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Abstract

This paper argues that the basic problems of nominalisation are those of set theory.
We shall therefore overview the problems of set theory, the various solutions and as-
sess the influence on nominalisation. We shall then discuss Aczel’s Frege structures and
compare them with Scott domains. Moreover, we shall set the ground for the second
part which demonstrates that Frege structures are a suitable framework for dealing with
nominalisation.
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1 The Problems

We shall examine the problem of the semantics of nominalised terms from two angles: the
formal theory and the existence of models.

1.1 The problem of the formal theory

Any theory of nominalisation should be accompanied by some ontological views on concepts
— for predicates and open well-formed formulae act semantically as concepts. This is vague,
however, if only because where I use the word concept, someone else might use class, predicate,
set, property or even system(Dedekind). This terminological profusion is hardly surprising,
for we are touching on the problem of universals, a problem philosophers have been debating
for hundreds of years. (This new term — universal — may be more confusing than any of
the others, but we may use Aristotle as a preliminary guide and define a universal to be that
which can be predicated of things.) The aim of this section is not to take a standpoint on any
of the philosophical theories of universals; rather it is to show that, no matter what approach
we adopt, nominalisation is going to generate a problem.



1.1.1 Ontology, concepts, predicates, properties and sets

According to Quine in [Quine 1969], page 1, “the notion of a class is such that there is
supposed to be, to the various things of which that sentence is true, a further thing which is
the class having each of those things and no others as member.” As an example we take the
sentence being an x such that the colour of x is red. We have in our universe various things
of which this sentence is true; but perhaps we can also say that the class of all those things
which are red also exists in our universe. I say perhaps because it will be shown shortly
that if we let any open sentence determine an object which is the class of all those things of
which the sentence is true, we run into difficulties. To see this clearly it is important that the
reader bear in mind the following four notions: the Comprehension Principle, Quantification,
Interpretation and Russell’s Paradoz. I shall comment here on how each such notion is to be
understood in the present context.

The Comprehension Principle This is the principle which decides which open sentence
in our theory determines a class (or set) of precisely those entities that satisfy it.

Quantification Take a class which stands for an open sentence (i.e. the class of all those
objects which when substituted for the free variables in the open sentence returns true). Does
this class act exactly like any other object in our universe? If so, should we be able to quantify
over it?

Interpretation Should we keep to a full classical interpretation or use a non-classical
one? If we keep to a full classical interpretation, and assume that the comprehension principle
applies to each open sentence and that we have full quantification, we will fall foul of Russell’s
paradox.!

Russell’s paradox The paradox derives from assumptions similar to the following: Let
S be the set of all sets that do not contain themselves. Such an assumption is contradictory
for we can deduce from it that S is in S iff S is not in S.

The important point to concentrate on is how these four notions interact, and in particular
to note that an assumption of full comprehension (i.e. every open sentence determines a class)
and of full quantification (i.e every class acts exactly like any object and can be quantified
over) will, under some interpretations, lead to Russell’s paradox. This point will be presented
in more detail in the following section. We will now describe the four main conceptions of
universals, all of which will have to face up to this sort of problem.

1. Realistic conception (Platonism) Platonists take concepts to be real properties.
That is, concepts are language/observer independent entities. Platonists also subscribe
to an unrestricted (or full) comprehension principle, i.e. to each well defined condition,
there exists a set (or class) of all entities satisfying the condition. Moreover, this set
is an entity in its own right and can be quantified over. According to this conception,
interpretation is much more important than language and therefore it seems obligatory
to use the referential (and not the substitutional) interpretation where a substitutional
interpretation of the quantifiers [[]]s , involves truth clauses of the following kind:
[3z®]]s,4 is true < for some name a in the language, [[®[a/z]]]s 4 is true.

[Va®]]s,4 is true < for every name a in the language, [[®[a/x]]]s 4 is true.
By contrast, Referential interpretation [[||g 4 treats quantifiers as follows:
[Fz®]|g,g is true & for some object a in the model, [[®[a/z]]|r,q is true.
[Vz®]|g,4 is true < for every object a in the model, [[®[a/x]]|r,4 is true.

1t should be noted that the paradox occurs even in intuitionistic theories.



2. Formalist conception (Nominalism) Formalists, of whom Hilbert was the father,
insist on the paramount importance of language. Hilbert’s program, as it is well known,
consisted of separating signs and meaning and only allowing finitary arguments in the
proof theory. Had the program worked, it would have made it easy to prove things about
the theory inside the theory itself. Godel’s result made apparent the impossibility of
carrying out this aim — and as has been said by Quine ([Quine 1969]): “Godel’s proof
is beyond doubt, we can philosophise about it but we can not philosophise it away”’. Ac-
cording to the formalists, concepts are predicate expressions which do not exist beyond
our linguistic expressions. Open sentences are excluded from standing for concepts,
and furthermore the comprehension principle is restricted. As language is the most
important thing for them, interpretation is secondary. Thus it seems that the obvious
semantics should be based on a substitutional interpretation.

3. Conceptualism Borrowing a sentence from Fraenkel (at the end of [Fraenkel 1973],
page 336): Conceptualists are “attracted neither by the luscious jungle flora of platon-
ism nor by the ascetic desert landscape of neo-nominalism”. Concepts here are neither
predicate expressions nor real properties. They are not objects but unsaturated entities,
the saturation of which results in a mental act and not necessarily a truth value. Some
conceptualists are constructive and construct only those sets that correspond to predica-
tive conditions; some others accept an unrestricted comprehension principle. However
all of them care for interpretation, and in a semantics for a conceptualistic theory one
should consider a referential interpretation where the meaning of a concept applied to
an object does not necessarily have to be a truth value.

4. Fregean conception It might be said that Frege is both a realist and a conceptualist
but; he is anti-formalist and tends to lean towards conceptualism. The ontology assumed
by Frege of concepts was that they are functions of one argument whose values are
always truth-values. Concepts, according to him, are unsaturated, and the behaviour of
a concept is predicative even if something is being asserted about it. The unsaturation
of a concept comes from the fact that concepts can never themselves be objects and only
by applying the concept to an object can we obtain a saturated element (an object which
is a truth-value). Assertions that are made about concepts do not apply to objects: for
example, existence is a property of concepts and not of objects. However, the way we
attach properties to concepts consists in predicating the property not of the concept
but of the concept-correlate. This concept-correlate is the extension of the concept,
according to Frege, and is an object. We said that concepts here are functions: thus
the graphs of functions are objects even though functions themselves are not. This is
exactly the case with concepts and their extensions. The extensions are objects but
the concepts themselves are not. The extension of a concept does not fully determine
the concept, for we can have two extensions which are the same while the concepts
themselves are not. Frege always warned against confusing a concept with its extension
and defined sets and classes to be the extensions of the concepts, not the concepts
themselves: “sets and classes are objects whereas concepts are anything but objects”.
Something falls under a concept and the grammatical predicate stands for this concept.
A name of an object is incapable of being used as a grammatical predicate. For Frege,
the saturation of a concept results in a truth-value and according to him each open
sentence denotes a class. Those classes are objects and can be quantified over. Being



an anti-formalist he insisted on interpretation, but as is well known he paid a high price
for these relaxed conditions: his theory, known as the naive theory, was found to be
subject to Russell’s paradox, since the concept the set of all those things that do not
belong to themselves has an extension K which is a proper object. Thus his theory is
contradictory.

To avoid inconsistency, some people restricted their comprehension principle but still
allowed unlimited quantification; others restricted both quantification and comprehension.
Let us here examine in detail how the Russell paradox can threaten theories of nominalisation;
and then we shall meet some solutions to the problem.

1.1.2 A language of nominalisation

If we are going to assume a first order language of nominalisation and we are going to let any
open well-formed formula stand for a concept, then we might fall into the paradox. This is
shown as follows: take a first order calculus and add to it a new primitive relation € and the
axiom:
Comprehension For each open well-formed formula ®, JyVz[(x € y) < P(x)] where y is
not free in ®(x).
This theory is obviously inconsistent, for take ®(z) to be =(x € x). Then we get:
JVz[(z €y) & ~(z €x)] = Va[(z €y) & ~(z €x)]| = [(y €y) & ~(y €y)].

