
A uni�ed approach to Type Theory through a re�ned�-calculusTheoretical Computer Science 136 (1994) 183-216�Fairouz Kamareddine yDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukandRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlNovember 30, 19961

AbstractIn the area of foundations of mathematics and computer science, threerelated topics dominate. These are �-calculus, type theory and logic.There are moreover, many versions of �-calculi and type theories. In theseversions, the presence of logic ranges from the non-existant to the domi-nant. In fact, the three subjects of �-calculus, logic and type theory, gotseparated due to the appearence of the paradoxes. Moreover, the exis-tence of various versions of each topic is due to the need to get back tothe lost paradise which allowed a great freedom in mixing expressivityand logic. In any case, the presence of such a variety of systems callsfor a framework to unify them all. Barendregt's cube for example, is anattempt to unify various type systems and his associated logic cube is anattempt to �nd connections between type theories and logic. We devise anew �-notation which enables categorising most of the known systems ina uni�ed way. More precisely, we sketch the general structure of a systemof typed lambda calculus and show that this system has enough expres-sive power for the description of various existing systems, ranging fromAutomath-like systems to singly-typed Pure Type Systems. The system�We are grateful for Erik Poll who has read the paper carefully and for his productivecomments. We are also grateful for discussions with Henk Barendregt, Inge Bethke, TijnBorghuis and for the helpful remarks received from them. Furthermore, we are indebted tothe anonymous referee for his/her useful suggestions and remarks.yKamareddine is grateful to the Department of Mathematics and Computing Science, Eind-hoven University of Technology, for their �nancial support and hospitality from October 1991to September 1992, and during the summer of 1993. Furthermore, Kamareddine is gratefulto the Department of Mathematics and Computer Science, University of Amsterdam, and inparticluar to Jan Bergstra and Inge Bethke for their hospitality during the preparation of thisarticle. 2

and the notation that we propose have far reaching advantages than justbeing used as a generalisation formalism. These advantages range fromgeneralising reduction and substitution to representing Mathematics andare investigated in detail in various articles cited in the bibliography.Keywords: Lambda Calculus, Pure Type Systems, Barendregt's Cube, Au-tomath and the Calculus of Constructions.
1 IntroductionTerms of the lambda calculus are constructed by two principles: abstraction,by means of which free variables are bound, thus generating some sort of func-tions; and application, being in a sense the opposite operation, formalising theapplication of a function to an argument. We will introduce a slight change tothe �-notation to enable us to construct lambda terms in a modular way, in ac-cordance with the demands and needs of a mathematical entourage. This newnotation will be based on abstraction and application and, as an alternative tothe use of variables, will assume de Bruijn-indices. These are natural numbersthat do not su�er from the usual problems with variable names (the danger of\clash of variables", the need for appropriate renaming, etc.).Our notation is very advantageous and should be seen as an alternative tothe usual �-calculus notation. We claim that this new formulation can avoidmany of the complications associated with the old formulation. In this paperwe will concentrate on the usefulness of this notation for generalising type3

systems but we will throughout refer to the other advantages and to wherethey have been investigated. For self-containedness however, here is a list ofthe characteristics and advantages of our notation.1. Types and terms are treated alike. Such a treatment is necessary sincemany of the principles that govern terms govern types too. In fact it isto be noted that in the more general type systems, types and terms aretreated alike. This is for example the case, in the Automath systems andin the calculus of constructions (see [deB70] and [CoH88]).2.
, the set of operators contains many �'s and �'s and contains substitu-tion, typing and many more operators. In fact, the more general typetheories use more than one � as an abstraction operator. For example,in the Pure Type Systems of Barendregt in [Bar92], we have � and �.We will go further by providing not only various abstraction operators,but also a variety of other operators which enable many meta-concepts ofthe �-calculus to become explicit and internal. For example, substitutioncan now become an explicit operation in our systems via the substitutionoperators.3. The uni�ed treatment of the various abstraction operators (�) enablesthe use of �-reduction for both terms and types. This is a step towardsthe uni�ed treatment of terms and types which is surprisingly not usedin most of the theories which claim to be generalising type systems. Forexample, the Barendregt cube is based on the idea that terms and typesare are treated similarly, yet �-conversion is only allowed for terms and4

not for types. With our approach here, a � can be the part of a type or ofa term, and �-reduction applies to all �'s. For a further discussion of thecharcteristic of a system which generalises �-reduction in this way and ofthe typing systems obtained out of such an identi�cation, see [KN 9w].4. In [KN 9x], we showed the usefulness of the new notation for variableand term manipulation and for typing. In particular, we showed in thatpaper, that the restriction of a term to a variable x (that is, the termconsisting of precisely those \parts" of t that may be relevant for this xin t, especially as regards binding, typing and substitution), is obtainedby simply taking the substring of string t from the beginning of t until xand then deleting all unmatched opening parentheses. So not only it iseasy to �nd the restriction in our item notation, but also the restrictionis not even obvious to be de�ned in the classical notation. Moreover, weshowed in the same paper that accounting for bound and free variablesin a term is only a matter of a very simple calculation and demonstratedthat term construction can be done via trees which are at the same timeproofs of the well-typedness of the term.5. In [KN 93], we embedded stepwise substitution in the new calculus show-ing how the new notation facilitates the introduction of substitution asan object level notation in the �-calculus resulting in a system which canaccommodate most substitution strategies.6. in [KN 9z], we show that reduction can be generalised in a way that wasnot obvious nor possible in the classical calculus. Such a generalisation5

opens the way for further reduction strategies which are needed in manydisciplines that depend on the �-calculus.All this points towards the advantages of the new notation but this is not all. Inthis paper, we will show how various existing systems ranging from Authomath-like systems to singly-typed pure type systems could be expressed in a uniformway in our proposed setting.In particular, after introducing in Sections 2 and 3 the new notation andall the formal machinery needed for the paper, we concentrate in Section 4on the typing relation. We introduce a canonical type operator, suited for the\calculation" of one canonical type in the class of all types of a certain (typeable)term. The typing relation connected with this type operator is presented bymeans of a stepwise \process", which can be described in di�erent manners.Again, we claim to give the �ne-structure of a central subject in lambda calculus,this time being the typing relation. In fact, not only the type of a �- or a�-abstraction is found but also �-application (and not only �-application) isallowed.In Section 5, we discuss the relation between our approach and certain PureType Systems (PTS's), which make use of this typing relation \:". An impor-tant subclass of this class of typed lambda calculi, systematized and studied byBarendregt and others, is relatively easy to embed in our setting.In Section 6, we describe a number of Automath-systems in our setting. Oneof these possibilities is a de Bruijn's system ��, which is a version of Automathin the format of typed lambda calculus.6

Finally, in Section 7, we demonstrate the features of typing and term con-struction, through a short example. This example is a system that we proposeand that has in principle similar power to that of Coquand and Huet's Calculusof Constructions (or �C, see [CoH88]). We work out the proof of a theoremtaken from logic in our system.2 The new notationWe assume the reader familiar with De Bruijn's indices and why they wereintroduced. If not, the reader is referred to [deB72]; we hope that the followingexamples give an idea of what these indices are.Example 2.1 Terms such as �x:x and �y:y are the \same", and the use of x,y or any other variable does not change the semantic meaning of the functiondenoted by this term (the identity function). The identity function using deBruijn's indices will be denoted by �:1. The bond between the bound variable xand the operator � is expressed by the number 1; the position of this number inthe term is that of the bound variable x, and the value of the number (\one")tells us how many lambda's we have to count, going leftwards in the term,starting from the mentioned position, to �nd the binding place (in this case:the �rst � to the left is the binding place).Example 2.2 The identity function above could have been identity over aparticular type y (let us say) written as �x:y:x. In such a case y is a freevariable and the function is denoted by: (�1.1). The free variable y in thetyped lambda term is translated into the �rst number 1. Such a number refers7

in this case to an \invisible" lambda that is not present in the term, but may bethought of to preceed the term, binding the free variable. Note here that if wehad more than one free variable, we have to know which one comes before theother. For this, we assume an arbitrary, but �xed order so that these invisiblelambda's form a free variable list. The number 1 next to the � tells us howmany �s we have to count from (and excluding1) this �. (The variable x, asbefore, is translated in the second number 1.)Example 2.3 To demonstrate how �-reduction works with de Bruijn's indices,we consider the term (�x:z:(xy))u which �-reduces to uy. Under the assumptionthat the free variable list is �y; �z ; �u, this reduction using de Bruijn's indicescan be represented as: (�2:14)1 reduces to 13. Here the contents of the subterm14 changes: 4 becomes 3. This is due to the fact that �2 disappeared (togetherwith the argument 1). The �rst variable 1 did not change; note, however, thatthe � binding this variable has changed \after" the reduction; it is the last � inthe free variable list (\�u") and no longer the � inside the original term (\�x").The reference changed, but the number stayed (by chance) the same.Now take the type free �-calculus, with the following three ways of formingterms:t ::= x j (�x:t) j (t1t2).If we forget variables (as we shall when we use de Bruijn's indices), then webegin with natural numbers and all that remains is abstraction and application.We shall consider these to be the basic operations on terms and shall use � to1This technical peculiarity disappears in the new notation.8

