
A Reection on Russell's Rami�ed Types and Kripke'sHierarchy of Truths�Fairouz KamareddineDepartment of Computing ScienceUniversity of Glasgow17 Lilybank Gardens, Glasgow G12 8QQ, Scotlande-mail fairouz@dcs.gla.ac.ukTwan LaanyDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 513, 5600 MB Eindhoven, The Netherlandse-mail laan@win.tue.nlApril 8, 1997AbstractBoth in Kripke's Theory of Truth ktt [8] and Russell's Rami�ed Type Theory rtt[16, 9] we are confronted with some hierarchy. In rtt, we have a double hierarchy oforders and types. That is, the class of propositions is divided into di�erent orders wherea propositional function can only depend on objects of lower orders and types. Kripke onthe other hand, has a ladder of languages where the truth of a proposition in languageLn can only be made in Lm where m > n. Kripke �nds a �xed point for his hierarchy(something Russell does not attempt to do). We investigate in this paper the similaritiesof both hierarchies: At level n of ktt the truth or falsehood of all order-n-propositions ofrtt can be established. Moreover, there are order-n-propositions that get a truth valueat an earlier stage in ktt. Furthermore, we show that rtt is more restrictive than ktt,as some type restrictions are not needed in ktt and more formulas can be expressed inthe latter.Looking back at the double hierarchy of Russell, Ramsey [11], and Hilbert and Acker-mann [7] considered the orders to cause the restrictiveness, and therefore removed them.This removal resulted in Church's Simple Type Theory stt [1]. We show however thatorders in rtt correspond to levels of truth in ktt. Hence, ktt can be regarded as thedual of stt where types have been removed and orders are maintained. As rtt is morerestrictive than ktt, we can conclude that it is the combination of types and orders thatwas the restrictive factor in rtt.�Journal of Interest Group in Pure and Applied Logic, 1995yLaan is supported by the Co-operation Centre Tilburg and Eindhoven Universities. He is grateful to theDepartment of Computing Science, University of Glasgow, for their hospitality, and to the Dutch Foundationfor Scienti�c Reasearch (NWO), for their �nancial support, during the preparation of this article.1

1 IntroductionThe role of Type Theory in Logic and Mathematics has always been a restrictive one. The needfor restrictions was realised at the beginning of this century, when Bertrand Russell showedthat Frege's \Begri�schrift" [5], a formalisation of logic, was inconsistent1. Russell consideredself-application to be the cause of the contradictions, and hence excluded all possibilities ofself-application in his Theory of Types [13, 16].As paradoxical sentences in Natural Language play a role similar to that of the paradoxes inLogic and Mathematics, Type Theory eliminated the paradoxical sentences (see for instance[10]). Paradoxes moreover have been classi�ed in two categories (see [11]): the logical andthe semantical. The famous Russell's paradox is logical whereas the famous liar's paradox issemantical. The semantical paradoxes usually involve the truth predicate T which gives thetruth value of a proposition. Tarski [14] shows that truth is unde�nable and that having thetruth predicate inside the language leads to contradictions. For this reason, he distinguishesbetween (object-) language and meta-language and allows the truth predicate only at themeta-level. Now, to talk about the truth of sentences in the meta-language, one needs ameta-meta-language and so on. Kripke [8], however, considers Russell's Theory of Types andthe Theory of Truth by Tarski to be too restrictive for a proper formalisation of NaturalLanguage and presents a type-free theory where the truth predicate belongs to the language,in which nevertheless the known paradoxes do not occur. Kripke's idea is to follow a certainhierarchy as with Russell but to take the �xed point of his hierarchy of languages to reach alanguage which has its own truth predicate.We start this paper by presenting an overview of both Russell's system (in Section 2, using aformalisation presented in [9]) and Kripke's (in Section 3). In Section 4 we carefully compareboth theories. As Russell's system is said to be more restrictive than Kripke's, this comparisonis carried out by coding Russell's expressions in Kripke's theory. The stronger restrictionsin the Rami�ed Type Theory can be seen clearly: at several parts in the de�nition of theembedding the reader will notice that some type-theoretic properties of Russell's expressionsare mentioned, but not used in this de�nition. We show that the embedding is conservative,i.e. that truth in Russell's theory and in Kripke's theory are the same, as far as formulasexpressible in Russell's (more restrictive) system are concerned.2 The Rami�ed Theory of Types rttIn this section we give a short, formal description of Russell's Rami�ed Theory of Types(rtt). Our formalisation of Russell's theory is the �rst of its kind and is worth attention.This formalisation is both faithful to Russell's original informal presentation and compatiblewith the present formulations of type theories. The basic aim of rtt is to exclude the logicalparadoxes from logic by eliminating all self-references. An extended philosophical motivationfor this theory can be found in \Principia Mathematica" [16], pages 38{55. We will not gointo the full details of the formalisation of Russell's theory (these details can be found in [9],the presentation by Russell himself in \Principia" is informal).In Subsection 2a we introduce propositional functions, the logical formulas of the \naive" sys-1An English translation of Russell's letter to Frege in which this inconsistency is described can be found in[6] 2

tem of logic. In Subsection 2b we present a rule to assign a type to some of these propositionalfunctions. The propositional functions that lead to the logical paradoxes are, of course, nottypeable. In Subsection 2c substitution for rtt is discussed. This part is rather technical, butwe need it in the proof of Lemma 4.8, which is essential in the proof of one of our fundamentalresults (Theorem 4.10). That is, Lemma 4.8 helps us in showing that ktt can be regardedas a system based on rtt of which the types and not the orders have been removed.2a Propositional FunctionsIn this section we shall describe the set of propositions and propositional functions whichWhitehead and Russell use in \Principia". We give a modernised, formal de�nition whichcorresponds to the description in \Principia".At the basis of the system of our formalization there is� an in�nite set A of individual-symbols;� an in�nite set V of variables;� an in�nite set R of relation-symbols together with a map a : R ! IN+ (indicating thearity of each relation-symbol).0-ary relations are not explicitly used in \Principia" but could be added without problems.Since functions are relations in Principia, we will not introduce a special set of function sym-bols.We assume that fa1; a2; : : :g � A; fx; x1; x2; : : : ; y; y1; : : : ; z; z1; : : :g � V; fR; R1; : : : ; S; S1; : : :g �R. We will use the letters x; y; z; x1; : : : as meta-variables over V, and R;R1; : : : as meta-variables over R. Note that variables are written in typewriter style and that meta-variablesare written in italics: x denotes one, �xed object in V whilst x denotes an arbitrary object ofV.We assume that there is an order (e.g. alphabetical) on the collection V, and write x < y ifthe variable x is ordered before the variable y. In particular, we assume thatx < x1 < : : : < y < y1 < : : : < z < z1 < : : :We also have the logical symbols _, : and 8 in our alphabet, and the non-logical symbols:parentheses and the comma.De�nition 2.1 (Propositional functions) We de�ne a collection F of propositional func-tions, and for each element f of F we simultaneously de�ne the collection fv(f) of freevariables of f :1. If R 2 R and i1; : : : ; ia(R) 2 A [V then R(i1; : : : ; ia(R)) 2 F .fv(R(i1; : : : ; ia(R))) def= fi1; : : : ; ia(R)g \ V;2. If z 2 V, n 2 IN and k1; : : : ; kn 2 A [V [F , then z(k1; : : : ; kn) 2 F .fv(z(k1; : : : ; kn)) def= fz; k1; : : : ; kng \ V.If n = 0, we write z() so as to distinguish the propositional function z() from the variablez;22It is important to note that a variable is not a propositional function. See for instance [12], Chapter viii:\The variable", p.94 of the 7th impression. 3

