mean with the substitution ft1=1; t2=2; : : :g, i.e. thesimultaneous substitution of ti for i for all i. Similarly, (ti�({>1)) denotes the sameas ft2=2; t3=3; : : :g, and so on.Hence, the de�nition of the parallel �-item (ti�({)) is that for any variable k,(ti�({))k = tk.We may split such a parallel �-item in a �nite head and an in�nite tail, connectedwith the symbol �. For example:(ti�({)) = (t1�(1))� (ti�({>1)).We de�ne a function [j : : :]j, mapping terms from [1] to terms in our calculus. Wede�ne moreover index manipulation functions to parallel �-items.For terms, the de�nition is: [ji]j = i[j�a]j = (�)[ja]j[jab]j = ([jb]j�)[ja]jFor the index manipulation function we have the following:Let a be a term, [js]j = (ti�({)) and [js0]j = (t0i�({)). Then:[jid ]j = (i�({))[j "]j = ((i+ 1)�({))[ja � s]j = (a�(1))� (ti�1�({>1))[js � s0]j = (t0j�(|))(ti�({))Finally, [ja[s]]j = [js(a)]j = [js]j[ja]j. It is not hard to see that (t0j�(|))(ti�({)) =((t0j�(|))ti�({)), so that we have an alternative translation for s � s0.Moreover, it will be clear that (') and " (or ( i+ 1 �({))) have the same e�ect.The same holds, in general, for ('(k;l)) and ( i+ l �({>k)).We show that we can justify the algebraic manipulations of Abadi et al. in thissetting. Moreover, the equations that the authors give as an axiomatic basis fortheir equational theory, can all be derived in our approach. In our opinion, this isan important result in favor of the treatment that we propose in this paper.Moreover, we claim that the introduction of parallel �-items is only apparentlyan extension of the system that we discussed in the present paper:| the in�nity of �-items can be reduced to a �nite number for every given term(we explained this above);| the \parallel" (simultaneous) character of the substitutions is embodied in our



'-items; this is the only \global" substitution operator for de Bruijn-indices thatwe need, the �-items being the vehicles for the substitution.The latter property follows from the fact that we discriminate between updat-ing of de Bruijn-indices and actual substitutions. This distinction, absent in [1],simpli�es matters considerably.A comparison between the two systems gives the following results:� The system of Abadi et al. is based on a set of algebraic equality rules, whichare treated with the usual term rewriting techniques. It only works for theusual (global) �-reduction.� Our system has a wider range of application, since it is also suited for localreduction. Moreover, it seems that the separation of real substitution andsimple updates makes things less complex; we also have the feeling that oursystem is, in a sense, more \natural".We give four rules from [1] and show their justi�cation in our setting. Thoserules are:� VarCons: 1[a � s] = a.� Abs: (�a)[s] = �(a[1 � (s� ")]).� SCons: 1[s] � (" �s) = s.� Beta: (�a)b = a[b � id]To show Beta, we need the equation('(�1))((')t1�(1)) = (t1�(1))� ('(1;�1)).That this equality holds is shown by the following Lemma:Lemma 4.1 In '�BLT , the following holds:('(�1))((')t1�(1)) = (t1�(1))� ('(1;�1)).Proof:('(�1))((')t1�(1)) =( i� 1 �({))(( j + 1 �(|))t1�(1)) =(di�erentiate between the e�ect of this substitution on index 1 and on indices > 1,respectively)( i� 1 �({))(( j + 1 �(|))t1�(1))� ( i� 1 �({>1)) =(since, as noted above: (ti�({))(t0j�(|)) = ((ti�({))t0j�(|)))(( i� 1 �({))( j + 1 �(|))t1�(1))� ('(1;�1)) =(by additivity, which holds in this case)