refer to the �rst and � to refer to the second. Note that when we work with thetyped �-calculus, these two operators can be considered to be binary. In fact,� links a type to a term, (think of �x:y:x which is �1:1) and � links a functionto an argument. As we are trying to give a general notation which can be usedto describe the other ones, we will use a typed �-calculus notation which isalso suitable to write type free terms. This will be done via our special index "below.Notation 2.4 (Abstraction and Application operators)As we are trying to devise a system which will be general enough to representa whole variety of type systems, we shall not assume the uniqueness of the� and the � operators. Rather we consider �; �1; �2; : : : for abstraction, and�; �1; �2; : : : for application and use !; !1; !2; : : : as meta-variables for both kindsof operators. Moreover, we refer to the set of �-operators by
� and to theset of �-operators by
�. We assume that
� and
� are disjoint and �niteand write
 (or
��) for their union.Example 2.5 To accommodate second-order theories, we use �2 for � and �1for �. To accommodate Pure Type Systems we use �1 for � and �2 for theordinary �.Notation 2.6 (Variables)As we decided to use indices instead of variables, we take � the set of variablesto be � = f"; 1; 2; : : :g. Sometimes we will need to use actual variables, but thisis not a part of our syntax. It is only a matter of simplifying the conversation.We use x; x1; y; : : : to denote variables. " is a special variable that denotes9

the \empty term". It can be used for rendering ordinary (untyped) lambdacalculus, by taking all types to be ". Another use is as a \�nal type", like 2 inBarendregt's cube.Using
 and � we de�ne our terms (which we denote t; t1; : : :) to be thosesymbol strings obtained in the usual manner on the basis of �, the operatorsin
 and parentheses. That is:De�nition 2.7 (Terms)Terms are the elements of F
(�), the free
-structure generated by �. We callthese terms
��-terms or simply terms.Notation 2.8 (Item Notation)We will defer from usual practice and use the operators in
 as in�x ones. Thatis we write (t�t0) for the function t0 applied to the argument t (note the reversedorder!) and write (t�t0) for (�t:t0). We go even further by using what we callitem-notation where we place parentheses in an unorthodox manner: we write(t1!)t2 instead of (t1!t2).Example 2.9 The following are terms: ", 3, (2�)("�)1, in item notation or(2�("�1)) in the original in�x notation. (We assume that � 2
� and � 2
�.)Notation 2.10 (Tree notation)One can also consider terms as trees, in the usual manner (in this case weshall speak of term trees). In term trees, parentheses are superuous (see�gure 1). In this �gure, we deviate from the normal way to depict a tree; forexample: we position the root of the tree in the lower left hand corner. We have10

chosen this manner of depicting a tree in order to maintain a close resemblancewith the linear term. This has also advantages in the sections to come. Theitem-notation suggests a partitioning of the term tree in vertical layers. For(x!1)(y!2)z, these layers are: the parts of the tree corresponding with (x!1),(y!2) and z (connected in the tree with two edges). For ((x!2)y!1)z theselayers are: the part of the tree corresponding with ((x!2)y!1) and the onecorresponding with z.
t t tt tyx z!1 !2 t t

tt tx
zy!1!2(x!1(y!2z))(x!1)(y!2)z ((x!2y)!1z)((x!2)y!1)zFigure 1: Term trees, with normal linear notation and item-notationNotation 2.11 (Name carrying terms)For ease of reading, we occasionally use customary variable names like x, y, zand u instead of reference numbers. Thus creating name-carrying terms in item-notation, such as (u�)(y�x)x in Example 2.12. The symbols used as subscriptsfor � in this notation are only necessary for establishing the place of reference;they do not \occur" as variables in the term.Example 2.12 Let the free variable list, in the name-carrying version, be �y,�u. 11

1. Consider the typed lambda term (�x:y:x)u. In item-notation with name-carrying variables this term becomes (u�)(y�x)x. In item-notation withde Bruijn-indices, it is denoted as (1�)(2�)1.2. The typed lambda term u(�x:y:x) is denoted as ((y�x)x�)u in our name-carrying item-notation and as ((2�)1�)1 in item-notation with de Bruijn-indices.The term trees of these lambda terms are given in �gure 2. In each ofthe two pictures, the references of the three variables in the term have beenindicated: thin lines, ending in arrows, point at the �'s binding the variables inquestion. Note that these lines follow the path which leads from the variableto the root following the upper-left side of the branches of the tree. Only the�'s met count, the �'s do not.
t t t t tt t21 1� �� � t t t t

tt t2
11��� �(1�)(2�)1(u�)(y�x)x(�x:y : x)u ((2�)1 �)1((y�x)x �)uu(�x:y : x)

�� � � ��
Figure 2: Term trees with explicit free variable lists and reference numbersExample 2.13 Now for �-reduction, the term (�x:z:(xy))u �-reduces to uy.In our sugared item-notation this becomes: (u�)(z�x)(y�)x reduces to (y�)u12

(see �gure 3). Note that the presence of a so-called �-�-segment (i.e. a �-itemimmediately followed by a �-item, in this example: (u�)(z�x)) is the signal fora possible �-reduction. The \unsugared" version reads: the term (1�)(2�)(4�)1reduces to (3�)1.
t t t t t t tt t t� � � � � � 11 2 4 t t t t tt� � � �3 1(�x:z:xy)u(u�)(z�x)(y�)x(1�)(2�)(4�)1 uy(y�)u(3�)1

��� � �
Figure 3: �-reduction in our notationWe can see from the above example that the convention of writing the argu-ment before the function has a practical advantage: the �-item and the �-iteminvolved in a �-reduction occur adjacently in the term; they are not separatedby the \body" of the term, that can be extremely long! It is well-known thatsuch a �-�-segment can code a de�nition occurring in some mathematical text;in such a case it is very desirable for legibility that the coded de�niendum andde�niens occur very close to each other in the term.Remark 2.14 With the help of " we can construct terms without free vari-ables, for example we can construct ("�)(1�)(1�)((2�)(1�)1�)3. We note thatit may be pro�table to use the empty term instead of ", which allows us to13

write terms like (�)(1�)2 or even (�)(1�), representing the typed lambda terms�y:":�x:y:y and �y:":�x:y:", respectively. We shall use this convention in the caseof an item ("!), which we render as (!), for di�erent operators !.3 The formal machineryIn this section, we will introduce most of the machinery needed for the paper.We start by the two basic concepts item and segment.De�nition 3.1 (items, segments)1. If ! is an operator and t a term, then (t!) is an item.2. A concatenation of zero or more items is a segment.We use s; s1; si; : : : as meta-variables for segments.De�nition 3.2 (main items, main segments, !-items, !1-: : :-!n-segments, (non)emptysegments, contexts)1. Each term t is the concatenation of zero or more items and a variable:t � s1 : : : snx. These items s1 : : : sn are called the main items of t.2. A segment s is a concatenation of zero or more items: s � s1 : : : sn; again,these items s1 : : : sn (if any) are called the main items, this time of s.3. A concatenation of adjacent main items (in t or s), sm : : : sm+k, is calleda main segment (in t or s).4. An item (t !) is called an !-item. Hence, we may speak about �-itemsand �-items. 14

5. If a segment consists of a concatenation of an !1-item up to an !n-item,!i 2
, this segment may be referred to as being an !1-: : :-!n-segment.(An important case is that of a �-�-segment, being a �-item immediatelyfollowed by a �-item.)6. A segment s such that s � ; is called an empty segment; other segmentsare non-empty.7. A context is a segment consisting of only �-items.Example 3.3 Let the term t be de�ned as ("�)((1�)("�)1�)(2�)1 and let thesegment s be ("�)((1�)("�)1�)(2�). Then the main items of both t and s are("�), ((1�)("�)1�) and (2�), being a �-item, a �-item, and another �-item.Moreover, ((1�)("�)1�)(2�) is an example of a main segment of both t and s,which is not a context, but a �-�-segment. Also, s is a �-�-�-segment, which isa main segment of t.Contexts and segments can be regarded as special terms in the calculus, viz.those terms ending in ". Now terms can be abbreviated in a de�nition, as wesaw before. Hence, in particular, contexts and segments can be abbreviated.All this holds under the condition that we consider s" to be the same as s itself.De�nition 3.4 (Segment abbreviation)A segment s can be called \a" by adding the \de�nitional segment" (s�)(�a) asan axiom to our system.Of course we will not name many segments using this axiomatic scheme, only a�nite number of important segments. This de�nitional segment moreover, really15

works like de�nitions (such as function de�nition in Mathematics). Think forexample of de�ning the identity function as (("�)1�)(�I). This says that I is theidentity function. With our reduction below, we can show that (("�)1�)(�I)(I�)I =(("�)1�)(("�)1) = ("�)1. The use of such a de�nitional segment is also impor-tant for the representation of Mathematics where not all the occurrences of thename of the function are replaced by the body of the function. In many math-ematical proofs, we need to keep the name instead of the body of the function.This will be facilitated by our notation and using our explicit substitution andreduction rules of [KN 93].Example 3.5 In this example we use two �'s which we denote � and � respec-tively. Now the following introduces � as a term of type ", ? as a term of type� and de�nes) as the product (��a)(��b)(a�x)b. This states that, given c andd of type �, the term (d�)(c�)) �-reduces to the dependent product whichsends inhabitants of c to inhabitants of d. The type of) is (��a)(��b)�, theclass of all functions sending pairs (a; b) of type � to a \new" element of type�. 1. (��)2. (��?)3. ((��a)(��b)(a�x)b �) ((��a)(��b) � �))Remark 3.6 In order to reap full bene�t from the abbreviations, we shouldallow that segment-abbreviating variables may occur in the place of actualsegments everywhere in a term. For example, with the above de�nition, the16

term (t�x)a(t0�y)z is an abbreviation for (t�x)s(t0�y)z, with s completely copiedout (but for the �nal ", which is omitted!).De�nition 3.7 (body, end variable, end operator)1. Let t � sx be a term. Then we call s the body of t, or body(t), and x theend variable of t, or endvar(t). It follows that t � body(t) endvar(t).2. Let s � (t!) be an item. Then we call t the body of s, denoted body(s),and ! the end operator of s, or endop(s). Hence, it holds that s �(body(s) endop(s)).Note that we use the word `body' in two meanings: the body of a term is asegment, and the body of an item is a term.Example 3.8 In Example 3.3, s is the body of t and 1 is the end variable of t.Let s be the item ((1�)("�)1�). Then (1�)("�)1 is the body of s and � the endoperator of s.By means of the following de�nition one can sieve the main items with certainend operator(s) from a given segment or term, forming a (new) segment:De�nition 3.9 (sieveseg)Let s be a segment, or let t be a term with body s, then sieveseg!(s) =sieveseg!(t) = the segment consisting of all main !-items of s, concatenatedin the same order in which they appear in s.Example 3.10 In the term t of Example 3.3, sieveseg�(t) � ("�)(2�) andsieveseg�(t) � ((1�)("�)1�). 17