3. If f; g 2 F then f _ g 2 F and :f 2 F . fv(f _ g) def= fv(f) [fv(g); fv(:f) def= fv(f);4. If f 2 F and x 2 fv(f) then 8x[f] 2 F . fv(8x[f]) = fv(f) n fxg.5. All propositional functions can be constructed by using the rules 1, 2, 3 and 4 above.We use the letters f; g; h as meta-variables over F .Convention 2.2 (Variable Convention) We make the usual convention that a variablex in a propositional function f that is bound by the quanti�er 8 does not occur as a freevariable in f . Moreover, di�erent bound variables in f have di�erent names.A propositional function f must be seen as a proposition in which some parts (the free vari-ables) have been left undetermined. It will turn into a proposition as soon as we assign valuesto all the free variables occurring in it. In this light, a proposition can be seen as a degeneratedpropositional function (with 0 free variables).It will be clear now what the intuition behind propositional function of the formR(i1; : : : ; ia(R)),f _ g, :f and 8x[f] is. The intuition behind propositional functions of the second kind isnot so obvious. z(k1; : : : ; kn) is a propositional function of higher order: z is a variable for apropositional function with n free variables; the argument list k1; : : : ; kn indicates what shouldbe substituted3 for these free variables as soon as one assigns such a propositional function toz.Notice that there are propositional functions of the form z(k1; : : : ; kn) (where z 2 V) but thatexpressions of the form f(k1; : : : ; kn), where f 2 F , are not propositional functions. Evensubstituting f for z in z(k1; : : : ; kn) does not lead to f(k1; : : : ; kn), as the notion of substi-tution in rtt will appear to be quite di�erent from the usual notion of substitution in �rstorder logic (see Subsection 2c for more details).Example 2.3 Here are some higher-order propositional functions from ordinary mathemat-ics.� The propositional functions z(x) and z(y) in the de�nition of Leibniz-equality:8z[z(x)$ z(y)]� The propositional functions z(0), z(x) and z(y) in the formulation of complete induction:[z(0)! (8x8y[z(x)! (S(x; y)! z(y))])]! 8x[z(x)]� z() in the formulation of the law of the excluded middle:8z[z() _ :z()]3In the Principia, it is not made clear how we should carry out such substitutions. We must depend on ourintuition and on the way in which substitution is used in the Principia. Nevertheless, it is hard and elaborateto give a proper de�nition of substitution. We present a short overview of this de�nition in Subsection 2c; fora motivation of this de�nition and its relation to �-reduction in the �-calculus the reader should consult [9].
4

2b Rami�ed TypesNot all propositional functions should be allowed in our language. For instance, the expression:x(x) is a perfectly legal element of F , nevertheless, it is the propositional function that makesit possible to derive the Russell Paradox. Therefore, types are introduced.De�nition 2.4 (Rami�ed Types)1. �0 is a rami�ed type (0 is called the order of this type);2. If t1; : : : ; tn are rami�ed types of orders a1; : : : ; an respectively, and a > max(a1; : : : ; an),then (t1; : : : ; tn)a is a rami�ed type of order a;3. All rami�ed types can be constructed using the rules 1 and 2.�0 represents the type of the individuals, and one can think of (t1; : : : ; tn)a as being the typeof the propositional functions with n free variables, say x1; : : : ; xn, such that if we assignvalues k1 of type t1 to x1, . . . , kn of type tn to xn, then we obtain a proposition. The type()a stands for the type of propositions of order a.Russell strictly divides his propositional functions in orders. For instance, both 8p[p()_:p()]and R(a) are propositions, but they are of di�erent level: The earlier one presumes a fullcollection of propositions, hence (according to Russell) it cannot belong to the same collectionof propositions as the propositions p over which it quanti�es (among which R(a)). This madeRussell decide to let 8p[p() _ :p()] belong to a type of a higher order (level) than the orderof R(a).This can already be seen in the de�nition of rami�ed types: (t1; : : : ; tn)a can only be a typeif a is strictly greater than each of the orders of the tis.De�nition 2.5 Let x1; : : : ; xn be a list of distinct variables, and t1; : : : ; tn be a list of rami�edtypes. We call x1:t1; : : : ; xn:tn a context and call fx1; : : : ; xng its domain.We write � ` f : t to express that f 2 F has type t in context �, and extend the variableconvention to contexts: If x is bound in f , then x does not occur in the domain of �.We use �;� to range over contexts and t1; t2; : : : to range over types.We now present a set of typing rules for rtt. These rules are derived from and equivalentto the rules in [9], which are as close as possible to Russell's original ideas. We change ournotation for propositional functions slightly: Instead of 8x[f] we write 8x:t[f], where t is somerami�ed type.De�nition 2.6 (Typing Rules for rtt)� If c 2 A, then � ` c : �0 for any context �;� If f 2 F , and x1 < : : : < xn are the free variables of f , and t1; : : : ; tn are types suchthat xi:ti 2 �, then � ` f : (t1; : : : ; tn)a if and only if{ If f � R(i1; : : : ; ia(R)) then ti = �0 for all i, and a = 1 (if n > 0) or a = 0 (if n = 0);{ If f � z(k1; : : : ; km) then there are u1; : : : ; um such that z:(u1; : : : ; um)a�1 2 �,and � ` ki:ui for all ki 2 A [F , and ki:ui 2 � for all ki 2 V;{ If f � f1 _ f2 then there are ua11 ; ua22 such that � ` fi : uaii and a = max(a1; a2);if f � :f 0 then � ` f 0 : (t1; : : : ; tn)a.5