((j�(|))t1�(1))� ('(1;�1)) =(t1�(1))� ('(1;�1)). 2Now, here is how the above four rules can be derived in our system:Lemma 4.2 In '�BLT , the rules VarCons, Abs, SCons and Beta are derivable.Proof:� VarCons:[j1[a � s]]j = [j(a � s)1]j = (([ja]j�(1))� (ti�1�({>1)))1!� [ja]j.� Abs:[j(�a)[s]]j = (ti�({))(�)[ja]j !� (�)((')ti�1�({>1))[ja]j,since (ti�(i))(�)[ja]j !� (�)((')ti�(i+1))[ja]j for each i;[j�(a[1 � (s� ")]]j = (�)((1�(1))� ((')ti�1�({>1)))[ja]j == (�)((')ti�1�({>1))[ja]j,since [js� "]j = (( j + 1 �(|))ti�({)) = ((')ti�({)).� SCons:[j1[s] � (" �s)]j = ((ti�({))1�(1))� ((tj�(|))i�({>1)) == (t1�(1))� (ti�({>1)) = (ti�({)) = [js]j.� Beta:The traditional rule of �-reduction has the following form in our system(t1�)(t2�)!� ('(�1))((')t1�(1)).This enables us directly to derive the translation of the Beta-rule:[j(�a)b]j = ([jb]j�)(�)[ja]j !� ('(�1))((')[jb]j�(1))[ja]j;[ja[b � id]]j = (([jb]j�(1))� ( i� 1 �({>1)))[ja]j =(([jb]j�(1))� ('(1;�1)))[ja]j.Hence, [j(�a)b]j = [ja[b � id]]j from Lemma 4.1. 2This section hence, showed that the whole of [1]'s system can be translated intoours and that some of what they take as rules are easily derivable in our system.This shows that our system is more general than theirs.It is also possible to give a translation the other way round. To achieve thatpurpose, we have to express �-items (t�(i)) and '-items ('(k;l)) by means of theoperators id, ", � and �. Here below we give these translations, where we adopt theconvention that the �- operation is associating to the right, so a � b � s means a � (b � s).Then the following correspondences hold (here we identify the notations t and[jt]j):� (t�(i)) = 1 � 2 � : : : � (i� 1) � t � (")i and



� ('(k;l)) = 1 � 2 � : : : � k � (")k+l.In particular, (t�(1)) = t� ".Also, ('(n)) = ('(0;n)) = (")n, (') = ('(1)) =" and ('(0;�1)) = (")�1 = 1 � id .When we de�ne k! to be 1 � 2 � : : : � k, then the above rules can be simpli�ed to� (t�(i)) = (i� 1)! � t � (")i and� ('(k;l)) = k! � (")k+l,provided that we add the rule 0! � s = s.Finally, we give the correspondence between our system and the *-operator of[10]:� If s = �i(ti�(i)), then * (s) = �i((')ti�(i+1)).The translation from our system to Abadi et al. was only carried out for thesake of completeness and because it is the norm that has to be carried out whencomparing two systems. Our claims still hold, that is, we can translate all of theirsystem in our and we can show that some of their rules are derivable in ours. It isnot likely that we have redundant rules which can be derived in their system. Infact, this is also the di�erence between the two systems. Ours just has the rules ofthe �-calculus. Theirs, has many many rules which as we have seen here, can begot rid of in our system.5 Advantages, Conclusions and Further WorkWe believe that the notation in this paper deserves attention. We showed howit can facilitate the introduction of substitution as an object level notion in thelambda calculus resulting in a system which can accommodate most substitutionstrategies. We showed for example, how local and global substitution can be ob-tained in a unique formulation which can provide the most general substitution inthe �-calculus and all desirable forms of substitution. This is an important step onits own. We have shown that the substitution calculus of [1] can all be translatedinto ours, together with the result that many of their axioms are easily derivable inour calculus. This again is a nice result. Also, our calculus accommodates explicitsubstitution in a calculus very close to the classical formulation of the �-calculus,whereas [1] uses a notation that is not easily grasped at �rst for those who areunfamiliar with it. Below, we discuss the advantages of our notation and explicitsubstitution together with an insight into further work. The advantages of the newnotation do not stop at substitution, but extend to all branches of the �-calculus.The layered representation of terms can be a natural basis for the allocation of thefree and bound occurrences and for the �'s binding particular variables. It can alsobe used to restrict the attention to those subterms of a term relevant for a particularapplication.



5.1 Advantages of the notationWe started in Section 2 with a novel description of term formation, regarding ab-straction and application as binary operations. The item-notation of terms enabledus to create a term progressively, or module-like, so to say, in analogy with the man-ner in which mathematical and logical ideas are developed. Variables and variablebindings obtained a natural place in this setting, both in the name-carrying and inthe name-free version, the latter by means of de Bruijn-indices.Two notational features are of great advantage in this respect: the �rst is togive the argument prior to (i.e. in front of) the function; the second, of minorimportance, is that a type precedes the variable which it regards.The advantages of our new notation are summarized below. The reader however,will appreciate the new notation more through [23] and [24].� The convention of writing the argument before the function has a practical ad-vantage: the �-item and the �-item involved in a �-reduction occur adjacentlyin the term; they are not separated by the \body" of the term, that can beextremely long! It is well-known that such a �-�-segment can code a de�nitionoccurring in some mathematical text; in such a case it is very desirable forlegibility that the coded de�niendum and de�niens occur very close to eachother in the term.� The notation provides a general vehicle for describing many type theories andcalculi. This point has been elaborated in [24] where systems from Baren-dregt's cube are special instances of our own. Further, we showed there howtheorem proving in the calculus of constructions (see [9]) could be more easilydone in our framework.� Bound and free variables are easily accounted for as can be seen from Exam-ple 2.43.� Items and segments play an important role in many applications. As explainedbefore, a �-item is the part joined to a term in an abstraction, and a �-itemis the part joined in an application. In using typed lambda calculi for e.g.mathematical reasoning, �-items may be used for assumptions or variableintroductions and a �-�-segment may express a de�nition or a theorem (See[22], [23] and [24]).� There are further advantages, but for the purpose of this paper, we decided toconcentrate on explicit substitution. We will below summarize what we didrelating to this subject.5.2 Advantages of explicit substitution and of our formula-tion of itIn Section 3 we focussed on the relation of reduction. We di�erentiated betweenseveral versions of �-reduction, for example between global �-reduction (the ordi-