De�nition 3.11 (weight, !-weight)1. The weight of a segment s, weight(s), is the number of main items thatcompose the segment.2. The weight of a term t is the weight of body(t).3. The !-weight weight!(s) of a segment s is the weight of sieveseg!(s).4. The !-weight of a term t is the !-weight of body(t).Example 3.12 For the term t � ("�x)(x�v)(x�)("�y)((x�z)y�)(y�u)u and thesegment s � ("�x)(x�v)(x�)("�y)((x�z)y�)(y�u), weight(t) = weight(s) = 6and weight�(t) = weight�(s) = 4.De�nition 3.13 (direct subterms, subterms)1. If body(t) 6= ;, then t � (t0!)t00. In this case we call t0 and t00 the (leftand right) direct subterms of t. We denote this by t0 � t and t00 � t.2. The relation �� is the reexive and transitive closure of �. We say thatt1 is a subterm of t i� t1 �� t.Example 3.14 Let t be the term ((1�)2�)(1�)3. The left direct subtermof t is (1�)2, the right direct subterm of t is (1�)3. The subterms of t aret; (1�)2; (1�)3; 1 (twice), 2 and 3.Notation 3.15 When one says that t0 is a subterm of t, one usually has acertain occurrence of t0 in t in mind. (There can be more occurrences of t0in t.) If necessary, we shall \mark" an occurrence, e.g. with a small circle,18

�, or with under- or overlining. For example, the �rst occurrence of x in t �((x�)(y�x)x�u)(z�)y can be �xed by referring to it as x� in ((x��)(y�x)x�u)(z�)y.And the occurrence of the subterm (y�x)x in this t can be marked as (y�x)x.We can also mark the occurrence of an operator: (y��x)x.De�nition 3.16 (arguments)Let (t0!�)t00 �� t. Then t0 is the left argument of !� in t, or leftarg(!�),and t00 is the right argument of !� in t, or rightarg(!�).Hence, leftarg(!�) is the left direct subterm of (t0!�)t00 and rightarg(!�)is the right direct subterm of (t0!�)t00.Note that a maximal subterm of a term t (i.e. a subterm that cannot beextended to the left in t) is either t itself or a left direct subterm of t and hencethe left argument of some operator occurring in t.De�nition 3.17 (degree of a variable)1. The degree of a variable x that is free in term t, is unde�ned.2. The degree deg(") of every " occurring in t, is zero.3. Assume that (the occurrence of) x is bound2 in t and let t0 be the type ofx. Further, let y be the end variable of this type t0 and assume that deg(y)is de�ned. Then deg(x) = deg(y) + 1.Note that each variable in a closed term has a degree. The set of the degreesof variables occurring in a term, is always a set f0; : : : ; ng for some n � 0.2The notions \bound" (for a variable) and \type" (of a term) are formally de�ned inDe�nition 3.26. 19

De�nition 3.18 (degree of a term)1. The degree of a term is the degree of its end variable, if this degree isde�ned; otherwise it is unde�ned.2. The maximal degree of a term is the maximal number (if any) thatoccurs as a degree of a variable occurring in the term; if there is no suchnumber, then the maximal degree of such a term is unde�ned.Example 3.19 Take the
��-term t: ("�x)((x�u)((u�)(x�t)x�y)(u�z)y�v)u.The degrees for the variables occurring in this term are: deg(") = 0; deg(x) = 1;deg(u) = 2, except for the free u which is the end variable of the term: thisu has no degree; deg(y) = 2; deg(z) = 3. If t occurred, then its degree wouldhave been 2. The term itself has no degree (since its end variable is free). Themaximal degree of the term is 3.Remark 3.20 Many existing de�nitions of the notion `degree' count \the otherway round", with the result that the degree of a \type" is one more than thedegree of a term of this type. Our degrees 0, 1, 2, 3 then change into (e.g.) 3,2, 1, 0. In our approach we start with a \top level" having degree zero, andlower levels are numbered upwards, without restriction. This makes it easier todiscuss the subject of \more degrees". See Example 3.21 which has also for aimto show the usefulness of more degrees.Example 3.21 In the propositions-as-types conception (see e.g. [How80]), propo-sitions are coded as lambda terms. When t is a term which is regarded as aproposition, then any \inhabitant" of t | i.e., a term t0 such that t0 : t |20

serves as an assertion (a \proof") of that proposition. There clearly is a strongparallel with sets and elements: when t codes a set, and when t0 is again aninhabitant of t, then t0 represents an element of the set t.A set can have many elements, and a proposition can have many proofs.The elements of a set are considered to be di�erent, but it may be useful toidentify all proofs of a certain proposition. This is because | from the point ofview of classical logic | the important thing is often whether there is a proofof a proposition, and not so much what the exact content of the proof is.In many systems, sets and propositions occupy the same level in the degree-hierarchy. One presupposes, for example, a class of sets (�s) and a class ofpropositions (�p), both inhabitants of some \super-class" 2. The situationthen is as follows:degree 3 2 1 0term a : A : �s : 2interpr. element set classof setsterm P : Q : �p : 2interpr. proof prop classof Q of propsIn this schema it is possible to treat proofs and elements in a di�erentmanner. For example, one could de�ne an equivalence =i for proofs, viz. forthose terms t of degree 3 for which the type of the type of t =� �p.Another way to identify proofs is the following. In the previous diagramone shifts the proof-prop row one column to the left, adding a class 4 between21

�p and 2. Now proofs become the only terms of degree 4:degree 4 3 2 1 0term a : A : �s : 2interpr. element set classof setsterm P : Q : �p: 4: 2interpr. proof prop classof Q of propsThis is the AUT-4 interpretation (see [deB74]). \Irrelevance of proofs"can now be implemented by a rule of the following form, where =i is someequivalence:� ` P : Q : �p : 4 � ` P 0 : Q0 : �p : 4 Q =� Q0P =i P 0De�nition 3.22 (degree-consistency)1. A typing relation is degree-consistent if for all terms t1 and t2 wehave:if t1 : t2 and if both deg(t1) and deg(t2) are de�ned, then deg(t1) =deg(t2) + 1.2. A reduction relation !� is degree-consistent if the following holds:for all t1 and t2 such that t1 !� t2, if deg(t1) is de�ned, then also deg(t2)is de�ned and deg(t1) = deg(t2).33A typing relation which is degree-consistent is called ok in [Bar92].
22

Example 3.23 All Automath-systems have the property of degree-consistency,both for the typing relation and for �-reduction (see Section 6). The sameobservation holds for the systems in Barendregt's cube, but not for generalPTS's (see Section 5).De�nition 3.24 (term restriction)If t is a term, and t0 �� t (t0 is underlined in order to identify a uniqueoccurrence of t0 in t), then t j��t0 (pronounced the restriction of t to t0) is de�nedinductively as follows:t j��t � t(t1!)t2 j��t � 8>>><>>>: t1 j��t if t �� t1(t1!)(t2 j��t) if t �� t2Example 3.25 Let t be the following term:("�x)((x�u)((u�)(x�t)x��y)(u�z)y�v)u: (1)Then the restriction t j��x of t to x� is:("�x)(x�u)(u�)(x�t)x�: (2)Moreover, the restriction t j��(x�t)x� � t j��x�.De�nition 3.26 (Bound and free variables, type, open and closed terms)1. Let x� be a variable occurrence in t such that x 6� " and assume thatsieveseg�(t j��x�) � sm : : : s1 (for convenience numbered downwards). Thenx� is bound in t if x � m; the binding item of x� in t is sx and the23

� that binds x� in t is endop(sx). The type of x� in t is body(sx).Furthermore, x� is free in t if x > m.2. The variable " is neither bound nor free in a term.3. Term t is closed when all occurrences of variables in t di�erent from "are bound in t. Otherwise t is open or has free variables.Example 3.27 The term t � ("�x)(x�v)(x�)("�y)((x�z)y��)(y�u)u becomes,in the notation with de Bruijn- indices: t � (�)(1�)(2�)(�)((3�)2��)(1�)1. Nowt j��2� � (�)(1�)(2�)(�)(3�)2� . So sieveseg�(t j��2�) � s4s3s2s1 � (�)(1�)(�)(3�).Hence, 2� is bound in t since 2 � weight�(t j��2�) = 4. Moreover, the type of 2�in t is body(s2) � ". There are no free variables in t, hence t is closed.Things are, however, not so simple in the case that the term contains segmentabbreviations.Example 3.28 In the term (t�x)a(t0�y)z, where a abbreviates a segment s,the binding � of the variable z may be found \inside" a, e.g. when s �(t1�u)(t2�z)(t3�). But neither �u nor �z is \visible" in a. Hence, using deBruijn-index 2 for z would connect this variable with the wrong � (viz. �x).It will be clear from this example that the �-weight of the abbreviated segment,i.e. the number of main �-items in the segment, plays an important role. Thisnumber can always be recovered by inspecting the abbreviated segment. Onecan imagine, however, that it is more practical to register this number togetherwith the segment variable. Therefore, we add a collection of segment variablesto our set of variables, which are pairs of numbers:24

