
A Semantics for a �ne �-calculus with de Bruijn indices �Fairouz Kamareddine yDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukandRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlApril 13, 1997

�We are grateful for the discussions with Jos Baeten, Henk Barendregt, Erik Barendsen, Inge Bethke, TijnBorghuis, Herman Geuvers, Jeroen Krabbendam, Erik Poll and Peter Rodenburgh and for the helpful remarksreceived from them.yKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven Universityof Technology, for their �nancial support and hospitality from October 1991 to September 1992, and duringthe summer of 1993. Furthermore, Kamareddine is grateful to the Department of Mathematics and ComputerScience, University of Amsterdam, and in particluar to Jan Bergstra and Inge Bethke for their hospitalityduring the preparation of this article. 1

Name and mailing address of author to whom proofs should be sent:Fairouz KamareddineDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukContents1 Introduction 42 The syntax of the calculi 62.1 The calculus � . 62.2 De Bruijn's indices . 92.3 The syntax of
� . 103 Axioms of
� 133.1 '-reduction . 153.2 �-reduction . 173.3 �-reduction . 193.3.1 Making i negative in ('(k;i)) . 203.3.2 �-reduction using (�(i)) . 214 Translating � in
� 225 Translating
� in � 245.1 The inverse function e . 265.2 Variables and lists . 275.3 The semantics of
�-terms: an initial account 305.4 Extending the initial account . 315.5 The semantics of �- and '-terms . 356 The soundness of �- and '-reduction 387 The meaning and soundness of �-reduction 428 Comparison and conclusions 44A An alternative semantics 46
2

AbstractMost of us who have worked with named variables in the �-calculus must have noticedhow sticky such variables can be. The problem is, that named variables play a verydemanding role in the most basic operations of the �-calculus, namely: �-reduction andsubstitution. This has lead to using implicit substitution rather than the explicit onein most theories of the �-calculus. Variable names however, have one advantage thatshould not be underestimated; that is: they facilitate the readability of terms. Now, itwould be very nice if we could write the basic operations of the �-calculus in a preciseway which avoids the messiness of variables. It would be very nice moreover, if we couldsometimes keep the variable names, without having to pay the price usually associatedwith them. Our �rst task in this paper is to get rid of the problematic variable namesand to establish what we believe is the most precise and �ne �-calculus,
�. In sucha calculus, de Bruijn's indices are used instead of variable names and substitution andreduction are de�ned in a step-wise fashion which can be directly implemented withouthaving to carry out a lot of book-keeping as is usually the case in the classical �-calculus.Most importantly, the substitution in
� is no longer the implicit substitution but ratherit is the explicit one which is long needed in many applications of the �-calculus. Such anexplicit substitution has been facilitated as a result of the �ne structure of �-terms that wepropose in this paper and where item notation plays a dominant role. Furthermore, thespecies of variable names is cultivated and ordered so that a �ne inter-marriage between deBruijn's indices and variable names takes place. Such a relationship between de Bruijn'sindices and variable names will be used to show the consistency of our �ne reduction andexplicit substitution in terms of the classical �-calculus. We shall also reect on the useand necessity of �-conversion.Keywords: De Bruijn's indices, variable updating, substitution, reduction, soundness.

3

1 IntroductionWe shall start in this paper by discussing a typed �-calculus � which has the followingfeatures:� There is no distinction between types and terms. This will make the calculus moregeneral. See for example [Barendregt 91] and [Barendregt 92] where instead of termsand types, the notion of pseudo-terms is used. See furthermore [de Bruijn 70] where theAutomath system provided is the most abstract formulation of type systems and whereno distinction is made between types and terms. The selected papers in [NGdV 94]elaborate further on the Automath systems.� The argument comes before the function so that instead of (t1t2) we write (t2�t1). Thisconvention has a practical advantage which we will see below. In particular, it helps toshow clearly which are the �-redexes.� The type comes before the typed variable so that instead of (�v:t1 :t2) we write (t1�vt2).This convention is of less importance than the above convention but will play a role inproviding a modular way of representing terms. That is, every non variable term can belooked at as an !-item followed by a term, where the notion of !-items for ! 2 f�v; �g,is explained below.� The bracketing of the operators � and � are changed so that we write (t1�v)t2 insteadof (t1�vt2) and (t1�)t2 instead of (t1�t2).These conventions together, give rise to items like the �-item (t1�v) and the �-item (t1�).Moreover, the �-item and the �-item involved in a �-reduction occur adjacently in the term;they are not separated by the \body" of the term, that can be extremely long! This fashionof writing terms is close to the mathematical de�nitions and theorems as is elaborated in[Nederpelt 87]. In the system �, the usual implicit substitution of the �-calculus is used.The item notation enables us to add substitution items (or �-items) which will have thesame status as the �- and �-items hence making substitution an object level process andgiving substitution items the right to be �rst-class citizens. In fact, thanks to the itemnotation we can provide the �ne structure of the �-calculus with various re�ned forms ofreduction, substitution and term manipulation.After presenting �, the calculus with item notation but where variable names and implicitsubstitution are used, we shall introduce a calculus based on � but where de Bruijn's indicesand explicit substitution are used. For this, we start by introducing de Bruijn's indices.Such indices have the practical advantages that they avoid all the need to deal with variablerenaming in terms (see [de Bruijn 72], [Abadi et al. 91], [CH 88] and [KN 93]). The calculusbased on � and on de Bruijn's indices will be called
� for � being the set of variableswhich are de Bruijn's indices together with " a special variable. In the �rst instance,
 istaken to be f�; �g. In order to accommodate substitution explicitly and in order to discussvariable updating and term reduction,
 is increased to f�; �; �; '; �g. We add the �-items forsubstitution, the '-items for variable updating and the �-items for �-reduction. The '-itemsare written as ('(k;i)) for i � 1 and k � 0. The superscript k decides which variables areto be updated. The superscript i decides how much a variable must be updated; namely byincreasing it by i. The �-items are written as (t�(i)) for i � 1. (t�(i))t0 means: in t0 substitute4

t for i. The �-items are written as (�(i)) for i � 1. (�(i))t means, decrease all the variables int that are > i by 1.We provide the '-, �-, �- and �-reduction rules in
� which are all explicit and step-wise.Furthermore, these rules may be used to get local and global forms of reduction.
� is the calculus of explicit substitution, which is based on what we call item notationand on the use of de Bruijn's indices. We provide a method which can take any term of �into
� such that all �-equivalent terms in � are mapped into a unique element of
�. Theother direction however, of mapping elements of
� into elements of � is more di�cult. Thisis because in
�, the �'s do not have variable names as subscripts and so we have to lookfor such subscripts in a way that no free variables in the term get bound. Now, the questionthat might be asked is why should we be interested in mapping elements of
� into �. Afterall, variable names in the �-calculus are messy and the idea of the de Bruijn indices is tobe precise and to avoid the clumsiness of variables. Moreover, a term in
� represents awhole class of terms in �; namely all those �-equivalent terms. So, in taking the term of
� back to �, which of these �-equivalent terms are we going to choose? Are we going toconsider terms of � modulo �-conversion and then choose any term in the equivalence class?If so, then our work is pointless. In other words, what is the point of going from de Bruijn'sindices to �-equivalence classes when de Bruijn indices actually represent the �-equivalenceclasses? Hence the �rst conclusion is that, in translating the terms from
� to �, we mustavoid �-conversion in � and we must associate to each term of
� a unique term of �. Thiswill also have advantages for implementation. For then, we know exactly which term we areworking with. Now, having such a translation [j�]j from
� to �, our task is to show that thevariable updating, the substitution and the reduction rules in
� are sound. We do this byshowing that if t ! t0 where ! is either �-, or '- or �-reduction (excluding the �- or the�-generation and the �-transition rules, see below), then [jt]j � [jt0]j. That is, we show thatall the rules which accommodate variable updating and substitution result in syntacticallyequal terms. We shall moreover, show that if t ! t0 where the reduction includes �- or�-generation, then [jt]j =�� [jt0]j. That is, the rules which actually reduce �-redexes in
� arenothing more than the � rule in �. Finally if ! is �-transition then [jt]j =� [jt0]j. These resultsare of course desirable, otherwise how can we check the correctness of our reduction rules.Furthermore, it should be noted that the semantics that we provide is a at semantics. Thatis, the reduction steps in the �ne �-calculus are mapped to syntactical equality (except in thecases mentioned above), and not to a corresponding reduction. We provide the �ne structureof the �-calculus which has advantages that range over all areas and disciplines of �-calculiand type theory, and we give a semantics which shows that our reduction and substitutionrules are a re�nement of those of the classical calculus.We believe that our approach is the �rst to be so precise about variable manipulation,substitution and reduction in the �-calculus. There is never a confusion of which variableis the one manipulated and hence a machine can easily carry out our reduction strategiesand translate the terms using variables in a straightforward manner. We believe that theapproach of this paper should be considered in implementations of functional languages andof theorem provers. Our work here might look too involved, but we have actually carriedout the hard part of manipulating variables once and for all. No further work is neededafterwards on book-keeping of what happens to variables, terms or reductions either in proofsor in implementations. We are persuaded that this is the �rst precise formulation of �-terms,variables and reductions. Furthermore, we believe that this formulation not only enables5

