
Re�ning Reduction in the lambda calculusJournal of Functional Programming 5(4), 1995�Fairouz Kamareddine yDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukandRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlOctober 23, 1996

�We are grateful for the discussions with Roel Bloo, Tijn Borghuis, Erik Poll and Phil Wadler and for thehelpful remarks received from them. In particular, we are grateful to Phil Wadler who has recommended thatwe dispose of �'s and �'s as in (x�)(�y)y and write (x)[y]y instead. We are also grateful to Peter Peters for hishelp concerning Latex and e-mail which enabled us to keep exchanging drafts and corrections of the presentpaper. Last but not least, we are grateful to the anonymous referees for their useful comments.yKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven Universityof Technology, for their �nancial support and hospitality from October 1991 to September 1992, and duringseveral short periods since 1993. 1



AbstractWe introduce a �-calculus notation which enables us to detect in a term, more �-redexes than in the usual notation. On this basis, we de�ne an extended �-reductionwhich is yet a subrelation of conversion. The Church Rosser property holds for thisextended reduction. Moreover, we show that we can transform generalised redexes intousual ones by a process called \term reshu�ing".Keywords: Item notation, Redexes, Church Rosser.Contents1 Introduction 31.1 The item notation and visible redexes . . . . . . . . . . . . . . . . . . . . . . 41.2 The system � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Generalising redexes and �-reduction 72.1 Extending redexes from segments to couples . . . . . . . . . . . . . . . . . . . 72.2 Extending �-reduction and the Church Rosser theorem . . . . . . . . . . . . . 83 Term reshu�ing 103.1 Partitioning terms into bachelor and well-balanced segments . . . . . . . . . . 113.2 The reshu�ing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Conclusion 14

2



1 IntroductionIn the �-calculus as we know it, some redexes in a term may not be visible before otherredexes have been contracted. For example, in t � ((�x:(�y:�z:zd)c)b)a, only (�y:�z:zd)c,and (�x:(�y:�z:zd)c)b are visible. Yet when reducing t to a normal form, a third redex mustbe contracted; namely (�z:zd)a. This third redex is not immediately visible in t (assumefor the sake of argument that none of x; y; z occur free in any of a; b; c and d). To solvethis problem we switch from the classical notation to what we call item notation where theargument occurs before the function and where parentheses are grouped in a novel way. Inour item notation, t will be written as (a)(b)[x](c)[y][z](d)z and we can provide t in this itemnotation with a bracketing structure ff gf gg where (�) and [�] correspond to `f' and `g'respectively (ignoring (d)z). We extend the notion of a redex from being any opening bracket`f' next to a closing bracket `g', to being any pair of matching `f' and `g' which are separatedby matching brackets. Figure 1 shows the possible redexes. That is, we see immediately that
(a) (b) [x] (c) [y] [z] (d) zFigure 1: Redexes in item notationthe redexes in t originate from the couples (b)[x], (c)[y] and (a)[z]. This natural matching wasnot present in the classical notation of t. We call items of the form (a) and [x], applicationand abstraction items respectively. With item notation, we shall re�ne reduction in two ways:1. We generalise �-reduction so that any redex can be contracted and hence we can contractthe redex based on (a)[z] before we contract any of the redexes based on (b)[x] and (c)[y].That is, the �-rule changes from (b)[v]a !� a[v := b] to (b)s[v]a ;� sfa[v := b]g for shaving a matching bracketing structure. I.e. (b)s[v] is a redex in our generalised sense.(Here, f and g are used for grouping purposes so that no confusion arises.) For example,(a)(b)[x](c)[y][z](d)z ;�(b)[x](c)[y]f((d)z)[z := a]g �(b)[x](c)[y](d)aWe show moreover, that the Church Rosser property holds for ;�2. An alternative to the generalised notion of �-reduction can be obtained by keepingthe old �-reduction and by reshu�ing the term in hand. So we can reshu�e the term(a)(b)[x](c)[y][z](d)z to (b)[x](c)[y](a)[z](d)z, in order to transform the bracketing struc-ture ff gf gg into f gf gf g, where all the redexes correspond to adjacent `f' and `g'. Inother words, Figure 1 can be redrawn using term reshu�ing in Figure 2. Such a reshuf-ing is more di�cult to describe in classical notation. I.e. it is hard to say what exactly3