De�nition 3.29 (segment variables)We add to � a new set � of segment variables:� = f(n;m)jn = 1; 2; : : : ;m = 0; 1; : : :g.Moreover, we distinguish the �-operator �sg as being a binding � for segmentabbreviations. We do not allow that �sg-items occur \on their own". Theyshould always be a part of a �-�-segment of the form (s�)(�sga), coding theabbreviation of a segment s.In (n;m), a segment variable item, the index n gives a reference to thebinding �sg and m is the �-weight of the abbreviated segment. Section 7 willgive many examples of such a phenomenon.De�nition 3.30 (Well-typedness of terms)We say that a term t is \well-typed" with respect to a particular systemcontaining variable, abstraction and application conditions, if we can deduce` t where ` is de�ned by the following three equations:variable conditions ` x (3)s ` t s(t�) ` t0 abstraction conditions ` (t�)t0 (4)s ` t s(t�) ` t0 application conditions ` (t�)t0 (5)Notation 3.31 (Construction rules)We call schema 3, (respectively 4 and 5), a variable (respectively abstractionand application) construction rule.Example 3.32 With abstraction condition t � ", t0 6� ", empty variable con-dition and application condition, we obtain the syntax of the untyped lambda25

calculus.Remark 3.33 The variable condition is optional. Example 3.34 gives two vari-able conditions. The abstraction condition and the application condition varyfrom system to system, or may even be absent. In type systems for example, thetype information plays a predominant role in the application condition: t mayonly be an \argument" of t0 (i.e. s ` (t�)t0) if t0 is some kind of \function", witha \domain" in which t �ts. This requirement must be expressed formally in theapplication condition. Sections 4, 5 and 6 give examples of the abstraction andapplication conditions. Example 3.36 gives a well-typed term.Example 3.34 Here are some examples of variable conditions:1. x � weight�(s) (Here count " as zero, in case x � ").This variable condition restricts terms to the closed ones.2. 1 � deg(x) � 3.Hence the degree of any term is between 1 and 3. This is the case inAUT-QE and AUT-68; (see Section 6). The reasonableness of such a re-quirement is shown in practical applications. For example, large pieces ofmathematical texts have been coded in AUT-QE, thereby demonstratingits utility.De�nition 3.35 (Proof trees)For each \well-typed" term, we call the construction tree, which contains atthe same time a proof for its \well-typedness", the proof tree for the term.26

Example 3.36 The lowest part of the proof tree of ("�x) ((x�u) ((u�)(x�t)x�y) (u�z)y �v)u,based on these rules, is the following:�2 �3�1 ("�x) ` (x�u) ((u�)(x�t)x�y) (u�z)y ("�x) ((x�u) ((u�)(x�t)x�y) (u�z)y �v) ` u` " ("�x) ` ((x�u) ((u�)(x�t)(x�y) (u�z)y �v)u` ("�x) ((x�u) ((u�)(x�t)x�y) (u�z)y �v)uHere �1 and �3 are only checks of the appropriate variable conditions (whichwe here assume to be empty) and �2 is a part of the tree that is not displayed.We need a function which updates variables. This we do by extending ourset
�� with a set of '-operators
'. We use the ''s with a double index:'(k;i); k; i 2 N and call all ('(k;i))'s '-items. Our terms are now
��'-terms.The use of the '-items is established in the following rules.De�nition 3.37('-transition rules:)('(k;i))(t0�)!' (('(k;i))t0�)('(k+1;i))('(k;i))(t0�)!' (('(k;i))t0�)('(k;i))('-destruction rules:)For k; i 2 N , we have:('(k;i))x!' x+ i if x > k 27

('(k;l))x!' x if x � k or x � ".De�nition 3.38 ('-abbreviation)For all k 2 N ; '(k) denotes '(0;k). Moreover, ' denotes '(1) (hence '(0;1)).De�nition 3.39 (void �-reduction)Assume that a �-�-segment s occurs in an
��-term t, where the �nal operator� of s does not bind any variable in t. Let t1 be the scope of s. Then t reducesto the term t0, obtained from t by removing s and replacing t1 by ('(�1))t1.Example 3.40 Let us take (1�)(2�)(4�)2. In this term, call it t, the �-�-segment (1�)(2�) occurs and its � does not bind any variable in t. Moreover,(4�)2 is the scope of (1�)(2�) and if in t we remove (1�)(2�) and replace (4�)2by ('(�1))(4�)2 we get (3�)1. Hence t reduces to (3�)1.Example 3.41
1. (1�)(2�)(2�)2 !� (1�)1; this states that (�x:z:uu)u reduces to uu.2. (1�)(2�)(3�)3 !� (2�)2; this states that (�u:y:�x:y:z)z reduces to �x:y:z.Notation 3.42 (�-reduction)Note that void �-reduction is a �-reduction, so let us write t !� t0 when thereduction in the above de�nition takes place. �-reduction in general however,will not be explained and the reader is referred to [KN 93]. It is not needed forthis paper, further than saying that� (t�)(t0�)t00 !!� t00[x := t], 28

� the x's are the variables in t00 bound by the mentioned �,� [x := t] is a post�x meta-operator standing for the substitution of t forall free occurrences of x.4 Canonical typesVariables occurring bound in a term in typed lambda calculus have a \natural"type, as expressed in De�nition 3.26. This type is the body of the �-item whichbinds the variable. We extend this process of typing to (general) terms bymeans of a canonical typing function typ, acting on arbitrary subterms t0 of aterm t.De�nition 4.1 (Canonical type)The canonical type typ(t0) of a subterm t0 of a term t, with x � endvar(t0)and x bound in t, is de�ned as follows:typ(t0) � body(t0)('(x))t00,where t00 is the type of x in t as de�ned in De�nition 3.26.Example 4.2 Take the term (1�)(2�)1 (or in sugared notation (u�)(y�x)x).1. If t0 � 1 (the x), then typ(t0) � "('(1))2 !' 3. This is obvious, it saysthat the type of x is y (look at �gure 2).2. If t00 � (2�)1 then typ(t00)!' (2�)3. This is intuitively correct. It statesthat the type of �x:y:x is �x:y:y (identifying �'s and �'s).3. If t000 � (1�)(2�)1 then typ(t000) !' (1�)(2�)3 !� 2. Again, this isintuitively correct. It states that the type of (�x:y:x)u is y. In Section 4.229

we will see how to include an application condition stating that the typeof u and the type y must be compatible. Recall moreover that typesthemselves are terms.As we see, calculating the canonical type typ(t0) of a (sub-)term t0 is verystraightforward. Just replace the end variable of t0 by its type t00 (together withsome updating of free variables in t00).Following the general style of this paper, we can also use a type item (�)and a type reduction operator !� instead of the type function typ. Hence, weextend our set of terms de�ned in De�nition 2.7 in order to incorporate these� -items (we now have
��'� -terms).The search for the canonical type of a subterm t0 of t starts with (�)t0; thisterm may be transformed to typ(t0) by using the following � -reduction rulesfor
��� -terms (so we assume that the term under consideration contains no'-items):De�nition 4.3 (� -reduction)(� -transition rules:)(�)(t1!)!� (t1!)(�)(� -destruction rule:)(�)x!� ('(x))t00, if t00 is the type in t of the x under consideration.Note here that a term t, '-reduces (repectively � -reduces) to another term t0 ift0 is obtained from t by '-reducing (respectively � -reducing) a subterm of t.Example 4.4 Take again the term (1�)(2�)1. Now30

1. (�)1!� ('(1))2!' 3.2. (�)(2�)1 !� (2�)(�)1 !� (2�)('(1))2!' (2�)3.3. (�)(1�)(2�)1 !� (1�)(�)(2�)1 !� (1�)(2�)(�)1 !� (1�)(2�)('(1))2 !'(1�)(2�)3 !� 2.4.1 The type of an abstractionIn what follows, we use �1 for dependent product formation (usually denotedas �), and �2 for the | ordinary | function operator �. Now in De�nition 4.3,we did not distinguish between the two operators. Usually, the following ruleis employed:De�nition 4.5 (Abstraction rule)1. Given that the term t0 has type t00, one de�nes the type of a �-abstraction�x : t1 : t0 to be t00, as well.2. The type of a �-abstraction �x : t1 : t0 is the corresponding �-abstraction�x : t1 : t00.As a consequence, one may re�ne the transition rules for �-items as follows,replacing those of De�nition 4.3 for the case that ! � �:De�nition 4.6 (� -transition rules for indexed �-items:)(�)(t1�1)!� (�)(�)(t1�2)!� (t1�1)(�)Example 4.7 31

