
A system at the cross-roads of functional and logicprogrammingScience of Computer Programming 19, 239-279, 1992.Fairouz KamareddineTechnical University of EindhovenDepartment of Mathematics and Computing ScienceDen Dolech 2, P.O.Box 513, Eindhoven,The NetherlandsNovember 30, 1996AbstractThe type free �-calculus is powerful enough to contain all the polymorphic and higherorder nature of functional programming and furthermore types could be constructed insideit. However, mixing the type free �-calculus with logic is not very straightforward (see[Aczel 80] and [Scott 75]). In this paper, a system that combines polymorphism and higherorder functions with logic is presented. The system is suitable for both the functional andthe logical paradigms of programming as from the functional paradigms point of view,the system enables one to have all the polymorphism and higher order that exist infunctional languages and much more. In fact even the �xed point operator Y which isde�ned as �f:(�x:f(xx))(�x:f(xx)) can be type checked to ((� ! �) ! �)) where �is a variable type. (�x:xx)(�x:xx) can be type checked too, something not allowed infunctional languages. From the point of view of theorem proving, the system is expressiveenough to allow self referential sentences and those sentences that lead to Russell's andCurry's paradoxes. However, the paradoxes do not hold due to the notion of circular typeswhich contain the type of propositions. In fact both sentences �x::xx and �x:xx ! ?are ill typed according to the system, because their resulting types are circular. Hencethe application of either sentence to itself will not result in a proposition. The system isimplemented in Milner's ML and can be seen as extending ML in two important ways.First, it extends the part related to the functional paradigm in that it can type terms thatcould not be typed in ML; namely, those are the terms that contain self application suchas the Y term above. Second, our system extends ML by adding logic to it in a consistentway.1 Introduction1.1 Type freeness and logicIt is well known that mixing type freeness and logic leads to contradictions. For example, bytaking the following syntax of terms:E := x j E0E" j �x:E' j :E" j E0 ! E" 1

and applying the term �x::xx to itself one gets a contradiction (known as Russell'sparadox)1. Church was aware of the problem when he started the �-calculus which he intendedto be a theory of functions and logic. But his �rst theory of the �-calculus was type free andso was inconsistent. The paradox could be described as follows:The system had the following three concepts:� Modus Ponens (MP): From E ! E0 and E, deduce E0.� Deduction Theorem (DT): If � is a context, and � [fEg ` E0 then � ` E ! E0.� �-conversion (�): (�x:E)E0 = E[x := E0].Now we will show that we can derive E for every term E. Let E be a term and let a =�x:(xx! E), then, from (MP), (DT), and (�), we could derive Curry's paradox:1 aa = aa! E (�)2 aa ` aa De�nition of `3 aa ` E MP + 1 + 24 ` aa! E DT + 35 ` aa 16 ` E MP + 4 + 5This of course, is a contradiction because we can prove anything in the system. Thepresence of these foundational di�culties led to the creation of two routes of research. The�rst route placed a big emphasis on logic and deduction systems, but avoided the di�cultyby restricting the language used to �rst or higher order without allowing any self-reference orpolymorphism. The second route placed the emphasis on the expressiveness of the languageand the richness of functional application and self reference, but at the expense of includinglogic in the language except if restrictions are made (such as using non-classical logics).Church, for example, followed Russell and introduced the simply typed �-calculus. However,it became obvious that the theory had many unattractive features. Of these features wemention that at each level we should have a natural number system, such that the numbersat each level n say, are di�erent from those at level n+ 1. Moreover, polymorphic functions(that is functions which take arguments from many levels such as the polymorphic identityfunction) do not exist. Church and others then decided to enrich the syntax and the languagebut to avoid or restrict logic, hence the type free �-calculus.These two routes resulted in a gap between well worked out logics (where we have asophisticated body of axioms and rules) and fully expressive languages (which allow thepresence of a rich variety of terms including the self-referential ones). The need to remove thegap created various theories such as Martin-L�of's type theory and Feferman's T0 which werepolymorphic, allowed self reference and contained a big fragment of logic ([Martin-L�of 73]and [Feferman 79]).While the polymorphically typed languages which contained logic (such as Martin-L�of'sand Feferman's) were being developed (we call this route 3 in the history of foundation), twodisciplines in programming were already doing well producing implemented systems based1Of course here it might be questionned whether this is actually a contradiction. In fact, in the type free�-calculus, every term has a �xed point. In particular, the term �x::x has a �xed point E such that E = :E.Once we allow propositions to be a part of our terms however, we have to explain this phenomena of E = :E.We may run to three valued logic, but if we wanted to keep to two valued logic, we have to �nd a persuasiveexplanation that there is no paradox. 2

on routes 1 and 2 above. The �rst discipline, logic programming, concentrated on theoremproving and prolog, where the foundation was taken from route 1 but in the least courageousway by using the bare minimum language (�rst order) which assures safety from the paradoxes.The second discipline, functional programming, concentrated on implementing polymorphismand self reference where the foundation was taken from route 2, but at the expense of logicand deductions.The above history does not include the semantics of type free theories which combineexpressiveness and logic. In fact, the models of the type free �-calculus alone were not obviousand it was in an attempt to prove their non existence, that Scott managed to construct sucha model. Since then a variety of such models were constructed. These models howevercannot model the addition of logic to the type free �-caculus. The reason for this is thateven though :;_;8 are continuous, the presence of 8 will trivialise the model. For we wouldget that (8d 2 D)([[F]]g[d=x] = 1) , [[F]]g[u=x] = 1 where u is the bottom element of thedomain. In other words, the ordering relation on Scott domains makes predication trivial.For, a predicate P is true of all the objects in the model i� it is true of the bottom element.Both semanticians and computing scientists, however, share an interest in quanti�cation andhence this problem of predication that faced Turner (in [Turner 84]) is a major issue for thoseinterested in the semantics of either computer or natural languages and who base their workon Scott domains. The problem can be described as follows: Assume a language which hasboth objects and functions and assume that w�s are built out of other ones using ^;_;8;9; : : :.If the model is a Scott domain E1 then there is no problem interpreting anything which is nota quanti�ed sentence, as the interpretations of all such things are continuous functions andhence belong to the model. The interpretation of the quanti�ers however will be problematic.This is because if we take the following interpretation for the quanti�ers 8 and 9[[8x�]]g = 8><>: 1 if for each d in D; [[�]]g[d=x] = 10 if for some d in D; [[�]]g[d=x] = 0? otherwise[[9x�]]g = 8><>: 1 if for some d in D; [[�]]g[d=x] = 10 if for each d in D; [[�]]g[d=x] = 0? otherwiseThen the following is a proof of the continuity of the quanti�er clause for 8:Assume by induction that we have [[�]] is continuous where � does not involve quanti�ers.To prove the continuity of [[8x�]] (i.e. to prove it in [ASG �! E1] where ASG is thecollection of assignment functions), we prove it continuous separately in each of its arguments,according to a theorem related to semantic domains.Let us prove the continuity of [[8x�]] for g in ASG. Take an !-sequence (gn)n and provethat: [[8x�]][gn = [[[8x�]]gn .� Assume [[8x�]][gn = 0() by de�nition,(9d 2 D)([[�]][gn[d=x] = 0)() by induction,(9d 2 D)([[[�]]gn[d=x] = 0)() by the structure of Booleans,(9d 2 D)(9n 2 w)([[�]]gn [d=x] = 0)() by logical laws,(9n 2 w)(9d 2 D)([[�]]gn [d=x] = 0)() by de�nition,3

(9n 2 w)([[8x�]]gn = 0)() by the structure of Booleans,[[[8x�]]gn = 0� Assume [[8x�]][gn = 1() by de�nition,(8d 2 D)([[�]][gn[d=x] = 1)() by induction,(8d 2 D)([[[�]]gn[d=x] = 1)() by the structure of Booleans,(8d 2 D)(9n 2 w)([[�]]gn [d=x] = 1)() u � d and monotonicity,(9n 2 w)([[�]]gn [u=x] = 1)() monotonicity,(9n 2 w)(8d 2 D)([[�]]gn [d=x] = 1)() by de�nition,(9n 2 w)([[8x�]]gn = 1)() by the structure of Booleans,[[[8x�]]gn = 1Therefore [[8x�]] is continuous.By adopting this de�nition, we have: [[8x�]]g = 1 i� (8d 2 D)([[�]]g[d=x] = 1).As [[�]] is continuous, therefore monotonic and as u � d (where, as noted above, u is theunde�ned) for each d in D then we get: (8d 2 D)([[�]]g[d=x] = 1) i� [[�]]g[u=x] = 1.This clause has serious consequences. I shall illustrate this by taking in the formal languagean element u0 which names u (I.e. [[u0]]g = u always). Now see what happens if we take � tobe: x = u0. Applying the above clause we get:[[x = u0]]g[u=x] = 1 i� (8d 2 D)([[x = u0]]g[d=x] = 1) which implies:u = u i� (8d 2 D)(d = u).That is absurd.Hence, even from the model theoretical point of view we have a problem of combiningtype freeness and logic. Of course, models of the type free �-calculus with logic exist and wemention two of them ([Aczel 80] and [Scott 75]).In summary, theories and models for the type free �-caculus with logic are needed. Suchtheories and models have been o�ered by various people and in various ways. Of the con-tributions to the model problem solution, we mention the work of Scott in his combinatorsand classes, Feferman in his recursive models of T0 and Aczel in his Frege structures. Thereis also the famous method of constructing models using the stabilisation ordinal theorems ofGupta-Herzberger. Solutions to the theory were proposed by Aczel, Feferman, Scott, Flaggand Myhill, Fitch, Girard, Gilmore, Turner, Skolem, Ackerman and in�nitely more. Thosesolutions restricted one or more of the three concepts which lead to Curry's paradox. That is,the solutions restricted either �-conversion, or MP or DT. From the programming paradigmspoint of view, very few attempts have been made at combining expressiveness with logic. Theneed, however, for the combination of expressive languages and strong logics is unquestionable(see [Feferman 84]). In fact, there is no doubt that we need full expressiveness in computingscience and that we need to express self referential terms. It is well known for example, howimportant it is to discuss the semantics of recursion using the presence of the �xed point op-erators. Logic moreover, is at the heart of programming language semantics and of theoremproving. How can we hence push away logic only because we need expressivity and becauseexpressivity and logic lead to paradoxes?Therefore, this paper aims at providing a very clear system which extends ML in exactlythose two areas of expressiveness and logic and which is consistent. The solution should ofcourse be to keep as much as possible of expressivity and logic without facing the paradoxes.4