(b) [x] (c) [y] (a) [z] (d) zFigure 2: Term reshu�ing in item notationhappened when ((�x:(�y:�z:zd)c)b)a, is reshu�ed to (�x:(�y:(�z :zd)a)c)b. This is an-other attractive feature of our item notation which we shall also describe in this paper(using TS) showing its correctness and well-behavedness. In particular, we show that forany term a, in TS(a) all the application items occur next to their matching abstractionitems. We show moreover, that if a;� b then (9c)[(TS(a) !� c) ^ TS(c) � TS(b)].The assumption above that none of x, y, z occur free in any of a, b, c, d was only for the sakeof clarity in our particular example. We are not of course restricted to terms with such trivialsubstitutions. As for variable renaming which results from reductions and substitution, wedecide not to let it blind us with details to the point that the argument of the paper becomesunclear. For this reason, we identify terms that di�er only in the name of bound variables(i.e. we take terms modulo �-conversion). For example [x]x � [y]y. Furthermore, we assumethe Barendregt variable convention which is formally stated as follows:De�nition 1.1 (BC Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Hence, we will not have (v)[v]v, but (v)[v0]v0 instead. We extend BC to meta-termslike f[v0]ag[v := b]. This avoids the danger of clash of variables, since we assume that no freevariable in b occurs bound in [v0]a. Moreover, the extended BC implies that v 6� v0.1.1 The item notation and visible redexesWe shall devise a novel notation in this paper where the order in an application is invertedand where the parentheses are grouped di�erently than those of the classical notation. Sothat, if I translates classical terms into our notation, item notation, then I(a b) is writtenas (I(b))I(a) and I(�v:a) is written as [v]I(a). Both (a) and [v] are called items.Example 1.2 I((�xy:xy)z) � (z)[x][y](y)x. The items are (z), [x], [y] and (y).Note how the items (z) and [x] occur next to each other showing the �-redex based on applying�x:body to z. In the classical calculus, the �x and z are separated by body which may bevery long. With our item notation, classical redexes and �-reduction take the following form:De�nition 1.3 (Classical redexes and �-reduction in item notation)In the item notation of the �-calculus, a classical redex is of the form (b)[v]a. We call the pair(b)[v], a reducible segment. Moreover, one-step �-reduction !�, is the least compatiblerelation generated out of the classical �-reduction axiom: (b)[v]a !� a[v := b]. Many step�-reduction !!� is the reexive transitive closure of !�.4



Example 1.4 In the classical term t � ((�x:(�y:�z:zd)c)b)a, we have the following redexes(the fact that neither y nor x appear as free variables in their respective scopes does notmatter here; this is just to keep the example simple and clear):1. (�y:�z:zd)c2. (�x:(�y:�z:zd)c)bWritten in item notation, t becomes (a)(b)[x](c)[y][z](d)z. Here, the two classical redexescorrespond to (�)[�]-pairs as follows:1. (�y:�z:zd)c corresponds to (c)[y]. We ignore [z](d)z as it is easily retrievable in itemnotation. It is the maximal subterm of t to the right of [y].2. (�x:(�y:�z:zd)c)b corresponds to (b)[x]. Again (c)[y][z](d)z is ignored for the same reasonas above.There is however a third redex which is not visible in the classical term. Namely, (�z:zd)a.Such a redex will only be visible after we have contracted the above two redexes (we will notdiscuss the order here). In fact, assume we contract the second redex in the �rst step, andthe �rst redex in the second step. I.e.Classical Notation Item Notation((�x:(�y:�z :zd)c)b)a !� (a)(b)[x](c)[y][z](d)z !�((�y:�z:zd)c)a !� (a)(c)[y][z](d)z !�(�z:zd)a !� ad (a)[z](d)z !� (d)aNow, even though all these redexes (i.e. the �rst, second and third) are needed in order to getthe normal form of t, only the �rst two were visible in the classical term at �rst sight. Thethird could only be seen once we have contracted the �rst two reductions. In item notation,the third redex (�z :zd)a corresponds to (a)[z] but the ( )-item and the [ ]-item are separatedby the segment (b)[x](c)[y]. By extending the notion of a redex and of �-reduction, we canmake this redex visible and we can contract it before the other redexes.The idea is simple; we generalise the notion of a reducible segment (b)[v] to a reduciblecouple being an item (b) and an item [v] separated by a segment s which is a well-balancedsegment. A well-balanced segment is a sequence of ( )- and [ ]-items which has the samestructure as a matching composite of opening and closing brackets, each ( )-item correspondingto an opening bracket and each [ ]-item corresponding to a closing bracket.1.2 The system �We construct the system � where a term is either a variable or is of the form s1s2 � � � snv forvariable v and items si, for 1 � i � n. An item is de�ned either as [v0] for variable v0 or as(a) for a being a term. The following de�nitions formalise our system �.De�nition 1.5 (Terms in item notation �)� We take V = fx; y; z; : : :g to be the set of variables and let v; v0; v00; v1; v2; : : : range overV. 5