1. If t � (1�)(2�1)1 then (�)(2�1)1 !� (�)1 !� ('(1))2 !' 3. That is, thetype of �x:y:x is y.2. If t � (1�)(2�2)1 then (�)(2�2)1 !� (2�1)(�)1 !� (2�1)('(1))2 !'(2�1)3. That is, the type of �x:y:x is �x:y:y.There may be circumstances in which one desires to have more \layers" of�'s. In such a case, we can extend this kind of systems by incorporating moredi�erent �'s. For example, with an in�nity of �'s, viz. �0, �1, �2, �3 . . . , wecan generalize De�nition 4.6, to the following, if we add a reduction rule statingthat (t1�0) reduces to the empty segment:De�nition 4.8 (� -transition rule for arbitrarily many indexed �-items)(�)(t1�i+1)!� (t1�i)(�), for i = 0; 1; 2; : : :4.2 The type of an applicationRecall from the third part of Example 4.2 that we might need to add an abstrac-tion condition which states that the type of u and the type y are compatible.In fact, one usually employs a rule of the following form:De�nition 4.9 (Application rule)Given a \function" F of type �x : t00 : t1 and an \argument" t of the appropriatetype t00 (this is the type or domain which is associated with this function), thenthe application term (t�)F has type t1[x := t].For this purpose we maintain De�nition 4.6 as regards the �-items, and weemploy the following � -transition rule for �-items (as in De�nition 4.3):32

De�nition 4.10 (� -transition rule for �-items)(�)(t1�)!� (t1�)(�).However, we make demands to rule 5 (see De�nition 3.30), which we repeatfor convenience sake:s ` t s(t�) ` t0 application conditions ` (t�)t0The requirement now is that the following application condition does holdin this rule:De�nition 4.11 (General application condition)(�)t0 =�;�;' (t00�1)t1 and (�)t =�;�;' t00.Now it follows that(�)(t�)t0 !� (t�)(�)t0 =�;�;' (t�)(t00�1)t1 !!� t1[x := t] (6)where the x's are the variables in t1 bound by the mentioned �1. Hence, weobtain the desired result that (t�)t0 \has type" t1[x := t].Example 4.12 Take the term (1�2)(1�)(2�2)1 (or in sugared notation (y�u)(u�)(y�x)x).From Example 4.7, (�)(2�2)1 =�;�;' (2�1)3. Moreover, the type of u is:(�)1 =�;�;' ('(1))1 =�;�;' 2.Hence the application condition for (1�)(2�2)1 is satis�ed and(�)(1�)(2�2)1 =�;�;'!!� 2.Note that we see the �1 (i.e., the �) indeed as a kind of �, hence eligiblefor an application. This is a quite natural approach. In the usual notation, this33

would amount to the introduction of a �-reduction caused by a �-application:(�x : A : B)a!� B[x := a].Here one may interpret (�x : A : B)a as the wish to select the \axis" B(a) inthe Cartesian product �x : A : B.In our notation, a �-application is characterized by a �-�-segment of theform (t1�)(t2�). We speak about a ���-reduction when referring to a �-reductiongenerated by such a �-�-segment. Similarly, a ���-reduction is an \ordinary"�-reduction, generated by a �-�-segment.Summarizing, we note that there are two possible approaches regarding �-application:� Implicit or compulsory ���-reduction, i.e. for F of type (�x : A : B) anda of type A we immediately have that Fa is of type B[x := a], withoutintermediate steps. Here �-application is not allowed. This is the case inPTS's (see Section 5).� Explicit ���-reduction, where �-application is allowed. Now we have, forF and a as above, that Fa has type (�x : A : B)a, which ���-reduces toB[x := a].The latter option is an extension of the former one. With explicit ���-reduction one may simulate the e�ects of implicit ���-reduction, as we explainedabove. One might argue that implicit ���-reduction is closer to the intuitionin the most usual applications. However, experiences with the Automath-languages, containing explicit ���-reduction, demonstrated that there existsno formal or informal objection against the use of this explicit ���-reduction in34

natural applications of type systems.The two options can also be described in our step-wise structure. Our de-scription of explicit ���-reduction is given above. If one desires to have implicit���-reduction as a formalized notion, then we can make use of the possibilityto have di�erent �'s at our disposal. In that case, a �1-item (t�1) can be usedas a signal for forced priority for certain operations which execute the desiredimplicit ���-reduction.For example, the �1's in the chain(�)(t�1)t0 !� (t�1)(�)t0 =�;� (t�1)(t00�1)t1 !!� t1[x := t](cf. equation 6) can be used to enforce with highest priority, i.e. before theexecution of any other \operation" on the term:1) the \calculation" of the type typ(t0) obtained by � -reduction of (�)t0,2) the search for a term of the form (t00�1)t1 which is �-convertible to (or a�-reduct of) typ(t0),3) and the �-reduction (t�1)(t00�1)t1 !!� t1[x := t].By this process we obtain the term t1[x := t] as a necessary and imme-diate result of a � -reduction on (�)(t�1)t0. For ordinary, non-compulsory ���-reductions, we may employ another �, e.g. �2.For simplicity, however, we shall not use these di�erent �'s in the followingof this paper.Remark 4.13 In a now commonly accepted setting (see [Bar92] or [BaH90]),the typing relation is expressed in the format � ` t1 : t2. Here � is a context,and the statement t1 : t2 expresses that t1 has type t2 relative to this context35

�. Such a context can be considered as a segment consisting of main �-items,meant to bind all free variables occurring in t1 and t2.Example 4.14 In ("�x)(x�y) ` y : x it is stated that y has type x in thecontext ("�x)(x�y), which is indeed the case, as is visible in the context-item(x�y). Also, ("�x)(x�y) ` x : " holds.5 The typing relation in PTS'sWe start with a short summary of so-called Pure Type Systems (PTS's), as de-scribed in [BaH90]; see also [Bar92]. We are only interested in the singly sortedPTS's, where di�erent types of a given term are always �-convertible; hence,typable terms are uniquely typed (but for �-conversion). Moreover, we requirethat the typing relation is degree-consistent, thus preventing \impredicativetyping" like � : �.PTS's employ ordinary variables, and not de Bruijn-indices or another ref-erential variable denotation. So '-items and updating are not incorporated.Moreover, we note that PTS's have a typing relation t1 : t2 (i.e. term t1 hastype t2), and no canonical type operator as the one explained in Section 4. Thefollowing gives the conditions which must be obeyed for the construction of (�-or �-) abstraction terms in PTS's:De�nition 5.1 (�-rules)(�-formation rule:)� ` t1 : s1 �; x : t1 ` t2 : s2� ` (�x : t1 : t2) : s3 36

(�-introduction rule:)� ` t1 : s1 �; x : t1 ` t2 : s2 �; x : t1 ` u : t2� ` (�x : t1 : u) : (�x : t1 : t2)In these rules, � denotes a context, t1, t2 and u are terms and s1, s2 and s3are so-called sorts (these should not be confused with the meta-variable notationfor items). For convenience' sake, we only regard the case that s2 � s3; thesePTS's contain the ones of Barendregt's �-cube (to be explained below). Notemoreover that these rules are consistent with De�nition 4.5.Remark 5.2 The �-formation and �-introduction rules as given above can becondensed into one �-rule (combined �-rule):�; [x :]t1 : s1 ` [t0 :]t2 : s2� ` [(�x : t1 : t0)] : (�x : t1 : t2) : s2Now it is obvious that De�nition 4.6 encorporates the essential part of both�-rules, translated in our setting. In fact,� (�)(t1�1) � -reduces to (�) by itself (the �1-item | i.e. the �-item | iserased).� (�)(t1�2) � -reduces to (t1�1)(�), so the �2-item (an ordinary �-item)changes into the corresponding �1-item (a �-item).Moreover, the type information given by the �-formation and �-introductionrules (via the statements (�x : t1 : t2) : s2 and (�x : t1 : u) : (�x : t1 : t2),respectively) is no longer necessary, since we have the canonical type operator� at our disposal (cf. De�nition 4.6 and Remark 4.13).Now we come to \Barendregt's cube" where both s1 and s2 can be either� or 2 (again, see [Bar92] or [BaH90]). These two are related by the axiom37

statement: � : 2. In this cube, there are eight systems of typed lambda calculus.They di�er in whether � and/or 2 may be taken for s1 and s2, respectively. (Werecall that we take s2 � s3.) The basic system is the one where (s1; s2) = (�; �)is the only possible choice. All other systems have this version of the two�-rules, plus one or more other combinations of (�;2), (2; �) and (2;2) for(s1; s2). The four possible versions of the �-rule can be listed as follows:degree 3 2 1 0(�; �) x : t1 : � : 2u : t2 : � : 2(�;2) x : t1 : � : 2u : t2 : 2(2; �) x : t1 : 2u : t2 : � : 2(2;2) x : t1 : 2u : t2 : 2The system with only (�; �) for (s1; s2) is known as �-Church or �! (thisis essentially the Automath-system AUT-68). The addition of (�;2) gives �P ,which is a system that is rather close to another variant of the Automath-family,AUT-QE (see [deB80]). The addition of (2; �) to (�; �) gives the second ordertyped lambda calculus, also called �2. Adding (2;2) to (�; �), we obtain �!.38

There are three systems that are de�ned by adding a combination of two ofthe three last-mentioned possibilities to (�; �). When all mentioned (s1; s2)-combinations are permitted, we have a version of the Calculus of Constructions(�C) (see [CoH88]).In our system, we may identify 2 with ". Subsequently, the axiom � : 2may be rendered as the �-item ("��). Thus we can express all eight systems ofBarendregt's cube (and, in fact, many other PTS's) by adding the appropriateabstraction conditions. Let us repeat the construction rule under consideration,as stated in De�nition 3.30:s ` t s(t�) ` t0 abstraction conditions ` (t�)t0De�nition 5.3 (Incorporating �-formation)The �-formation rule is obtained by reading �1 for � and taking the abstractioncondition:(�)t!�;� s1 and (�)t0 !�;� s2, for s1; s2 2 f�;2g.
De�nition 5.4 (Incorporating �-introduction)For the �-introduction rule we take �2 for � and the abstraction condition:(�)t!�;� s1 and (�)2t0 !�;� s2. Here (�)2 is an abbreviation for (�)(�).Just as the �-formation and -introduction rules incorporate the PTS-versionof the abstraction conditions, the following �-elimination rule contains the ap-plication condition for PTS's: 39