Of course we will face the question that there are other systems which are expressive andhave logic in them. Paulson' HOL is such a system. Our reply is that, yes HOL is expressiveand have logic in it but its expressivity in terms of self referential terms is similar to that ofMilner's ML. In fact the originality of HOL is that it combines logic to a system as expressiveas ML. Our system on the other hand combines logic to a system more expressive than ML.So for us not only we have logic, but we have also self referential terms that could not existin ML, such as �x:xx and �f:(�x:f(xx))(�x:f(xx)).1.2 Type freeness and PolymorphismBefore we dive into this section, let us attempt to explain what we mean by type freenessand polymorphism. We understand by a type free theory, a theory where terms are wellstructured but all information about types is unimportant. In such a theory, any two termscan be combined together to result in a term. This is something not accepted in some typetheories where two terms can only be combined together if their types match.Example 1.1 �x:x is a type free term and the term (�x:x)(�x:x) is a legal one. In sometype theories however, we have to say what is the type of x in �x:x. For example, �x : e:xwhere e is the type of objects, is of type e ! e. In such a theory, �x : e:x cannot be appliedto itself, but only to things of type e.The notion of polymorphism however is quite di�erent from that of type freeness. We say thata theory is polymorphic if functions are not statically typed and the concept of function isde�ned by what the function does independently of the speci�c domains on which it operates.Example 1.2 A theory where the identity function �x:x has for type � ! � where � isa variable type, is polymorphic in that � can be instantiated to any type, such as integers,booleans and so on. In a statically typed language however, the identity function has to begiven its type at the start and so we speak of the identity function over the integers, theidentity function over the booleans and so on.Of course there are levels of polymorphism. A theory may allow some functions to be poly-morphic and not others. A type free theory on the other hand may result in di�erent notionsof polymorphism depending on the concept of type built on the top of it.Example 1.3 The language ML of Milner is based on Curry's language �!Curry (see Sec-tion 2.1). This language has for syntax of expressions that of the type free �-calculus, yet thislanguage is not polymorphic enough to allow terms such as �x:xx to be typechecked. This isdue to the non rich notion of type built on it.So far we have only talked about the concepts of type freeness and polymorphism withouttalking about their relation to programming languages. Programming languages however,whether functional, logic or object oriented languages, are facing the problem that theirunderlying formalism is not polymorphic, or type free enough. In fact, imperative languagessuch as Pascal are based on the idea that functions, procedures, and hence their operandshave a unique type (such languages are said to be monomorphic). Such a problem of stricttyping is faced by many programming languages and attempts have been made in order toavoid the problem. In fact now, one �nds functional languages (such as Milner's ML) whichare polymorphic. 5

Example 1.4 The function len which �nds the length of a list can be de�ned in ML asfollows:reclen [] = 0jj len (a:x) = len x+ 1endwhere the only important fact about the function len is that its argument is a list which couldbe a list of integers, characters, Boolean, or a list of lists. That is:len: (list *a)! integer, where *a refers to type variables.If a user wanted to �nd the length of a list of integers then *a would be specialised orinstantiated to integer and the function len would now possess the type [integer] ! integer.Object oriented languages too are beginning to accommodate polymorphism. This is becausein object oriented languages, the notion of data type is very important and in these data typesthere are de�nite sets of operations which need to be instantiated with di�erent instances.Therefore these sets of operations will need to be de�ned polymorphically. Moreover, thenotion of inheritence in these languages is also very important and an object inherits theproperties of other objects above it in the graph. In this inheritence process properties toowill have to be instantiated; this instantiation is nothing more than a specialisation of apolymorphic object.The polymorphism used so far however in programming languages, is still not strongenough to allow self-referencial terms such as the �xed point operator Y which is de�ned as�f:(�x:f(xx))(�x:f(xx)). Such a Y cannot be given a type in languages such as ML andhence cannot be used as expressions in those languages. The terms ! = (�x:xx)(�x:xx) andR = (�x::xx)(�x::xx) face the same problem as Y . However, we think it important thatterms like �x:xx and Y exist in any formulation of programming languages if only because ofself reference and self application that exist in such languages.It might be argued that �x:xx and Y are not needed, by saying that instead of (�x:xx)fone can use (�x:�y:xy)ff , and Y can be de�ned by its characteristic equation Y E = E(Y E).We disagree with this opinion because in languages like ML, even though f in (�x:�y:xy)f f ,gets applied to f , the �rst f is of a di�erent type than the second one. In fact the twofunctions f are di�erent functions (for they have di�erent types) even though they do thesame thing. Hence in languages like ML, we do not have real self application. Furthermore,in such languages, it is impossible to typecheck �x:xx or (�x:xx)f . On the other hand,assume we work with a language which actually does have real self application, and where(�x:�y:xy)ff actually applies f to itself. This means that f (even though polymorphic) takesan element of its whole type as an argument. This approach we agree with, and even though�x:�y:xy and �x:xx work in a similar way for f , they are still di�erent functions. In otherwords here, typechecking usually assumes the following two principles:1. All occurrences of a variable which are bound by a given � must be assigned the sametype.2. Distinct occurrences of a given free variable are allowed to be assigned di�erent types.Example 1.5 In (�x:xx)f , both occurrences of x in xx have the same type, whereas in(�x:�y:xy)ff , the two occurrences of f have distinct types.6

According to ML's approach which assumes those two principles, �x:xx cannot be typecheckedbecause types don't usually contain their arrow types. Hence if x is of type � ! �, how dowe know that this x accepts an object of type �! � as an argument? Our approach on theother hand, assumes these two principles too, but there is the extra condition that always(� ! �) � �. Hence if x is of type � ! �, it is also of type �. So x has two types � and�! �. Moreover, xx is well de�ned and of type �. Also, in (�x:�y:xy)ff , according to ourapproach, the two occurrences of f have the same type �! �, but also this type � �. Hencef has two types, � and �! �.In the system o�ered in this paper, we start from the type free lambda calculus. Henceeverything starts without a type, and all combinations of terms are allowed. In fact, anythingcan be applied to anything else and the result is a term. If we come to typecheck any termwhich does not contain free variables, then its type is given if it exists. For example, �x:xxis type checked to (�0 ! �1) ! �1. However, if we ask to typecheck x in an environmentwhere the type of x is unde�ned, then an \error message" will result. We should typecheckx in an environment in which x is declared to be of a particular type. Now if we typecheck(�x : p:x)y in an environment where y is an object (we write y : e) and where p is the typeof propositions then an \error-message" will result informing us that p and e mismatch astypes. This is of course the case because e is not subsumed by p, and the system deduces that(�x : p:x) which is of type p! p cannot apply to arguments of type e, but can only apply toterms whose type is subsumed by p (i.e. who are contained in p). If however we typecheck(�x : �0:x)y where y : �1 and �0, �1 are type variables, then the system will deduce thatthe type of (�x : �0:x) is �0 ! �0 and it will try to check and see if �0 � �1 but as �1is a variable, the system makes �1 become �0 and returns �0 as the result. Of course inthis section we have mixed the mathematical activity of attributing a type to a term and themechanical activity of typechecking a term. These two activities are unquestionably di�erentthings but our paper is concerned with both.1.3 The paradise of the type free lambda calculusLet us start by asking a few questions and attempting to answer them. These questionsconcern the notions of \types", \typed" and \type free" theories. \Type" is this constructthat we associate to a term in a typed theory so that we can make sense of some termcombination. In a type free theory on the other hand, any combination is allowed.Question 1. Are types or levels necessary in the avoidance of the paradoxes?.Answer Not necessarily. For example, ZF was another solution to the paradox wherewe don't need to classify sets iteratively ([Boolos 71]), yet the Foundation Axiom FA wasincluded in ZF despite the fact that it was shown that antifoundation axioms are consistentwith ZF (see [Aczel 84] for such a discussion). The Foundation Axiom FA is (9x)(x 2 a) !(9x 2 a)(8y 2 x):(y 2 a). As a corollary of it, we do not get solutions to x = fxg, orx = ffxgg. Moreover, the inclusion of FA was unnecessary and it was not the responsibleaxiom for avoiding the paradox.Question 2. Are types needed?Answer Yes of course. The fact that we ask for the full expressive power of the type free�-calculus does not mean that types are not needed. In fact when we ask for a type free settheory, or a set theory where the de�nition of a set may be impredicative, we don't go andforget completely about sets. In type free theories, one asks for the furthest expressive power,where we can live with self reference and impredicativity but without paradoxes. The better7

such an expressive system is, the more we are moving towards type freeness. Just it is enoughto remember that up to the construction of the paradoxes, the ideal system was of coursetype free. Due to the paradoxes, helas this type free paradise had to be abandoned. Typestoo found an attractive place in the history of foundation and in most areas of applicationsof logic. For after all types help in the classi�cation of programs, in the mixing of terms andso on. And moreover they play an important role in explaining the paradoxes (if such anexplanation is actually possible). For example, Girard's system F ([Girard 86]) is no less typefree than Feferman's theory T0 yet types play a valuable role in that system with respect toimpredicativity. The di�erence between F and T0 might be in the explicitness or implicitnessof the typing scheme. Now even though one works in a type free system such as that ofFeferman, one needs to introduce types such as recursive types, dependent types and the like.After all many of our proofs are for a particular collection of objects and not for all possibleobjects. Exactly as in set theory, intersection, union and so on are absolute necessity. Notealso that a fully type free language cannot accommodate an unrestricted logic together withan unrestricted �-conversion.Question 3. So if types are needed why talk about type free theories? Why not ignoretype freeness?Answer. The reason is that we may not want to be inexible from the start if we coulda�ord to be exible. Type free theories are very elegant and simple, so we can have a clearpicture of how much we have and how the paradox is avoided. Then the detail of constructingtypes if followed will produce all the polymorphic higher order types that are needed. So a lotof unnecessary details (like constructing types) are left till later which will make it easier toprove results about the strength of the system, the expressive power, completeness and so on.Also from the point of view of computation, type free theories could be regarded as �rst ordertheories and hence are computationally more tractable than typed theories. Completenessalso holds for �rst order logics but has to be forced for higher order ones. Hence what I amarguing for is the use of type freeness followed by the construction of exible polymorphictypes. It is also the case that the self referentiality of language requires type freeness. Sowe can talk about a property having itself as a property. For example, the property of thosethings equal to themselves has itself as a property.That programming language theory needs a type free background to capture polymor-phism and self reference, and that programming languages are implicitly typed, makes itdesirable to have a type checking algorithm. Type checking ensures that the applicationof a function to its arguments is done properly. The purpose of type-checking is to avoidnonsensical operations like adding a character to a truth value. More precisely a type erroroccurs if a function F , of type T ! T 0, is applied to an argument which is not of type T .In this paper, self reference is allowed and paradoxes are avoided in our theory which startstype free but where the type checker �nds those types that are legitimate. In fact, we do notwork with and construct types inside the �-calculus as a theory of functions only, but aimfor the most expressive part which contains logic yet remains consistent. This is done in thesystem where everything starts by being a term of the type free �-calculus. Hence everythingstarts without a type, and all combinations of terms are allowed. In fact, anything can beapplied to anything else and the result is a term. However only the typeable terms can betypechecked and the result of the typechecking is their type. For example, the self-applicationfunction �x:xx, which takes a function and applies it to itself is typable and is type checked to(�0 ! �1)! �1, according to our typing system, where �0, �1 are variable types. Our way ofavoiding the paradox is by disallowing special kind of types, the circular types. Those circular8

types have the form (�0 ! �1) ! �1 where �1 � p, where p is the type of propositions.Hence above even though we said that �x:xx is typable, the type of its abstracted variablex, cannot be (�0 ! �1) where �1 � p. This system is the type free system where all typesexcept circular ones can be constructed.2 Type Theory and polymorphismIn Type Theory, various formulations of the typing systems have been provided, some ofwhich can type check �x:xx and/or Y and some cannot (see [Barendregt, Hemerik 90]). Allthese type systems, use the following as their underlying syntax of types s ::= xjcjs ! swhich says that a type is either a variable or a constant or an arrow. Type systems such as�2; �� and �\ (see [Barendregt, Hemerik 90]), add other types to this set of types in order totypecheck more terms such as Y and �x:xx; those which use only the above syntax of types,even though they can be polymorphic, they cannot typecheck Y or �x:xx. Milner's ML issuch an example; it is based on the system �! of Curry (see [Barendregt, Hemerik 90]) whichuses the simple syntax of types T ::= �jcjT ! T , and it is unable of typing Y or any termwhich involves self application except in an ad-hoc way.Let us here overview �!; �2; �� and �\ and see what they can do for �x:xx and Y . Inthese systems we understand by an environment � to be a partial function from term variablesto the set of types. This is given by the following de�nition:De�nition 2.1 An environment is a set of type assignments (V : T) which assigns the typeT to the variable V , such that a variable is not assigned two di�erent types. We let � rangeover environments.Notation 2.2 When (V : T) 2 �, we say that the type of V in the environment � is T .Moreover, we de�ne the free variables of a term T , FV (T), in the usual way and say thatV 2 FV (�) i� V 2 FV (T 0) for some (V 0; T 0) 2 �. Moreover, the notation � ` E : T meansthat from the environment �, we can deduce that the expression E has type T .2.1 The system �!CurryDe�nition 2.3 (Expressions and Types of �!Curry)Expressions are E ::= V jE1E2j�V:ETypes are T ::= �jcjT ! TDe�nition 2.4 (Rules of �!Curry)Rules of �!Curry are de�ned as follows:(V : T) 2 �� ` V : T (1)� ` E1 : T ! T" � ` E2 : T� ` E1E2 : T" (2)(V : T) [� ` E : T 0� ` �V:E : T ! T 0 (3)9