explicit and local substitution as we show in this paper, but also enables a generalisation overall branches of �-calculus and type theory (see [KN 93], [NK 94] and [KN 9x]).To sum up, we provide �, a calculus which uses item notation, variable names and explicitsubstitution. We extend � to
� where item notation is used with de Bruijn indices insteadof variable names and explicit rather than implicit substitution. We provide the translationbetween both systems and in both directions. The translation from
� to � aims to showthat our explicit and step-wise reduction and substitution rules are sound and are a re�nmentof the implicit rules of the �-calculus. Furthermore, such a translation aims at furthering ourunderstanding of when �-reduction is needed in the �-calculus. In fact, we try to do completelywithout �-reduction until we are forced to use it. Moreover, this translation gives to everyterm with de Bruijn indices a unique term of � (with no mention of �-conversion).2 The syntax of the calculi2.1 The calculus �We let V , the set of variables of �, be f"g [F , where F = fx1; x2; : : :g and we takev; v0; v00; v1; v2; : : : to range over F . The variables x1; x2; : : : will be ordered as in De�ni-tion 2.16.Notation 2.1 We take IN to be the set of natural numbers, i.e. � 0, IP to be the set ofpositive natural numbers, i.e. > 0 and ZZ to be the set of integers.De�nition 2.2 (�)We de�ne � as follows:� ::= V j (��F�) j (���)We let t; t1; : : : denote terms in �, and use !; !0; !1; : : : to range over the so-called operatorsf�g[f�v ; v 2 Fg. Moreover, " is never used as a subscript for �. The symbol " can be lookedat as a special variable or as a constant. It is added because it enables us to generalise thecalculus. In fact, by taking all types of variables after � to be ", we obtain the type free�-calculus. " has further uses such as the 2 in [Barendregt 91] (see [KN 93] and [NK 94]).The term (t1�vt2) is to be understood as the classical �-calculus term (�v:t1 :t2). The term(t1�t2) is to be understood as the classical �-calculus term (t2t1).Notation 2.3 (Item Notation)We shall place parentheses in � in an unorthodox manner: we write (t1!)t2 instead of(t1!t2). The reason for using this format is, that both abstraction and application can beseen as the process of �xing a certain part (an \item") to a term:� the abstraction �v:t0 :t is obtained by pre�xing the abstraction-item �v:t0 to the term t.Hence, (t0�vt) is obtained by pre�xing t0�v to t.� the application tt0 (in \classical" notation) is obtained by post�xing the argument-itemt0 to the term t. Now (t0�t) is obtained by pre�xing t0� to t.In item-notation we write in these cases (t0�v)t and (t0�)t, respectively. Here both (t0�v) and(t0�) are pre�xed to the term t. Moreover, in (t!), if t � " then it may be dropped. That is,we write (�v) instead of ("�v). 6

De�nition 2.4 (Items)If t is a term in item notation and ! is an operator, then (t!) is an item. We uses; s1; si; : : : as meta-variables for items.De�nition 2.5 (Segments)A concatenation of zero or more items is a segment.Notation 2.6 (parentheses)Note the intended parsing convention:In the term (s1s2 : : : snv!)s01s02 : : : s0mv0, the operator ! combines the full term s1s2 : : : snvwith the full term s01s02 : : : s0mv0.Example 2.7 The term (v!1(v0!2v00)) becomes in item-notation: (v!1)(v0!2)v00. Analo-gously, the term ((v!2v0)!1v00) becomes ((v!2)v0!1)v00.Lemma 2.8 Every term has the form (t1!1)(t2!2) : : : (tn!n)v for t1; t2; : : : ; tn terms, !1; !2; : : : ; !noperators, n � 0 and v a variable.Proof: Easy. 2Based on this lemma, we shall draw the tree of each term (t1!1)(t2!2) : : : (tn!n)v for n � 1 asfollows: We position the root of the tree !1 in the lower left hand corner. We have chosen thismanner of depicting a tree in order to maintain a close resemblance with the item notation ofterms. This has also advantages in the sections to come. In fact, the item-notation suggests apartitioning of the term trees in vertical layers. For (v0!1)(v00!2)v000, these layers are: the partsof the tree corresponding with (v0!1), (v00!2) and v00 (connected in the tree with two edges).For ((v0!2)v00!1)v000 these layers are: the part of the tree corresponding with ((v0!2)v00!1) andthe one corresponding with v000. Figure 1 is self explanatory.
t t tt tv00v0 v000!1 !2 t t

tt tv0
v000v00!1!2(v0!1(v00!2v000))(v0!1)(v00!2)v000 ((v0!2v00)!1v000)((v0!2)v00!1)v000Figure 1: Layered trees, with normal layered notation and item-notationRemark 2.9 Note that every term which is not a variable, has the form (t!)t0, from Def-inition 2.2 and Notation 2.3. Such a term is moreover, from Lemma 2.8, of the form(t1!1)(t2!2) : : : (tn!n)v. Hence, t � t1; ! � !1 and t0 � (t2!2) : : : (tn!n)v.7

De�nition 2.10 (FV (t), for t 2 �)FV (") = ;FV (v) = fvg if v 6� "FV ((t1�v)t2) = FV (t1) [(FV (t2) n fvg)FV ((t1�)t2) = FV (t1) [FV (t2)Remark 2.11 Notice here that this de�nition might cause some confusion. For example takethe term t to be (v�v)v, then FV (t) = fvg. In fact, (v�v)v will be �-reducible to (v�v0)v0(see axiom (�) below). Such confusion will be avoided using de Bruijn's indices.De�nition 2.12 (BV (t) for t 2 �)BV (v) = ;BV ((t1�v)t2) = BV (t1) [BV (t2) [fvgBV ((t1�)t2) = BV (t1) [BV (t2)Note that " is neither free nor bound.Substitution in the �-calculus is usually de�ned (up to some variation) as follows (see[Barendregt 84]):De�nition 2.13 (Substitution in �)If t; t0 are terms in � and v is a variable in V , we de�ne the result of substituting t0 forall the free occurrences of v in t as follows:
t[v := t0] =df

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
t0 if t � vv0 if t � v0 6� v(t2[v := t0]�)t1[v := t0] if t � (t2�)t1(t2[v := t0]�v)t1 if t � (t2�v)t1(t2[v := t0]�v0)t1[v := t0] if t � (t2�v0)t1; v 6� v0;(v 62 FV (t1) or v0 62 FV (t0))(t2[v := t0]�v00)t1[v0 := v00][v := t0] if t � (t2�v0)t1; v 6� v0; v 2 FV (t1);v0 2 FV (t0); v00is the �rst variablein F which does not occur in (t�)t0The fundamental axioms of the �-calculus are (�) and (�). Other axioms such as (�)(which is needed together with another axiom to derive extensionality) are optional. For this,we shall only concentrate on (�) and (�).(�) (t�v)t0 !� (t�v0)t0[v := v0] where v0 62 FV (t0)(�) (t00�)(t�v)t0 !� t0[v := t00]Note that a so-called ��-pair of items: (t00�)(t�v), is a signal for a possible �-reduction.This ��-pair precedes the term to which it applies.We say that t!� t0 (respectively t!� t0) just in case (�) (respectively (�)) takes t to t0.Moreover, we assume that !� and !� are compatible where compatibility over T� is givenby the following de�nition: 8