In this theory of nominalisation, we assumed that each open well-formed expression deter-
mines a concept whose extension exists and is the set of all those elements which satisfy the
concept. We could restrict our comprehension principle so that ®(x) stands for everything
except —(z € z), but this will not save us from paradox. To see this let ®(x) stand for
—(z €2 x) where (z €3 y) abbreviates (32)((z € z) A (z € y)). Again, ruling out this instance
is not enough for we will still get the paradox if we take ®(z) to be —(z €3 y). This process
continues ad infinitum. We could rule out all such instances —but the problem will persist,
for take a sentence ®(x) like: — (321, 22,...)[... (23 € 22) A (22 € 21) A (21 € )] and let y be
the class obtained from the comprehension axiom for ®(x).

o If (y € y) then =(321, 29,...)[... € 22) A (22 € z1) A (21 € y)]. But we can take z; = z9 =
... =y, and get a contradiction.

o If =(y € y) then (321, 22,...) [... € 22) A(22 € 21) A (21 € y)]. But as (21 € y) then ®(y);
however we have that =®(y). Contradiction.

We have assumed above a first order language of nominalisation but we do not take a
standpoint on whether we need higher order languages.? We shall hence show that we also
face the problem with higher order languages. For this I shall use a second order theory due
to Cocchiarella’s formulation of second order logic with nominalised predicates which appears
in [Cocchiarella 1984]. This language essentially embodies Frege’s conceptions of concepts
and objects summarised above, according to which we need to quantify over our predicates.

2We will however, remark en passant that it seems we do not need to go higher than second order languages
for the semantics of nominalisation. In fact, according to Frege’s conception, we stop at second level concepts,
but these can be mapped into first order concepts which in turn can be mapped into objects. So when we
come to quantify over properties, we really quantify over their extensions which are objects.



Moreover, predicate quantifiers have a referential significance, even though predicates them-
selves are not singular terms. I shall start by writing down the axioms and rules of a second
order language which will accommodate nominalised predicates. If this language is to allow
us to talk about nominalisation, it should have a device which can turn any open wif (well
formed formula) or predicate into a singular term. For example, we should turn run into to
run, the sun is grey into that the sun is grey and so on. Clauses (1), (8) and (9) below will
see to this.

The typing of the language is as follows:

0 represents the type of all singular terms,

1 represents the type of propositions,

n+1 represents the type of n-place predicates, for n > 0.

For each n > 0 assume the existence of denumerably many variables. I shall use the
following metavariables:

x,, ... refer to individual variables

u, ... refer to both individual and predicate variables

F,,G, ... refer to n-place predicate variables. We can get rid of the subscript when no
confusion occurs

,Y, z,w, ... refer to individual variables.

a,b, ... refer to singular terms.

The primitive symbols of the language are: =, -, =V, A. The others are defined in the
metalanguage. The meaningful expressions of any type n, M E,, are defined recursively as:

1. Every individual variable (or constant) is in M Ej and every n-place predicate is in both
MEy and ME, 1, for n > 0.

2. For a,b in M Ey, (a = b) is in M E}.
3. IflTisin ME, 1, and ay,...,a, are in M Ey then Il(ay,...,a,) is in M E;.

4. If ®isin M E; and x4, .., z,, are pairwise distinct variables, where n > 1, then [Az1, ..., z,F]
is in MEy4 ..

5. If ® in ME; then =@ is in M F;.

6. If &, ¥ are in M E; then (& = V) is in M E;.

7. If & is in M Ey, u is an individual or a predicate variable then Yu® is in M F.
8. If @ is in M E, then [A®] is in M Ej.

9. For all n > 1, M E,, is included in M Ej. (9 does not follow from 1.)

Axioms:

e (A0*) All tautologous (classical) well formed formulae.

o (A1*) Yu(® = ¥) = (Vud = Vul), for u an individual or a predicate variable.

(A0*)
(A1%)
e (A2%) & = VYud , for u an individual or a predicate variable not free in ®.
(A3%)

e (A3*) Jz(a = z), for a singular term in which x is not free.



e (A\*) (a =0) = (® & ¥) where a, b are singular terms and ¥ comes from ¢ by replacing
one or more free occurrences of b by free occurrences of a.

e (CP*) IF, Va1, ..,xp[Fy(z1, .., z,) < @] where F), does not occur free in ¢ and z1, .., x,
are distinct individual variables.

o (A-CONV*) [Azy,...,2,®)(a1,...,ay) & ®(a1/x1,...,ay/x,) where ay,. .., a, are sin-
gular terms and each q; is free for z; in ®.

o (ID X*) [Az1,...,2,R(2z1,..,2,)] = R for R an n-place predicate variable or constant.
Inference Rules: The two inference rules are MP and UG, where

e MP is: infer from ® = ¥ and @ that .

e UG is: infer from @ that Yu® where w is an individual or a predicate variable.

The system (just described) is subject to Russell’s paradox, for take the special instance
of (CP*): IFVx[F(z) & 3G[r = GA—-G(x)]]. The presence however of (CP*) is necessary for
second-order logics with nominalised predicates and the problem comes from (CP*) together
with (A3*) under various logical laws.

From our above discussion, it seems that set theory is very basic to nominalisation. Let
us hence, comment on the ontological status of sets and on the nature of Russell’s paradox,
as the solutions depend on both issues.

1.1.3 The ontological status of sets

There are two main views of sets: the mathematical conception of set and the logical concep-
tion. According to the mathematical conception, a set is determined by the elements that
belong to it. E.g. {1,2,3} is the set of the numbers 1, 2 and 3. The logical conception, on
the other hand, regards sets as existing according to their defining concepts, and not their
constituent objects; so here {1,2,3} might be the set of positive integers less than 4. Frege’s
conception of set was a logical one, and is known in the literature as the naive conception of
set. According to this view, any predicate has an extension and sets are extensions of pred-
icates. However, under the classical laws of logic and especially the law of excluded middle
(LEM) and non-free logic (where not necessarily each element denotes), this notion of set is
subject to Russell’s paradox. However, the paradox holds even in minimal logic and other
non-classical logics, e.g. we can derive the paradox without the use of LEM which means that
the paradox is intuitionistically derivable. I shall illustrate the occurrence of the paradox by
assuming both LEM and that every predicate has an extension. Now, if one chooses P(z) to
be —(z € z), then {z : =(z € z)} is an r to which LEM applies. So we have either (r € r) or
=(r € r). In both cases we get a contradiction.

After Frege’s naive set theory was shown to be inconsistent, set theorists were anxious
to solve the problem, and many directions were followed to overcome the paradox. Frege
himself had something to say about the paradox. He stated that if one abandoned the naive
conception and the use of full comprehension, it would not be obvious how to define numbers
(see [Frege 1970], Frege on Russell’s paradox). This follows because the essential definition of
numbers in Frege’s theory was based on the existence of extensions of concepts — thus the
paradox shook Frege’s whole theory. Frege suggested that the solution lay in either banishing



LEM for classes, or forbiding some concepts from having extensions. He was not satisfied with
the first solution because he wanted classes to be full objects - and full objects obey LEM.
If classes are to be considered as improper objects then this will create an infinite number
of types in the theory, for we are going to have functions that apply to proper, improper or
mixed arguments. Frege was not in favour of that solution, and preferred to acknowledge the
existence of concepts that have no extensions. This would affect axiom (V) and in particular
(Vb) where (V) and (Vb) are as follows:

(V) 2 f(z) = 2'g(z) <= Vz(f(x) & g(x)), where 2’ f(z) is the extension of f

(Vb) 2'f(2) = 2'g(z) = Va(f(2) & g(x)).