{ If f � 8x:t0[f 0] then there is j such that �; x:t0 ` f 0 : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a.Example 2.7 :x(x) is not typeable in any context �.Assume, we would have � ` :x(x) : t.Then t must be of the form (u)a, with x:u 2 �, as :x(x) has one free variable.This implies � ` x(x) : (u)a, hence by Unicity of Types below, u � (u0)a�1, with x : u0 2 �.As � is a context, we have u � u0, hence u � (u)a�1, which is impossible.An important result is the following (a proof can be found in [9]):Theorem 2.8 (Unicity of Types) If � ` f : t and � ` f : u then t � u. 22c Substitution in rttSubstitution in rtt is not simply a syntactic operation of replacing a variable by an object,as is usual in �rst-order logic. This can be understood if we read the interpretation of thepropositional function z(k1; : : : ; km). Substituting a propositional function f for the variablez should have as a result f , in which k1; : : : ; km are substituted for the free variables in f .So a substitution may result in a new substitution (and we may wonder whether this processwill ever terminate). Below, we give a formal de�nition of substitution in rtt (needed inthe proof of the Substitution Lemma 4.8). For examples and an extended motivation of thede�nition the reader may consult [9].De�nition 2.9 Let f 2 F , � ` f : t, k1; : : : ; km 2 A[V [F and x1; : : : ; xn 2 V such that� If ki 2 A then xi:�0 2 �;� If ki 2 V then there is t such that both ki:t 2 � and xi:t 2 �;� If ki 2 F then there is t such that � ` ki:t and xi:t 2 �.We de�ne f [x1; : : : ; xm:=k1; : : : ; km], the (simultaneous) substitution of k1; : : : ; km for x1; : : : ; xmin f (shorthand f [xi:=ki] if no confusion arises) by a double induction on the order and struc-ture of f :� f � R(i1; : : : ; ia(R)). De�ne i0j def= (k` if ij � x`ij if ij 62 fx1; : : : ; xmgf [xi:=ki] def= R(i01; : : : ; i0a(R)).� f � z(h1; : : : ; hn). We distinguish two cases:1. z 62 fx1; : : : ; xmg. De�ne h0j def= (k` if hj � x`hj if hj 62 fx1; : : : ; xmgf [xi:=ki] def= z(h01; : : : ; h0n).2. z 2 fx1; : : : ; xmg, assume z � xp. De�ne h0j def= (k` if hj � x`hj if hj 62 fx1; : : : ; xmgNotice that, as z, xp and kp have the same type, kp is a propositional function withn free variables, say y1 < : : : < yn. Now: f [xi:=ki] def= kp[y1; : : : ; yn:=h01; : : : ; h0n].Note that the object on the right is a correct substitution (with respect to thetypes of the yj and the h0j) and has already been de�ned, as kp has the same orderas z, which is exactly one less than the order of z(h1; : : : ; hn).6

� f � f1 _ f2. Then f [xi:=ki] def= f1[xi:=ki] _ f2[xi:=ki].� f � :f 0. Then f [xi:=ki] def= :f 0[xi:=ki].� f � 8x:t[f 0]. Then f [xi:=ki] def= 8x:t[f 0[xi:=ki]] (we assume that x 62 fx1; : : : ; xmg).Substitution in rtt is quite di�erent from usual notions of substitution in, for example, �rstorder logic or �-calculus. For a good understanding of the rest of this article it is essential tosee these di�erences.There is no de�nition of substitution in \Principia". The above de�nition is based on whathappens in \Principia" when a substition seems to take place. The hardest part of the def-inition is a substitution of the form z(h1; : : : ; hn)[x1; : : : ; xm:=k1; : : : ; km] where z is amongthe xi: say, z � xp. We can assume that kp is a propositional function with n free variables,say, y1 < : : : < yn.According to the de�nition, we �rst carry out the substitutions that have nothing to do withz (the de�nition of the h0js). This part is similar to a usual �rst-order substitution.Now we must substitute kp for z in z(h01; : : : ; h0n). The intuition on the propositional functionz(h01; : : : ; h0n), that was explained at the end of Subsection 2a, prescribes that the argumentsh01; : : : ; h0n must be substituted for the free variables y1; : : : ; yn of kp, as soon as kp is sub-stituted for z. This leads to a new substitution kp[y1; : : : ; yn:=h01; : : : ; h0n]. As the order ofkp is lower than the order of z(h1; : : : ; hp), we may assume that the �nal result of this newsubstitution has already been de�ned.To understand the notion better it may be helpful to treat the substitution z(h1; : : : ; hn)[xi:=ki]�rst as if it was a usual, �rst order substitution, and write down kp(h01; : : : ; h0n) as an infor-mal, intermediate result. Then the substitution of the h0j for the yj in kp can be seen as thecontraction of the n �-redexes in the �-term (�y1 � � � yn:kp)h01 � � � h0n. Notice, however, thatkp(h01; : : : ; h0n) is not a propositional function (see the explanation in Subsection 2a). Moreon the relation between substitution in rtt and �-reduction in �-calculus can be found in [9].We give some examples of rtt-style substitutions in order to make the reader more familiarwith this notion.Example 2.10� R(x1; x2)[x1:=a1] = R(a1; x2). On �rst order level, rtt-substitution is the same as in�rst order logic.� z(R(x); y)[x:=a] = z(R(x); y). Note that x is not a free variable of z(R(x); y)! Thesubstitution does not \continue" in the arguments of z(R(x); y): z(R(x); y)[x:=a] 6=z(R(x)[x:=a]; y).� z(a)[z:=R(x)] = R(x)[x:=a] = R(a).� z1(R(x))[z1:=z2(a)] = z2(a)[z2:=R(x)] = R(x)[x:=a] = R(a).� z1(x2; R(x1))[x2; z1:=a; z2(y)] = z2(y)[y; z2:=a; R(x1)] = R(x1)[x1:=a] = R(a). Thereader might want to make some informal, intermediate steps in this substitution (asexplained above): z1(x2; R(x1))[x2; z1:=a; z2(y)] �rst leads to (z2(y))(a; R(x1)) as an in-termediate result, and then to z2(y)[y; z2:=a; R(x1)].Similarly, this new substitution �rst leads to (R(x1))(a)[z2:=R(x1)] and then to R(x1)[x1:=a].7