Example 2.5 In �!Curry, �x:�y:xy can be seen to be of type (T ! T 0) ! T ! T 0 asfollows:(i) x : T ! T 0 hyp(ii) y : T hyp(iii) x : T ! T 0 (i), reit(iv) xy : T 0 (ii), (iii), (2)(v) �y:xy : T ! T 0 (i) : : : (iv), (3)(vi)�x:�y:xy : (T ! T 0)! T ! T 0 (i) : : : (v), (3)In �!, we cannot typecheck �x:xx nor Y .2.2 The system �2De�nition 2.6 (Expressions and Types of �2)Expressions are E ::= V jE1E2j�V:ETypes are T ::= �jcjT ! T j8�:TDe�nition 2.7 (Rules of �2)Rules of �2 are (1) + (2) + (3) + (4) + (5) where:� ` E1 : 8�:T� ` E1 : T [� := T 0] (4)� ` E : T � 62 FV (�)� ` E : 8�:T (5)Example 2.8 In �2, that �x:xx is of type 8�:(8�:�)! � can be seen as follows:(i) x : 8�:� hyp(ii) x : � ! � (i), (4)(iii) x : � (i) , (4)(iv) xx : � (ii), (iii), (2)(v) �x:xx : (8�:�)! � (i) : : : (iv), (3)(vi) �x:xx : 8�:(8�:�)! � (v), (5)However, The �xed point term Y is not typable in �2 nor is (�x:xx)(�x:xx).2.3 The system ��De�nition 2.9 (Expressions and Types of ��)Expressions are E ::= V jE1E2j�V:ETypes are T ::= �jcjT ! T j��:TMoreover, in �� we need the following concept:De�nition 2.10 (Approximation of Types)We say that T � T 0 i� =(T) = =(T 0) where =(T) is a tree de�ned as follows:=(�) = �=(c) = c 10

=(T ! T 0) =
=(T) ! =(T 0)���	 @@@R=(��:T) = =(T [� := ��:T]) if \de�ned", else �.Example 2.11 Here are two terms and their corresponding images by =.1. =(��:�) = �2. =(��:�! �) =

=(��:�! �) ! =(��:�! �)���	 @@@RDe�nition 2.12 (Rules of ��)Rules are (1) + (2) + (3) + (6) where� ` E1 : T T � T 0� ` E1 : T 0 (6)Example 2.13 Let T 0 = ��:(� ! T), then T 0 � T 0 ! T . Now, �x:xx gets the type T 0 ! Tas follows:(i) x : T 0 hyp(ii) x : T 0 ! T (i), (6)(iii) xx : T (i), (ii), (2)(iv) �x:xx : T 0 ! T (i) : : : (iii) (3)Example 2.14 That Y is of type (T ! T)! T can be seen as follows:(i) f : T ! T hyp(ii) x : T 0 hyp(iii) x : T 0 ! T (ii), (6)(iv) xx : T (ii), (iii), (2)(v) f(xx) : T (i), (iv), (2)(vi) �x:f(xx) : T 0 ! T (i) : : : (v), (3)(vii) �x:f(xx) : T 0 (vi), (6)(viii) (�x:f(xx))�x:f(xx) : T (vi), (vii), (2)(ix) �f:(�x:f(xx))�x:f(xx) : (T ! T)! T (i) : : : (viii), (3)(�x:xx)(�x:xx) can be typechecked to T . Moreover if we started with T 0 = ��:� ! �then we could typecheck Y (�x:xx) to T 0. 11

2.4 The system �\De�nition 2.15 (Expressions and Types of �\)Expressions are E ::= V jE1E2j�V:ETypes are T ::= �jcjT ! T jT \ T with ! a constant type.Types are ordered by � and where T � ! for every type T . Moreover, � is symmetric,transitive, closed under intersection and satis�es amongst other things that T \ T 0 � T 0.De�nition 2.16 (Rules of �\)Rules are (1) + (2) + (3) + (6) + (7) + (8) + (9) + (10) where� ` E1 : T \ T 0� ` E1 : T � ` E1 : T 0 (7)� ` E1 : T � ` E1 : T 0� ` E1 : T \ T 0 (8)� ` E1 : T T � T 0� ` E1 : T 0 (9)� ` E1 : ! (10)Example 2.17 That �x:xx has type (T \ (T ! T 0))! T 0 can be seen as follows:(i) x : T \ (T ! T 0) hyp(ii) x : T ! T 0 (i); (7)(iii) x : T (i); (7)(iv) xx : T 0 (ii); (iii); (2)(v) �x:xx : (T \ (T ! T 0))! T 0 (i) : : : (iv); (3)In �\ however, (�x:xx)(�x:xx) gets the type ! due to the failure of the system in �ndingthe more speci�c type for it. Moreover, Y is not typable in �\.Our aim in this paper is not to extend the syntax of types by allowing forall, recursive orintersection types as in �2, �� and �\, but to provide a typing system similar to ML, exceptthat the matching between types takes a di�erent form than that in ML. The reason why MLcannot typecheck �x:xx and Y is that even though ML is based on the type free �-calculus,its typing principles leave �a ! �b and �a (where �a and �b are any types) incomparable.On the other hand, the structure of the models of the type free �-calculus demands that(�a ! �b) � �a, and this ordering is the basis of applying functions to themselves. Take forexample, �x:xx, the operator occurrence of x requires that x be of type �a! �b, and for thisoccurrence to apply to x; x must also be of type �a.Like ML we will construct a polymorphic type system based on the type free �-calculus.Unlike ML however, the relation between types will include that every arrow type is in-cluded in its domain space. This system will allow typing the self referential term Y =�f:(�x:f(xx))(�x:f(xx)), the self application function �x:xx and all the possible mixtures ofY and �x:xx.
12

3 The system L�3.1 ExpressionsLet our term variables be x; x0; y; y0; z; z0 : : :, let V; V 0; V "; : : : range over these variables,let �0; �1; : : : be our type variables and let �; �0; �1 : : :, range over these variables. We letE;E0; E"; : : : E1; E2; : : : ;�;	; : : : ; range over expressions and T , T 0; T1; T2; : : : range over typeexpressions.De�nition 3.1 (Types)We will construct types inside this language as follows:T ::= � j Basic j (T1 ! T2)Basic ::= p j t j eHere p is the type of propositions, t is the type of truths (that is of all the true propositions)and e is the type of objects. In fact e contains everything, variable types, basic types andarrow types. This is the case due to the subsumption relation � on the types de�ned inDe�nition 3.8.De�nition 3.2 (Expressions)We assume the following syntax of terms:E = V j(E1E2)j(�V:E1)j
Ej(�V : T:E1)j(E1 ^E2)j(E1 ! E2)j(:E1)j(8V:E1)j(8V : T:E1)Hence as seen from the syntax, we work inside the type free �-calculus with logic but we alsoallow types. All the above terms should be obvious except for
E. This is to be understoodas saying that E is a proposition. It is needed to make the construction of logic inside thetype free �-calculus non paradoxical (see [Kamareddine 89], [Aczel 80], [Beeson 84]). Moreprecisely, even though (�x::xx)(�x::xx) = :(�x::xx)(�x::xx), the paradox does not arisebecause there is no way to prove that
(�x::xx).2 Finally, we assume the usual conventionsfor the dropping of parentheses when no confusion occurs and say that E � E' i� E and E0are exactly the same.De�nition 3.3 (Substitution)3We de�ne E[E0=V] the result of substituting E0 for each free occurrence of V in E asfollows:2Our syntax of terms (excluding those that involve logic) is similar to that of Milner except that we do notinclude the if, let and �x constructs; these can however be built out of other ones.3These rules are used in the implementation in Section 7.

13

(S1) V [E0=V] � E0(S2) V 0[E0=V] � V 0 if not (V 0 � V)(S3) (E1E2)[E0=V] � (E1[E0=V])(E2[E0=V])(E1 ^E2)[E0=V] � (E1[E0=V]) ^ (E2[E0=V])(E1 ! E2)[E0=V] � (E1[E0=V])! (E2[E0=V])(:E1)[E0=V] � :(E1[E0=V])(S4) If M is V or M is V : T then(�M:E1)[E0=V] � �M:E1(8M:E1)[E0=V] � 8M:E1(S5) If M 0 is V 0 or M 0 is V 0 : T then(�M 0:E1)[E0=V] � �M 0:E1[E0=V] if not (V 0 � V) and V 0 62 free(E0) or V 62 free(E1)(8M 0:E1)[E0=V] � 8M 0:E1[E0=V] if not (V 0 � V) and V 0 62 free(E0) or V 62 free(E1)(S6) If (M 0 is V 0 or M 0 is V 0 : T) and (M" is V " or V " : T) then(�M 0:E1)[E0=V] � �M":E1[V "=V 0][E0=V]if not (V 0 � V) and V 0 2 free(E0), and V 2 free(E1) and V " 62 free(E0E1)(8M 0:E1)[E0=V] � 8M":E1[V "=V 0][E0=V]if not (V 0 � V) and V 0 2 free(E0), and V 2 free(E1) and V " 62 free(E0E1)As we said before, the typed terms are built out of the type free ones. Hence, we willrestrict attention to the untyped fragment. We assume the well known three axioms of thetype free �-calculus (there are of course other axioms and rules which will be graduallyintroduced below):De�nition 3.4 (Axioms of the type free �-calculus)The following three axioms are assumed in our system:(�) �V:E !� �V 0:E[V 0=V] ifV 0 62 free(E)(�) (�V:E)E0 !� E[E0=V](�) �V:EV !� E ifV 62 free(E).We write E !� E0 (respectively E !� E0 and E !� E0) i� E0 is obtained from E by reducingany subterm of E using (�) (respectively (�) and (�)).If E !� E0 (respectively E !� E0 and E !� E0) then we say E �-reduces (respectively�-reduces and �-reduces) to E0.If an expression may be reduced by (�) or (�), we say that it contains a �-redex or an�-redex. An expression of the form (�V:E)E0 is called a �-redex and the corresponding termE[E0=V] is called its contractum. An expression of the form �x:Ex where x 62 free(E) iscalled an �-redex. Its contractum is E.De�nition 3.5 (Reduction)We de�ne � to be the rfelexive and transitive closure of ! where E ! E0 , E !� E0 orE !� E0 or E !� E0. When E � E0, we say that E reduces to E0.De�nition 3.6 (Equality)We de�ne equality to be the smallest equivalence relation containing �. If E = E0, we saythat E equals to E0.De�nition 3.7 (Normal Form)An expression is in normal form if it does not contain an �-redex or a �-redex, an expres-sion E has a normal form if E = E0 for some E0 in normal form.14