This axiom states that if two concepts are equal in extension then whatever falls under
one falls under the other (see [Frege 1970], pages 214-224 ). Frege made only general remarks
about the inconsistency and did not pin down what caused the problem. He sometimes felt
the problem lay in (Vb) and at other times thought that the assumption of the existence of
an extension to each concept was to blame. However, (Va) the opposite direction of (Vb),
is acceptable as it takes us from equality that holds in general to an equality that holds of
graphs (or extensions). But according to Frege (in [Frege 1970] page 219), “We cannot in
general take the words ‘the function ®(c) has the same graph as the function ¥(c)’ to mean
the same thing as the words ‘the functions ®(c) and V(c) always have the same value for the
same argument’; and we must take into account the possibility that there are concepts with
no extension (...)”. This is true; however, Frege did not realise that his domain of concepts
was far too big. Concepts are propositional functions but according to Frege’s conception,
there are far more propositions than there should be. For each object a, —a (the content of
a) is a proposition even though a was not. Thus Frege has far too many concepts and some
paradoxical sentences stand for concepts when they should not do. Accordingly, a way of
ruling out the paradox might be to restrict the number of concepts. Let us look again at
the paradoxical sentence: the set of all things that do not belong to themselves. Under the
restriction strategy, we cannot tell whether this sentence stands for a concept or not, as we
do not know if this is a propositional function or not so we cannot think of its extension. We
could say that there were two ways of reformulating set theory. One is to abandon Frege’s
definition of set and use the mathematical notion instead. The second is to keep to the
logical definition of set and try to make it consistent. To conclude this section, it is worth
drawing attention to the role self reference plays in these set theoretic paradoxes. Paradoxes
involving self reference are well known in the literature, and are of two kinds: logical and
semantical paradoxes. Russell’s paradox has been classified under the logical category, as
have the barber’s paradox and Cantor’s paradox. Of the semantical paradoxes, we mention
the Grelling’s  and The liar’s paradoxes.

1.2 The problem of the existence of models

The theory discussed in 1.1 is inconsistent, so it does not have models. But even in the case
of a theory whose consistency we are sure of, we still sometimes cannot imagine what the
models look like. This section describes what a model of nominalisation should be, and what
the difficulties of constructing such models are.

3Some adjectives possess the proeprty that they denote (e.g. English, Polysyllabic) and some do not (e.g.
French). Call the second type heterological; then heterological is heterological iff heterological is not heterological.
Another example of this paradox is: A concept is predicable if it can be predicated of itself, otherwise it is
impredicable. Hence impredicable is impredicable iff impredicable is not impredicable.



1.2.1 What a model should look like

A model of nominalisation will be roughly as follows: M = (U, P, f) where U is the domain of
objects, P is the domain of functions from U into {0, 1} and f is the nominalisation function
which is needed for nominalisation as predicates should be turned to objects in order that
they can be applied to themselves. f is a function from P into U which should be injective.
This implies that P is a subset of U up to an isomorphism. Let me describe in more detail
what this means. In trying to build our semantic function which maps each syntactic entity
into a semantic one, we should do the following:

(1) Map individual variables and singular terms into objects in U.

(2) Map the predicates into P, the domain of the first order properties. The nominalised
items are singular terms and they are mapped into U. The function f acts as a nominalisation
function, assigning to each element p of P, an element in U called the correlate of p. This
correlate is the denotation of the nominalised item that corresponds to the predicate.

f: P — f(P) is an isomorphism because:

e f is well defined: We assume that each property has a single correlate.

e f is injective: We assume that each two distinct properties in P have distinct correlates
in f(P).
e f is surjective: Because every element in f(P) corresponds to an element in P.

So in constructing a model of nominalisation, we should construct three domains such
as U, P and f(P) satisfying the condition that P (or f(P)) is a subset of U. According to
Cantor’s diagonal theorem, we cannot take P to be the set of all functions from U to {0,1}.
We have to restrict P, but we should not restrict it too much, for we would like to obtain the
nominal of all the desired items.

1.2.2 Difficulties with such models

Cantor’s Theorem will pose a difficulty to any theory which aims to make functions play the
role of objects. According to Cantor’s theorem which states that if S is any set, then the
power set of S has a greater cardinality than S, the cardinality of a function space is bigger
than the cardinality of the domain itself.

1.2.3 Existence of models

The above shows that we are going to have problems constructing models of nominalisation
—recall that we previously wanted P to be a subset of U, but by Cantor’s theorem the
cardinality of P is greater than that of U. In essence, we need to find ways of restricting
P without either lapsing into triviality or running foul of Cantor’s theorem. That is, we
are looking for interesting restrictions —restrictions which leave us with enough functions for
nominalisation. We must break the ties created by the old tradition and build somewhat more
original models. We shall in the following paragraph talk about different ways of proving the
existence of non-trivial models which are not susceptible to Cantor’s argument. Those models
will contain denotations for all nominalised items. Scott models and Frege structures both
possess this property; but as we shall see, the former have a difficulty regarding quantification,
while the latter do not. Non well founded sets on the other hand are a third kind of model
that should be looked at from a different angle.



2 The different solutions to the theoretical problem

We said that the theoretical problem is mainly a problem of set theory and of predication
theory. The following is a summary of various set theories and their application to the
development of theories of nominalisation.

2.1 Notes on set theory
2.1.1 Altering the language

Since Russell’s letter to Frege, concerning the inconsistency of Frege’s system, there have
been many attempts at overcoming the paradox. The first two accounts of avoiding the
paradox by restricting the language were due to Russell and Poincaré. They both disallowed
impredicative specification: only predicative specification (as will be defined below) was to be
permitted. Russell’s own solution (in [Russell 1908]) was to adopt the vicious circle principle
which can be roughly stated as follows: “No entity determined by o condition that refers to
a certain totality should belong to this totality”. Poincaré (in [Poincaré 1900]) took refuge in
banning “les définitions non prédicatives” which were taken by him to be: Definitions by a
relation between the object to be defined and all individuals of a kind of which either the object
itself to be defined is supposed to be a part or other things that cannot be themselves defined
except by the object to be defined. So both Russell and Poincaré required only predicative sets
to be considered, where A = {z : ®(x)} is predicative iff ® contains no variable which can
take A as a value. This helps because it is otherwise very easy to get a vicious circle fallacy if
we let the arguments of a certain propositional function (or the elements of a set) presuppose
the function (or the set) itself. Russell’s and Poincaré’s solution was to use predicative
comprehension, instances of which start with individuals, then generate sets, then new sets
and so on as in the following example: Take 0 at level 0, {0, {0}} at level 1,{0,{{0}},{0,{0}}}
at level 2 and so on. Russell’s simple theory of types in Principia Mathematica applied the
vicious circle principle, assuming all the elements of the set before constructing it. This theory
obviously overcomes the paradox for the sentence ® denoting —(y € y) is not stratified. Let
us recall that the concept of stratification for it is going to form an important step in our
discussion and assessment of our theory in terms of the others. There are two types of
stratification: homogeneous stratification and heterogeneous one. A well formed formula @ is
said to be heterogeneously stratified if there is a function f from the variables and constants
of ® to the natural numbers such that for each atomic well formed formula F(zy,...,x,) of
O, f(F) = 14+maz[f(z;)]. © is said to be homogeneously stratified if the function f is further
restricted so that f(x;) = f(x;) for 0 <i,j <n.

This approach (of Russell and Poincaré) is rather unsatisfactory from the point of view
of nominalisation, for the following reasons:

1. We need formulas which are not stratified (i.e. where we have impredicativity), such as
the sentence it is nice to be nice. In fact sentences that involve self application or self
reference are not there because they are not stratified. However self application and self
reference are fundamental to nominalisation.

2. A class can have members only of uniform type. Also, sets here can neither belong to
themselves, nor contain other sets from the same level. Hence again no self reference.



3. Also most of our structures get reproduced at each level. For instance, universal classes,
numbers and Boolean algebras. There is however, another approach which falls under
this category, that of Cocchiarella’s \HST* in [Cocchiarella 1986]. AHST* uses homoge-
neous stratification where the paradox is avoided by disallowing problematic A-abstracts
from being well-formed. AHST* however, allows for formulas such as Nice(Nice) to be
expressed and to be provable. This approach though, is rather different from that of
Russell’s type theory. Predicates are not typed in this system as part of the object
language the way they are in Russell’s type theory.