nary one) and local �-reduction, necessary for unfolding a de�ned name in only oneplace.In describing these versions of �-reduction, we de�ned the notion of step-wisesubstitution, being the utmost re�nement of the reduction-concept. For this step-wise reduction we introduced �-items as a part of the term syntax, thus makingsubstitution an explicit procedure.When using de Bruijn-indices, we have to make sure that the references in aterm are updated during or after a substitution. For this purpose we introduced'-items, which again do their job in a step-wise fashion.We also gave a general step-wise substitution, with the purpose of keeping thereferences (by de Bruijn-indices) unimpaired, also inside the �-items. As to thereducible segments, we keep them present until they are no longer necessary, thenwe get rid of them using the notion of void �-reduction.In Section 4, we introduced the calculus of [1], and showed that it is only aspecial case of our calculus by providing a translation of the �rst in the second.This translation can also be viewed as a soundness proof. We showed moreoverthat many of the axioms that are postulated in [1] are very easily derivable inour system, which shows that our calculus is more attractive. In fact, it is ourconviction that the step-wise substitution as introduced in this paper is easier andmore manegeable than the proposal for explicit substitution in [1]. Our approachis very close to intuition, yet the formulation remains simple. Here is a summaryof the usefulness of explicit substitution and of the advantages of our formulationof it.� �-reduction is too radical in the case when a de�nition is coded (see Exam-ple 3.1). Therefore local forms of reduction are needed.� Substitution is ine�cient and may be exploding. Therefore we might wish topostpone substitutions as long as possible. The ability hence to control whatsubstitutions to carry out and when is very important.� The step-wise character of our reduction relation and of our many describedprocedures enables a exible approach, in the sense that the user may choosehow to combine basic steps into combined ones, depending on the circum-stances. For instance, global �-reduction amounts to the generation of one�-item, and subsequently chasing this item along all possible paths in thedirection of the leaves of the term tree, until no descendants of the original �-item are left. For local �-reduction the �-item has to follow precisely one path,in the direction of the variable that is chosen as a candidate for substitution.� The possibility of labelling �'s, �'s and �'s so as to control which local substi-tutions to carry out is an evidence of the exibility of our account.� The step-wise substitution introduced in this paper is more manageable thanthat of [1].



� Our substitution allows most strategies (local, global, in between) and all iscontrolled by the user.5.3 Further workNow, as for further work, it is known that substitution plays an important role inlogic (in quanti�er introduction or elimination, to give an example). The notions offree/bound variables are also very important there. Moreover, combining �-calculuswith logic leads to inconsistencies if no restrictions are made. Based on these facts,[11], : : :, [20] provide various theories which attempt at combining �-calculus withlogic and at avoiding the paradoxes through types, or through �-abstraction. Theseattempts are also applied to various notions of logic, programming and naturallanguages, such as polymorphism, �xed point theorems, quanti�ers, determiners,unde�nability results and uni�cation. Explicit substitution has not taken place yetin these areas and this will be followed in the future.To give one example from Computer Science which would bene�t from explicitsubstitution, we take pattern matching and uni�cation as used in functional andlogic programming. We have not yet tried to study the implications of our systemon pattern matching and uni�cation, but we plan to do so in the near future.As for more foundational issues, we know that the Church Rosser theorem holdsfor our calculus but we would like to work out the details. We have no doubt thatthis is a straightforward process similar to the usual proof of Church Rosser. As forthe semantics of explicit substitution, and the models of our calculus, this too is anarea that we will investigate in the very near future.6 AcknowledgmentsWe would like to thank Bert van Benthem Jutting, Inge Bethke, Tijn Borghuis,Kees Hemerik, John Launchbury, Erik Poll and the anonymous referees for theirhelpful comments and recommendations. We are also grateful for the help receivedfrom various members of Eindhoven University, concerning Latex. In particular, wethank Jos Coenen and Jan Joris Vereyken, for their help.References[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy, \Explicit Substitutions", Func-tional Programming 1 (4) (1991) 375-416.[2] H. Barendregt, Lambda Calculus: its Syntax and Semantics (North-Holland, Amster-dam, 1984).[3] H. Barendregt, \Lambda calculi with types", in Handbook of Logic in Computer Sci-ence II, eds. S. Abramsky, D.M. Gabbay and T.S.E. Maibaum (Oxford UniversityPress, 1992).
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