3.2 Types and their semantic justi�cationAs explained at the end of Section 2, the reason why ML cannot typecheck �x:xx and Yis that even though Milner's ML is based on the type free �-calculus, its typing principlesleave �a ! �b and �a (where �a and �b are any types) incomparable. On the other hand,the structure of the models of the type free �-calculus demands that (�a ! �b) � �a, andthis ordering is the basis of applying functions to themselves. Based on this observation, therelation between types will include that every arrow type is included in its domain space.This relation � is de�ned as follows:De�nition 3.8 (Subsumption Relation)The ordering/subsumption relation on types is given by the following rules:i) T � eii) t � piii) (T ! T 0) � Tiv) T � Tv) if T � T 0 and T 0 � T then T = T 0vi) if T � T 0 and T 0 � T" then T � T"vii) if T � T 0 then (T1 ! T) � (T1 ! T 0)In other words, everything is an object, true propositions are propositions, � is a partialorder and (T !) is monotonic. moreover, it is mainly clause iii) which enables us to have selfapplication in the system.We say that by (T � T 0), T subsumes T 0; intuitively it means that any expression whichis of type T is also of type T 0.Due to the presence of logic and self application, we will use the notion of circular typesde�ned in De�nition 4.14, to avoid the paradoxes. When an expression E has type T wewrite E : T . In particular we write � : p for � a proposition and � : t for � true. We writeT � T 0 if the types T and T 0 are syntactically the same. Our syntax of types is very similarto that of Milner ([Milner 78]) except that we restrict attention to the domain e which is amodel of the type free �-calculus. We follow Milner in de�ning monotypes to be types whichcontain no type variables and use �; �;�, to range over monotypes. As Milner we use theword polytype to describe that a type may contain type variables.3.3 The typing rules with respect to the new ordering and the typing of Yand self application.We carry over here the de�nition of an environment and the notation � ` E : T as given inde�nition 2.1 and Notation 2.2. The following rules associate types to the expressions of thetype free part. Those expressions involving logic will be type checked later.De�nition 3.9 (Typing �-expressions) The following typing rules accommodate in the usualtyping rules, the notion of ordering:(V : T) 2 �� ` V : T (11)� ` E : T T � T 0� ` E : T 0 (12)15

� ` E1 : T ! T 0 � ` E2 : T� ` E1E2 : T 0 (13)f(V : T)g [� ` E : T 0� ` �V:E : T ! T 0 (14)From the above, it is obvious that some expressions have many types. For example, �x:x isof type �! � for any type variable �.Now let us illustrate with typing �x:xx and Y .Example 3.10 �x:xx has type (�0 ! �1)! �1:(i) x : �0 ! �1 Assumption(ii) �0 ! �1 � �0 clause iii) of �(iii) x : �0 (i), (ii), (12)(iv) xx : �1 (i), (iii), (13)(v) �x:xx : (�0 ! �1)! �1 (i) : : : (iv), (14)Example 3.11 �f:(�x:f(xx))(�x:f(xx)) has type (�2 ! �2)! �2:(i) f : �2 ! �2 assumption(ii) x : (�1 ! �2)! �2 assumption(iii) (�1 ! �2)! �2 � �1 ! �2 clause iii) of �(iv) x : �1 ! �2 (ii), (iii), (12)(v) xx : �2 (ii), (iv), (13)(vi) f(xx) : �2 (i), (v), (13)(vii) �x:f(xx) : ((�1 ! �2)! �2)! �2 (ii) : : : (vi), (14)(viii) ((�1 ! �2)! �2)! �2 � (�1 ! �2)! �2 clause iii) of �(ix) �x:f(xx) : (�1 ! �2)! �2 (vii), (viii), (12)(x) (�x:f(xx))(�x:f(xx)) : �2 (iii), (ix), (13)(xi) �f:(�x:f(xx))(�x:f(xx)) : (�2 ! �2)! �2 (i) : : : (x), (14)Example 3.12 As another example, (�x : �0:x)y where y : �1 and �0; �1 are type variables,is also typable and the system will deduce that the type of (�x : �0:x) is �0 ! �0 and it willtry to check and see if �0 � �1 but as �1 is a variable, the system makes �1 become �0 andreturns �0 as the result.4 Type checkingThe type checker is straightforward yet it allows for better polymorphism than other systemsbecause of the subsumption relation that is used. The algorithm for type checking is imple-mented using checkexpr where checkexpr is a function with the following functionality:environments � heap-variables � terms ! (substitutions � types � heap-variables) + error.Before we explain the type checker we need to describe how we implement the variousdata types and the various relation on them.
16

4.1 On the �-reducerThe implementation of the terms, types and their properties is straightforward except whenwe come to the reducer. This is because we are using the type free �-calculus as our basisand hence many reductions will not end in normal forms. The following example illustratesthe point:Example 4.1 (�x : e! p:xx)(�x : e! p:xx)= (�x : e! p:xx)(�x : e! p:xx) as (e! p � e)= (�x : e! p:xx)(�x : e! p:xx) as (e! p � e)= : : : = (�x : e! p:xx)(�x : e! p:xx) as (e! p � e) = : : : and so on.To be able to implement the reducer of the expressions, we have to be able to deal withsuch a problem. Because normal order reduction is safe, that is if a term has a normal formthen it �nds it, we are going to use normal order reduction which works on the leftmostoutermost reductions of the terms. Of course normal order reduction will not deal with theabove problem of (�x : e! p:xx)(�x : e! p:xx). For this we will need an ad-hoc mechanismbecause of the undecidability of reduction. In fact there are much better lambda reducersthan our own and better mechanisms such as head and weak normal forms. For this paper,we take the approach of checking if when reducing E we get an expression which contains E.If so, we stop and return the new expression. Not only reduction is undecidable but equalitybetween terms is undecidable too. In this paper, the equality relation is implemented in termsof reduction and equivalence, so E = E0 i� (reduceE) = (reduceE0).There are expressions that the reducer or equality checker don't deal with. The followingis an example of such an expression:Example 4.2 If we take Y to be �f:(�x:f(xx))(�x:f(xx)), i.e. Y is a �xed point opera-tor, then reduce (Y (�x:x)) would lead to (�x:x)((�x:(�x:x)(xx))(�x:(�x:x)(xx))) whereas wewould have liked to get:(�x:xx)(�x:xx). The system will deduce that Y (�x:x) = (�x:x)(Y (�x:x))and this is trivial because (�x:x)E = E for any E. However the system will not be able todeduce that Y (�x:xx) = (�:xx)(Y (�x:xx)). In fact it deduces that they are not equal be-cause when it checks reduce(Y (�x:xx)) and reduce (�x:xx)(Y (�x:xx)) it �nds two di�erentexpressions.This of course should not be seen as a de�ciency of the system, in fact this is the norm oflambda reducers.4.2 Subsumption and uni�cation of typesLike Milner's �, our subsumption relation � is transitive and reexive. Unlike Milner, our �gives us that (� ! �) ! (� ! �) � (� ! �) ! � � (� ! �) ! e � e and there is no wayto unify the type variable � with another type variable �0.To replace �'s by �0's as in Milner's system, we would need to unify the �'s and �0's. Forthis we need uni�cation on types which saves the binding of types, so we can say that if �and �0 can be uni�ed, we have(�! �)! (�! �) � (�! �)! (�0 ! �0) � �! �0 � �0 ! � � �! � � e.All the clauses for the subsumption relation given in De�nition 3.8 are straightforward toimplement except if the types involved contain variable types then uni�cation will come inand some variable types will be instantiated to other types. For example, � � T will result in17

a substitution of types where � is bound to T . We will change � to deal with substitutionsso that when we write T � T 0, we don't only get a truth value, but a form of uni�cationtakes place. This sort of uni�cation will be saved in a substitution function. Due to recursionneeds, we start from a type substitution s when we ask the question T � T 0 and we obtain a(possibly) new type substitution s0. This is written as T �s T 0 = s0. Hence, T �s T 0 = s0 willmove from substitution s to substitution s0 which takes into account some type uni�cationduring the process of comparing T and T 0.Before we de�ne �s, we need a few auxilliary de�nitions:De�nition 4.3 (Type Substitution)We de�ne a type substitution to be a function from types to types which assigns types totype variables. We let SUB be the set of substitutions and let s range over it. Hence each sis a set of elements of the form: (�; T), where no two di�erent elements have � as their �rstcomponent. For a type T and a substitution s, we let sT be the type obtained by replacing allthe type variables in T which appear as �rst projections in s, by their values in s.Example 4.4 For example, if s = f(�; e)g, and T is � ! � then sT is e! e.Notation 4.5 In the implementation, in section 7, we take ob, pr and tr to represent thetypes e, p and t respectively.De�nition 4.6 (Subsumeset)subsumeset takes a type and �nds those types that subsume it. The implementation ofsuch a function is item 1 in 7.4. It is very straightforward and will not be explained further.Example 4.7 subsumeset p = [e; p] and subsumeset p! t = [p! e; p! p; p! t].Now we come to the subsumption relation itself, it is implemented by the function subsumegiven as item 4 in 7.4. Note the use of the option type (item 7 in 7.1):type option *a *b = N*a + Y*bThis is so that in case the subsumption fails, we get an error message to the e�ect. If thesubsumption succeeds, we get a substitution. In fact many of our functions will give us resultsin the type option. if the result of a function f is NI, then f fails and I contains a messageexplaining why the failure occured. If the result of f is Y I then f succeeds and I is thedesired result of f .occurs, isarrow, domain, range, scomp, addrem, id-subst and sub-type appear in the im-plementation of subsumption (item 4, 7.4). They are to be understood as follows:occurs T returns true if there are type variables in T , else it returns false. Isarrow testswhether a type is an arrow type (such as � ! �). Domain T and range T �nd the domainand range of an arrow type T . Scomp is the composition function which composes twosubstitutions, id-subst is the identity substitution and addremgxy = g everywhere except forx where it gives the value y. We use sub-type to apply a substitution to a type. Of coursehere we will not repeat the implementation of subsume from item 4 of 7.4, but note that thisfunction can be roughly translated by the following de�nition:De�nition 4.8 (An algorithm for subsumes)i) � �s � =df s if � 2 (subsumeset �)ii) (T ! T1) �s T =df s 18

iii) T �s T =df siv) � �s T =df s[T=�]v) T �s T1 =df s if (sT = �) and (sT1 = �) and ((� �s �) = s)vi) T �s T1 fails if (sT = �) and (sT1 = �) and � �s � failsvii) T �s T1 =df (T1 �s �) if sT = �viii) ((T1 ! T2) �s (T1 ! T 02)) =df (T2 �s T 02)ix) (T �s T 0) =df �nd T 00 such that T �s T 00 and T 00 �s T 0T 00 is found by the call subsumed by T where subsumed by is de�ned as item 5 in 7.4. Notehere that we have used the concept subsumed by to accommodate the transitivity clause ofDe�nition 3.8. In fact, subsumed by accommodates transitivity through clause ix) of De�ni-tion 4.8.Example 4.9 subsume takes three arguments, the type substitution, and the two types to becompared. For instance,1. subsume id subst e p = N(00No00) from line 4 of the implementation of subsume.2. If (� : p) 2 phi then subsume phi � e = Y (phi), from line 3 of the implementation ofsubsume.De�nition 4.10 We say that a polytype T which contains type variables is cyclic accordingto a type substitution s i�1) sT 6� T2) sT �s TThis notion of a cyclic type is implemented as item 14 in 7.4.Example 4.11 � is cyclic according to (�; � ! �1).Now we de�ne uni�cation of types as follows:De�nition 4.12 (Uni�cation)i) �1 �s �2 = s if �1 �s �2ii) � �s T = s[T=�] if s� = � and (cyclic sT)iii) � �s T = s[sT=�] if s� = � and sT � Tiv) � �s T = s� �s sTv) T �s � = sT �s s�vi) ((T1 ! T2) �s (T3 ! T4)) = (T2 �s1 T4) where s1 = T1 �s T3The ML function for this uni�cation is to be found as item 11 in 7.7.Example 4.13 (unify id subst (�; � ! �0)) returns Y (id subst[� ! �0=�]), from clause ii)of De�nition 4.12. In other words when you unify � with � ! �0 in the identity substitution,you succeed (you obtain the Y part of the type option) and you obtain a substitution which isexactly the same as id subst except that for � it gives � ! �0.
19