We will need the following results about substitutions. They are proved in [9].Lemma 2.11 The order of f is greater than or equal to the order of the substitution f [xi:=ki].2Lemma 2.12 fv(f [xi:=gi]) = (fv(f) n fx1; : : : ; xng) [fgijgi 2 V and xi 2 fv(f)g. 22d Logical Truth for rtt in Tarski's StyleWith substitution properly de�ned, we can give a de�nition of logical truth in Tarski-stylefor rtt:De�nition 2.13 (Logical Truth for rtt) Let f 2 F and assume fv(f) = ;. We de�nertt j= f :� If (a1; : : : ; am) 2 R then rtt j= R(a1; : : : ; am), for all individuals a1; : : : ; am.� If rtt j= f1 or rtt j= f2 then rtt j= f1 _ f2.� If not rtt j= f , then rtt j= :f .� If f � 8x:t[h] and for all g of type t, rtt j= h[x:=g]4, then rtt j= 8x:t[h].Remark 2.14 At �rst sight, the reader might expect a clause for the case f � z(k1; : : : ; km)in the above de�nition. However, fv(z(k1; : : : ; km)) � fzg, so fv(z(k1; : : : ; km)) 6= ;. Propo-sitional functions of the form z(k1; : : : ; km) only occur in the above de�nition in a form inwhich the variable z has been bound by a quanti�er. As was noted earlier (in Subsection 2a)expressions of the form f(k1; : : : ; kn), where f is a propositional function, do not exist in rtt.Remark 2.15 This de�nition of logical truth is quite informal. For example, the �rst clause\If (a1; : : : ; am) 2 R then rtt j= R(a1; : : : ; am)" requires the symbol R to be already fullyinterpreted and to denote a relation independently of any Tarskian assignment function. Thisis faithful to Russell, for whom the Tarskian notion of an uninterpreted formal language wasquite alien.3 Kripke's Theory of Truth kttIn this section, we shortly describe Kripke's Theory of Truth ktt (see [8]). Kripke expresseshigher-order formulas within a �rst-order language, using the fact that many interestinglanguages are rich enough to express their own syntax (for instance, via a G�odel Numbering).Let us assume a �rst-order language L, with variables ranging over a domain D, and primitivepredicates interpreted by (totally de�ned) relations on D. Let us also assume two subsetsS1 and S2 of D such that S1 \ S2 = ;. Kripke extends L to L(S1; S2) by adding a monadicpredicate T. The main idea is to interpret T as a \truth predicate". S1 contains the elementsd of D for which T(d) holds (so it contains the (codes of) formulas which we consider to be\true"); S2 contains those d 2 D for which :T(d) holds (hence it contains the (codes of)formulas which we consider to be \false"). We do not demand that S1 [S2 = D, hence T isa partial predicate over D.4fv(h[x:=g]) = ; by Lemma 2.12 8

De�nition 3.1 (Logical Truth for ktt) Let L be a �rst-order language over a domain Dwith R as set of primitive predicates. Let f be a sentence in L. We de�ne L j= f as follows5:f L j= f L j= :fR(d1; : : : ; dm) (d1; : : : ; dm) 2 R (d1; : : : ; dm) 62 Rg1 ^ g2 L j= g1 and L j= g2 L j= (:g1) _ (:g2)g1 _ g2 L j= g1 or L j= g2 L j= (:g1) ^ (:g2)8x[g] L j= g[x:=d] for all d 2 D L j= 9x[:g]9x[g] L j= g[x:=d] for some d 2 D L j= 8x[:g]::g L j= g L j= :gHere, R 2 R; d; d1; : : : ; dm 2 D, and g; g1; g2 are formulas of L. Now let S1; S2 � D suchthat S1 \ S2 = ;. ktt � L(S1; S2) is the �rst order language over D with R[fTg as the setof primitive predicates (T 62 R). We extend the de�nition of L j= f to ktt j= f by puttingktt j= T(d) i� d 2 S1 and ktt j= :T(d) i� d 2 S2.It is important (and easy) to notice that the extension of L to L(S1; S2) is conservative:Lemma 3.2 Let L be a �rst order language over a domain D, let S1; S2 � D such thatS1 \S2 = ;, and assume that f is a sentence in L. Then L j= f if and only if L(S1; S2) j= f .2Now Kripke uses T as a predicate expressing truth by de�ning a hierarchy of languages. Thishierarchy has much in common with Russell's hierarchy of orders. L was assumed to be ableto express its own syntax, hence so is L(S1; S2), for any S1; S2. Notice that the sentences ofL(S1; S2) do not depend on the sets S1 and S2, so we can take one G�odel Numbering hi, beinga map from the formulas of L(S1; S2) to D. The Kripke-hierarchy of languages is de�ned bypresenting a hierarchy of pairs of sets (S1; S2):De�nition 3.3 For any ordinal � we de�ne a pair of sets (S�;1; S�;2) and a language ktt�.� S0;1 def= ;; S0;2 def= ;; ktt0 def= L(S0;1; S0;2).� If S�;1, S�;2 and ktt� have been de�ned, then we de�ne:S�+1;1 def= fhfijf is a sentence and ktt� j= fgS�+1;2 def= fhfijf is a sentence and ktt� j= :fg [[fd 2 Djd 6� hfi for all sentences f of ktt�gktt�+1 def= L(S�+1;1; S�+1;2)� If � is a limit ordinal and S�;1, S�;2 and ktt� have been de�ned for all � < �, thenS�;i def= [�<�S�;iktt� def= L(S�;1; S�;2)5Notice that even though this de�nition is di�erent from Tarski's de�nition, especially with respect to thede�nition of L j= :f , it is easy to prove the equivalence of both de�nitions. This is because all primitivepredicates of L are totally de�ned. We took this de�nition however as we need to extend it for the partialpredicate T. 9