2.1.2 Altering the axioms

o lterative sets We can avoid the paradox by altering not the language but the axioms of
the theory. The most straightforward such theory is ZF (Zermelo-Fraenkel) where the
axioms are made to fit the limitation of size doctrine; that is, sets are not allowed to
get too big too quickly. Take the system of first order logic provided in 1.1, and alter
comprehension to the following axiom which is known as the separation axiom:

For each open well formed formula ®, 3xVy[(y € z) < (y € z) A @] where = does not
occur in @.

It is exactly this new axiom which is responsible for the elimination of the paradoxes.
Take Russell’s paradox: to prove the existence of {x : =(z € x)} we need a z big enough
so that {z : =(z € )} is included in z. But we cannot show the existence of such a z.
More precisely Russell’s paradox is restricted in ZF as follows:

Take ®(z) to be —(z € 2),
take zc ={y: (y€z)A-(y €y)}

— If (r € x) = (x € z) and —(x € z) contradiction,
—If-(rer) =

x if (z € z) = (z € x) contradiction,

* if—(z € z) then we are fine.

So the limitation of size doctrine exemplified by the above axiom is how we avoid the
paradox. Note however that we still have sets which belong to themselves, for if we
take ®(z) to be z € x then J2Vz[(x € 2) & (z € a Az € x)], yet those sets have to
belong to some already existing sets. Throughout the development of ZF, it was felt
that the following foundation axiom (which is independent of and consistent with all
other axioms of ZF) has to be added:

(FA) (Fz)(z € a) = (Fzr € a)(Vy € 2)~(y € a)

As a corollary of (FA), we have that there is no set a which has itself as its only element,
for if there was then take x = a in (FA) above and you get (3z € a)(Vy € z)—(y € a),
which is absurd. In fact, it is easy to prove the following corollaries of (FA):

1. No solution for a = {...{a} ...} exists, where {...{n times for n > 0.

2. No solution for a = {a,b},b # a exists.

3. No solution for a = {b, {a}} exists.
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4. No solution for a = {{b},{a,b}} (i.e. a = (b,a)) exists.

5. No solution for a €; a for i > 1, where x €; y < (I21,...,2i—1)(x € zi—1 € ... €
21 € Y).

It is worth pointing out that although very different conceptually, both the simple
theory of types and ZF which of course includes (FA), give rise to an iterative concept
of set. That is, both require the elements of a set be present before a new set can be
constructed [Boolos 1971]. This implies that ZF is not adequate for nominalisation.

2 non iterative sets, NF' and ML ZF is not the only axiomatic approach aimed at
restricting the paradoxes. In NF (New Foundations), Quine restricts the axiom of
comprehension of 1.1.2, to obtain the following:

(SCP) JxVy[(y € =) & P(y)] where z is not free in ®(y) and P(y) is stratified.

Thus it applies only to stratified formulae and now the only concepts that are allowed
to have extensions are the concepts that correspond to these stratified formulae. In ZF,
we did not have a universal set whereas in NF we do, for take = x, this is a stratified
formula and hence NF can have nominalisation. Moreover, NF has only one universal
set, one complement of each set, and one null set. Furthermore, Cantor’s theorem does
not hold in NF (the universal set is equinumerous to its power set). However, NF is
weak for mathematical induction and the axiom of choice is not compatible with NF.
We cannot prove Peano’s axiom [s(n) = s(m) = n = m] in it, unless we assume the
existence of a class with m+ 1 elements. Also, NF is said to lack motivation because its
axiom of comprehension is justified only on technical grounds and one’s mental image of
set theory does not lead to such an axiom. To overcome some of the difficulties, Quine
adopted similar measures to B-G (Bernays-Gaodel) set theory. Like B-G, ML contains
a bifurcation of classes into elements and non-elements. Sets can enjoy the property
of being full objects whereas classes cannot. ML was obtained from NF by replacing
(SCP) by two axioms, one for class existence and one for elementhood. The rule of class
existence provides for the existence of the classes of all elements satisfying any condition
®, stratified or not. The rule of elementhood is such as to provide the elementhood of
just those classes which exist for NF. Therefore, the two axioms of comprehension of
ML are The axiom of comprehension by a set:

(1) dyVz(z € y & P(x)), where ®(z) is a stratified formula with set variables
only in which y does not occur free.

The axiom of impredicative comprehension by a class:

(2) JyVz(x € y & ®(x)), where ®(z) is any formula in which y does not occur
free.

ML was liked both for the manipulative convenience we regain in it and the symmetrical
universe it furnishes. It was however proved subject to the Burali-Forti paradox — The
well ordered set €2 of all ordinals has an ordinal which is greater than any member of
Q and hence is greater than 2. Our description above of Russell’s type theory, ZF set
theory and Quine’s NF and ML, has been brief, but should suffice to convince the reader
of the need to have as many sets as one can. It has been argued by those who favour
the iterative conception of set that we do not need self-application ([Boolos 1971]). But
we have seen the necessity of type-free theories and the development of many type free
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systems such as Feferman’s (in [Feferman 1979] and [Feferman’ 1984]). Kripke’s work
on the theory of Truth [Kripke 1975] is further evidence that we should not rule out self
referential statements and that we must look for a theory which allows for it. Godel’s
work and especially his proof of the incompleteness theorems, showed that self-referential
statements are as legitimate as arithmetic. Natural language is full of self-reference and
self-application like: There is nothing more beautiful than beauty. All this points to the
need for as many sets as possible, including sets that belong to themselves. All the
above set theories reject the impredicative specifications and assumptions of classes and
class existence, except ML which assumes impredicative clauses due to axiom (2) above.
Also, from above, iterative sets are well founded, but NF and ML are non well founded.
where a set a is non well founded iff (Jag,a1,...)(... € apt1 € ap € a1 € ap € a). Now
one can prove that (FA) implies the existence of only well founded sets.

e Non well founded sets Can we exchange (FA) for another which allows non well founded
sets? Would this axiom remain consistent with or independent of other axioms? The an-
swer is yes and many people have worked on various Anti Foundation Axioms ([Aczel 1984]).
But what is the (AFA)? In his account, Aczel looks at sets in terms of pictures, where
a picture of a set is an apg (accessible, pointed graph) with a decoration d such that
d (the node) = the set itself and d: Nodes — sets where d(n) = {dn’ : n — n’}. For
example, Qe is an apg and is a decoration of @ = {Q}. Q will exist due to the anti
foundation axiom, where

(AFA) Every graph has a unique decoration.

As a corollary of (AFA), one can prove that non well founded sets exist. In fact with
(AFA), all possible non well founded sets exist. (AFA) is consistent with ZF, and we do
not get the paradoxes with it. This is because it is not (FA) which was responsible for
avoiding contradictions but it was the separation axiom. In fact, here the same proof
as above will hold for the avoidance of Russell’s paradox in ZF, and we have seen when
we explained how Russell’s paradox is avoided in ZF (section 2.1.2), that we only used
the separation axiom and no mention was made for (FA) or (AFA).

2.1.3 Altering the logic

e Rejection of the law of excluded middle The paradox we faced was of the form:

(x € ) & —(x € ). Clearly the paradox can be avoided by dropping the assumption
of LEM that any one place predicate either applies to a given object or does not. Note
that here we can stick to two valued logics and that this system is not necessarily
intuitionistic. If we go back to the example of impredicative specification given at the
beginning of this section, according to this approach we can assume the existence of R,
the set of all elements which do not contain themselves. What we cannot do though is
assume that we have either (R € R) or =(R € R).

e Many valued logics (x € x) & —(x € x) would not be contradictory if a consistent
set of truth values was chosen. Consider as an illustration a three valued logic where
the truth values are 0 (truth), 1(false) and u(undefined). The above sentence is not
contradictory for we associate with (z € z) the value u and we define in the semantics
that the negation of w is u. Therefore u < —u is not contradictory and the paradox is
avoided. Note here that there are many three valued interpretations and that the status
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of u varies from one interpretation to another. For some, u acts as not yet known, for
others it is undefined. If we take the view that u is not yet known then we can order
our models according to the state of our knowledge. Knowledge is cumulative whereas
ignorance is not. What we know up to a stage, will always remain known after that
stage, but we will also know more things. Domains looked at in this way are ordered
and the fixed point theorem is applicable; this enables the construction of the limit
model which is a model of the limit of our knowledge.