4.3 Type checking the expressionsAn important concept for typechecking the expressions of the type free �-calculus with logicis that of circular type. This is implemented as item 15 of 7.4, and it can be formally de�nedas follows:De�nition 4.14 (Circular Type)We say that a type (T ! T 0)! T 00 is circular i�:1. T 0 and T 00 are both monotypes.2. T 0 � p and T 00 � p.Example 4.15 (� ! p)! t and (e! p)! (p! p) are circular types.We are ready now to describe our type checking algorithm which will be implemented in 7.9.This algorithm will start from the rules given in De�nition 3.9, but takes also into accountlogic, subsumption and uni�cation of types and our concept of circular types which avoidsthe paradoxes. The notation � ` E : T means that from the environment �, we can deducethat the expression E has type T. The following rules associate types to expressions, howeverthey are supposed to be understood in a procedural way, that is (16) is tried �rst then (17)and so on. Also when we invoke � ` a1;� ` a2, then it is to be understood that � ` a1 isexecuted �rst and if it succeeds then � ` a2 is invoked but where � has been changed as aresult of � ` a1. All rules have the formhypothesis h1; h2; : : : ; hnconclusion C (15)and if we are at rule Ri testing its hypothesis, h1; h2, : : :, hn and one of the hi fails, we abandonRi and go to Ri+1 but all changes to the environment which happened during execution ofh1; h2, : : :, hn are now undone. Now equations (16), : : :, (29) explain how the typechecker asimplemented in checkexpr (item 1 of 7.9) has been derived. Basically we start from equations(11), : : :, (14) and accommodate logic, subsumption and uni�cation of types and reductionof terms. Also we must use our notation of circular type to avoid the paradoxes. Note thatcheckexpr takes 3 arguments, the environment in which the expression must be checked, the�rst free variable from the heap and the expression to be type checked. Now we go to equations(11), : : :, (14), and expand them in an algorithm upon which the implementation of the typechecker will be based. Equations (16), : : :, (23) will be the replacement of equations (11),: : :, (14). I.e. equations which accommodate circular types, subsumption and uni�cation inthe usual typing schemes. Equations (24), : : :, (29) accommodate the logical types. Hereare these equations, their relation to equations (11), : : :, (14) and to their implementationin checkexpr.(V : T) 2 �� ` V : T (16)As we see, equation (11) remains unchanged and this is implemented as clause 2 of checkexpr.Clause 1 of checkexpr implements that the type of bot (the bottom element ?) is p.� ` �V:E1 : T ! T 00;� ` E2 : T 0;� ` ct(T 0);� ` ct(T ! T 00);� ` T 0 � T;� ` reduce((�V:E1)E2) : T 000If((�V:E1)E2) is not a subexpression of reduce((�V:E1)E2)� ` ((�V:E1)E2) : T 000 (17)20

� ` �V:E1 : T ! T 00;� ` E2 : T 0;� ` unify T 0 T� ` ((�V:E1)E2) : T 00 (18)The above two equations typecheck terms of the form ((�V:E1)E2). The �rst equation dealswith the case where both types of �V:E1 and E2 are constant types, and where the result of((�V:E1)E2) has a more speci�c type than that of the range of �V:E1. The resulting type isthe more speci�c one rather than the general one. The second equation is used in case it isdi�cult to calculate the more speci�c type, then the most general one, (the range of �V:E1)is given. These two equations are implemented as clause 3 of checkexpr. Note here that the2 equations might not sound so compatible with one unique clause. All the other detailshowever, such as ct, reduce and subexpression are tested inside the calls check list, list typesand so on.� ` �V : T1:E1 : T ! T 00;� ` E2 : T 0;� ` ct(T 0);� ` ct(T ! T 00);� ` T 0 � T;� ` reduce((�V:E1)E2) : T 000If((�V:E1)E2) is not a subexpression of reduce((�V:E1)E2)� ` ((�V : T1:E1)E2) : T 000 (19)� ` �V : T1:E1 : T ! T 00;� ` E2 : T 0;� ` unify T 0T� ` ((�V : T1:E1)E2) : T 00 (20)These two equations are similar to (17) and (18) but where the abstracted variable is typed.They are implemented as clause 4 of checkexpr.� ` E1 : T;� ` E2 : T 0;� ` unify T (T 0 ! �))� ` E1E2 : � (21)This equation deals with the case where the �rst term E1 does not have the form of a � term.For example, in xx, the �rst x is not a � term, yet we would like to apply it to the secondx. In this case, the �rst term, is given an arrow type and everything is made to �t. Thisequation is implemented as clause 5 of checkexpr.Note that we take 5 equations, (17), : : :, (21) to accommodate equation (13).(V : �) [� ` E : T 0 if (� ! T 0) non-circular in �� ` �V:E : � ! T 0 (22)(V : T) [� ` E : T 0 if (T ! T 0) is non-circular in �� ` �V : T:E : T ! T 0 (23)These two equations replace equation (14). Equation (22) deals with the case where theabstracted variable is untyped and equation (23) deals with the case where the abstractedvariable is typed. Those two equations are implemented as clauses 6 and 7 of checkexpr.� ` �V:E : T;� ` unify T p� ` 8V:E : p (24)� ` �V : T:E : T 0;� ` unify T 0 p� ` 8V : T:E : p (25)
21

The above two equations typecheck forall terms, by �rst typechecking a � term which corre-sponds to it and unifying the type of the � term with p. They are implemented as clauses 9and 8 of checkexpr respectively.� ` E : T;� ` unify T p� `
E : p (26)� ` E : T;� ` unify T p� ` :E : p (27)� ` E1 : T1;� ` unify T1 p;� ` E2 : T2;� ` unify T2 p� ` E1 ^E2 : p (28)� ` E1 : T1;� ` unify T1 p;� ` E2 : T2;� ` unify T2 p� ` E1 ! E2 : p (29)The above four equations are now obvious. They are implemented as clauses 10, : : :, 13respectively.Example 4.16 Now let us see how �x:xx is type checked by the system. In summary themethod is as follows:(i) [x : �0] hyp(ii) �0 � �0 ! �1 From uni�cation(iii) xx : �1 From (i), (ii), (21)(iv) �x:xx : (�0 ! �1)! �0 From (22)The system however, when asked to typecheck �x:xx (by calling typecheck [�x:xx]), willfollow the steps below (note that check-list [("x"; �0)][x;x]�1 = Y(id-subst, [�0;�0]; �1) andthat unify id-subst (�0; �0 ! �1) = Y(id-subst [�0 ! �1=�0]))1. checks [�x:xx] [] �0 11.1 checkexpr [] �0 �x:xx1.1.1 typecheckbodyabs �0 (checkexpr [("x"; �0)] �1 xx)To checkexpr [("x"; �0)] �1 xx, one has to typecheckapp (check-list [("x"; �0)] [x;x] �1).I.e. typecheckapp (Y(id-subst, [�0;�0]; �1)) which istypecheckapp1 �1 (unify id-subst (�0; �0 ! �1)).This istypecheckapp1 �1 Y(id-subst[�0 ! �1=�0]) which is Y(id-subst[�0 ! �1=�0]; �1; �2).Now, typecheckbodyabs �0 (checkexpr [("x"; �0)]�1xx) returns (�0 ! �1) ! �0, the typeof �x:xx.Example 4.17 Y is type checked by the system as follows(i)[f : �0] hyp(ii) [x : �1] hyp(iii) �1 � �1 ! �2 From uni�cation(iv) xx : �2 From (ii), (iii), (17)(v) �0 � �2 ! �3 From uni�cation(vi) f(xx) : �3 From (i), (iv), (v), (21)(vii) �x:f(xx) : (�1 ! �2)! �3 From (ii) : : : (vi), (22), uni�cation(viii) [x : �4] hyp(ix) �4 � �4 ! �5 From uni�cation(x) xx : �5 From (viii), (ix), (21)22

(xi) �5 � �2 From uni�cation(xii) xx : �2 From (x), (xi), uni�cation(xiii) f(xx) : �3 From (i), (xii), (v), (21)(xiv) �x:f(xx) : (�4 ! �2)! �3 From (viii) : : : (xiii), (22), uni�cation(xv) �3 � �2 From uni�cation(xvi) (�4 ! �2)! �3 � �1 ! �2 From uni�cation(xvii) (�x:f(xx))(�x:f(xx)) : �2 From (xv), (xvi), (21)(xviii) �f:(�x:f(xx))(�x:f(xx)) : (�2 ! �2)! �2 From (i) : : : (xvii),Example 4.18 The following will give a feel of how the system works. They are examples ofwhat expressions we give the system and what messages or types we get back.Expressions Types1 �x:x �0 ! �02 �x : e:x e! e3 �x:xx (�0 ! �1)! �14 (�x:xx)(�x:xx) �15 �x : p:xx p! �06 �x : e! p:xx error: (e! p)! p is circular7 8x : (�0 ! �1):xy p8 8x : e:x error, not a proposition9 8x : (e! �1):xy p10 8x:xx p11 �x : (�0 ! �1):xy (�0 ! �1)! �112 �f:(�s : e! pf(ss))(�s : e! pf(ss)) error: (p! p)! p is circular13 �f : e! p:(�s : e! pf(ss))(�s : e! pf(ss)) error: (e! p)! p is circular14 �f:(�x:f(xx))(�x:f(xx)) (�2 ! �2)! �215 (�f:(�x:f(xx))(�x:f(xx)))(�x : p:xx) p16 (�f:(�x:f(xx))(�x:f(xx)))(�f:(�x:f(xx))(�x:f(xx))) �217 (�f:(�x:f(xx))(�x:f(xx)))(�x:xx) �218 (�x:xx)(�f:(�x:f(xx))(�x:f(xx))) �119 �x::xx error, circular type20 �x : (�0 ! t)::xx error, circular type21 �x : (�0 ! p)::xx error, circular type22 �x:xx! ? error, circular type5 Theorem proving in the systemNow let us see how the paradoxical sentences do not lead us to problems. Take the followingparadoxical sentences:Let Russell = �x::xxAnd AnotherRussell = �x : (a0 ! t)::xxAnd TypedRussell = �x : (a0 ! p)::xxAnd Curry = �x:xx! ?typecheck x where x is any of the above terms returns: an error message informing usthat the term has a circular type. So the system does not allow the typing of the paradoxicalsentences. However as we have seen in the section on polymorphism above, the system allowsand typechecks all self referential terms which are safe. I.e. whereas the system typecheks23