De�nition 5.5 (�-elimination rule)� ` F : (�x : A : B) � ` a : A� ` Fa : B[x := a]Now we recall the appropriate construction rule from De�nition 3.30:s ` t s(t�) ` t0 application conditions ` (t�)t0and we incorporate �-elimination as follows:De�nition 5.6 (Incorporating �-elimination)As regards the �-elimination rule for PTS's, we use the application condition:there are t00 and t1 such that (�)t0 =�;� (t00�1)t1 and (�)t =�;� t00.
Summarizing, it is our opinion that the main rules for term constructionin many PTS's have a natural rendering in our setting. The construction ofabstraction terms can be simulated with the use of �1- and �2-items. Applica-tion terms can be constructed with an appropriate application condition, whichmirrors the �-elimination rule but for the di�erence between implicit (com-pulsory) and explicit ���-reduction. However, the latter kind of ���-reduction,being more general, and �tting naturally in our setting, can be used to establishthe same e�ects as the former one.Remark 5.7 The fact that systems with explicit ���-reduction are conserva-tive over systems with implicit ���-reduction, has been proven by van BenthemJutting (private communication). Hence, there is no technical objection againstthe de�nition of PTS's by means of a canonical type operator.40

6 The typing relation in Automath-systemsIn this section we describe the de�nitions of three of de Bruijn's Automath-systems in our setting. These systems do have a canonical type operator, albeitnot as part of its language. Consequently, we only have
��-terms in the lan-guage. Moreover, there is just one � and one �, this � taking the role both ofthe ordinary functional operator � and the product constructor �.The systems that we discuss are AUT-68, AUT-QE and �.4 All these sys-tems have been developed around 1970. The oldest of the three is AUT-68,the more powerful variant AUT-QE followed soon. The system � was meantto be a simpli�ed and more uniform version of the two other systems. It wasdeveloped slightly later.6.1 The system AUT-68The system AUT-68 ([vanD80]) was meant as a formal system suitable forexpressing large parts of mathematics, some of its features include:� An in-built logical frame for reasoning, in a logic chosen by the user (e.g.classical predicate logic, intuitionistic logic),� The possibility of a step-wise development of a mathematical theory bymeans of axioms and primitive notions; lemma's, theorems, corollariesand their proofs; de�nitions and abbreviations,4We thank Bert van Benthem Jutting for the descriptions below of AUT-68 and AUT-QE.
41

� An explicit treatment of contexts (assumptions, variable introductions)for theorem-like and de�nition-like notions.� Only degrees 1, 2 and 3 are permitted. Hence, " (of degree 0) is not anAutomath-term. As a consequence, the �-item ("��), expressing that � isof type ", is a \meta-axiom", which cannot be rendered inside one of thedescribed Automath-systems.If we disregard the de�nition mechanism of AUT-68 (in other words, if allde�nitions are \unfolded"), then we can give a simple, straightforward descrip-tion of AUT-68 in our setting by choosing the appropriate parameters. Thefollowing de�nitions show what are the typing relation and construction rulesthat will describe AUT-68 in our setting.De�nition 6.1 (Canonical types for AUT-68)The canonical type typ(t0) of a term t0 can be calculated by means of thefollowing � -transition rules:(�)(t�)t0 !� 8>>><>>>: � if deg(t0) = 2(t�)(�)t0 if deg(t0) = 3(�)(t�)t0 !� (t�)(�)t0De�nition 6.2 (Well-typedness of AUT-68)In De�nition 3.30, we need the following variable, abstraction and applicationconditions:� Variable condition: The only variable of degree 1 is �.� Abstraction conditions: 42

1. Either deg(t) = 2, or deg(t) = 1 and s is a context (see De�ni-tion 3.2), and2. 2 � deg(t0) � 3.� Application condition:deg(t0) = 3 and typ(t0) =� (typ(t)�)t00 for some t006.2 The system AUT-QEThe system AUT-QE has so-called Quasi Expressions: abstractions over �,functioning as types of dependent products. This extra feature facilitates theapplicability of the system in a mathematical environment. Moreover, AUT-QEhas, like AUT-68, only terms of degree 1, 2 and 3. The following will show howwe can incorporate a (again de�nition-free) version of AUT-QE in our setting:� Canonical type: as for AUT-68 (see De�nition 6.1).� Variable condition: as for AUT-68 (see De�nition 6.2).� Abstraction condition 1: as for AUT-68 (see De�nition 6.2).� Abstraction condition 2: absent (see De�nition 6.2).� Application condition:either deg(t0) = 3 and s ` (t�)typ(t0),or deg(t0) = 2 and typ(t0) =� (typ(t)�)t00 for some term t00.
43

6.3 The system �In view of the sketched development of � as a uniform system (however main-taining most of the possibilities for practical applications in logic and mathe-matics), it will be no surprise that � is the system closest to the approach thatwe follow in this report. As a matter of fact, � is contained in our descriptionas given before, with the following parameters:� There is no restriction on degrees, all degrees � 0 are possible.� There is only one abstraction operator � (hence, there is no �, or �0; �1; �2; : : :).� Application is only restricted in the sense that the general applicationcondition (see De�nition 4.11) must hold, albeit in a generalized ver-sion (due to the unlimited degrees). Application is allowed for termsof all degrees, so that �-application (see again Section 4) is one of thefeatures: �-reduction is treated similarly for all degrees, in the form(t1�)(t2�x)t3 !� t3[x := t1].� The type operator behaves uniformly, as in De�nition 4.3: we have that(�)(t1!)!� (t1!)(�), for � � � or � � �. Hence, � has explicit, and notimplicit (compulsory) ���-reduction.7 An exampleIn order to demonstrate some of the features discussed above, we propose asystem �C1 that has in principle similar power as Coquand and Huet's Calculusof Constructions (or �C, see [CoH88]) and give the proof of a logic theorem in44

this setting.7.1 The system �C1�C1 has the following general features:� Variable names like x, y, : : :, are used instead of de Bruijn-indices.� Segment abbreviations, as discussed in De�nitions 3.4 and 3.29 are incor-porated.� There is a distinction between �'s and �'s, (i.e., �1's and �2's), respec-tively.� A canonical type operator typ, with the usual notational convention thattyp2(t) � typ(typ(t)), etc, is used.� �-application and the corresponding ���-reduction are present.� The maximal degree is 3.Hence, we deviate in several respects from the o�cial �C.Note that we use three �'s, viz. �1, �2 and �sg. (In Section 7.3, we write �for �1 and � for �2.) Moreover, we have one �, and as a consequence of whatwe said above, there will be no ''s and no � 's. The last two operators may onlybe used in the meta-language.Remark 7.1 When we use deg or typ in a condition, we implicitly requirethat these operations are indeed de�ned for the terms under consideration.
45

De�nition 7.2 (Construction rules for �C1)The construction rules for terms are the following:variable construction:1 � deg(sx) � 3s ` x (1)abstraction construction:s ` t s(t�) ` t0 abscons ` (t�)t0 (2)where, for � � �k and k = 1 or 2, respectively,abscon is 8>>><>>>: typi(t) =� " for i = 1 _ i = 2;typj(t0) =�;� " for j = k _ j = k + 1application construction:s ` t s(t�) ` t0 appcons ` (t�)t0 (3)whereappcon is : there are t1 and j�f0; 1g such that (�)jt0 =�;� ((�)t �1)t1Note that abscon is the same abstraction condition as the one for �C de�nedin De�nitions 5.3 and 5.4. However, we do not use s1 and s2. To be precise: in�C both s1 and s2 can be either � or 2. We identify 2 with ". Moreover, weassume that � : 2, as in Section 5, and we assume that � is the only inhabitantof 2. 46

Hence, the condition \t : s1" can be replaced by typ(t) � " (in the case thats1 � 2) or typ(t) � � (in the case that s1 � �).Analogously, in the case that � � �1 (i.e., �), the condition \t0 : s2" becomes(�)t0 =�;� " or (�)2t0 =�;� ". In the case that � � �2 (i.e., the ordinary\functional" �), the condition \t0 : t00 : s2 for some t00" becomes (�)2t0 =� " or(�)3t0 =� ". The rules for � are given in De�nitions 4.3 and 4.6.Remark 7.3 It is not hard to see that both the typing relation and the reduc-tion relations in the presented system are degree-consistent.7.2 The environment of the theoremThe theorem that we give is very short and is taken from logic. The logicis based on the Curry-Howard-De Bruijn isomorphism, that is the notion of\propositions-as-types". (Cf. Example 3.21.) This environment that we workwith only concerns the following subjects:� a class � of propositions is taken as primitive,� in this class the notion falsum (= absurdity), denoted as ?, is introducedas a primitive notion,� the axiom scheme ?a (for all propositions a) is stated (i.e. when absurdityholds, then every proposition holds),� the notion of implication a) b is de�ned as the class of all mappings ofa to b, hence sending proofs of a to proofs of b,� the notion of negation :a is de�ned as a) ?,47