Lemma 3.4 (Conservation of Knowledge) If � < � then S�;1 � S�;1 and S�;2 � S�;2.2We can see the construction of the languages ktt� as a process of obtaining knowledge. Atthe initial stage, ktt0, T(d) is not de�ned for any d 2 D. There is no knowledge at all.Applying the de�nition of truth given for ktt0, we obtain knowledge: Some sentences fcan be judged true (ktt0 j= f ; we store the code of f in S1;1), some other sentences g canbe judged false (ktt0 j= :g; the code of g is stored in S1;2). It is not possible to judgeall sentences. For instance, neither ktt0 j= 8x[T(x) _ :T(x)] nor ktt0 j= :8x[T(x) _ :T(x)]hold, so h8x[T(x) _ :T(x)]i neither belongs to S1;1, nor to S1;2.The knowledge we obtained is expressed by the predicate T in ktt1. In ktt1 we know moreabout T than in ktt0. Hence more sentences can be judged true or false; we store their codesin S2;1 and S2;2 respectively. The Lemma on Conservation of Knowledge 3.4 guarantees thatthis process only extends our knowledge, i.e.:� Sentences that were judged to be true at level ktt1 remain true at level ktt2;� Sentences that were judged to be false at level ktt1 remain false at level ktt2.By iterating this process we arrive at the levels ktt3;ktt4; : : : ;ktt!;ktt!+1; : : :. This limitdoes terminate however in that it has a �xed point.4 Rtt in kttBoth in rtt and in ktt we are confronted with a hierarchy. Russell constructs a hierarchyby dividing propositions and propositional functions into di�erent orders, taking care that apropositional function f can only depend on objects of a lower order than the order of f .Kripke does not make this distinction beforehand. He has only one truth-predicate (T), butdecisions about truth of propositions are split into di�erent levels: At the �rst level onlydecisions about propositions that do not involve T are made, at the second level decisionsabout propositions involving T for codes of �rst-level propositions are made, and so on.In subsection 4a we investigate the similarity between both hierarchies, by describing rttwithin ktt. In subsection 4b we investigate in which way rtt is more restrictive withrespect to self-reference than ktt.4a rtt embedded in kttTo embed rtt in a �rst order language L, we have to cope with two technical problems:� We need to encode the notion of and the manipulation with (higher-order) propositionalfunctions into a �rst-order language. The manipulation is especially important withrespect to substitution, which in the higher-order situation is much more complicatedthan in the �rst order case (cf. the de�nition of substitution 2.9).� In Russell's theory, it is possible (and, due to the hierarchy of orders, in fact onlypossible) to quantify over only a part of all propositions. This makes it impossible totranslate, for instance, the proposition 8p:()1[p() _ :p()] directly by 8x[T(x) _ :T(x)],as the quanti�er in the latter also quanti�es over (codes of) higher-order propositions.10

As we do not want contexts to be involved in this coding, we assume that each variable inV has (implicitly) a superscript t, indicating its type. This makes it possible to do withoutcontexts, as the types of the variables are now clear from the function in which they occur.For reasons of clarity, we will not write this superscript explicitly, as long as no confusionarises.We propose the following solutions to the problems sketched above (we �rst give the de�nitionand afterwards explain our thoughts behind it):De�nition 4.1 Let ktt be the language L with domain D = A, extended with for eachrami�ed type t a monadic predicate Typt, for each n 2 IN a (n+1)-ary function Appn, andthe monadic predicate T (T will play the same role as in Section 3). We code the typeablepropositional functions f of F to formulas f in the language ktt. We do this by inductionon the structure of f .� If f � R(i1; : : : ; ia(R)), then f is present in the original language L and we take f def= f .� If f � z(k1; : : : ; km), write Ki � hkii for ki 2 F , and Ki � ki for ki 2 A [V. De�nef def= T(Appm(z;K1; : : : ;Km)).� If f � f1 _ f2, then f def= f1 _ f2.� If f � :f 0, then f def= :f 0.� If f � 8x : u[f 0], then f def= 8x[:Typu(x) _ f 0].We now give a formal interpretation to the newly introduced predicates Typt and Appn.De�nition 4.2 For all rami�ed types t 6= �0, let Typt def= fhfijf 2 F and f : tg and Typ�0 def=D.Assume: n 2 IN, f 2 F is of type (t1; : : : ; tn) and has free variables x1 < : : : < xn. Assumealso: for i = 1; : : : ; n, ki : ti and either di = ki (if ti = �0) or di = hkii (if ti 6= �0). We de�ne:Appn(hfi; d1; : : : ; dn) def= hf [x1; : : : ; xn:=k1; : : : ; kn]i:>From now on, we will interpret the function symbol Appn as the function Appn, and therelation symbol Typt as the relation Typt.We make some remarks with respect to these de�nitions.Remark 4.3 It is clear that the newly introduced functions Appn are used for carrying outsubstitutions, thus solving the �rst of the technical problems stated at the beginning of thissubsection. The predicates Typt solve the second problem, as can be seen in the de�nition of8x[f].Remark 4.4 Notice that we did not de�ne the functions Appn on the full domain Dn+1. Wecould have done that, but will not need Appn on other elements of Dn+1 than de�ned above.Remark 4.5 At this point, our work is related to (but independent of) Paul Gilmore's workon NaDSet 1. NaDSet 1 is a theory of generalized abstraction which makes n-ary predicationa primitive of the system, with the unary truth predicate being trivially de�nable upon thisbasis. For a useful connection between ktt and NaDSet 1, see [4].11