� We write terms in item notation as: � ::= V j (�)� j [V]�. We use a; b; c; d; e; t; : : :to range over terms in item notation.De�nition 1.6 ((main) items, (main, reducible) segment, body, weight)� If a is a �-term and v 2 V then (a) and [v] are (application resp. abstraction) items.We use s; s1; si; � � � as meta-variables for items.� A concatenation of zero or more items is a segment. In [de Bruijn 93] an item iscalled a wagon and a segment is called a train. We use s; s1; s; : : : as meta-variables forsegments.� Each term a is the concatenation of zero or more items and a variable: a � s1s2 : : : snv.These items s1; s2; � � � ; sn are called themain items of a. We call the segment s1s2 � � � sn,body(a). Also, for later use, we de�ne body((a)) � a and body([v]) � ;.� Analogously, a segment s is a concatenation of zero or more items s � s1s2 � � � sn. Theseitems s1; s2; � � � ; sn are called the main items, this time of s.� A concatenation of main items is a main segment.� An important case of a segment is that of a reducible segment, being an applicationitem immediately followed by an abstraction item.� The weight of a �-segment s, weight(s), is the number of main items that composethe segment. The weight of a �-term a is the weight of body(a).Example 1.7 Let the �-term a be de�ned as [x]((x)[y]y)[z]z and let the segment s be[x]((x)[y]y)[z]. Then the main items of both a and s are [x], ((x)[y]y) and [z], being anabstraction, an application and an abstraction item respectively.With our BC of De�nition 1.1, we de�ne substitution as follows:De�nition 1.8 (Substitution in � with BC)If a; b are �-terms and v 2 V and if BC is assumed, then we de�ne the result of substitutingb for all the free occurrences of v in a as follows:a[v := b] =df 8>>><>>>: b if a � vv0 if a � v0 6� v(c[v := b])fd[v := b]g if a � (c)d[v0]c[v := b] if a � [v0]cWith this implicit substitution, �-reduction is given in De�nition 1.3. Furthermore, in orderto avoid confusion, we sometimes group terms using f and g. For example, in sfs0a[v := b]g,s0a[v := b] is grouped between f and g so that one understands that substitution takes placein s0a and not in s. It is obvious why we could not use ( ) instead of f g. It is to be notedmoreover that we do not face this problem if we use (�v) instead of [v] and (a�) instead of(a).
6



2 Generalising redexes and �-reductionAs we have argued above, a term can contain an application item (a) and an abstraction item[v] such that eventually the reduction based on the segment (a)[v] should take place. Thisreduction however, can only so far take place when (a) and [v] are not separated by other itemsor segments. This makes it di�cult to use the �-calculus as a basis for many applications whichdepend heavily on manipulating the order in which reduction and substitution take place in aterm. Based on this observation, we shall in this section introduce a general �-reduction whichenables the manipulation of the order of reduction and substitution. This general �-reductionwill be an extension of the known �-reduction in that not only the reducible segments resultin �ring reductions, but a more general notion which we call reducible couples.2.1 Extending redexes from segments to couplesWhy should we in the term (a)(b)[x](c)[y][z](d)z not allow that the reduction based on (a)[z]gets �red? There is no reason why we should not carry out some reductions before otherones. We ask the reader to convince himself of the fact that priority for �ring the redex(a)[z] does not a�ect the �nal result. If we look moreover at this term, we �nd that whatseparates (a) and [z] is a segment with a particular structure. The same holds for the segment(b)[v] separating (a) and [v0] in (a)(b)[v][v0]. These are the \well-balanced" structures as wediscussed before and will de�ne below. Basically, the idea is that when one desires to start a�-reduction on the basis of two items (application and abstraction) occurring in one segment,the matching of these items in question is the important thing, even when they are separatedby other items. I.e., the relevant question is whether they may together become a reduciblesegment after a number of �-steps. This depends solely on the structure of the intermediatesegment. If such an intermediate segment is well-balanced then the application item and theabstraction item match and �-reduction based on these two items may take place. Here isthe de�nition of well-balanced segments:De�nition 2.1 (well-balanced segments in �)� The empty segment ; is a well-balanced segment.� If s is a well-balanced segment, then (a)s[v] is a well-balanced segment.� The concatenation of well-balanced segments is a well-balanced segment.A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each application (or abstraction) item corresponding with an opening (resp.closing) bracket.Example 2.21. (c)[y] forms a well-balanced segment as it corresponds to f g.2. (b)[x] forms a well-balanced segment as it corresponds to f g.3. (b)[x](c)[y] forms a well-balanced segment as it corresponds to f gf g.4. (a)(b)[x](c)[y][z] forms a well-balanced segment as it corresponds to ff gf gg; the re-ducible couples in this segment are (b)[x], (c)[y] and (a)[z].7