� the following logical theorem is expressed and proved:a :ab :In a kind of \Mathematical Vernacular", adopted from the style of theAutomath-family, this piece of logico-mathematical text can be expressed bythe following three de�nitions:De�nition 7.4 (The axiomatic part)let � be by axiom the class of all propositions.let ? be by axiom a proposition.let a be a propositionand let t be a proof of ?;then ?-el of a and t is by axiom a proof of a.De�nition 7.5 (The de�nitional part)let a be a propositionand let b be a proposition;then `)' of a and b is by definition the class of all mappings from a tob. let a be a proposition;then `:' of a is by definition `)' of a and ?.De�nition 7.6 (The theorem-and-proof part)48

let a be a propositionand let b be a proposition,let x be a proof of aand let y be a proof of `:' of a;then pr of a, b, x and y is by definition ?-el of b and y of x,being a proof of b.Remark 7.7 In the above text, ? is introduced as a primitive notion by meansof an axiom. This is, of course, unnecessary in �C, since the contradiction ?can easily be de�ned in �C, viz. as (��a)a. However, for the case of the examplewe introduce ? as above.7.3 Translating the environment in �C1The logico-mathematical text de�ned in the previous section, will be translatedin its entirety, as one segment in �C1 . For convenience' sake, we write thissegment as a concatenation of separate items, corresponding with the di�erentaxioms, de�nitions and theorems in the text. Moreover, we assume that thereader who is familiar with PTS's will be pleased when we write � instead of�1 and the ordinary � instead of �2.De�nition 7.8 (Translating De�nition 7.4)De�nition 7.4 gives the following three �-items:(��)(��?)((��a)(?�t)a �?�el) 49

That is: � is introduced as a term of type " and ? as a term of type �; �nally,?-el is presented as being a primitively given, �xed function, sending a of type� to an element of the set of all functions from ? to a (this set is coded as(?�t)a). Otherwise said, ?-el is a function sending a of type � and t of type? to a. This function causes any proposition a to be inhabited as soon as ?,the absurdity, is inhabited.De�nition 7.9 (Translating De�nition 7.5)De�nition 7.5, coding the de�nitions of implication and negation, can be ex-pressed by the following four items, being two pairs of (`de�nitional') �-�-segments:((��a)(��b)(a�x)b �) ((��a)(��b) � �))((��a)(?�)(a�)) �) ((��a) � �:)Here) is de�ned as the product (��a)(��b)(a�x)b; this product is `polymor-phic', in the sense that it only becomes a product after application, in thiscase to two arguments. To be precise, for given c and d of type �, the term(d�)(c�)) �-reduces to the dependent product (in this case, the set of allfunctions) (c�x)d, functions which send inhabitants of c to inhabitants of d.The type of) is (��a)(��b)�, the class of all functions sending pairs (a; b) of`propositions' to a \new" `proposition' (in this case: a) b).Analogously, : is de�ned as the `polymorphic' negation (��a)(?�)(a�));thus, (c�): �-reduces to (?�)(c�)). The type of : is (��a)�, the class of allfunctions sending a `proposition' a to a \new" `proposition' (in this case: :a).
50

Example 7.10 The reader may check that the following chain of �-reductionsis correct:: !�(��a)(?�)(a�)) !�(��a)(?�)(a�)(��a)(��b)(a�x)b !�(��a)(?�)(��b)(a�x)b !�(��a)(a�x)?.Hence,(a�): =� (a�x)?.So (a�): (or :a in pre�x-notation) is �-convertible to (a�x)? (or, in in�x-notation, a) ?). It is easy to check that (a�x)?, in its turn, is �-convertibleto (?�)(a�)).De�nition 7.11 (Translating De�nition 7.6)De�nition 7.6 of the text can be translated into one �-�-segment:((��a)(��b)(a�x)((a�): �y)((x�)y �)(b�)?�el �)((��a)(��b)(a�x)((a�): �y)b �pr)The obtained coding of the text is, indeed, one long segment. For the sake ofcompleteness, we give the full segment:
(��)(��?)((��a)(?�t)a �?�el)((��a)(��b)(a�x)b �) ((��a)(��b) � �))51

((��a)(?�)(a�)) �) ((��a)� �:)((��a)(��b)(a�x)((a�): �y)((x�)y �)(b�)?�el �)((��a)(��b)(a�x)((a�): �y)b �pr) (4)It is not hard to check that this segment obeys the conditions for termconstruction as given above:5variable condition:The term is closed and all degrees are � 3.abstraction condition:Left to the reader.application condition:Examples are:typ(��a)(��b)(a�x)b !� (by Section 4)(�)(��a)(��b)(a�x)b !� (by Def. 4.8)(��a)(�)(��b)(a�x)b !� (by Def. 4.8)(��a)(��b)(�)(a�x)b !� (by Def. 4.8; (a�x) reduces to the empty segment)(��a)(��b)(�)b !� (by Def. 4.3)(��a)(��b)�andtyp(��a)(?�)(a�))!� (by Section 4)(�)(��a)(?�)(a�))5Note that this segment can be considered to be a term by adding " to the segment.52

!� (by Def. 4.8)(��a)(�)(?�)(a�))!� ; (since(�)) =� (��a0)(��b0)� =�;� ((�)a �a0)(��b0)�, so(�)(a�)) =� (��b0)� =�;� ((�)? �b0)�) and(�)(?�)(a�)) =� �)(��a)�.Other checks of the application condition, such as:typ (��a)(��b)(a�x)((a�): �y)((x�)y �)(b�)?�el !!�;�(��a)(��b)(a�x)((a�): �y)b,are left as an exercise for the reader.7.4 The theorem and its proofThe main �-item of the segment in de�nition 7.11 contains the theorem:(��a)(��b)(a�x)((a�): �y)b.The contents of this theorem are that any inhabitant of the theorem, being aproof for the theorem, must be a function which, for a and b of type �, for xof type a and y of type (a�):, gives an inhabitant of (= a proof of) the typeb. Translated in more customary phrasing: the desired function must be suchthat for any pair of `propositions' a and b and for any pair of `proofs' of a and:(a), we have a `proof' of b.This theorem indeed has an inhabitant (and hence is true). This inhabitantcan be found in the main �-item of the �-�-segment:53

(��a)(��b)(a�x)((a�): �y)((x�)y �)(b�)?�el .In order to show that this term is indeed a proof of the theorem, we have toshow that its type is �-equivalent to the term coding the theorem. Otherwisesaid: we have to demonstrate that this �-�-segment, in particular, obeys theapplication condition. This is indeed the case, as the reader may check.Finally, we show the usefulness of segment abbreviations for the same the-orem and proof. (These abbreviations can also be of help for the check of theapplication condition.) Segment abbreviations add to the e�ciency. There arealready several segment duplications in term 4. For example, the segments(��a) and (��a)(��b) occur repeatedly; the same is the case for their respectivetypes: (��a) and (��a)(��b).When we have terms translating longer texts than the very short one in theexample above, segments then can easily consist of many items. Moreover, inan average term translating a piece of mathematical text, the amount of dupli-cations is very bothersome. Segments tend to be repeated almost literally. Asa matter of fact, it turns out to be quite natural (as a consequence of the usualstructure of mathematical reasoning) that di�erent segments occur stackwise inthe complete term; that is to say, an occurrence of a segment (t1�a1) : : : (tn�an)may be followed rather closely by the same segment, or by a segment whichis one item longer: (t1�a1) : : : (tn+1�an+1) or shorter: (t1�a1) : : : (tn�1�an�1),and this may happen again and again. (The same holds if some of the �'s arereplaced by �'s.)The segment abbreviations which we proposed can solve the problem. For54

this, we add one more abbreviation in this translation process: when, e.g.(��a)(��b) is abbreviated by (b; 2), then we abbreviate (��a)(��b) by ((�)b; 2).This is quite natural, since the � -transition rules are such that (�)(��a)(��b)t0 !!� (��a)(��b)t00 (see De�nition 4.6).Now, the term given below is the same as term 4, but with segment abbre-viations.
(��)(��?)((��a)�) (�sg a)(((�)a; 1)(?�t)a �?�el)((a; 1)(��b)�) (�sg b)((b; 2)(a�x)b �) (((�)b; 2) � �))((a; 1)(?�)(a�)) �) (((�)a; 1)� �:)((b; 2)(a�x)((a�): �y) �) (�sg c)((c; 4)((x�)y �)(b�)?�el �)(((�)c; 4)b �pr) (5)In a �nal step, we change the lay-out of this term in such a manner thatit resembles an Automath-text. At the same time, for the sake of brevity weremove those variable items of the form ((�)x;n) for which the correspondingvariable item (x;n) �gures in the same line. Instead, we shall use a horizontalstroke: , which should be considered to refer to the segment variable (x;n),55

with (�) added in the left-hand side. This is again a way to avoid unnecessaryduplications; the three horizontal strokes in the version below should read:((�)b; 2), ((�)a; 1) and ((�)c; 4), respectively.Thus doing, we come closer to both Automath and to the general PTS-framework, which uses contexts �.The following version will now speak for itself.(��)(� �?)((��a) �) (�sg a)(((�)a; 1)(?�t)a �?�el)((a; 1) (��b) �) (�sg b)((b; 2) (a�x)b �) (� �))((a; 1) (?�)(a�)) �) (� �:)((b; 2) (a�x)((a�): �y) �) (�sg c)((c; 4) ((x�)y �)(b�)?�el �) (b �pr)8 ConclusionsIn this paper, we introduced an alternative �-calculus notation which is ex-ible enough for the expression of many type systems. This notation allowsmany generalizations. For example higher degrees and segment abbreviationsare straightforwardly attainable. Moreover, a di�erence between functions (�-terms) and dependent products (�-terms) can be made by adapting the appro-priate rules, whereas both kinds of abstractions still �t in the same framework,since they may be treated as two similar kinds of �-abstraction. This turned56