Remark 4.6 The extensions suggested above are of a mere technical character. Therefore,we think that we can still speak of an embedding of rtt within ktt.Notation 4.7 To keep notations uniform, we sometimes want to speak about hxi when weonly intend to mention x, for x 2 V, and about hai when only meaning a, for a 2 A. Hence,we formally de�ne: hxi def= x and hai def= a for all x 2 V and all x 2 A.Below, we work in two systems: rtt and ktt. These systems have a di�erent notion ofsubstitution, though they use the same notation for expressing substitution. From the context,however, it will always be clear which kind of substitution is meant.The language ktt above is similar to that presented in Section 3, and we construct ktt� foreach ordinal � as described in that section. We need the following lemma:Lemma 4.8 (Substitution Lemma) Assume g is a propositional function of order m andg[x:=k] is a proposition of order n. If kttn j= g[x:=k] then kttm j= g[x:=hki].Proof: We make the proof a little easier by proving that if: If g is a propositional functionof order m and g[x1; : : : ; xp:=k1; : : : ; kp] is a proposition of order n, then 1 and 2 hold where1. kttn j= g[x1; : : : ; xp:=k1; : : : ; kp] implies kttm j= g[x1; : : : ; xp:=hk1i; : : : ; hkpi]2. kttn j= :g[x1; : : : ; xp:=k1; : : : ; kp] implies kttm j= :g[x1; : : : ; xp:=hk1i; : : : ; hkpi]We write g[xi:=ki] as a shorthand for g[x1; : : : ; xp:=k1; : : : ; kp] as long as no confusion arises,and use similar abbreviations for other substitutions. The proof is by induction on thestructure of g.� g � R(i1; : : : ; ia(R)). Then, by de�nition of g[xi:=ki], g[xi:=ki] � g[xi:=hkii]. As n � m,the lemma follows by the Lemma on Conservation of Knowledge 3.4.� g � z(h1; : : : ; hq). If z 62 fx1; : : : ; xpg then again g[xi:=ki] � g[xi:=hkii]6 and again thelemma follows from n � m and the Lemma on Conservation of Knowledge 3.4.The interesting case is when g � z(h1; : : : ; hq) and z 2 fx1; : : : ; xpg. To keep notationsclear, we assume p = 1 and z = x1. The reader may verify that the case p > 1only complicates notation, not the proof. We only show 1 as 2 is similar. Assumekttn j= g[xi:=ki].As k1 and z have the same type, k1 has q free variables, say y1 < : : : < yq, and byde�nition of substitution in rtt, z(h1; : : : ; hq)[x1:=k1] � k1[yi:=hi]. Notice that z andk1 have the same order (m�1), and that n, the order of k1[yi:=hi], is at most the orderof k1 (Lemma 2.11). This means: n � m� 1. Using Lemma 3.4: kttm�1 j= k1[yi:=hi].By the de�nition of T we have: kttm j= T �Dk1[yi:=hi]E� : We are now done because:g[x1:=hk1i] � z(h1; : : : ; hq)[z:=hk1i]� T(Appq(z; hh1i; : : : ; hhqi))[z:=hk1i]� T(Appq(hk1i; hh1i; : : : ; hhqi))� T �Dk1[yi:=hi]E�6This is because in this case, no higher order substitutions occur, and the notion of rtt-substitutioncoincides with ordinary, �rst order substitution. 12

� g � g1 _ g2.First, assume kttn j= g[xi:=ki]. As g[xi:=ki] � g1[xi:=ki] _ g2[xi:=ki], there is j suchthat kttn j= gj [xi:=ki]. By the induction hypothesis, there is j such that kttm j=gj [xi:=hkii], as the order of gj is � m. Hence kttm j= g1[xi:=hkii] _ g2[xi:=hkii], so weare done.Now assume kttn j= :g[xi:=ki]. This means: kttn j= :(g1[xi:=ki] _ g2[xi:=ki]).Hence kttn j= :gj [xi:=ki] for j = 1; 2, and by the induction hypothesis, this means(again the order of the gjs are � m) kttm j= :gj[xi:=hkii] for j = 1; 2, hencekttm j= :g1[xi:=hkii] ^ :g2[xi:=hkii].So kttm j= :(g1[xi:=hkii] _ g2[xi:=hkii]), and kttm j= (:(g1 _ g2))[xi:=hkii].� g � :g0.If kttn j= g[xi:=ki] then use the induction hypothesis for g0.If kttn j= :g[xi:=ki] then kttn j= g0[xi:=ki], so by induction kttm j= g0[xi:=hkii], sokttm j= ::g0[xi:=hkii].� g � 8x:t[g0].If kttn j= g[xi:=ki], then for all d such that Typt(d), kttn j= g0[xi:=ki][x:=d], hencefor all these d, kttm j= g0[xi:=hkii][x:=d], so kttm j= 8x[g0[xi:=hkii]], and kttm j=g[xi:=hkii].If kttn j= :g[xi:=ki] then there is d 2 D such that Typt(d) and kttn j= :g0[xi:=ki][x:=d],hence kttm j= :g0[xi:=hkii][x:=d], and kttm j= 9x[:g0[xi:=hkii]].Hence kttm j= 9x[:g0[xi:=hkii]] and kttm j= :8x[g0[xi:=hkii]]. 2Remark 4.9 We have actually proven a stronger fact: Assume g is a propositional functionof order m and g[x:=k] is a proposition of order n. If kttn j= g[x:=k] then kttp j= g[x:=hki],where p = min(m;n + 1). This tells us more about the role of the predicate T: Although asubstitution may lower the order of a propositional function by more than one, only oneapplication of the T-predicate is involved (hence only one level in the hierarchy of truths).However, in the theorem below we only need the (weaker) form in which we presented theSubstitution Lemma originally.Theorem 4.10 Let f : ()n 2 F . Then: rtt j= f if and only if kttn j= f:Proof:(Due to the use of : in the de�nition of kttn j= f , we prove a little bit more:� If rtt j= f then kttn j= f ;� If rtt j= :f then kttn j= :f .These claims are proved simultaneously by induction on the de�nition of rtt j= f .� f � R(d1; : : : ; da(R)) for a R 2 R and some d1; : : : ; da(R) 2 D. Then f � f . Asrtt j= f , we know that (d1; : : : ; da(R)) 2 R, hence kttn j= f . The proof is similarfor :f .� f � g1 _ g2. Then the orders of the gis are either equal to, or smaller than n.First assume rtt j= f . Then we know that rtt j= gi for i = 1 or i = 2. By theinduction hypothesis (and Conservation of Knowledge, if the order of g is < n),kttn j= gi, As f � g1 _ g2, kttn j= f .Now assume rtt j= :f . Then it is not true that rtt j= f , so it is not true that13