Now we can easily de�ne what matching reducible couples are. Namely, they are an appli-cation item and an abstraction item separated by a well-balanced segment. The abstractionitem and the application item of the reducible couple are said to match and each of themis called a partner or a partnered item. The items in a segment that are not partnered arecalled bachelor items. The following de�nition summarizes all this:De�nition 2.3 (match, reducible couple, partner, partnered item, bachelor item, bachelorsegment)Let a be a �-term. Let s � s1 � � � sn be a segment occurring in a.� We say that the main items si and sj match in s, when 1 � i < j � n, si is anapplication item, sj is an abstraction item, and the sequence si+1 � � � sj�1 forms a well-balanced segment.� When si and sj match, we call sisj a reducible couple.� When si and sj match, we call both si and sj the partners in the reducible couple. Wealso say that si and sj are partnered items in s (or in a).� All the application (or abstraction) items sk that are not partnered in s, are calledbachelor application (resp. abstraction)items in s (or in a).� A segment s consisting of only bachelor items (in s), is called a bachelor segment.� The segment si1 � � � sim consisting of all bachelor main application (or abstraction) itemsof s is called the bachelor application (or abstraction) segment of sExample 2.4 Let s � [x][y](a)[z][x0](b)(c)(d)[y0 ][z0](e). Then:� (a) matches with [z], (d) matches with [y0] and (c) matches with [z0]. The segments(a)[z] and (d)[y0] are reducible segments (also reducible couples), and there is anotherreducible couple in s, viz. the couple of (c) and [z0].� (a), [z], (c), (d), [y0] and [z0], are the partnered main items of s. [x], [y], [x0], (b) and(e), are bachelor items.� [x][y] and [x0](b) are bachelor segments. (c)(d)[y0] and (c)(d)[y0][z0] are non-bachelorsegments, the latter also being a well-balanced segment.Remark 2.5 Note that a reducible segment is a reducible couple and that the applicationand abstraction items in a reducible couple are separated by zero or more reducible couples.2.2 Extending �-reduction and the Church Rosser theoremHaving argued above that �-reduction should not be restricted to the reducible segmentsbut may take into account other candidates, we can extend our notion of �-reduction in thisvein. That is to say, we may allow reducible couples to have the same \reduction rights" asreducible segments. That is, the �-reduction of De�nition 1.3 changes to the following:
8



De�nition 2.6 (Extended redexes and general �-reduction ;� in �)An extended redex if of the form (b)s[v]a, where s is well-balanced. We call (b)s[v]a a reduciblecouple. Moreover, one-step general �-reduction ;�, is the least compatible relation generatedout of the following axiom:(general �) (b)s[v]a;� sfa[v := b]g if s is well-balancedMany step general �-reduction ;;� is the reexive transitive closure of ;�.Example 2.7 Take Example 1.4. As (b)[x](c)[y] is a well-balanced segment, then (a)[z] is areducible couple andt � (a)(b)[x](c)[y][z](d)z ;�(b)[x](c)[y]f((d)z)[z := a]g �(b)[x](c)[y](d)aThe reducible couple (a)[z] also has a corresponding (\generalized") redex in the traditionalnotation, which will appear after two one-step �-reductions, leading to (�z :zd)a. With ourgeneralised one-step �-reduction we could reduce ((�x:(�y:�z:zd)c)b)a to (�x:(�y:ad)c)b. Thisreduction is di�cult to carry out in the classical �-calculus. The item notation enables a newand important sort of reduction which has not yet been studied in relation to the standard �-calculus up to date. We believe that this generalised reduction (introduced in [Nederpelt 73])can only be obtained tidily in a system formulated using our item notation. In fact, one is tocompare the bracketing structure of the classical term t of Example 1.4, with the bracketingstructure of the corresponding term in item notation:Example 2.8 The \bracketing structure" of the maximal main segment of t of Example 1.4,(that is, of ((�x:(�y:�z:��)c)b)a), is compatible with `f1 f2 f3 g2 g1 g3', where `fi' and `gi'match. In item notation however, t has the bracketing structure ff gf gg.We strongly believe that it is the item notation which enables us to extend reduction smoothlybeyond the existing !!�. Because a well-balanced segment may be empty, the general �-reduction rule presented above is really an extension of the classical �-reduction rule.Lemma 2.9 Let a; b be �-terms. If a !� b then a ;� b. Moreover, if a ;� b comes fromcontracting a reducible segment then a!� b.Proof: Obvious as a reducible segment is a reducible couple by Remark 2.5. 2The proof of the Church Rosser theorem is simple. The idea is to show that if a ;;� b thena =� b (where =� is the least equivalence relation closed under !� and ;;� the reexivetransitive closure of ;�) and to use the Church Rosser property for =�.Lemma 2.10 If a;� b then a =� b.Proof: It su�ces to consider the case a � s1(d)s[v]c where the contracted redex is basedon (d)[v], b � s1 sfc[v := d]g, and s is balanced (hence weight(s) is even). We shall provethe lemma by induction on weight(s).� Case weight(s) = 0 then obvious as ;� coincides with !� in this case.� Assume the property holds when weight(s) = 2n. Take s such that weight(s) = 2n+2.Now, s � (e)s0[v0]s00 where s0, s00 are well-balanced.9