�x:xx, it does not allow �x::xx. This is because it knows that for : to make sense, it shouldapply to a proposition but it cannot make xx be a proposition.It might be thought that this theory would fall foul of Russell's paradox, due to the factthat xx is a well-formed formula for x of any type T1 ! T2; and hence by abstracting over:xx, we could obtain aa = :aa where a is �x::xx. In particular, if one took x to be of typee ! p, then a = �x::xx would be of type (e ! p) ! p and hence aa would be of type p,leading to a contradiction from the above equality. The careful reader however would realisethat one of our above steps was wrong. That is, even if x is of type e! p, and even though:xx is a proposition, �x::xx is not well-formed. More speci�cally, its type, (e ! p) ! p, iscircular. In fact we have a more general result: the paradox does not arise for x of any typeT ! p. This follows from the following lemma:Lemma 5.1 If x is of type T ! p, then �x::xx of type (T ! p)! p is not well-formed.Proof:(i) x : T ! p hyp(ii) T ! p � p from �(iii) xx : p from (21)(iv) :xx : p from (27)But as (T ! p) ! p is circular, we cannot apply (23) to get that �x::xx has type(T ! p) ! p. In fact we cannot type �x::xx. The system comes back and tells us that thetype is circular (see term 19 of Example 4.18). 2This might still be unpersuasive however, for the paradox can arise in other ways. Forexample, take x of type T ! T 0, where T 0 � p. Then xx is of type T 0 � p, hence :xx is oftype p. Now, if �x::xx is a well-formed expression (call it a) then aa is of type p and is equalto aa. Contradiction. In view of this, we have to prove something stronger than Lemma 5.1.This we do via the following lemma:Lemma 5.2 If x is of type T ! T 0, where T 0 � p, then �x::xx of type (T ! T 0)! p is notwell-formed.Proof:(i) x : T ! T 0 hyp(ii) T ! T 0 � T from �(iii) xx : T 0 from (21)(iv) :xx : p from (27), as T 0 � pBut as (T ! T 0) ! p is circular, we cannot apply (23) to get that �x::xx has type(T ! T 0)! p. In fact we cannot type �x::xx. The system comes back and tells us that thetype is circular (see terms 20 and 21 of Example 4.18). 2Up to here, we have only used the type p to express logic, and t has been ignored. Weshall show here how the type t is used and demonstrate the idea by showing that we do notface Curry's paradox.Our version of the Deduction Theorem (DT) has the following form:(DT) � [� : t ` 	 : t implies � [� : p ` (�!) : tModus Ponens (MP) has also the following form:24

(MP) � ` (�!) : t and � ` � : t implies � ` 	 : t,If we take a to be the formula�x:(xx! ?),then by �-conversion,(1) aa = aa! ?.Now, it holds trivially that(2) aa : t ` aa : t ,By (1) we derive(3) aa : t ` aa! ? : t.and, by Modus Ponens applied to (2) and (3) we getaa : t ` ? : t.By (DT) we can now derive aa : p ` (aa! ?) : t.Then also aa : p ` aa : t.Given the last two steps, we can again apply Modus Ponens to getaa : p ` ? : t.However, we cannot show that aa : p. In fact �x:(xx ! ?) is not well formed due tolemma 5.1 above as its type is (T 0 ! p) ! p. This is because if x is of some type T , sincexx has to be of type p, we can infer that T must be of the form T 0 ! p. From this it followsthat a is of type (T 0 ! p)! p, which is circular. Hence we do not face Curry's paradox.This is all the proof theory that we mention about this system in this paper, for moreresults and properties about the logical properties and the proof theory of the system referto [Kamareddine 92A]. Also [Kamareddine 92B] and [Kamareddine 92C] present a model ofthe system together with other systems of the type free �-calculus with logic.6 ConclusionThe system provided in this paper has powerful properties. First it is type free. That is,anything structured is an expression and anything non problematic will have a type. Thesetypes are polymorphic in the sense that expressions can have many variable types and thesevariable types may be instantiated to anything. For example, the identity function has type�0 ! �0, and the identity function applied to objects of type e will result in elementsof type e. The polymorphic power of the system comes from the ability to typecheck allpolymorphic functions even those which are problematic in other systems. For example the�xed point operator, Y = �f:(�x:f(xx))(�x:f(xx)) is typechecked to (�2 ! �2) ! �2 andeven can apply to itself. Even Y Y is typechecked to �2. f = �x:xx is also typechecked to(�1 ! �1) ! �1 and f applied to itself is typechecked to �1. As said earlier, these typescan be instantiated so that gg where g is the identity function over e (i.e. g = �x : e:x), istypechecked to e naturally. We believe this system is one of the �rst which can typecheck allthe above while remaining a very expressive and simple one. Other polymorphic systems likeML, do not have this polymorphic power. In fact, Y cannot be typechecked in ML. Instead,the �xed point operator is de�ned trivially by the equation: letrec Y E = E(Y E), and thenthis Y is typechecked to (�2 ! �2)! �2. But this is not good enough as one cannot de�neY by its �-expression. Another nice characteristic of the system is its ability to combinelogic and the type free �-calculus while remaining consistent. So even though the Russellsentence (�x::(xx)) is a well formed sentence of the system, its type cannot be found. Infact, the system returns an error message explaining that this sentence has a circular type.25

The same thing applies to the Curry's sentence (�x:xx! ?). Of course here, one may wonderif the paradox is really avoided, and may give as an example F � �f:(�x:f(xx)) which istypechecked to (�2 ! �2) ! ((�2 ! �2) ! �2), and then instantiate it to F: which wouldbe of type (p! p)! p. This does not hold however because (p! p)! p is circular and thesystem does not accept such instantiation. Finally, the system also has error messages whichconvey the reasons of failure in typechecking and where the failure occured.7 Program listingmodule in�xr "���";export typevar, tterm, ob, pr, tr, show type, show tlist, subsume, ctsubsume, circulartype, change,mysub type, equaltype, subsumeset, makearrows, subsumed by, isbasictype, isarrow, domain, range,istlambda, term, free, out, substitute, isin, newvar, rename, show term, len, betaconverge, etacon-verge, alphaconverge, reduceoutermost, reduce, occur, subexpression, equiv, islambda, isinnf, be-taconverts, etaconverts, isapp,hasnf, subexp, nodupappend, operator, operand, propconj, propneg,propimpl, propbot, anothereq, cyclictype, fvars, occurs, mem, zip, option, next, ���, getsub, get-type, gettvn, print, printerror, iserror, istvar,lookupYN, sub type, scomp, id subst, delta, extend,unify, unify list,addrem, makeprop, composesubs, app sub env, typecheckapp, seeprop, occurtype,typecheckbodyabs, checkexpr, check list, listtypes, typecheckprop, getphi, typechecklapp, checkexpr,checks, typecheck, typecheckapp1;7.1 Terms, Types and Options Declarations1. rec type typevar = alpha Int2. and type tterm = tvar typevar + top (List Char) (List tterm)3. and ob = top "OB" []4. and pr = top "PR" []5. and tr = top "TR" []6. and type term = bot + var (List Char) + app term term + lambda (List Char) term +tlambda (List Char) tterm term + prop term + conj term term + neg term + impl term term+ forall (List Char) term + tforall (List Char) tterm term7. and type option *a *b = N*a +Y*b7.2 Printing1. and show type (tvar (alpha x)) = itos xjj show type (top s l) = if s = "arrow" then show tlist l else s2. and show tlist ([t1;t2]) = "("@show type t1@" "@"-"@" � "@" "@show type t2 @")"@" "3. and show term bot = "bot"jj show term (var v) = "(var "@v@")"jj show term (app E E') = "(app "@show term E@" "@show term E'@")"jj show term (lambda v E) = "(lambda "@v@" "@show term E@")"jj show term (tlambda v t E) = "(tlambda "@v@" "@ show type t @" "@show term E@")"jj show term (conj E E') = "(conj "@show term E@" "@show term E'@")"jj show term (neg E) = "(neg "@show term E@")"jj show term (impl E E') = "(imply "@show term E@" "@show term E'@")"26

jj show term (prop E) = "(prop "@show term E@")"jj show term (forall v E) = "(forall "@v@" "@show term E@")"jj show term (tforall v t E) = "(tforall "@v@" "@ show type t @" "@show term E@")"7.3 Properties of terms1. and len bot =1jj len (var v) = 1jj len (app E E') = (len E) + (len E')jj len (lambda v E) = 1+ (len E)jj len (tlambda v t E) = 1+ (len E)jj len (prop E) = (len E)jj len (conj E E') = (len E) + (len E')jj len (impl E E') = (len E) + (len E')jj len (neg E) = (len E)jj len (forall v E) = 1+ (len E)jj len (tforall v t E) = 1 + (len E)2. and occur E E' & (equiv E E') = 1jjoccur E (app E1 E2) = (occur E E1) + (occur E E2)jj occur (var v') (lambda v E1) & (v = v') = 1+ (occur (var v') E1)jj occur E (lambda v E1) = (occur E E1)jj occur (var v') (tlambda v t E1) & (v = v') = 1+ (occur (var v') E1)jj occur E (tlambda v t E1) = (occur E E1)jj occur E (prop E') = (occur E E')jj occur E (conj E1 E2) = (occur E E1) + (occur E E2)jj occur E (impl E1 E2) = (occur E E1) + (occur E E2)jj occur E (neg E') = (occur E E')jj occur (var v') (forall v E1) & (v = v') = 1+ (occur (var v') E1)jj occur E (forall v E1) = (occur E E1)jj occur (var v') (tforall v t E1) & (v = v') = 1+ (occur (var v') E1)jj occur E (tforall v t E1) = (occur E E1)jj occur E E' = 03. and free bot = []jj free (var v) = [v]jj free (app E E') = (free E) @ (free E')jj free (lambda v E) = out v (free E)jj free (tlambda v t E) = out v (free E)jj free (conj E E') = (free E) @ (free E')jj free (impl E E') = (free E) @ (free E')jj free (prop E) = (free E)jj free (neg E) = (free E)jj free (forall v E) = out v (free E)jjfree (tforall v t E) = out v (free E) 27

4. and subexpression E E' & (equiv E E') = truejjsubexpression E (app E1 E2) = (subexpression E E1) j (subexpression E E2)jjsubexpression E (conj E1 E2) = (subexpression E E1) j (subexpression E E2)jjsubexpression E (impl E1 E2) = (subexpression E E1) j (subexpression E E2)jjsubexpression E (prop E1) = (subexpression E E1)jjsubexpression E (neg E1) = (subexpression E E1)jj subexpression (var v') (lambda v E1) = (v' = v) j (subexpression (var v') E1)jj subexpression (var v') (tlambda v t E1) = (v' = v) j (subexpression (var v') E1)jjsubexpression E (lambda v E1) = (subexpression E E1)jjsubexpression E (tlambda v t E1) = (subexpression E E1)jjsubexpression E (forall v E1) = (subexpression E E1)jj subexpression E (tforall v t E1) = (subexpression E E1)jj subexpression E E' = false5. and equiv bot bot = truejj equiv (var v) (var v') = (v = v')jjequiv (app E1 E2) (app E'1 E'2) = ((equiv E1 E'1) & (equiv E2 E'2))jjequiv (conj E1 E2) (conj E'1 E'2) = ((equiv E1 E'1) & (equiv E2 E'2))jjequiv (impl E1 E2) (impl E'1 E'2) = ((equiv E1 E'1) & (equiv E2 E'2))jjequiv (prop E1) (prop E'1) = (equiv E1 E'1)jjequiv (neg E1) (neg E'1) = (equiv E1 E'1)jjequiv (lambda v E) (lambda v' E') = ((v = v') & (equiv E E'))jjequiv (tlambda v t E) (tlambda v' t' E') = ((v = v') &(t =t') & (equiv E E'))jjequiv (forall v E) (forall v' E') = ((v = v') & (equiv E E'))jjequiv (tforall v t E) (tforall v' t' E') = ((v = v') & (equiv E E'))jjequiv E E' = false6. and subexp bot = [bot]jj subexp (var v) = [(var v)]jj subexp (app E1 E2) = (app E1 E2).(nodupappend (subexp E1) (subexp E2))jj subexp (lambda v E1) = (nodupappend [(var v)] ((lambda v E1).(subexp E1)))jj subexp (tlambda v t E1) = (nodupappend [(var v)] ((tlambda v t E1).(subexp E1)))jj subexp (conj E1 E2) = (conj E1 E2).(nodupappend (subexp E1) (subexp E2))jj subexp (impl E1 E2) = (impl E1 E2).(nodupappend (subexp E1) (subexp E2))jj subexp (prop E) = (prop E). (subexp E)jj subexp (neg E) = (neg E). (subexp E)jj subexp (forall v E1) = (nodupappend [(var v)] ((forall v E1).(subexp E1)))jj subexp (tforall v t E1) = (nodupappend [(var v)] ((tforall v t E1).(subexp E1)))7. and islambda (lambda v E) = truejj islambda other = false8. and istlambda (tlambda v t E) = truejj istlambda other = false9. and isapp (app E E') = truejj isapp other = false10. and operator (app E E') = E11. and operand (app E E') = E' 28