rtt j= gi for i = 1 or i = 2. So rtt j= :gi for i = 1; 2. By the induction hypothesis(and, again, possibly Conservation of Knowledge), we have kttn j= :gi, hence,kttn j= :gi for i = 1; 2. So kttn j= :g1 ^ :g2,and hence so kttn j= :f .� f � :g. If rtt j= f then use IH on g to get kttn j= :g, hence kttn j= f .If rtt j= :f , then rtt j= g, so by induction kttn j= g, so kttn j= ::g, sokttn j= :f .� f � 8x:t[g]. Notice that g has order n.If rtt j= f then for all k:t, rtt j= g[x:=k]. By the induction hypothesis, we knowthat for all k : t, kttmk j= g[x:=k], where mk is the order of g[x:=k].By the Substitution Lemma 4.8 we have: For all k : t, kttn j= g[x:=hki]. Hence,for all d 2 D, kttn j= :Typt(d) _ g[x:=d]. Hence kttn j= 8x : t[g].The argument for rtt j= :f is similar.) This is easy now. Assume, for the sake of the argument, not rtt j= f . Then rtt j= :f ,hence kttn j= :f and kttn j= f , which is a contradiction. 2This theorem clearly shows the relation between the orders in rtt and the levels of truthin ktt. The heart of the proof of Theorem 4.10 is in the proof of case z(h1; : : : ; hq) of theSubstitution Lemma 4.8. This is the only place in the proof where the properties of thepredicate T are used. It is understandable that these properties must be used at exactlythis place when we look at the de�nition of propositional functions and the typing rules forpropositional functions. Exactly the possibility of constructing a propositional function ofthe form z(h1; : : : ; hq) makes it possible to arrive at higher-order propositional functions andhigher-order propositions. So exactly at this spot, Kripke's predicate T must appear, in orderto raise one level in ktt as well.Corollary 4.11 Rtt j= f if and only if ktt! j= f . 2We cannot improve the result of Theorem 4.10 in general: There are propositions f of ordern in rtt whose code is provable at level kttn in ktt, but not at any lower level.Theorem 4.12 Let n > 0, and let fn be the nth-order-proposition 8p:()n�1[p() _ :p()].Then: kttm j= fn if and only if m � n:Proof: (follows from Theorem 4.10 and Lemma 3.4.) is by induction on n. Observethat fn � 8p[:Typ()n�1(p) _ (T(App0(p)) _ :T(App0(p)))]:� n = 1. Let g be any proposition of order 0 in rtt. Then ktt0 j= Typ()0(g) but as T iscompletely unde�ned at level 0, ktt0 6j= T(App0(g)) _ :T(App0(g)). Hence, ktt0 6j= f1.� Assume the theorem has been proved for all n0 < n. Assume m < n and kttm j= fn. Byde�nition of j=, we have: kttm j= T(App0(hfn�1i)) _ :T(App0(hfn�1i)), and for reasonsof consistency: kttm j= T(App0(hfn�1i)), hence kttm j= T(fn�1), so, by the de�nitionof T: kttm�1 j= fn�1, which contradicts the induction hypothesis, as m� 1 < n� 1. 2There are, however, propositions f of order n in rtt for which kttm j= f or kttm j= :fcan already be established for m < n.Example 4.13 Consider a proposition g � g1 _ g2 where g1 is a true proposition of order mand g2 is any proposition of order n. As g1 is true in rtt, we have kttm j= g1, and thereforekttm j= g. 14

4b The restrictiveness of Russell's theoryWe illustrate the di�erent approaches of Russell and Kripke by an example given by Kripkehimself.Example 4.14 Let D, R, L, S�;i and ktt� be as in Section 3 whereR contains two monadicpredicates V and W which are collections of (codes of) utterances of persons V andW. Nowde�neP � 8x[:W(x) _ :T(x)]Q � 8x[:V(x) _ :T(x)](informally, P denotes: All utterances of W are false, and Q denotes: All utterances of Vare false). Now distinguish two situations. In both situations, we want to know whether Pand Q become true or false when passing through the hierarchy of languages ktt0, ktt1,. . . .Or, more formally, whether there is � such that hVi and hWi belong to S�;1 [S�;2.1. V = fhP ig and W = fhQig (notice that V and W are just subsets of D).In this case, P is logically equivalent to :T(hQi) and Q is logically equivalent to :T(hP i).As a consequence we have: if hQi 2 S�;i then hP i 2 S�;3�i for some � < �, and ifhP i 2 S�;i then hQi 2 S�;3�i for some � < �. Hence hP i; hQi 62 S�i , for all �; i, soneither the truth of P nor the truth of Q will ever be established.2. In the situation above, the only utterance of V was that anything said byW is false,and vice versa. In that case, it is also intuitively clear that it is impossible to sayanything about the truth of P or Q. Now we change the situation. We assume that Ralso contains a third monadic predicate R, and that d is an element of R. We rede�ne W:W def= fhQi; hR(d)ig:This has drastical consequences. As ktt0 j= R(d), hR(d)i 2 S1;1, so ktt1 j= T(hR(d)i),hence ktt1 j= :P . Therefore, hP i 2 S2;2, so ktt2 j= :T(hPi), hence:ktt2 j= :Pktt2 j= QThe fact thatW utters a true sentence makes it possible to conclude at level 1 that Pis false, irrespective of the fact that W has also uttered another sentence Q, of whichwe can't establish the truth at level 1. The falsehood of P makes it possible to decideabout Q at the next level, so the falsehood of P and the truth of Q could have beenestablished at level 2.In Russell's terminology it wouldn't be possible to write expressions like P and Q at all: Theyare excluded beforehand, as P involves Q, therefore has to be of higher order than Q, and Qinvolves P , therefore has to be of higher order than P .This indicates an important di�erence between rtt and ktt: Kripke allows much moreexpressions to be written down. In some situations these expressions will never obtain anytruth-value (like P and Q in the �rst example), but in other situations (so: with otherde�nitions of the primitive predicates) the same expressions will get a truth-value. Kripkeconcludes: \it would be fruitless to look for an intrinsic criterion that will enable us to sieveout { as meaningless, or ill-formed { those sentences which lead to paradox".15

Example 4.15 Another, more formal, example of a proposition f in ktt for which there isno g 2 F with g � f is the proposition f def= 8x[T(x) _ :T(x)]:Assume, for the sake of the argument, that g � f . Let m be the order of g. Then kttm j= for kttm j= :f . This implies kttm j= T(fm) _ :T(fm), where fm is as in Theorem 4.12. Byde�nition of T this means kttm�1 j= fm or kttm�1 j= :fm, both contradicting Theorem4.12.5 Orders and Typesrtt is based on a double hierarchy: One of types and one of orders. This double hierarchyis too restrictive. It is possible to develop Logic and Mathematics within rtt, but for in-stance the proof of the Supremum Theorem, which is fundamental in real analysis, cannotbe given. The origin of the problem is the use of the so-called predicative and impredicativepropositional functions.De�nition 5.1 Let f 2 F be typable in rtt. Assume f has free variables x1; : : : ; xn of ordersm1; : : : ;mn respectively. f is called predicative if its order is equal to max(m1; : : : ;mn) + 1;if its order is greater then f is called impredicative.As the impredicative propositional functions cause problems, the \Axiom of Reducibility" isproposed in \Principia Mathematica" (1910-1912). This axiom is as follows:For each f 2 F there is a predicative g 2 F that is logically equivalent to fThis axiom has been controversial from the moment it was introduced. Russell himself admitsthat \it has a purely pragmatic justi�cation: it leads to the desired results, and to no others.But clearly it is not the sort of axiom with which we can rest content." Though serious e�ortshave been made to develop Mathematics within rtt (for instance by Weyl [15]), this hasnot become the usual practice. In 1925, Ramsey [11] shows that, by making distinctionbetween language and meta-language, the orders can be removed from the system withoutre-introducing any known paradox. Hilbert and Ackermann [7] present a similar idea. Withthis remark the type-theoretic fundaments for the Simple Theory of Types stt, introducedby Church [1] in 1940, were laid, and orders have remained out of the important modern typesystems up till now.It is therefore interesting to notice the relation between orders in rtt and levels of truth inktt, as formulated in Theorem 4.10. It shows that Kripke's system can be regarded as asystem based on rtt, of which not the orders, but the types have been removed. In this way,ktt can be seen as a system that is dual to stt.ktt, however, has a more subtle approach than many type theories as it does not excludeany, possibly \paradoxical", expression from the syntax, which is the usual type-theoreticapproach. If an expression is paradoxical, it will not get a truth value at any level � of thehierarchy of Truths. Whether an expression is paradoxical or not does not only depend onits syntactic structure, but also on the domain D (see Example 4.14). So paradoxes are onlyexcluded at the level of semantics.The discussion above shows that the orders of rtt are not to be blamed for the restrictiveness16