Frege structures Frege structures are not only solutions to the problem of model exis-
tence, but are also systems of set theory in their own right: they single out that part of
Frege’s theory which is consistent. Frege structures could be classified as a restriction of
logic, and they free Frege’s notion of set from the paradox in the following way: the log-
ical constants can apply to any object, but the result will never be a truth value unless
the object itself was a proposition. The condition z € x is not necessarily a proposition
and so (z € x) & —(x € x) is not contradictory. In fact, the axioms of a Frege structure
only enable one to derive propositions from previously known ones. z here is however
arbitrary and so no deduction will give us « € x to be a proposition. The logic is weak
in this way: the logical constants still apply to any object as with Frege but the result
is a truth-value only if the object itself is one. With Frege this was not the case; he had
the operator — (which stands for content) and which gives the content of each object.
So —A is always a truth value whether or not the object A itself was a truth value. All
the other logical constants in Frege’s theory were applied to the content of the object
and so always resulted in a truth-value. So in particular -|- A (not A) is always a truth
value whether or not A was. Realising this about Frege’s theory, Aczel reduced the logic
to a weaker one where the logical constants only give truth values for truth values. In
Aczel’s Frege structures, the axiom (Vb) is not rejected. In fact the whole of axiom (V)
is proven as a theorem in Frege structures and does not need to be asserted as an axiom
as with Frege. Also, each concept has an extension, and decidable sets (the extensions
of decidable concepts) are objects to which LEM applies. In a Frege structure you can
prove that a set belongs to itself, (take R = {z : (x = z)}) and so it seems quite con-
venient to think of Frege structures as models for nominalisation. Before we move on,
we give a summary of the work that was carried out by Feferman in the foundations
of set theory. This is because Feferman’s work investigates all of these restrictions (i.e.
restricting the axioms, the logic or the language) and plays a crucial role in the area of
nominalisation.

2.1.4 Feferman and the foundational issues

Feferman, in many of his papers, has worked on the question of the paradoxes and the possible
solutions. He investigated for instance in [Feferman’ 1984] the strategies of restricting the
axioms, the logic or the language. He also investigated in [Feferman 1979] a theory Tj which
I believe is worth more attention than it has received. Feferman’s 1 was a formulation
of Bishop’s constructive mathematics, as are the theories of Martin-Lof’s and Myhill. Yet
Martin-Lof’s is the theory which has been mostly used by Computer Scientists because it is
more related to notions such as computation, program specifications and constructive proofs.
Maybe it is the presence of canonical/noncanonical elements in Martin-Lof’s theory and the
notion of types which are very attractive to computer scientists. Yet I believe that Feferman’s
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theory is simpler mainly because it is more flexible so that we do not commit ourselves to
particular typing as we do with Martin-Lof’s type theory. Of course here there is no room
to discuss either Tj or any other of Feferman’s theories which avoid the paradoxes by various
means. We must still however introduce the comprehension principles that Feferman uses in
two of his theories. In T}, the comprehension principle is restricted to elementary formulae
where a formula is elementary if it is both stratified and has no bound class variables. Hence
the principle looks like:

(ECA) (FX){z: @(x,y,2)} = X AVz(r € X & ®(z,y,2))), where &(z,y, z) can
only be an elementary formula.

Ty was a constructive theory. Feferman, before 7)) had investigated the use of full classical
logic. Yet the paradox is avoided by having positive and negative formulae. The membership
relation is now split into two partial predicates € and €’ with the axiom:

Dis(&, €') —(zef{u: ®(u,y1,..,yn)}) Az € {u: ®(u,y1,...,yn)})

The comprehension principle is then divided into two comprehension principles: one for
the positive formulas and the other is for the negative formulas as follows:

(CA)(+/-)
e z € {u:®(u,y1,...,yn)} < Pr(x,y1,...,Yn)

e z € {u:P(u,y1,...,yn)} & P (z,y1,--,Yn)

Now of course Russell’s paradox is avoided here because if we take R = {z : -z € z}, then
ReR< (wReR);=(R€ER)_=R€R.

These are two of the ways that Feferman uses to avoid the paradoxes. However none of
them as we see has a full comprehension principle, whereas Frege structures provide us with
a full one.

2.2 Effects of set theory on nominalisation
2.2.1 Language and nominalisation

The reform of set theory by following the route of altering the language was based on the
vicious circle principle, and resulted in Russell’s theory of types. The language here becomes
typed and the ladder of types has to be climbed step by step. Russell’s theory of types
was made simpler by Church and this is essentially the language used by Montague (in
[Thomason 1974]) as an application to natural language. However, Montague did not himself
deal with nominalisation and his account is very problematic from the nominalisation point
of view. There have been few attempts at dealing with nominalisation within the Montague
tradition. Examples are Carlson’s work and Parson’s floating types (in [Parsons 1979]). The
main problem with Montague semantics is the typing constraints and the existence of the
function f which has to associate once and for all the syntactic type of each syntactic category.
This could be dealt with by changing the function f, but the approach is cumbersome and
leads to difficulties.

2.2.2 Axioms and nominalisation

In ZF, we cannot have a set that contains itself and hence ZF is not suitable for nominalisation.
NF or ML contain sets that belong to themselves, and so they should be promising candidates
for the semantics of nominalisation. In fact they have already been applied by Cocchiarella
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who altered the system of non-standard second order logic shown in 1.1 to obtain two systems
which he proved to be equivalent to NF and ML respectively ([Cocchiarella 1986]). The two
systems are as follows:

1. Altering (CP¥*) Here, the paradox is avoided by restricting the formulae in (CP*) to
stratified formulae (see previous section). In (CP*), Cocchiarella does not take Fj, to
be simply free in F', but imposes in addition the constraint that the whole bivalence be
stratified. To return to our example, [F(z) < IG[x = G A =G(z)]] is not a stratified
formula and so the comprehension principle cannot assure us of the existence of the
predicate F', and hence there is no contradiction.

2. Altering (A*) Instead of altering (CP*), we alter (A3*) to (A3**) where

(A3**) Vedy(z =y).
We then have to add (a = a) as an axiom and replace (A-CONV*) to:
(E/A-CONV*) Az1,...z,®(a1,...,an) & Fz1,..xp(ar = 1) Ao A (ap =

xn) A ®) where no x; occurs free in any aj, for 1 <14, j <n.

Note here that because of the elimination of (A3*), we can no longer prove the theorem
Vz® = ®(a/x). Therefore, we cannot substitute F' for x in the special instance of (CP*)
and so we cannot derive the paradox. The disadvantages of Cocchiarella’s two systems
are that the models are not easy to imagine.

2.2.3 Logic and nominalisation

The last category is the use of non-standard logics. Take for instance the use of a three-valued
logic, rather than the classical two-valued one. F(F') < —F(F) would not be inconsistent
any more, for we can give F'(F') the value u (undefined) and in the interpretation of — and <,
we take: —u < u. This solution has been applied to nominalisation by Turner ([Turner 1984,
1987]). Turner used three valued logics and this allowed him to have an untyped language
which could deal with nominalisation without falling into the paradox. This approach has
been successful as far as predication is concerned, for one can nominalise all formulae. However
it has a problem with quantification, since it is only to quantify over ideal elements (i.e. the
limits of the finite ones as we shall see in part II). We have talked about the set theoretical
approaches that have been offered. We looked at the theory of types and nominalisation and
although we did not claim it was impossible to work out a theory of nominalisation based on
Montague’s semantics, we did say that it was difficult and cumbersome. We recall here that
Russell’s theory of types was unsatisfactory and so other theories came into being. The same
applies to nominalisation, for Turner’s and Cocchiarella’s systems are less problematic than
Montague’s approach, because systems like NF and ML, or logics which are non-standard,
were better attempts to provide a system without paradox than Russell’s theory of types. Our
criticism of Cocchiarella is that his models are difficult to imagine. It seems therefore that all
the theories of nominalisation that have been worked out so far face some problems. There
still are many solutions for set theory that have not hitherto been applied to the semantics of
nominalisation, two of these being the notions of Frege structures and non well founded sets.
It seems at this stage that most of the disadvantages of the theories that have been worked out
so far can be circumvented by the use of these two notions. The use of Frege structures will
allow us to keep to two-valued logic; also we can quantify over all our nominalised items, which
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is another advantage. The use of non well founded sets on the other hand, seems to be natural
in the sense that they model the self reference that might be involved in nominalisation. For
example, we might consider nice to be a solution to the equation z = {z} and hence we get
nice is nice to be true.