{ As sfc[v := d]g ;� s0fs00fc[v := d]g[v0 := e]g, we get by IH and compatibility thatb =� s1 s0fs00fc[v := d]g[v0 := e]g � s1 s0 fs00[v0 := e]gfc[v := d][v0 := e]g.{ Moreover, a � s1(d)(e)s0[v0]s00[v]c;� s1(d)s0fs00[v]c[v0 := e]g �BCs1(d)s0fs00[v0 := e]g[v]fc[v0 := e]g � f . Hence by IH, a =� f .{ Now, f ;� s1s0fs00[v0 := e]gfc[v0 := e][v := d]g. But by BC, v, v0 62 FV (d)[FV (e).Hence, by IH and substitution, f =� s1s0fs00[v0 := e]gfc[v := d][v0 := e]g.Therefore a =� b. 2Corollary 2.11 If a;;� b then a =� b. 2Theorem 2.12 The general �-reduction is Church-Rosser. I.e. If a;;� b and a;;� c, thenthere exists d such that b;;� d and c;;� d.Proof: As a;;� b and a;;� c then by Corollary 2.11, a =� b and a =� c. Hence, b =� cand by the Church Rosser property for the classical lambda calculus, there exists d such thatb!!� d and c!!� d. But, by Lemma 2.9, a!!� b implies a;;� b. Hence the Church-Rossertheorem holds for the general �-reduction. 23 Term reshu�ingLet us go back to the de�nition of reducible couples. Recall that if s � s1 � � � sm for m > 1where s1sm is a reducible couple then s2 � � � sm�1 is a well-balanced segment, s1 � (a) is theabstraction item of the reducible couple and sm � [v] is its application item. Now, we canmove s1 in s so that it occurs adjacently to sm. That is, we may rewrite s as s2 � � � sm�1s1sm.Example 3.1 In our item notation, the term (a)(b)[x](c)[y][z](d)z can be easily rewritten as(b)[x](c)[y](a)[z](d)z by moving the item (a) to the right. Hence, we can rewrite (or reshu�e)a term so that all application items stand next to their matching abstraction items. Thismeans that we can keep the old �-axiom and we can contract redexes in any order. Such anaction of reshu�ing is not easy to describe in the classical notation. That is, it is di�cultto describe how ((�x:(�y:�z:zd)c)b)a, is rewritten as (�x:(�y:(�z :zd)a)c)b. This is anotheradvantage of our item notation.Note furthermore that in �, the shu�ing is not problematic due to the Barendregt Conventionwhich means that no free variable will become unnecessarily bound after reshu�ing due tothe fact that names of bound and free variables are distinct.Lemma 3.2 If v� is a free occurrence of v in ss1 a, then v� is free in s1s a.Proof: By BC as [v] does not occur in ss1a. 2Example 3.3 Note that in Example 3.1, reshu�ing does not a�ect the \meaning" of theterm. In fact, in t � (a)(b)[x](c)[y][z](d)z, the free variable a cannot be captured by [x] or[y]. Moreover, t is equivalent, semantically and procedurally, to (b)[x](c)[y](a)[z](d)z.That is, the application items of reducible couples can occupy di�erent positions in a term,without disturbing the meaning of the term, both semantically and procedurally. We callthis process of moving application items of reducible couples in a term to occupy positionsadjacent to their abstraction partners, term reshu�ing. This term reshu�ing should be suchthat all the application items of well-balanced segments in a term are shifted to the right untilthey meet their partners. Before we de�ne term reshu�ing, we need to understand better thestructure of terms. Therefore the following section.10