of rtt. ktt is a system which contains orders but has only few restrictions towards self-application.It is the combination of orders and types that makes rtt restrictive.6 Conclusion6a ResultsWe presented a formalisation of Russell's Rami�ed Theory of Types rtt which is faithful toboth Russell's original informal presentation and the present formulations of type theories.We used this formalisation to compare rtt with Kripke's Theory of Truth ktt. We estab-lished the relation between Russell's hierarchy of orders and Kripke's hierarchy of truth-levels.In particular we showed that1. A proposition of rtt of order n is true if and only if it is true at level n in Kripke'sTruth Hierarchy (Theorem 4.10).2. The truth of some propositions of order n of rtt cannot be established in ktt at a levelof truth hierarchy smaller than n (Theorem 4.12). Yet for some other propositions, itcan be established at an earlier level (Example 4.13).We also saw that Russell's theory has many restrictions. On the one hand, all propositionalfunctions of rtt can be coded in Kripke's Truth Theory; on the other hand there are formulasof Kripke's theory that cannot be expressed in rtt, respecting both hierarchies.We conclude, as so often has been concluded in Logic, in Mathematics and in Natural Lan-guage, that Russell's Theory of Types is too restrictive. However, the usual objections againstrtt in Logic and Mathematics is the use of orders. After Ramsey [11] and Hilbert and Ack-erman [7] had given motivations for leaving out these orders, they have hardly been usedanywhere in logic or mathematics (though Weyl [15] has tried to give a build-up of mathe-matics within rtt).Here the situation is completely di�erent. Orders in rtt and truth-levels in ktt go hand inhand; on the other hand the types do not appear any more in ktt. This establishes ktt asthe dual to stt (Church's Simple Type Theory) which removes the orders from rtt.As far as we know, our contribution is the �rst statement of a formal correspondence be-tween �nite levels of truth in Kripkean Theory of Truth (ktt) and orders of quanti�cationin Russell's Rami�ed Type Theory (rtt). Our conclusion is that, contra Ramsey, it is therestriction of the mixture of orders and types on predication rather than order restriction onquanti�cation alone that accounts for the very restrictive nature of rtt. This is importantand takes an added signi�cance when seen in the context of the logicisation of second orderarithmetic in a type free �rst order logic utilizing Kripke-Gilmore models which realises thehope of Russell's earlier type free substitutional theory.6b Future workKripke's theory has a trans�nite hierarchy of orders whereas Russell did not investigate suchtrans�nity. It would be interesting hence to see how far one can build types in Russell's theory17

and what properties would hold at such level.We concluded that some order-n-properties of rtt get their truth-value only at level n ofktt whilst others get it already at an earlier level. This divides propositions into two classesand an accurate description of these classes may be interesting.As to the question of Kripke being more liberal in that any well-formed sentence can beexpressed but its truth value may not be calculated (think of the paradoxical sentences), onemay compare this approach to the implicit typing of Curry's Type Theory ctt [2, 3] whereself-referential sentences may be expressed but are not typable. Hence, even though we saidthat ktt is the dual of stt, it may be the twin-brother of ctt where only truth or falsehoodof typable terms can be determined. We are currently investigating this issue.AcknowledgementsWe would like to thank Rob Nederpelt and the anonymous referees for their constructivecomments on an earlier version of this paper.References[1] A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,5:56{68, 1940.[2] H.B. Curry and R. Feys. Combinatory Logic, volume I of Studies in Logic and theFoundations of Mathematics. North-Holland, Amsterdam, 1958.[3] H.B. Curry, J.R. Hindley, and J.P. Seldin. Combinatory Logic, volume II of Studies inLogic and the Foundations of Mathematics. North-Holland, Amsterdam, 1972.[4] S. Feferman. Toward useful type-free theories I. Journal of Symbolic Logic, 49:75{111,1984.[5] G. Frege. Begri�schrift, eine der arithmetischen nachgebildete Formelsprache des reinenDenkens. Nebert, Halle, 1879. Also in [6].[6] J. van Heijenoort, editor. From Frege to G�odel: A Source Book in Mathematical Logic,1879{1931. Harvard University Press, Cambridge, Massachusetts, 1967.[7] D. Hilbert and W. Ackermann. Grundz�uge der Theoretischen Logik. Die Grundlehren derMathematischen Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag,Berlin, �rst edition, 1928.[8] S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690{716, 1975.[9] T.D.L. Laan. A formalization of the Rami�ed Type Theory. Technical Report 33, TUEComputing Science Reports, Eindhoven University of Technology, 1994.[10] R. Montague. The proper treatment of quanti�cation in ordinary English. In J. Hintikka,J.M.E. Moravcsik, and P. Suppes, editors, Approaches to Natural Language. Dordrecht,1973. 18

[11] F.P. Ramsey. The foundations of mathematics. Proceedings of the London MathematicalSociety, pages 338{384, 1925.[12] B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.[13] B. Russell. Mathematical logic as based on the theory of types. American Journal ofMathematics, 30, 1908. Also in [6].[14] A. Tarski. Der Wahrheitsbegri� in den formalisierten Sprachen. Studia Philosophica,1:261{405, 1936. German translation by L. Blauwstein from the Polish original (1933)with a postscript added.[15] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das Kontinuum undandere Monographien, Chelsea Pub.Comp., New York, 1960.[16] A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press,19101, 19272. (All references in this paper are to the �rst volume).

19