3 Solution to model existence

The problem discussed in 1.2 is not specific to nominalisation. It is the problem of finding
models of the A\-calculus. Therefore I shall start by describing some of those models, and then
I shall discuss how they have been used for the semantics of nominalisation.

3.1 JA-calculus and its models

We can forget about the formal axiomatisation of the A-calculus with logic on the top of it
and just remember that the A-calculus with logic is a formal system which has 2 important
operations: abstraction and application together with A-conwversion. Until recently, models
of the A-calculus have been problematic: do they really exist, and what are they like? One
answer can be that the model itself is a structure which has two operations (abstraction and
application); but this is an unsatisfactory answer. First, we could abstract the formula —=P(x)
and then apply the abstract to itself which would yield Russell’s paradox. Second, not every
structure which has the two operations can be a model of the A-calculus. Take for instance
any combinatory algebra (which has K, S and ’.”). We could prove in a combinatory algebra
that the axiom of abstraction (3F)(Yy1),..., (Vyn)[F(y1,---,yn) = A] holds, but that does
not mean that the combinatory algebra is a model of the A-calculus. It will be if we consider
the extensional A-calculus, but in the absence of extensionality we will have many choices for
the function F' in the axiom of abstraction and so the structure cannot be a model. What
we should really require from the model is that if two wifs are equivalent or convertible in
the A-calculus then their values in the model must be the same. The other problem with
defining models of the A-calculus is that some A-terms denote functions and so they have
to take the elements of the structure M itself as argument. But again they themselves are
terms and must take elements of M as values. We could take term models as models of the A-
calculus. Term models are just trivial formulations because all they do is translate the syntax
step by step. Two other formulations of models are environment models and combinatory
models. The environment models include in them two embedding functions ® and ¥ which
belong to D — [D — D] and [D — D] — D respectively. [D — D] is not the set
of all functions and it usually is the case that certain mathematical properties play a role
in choosing [D — D]. Usually, [D — D] is the set of all the continuous functions and
is closed under the standard operations (such as composition, abstraction, application, ...).
The combinatory model is exactly the combinatory algebra we talked about above but with
the very important element ¢ which obeys some axioms. What ¢ does is to single out the
functional part of every element. In the presence of extensionality we do not need £ and that
is why in the case of extensionality, combinatory algebras are models of the A-calculus. Both
environment models and combinatory models are equivalent to each other and for a proof of
this, the reader is referred to [Meyer 1981]. These are not the only kinds of models provided
for the A-calculus. The two kinds of models cited above together with the term models are
algebraic, there are others which have a built-in structure. (It is easy to work with such
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models as one does not get involved with the cumbersome syntax). The two main models
that I shall talk about throughout are: Scott domains and Frege structures.

3.2 Scott domains

We will be concerned with Scott domains? built as semantic domains where a semantic domain
is a domain D with a binary relation C such that

(i) D has a bottom element u satisfying (Vz € D)[u C z].

(ii) C is a partial ordering on D

(iii) every w-sequence has a least upper bound in D where

1. An w-sequence is a sequence (zy)necw Of elements of D such that (Yn > 0)[z, C zp41]-
2. An element d in D is the least upper bound of a subset X of D, iff

o (Vd' € X)[d Cd.
o (Vd' € D)[(Vz € X)[z C d]=>d C d]

We denote the least upper bound of (zy,)necw by Upew®, and when no confusion occurs, we
write Uz,,. Basic to Scott domains is the notion of a continuous function where a function
f from a semantic domain D into another semantic domain D’ is continuous iff (for each
w-sequence (dy), € D)[f(Udy) = Uf(dy)]

New domains are built out of old ones using the following three notions: Let (D1, Cq) and
(D9, C 2) be two semantic domains

1. Define D; + Dy = {(d;, %) such that d; € D;j*} U {u} where (u ¢ Dy U D»),
and (Yd = (d;,i),d" = (d},j) € D1+ D2)[d Cd' <= (d =wor (i = j and d; C; d}))].

2. Define D = Dy x Dy = {< dy,d2 > where d; € Dy and dy € Dy}
and (V < dyg,dsy >,< dy1,do1 >€ Dy X Dg),
(< dyp,dop >C< dy1,d21 ><= dio C1 diy and dyg Co day ]

3. Let [D; — Dy] be the set of continuous functions from the domain (D1, C;) to the
domain (D3, Cg). Define a binary relation on [D; — D3] as follows:
(Vf,g in [D1 — Do])[f C g <= (Vd € D)[f(d) S2 g(d)]].

Lemma 3.1 (D + Dy, C), (D1 x D2, C) and ([D1 — D3], <) are semantic domains.

We are interested in domains E which satisfy an equation of the form: F ~ [E — E]. We
define B the set of truth values, i.e. B ={0,1,up} where up C 1 and ug C 0 (B is a semantic
domain). We build our domain E by building a sequence of domains (by induction). We
start with Ey = B and build E,1; = B + [En — E,] for n > 0 such that for all n, E, is
a semantic domain. We would like, however, to relate all those domains with an ordering
relation and find the limit of such a sequence. This limit is going to be the required E. We
start with some definitions:

“see [Barendregt 1981] and [Barendregt’ 1981]
’From now on, we will use D* to denote D — {u}.
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Definition 3.2 A projection pair of D1 on Dy is a pair < ®, ¥ > such that: ® : D — Ds,
U : Dy — Dy and

o © W are both continuous,
o (Vo € Dy)[U(D(x)) = o]
o (Vo € Do)[®(¥(x)) S2 2]

For each n > 0, we define a projection pair < 1, ®,, >. The aim of each ®,, is to embed
E, into E,;1, whereas ¥, is a surjection from E, 11 to E,. Our construction of (®,,),ec, is
done by induction as follows:

®¢ : By — F1 such that ®q(z) = 2 € Bx < x,u®

Uy : By — Ej such that Uy(z) = 2 € B*x — x,ug

Assume that ®,, and ¥,, have been defined such that < ®,,, ¥, > is a projection pair of
E, on E, 11, we build ®,; and ¥, as follows:

Qi1 Epy1 — Epgg so that @,41(x) =2 € Bx — 2, (x = upy1 < Upto, PpoxzoWy)

Uit : Epio — Epyq so that Uy () =2 € Bx — 2, (€ = Upto < Upt1, Yy 0T 0 ¢Pp)

One can easily prove that < ®,41, ¥, 11 > is a projection pair of E, 1, on E, 2. Now we
construct a domain F., which will contain all the E,, for n € w.

Ex ={< fn>:fn € Enand Y, (fnt1) = fn}-

The C on F is:

(V < fon>,<gn>€ Eoo)[< fn >newC< gn >newes= (Vn € w)[fn Chn gn]]

Lemma 3.3 (Ex, C) is a semantic domain.

Now we define application in Ey. Let f,e be in Eo and define fee = Uf,11(e,). Again the
following proofs are left to the reader.

Lemma 3.4 o: F X Ey o — E is continuous.
Theorem 3.5 (Vf € [E, — Ex])(3X; € Ex)[(Ve € E) [f(e) = Xy ee]].
Theorem 3.6 Ey, ~ [Ey — Ey).

3.3 Frege structures

Before launching into this section, let us introduce some convenient notation:

Notation 3.7 If f is a function of 2 arguments then we will sometimes write afb for f(a,b).
For example, we write a A b for A(a,b).