De�nition 2.14 (Compatibility over T�)We say that !r where r 2 f�; �g on T� is compatible if whenever t!r t0 we get:tt1 !r t0t1; t1t!r t1t0; �v:t:t1 !r �v:t0 :t1 and �v:t1 :t!r �v:t1 :t0.We call the reexive transitive closure of !�, !!�. Similarly !!� is the reexive transitiveclosure of!�. We let =� (respectively =�) be the least equivalence relation closed under!!�(respectively !!�). Finally, = is the least equivalence relation closed under !!� and !!�.As obvious from our de�nition of substitution, we use � to be syntactic identity whichaccounts also for the parenthetes conventions. When t = t0 in �, we write `� t = t0.2.2 De Bruijn's indicesDe Bruijn in [de Bruijn 72] noted that due to the fact that terms as �x1 :x1 and �x2 :x2 are the\same" modulo �-conversion, one can �nd a �-notation which expresses that similarity. Thatis, following de Bruijn, we can abandon variables and use indices instead. Examples 2.15, 2.17below show how lambda terms can be denoted using de Bruijn's indices and example 2.18illustrates how �-conversion works using such indices.Example 2.15 Consider the type free lambda term (�x1 :x1). In this term, the x1 following�x1 is a variable bound by this �. In de Bruijn's notation, �x1 :x1 and all its �-equivalentexpressions can be written as �:1. The bond between the bound variable x1 and the operator� is expressed by the number 1; the position of this number in the term is that of the boundvariable x1, and the value of the number (\one") tells us how many lambda's we have tocount, going leftwards in the term, starting from the mentioned position, to �nd the bindingplace (in this case: the �rst � to the left is the binding place).De Bruijn's notation moreover, can be used for the typed �-calculus. We illustrate herehow the two terms (�x3:x2 :x3)x1 and �A:�x1:A:x1 can be represented using de Bruijn's indices.First, however, we need to account for the free variables x1 and x2. For this, we assume afree variable list:De�nition 2.16 (Free variable list F)For all terms, the free variable list is the same arbitrary but �xed, left-in�nite list of �is withall i di�erent variable names. Such a free variable list is called F and is given in Figure 2.Of course, for each term, having a �nite number of free variables, a �nite segment of this listsu�ces.Example 2.17 The term (�x3:x2 :x3)x1 is written as (�2:1)1. The free variables x1 and x2in the typed lambda term are translated into the number 1 occurring after the term inparentheses, and the number 2: they refer to the \invisible" lambda's that are not presentin the term, but may be thought of to preceed the term in the free variable list F . In thisexample, the x3 is bound, hence di�erent from the free x3 in F . The bound x3 is representedby the �rst number 1.The term �A:�x1:A:x1 can be represented by �:�1:1.Some type theories insist on distinguishing � and �. The � being used for the functionand � for the function type. Then the typed term �A:�x1:A:x1 can be written as �:�1:1where the 1 adjacent to �, says that � is the binding operator for the type (viz. A) and the�nal 1 replaces the variable bound by �. 9

t t t t t�x4 �x3 �x2 �x1
Figure 2: The free variable list FThe described way of omitting binding variables, and rendering bound and free variables bymeans of so-called reference numbers, is precisely how de Bruijn's notation works. Nextwe see how �-reduction works in this notation.Example 2.18 In ordinary lambda calculus, all the terms (�xi:x1 :(xix3))x2, for i 6= 3, �-reduce to x2x3, i.e. the result of substituting \argument" x2 for xi in xix3. In de Bruijn'snotation this becomes | under the assumption that the free variable list is �x3 ; �x2 ; �x1 :(�1:1 4)2 reduces to 2 3. Here the contents of the subterm 1 4 changes: 4 becomes 3. Thisis due to the fact that a �-item, viz. (�1), disappeared (together with the argument 1).Furthermore, 1 changed to 2.2.3 The syntax of
�Now we shall take � but where de Bruijn's indices are used instead of variable names. Thatis, we will get rid of the variables in � and replace them by de Bruijn's indices. This wouldmean of course that we no longer would need each � to carry the subscript xi for i 2 IP or soon with it, but rather, the number would point to which � binds which occurrence. The bestway here is to start with an example.Example 2.19 We take the term t � (x1�)(x2�x4)(x3�)x4 whose tree is drawn in Figure 3.We need to remove x4; x3; x2; x1 and to replace them by numbers. For this, as we see thatx1; x2; x3 are free variables, we need to use the free variable list (see Figure 2). We appenddashed lines to our tree in Figure 3 to show that �'s on the dashed lines are imaginary andnot a part of the term (see Figure 4). Now for each variable, we draw thin lines ending inarrows, pointing at the � binding the variable. These lines follow the path which leads fromthe variable to the root following the left side of the branches of the tree. In order to �nd theindex replacing the variable name, we count the �'s on this path (not the �'s). For example,we draw the thin line going from x4 following the path which leads from x4 to the root, untilwe reach �x4 , the � binding x4. We end the arrow there and as we have only passed one �, thex4 should be replaced by 1. This is the only x4 we have in the tree, and as there are no more10

x4's bound by this �x4 , we can safely remove the subscript x4 from �x4 . For x3, in drawingthe thin line going from x3 following the path which leads from x3 to the root, keeping tothe left side of the branches until we reach �x3 , we see that we pass four �s. Hence, the x3should be replaced by 4. Now replacing x1 and x2 will be left as exercises. Figure 4 is nowself explanatory.As in Example 2.17, the bound variable x4 in t should not be confused with the free x4in the list F .
t t t tt t t� �x4 � x4x1 x2 x3

Figure 3: The tree of (x1�)(x2�x4)(x3�)x4
t t t t t t tt t t� � � � � � 11 2 4

(�x4:x2 :x4x3)x1(x1�)(x2�x4)(x3�)x4(1�)(2�)(4�)1
�� ��

Figure 4: A tree with de Bruijn's indicesNote that we get the same de Bruijn trees for all terms (x1�)(x2�xi)(x3�)xi for i 6= 3; i 2 IP .This is due to the fact that de Bruijn's indices give the terms modulo �-conversion. In thecase i = 1, or i = 2, we have here that x occurs both bound and free. These occurrencesshould be separated, as is actually the case in the version with de Bruijn's indices. In orderto translate (x1�)(x2�xi)(x3�)xi for the case where i = 1 or i = 2, we have to rename xi toxj for j > 3. 11

De�nition 2.20 (Variables)As we decided to use indices instead of variables, we take � the set of variables to be� = f"; 1; 2; : : :g. Sometimes we will need to use actual variables, but this is not a part ofour syntax. It is only a matter of simplifying the conversation. We use i; j;m; n; : : : to denoteelements of f1; 2; : : :g.Using
 = f�; �g and � we de�ne our terms to be those symbol strings obtained in theusual manner on the basis of �, the operators in
 and parentheses. That is:
� is the free
-structure generated by �.De�nition 2.21 (
�)We de�ne
� as follows:
� ::= � j (
��
�) j (
��
�)As in �, we take t; t1; : : : to denote terms in
�. We call the terms of
� in case
 = f�; �g,
��-terms or simply terms. Later on we will increase
 by adding �, ' and �. �-terms willonly be used with
��-terms. An important class of terms however is the
���'-terms.Now we take the same notational conventions as those for � given in Notations 2.3 and 2.6,and we de�ne items and segments similarly. We take !; !0; !1; !2 : : : to range over
. In therest of this paper, we write terms of � and
� using the item notation.Simple examples of terms are: ", 3, (2�)("�)1. Example 2.22 shows terms represented in� and
�. The translation function between � and
� will be given in the following section.Example 2.22� Consider the typed lambda term (x1�)(x2�x5)x5. In
�, it is denoted as (1�)(2�)1. Thetyped lambda term (x1�)(x2�x3)x3 has the same denotation in
�. Note however, that(x1�)(x2�x5)x5 6� (x1�)(x2�x3)x3 for example, unless (�) is assumed in �.� The typed lambda term ((x2�x5)x5�)x1 in � is written as ((2�)1�)1 in
�.� The de Bruijn trees of these lambda terms are given in Figure 5.Finally, we de�ne a number of concepts connected with terms, items and segments. Thesewill be used in the rest of the paper.De�nition 2.23 (main items, main segments, !-items, !1 : : : !n-segments, body, weight)� Each term t is the concatenation of zero or more items and a variable: t � s1s2 : : : snv.These items s1; s2; : : : ; sn are called the main items of t.� Analogously, a segment s is a concatenation of zero or more items: s � s1s2 : : : sn;again, these items s1; s2; : : : ; sn (if any) are called the main items, this time of s.� A concatenation of adjacent main items (in t or s), sm : : : sm+k, is called a mainsegment (in t or s). 12

t t t t tt t21 1� �� � t t t t
tt t2

11��� �(1�)(2�)1(x1�)(x2�x5)x5(�x5:x2 : x5)x1 ((2�)1 �)1((x3�x5)x5 �)x1x1(�x5:x3 : x5)
�� � � ��

Figure 5: de Bruijn trees with explicit free variable lists and reference numbers� An item (t !) is called an !-item. Hence, we may speak about �-items, �-items (andlater on about �-items and '-items).� If a segment consists of a concatenation of an !1-item up to an !n-item, this segmentmay be referred to as being an !1 : : : !n-segment.� An important case of a segment is that of a ��-segment, being a �-item immediatelyfollowed by a �-item.� If t � sv, then s is called the body of t.� The weight of a segment is the number of its main items.Example 2.24 Let the term t be de�ned as ("�)((1�)("�)1�)(2�)1 and let the segment s be("�)((1�)("�)1�)(2�). Then the main items of both t and s are ("�), ((1�)("�)1�) and (2�),being a �-item, a �-item, and another �-item. Moreover, ((1�)("�)1�)(2�) is an example of amain segment of both t and s, which is a ��-segment. Also, s is a ���-segment, which is amain segment of t.Now we de�ne nl which counts the number of �'s in a term.De�nition 2.25 (nl)nl(") =df ;nl((t1�)t2 =df nl(t1) + nl(t2)nl((t1�)t2) =df nl(t1) + 1 + nl(t2)Note that weight(t) is not necessarily the same as nl(t). For example, weight(((1�)2�)3) = 1whereas nl(((1�)2�)3) = 2.3 Axioms of
��-reduction is not needed for
�, precisely because we no longer have variables (de Bruijn'sindices got rid of them). So now, we no longer have di�erent ways of writing the same term13

as we have taken the equivalence classes so that �x1:x3 :x1; �x2:x3 :x2; : : : all are represented by(3�)1. For �-reduction, this is a bit more complicated. Let us start by an informal example,but the mechanical procedure will be given below:Example 3.1 Now for �-reduction, the term (x1�)(x2�x4)(x3�)x4 reduces to (x3�)x1 (seeExample 2.18 and Figure 6). Note that the presence of a so-called ��-segment (i.e. a �-itemimmediately followed by a �-item), in this example: (x1�)(x2�x4), is the signal for a possible�-reduction. Using de Bruijn's indices, this becomes (remember that the free variable listends in �x3 ; �x2 ; �x1): (1�)(2�)(4�)1 reduces to (3�)1. In fact, if you look at Figure 6, yousee that what is happening is that the ��-segment (1�)(2�) has been cut o� the tree, andthe remaining term to the right of this segment has shifted to the left so that its root (i.e.the root of its tree) will occupy the place where the � of (1�)(2�) used to be. That is not allof course. The 4 has to be decreased to 3 as we have lost one �. The 1 in (4�)1 has to bereplaced by the 1 of (1�). The result is hence (3�)1.The process could hence be summarised by saying that when contracting the redex (t1�)(t2�)in (t1�)(t2�)t, all free variables in t must be decreased by 1 and all variables in t that arebound by the � of (t2�) must be replaced by t1. This might be tricky however, for assumewe write(t1�)(t2�)t!� t[1 := t1; 2 := 1; 3 := 2; : : :]where t[1 := t1; 2 := 1; 3 := 2; : : :] stands for the term t with 1 replaced by t1, 2 replaced by1 and so on. This substitution is moreover simultaneous. Now, assume furthermore that t isof the form ("�)t0. Then for the substitution t[1 := t1; 2 := 1; 3 := 2; : : :] we must perform(("�)t0)[1 := t1; 2 := 1; 3 := 2; : : :].Now, replacing (("�)t0)[1 := t1; 2 := 1; 3 := 2; : : :] by ("�)t0[1 := t1; 2 := 1; 3 := 2; : : :]would not work. Rather it should be:("�)t0[1 := 1; 2 := t1[1 := 2; 2 := 3; : : :]; 3 := 2; : : :]:Based on this observation, we need to increment variables correctly in a term. Thereforewe introduce an updating procedure which we call '-reduction.
t t t t t t tt t t� � � � � � 11 2 4 t t t t tt� � � �3 1(�xi:x2 :xix3)x1(x1�)(x2�xi)(x3�)xi(1�)(2�)(4�)1 x1x3(x3�)x1(3�)1

�� �� � �
Figure 6: �-reduction in our notation14

3.1 '-reductionUpdating variables in a term will take place for example when a term t0 is to be substitutedfor one or many occurrences of a variable v in a term t. What will then happen is that t0cannot be just thrown in t at the targeted occurrences of v, because t may have many �'sto the left of the targeted occurrence of v. This means that t0 must be updated to take intoaccount these �'s. The following example illustrates the point.Example 3.2 Let t � (2�)2 and let t0 � 3. Now, if we want to replace the second occurrenceof 2 in t by t0, we cannot just remove 2 and replace it by 3. If we do so, we would obtain(2�)3 which is not at all the result of the substitution. The result of the substitution shouldbe (2�)4. The idea is that, in replacing the second 2 in (2�)2 by 3, the 3 has to be increasedby 1, as it is now in the scope of one extra �.In order to update variables in a term, we add a new kind of items, '-items. Let us for nowassume that we write (')t to increase the variables of t by 1. So in the above example, whenreplacing the second 2 in (2�)2 by 3, we really want to obtain (2�)(')3. The process howeveris not that simple. Assume we want to replace 2� (where � points to the particular occurrenceof 2) in (2�)2� by ("�)(1�)2. Then, what is the result of (2�)(')("�)(1�)2? Which variablesin ("�)(1�)2 have to be increased? Of course " remains untouched. 1 moreover must remainuntouched, as it is connected to the � in ("�). Hence it is only the 2 of (")(1�)2 which shouldbe increased to 3. So how do we (in a step-wise fashion) decide which variables in a term areto be increased and which are not?Note that all those variables of ("�)(1�)2 that have to be updated are free variables. Letus hence index '. That is, we use ' as a (unary pre�x) function symbol '(k;i) with twoparameters k � 0 and i � 1. The intention of the superscripts when ('(k;i)) travels throught1 is the following:� Superscript i preserves the increment desired for the free variables in t1. This super-script does not increase when passing other �'s.� Superscript k counts the �'s that are internally passed by in t1 (k = `threshold').This Superscript increases when passing another �. The idea is that only the variablesgreater than k have to be increased, as those variables � k are bound and hence shouldnot be increased.The e�ect of the updating must be that all free variables in t1 increase with an amount of i;the k is meant to identify the free variables in t1.Note that the body of a '-item is always the empty term.Now of course updating variables by looking at the tree is an easy process. Just checkhow many �'s you have gone through before a free variable and increase the free variable bythe number of �'s passed. This should happen for all variables in a term. This is achievedby letting the '-items propagate upwards and to the right of the tree scanned. The followingexample illustrates the point:Example 3.3 Assume you want to replace in ("�)(2�)3, the 2 and the 3 by ("�)2. Thenthe result should be ("�)(("�)3�)("�)4. I.e. the 2 has been replaced by ("�)3 (due to the oneextra � that is now before ("�)2) and the 3 has been replaced by ("�)4 (due to the two extra�'s that are now before ("�)2). Figure 7 is self explanatory.15

t t t t tt t� � � � 3" 2 t t t tt tt t tt t� � � ��"" 3 "� 4�x2:":�x3:x1 :x1("�x2)(x1�x3)x1("�)(2�)3 �x2:":�x3:(�x4:":x1):�x4:":x1("�x2)(("�x4)x1�x3)("�x4)x1("�)(("�)3�)("�)4
�� ��

Figure 7: Substitution in our notationThe de�nition below formalises the updating process.De�nition 3.4 ('-reduction)For k 2 IN; i 2 IP; v 2 � and t an
��-term, we have:('-transition rules:)('(k;i))(t�) !' (('(k;i))t�)('(k+1;i))('(k;i))(t�) !' (('(k;i))t�)('(k;i))('-destruction rules:)('(k;i))v !' v + i if v > k('(k;i))v !' v if v � k or v � "The following details about these rules are to be noted.� A term of the form ('(k;i))t will be either such that t is a variable or a �-item or a�-item. In the case t is a variable, we use the '-destruction rule. In the case of a �-itemor a �-item, we have to update all the variables so that we keep the right references.� The case where ('(k;i)) is to the left of a variable, we use one of two '-destruction rules,the �rst for the case that v is free in the original t1 (then a real update occurs), thesecond for the case that v is bound in t1 or v � " (then nothing happens with v).Remark 3.5 Note that we introduce !' as a relation between segments, although it ismeant to be a relation between terms. The rules must be read as follows: rule s!' s0 statesthat t!' t0 when a segment of the form s occurs in t, where t0 is the result of the replacementof this s by s0 in t. In other words, we implicitly assume compatibility (see [Barendregt 92]).We denote the reexive and transitive closure of !' by !!'.
16