3.1 Partitioning terms into bachelor and well-balanced segmentsWith De�nition 2.3 and Example 2.4, we may categorize the main items of a term t intodi�erent classes:1. The \partnered" items (i.e. the application and abstraction items which are partners,hence \coupled" to a matching one).2. The \bachelors" (i.e. the bachelor abstraction items and bachelor application items).Lemma 3.4 Let s be the body of a term a. Then the following holds:1. Each bachelor main abstraction item in s precedes each bachelor main application itemin s.2. The removal from s of all bachelor main items, leaves behind a well-balanced segment.3. The removal from s of all main reducible couples, leaves behind [v1] : : : [vn](a1) : : : (am),the segment consisting of all bachelor main abstraction and application items.4. If s � s1(b)s2[v]s3 where [v] and (b) match, then s2 is well-balanced.Proof: 1 is by induction on weight(s0) for s � s0[v]s00 and [v] bachelor in s. 2 and 3 areby induction on weight(s). 4 is by induction on weight(s2). 2Note that we have assumed ; well-balanced. We assume it moreover non-bachelor.Corollary 3.5 For each non-empty segment s, there is a unique partitioning in segmentss0; s1; � � � ; sn, such that1. s � s0 s1 � � � sn,2. For all 0 � i � n, si is well-balanced in s for even i and si is bachelor in s for odd i.3. If si and sj for 0 � i; j � n are bachelor abstraction resp. application segments, then siprecedes sj in s.4. If i � 1 then s2i 6� ;. 2This is actually a very nice corollary. It tells us a lot about the structure of our terms.Example 3.6 s � [x][y](a)[z][x0](b)(c)(d)[y0 ][z0](e), has the following partitioning:� well-balanced segment s0 � ;� bachelor segment s1 � [x][y],� well-balanced segment s2 � (a)[z],� bachelor segment s3 � [x0](b),� well-balanced segment s4 � (c)(d)[y0][z0],� bachelor segment s5 � (e). 11



3.2 The reshu�ing procedureDe�nition 3.7 TS and T are de�ned mutually recursively such that:TS(;) =df ;TS(sv) =df TS(s)vTS(s1 � � � sn) =df TS(s1) � � � TS(sn) if s1 � � � sn is bachelorTS((a)) =df (TS(a))TS([v]) =df [v]TS(s) =df T (;; s) if s is well-balancedTS(s0 � � � sn) =df TS(s0) � � � TS(sn) If s0 � � � sn, is the uniquepartitioning of Corollary 3.5T (s(a); [v]s0) =df (a)[v]T (s; s0)T (s; (a)s0) =df T (s(TS(a)); s0)T (;; ;) =df ;Note that in this de�nition, we use s bachelor to mean s bachelor in s.Lemma 3.81. If s is well-balanced, then T (s1; s s2) � TS(s)T (s1; s2).2. If s is well-balanced and none of its binding variables are free in a, then TS((a)s[v]s0) �TS(s(a)[v]s0).3. If s contains no items which are partnered in a then TS(sa) � TS(s)TS(a).4. If s is well-balanced or is bachelor in sa then TS(sa) � TS(s)TS(a).Proof: 1: by induction on weight(s). Case weight(s) = 0 then obvious. Case s �(a)s0[v]s00 then s0 and s00 are well-balanced andT (s1; (a)s0[v]s00 s2) � T (s1(TS(a)); s0[v]s00 s2) �IHTS(s0)T (s1(TS(a)); [v]s00 s2) � TS(s0)(TS(a))[v]T (s1; s00 s2) �IHTS(s0)(TS(a))[v]TS(s00)T (s1; s2) � TS(s0)T ((TS(a)); [v]s00)T (s1; s2) �IHT ((TS(a)); s0[v]s00)T (s1; s2) � TS((a)s0[v]s00)T (s1; s2)2: using 1. 3: let t � s0 � � � snv and s � s00 � � � s0m be partitionings. Use cases on s0 beingempty or not and on s0m being bachelor or well-balanced. 4: This is a corollary of 3 above. 2The next lemma shows that TS(a) changes all reducible couples of a to reducible segments.Lemma 3.9 For every subterm b of a term a, the following holds:1. TS(b) is well-de�ned.2. If s � (c)s0[v] is a subsegment of b and (c) matches [v], thenTS(s) � TS(s0)(TS(c))[v].3. If s � s1 � � � sn is a bachelor subsegment of b, thenTS(s) � TS(s1) � � � TS(sn) is a bachelor subsegment of TS(b).4. If s is a subsegment of b which is well-balanced, then TS(s) is well-balanced.12