Until we give the exact definition of an F-functional, let us understand it to be a function
which takes functions as arguments and returns functions as values.

Notation 3.8 F§ stands for: Fg x Fg X ... X Fo,n times.

5The notation b — a1,a2 is to be understood as: If b then a; else as.
"Actually E. is the least upper bound of the sequence of domains (E,, ).
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Notation 3.9 (Metalanguage abstraction) For every expression e[zy,...,x,| of the meta-
language built up in the usual way from variables ranging over Fy and constants ranging
over U,F,, the expression < e[zi,...,x,]/z1,...,2, > denotes the n-place function f:
Fo x ... x Fg — Fy such that for each a; in Fo, 1 < i < n, f(ay,...,a,) is the value
of elay,...,ay,], the expression e in which z; has been replaced by a; for i = 1,...,n. For each
expression €[, &y, ..., &, ] of the metalanguage built in the usual way out of variables (rang-
ing over F,, for n > 0) and constants (ranging over Fy, for n > 0 and over F-functionals),
the expression < e[€1,&s,...,&]/&1,&2,...,& > denotes the n-place function obtained by
abstracting &1, &9, ..,&, in e.

Notation 3.10 (Def*) If F' is a 1-place F-functional and < e[z]/z > is in the domain of F,
we write Fze[z] for F(< e[z]/x >).

For example, V: F1 — Fp and A : F; — Fg are F-functionals; we write V < f(z)/z > and
A< f(x)/z > as Vo f(x) and Az f(z) respectively.

It should be noted here that A does not represent implication in logic. For implication
we have another sign which is unrelated to A. Furthermore, even though A and V have the
same functional space, they are different. The first has the property that if we apply Af to
a, we get f(a), whereas the second satisfies that if f is a propositional function then Vf is
a proposition. (Here we understand a propositional function, to be a function of the Frege
structure which takes propositions as values, i.e. f(z) is a proposition for every x.) In fact,
app(Af,a) makes sense but app(Vf,a) does not. Moreover, if f is a propositional function
than Af is a set and not a proposition. Furthermore, we will only work with models where
the collection of sets and the collection of propositions are disjoint.

3.3.1 Informal introduction

The existing models of the A-calculus did not deal with logic added on top of the A-calculus,
since once logic is added, consistency might be threatened. Also, if one constructs a theory
which will have logic, A-abstraction and predication, then one has to show the existence of
the models of this theory. This is the work we find with Feferman for instance, yet his models
are not tidy and clear. Hence one would like to have a clear idea of a model of the A-calculus
with logic on it, and Frege structure is such a model. However, such a construction was not
obvious for a long time. It was initiated by Scott in [Scott 1975] yet the work was incomplete
and hence such a model was not achieved. Then came the construction of Frege structures
where simply the idea is to start from any model of the A-calculus and build logic on top by
inductively constructing two collections (of the possible propositions and the possible truths)
and taking the limit of these two collections which actually draw the logic we now have on
the top of the initially considered model of the A-calculus. As it sounds, the process is quite
simple, yet it depends on having a clear idea of the structure and on proving some theorems
which will ensure the existence of the various logical connectives in the model considered.
Now that logic has been constructed on the top of a model of the A-calculus, we can consider
the structure only in terms of its objects and functions. The objects include propositions and
truths and the functions obey the condition that propositional functions can be projected in
the domain of objects (i.e. as sets). Those sets can be applied to any object (hence we now
have not only functional application such as f(x)%, but also the application of one object to

8Note here that f(x) means ‘f applied to #’ and that if one wanted to write ‘f is an expression which
depends on z’, one would use f[z]. See Def* and the definition of metalanguage abstraction, especially the
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another as in app(a, b)), and set application to an object results in a proposition. This is the
simple idea of a Frege structure. Next, the reader finds the various steps used to construct a
Frege structure.

A Frege structure consists of a denumerably infinite number of collections (Fy), -, such
that:

1. Fo is a collection of objects which has three very important subcollections PROP,
TRUTH and SET where, PROP is a subcollection of Fg which can be thought of as
the collection of propositions and TRUTH is a subcollection of PROP which can be
thought of as the collection of true propositions. SET is a subcollection of Fy which can
be thought of as the collection of objects which are nominals of propositional functions.

2. For each n > 0, F, is a collection of n-ary functions which take all their arguments in
Fo.

3. There is a set of F-functionals that operate over (Fy),>0 and which ensure important
closure properties on (Fy),>0. For example:

V:Fy — Fg is a functional such that: If f in Fy is a propositional function then Vf
is in PROP and Vf is in TRUTH iff f(a) is in TRUTH for each a in Fg

A:F1 — Fg and app : Fg x Fg — F¢ are two other functionals which possess the
very important property: app(Af,a) = f(a) for every a in Fg and every f in F;. Note
here that app is different from real application. In fact, app : Fo x Fg — F¢ whereas
real application: F1 x Fg — Fy. Still, app and real application are related in that
app(Af,a) = f(a). app is really introduced to capture that when turning a function f
into an object \f, we preserve the information of f’s functionality. That is Af applies
to an object a and gives the same result as applying f to a.

4. (Fn)n>o is super explicitly closed: i.e. for each expression e[{;,£&o,..,&,] of the metalan-
guage built in the usual way out of variables (ranging over F, for n > 0) and constants
(ranging over F,, for n > 0 and over F-functionals), the n-place function denoted by
<elé,&,...,&]/61, &0, ... & > is an F-functional®.

Now that we have some idea of the structures’ form, let us try to give an intuitive picture.
A Frege structure is a collection of both objects and functions (which are distinct) where we
can map any function f into an object a and this object will preserve some of the properties
of the function. For instance if the function f is a propositional function, then the nominal
of the function, Af, is an object which belongs to the category SET (recall here that Vf is
an object which belongs to the category PROP and that we will be interested in models
where PROP N SET = ()). Moreover SET contains only those objects which are nominals
of propositional functions. Thus, if a is in SET then there must be a k-ary propositional
function f such that a = ABf, where: A} is A\ and maps l-ary functions into objects (i.e.
into Fg); A3 maps 2-ary functions into objects;... AB maps n-ary functions into objects. By
induction, we can define A\}; which maps n-ary functions into Fp,.

It is natural to ask whether the intersection of SET and PROP is empty or not; some
elements of PROP are elements of elements of SET, yet the intersection between SET and

notation e[{1, &2,...,&:] and < e[€1,&2,...,&n]/E1, &2, .., En >.
9This means that Frege structures are closed under composition, projection, etc.
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PROP is not certain to be empty. Take for example an element a of PROP and consider b
to be the set {z : (x = a)}. Obviously b is in SET because < (z = a)/x > is a propositional
function, and we have a is in b. SET and PROP are not necessarily disjoint. Take for
example, ¢ in PROP and assume the following principle:

Vz(app(t,z) = app(t,z)) =t =1t

Define moreover || ||: to be the counterpart of A. That is ||a||(z) = app(a,z). Then
Aa|| = a can be seen as follows:

Ve, app(Aall, ) = af () = app(a, ).

Therefore Vxapp(A||all,x) = app(a,z) and hence a = Alal]|. Now, if ||Aa|| is a propo-
sitional function, then SET N PROP is not empty. The question here is whether ||a|| is a
propositional function when a is a proposition. We do not need to answer this question here
and independently of whether SET and PROP are disjoint, there is an important relation
between them which is the following; they both have strong links with propositional functions.
Let us consider 1-ary functions to illustrate the argument and take a propositional function f.
For any object a, f(a) is a proposition (i.e. is in PROP). A\f is a set and app(\f,a) = f(a).
We can always jump from propositional functions to sets (and from sets to propositions).
But we can also jump from sets to propositional functions. Take the operation || ||; defined
as: For each object a of the Frege structure, ||a|l; =< app(a,z)/x >. Obviously for each
a,||al|; is in Fy and if, in particular, we take a to be in SET (say a is Af) then we have
that ||lal[y = ||[\f][1 = f. Therefore we have an equivalence between sets and propositional
functions; each set corresponds to a propositional function and each propositional function
corresponds to a set. This is important and it is this strong link that I am trying to empha-
sise between SET and propositional functions. Note that for each n, this bivalent path holds
between PF, and SET, through A\§ and || ||, where again we have appn (Mg f,a) = f(a), for
a in F§, and f in Fy,. The functionals A}, appy, and the operation || ||, (the counterpart of
A§) could be defined recursively as follows:

Take ||a|l, =< appn(a, ),z >, and (ABT1f)(a) = A\(< f(a,x)/z >), and assume ABT™ f has
been defined. Then take AB+tmF1f — \ntl(\ntmtl gy

appn is also defined by recursion where: app; = app and assume we have defined up to
appn. Then appnt1(a,b,b’) = appn(app(a,b),b’). One can prove that appy(Ag f,a) = f(a)
for each n in w and & in Fgn.