Example 3.6 In substituting ("�)2 for 2 in ("�)(2�)3, we have to compensate for one extra�: the one preceding the 2 in ("�)(2�)3. This can be done by substituting ('(0;1))("�)2 forthis 2. Then:("�)(('(0;1))("�)2�)3 !'("�)((('(0;1))"�)('(1;1))2�)3 !!'("�)(("�)3�)3Similarly, in the substitution of ("�)2 for 3 in ("�)(2�)3, we have to compensate for two extra�s: ("�)(2�)('(0;2))("�)2 !!' ("�)(2�)("�)4.Note that ' can be used to increase certain reference numbers. There is a case, however, whenwe wish to decrease a reference number: when we remove the ��-segment in a �-reduction, thevariables in the remaining part of the term in which �-reduction took place, must be decreasedby 1, because one � has disappeared. We will come back to this matter in De�nition 3.14.For convenience sake, we may drop the �rst superscript or both superscripts of the ',according to the following de�nition:De�nition 3.7 ('-abbreviation)For all i � 1, '(i) denotes '(0;i). Moreover, ' denotes '(1) (hence = '(0;1)).3.2 �-reductionIn order to be able to push substitutions ahead, step by step, we shall introduce a new kindof items, called substitution items (or �-items). These �-items can move through thebranches of the term, step-wise, from one node to an adjacent one, until they reach a leaf ofthe tree. At the leaf, if appropriate, a �-item can cause the desired substitution e�ect.In this manner these substitution items can bring about di�erent kinds of �-reductions.Note that we have chosen to make substitution a part of the formal language for the terms;we do not treat it as a meta-operation, as is usually done.We use � as an indexed operator, numbered with superscripts: �(1); �(2); : : :. Hence, a�-item has the form: (t0�(i)).The notions: term, item, segment etc. take the extended
 = f�; �; �; 'g into account.Our terms now are
���'-terms.The intended meaning of a �-item (t0�(i)) is: term t0 is a candidate to be substitutedfor one or more occurrences of a certain variable; the superscript i selects the appropriateoccurrences.Now we can give the rules for one-step �-reduction. This relation is denoted by the symbol!�. The relation �-reduction is the reexive and transitive closure of one-step substitution.It is denoted by !!�. Similarly to our remark about ' in Remark 3.5, we introduce !� asa relation between segments, although it is meant to be a relation between terms. The rulesmust be read as follows: rule s!� s0 states that t!� t0 when a segment of the form s occursin t, where t0 is the result of the replacement of this s by s0 in t.We keep to the same meta-level notation as before, but let !; !1; !2; : : : range over �, �,' and �.Now, in order to keep the references inside a �-item correct during the process of �-transition, a '-item ('(k;i)) with k = 0 and i = 1 is added inside the �-item, as follows:((')t�(j)). Here are the �-reduction rules: 17

De�nition 3.8 (one-step �-reduction)For i 2 IP; v 2 �; t1; t2
��-terms, we have:(�-generation rule:)(t1�)(t2�)!� (t1�)(t2�)((')t1�(1))(�-transition rules:)(t1�(i))(t2�) !� ((t1�(i))t2�)((')t1�(i+1))(t1�(i))(t2�) !� ((t1�(i))t2�)(t1�(i))(�-destruction rules:)(t1�(i))i !� t1(t1�(i))v !� v if v 6� iNote that in the �-transition rules, when a �-item jumps over a �-item, then the superscriptof the � increases by one. This is because that superscript counts the number of �'s actuallypassed, in order to �nd the right (occurrence of the) variable involved.The �-destruction rules apply when the �-item has reached a leaf of the tree. Whenthe superscript i of the � is in accordance with the value of the variable, then we have metan intended occurrence of the variable; the substitution of t1 for i takes place. When thesuperscript of � and the variable in question do not match, then nothing happens to thevariable, and the �-item vanishes without e�ect.Finally, we note that our transition rules as given here do not allow for �-items to \pass"other �-items.Compare the �-generation rule with (�) as de�ned in Section 2. Our rule does not getrid of (t1�)(t2�) but keeps it because we may allow for local �-reduction by changing the�-transition rules so some variables will still be bound by the � in (t2�). We shall see inDe�nition 3.14 how we can dispose of a reducible segment when there are no more customersfor the � involved, i.e. when there is no variable bound by this � in the term.The following lemma shows that �-reduction reaches eventually all occurrences to besubstituted. I.e., there is a path for global �-reduction.Lemma 3.9 In (t1�)(t2�)t3, �-reduction substitutes t1 for all occurrences of the variablesbound by the � of (t2�) in t3.Proof: The proof is by an easy induction on t3 in (t1�)(t2�)((')t1�(1))t3. 2Lemma 3.10 In (t1�(i))t2, �-reduction substitutes t1 for all occurrences of variables in t2which are bound by the same � being the i-th entry (from the right) in the free variable list oft2. Moreover, the (')'s look after the updating of t2.Proof: By induction on t2, noting that during propagation, everytime the �-item passesa �, the superscript at the top of � is increased by 1. Hence keeping track of the variable tobe substituted for. 2The example below demonstrates how �-reduction works.18

Example 3.111. (2�(1))(4�)1 !� ((2�(1))4�)(2�(1))1!!� (4�)2.2. ((3�)2�(1))(1�)1 !� (((3�)2�(1))1�)((')(3�)2�(2))1!!�' ((3�)2�)((4�)3�(2))1!� ((3�)2�)1.3. ((3�)2�(4))(1�)1 !� (((3�)2�(4))1�)((')(3�)2�(5))1!!�' (1�)((4�)3�(5))1!� (1�)1.4. (1�)(2�)(3�)2 !�(1�)(2�)((')1 �(1))(3�)2 !�(1�)(2�)(((')1 �(1))3�)((')(')1 �(2))2!!�;'(1�)(2�)(((')1 �(1))3�)3 !�(1�)(2�)(3�)3Now the following lemma shows that the right bond between variables and their binding �'sare maintained.Lemma 3.12 If s(t1�)(t2�)t !� s(t1�)(t2�)((')t1�(1))t then in s(t1�)(t2�)((')t1�(1))t, allvariable occurrences are bound by the same �'s which bound them in s(t1�)(t2�)t.Proof: We will only show how some cases can be carried out. The rest will be an easyexercise left to the reader. Let x be a variable in (t1�)(t2�)((')t1�(1)). There are only twocases to consider.� case v occurs in (t1�)(t2�), then nothing to prove, as nothing has changed for thatoccurrence.� case v occurs in (('(0;1))t1�(1)), in particular in t1 then a bound variable in t1 clearlyremains bound by the same � in t1. A free variable v in t1 becomes updated by 1 bythe '(0;1). This is exactly what is intended, since there is one extra � that v has to gothrough on its way to its �. That is, the � of (t2�). 2Finally, we shall not discuss local substitution (the reader is referred to [KN 93]). We shallhowever just mention that by adding the �-destruction rule:(t1�(i))t!� tto De�nition 3.8, local substitution becomes available in the system. The reader is invited tocheck this.3.3 �-reductionNow let us consider �-reduction. Recall that in �-generation, we generated �-items. This willbe repeated below:De�nition 3.13 (�-generation repeated)(t1�)(t2�)!� (t1�)(t2�)((')t1�(1)). 19

Recall that the (') is meant to compensate for the \extra" � being passed. Recall moreoverthat the ��-pair (t1�)(t2�) is not omitted. This is because we may want local substitutiononly.Now, the reducible segment may be \without customers". Then �-generation is unde-sirable since this leads to useless e�orts. Hence it seems a wise policy to restrict the use ofthe �-generation rule to those cases where the main � of the reducible segment does actuallybind at least one variable. When this is not the case, we shall speak of a void ��-segment.Such a segment may be removed. One may compare this case to the application of a constantfunction to some argument; the result is always the (unchanged) body of the function inquestion. In this section, we shall present two ways of removing void ��-segments.3.3.1 Making i negative in ('(k;i))Up to now, the i-superscript in ('(k;i)) has been considered an element of IP . If however, weallow in ('(k;i)), i to be negative, we could include the following rule:De�nition 3.14 (��-destruction rule)For all t1; t2
��-terms, we have: (t1�)(t2�)!; ('(0;�1)) provided that the � in (t2�) does notbind any variable in the term following (t1�)(t2�), i.e. provided that (t1�)(t2�) is void.Sometimes we denote !; by void �-reduction.It is clear that the provision in this de�nition is necessary: otherwise, bound variables wouldbecome, unintentionally, free. The updating ('(0;�1))-item is meant to compensate for thedisappearing �. Now, even though the superscript �1 is negative; this does not cause prob-lems, precisely since the � of (t2�) does not bind any variable in the term following it. Infact, negative superscripts can have the e�ect that di�erent variables become identi�ed:('(1;�1))(2�)1 !!' (1�)1Hence, updating is no longer an injection, which can be highly undesirable.We note, however, that the mentioned unpleasant e�ects do not occur in the settingpresented above: a '-item with a negative exponent only occurs after the clean-up of a void��-segment, hence with a � that does not bind any variable. Therefore, the injective propertyof updating is not threatened.Now the �-rules together with the ��-destruction rule, enable us to accomplish (the usual)�-reduction as a combination of �-steps and '-steps:De�nition 3.15 (one-step �-reduction !�0)One-step �-reduction of an
��-term is the combination of one �-generation from a ��-segment s, the transition of the generated �-item through the appropriate subterm in a globalmanner, followed by a number of �-destructions, and updated by '-items until again an
��-term is obtained. Finally, there follows one void �-reduction (i.e. a ��-destruction) for thedisposal of s, and we use the '-rules to dispose completely of the '-items.Notation 3.16 We denote one-step �-reduction using negative superscripts for ' by t!�0 t0,and (ordinary) �-reduction | its reexive and transitive closure | by t !!�0 t0. We write=�0 for the equivalence relation generated by !!�0 . Again we use � for syntactic identity.Note that there are no �0-items. 20