Proof: By induction on a.� Case a � v then a is the unique subterm of a and all 1 � � � 4 hold.� Assume a � sc where IH holds for body(s) and for c. Let b be a subterm of a. If b is asubterm of body(s) or of c then use IH. If b � a then:{ Case s is bachelor then TS(a) �Lemma 3:8 TS(s)TS(c). Here all 1 � � � 4 hold by IHon body(s) and c.{ Case s � (d) matches [v] in a. I.e. a � (d)s[v]e thenTS(a) �Lemma 3:8 TS(s)(TS(d))[v]TS(e). Now use IH to show 1 � � � 4. 2Lemma 3.10 For all variables v and terms a; b we have:TS(a) � TS(TS(a)) and TS(a[v := b]) � TS(TS(a)[v := TS(b)]).Proof: By induction on a we show that for all subterms c of a, TS(c) � TS(TS(c)) andTS(c[v := b]) � TS(TS(c)[v := TS(b)]). 2Note that if a !� b and if all the reducible couples in a are reducible segments, then itis not necessary that all the reducible couples of b are reducible segments. Furthermore, ifa ;� b then it is not necessary that TS(a) ;� TS(b) (nor even TS(a) !� TS(b)). Forexample, d � (a)(b)[x]([y]y)[z]z ;� (a)(b)[x][y]y but TS(d) � d 6;� (b)[x](a)[y]y. Followingthis remark, we show that in a sense, term reshu�ing preserves �-reduction.Lemma 3.11 If a; b 2 � and a ;� b then (9c)[(TS(a) !� c) ^ TS(c) � TS(b)]. In otherwords, the following diagram commutes:TS(a)a c?TS(c) � TS(b)b!� ;�? ?TS TSProof: By induction on the general ;�. As the compatibility case is easy, we will onlyconsider the case where a � s0(d)s[v]e ;� b � s0sfe[v := d]g. Here, we use induction onthe number n of bachelor application items of s0 that are partnered in e. Recall that s iswell-balanced.� Case n = 0 thenTS(s0(d)s[v]e) �Lemma 3:8 (4)TS(s0)TS((d)s[v])TS(e) �Lemma 3:8 (2;4)TS(s0)TS(s)(TS(d))[v]TS(e) !�TS(s0)TS(s)fTS(e)[v := TS(d)]g � c:TS(c) �Lemmas 3:9; 3:10; 3:8 (4)TS(s0)TS(s)TS(TS(e)[v := TS(d)]) �Lemma 3:10TS(s0)TS(s)TS(e[v := d]) �TS(s0 s(e[v := d])) 13



� Assume the property holds for n and let us show it for the case where s0 contains n+ 1application items which match abstraction items of e. Let (c) be the leftmost suchapplication item of s0. Take s0 � s01(c)s001 and e � s02[v0]f where (c) matches [v0]. ByLemma 3.4, (c)s001(d)s[v]s02[v0] is well-balanced. Moreover, no item of s01 has a partner in(c)s001(d)s[v]e. As s001(d)s[v]s02(c)[v0]f ;� s001sfs02(c)[v0]f [v := d]g, we �nd by IH, g suchthatTS(s001(d)s[v]s02(c)[v0]f)!� g ^ TS(g) � TS(s001sfs02(c)[v0]f [v := d]g).Now, TS(s01)g is the wanted term because:TS(a) �Lemma 3:8 (4) TS(s01)TS((c)s001(d)s[v]s02[v0]f) �Lemma 3:8 (2)TS(s01)TS(s001(d)s[v]s02(c)[v0]f)!� TS(s01)gand TS(TS(s01)g) �Lemma 3:10TS(s01)TS(s001sfs02(c)[v0]f [v := d]g) �Lemma 3:8 (2); BCTS(s01)TS((c)s001sfs02[v := d]g[v0]ff [v := d]g) �Lemma 3:8 (4)TS(s01(c)s001sfs02[v0]f [v := d]g) � TS(b). 2Corollary 3.12 If a;;� b then there exists a0; a1 � � � an such that:[(a � a0)^ (TS(a0)!� a1)^ (TS(a1)!� a2)^ � � � ^ (TS(an�1)!� an)^ (TS(an) � TS(b))].Proof: By induction on ;;�.� Case a;� b use Lemma 3.11.� Case a;;� a then obvious (n = 1 ^ a0 � a ^ a1 � TS(a)).� Case a;;� c ^ c;;� b, then by IH, there exists a0; a1; � � � ; an; b0; b1; � � � bm such that(a � a0) ^ (TS(a0) !� a1) ^ (TS(a1) !� a2) ^ � � � ^ (TS(an�1) !� an) ^ (TS(an) �TS(c)) ^ (c � b0) ^ (TS(b0) !� b1) ^ (TS(b1) !� b2) ^ � � � ^ (TS(bm�1) !� bm) ^(TS(bm) � TS(b)). Hence, (a � a0) ^ (TS(a0) !� a1) ^ � � � ^ (TS(an�1) !� an) ^(TS(an)!� b1) ^ � � � ^ (TS(bm�1)!� bm) ^ (TS(bm) � TS(b)).� The compatibility case is easy.Note that in the basic case and the reexive case we get n = 1 for sure. In the transitivecase, this may not be the case. For example, a � [x]([y][z]x)[u](x)(x)u ;;� b � [x](x)[y]xand does not satisfy Lemma 3.11. There are however a0; a1 and a2 such that a0 � a, a1 �[x](x)(x)[y][z]x and a2 � b such that TS(a0) !� a1 ^ TS(a1) !� a2 and TS(a2) � TS(b).24 ConclusionClassical reduction is in certain respects unattractive, not only because we should be able todiscuss the existing redexes in a term at �rst sight, but also for at least two more reasons:1. It may be the case that in some applications, we may want to contract a certain redexbefore other ones. This is the case for example in lazy evaluation where we may beinterested in freezing some redexes but in working with the term as usual. That is forexample, in the term t � ((�x:(�y:�z:zd)c)b)a, we may want to substitute a for z in(�x:(�y:zd)c)b before c has been substituted for y and b has been substituted for x.I.e. we need to carry out the reduction which substitutes a for z while the other tworeductions which substitute c and b for y and x respectively are frozen.14