7.4 Properties of Types1. and subsumeset x & (x = ob) = [ob]jj subsumeset x & (x = pr) = [ob; pr]jj subsumeset x & (x= tr) = [ob; pr; tr]jj subsumeset x & (istvar x) = [x]jj subsumeset x & (isarrow x) = makearrows (domain x) (subsumeset (range x))2. and makearrows x [] = []jj makearrows x (y.ys) = (top "arrow" [x;y]).(makearrows x ys)3. and ctsubsume x y & (�(occurs x) & �(occurs y)) = isin x (subsumeset y)jj ctsubsume x y = false4. and subsume phi x y & ((ctsubsume x y) j ((isarrow x) & ((domain x) = y))j(x = y)) = Y(phi)jjsubsume phi (tvar x) y = Y(scomp (addrem id subst x y) phi)jjsubsume phi x y & (ctsubsume (sub type phi x) (sub type phi y)) = Y(phi)jjsubsume phi x y & ((�(occurs (sub type phi x)))&(�(occurs (sub type phi y)))) = N ("no")jjsubsume phi x y & (�(occurs (sub type phi x))) = subsume phi y xjjsubsume phi x y = if ((isarrow x) & (isarrow y) & ((domain x) = (domain y)) &(�(iserror (subsume phi (range x) (range y))))) then (subsume phi (range x) (range y)) elseif(�(iserror (subsumed by (sub type phi x)))) then subsume phi (getsub (subsumed by x)) yelseN ("Cannot unify : "@"types mismatch"@"n"@show type x @ "n"@show type y@"n")5. and subsumed by x & (x = tr) = Y(pr)jj subsumed by x & (x = pr) = Y(ob)jj subsumed by (top "arrow" l) = Y(hd l)jj subsumed by x = N "error"6. and isbasictype x = x = "OB" j x = "PR" j x = "TR"7. and isarrow (top "arrow" l) = truejj isarrow other = false8. and istvar (tvar x) = truejjistvar other = false9. and domain (top "arrow" (x.xs)) = x10. and range (top "arrow" [x;y]) = y11. and occurs (tvar x) = truejjoccurs (top s tlist) = exists (occurs) tlist12. and fvars (tvar x) = [x]jj fvars (top s l) = concmap fvars l13. and equaltype x y =x = y j �(iserror (subsume id subst x y)) &�(iserror (subsume id subst y x))14. and cyclictype phi t =(occurs t) & �((sub type phi t) = t) & �(iserror(subsume phi (sub type phi t) t))15. and circulartype (top "arrow" [(top "arrow" [t'; t1]);t2]) & (�(occurs t1) & �(occurs t2)) =(�(iserror(subsume id subst t1 pr)) & �(iserror(subsume id subst t2 pr)))jj circulartype other = false 29

7.5 Substitution of Terms1. and substitute bot E' v = botjj substitute (var v') E' v & (v = v') = E'jj substitute (var v') E' v = var v'jj substitute (app E1 E2) E' v = app (substitute E1 E' v) (substitute E2 E' v)jj substitute (lambda v' E1) E' v & (v = v') = lambda v' E1jj substitute (tlambda v' t E1) E' v & (v = v') = tlambda v' t E1jj substitute (tforall v' t E1) E' v & (v = v') = tforall v' t E1jj substitute (lambda v' E1) E' v & (�(isin v' (free E')) j �(isin v (free E1))) =(lambda v' (substitute E1 E' v))jj substitute (tlambda v' t E1) E' v &(�(isin v' (free E')) j �(isin v (free E1))) =(tlambda v' t (substitute E1 E' v))jj substitute (tforall v' t E1) E' v &(�(isin v' (free E')) j �(isin v (free E1))) =(tforall v' t (substitute E1 E' v))jj substitute (lambda v' E1) E' v & ((isin v' (free E')) & (isin v (free E1))) =let new var = newvar v' (free (app E' E1)) in(lambda new var (substitute (substitute E1 (var new var) v') E' v))jj substitute (tlambda v' t E1) E' v & ((isin v' (free E')) & (isin v (free E1)))=let new var = newvar v' (free (app E' E1)) in(tlambda new var t (substitute (substitute E1 (var new var) v') E' v))jj substitute (tforall v' t E1) E' v & ((isin v' (free E')) & (isin v (free E1))) =let new var = newvar v' (free (app E' E1)) in(tforall new var t (substitute (substitute E1 (var new var) v') E' v))jj substitute (prop E) E' v = prop (substitute E E' v)jj substitute (conj E1 E2) E' v = conj (substitute E1 E' v) (substitute E2 E' v)jj substitute (impl E1 E2) E' v = impl (substitute E1 E' v) (substitute E2 E' v)jj substitute (neg E) E' v = neg (substitute E E' v)jj substitute (forall v' E1) E' v & (v = v') = forall v' E1jj substitute (forall v' E1) E' v & (�(isin v' (free E')) j �(isin v (free E1))) =(forall v' (substitute E1 E' v))jj substitute (forall v' E1) E' v &((isin v' (free E')) & (isin v (free E1))) =let new var = newvar v' (free (app E' E1)) in(forall new var (substitute (substitute E1 (var new var) v') E' v))7.6 REDUCTION OF TERMS1. and betaconverge (app (lambda v E) E') = (true, substitute E E' v)jj betaconverge (app (tlambda v t E) E') = (true, substitute E E' v)jj betaconverge other = (false, other)2. and etaconverge (lambda v (app E E'))& ((E' = (var v)) & �(isin v (free E))) = (true, E)jj etaconverge (tlambda v t (app E E'))& ((E' = (var v)) & �(isin v (free E))) = (true, E)jj etaconverge other = (false, other) 30

3. and alphaconverge (lambda v E) = (true, let new var = newvar (rename v) (free E) in(lambda new var (substitute E (var new var) v)))jj alphaconverge (tlambda v t E) = (true, let new var = newvar (rename v) (free E) in(tlambda new var t (substitute E (var new var) v)))jj alphaconverge other = (false, other)4. and reduce E = reduceoutermost (snd (etaconverge E))5. and reduceoutermost bot = botjj reduceoutermost (var v) = (var v)jj reduceoutermost (app E1 E2) & (islambda E1) = let E = (app E1 E2) inlet E' = (snd (betaconverge E)) in if (subexpression E E') then E' else (reduce E')jj reduceoutermost (app E1 E2) & (istlambda E1) = let E = (app E1 E2) inlet E' = (snd (betaconverge E)) in if (subexpression E E') then E' else (reduce E')jj reduceoutermost (app E1 E2) = let E' = (reduce E1) inif (subexpression E1 E') then (app E1 (reduce E2)) else (reduce (app E' E2))jj reduceoutermost (lambda v E) = (snd (etaconverge (lambda v (reduce E))))jj reduceoutermost (tlambda v t E) = (snd (etaconverge (tlambda v t (reduce E))))jj reduceoutermost (prop E) = prop (reduce (snd (etaconverge E)))jj reduceoutermost (neg E) = neg (reduce (snd (etaconverge E)))jj reduceoutermost (conj E E') =conj (reduce (snd (etaconverge E))) (reduce (snd (etaconverge E')))jj reduceoutermost (impl E E') =impl (reduce (snd (etaconverge E))) (reduce (snd (etaconverge E')))jj reduceoutermost (forall v E) = forall v (reduce (snd (etaconverge E)))jj reduceoutermost (tforall v t E) = tforall v t (reduce (snd (etaconverge E)))6. and anothereq E E' = (equiv (reduce E) (reduce E'))7. and isinnf E = let E' = [E1;; E1 (subexp E)] in ((null (�lter betaconverts E')) & (null (�lteretaconverts E')))8. and hasnf E = isinnf (reduce E)9. and betaconverts E = fst (betaconverge E)10. and etaconverts E = fst (etaconverge E)7.7 Substitution and Uni�cation of Types1. and sub type phi t = mysub type phi t []2. and mysub type phi t l & (isin t l) = tjj mysub type phi (tvar tvn) l =let a = phi tvn in if ((a = (tvar tvn)) j (a = ob) j (a = pr) j (a = tr)) then a elseif (istvar a) then (sub type phi a) else(top "arrow" [mysub type phi (domain a) ((tvar tvn).l); mysub type phi (range a) ((tvar tvn).l)])jj mysub type phi (top tcn l) l'= top tcn (map (nu.mysub type phi u l') l)3. and scomp sub2 sub1 tvn = sub type sub2 (sub1 tvn)4. and id subst tvn = tvar tvn 31

5. and delta tvn t tvn1 = if tvn = tvn1 then t else tvar tvn16. and composesubs sub t (N w) = N wjjcomposesubs sub t (Y (sub',t',tvn)) = Y (scomp sub' sub,(sub type sub' t).t',tvn)7. and app sub env phi env = map ((x,y).(x,sub type phi y)) env8. and addrem phi tvn t tvn1 = if tvn = tvn1 then t else phi tvn19. and change phi tvn t tvn1 = sub type (addrem phi tvn t) (tvar tvn1)10. and extend phi tvn t = if t = tvar tvn then Y phi else Y (scomp (delta tvn t) phi)11. and unify phi ((tvar tvn), t) = if cyclictype phi t then Y(addrem phi tvn t) else let rec phitvn= phi tvn and phit = sub type phi t in if phitvn = tvar tvn then extend phi tvn phit else unifyphi (phitvn, phit)jjunify phi ((top tcn ts), (tvar tvn)) = subsume phi (sub type phi(top tcn ts))(sub type phi(tvar tvn))jj unify phi ((top s1 tlist1), (top s2 tlist2)) =if (�(occurs (top s1 tlist1))) & (�(occurs (top s2 tlist2))) thenif �(iserror(subsume phi (top s1 tlist1)(top s2 tlist2))) then Y phi else N ("Cannot unify :"@"types mismatch"@"n"@show type (top s2 tlist2) @ "n"@show type (top s1 tlist1)@"n")else unify list phi (zip tlist1 tlist2)12. and unify list phi [] = Y phijj unify list phi ((s,t).sts) = unify phi (s,t) ��� (nu.unify list u sts)7.8 Logic1. and propconj (prop E1) (prop E2) = prop (conj E1 E2)2. and propimpl (prop E1) (prop E2) = prop (impl E1 E2)3. and propneg (prop E) = prop (neg E)4. and propbot bot = prop bot7.9 Type Checking1. and checkexpr env tvn bot = Y(id subst,pr,tvn)jj checkexpr env tvn (var x) = let a = (lookupYN env x) in if (iserror a)then N (x@":"@(printerror a)) else Y (id subst,getsub a,tvn)jjcheckexpr env tvn (app (lambda x e) e1) =typechecklapp env (lambda x e) e1 (check list env [(lambda x e); e1] tvn)jjcheckexpr env tvn (app (tlambda x t e) e1) =typechecklapp env (tlambda x t e) e1 (check list env [(tlambda x t e); e1] tvn)jjcheckexpr env tvn (app e1 e2) = typecheckapp (check list env [e1; e2] tvn)jjcheckexpr env tvn (lambda x e) =let a =typecheckbodyabs (tvar tvn) (checkexpr ((x,tvar tvn).env) (next tvn) e) inif iserror a then a else if (circulartype (gettype a)) then N "circular type" else ajjcheckexpr env tvn (tlambda x t e) = let a = typecheckbodyabs t (checkexpr ((x,t).env) tvn e)in if iserror a then a else if (circulartype (gettype a)) then N "circular type" else ajjcheckexpr env tvn (tforall x t e) = typecheckprop(checkexpr ((x,t).env) tvn e)32