So in a Frege structure, like in any (Fregean) calculus of functions and objects which has
variable-binding (and application) through abstraction (resp. application) operators one can
take functions into objects. In short, we do not lose information by mapping the function
into an object. We can switch back from objects to functions using || ||, the inverse operator
of A\j where we have the following theorem: ||A§f||, = f for any n-ary propositional function
f-

The ability to switch back and forth between objects and functions is not the only im-
portant aspect of the program; the presence of PROP, TRUTH and of a logic in a Frege
structure is also crucial. The logic is built in a way that allows us to talk about truths and
propositions without falling into any contradictions. There are other accounts which can do
this of course such as Martin-Lof’s type theory with his judgements: A type and a : A. The
difference here is that in a Frege structure, we have combined both the elegance of a simple
structure (objects and functions without the typing strategies) together with the presence of
a cousistent logic.
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3.3.2 Frege structures as models and comparison with Scott domains

A-structures are models of the A-calculus in an obvious way. For just take the interpretation
of terms as follows over a defined Frege structure F, where ¢ is an assignment function which
takes variables into objects of Fo:

[#llg.r = g()

IMNTl, - = app([M]l,.r [N ]l

[AaM]lgr =A< [[M]]g[a/a:}aF/a >

Now it is easy to show that this interpretation has the property that:

- M = N = [[M]Jgrr = [NTlg,r-

Therefore, Frege structures are models of the A-calculus and in turn we know that they
solve the second problem. For the remainder of this section, we shall concentrate on the
comparison between both Scott domains and Frege structures as models, and hence help
justify our claim that Frege structures are better candidates for the semantics of natural
languages than Scott domains. On Scott domains, one has a topology (Scott topology based
on a partial ordering relation) and two special elements Top and Bottom. (Bottom is less
than all the other elements and Top is greater than all of them.) We shall see in Part II
that this ordering relation, together with the existence of Bottom and the requirement that
the functions be continuous, make Scott domains problematic for the semantics of natural
languages. On Frege structures, however, we have no ordering and no requirement on the
continuity of functions.

What we have in a Frege structure is a collection of objects Fg together with, for each n, a
collection Fj, of n-ary functions which take elements of Fy as arguments and return elements
of Fp as values. But although we do not consider all possible functions to be elements of
the Frege structure, we still consider only structures which are explicitly closed. This explicit
closure imposes the existence of some necessary functions such as projections, constants, etc,
and requires the closure of our structure under some important functional operations such as
composition. We have both constants and variables for functions, but the functionality on a
Frege structure does not stop at those first order functions; we also have functionals. However,
whereas for functions our language contains both variables and constants, for functionals it
only contains constants.

One should bear in mind that none of the collections PROP, TRUTH or SET is inter-
nally definable. Intuitively, we say that a collection x of objects is internally definable if we
can talk about it through the object language and not just the metalanguage. An example
of a collection which is not internally definable is the collection of truths in a theory which
contains names for its wifs. If this collection was internally definable, then there must be a
predicate T' such that for any object a, T'(a) is true iff a is true. But according to Tarski, a
theory cannot contain its own truth predicate (in the object language) without falling into
inconsistency and therefore 7' is a predicate of the metalanguage. Now if we want to talk
about truth in this metalanguage then again we have to have a truth predicate 7" in the
meta-metalanguage and this process iterates. Just as T is not an element of the object lan-
guage in Tarski’s approach, so inside a Frege structure the collection of truths is not internally
definable. Aczel gives a more formal definition of internal definability and considers a col-
lection x of objects in Fg to be internally definable in the Frege structure iff there exists a
propositional function C in Fy such that the following holds:

(**) For any object a in Fo,C(a) is in TRUTH iff a is in .

It might be clearer if we set FALSE = PROP \ TRUTH, and then replace (**) by the
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following:

(***) For any object a in Fo,C(a) is in TRUTH iff ¢ is in x and C(a) is in FALSE
otherwise.

Some might find it easier to draw a contrast with the following schematic definition, where
C is not a propositional function:

(****) For any object a in Fg, C'(a) isin TRUTH iff a is in x and C(a) is in Fp otherwise.

(***) makes x decidable, while (****) only makes semi-decidable. It may seem unfor-
tunate that the collection of TRUTHSs is not internally definable, but it is essentially this
that provides Frege structures with consistency. Notice that since elements of SET are the
nominalisations of propositional functions, we have no way of talking about the nominalised
items internally and SET is not internally definable. Moreover it may also seem that we
will encounter a problem in defining second order quantifiers. I hope that it will become
clear throughout the work that the inability to internally define quantifiers does not have any
serious effects. On the contrary, we keep to simplicity while being able to formalise many
concepts within the theory. The undefinability of PROP and of SET is due to the undefin-
ability of TRUTH. The collection of propositions is not internally definable, for if it were
(through a predicate P) we would find that TRUTH is also internally definable (through the
propositional function < P(z) A (P(z) — x)/x >, which stands for a function in Fy). That
PROP is not internally definable implies that SET is not either. This is because if S were
a propositional function in Fy internally defining SET then < S(y/x)/x > is a propositional
function in F; internally defining the collection of propositions. Note also that, for each n,
PF, (the collection of n-ary propositional functions) is not internally definable. For if it
were, we would get that the collection of propositions would also be. The proof here needs
an extension of the definition of internal definability so that instead of having a function we
have a functional. Let us return to the comparison of Frege structures with Scott domains.
Frege structures do not have any ordering or continuity problems and their restricted logic
would allow us to solve the problems of Scott domains (and of Cocchiarella). But of course
the solving part is not going to be easy. We have to do something about the non-internal
definability of SET. There are a few ways to go here: we have to either see how the function
domains (as with Scott) could be built inside Frege structures, or else show that we do not
need second level quantifiers and therefore the problem does not arise. Now the word inside
brings an uncomfortable feeling — especially after we pointed out that all the interesting
collections are not internally definable. I assure the reader however that this difficulty is only
temporary and that we can always find solutions to the problem. It is important for the
reader to know that a Frege structure can be built on the top of a model where continuity
and ordering play a very important role (such as E ). However the way quantifiers are con-
structed on a Frege structure using the fixed point, is not based on the ordering relation,
and so the problem that faced Turner in his work based on E, (where quantifiers depended
on the ordering relation - see Part II) is not faced by the quantifier treatment on a Frege
structure. The fact that functions, but not functionals, can be mapped into Fg in a Frege
structure is not a disadvantage, indeed it may even be seen as a virtue, since there appears to
be no justification in natural language semantics for nominalizing expressions — for example
determiners — which would require a formalisation as functionals. Also, in Frege structures
we have more possible elements than we do in Scott domains. We have propositions, truths
and sets which are all legitimate elements of the Frege structure. We could not talk about
them internally but that is how it should be. Tarski’s undefinability of Truth and Godel’s
famous result make it impossible for us to be able to internally define any of these collections.
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So, our inability to internally define any of these collections is not a weakness in comparison
with Scott domains; Scott domains could not talk about them at all, and therefore can not
be adequate for natural language semantics. If we try to extend Scott domains in a way that
will allow us to talk about truths and propositions, we obtain Frege structures.
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