out to hold to such an extent that application and �-reduction become alsopossible for �-abstractions, thus simplifying and unifying the patterns.We looked at the role of the types in our setting. For typable terms wede�ned a canonical type, which can be e�ectively computed in a straightforwardmanner. The usual relation t1 : t2, i.e. term t1 has as one of its types the termt2, can also be expressed by means of this canonical type typ and �-reduction,viz. as typ(t1) =� t2.We showed how type systems such as Barendregt's cube of Pure Type Sys-tems can also be de�ned with this typ-operator in a rather uniform way. More-over, we explained how the abstraction condition and the application condition,present in our alternative term construction rules, can be phrased in correspon-dence with the PTS-rules. We also presented a number of Automath-systemsin the proposed setting, which resulted in concise de�nitions for complicatedsystems. Finally, we worked out the proof of a theorem taken from logic in oursetting.All the above is an evidence that our new framework is expressive, generaland uniform. We believe that this framework deserves some attention in theongoing research in �-calculus and type theory. So far we have illustrated theadvantages and usefulness of our framework in various areas and applications.So whereas in this paper we are concerned with generalising type theory in ourframework, we show in other papers the advantages of our notation for manyimportant issues of the �-calculus. In the introduction, we discussed some ofthe charcteristics of our notation and of what it o�ers. Below, we shall reectfurther on some ongoing research we are carrying out with this notation.57

1. In [KN 93] we showed that with our notation we can introduce explicitsubstitution which is more general than many explicit substitutions in-troduced so far. We showed moreover that we can de�ne local and globalreduction in an easy and natural way and discussed various reductionstrategies. With such substitution and reduction, our system can be moreuseful to applications and implementations of the lambda calculus thanmany known systems. In functional programming for example, there isan interest in partial evaluation. That is, given xx[x := y], we may notbe interested in having yy as the result of xx[x := y] but rather onlyyx[x := y]. In other words, we only substitute one occurrence of x by yand continue the substitution later. In that article furthermore, we showthat it is the item notation which enabled such an easy account of explicitsubstitution.2. In [KN 9z] we show how a new notion of �-reduction can be obtained withthe use of our item notation. We extend the usual notion of �-reduction,an extension which is an evident consequence of local substitution. Theframework for the description of terms, as explained before, is very ade-quate for this matter. This extension is to do with a completely new kindof reduction that is desirable. This results for example from replacing zby t1 in ((�x:t3 :(�y:t5 :�z:t6 :u)t4)t2)t1 resulting in (�x:t3 :(�y:t5 :u)t4)t2 beforet4 has replaced y and t2 has replaced x. In the usual �-calculus, this is notstraightforward. Such a reduction however, which takes place while otherreductions are still frozen is needed. As an example, lazy evalutation,58

counts on waiting with the evaluation of some term, while still passingit as an argument. This means that even though we have not destroyeda particular reduction segment, we may still want to reduce other reduc-tion segments which may be very far apart. [KN 9z] investigates sucha process by providing a generalised �-reduction where the problem ofdelayed reductions and substitutions is tackled. For example, we reduce((�x:":(�y:":�z:":u)x3)x2)x1 to (�x:":(�y:":u)x3)x2; a reduction di�cult tocarry out in the classical �-calculus. This generalised �-reduction, weclaim is the most generalised up to date. With such an extended reduc-tion there will be new reduction strategies that may prove more helpfulfor the implementor. For example, [BKKS 87] have investigated the the-ory of needed redexes in a term and we feel that needed redexes are alleasily available and obvious in our generalised notion of a redex. This isan issue under investigation at the moment.3. Our use of segment abbreviation we conjecture will simplify proofs andwill more importantly help us treat proofs and contexts as terms and manynotions that we apply to terms we can apply to proofs and contexts. Forexample, a segment is just a special kind of term whose end variable is ".Now, a segment is not only a term, but is also a context. So many notionsrelated to terms can be also applied to contexts. Furthermore, we thinkit important and elegant that we can treat and discuss contexts as terms.The metatheory of our system is an interesting part to study and this isone of the issues we are concentarting on at the moment.59

Hence our system can be used to improve both implementations as well astheory. Two important notions are under study at the moment as we said:reduction and theorem proving. But we do believe that the system is moreelegant and attractive than the existing systems and we show this in [KN 9z].References[Bar92] Barendregt, H.P., Lambda Calculi with Types, in Handbook of Logic in Com-puter Science, Vol II, Eds. S. Abramsky, D. Gabbay and T. Maibaum, OxfordUniversity Press, Oxford, 1992.[BaH90] Barendregt, H.P., and Hemerik, C., Types in Lambda calculi and program-ming languages, Proceedings of the ESOP conference, Copenhagen 1990.[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Neededreduction and spine strategies for the �-calculus, Information and Computation75 (3), 1191-231, 1987.[Bej77] Benthem Jutting, L.S. van, Checking Landau's \Grundlagen" in the AU-THOMATH system, Ph.D. thesis, Eindhoven university of Technology, Eindhoven,1977.[deB70] Bruijn, N.G. de, The mathematical language AUTOMATH, its usage and someof its extensions, in: Symposium on Automatic Demonstration, IRIA, Versailles,1968, Lecture Notes in Mathematics, 125, 29-61, Springer, 1970.[deB72] Bruijn, N.G. de, Lambda calculus with nameless dummies, a tool for au-tomatic formula manipulation, with application to the Church-Rosser theorem,Indagationes Math. 34, No 5, pp. 381-392, 1972.[deB74] Bruijn, N.G. de, Some extensions of the AUTOMATH: the AUT-4 family, de-partment of Mathematics, Eindhoven University of Technology, Eindhoven, 1974.60

[deB80] Bruijn, N.G. de, A survey of the project AUTOMATH, in To H.B. Curry:Essays on Combinatory Logic, Lambda Calculus and Formalism, Eds. J.R. Hindleyand J.P. Seldin, Academic Press, New York/London, pp. 29-61, 1980.[CoH88] Coquand, T. and Huet, G., The calculus of Constructions, Information andControl 76, pp. 95-120, 1988.[vanD80] Daalen, D.T. van, The language theory of Automath, Ph.D. thesis, Eindhovenuniversity of Technology, Eindhoven, 1980.[How80] Howard, W.A., The formulae-as-types notion of constructions, in To H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Eds. J.R.Hindley and J.P. Seldin, Academic press, 1980.[Kamareddine 89] Kamareddine, F., Semantics in a Frege structure, Ph.D. thesis, Uni-versity of Edinburgh, 1989.[Kamareddine 92a] Kamareddine, F., A system at the cross roads of logic and func-tional programming, Science of Computer Programming 19, 239-279, 1992.[Kamareddine 92b] Kamareddine, F., �-terms, logic, determiners and quanti�ers,Logic, Language and Information 1 (1), 79-103, 1992.[Kamareddine 92c] Kamareddine, F., Set Theory and Nominalisation, Part I, Logicand Computation 2 (5), 579-604, 1992.[Kamareddine 92d] Kamareddine, F., Set Theory and Nominalisation, Part II, Logicand Computation 2 (6), 687-707, 1992.[KK 93] Kamareddine, F., and Klein, E., Polymorphism, Type containment and Nom-inalisation, Logic, Language and Information 2, 171-215, 1993.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, In-ternational Journal of Foundations of Computer Science 4 (3), 197-240, 1993.61

[Kamareddine 94] Kamareddine, F., Non well foundedness and type freeness can unifythe interpretation of functional application, to appear in Logic, Language andInformation, 1994.[Kamareddine 94] Kamareddine, F., Are types needed for Natural Language?, Pro-ceedings for the applied Logic conference, Amsterdam, December 1992. Also in Ap-plied Logic: What and Why, edited by Michael Masuch and Laszlo Polas, Kluwer,1994.[KK 9x] Kamareddine, F., and Klein, E., Polymorphism and Logic in Programmingand Natural languages, to appear in the Journal of Semantics, 1994.[KN 9x] Kamareddine, F., and Nederpelt, R.P., A useful lambda notation, submittedfor publication.[KN 9y] Kamareddine, F., and Nederpelt, R.P., A Semantics for a Fine �-calculususing de Bruijn indices, submitted for publication.[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the �-calculus, in prepa-ration.[KN 9w] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and �{conversion,submitted for publication.[KN 9z] Kamareddine, F., and Nederpelt, R.P., Re�ning reduction in the �-calculus,In preparation.[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus withlambda structured types, Ph.D. thesis, Eindhoven University of Technology, De-partment of Mathematics and Computer Science, 1973.[Nederpelt 80] Nederpelt, R.P., An approach to theorem proving on the basis of a typedlambda-calculus, in 5th Conference on Automated Deduction, Les Arcs, France,1980, Eds. W. Bibel and R. Kowalski, LCNS, 87, 182-194, Springer, 1980.62

[Nederpelt 87] Nederpelt, R.P., De taal van de Wiskunde, Versluys, Almere, 1987.[Nederpelt 90] Nederpelt, R.P., Type systems | basic ideas and applications, in: CSN'90, Computing Science in the Netherlands 1990, Stichting Mathematisch Cen-trum, Amsterdam, 1990.[NGdV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., eds, Selected paperson Automath, North-Holland, Amsterdam 1994.

63