Example 3.17(1�)(2�)(4�)1 !�0 (3�)1 as follows:(1�)(2�)(4�)1 !� (1�)(2�)((')1�(1))(4�)1!�' (1�)(2�)((2�(1))4�)(2�(1))1!!� (1�)(2�)(4�)2!; ('(0;�1))(4�)2!' (('(0;�1))4�)('(0;�1))2!!' (3�)1:Example 3.18(1�)(2�)(3�)2 !�0 (2�)2 as follows:(1�)(2�)(3�)2 !!�' (1�)(2�)(3�)3 (see Example 3.11, 4)!; ('(0;�1))(3�)3!' (('(0;�1))3�)('(1;�1))3!!' (2�)2:We shall not however in this paper use negative superscripts for ' in order to make a cleardistinction between the harmless positive updating and the potentially dangerous negativeupdating (see our remark after De�nition 3.14). Rather, we shall introduce a new kind ofitems (�(i)) for i 2 IP with the same e�ect as ('(i;�1)) for void reductions. To be precise:(�(i)) is equivalent to ('(i�1;�1)); but in the case of void reductions, ('(i�1;�1)) has the samee�ect as ('(i;�1)), as the reader may easily see.3.3.2 �-reduction using (�(i))First we replace the void segment by (�(1)). Then we let the (�(i)) scan the term to its rightdoing the following:� If (�(i)) scans a � then i increases by 1.� If (�(i)) scans a � then nothing happens.� If (�(i)) reaches a superscript m then if m � i nothing happens and if m > i then m isdecreased by 1.Now the meaning of (�(i))t is: decrease all variables in t that are greater than i by an amountof 1. Those variables that are smaller or equal to i in t are bound by some �s in t and henceshould not be decreased. Now the � rules are de�ned as follows (recall that (�(i)) occurs onlyin an
��-term):De�nition 3.19 (�-reduction)For all t1; t2; t
��-terms, v 2 � and i 2 IP we have:(�-generation rule:)(t1�)(t2�)t!� (�(1))t if (t1�)(t2�) is void in t(�-transition rules:)(�(i))(t�) !� ((�(i))t�)(�(i+1))(�(i))(t�) !� ((�(i))t�)(�(i)) 21

(�-destruction rules:)(�(i))v !� v if v � " or v < i(�(i))v !� v � 1 if i < vNote in the second �-destruction rule that v > 1 as i � 1. Note moreover that we never reachthe case where we get (�(i))i (see Lemma 3.22).Similarly to �- and '-reduction, we implicitly assume the compatibility rules (see Re-mark 3.5) and we denote the reexive and transitive closure of !� by !!�.The one-step �-reduction that we assume in this paper hence will be based on this (�(i))and is de�ned as follows:De�nition 3.20 (One-step �-reduction !�00)One-step �-reduction of an
��-term is the combination of one �-generation from a ��-segment s, the transition of the generated �-item through the appropriate subterm in a globalmanner, followed by a number of �-destructions, and updated by '-items until again an
��-term is obtained. Finally, we replace the now void segment s by (�(1))t and we use the�-reduction rules to dispose completely of � in (�(1))t.Finally we use the same notation as in Notation 3.16 except that we change �0 to �00.Example 3.21 (4�)(�)(1�)(1�)3 !�00 (4�)(1�)6:(4�)(�)(1�)(1�)3 !� (4�)(�)((')4�(1))(1�)(1�)3!!�;' (4�)(�)(5�)(1�)7!� (�(1))(5�)(1�)7!� ((�(1))5�)(�(2))(1�)7!� (4�)(�(2))(1�)7!!� (4�)(1�)(�(3))7!� (4�)(1�)6The following lemma is needed when discussing the semantics of �-reduction:Lemma 3.22 If t is an
��-term and t !!� t0 then for all (�(i))t00 subterm of t0 with t00 an
��-term, we have that i does not refer to any free variable of t00. In particular, if t !!� t0then we never �nd in t0, (�(i))i as a subterm.Proof: By induction on !!�. 24 Translating � in
�Recall that we assume a free variable list F , which is drawn in Figure 2. Let us enumeratethis list in the order in which the variables appear from right to left. We call this enumerationfunction y, so that:yx1 = 1; yx2 = 2; yx3 = 3; : : :.We de�ne moreover, for v 2 F , y�v to be �, y� to be � and y" to be ".Now, let us take each term of � into a term of
�. For this we de�ne the following notions:22

De�nition 4.1 (termi)We de�ne termi to be a partial function which takes non empty segments of � and returnsterms of � as follows:term1((t1!1)s) =df t1,termi((t1!1)s) =df termi�1(s), for i � 2; s 6= ;De�nition 4.2 (lami)We de�ne lami to be a function which takes a segment s of � and returns the segment(�v1)(�v2) : : : (�vk) obtained by removing all the main �-items from the �rst (i�1) main-itemsof s and by removing all the t's from the main �-items (t�v) of these (i�1) main-items. lamiis de�ned as follows:lami(s) =df ;lami((t�v)s) =df (�v)lami�1(s) for i � 2 and weight(s) � i� 2lam((t�)s) =df lam(s) for i � 2 and weight(s) � i� 2We take Seqi=ni=1 (ti!i) to stand for: (t1!1)(t2!2) : : : (tn!n), n � 0.Now we de�ne the translation as follows:De�nition 4.3 (b)For t; t1; t2 2 �; v; v0 2 F ; s segment of �, we de�ne b, the translation function from � into
� as follows:b(t) =df b0(t; ;)b(s) =df body(b(s"))b0("; s) =df "b0(v; ;) =df yv (note v 6� ")b0(v; s(�v)) =df 1b0(v; s(�v0)) =df 1 + b0(v; s) if v0 6� vb0((t1�v)t2; s) =df (b0(t1; s)�)b0(t2; s(�v))b0((t1�)t2; s) =df (b0(t1; s)�)b0(t2; s)Here b0(v; s) �nds the de Bruijn number corresponding to v whithin context s (see Exam-ple 4.5). b0((t1�v)t2; s) �nds the translation of t1 with respect to s and the translation of t2with respect to s(�v). b0((t1�)t2; s) is now obvious.Lemma 4.4If s1; s2 are segments of �; v 2 F [f"g, thenb0(s1v; s2) = Seqi=ni=1 (b0(termi(s1); s2lami(s1))yopi(s1))b0(v; s2lamn+1(s1)); for n = weight(s1).Proof: By induction on the length of s1. 2Essentially, what this lemma is saying is that, given a term t of the form (t1!1)(t2!2) : : : (tn!n)v �s1v of �, then b0(t; s2) = (t01 y !1)(t02 y !2) : : : (t0n y !n)v0 where t0i � b0(ti; s2lami(s1))and v0 � b0(v; s2lamn+1(body(t))).Hence, t and b0(t; s2) will have the same trees, except that all �'s lose their subscripts andall variables are replaced by the correct indices. These correct indices are found by tracingthe �'s. That is why, in t0i, we had to attach all the �s preceding t0i.Now the following example illustrates how some terms of � can be translated in
�.23