jjcheckexpr env tvn (forall x e) = typecheckprop(checkexpr ((x,tvar tvn).env) (next tvn) e)jjcheckexpr env tvn (prop e) = typecheckprop(checkexpr env tvn e)jjcheckexpr env tvn (neg e) = typecheckprop(checkexpr env tvn e)jjcheckexpr env tvn (conj e1 e2) =let rec a = typecheckprop(checkexpr env tvn e1) in if (�(iserror a))then let rec b = typecheckprop(checkexpr (app sub env (getphi a) env) (gettvn a) e2)in if (�(iserror b)) then Y(scomp (getphi a)(getphi b), gettype b, gettvn b) else b else ajjcheckexpr env tvn (impl e1 e2) =let rec a = typecheckprop(checkexpr env tvn e1) in if (�(iserror a)) thenlet rec b = typecheckprop(checkexpr (app sub env (getphi a) env) (gettvn a) e2) inif (�(iserror b)) then Y(scomp (getphi a)(getphi b), gettype b, gettvn b) else b else a2. and typecheckprop a = if (�(iserror a)) thenlet b = (gettype a) in if occurs b then makeprop (seeprop (getphi a) b) (gettvn a) b elseif (iserror(subsume id subst b pr)) then N "not a proposition" else a else a3. and typechecklapp env e1 e2 (N w) = N wjjtypechecklapp env e1 e2 (Y (phi,[t1;t2],tvn)) =if �(occurs t2) & �(occurs (domain t1)) & �(iserror(subsume id subst t2 (domain t1)))& �(subexpression (app e1 e2) (reduce (app e1 e2))) thencheckexpr env tvn (reduce (app e1 e2)) elseif (occurs t2 j occurs (domain t1)j (subexpression (app e1 e2) (reduce (app e1 e2)))) thenlet rec a = (unify phi (t2, domain t1)) in Y(getsub a, sub type (getsub a) (range t1), tvn)else N "can't do it"4. and check list env [] tvn = Y (id subst,[],tvn)jjcheck list env (e.es) tvn = listtypes env e es (checkexpr env tvn e)5. and listtypes env e es (N w) = N (w@"at "@" "@ show term e@"n")jjlisttypes env e es (Y (sub,t,tvn)) =composesubs sub t (check list (app sub env sub env) es tvn)6. and typecheckapp (N w) = N wjjtypecheckapp (Y (phi,[t1;t2],tvn)) =if (isarrow t1) & �(iserror (subsume id subst t2 (domain t1))) thenlet a = (getsub (subsume id subst t2 (domain t1))) inY(scomp a phi, sub type (scomp a phi) (range t1), tvn) elseif (isarrow t1) & �(occurs t1) & �(occurs t2) then N("Cannot unify : "@"types mismatch"@"n"@show type(domain t1) @ "n"@show type t2 @"n") elsetypecheckapp1 tvn (unify phi (t1,top "arrow" [t2; (tvar tvn)]))7. and typecheckapp1 tvn (N w) = N wjj typecheckapp1 tvn (Y phi) = Y(phi, phi tvn, next tvn)8. and typecheckbodyabs e (N w)= N wjjtypecheckbodyabs (tvar tvn)(Y (phi,t,tvn')) = Y (phi, top "arrow" [(phi tvn) ;t],tvn')jjtypecheckbodyabs e (Y (phi,t,tvn')) = Y (phi, top "arrow" [(sub type phi e); t], tvn')9. and typecheck exp = checks exp [] (alpha 0) 133

10. and checks [] env tvn n = []jjchecks (x.xs) env tvn n = let rec a = checkexpr env tvn x in if (�(iserror a)) then(itos n@". "@print a@"n").checks xs env (gettvn a) (n+1) else[printerror a@"n"@"in"@" "@show term x@ "n"@"at"@" "@"line"@" "@itos n@"n"]7.10 Needed Functions1. and out x [] = []jj out x (y.xs) & (x =y) = xsjjout x (y.xs) = y.(out x xs)2. and nodupappend [] x = xjj nodupappend (x.xs) y & (isin x y) = nodupappend xs yjj nodupappend (x.xs) y = x.(nodupappend xs y)3. and isin x [] = falsejj isin x (y.xs) = (x = y) j (isin x xs)4. and newvar x l = if (isin x l) then newvar (rename x) l else x5. and rename x = x@"'"6. and (N w) ��� f = N wjj (Y x) ��� f = f x7. and next (alpha n) = alpha (n+1)8. and zip [] xs = []jjzip (x.xs) [] = []jj zip (x.xs) (y.ys) = (x,y).(zip xs ys)9. and mem x [] = falsejj mem x (y.ys) = x =y j mem x ys10. and getsub (Y x) = x11. and print (Y (a,b,c)) = show type b12. and printerror (N w) = w13. and iserror (N w) = truejjiserror other = false14. and gettvn (Y (a,b,c)) = c15. and gettype (Y (a,b,c)) = b16. and getphi (Y (a,b,c)) = a17. and lookupYN [] a = N "variable not found"jj lookupYN ((k,v).env) a = if a = k then Y v else lookupYN env a18. and makeprop (N w) tvn t = (N w)jjmakeprop (Y phi) tvn t = Y(phi, sub type phi t, tvn)19. and seeprop phi (tvar x) = if phi x = tvar x then Y(change phi x pr) else subsume phi (phi x)prjj seeprop phi x & (x = pr j x = tr) = Y(id subst)jj seeprop phi (top "arrow" [x; y]) = seeprop phi x ��� (nu.seeprop u y)34

20. and occurtype x & (x = y) = truejj occurtype x (tvar y) = falsejj occurtype x (top tcn l) = exists (occurtype x) l end7.11 Index of the various functionsThis index is in alphabetical order where we go �rst through the 3 items on one line and then go tothe next line.functions, where functions, where functions, where"���", 6, 7.10 addrem, 8, 7.7 alphaconverge, 3, 7.6anothereq, 6, 7.6 app sub env, 7, 7.7 betaconverge, 1, 7.6betaconverts, 9, 7.6 change, 9, 7.7 checkexpr, 1, 7.9check list, 4, 7.9 checks, 10, 7.9 circulartype, 15, 7.4composesubs, 6, 7.7 ctsubsume, 3 7.4 cyclictype, 14, 7.4delta, 5, 7.7 domain, 9, 7.4 equaltype, 13, 7.4equiv, 5, 7.3 etaconverge, 2, 7.6 etaconverts, 10, 7.6extend, 10, 7.7 free, 3, 7.3 fvars, 12, 7.4getphi, 16, 7.10 getsub, 10, 7.10 gettvn, 14, 7.10gettype,15, 7.10 hasnf, 8, 7.6 id subst, 4, 7.7isapp, 9, 7.3 isarrow, 7, 7.4 isbasictype, 6, 7.4iserror, 13, 7.10 isin, 3, 7.10 isinnf 7, 7.6islambda, 7, 7.3 istlambda, 8, 7.3 istvar, 8, 7.4len, 1, 7.3 listtypes, 5, 7.9 lookupYN, 17, 7.10makeprop, 18, 7.10 makearrows, 2, 7.4 mem, 9, 7.10mysub type, 2, 7.7 newvar, 4, 7.10 next, 7, 7.10nodupappend, 2, 7.10 ob, 3, 7.1, occur, 2, 7.3occurs, 11, 7.4 occurtype, 20, 7.10 operand, 11, 7.3operator, 10, 7.3 option, 7, 7.1 out, 1, 7.10pr, 4, 7.1, print, 11, 7.10 printerror, 12, 7.10propconj, 1, 7.8 propbot, 4, 7.8 propimpl, 2, 7.8propneg, 3, 7.8 range, 10, 7.4 reduce, 4, 7.6reduceoutermost, 5, 7.6 rename, 5, 7.10 scomp, 3, 7.7seeprop, 19, 7.10 show term, 3, 7.2 show tlist, 2, 7.2,show type, 1, 7.2, subexp, 6, 7.3 subexpression, 4, 7.3substitute, 1, 7.5 subsume, 4, 7.4, subsumed by, 5, 7.4subsumeset, 1, 7.4 sub type, 1, 7.7 term, 6, 7.1tr, 5, 7.1, tterm, 2, 7.1, typecheck, 9, 7.9typecheckapp, 6, 7.9 typecheckapp1, 7, 7.9 typecheckbodyabs, 8, 7.9typechecklapp, 3, 7.9 typecheckprop, 2, 7.9 typevar, 1, 7.1,unify, 11, 7.7 unify list, 12, 7.7 zip, 8, 7.108 AcknowledgementsI would like to thank Huub ten Eikelder, Rob Hoogerwoord and the anonymous referees fortheir constructive comments on improving the style and presentation of the paper.References[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium,1980. 35

[Aczel 84] Aczel, P., Non-well founded sets, CSLI Lecture notes No 14, 1984.[Barendregt, Hemerik 90] Barendregt, H., and Hemerik, C., Types in Lambda calculi and program-ming languages, Proceedings of the ESOP conference, Copenhagen 1990.[Beeson 84] Beeson, M., Foundations of constructive Mathematics, Springer Verlag, Berlin, 1984.[Boolos 71] Boolos, G., The iterative conception of sets, Journal of Philosophy LXVIII, pp 215-231,1971.[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloquium '78, M.Bo�a et al (eds), pp 159-224, North Holland, 1979.[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic Logic 49, pp75-111, 1984.[Girard 86] Girard, J.Y., The system F of variable types, �fteen years later, Theoretical ComputerScience 45, pp 159-192, North-Holland, 1986.[Kamareddine 89] Kamareddine, F., Semantics in a Frege Structure, PhD thesis, University of Edin-burgh, 1989.[Kamareddine 92A] Kamareddine, F., �-terms, logic, determiners and quanti�ers, Journal of Logic,Language and Information, Volume 1, No 1, pp 79-103, 1992.[Kamareddine 92B] Kamareddine, F., Set Theory and Nominalisation, Part I, Journal of Logic andComputation, Volume 2, No 5, 1992.[Kamareddine 92C] Kamareddine, F., Set Theory and Nominalisation, Part II, Journal of Logic andComputation, Volume 2, No 6, 1992.[Martin-L�of 73] Martin-L�of, P., An intuitionistic theory of types: predicative part, logic colloquium'73 , Rose and Shepherdson (eds), North Holland, 1973.[Milner 78] Milner, R., A theory of type polymorphism in programming, Journal of Computer andSystem Sciences, Volume 17, No 3, 1978.[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, LectureNotes in Computer Science 37, B�ohm (ed), Springer, Berlin, pp 1-26, 1975.[Turner 84] Turner, R., Three Theories of Nominalized Predicates, Studia Logica XLIV2, 1984, pp.165-186.

36