2. Having a term like t above, we want to be able to discuss its needed redexes for reasonsthat are explained in [BKKS 87]. In fact, the needed redexes in a term a as introducedin that paper are those redexes that are contracted in every reduction of a to normalform. Now, [BKKS 87] provides many results which are important especially for theimplementor in that it frees him from having to stick to either an ine�cient but termi-nating normal order strategy, or an e�cient but non terminating applicative strategy.Our approach enhances the work of [BKKS 87].In this paper, we presented a notation which enables us to extend the classical notion of aredex and of �-reduction. This extension helps us to see more needed redexes than in classicalcalculus. The notation moreover allows us to reshu�e the term in hand so that more redexescan become visible and be contracted even using the old �-reduction. Both the generalisedreduction and the reshu�ing of the term are di�cult to describe in the classical notation.Another attractive feature of our notation, is the ability to partition terms into bachelorand well-balanced segments (see Corollary 3.5). Such a partitioning, we believe, can play animportant role in the study of reduction strategies. This is under investigation at present.The notation presented in this paper has further advantages than generalising reduction andterm reshu�ing. These advantages are studied in our articles mentioned in the bibliography.Of these advantages however, we mention the ability to describe substitution explicitly as in[KN 93] and of generalising type systems as in [KN 94]. There is moreover the advantageof being able to make normal order reduction more e�cient than in the classical calculus.The reason for this being that when searching for the leftmost outermost redex in a term, weneed to make less recursive calls in item notation than in classical notation because in itemnotation, a term has a more linear structure. This and other advantages are investigatedfurther in [KN 9z].Finally, our discussion of reduction in this paper has been in terms of Curried functions. Onecould also explain the main idea using multi-argument functions and Currying/unCurrying.More speci�cally, one could transform an application by:(�x:�y:�z:e)abc = (�<x;y;z>:e) < a; b; c >= (�<z;x;y>:e) < c; a; b >= (�z:�x:�y:e)cab:This idea is based on isomorphisms (discussed in [R 91]) such as:A! B ! C = A�B ! C = B �A! C = B ! A! COf course, it would be nice to re-explore our approach in terms of multi-argument functions.This will also lead to the concept of simultaneous substitution which deserves attention.References[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction andspine strategies for the �-calculus, Information and Computation 75 (3), 1191-231, 1987.[de Bruijn 93] Bruijn, N.G. de, Algorithmic de�nition of lambda-typed lambda calculus, in Huet, G.and Plotkin, G. eds. Logical Environments, 131-146, Cambridge University Press, 1993.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-nal of Foundations of Computer Science 4 (3), 197-240, 1993.[KN 94] Kamareddine, F. and Nederpelt, R.P., A uni�ed approach to type theory through a re�ned�-calculus, Theoretical Computer Science 136, 183-216, 1994.15



[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the �-calculus, in preparation.[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda struc-tured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics andComputer Science, 1973, to appear in Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C.: SelectedPapers on Automath, North Holland, 1994.[R 91] Rittri, M., Using types as search keys in function libraries, Journal of Functional Programming1, 1, 71-90, 1991.

16