Example 4.51. b((x1�x4)(x2�x3)x4) � (b0(x1; ;)�)(b0(x2; (�x4))�)b0(x4; (�x4)(�x3)) � (yx1�)(3�)2 � (1�)(3�)2.2. b((x1�)(x2�x4)(x3�)x4) � (1�)(2�)(4�)1.3. b(((x3�x4)x4�)x1) � b0((x3�x4)x4; ;)�)b0(x1; ;) � ((b0(x3; ;)�)b0(x4; (�x4))�)1 � ((3�)1�)1Lemma 4.6 For any t in �, b(t) is well de�ned.Proof: By induction on t 2 �. 2Note that the translation function b is not injective. This is because b((x1�x2)x2) �b((x1�x3)x3) but (x1�x2)x2 6� (x1�x3)x3. b however is surjective but we will see this inSection 5 (see Lemma 5.9). For now the following lemma is informative about b.Lemma 4.7 If t; t0 are terms in � such that t =� t0 then b(t) � b(t0).Proof: By induction on t =� t0. 25 Translating
� in �Our �rst step in providing a semantics of substitution is to provide a translation of
� to �.In carrying out the translation we have to associate to each de Bruijn index a variable, whichwill be either free or bound in the term. We need to make sure of course that if a variable isfree, then it will not become unintentionally bound by our choice of the name of a bindingvariable.Example 5.1 In interpreting (�)2, we may choose any of (�xi)x1 for i 6= 1 to be the corre-sponding �-term. We cannot however take (�x1)x1.So as an x for the �, we must choose xi for i 2 IP , but we must make sure that no free variablewill have the same name as the chosen xi. There is another case where we have to be careful.This is given in the following example:Example 5.2 In interpreting the
�-subterms as �-terms, one should extend the free vari-able list in an obvious manner. For example, the term t � ((1�)2�)(1�)3 has for any i; j 6= 1,((x1�)x2�xi)(xi�xj)x1 as a corresponding �-term. Now the subterm (1�)3 of t should beconsidered relative to a free variable list extended with �xi : : : : ; �x4 ; �x3 ; �x2 ; �x1 ; �xi , andhence corresponds with (xi�xj)x1 for j 6= 1.Now all this need to check whether the variable we choose now as the name of a boundvariable will actually occur free in the term at some stage, pushes us to choose a less clumsyapproach. The idea is to start from the list F which is given in Figure 2 and to work at alevel between
� and �. In this mid-level �, we always take the subscripts of �'s to be ina list l = x0; x00; : : : which is disjoint with F . Now, there will be no danger that we mightchoose subscripts of �'s to be any xi which will eventually occur in the term, as F \ l = ;.24

De�nition 5.3 (�) The terms of � are de�ned similarly to those of � except that all boundvariables are indexed by elements from l instead of elements from F as in �. Terms of � arewritten in the item notation, similarly to the terms of
� and �.Examples of terms of � are "; (x1�x0)x0 and (x1�x0)(x0�)x00.The notions of bound and free variables, substitution, �- and �-conversion or reduction,and � de�ned for � can be easily extended to �. For example here's how substitution isextended.De�nition 5.4 (Substitution in �) If t; t0 are terms in � (i.e. all bound variables are in l,and all free variables are in F [l), and if v 2 F [l, then t[v := t0]0 is exactly de�ned as inDe�nition 2.13 except that, [v := t0] is replaced everywhere by [v := t0]0, [v0 := v00] is replacedby [v0 := v00]0 and in the last clause, F is replaced by l.Notation 5.5 Similarly to �, we use FV (t) and BV (t) to �nd the free and bound variablesof t in �, even though this is an extension of FV and BV in �. We use �, � for the extended� and �-conversion/reduction, and as we saw above, we use t[� := t0]0 for substitution in �.When all de Bruijn's indices in an
��-term t have been replaced by names from F and lobtaining a term t0 in �, we can easily map the term t0 to � by replacing all the variables inl by variables in F which do not occur in the term. Now in order to assure the uniqueness ofthe translation (between
�;� and �), and in order to avoid binding free variables, we takethe following conventions:1. We assume that l is ordered and that the order is x0; x00; : : :.2. We assume that any two elements of l are distinct exactly as all variables in F aredistinct.3. We always take the �rst fresh variable Xi in l as a subscript to the � in hand.Now, we de�ne the translation from a subclass of � to � as follows:De�nition 5.6 (Translating � in � via �) If t is a term in � such that FV (t) � F andBV (t) � l then we translate t to t0 by �rst looking for the biggest free variable in t (recall Fis ordered). Say this free variable is xi for i 2 IP . Now we take the smallest bound variable int (recall l is ordered). We replace all the occurrences of this bound variable by xi+1. Then wereplace the second smallest bound variable by xi+2 and so on until no variables from l appearin t. We call the translation of the �-term t in �, �(t).Note that this de�nition only translates t if FV (t) � F and BV (t) � l. But not every termof � satis�es this property. All terms of � however which are translations of terms in
���'��satisfy this property (see Lemma 5.54).Example 5.7 The translation of (�)2 in the mid-level � is (�x0)x1The translation of ((1�)2�)(1�)3 in the mid-level � is ((x1�)x2�x0)(x0�x00)x1.Finally these terms in the mid-level are transformed into terms of � in a unique way as follows:The greatest variable of F in (�x0)x1 is x1, hence x0 gets replaced by x2, giving (�x2)x1.The greatest variable of F in ((x1�)x2�x0)(x0�x00)x1 is x2, hence all occurrences of x0; x00 getreplaced by x3; x4 respectively giving ((x1�)x2�x3)(x3�x4)x1.25

Now, as � and � are very similar, we shall avoid the trivial step of translating between �and � and shall show the soundness in �. The reader can see however that this simpli�cationdoes not a�ect any of the results of this paper.But, how do we provide this translation which takes
���'�-terms to the mid-level? Thiswe may start as follows:5.1 The inverse function eWe may give the de�nition of the function e which takes elements of
��� to the mid-levelmentioned above as follows:De�nition 5.8 (e)Let t; t1; t2 2
��� ; s be a segment of � consisting of items of the form (�X) for X 2 l; l 2L1(l); j 2 IP; v 2 �;X 2 l. The function e which takes
��-terms into terms in � (whichuse variables in F [l) is de�ned as follows:e(t) =df c(t; ;; l)c(v; s; l) =df d(v; s)c((t1�)t2; s; l) =df (c(t1; s; l)�)c(t2; s; tlnl(t1)(l))c((t1�)t2; s; l) =df (c(t1; s; l)�hd1+nl(t1)(l))c(t2; s(�hd1+nl(t1)(l)); tl1+nl(t1)(l))d(j; ;) =df xjd("; s) =df "d(1; s(�X)) =df Xd(n; s(�X)) =df d(n� 1; s) if n > 1Here L1(l) is the set of those sublists of l which are equal to l with an initial segmentremoved (see De�nition 5.16). Moreover, we take hdi and tli, for i � 1, to be functionswhich take lists and return the ith element of the list, respectively the list without its �rst ielements (see Section 5.2). Recall moreover that nl(t) is de�ned to be the number of �'s in t(see De�nition 2.25).Note that d associates with each de Bruijn's index, the right variable in F[l which shouldreplace it.Lemma 5.9 e is well de�ned and b � � � e(t) � t for any t 2
���Proof: Easy. 2Example 5.10e(((2�)2�)1) � c(((2�)2�)1; ;; l)� (c((2�)2; ;; l)�x00)c(1; (�x00); fx000; xiv ; : : :g)� ((c(2; ;; l)�x0)c(2; (�x0); fx00; x000; : : :g)�x00)d(1; (�x00))� ((d(2; ;)�x0)d(2; (�x0))�x00)x00� ((x2�x0)d(1; ;)�x00)x00� ((x2�x0)x1�x00)x00(Note that the �rst � to be be named becomes �x00 and not �x0 , due to the fact that there isone � in (2�)2; i.e. nl((2�)2) = 1, hence �hd1+nl((2�)2)(l) = �hd2(l) = �x00 .) This �-term maybe replaced by the term ((x2�x3)x1�x4)x4 in �.26

Example 5.11e((�)(1�)(1�)3) � c((�)(1�)(1�)3; ;; l)� (c("; ;; l)�x0)c((1�)(1�)3; (�x0); fx00; x000; : : :g)� (d("; ;)�x0)(c(1; (�x0); fx00; x000; : : :g)�x00)c((1�)3; (�x0)(�x00); fx000; : : :g)� ("�x0)(d(1; (�x0))�x00)(c(1; (�x0)(�x00); fx000; : : :g)�)c(3; (�x0)(�x00); fx000; : : :g)� ("�x0)(x0�x00)(d(1; (�x0)(�x00))�)d(3; (�x0)(�x00))� (�x0)(x0�x00)(x00�)d(2; (�x0))� (�x0)(x0�x00)(x00�)d(1; ;)� (�x0)(x0�x00)(x00�)x1Finally, we get rid of the variables of l in (�x0)(x0�x00)(x00�)x1 by replacing every x0 by x2 andevery x00 by x3 obtaining (�x2)(x2�x3)(x3�)x1This e however does not take into account '-, �- and �-items. In fact, it is di�cult to providethe translation of '-items without watching what happens in the lists F and l. Look at thefollowing example:Example 5.12 Take the term in
� to be ('(1;2))(1�)(2�)3. Now, the translation of this termshould be: (x1�)(x4�x0)x4 and will �nally be transformed into the �-term (x1�)(x4�x5)x4.What this really mean is that due to the presence of ('(1;2)), we translate (1�)(2�)3 not interms of F and l as we have done so far, but in terms of F 0 and l where F 0 = : : : x5++x4++x1.I.e. the x2 and x3 disappear from F . (For lists notation, see the following section.)This process of removing elements from F must also be extended to sublists of F [l in orderto translate subterms of terms. Moreover, we need, in order to show the correctness of ourtranlation and the soundness of our reduction rules, to have some basic formulation of lists.We start therefore by setting the ground for these lists.5.2 Variables and listsDe�nition 5.13 (�)We de�ne the set of variables � to be l [F . We let �; �1; �2; �0; � � � range over �. Note that" 62 �. Recall moreover that v; v0; v1; v2; : : : range over F , that F has x1; x2; : : : for elementsand that l = x0; x00; : : :. Furthermore, we take X;X 0;X1;X2; : : : to range over l. We refersometimes to elements of F as free variables and to elements of l as bound variables.Now, we will use lists as an important part of our semantic function. We assume the usualbasic list operations such as concatenation ++ and head and tail, hd and tl. For i 2 IP , wetake hd1 =df hd and hdi+1 =df hd � hdi, and we de�ne tli similarly. Moreover, the set ofoperators n;�;� and 2 are also applicable for lists and we will mix sets and lists at will. Wetake v; v0; v1; v2; : : : to range over (�nite and in�nite) lists.As we have seen in Example 5.12, we need to add/remove variables from F due to theupdating function ('k;i)). Hence we de�ne the following notions related to lists:De�nition 5.14 (reversed list of variables, left part, right part)27

� Every list is written as the sum of its ordered elements from right to left In particular,we write F as : : :++x2 ++x1 and l as : : :++x00 ++x0.� If v = : : :++�2 ++�1, then for m � 1, we de�ne v�m to be : : :++�m+1 ++�m. v�mis also called the left part of v starting at m. Note that v�m = tlm�1(v). In particular,we de�ne F�m to be : : : xm+1 ++xm for m � 1.� If v = : : :++�2++�1, then for m � 1, we de�ne v<m to be �m�1++�m�2++ : : :++�1.Note that v<1 is the empty list and v<2 = hd(v). v<m is also called the right part of vending before m. In particular, we de�ne F<m to be xm�1 ++xm�2 ++ : : : ++x1 form � 1.De�nition 5.15 (L) If A is a set, then we de�ne L(A) to be the set of all �nite lists generatedby A. We assume that all elements a 2 A occur at most once, in each of these �nite lists.Obviously, the empty list ; 2 L(A) for every set A.Note that L only generates �nite lists. In particular, l 62 L(l).De�nition 5.16 (L1(v))We de�ne L1(v) to be fv�i; i 2 IPg. I.e. elements of L1(v) are v; tl(v) and so on.Lists that we will be using often are those for whom a right part is a �nite list of elements of� [f g (where is a special symbol 62 � whose meaning for lists will become clear below),and a left part is F�m for some m 2 IP . For this reason, we de�ne the following:De�nition 5.17 (Lsplit)Lsplit is de�ned to be: fF�m ++v;m 2 IP; v 2 L(� [f g)gHence, if v 2 Lsplit then v can be split up in two lists: v � F�m ++v0.1. The left sublist, is an in�nite left part of F .2. The right sublist is an element of L(� [f g). That is, a �nite list of elements from� [f g.De�nition 5.18 (L�1(�))We de�ne L�1(�) to be: fv; v 2 Lsplit ^ v is -freeg. I.e. elements of L�1(�) are thoseelements of Lsplit which do not contain .De�nition 5.19 (L)We de�ne L to be Lsplit [L(� [f g).Now the following function intends to measure the length of �nite lists in which appears.From this function, the reader can guess that removes an element from the set.De�nition 5.20 The function jj � jj : L(� [f g) 7�! ZZ is de�ned as follows:For all v 2 L(� [f g); � 2 �:jj;jj = 0jjv ++ jj = jjvjj � 1jjv ++�jj = jjvjj+ 1 28

We write jvj for the length of v (i.e. the number of all its elements including).Lemma 5.21 For all v 2 L(� [f g), jjvjj � jvj. Moreover, if v 2 L(�) then jjvjj = jvj.Proof: Obvious. 2Moreover, we de�ne the following partial function:De�nition 5.22 (comp) For all v 2 L ; � 2 �; n 2 IP :comp1(v ++�) =df �compn+1(v ++�) =df compn(v)compn(v ++� ++ i+1) =df compn(v ++ i); i 2 INHere n stands for ++ : : :++ | {z }n for n 2 IN .The idea of comp is to select the appropriate named variable, given a list of (di�erent) namedvariables. We write compn(v) ", when compn(v) is de�ned.Lemma 5.23 For all v 2 L(� [f g); n 2 IP , if n � jjvjj then compn(v) " ^compn(v) 2 v.Proof: By induction on jvj noting that if jjvjj � 1 then 9� 2 � such that � 2 v. 2Corollary 5.24 For all v 2 L(�); n 2 IP , if n � jvj then compn(v) " ^compn(v) 2 v.Proof: Obvious, using Lemmas 5.21 and 5.23. 2Lemma 5.25 For all v 2 Lsplit; n 2 IP; compn(v) " ^compn(v) 2 v.Proof: By induction on n. 2Note that the only case where compn(v) is unde�ned is when n > jjvjj.Lemma 5.26 For all v 2 Lsplit; n 2 IP; i 2 IN; compn(v ++ i) = compn+i(v).Proof: Easy. 2Lemma 5.27 For all v0 2 Lsplit; v 2 L(� [f g); � 2 �; n 2 IP , and i 2 IN , we have:1. If n > jjvjj � 0 then compn(v0 ++v) � compn�jjvjj(v0).2. If n > jjvjj � 0 then compn(v0 ++ i ++v) � compn+i(v0 ++v).3. If n � jjvjj then compn(v0 ++v) � compn(v).4. compn(v0 ++� ++ ++v) � compn(v0 ++v).Proof:1. By induction on jvj using Lemma 5.26.2. Using Lemma 5.26 and 1 above. 29

3. By induction on jvj using Lemma 5.26.4. � Case n � jjvjj or n > jjvjj � 0, then use the de�nition of comp and cases 1 and 3above.� Case n > jjvjj and jjvjj < 0 then by induction on jvj. 2Finally, the following de�nition takes a segment to the list of variables which are indices ofthe �s occurring in the main items of the segment.De�nition 5.28If s is a segment, then we de�ne the list based on s to be as follows: sl(;) = ;, sl((t1�)s0) =sl(s0) and sl((t��)s0) = � ++sl(s0).5.3 The semantics of
�-terms: an initial accountThe method here is to provide the semantics of the terms using lists of variables v and v0 sothat [jv; v0; t0]j where t0 is a subterm of t searches for the translation of t0 2
� using v to givenames to the free variables in t0 and v0 to give names to the bound variables in t0. Moreover,v \ v0 is taken to be ; in order to avoid binding any free variable.Now, if we were to determine the semantics of the �- and �-terms only, then it is su�cientto consider v 2 L(l) as we have done in the de�nition of e in De�nition 5.8. The list v thenmay be considered as the list of named variables to be used for free variables in t0 which arebound in the original term t; variables free in t obtain their names relative to the �xed list: : : x3 ++x2 ++x1. With variable updating however, we will consider v to be denumerablyin�nite and in Lsplit. We start �rst with only �nite lists of elements of l and we provide thesemantics of the �- and �-terms as follows:De�nition 5.29 (�- and �-semantics)For all t1; t2 2
��� ; v 2 L(l); v0 2 L1(l); v \ v0 = ;; n 2 IP [f"g,[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�X)[jv ++X; v0�i+1; t2]j for i = nl(t1) + 1;X = hdi(v0)[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�)[jv; v0�i; t2]j for i = nl(t1) + 1[jv; v0;n]j =df 8><>: compn(v) if n � jvjxn�jvj n > jvj" if n = "That is, we save in v all those variables which are now free in the term we are calculating,but which were bound originally. Note that the condition v \ v0 = ; is necessary; otherwisewe would bind variables that are meant to be free.Example 5.30 (see Example 5.10)[j;; l; ((2�)2�)1]j �([j;; l; (2�)2]j�x00)[jx00; l�3; 1]j �(([j;; l; 2]j�x0)[jx0; l�2; 2]j�x00)comp1(x00) �((x2�j;j�x0)x2�jx0j�x00)x00 �((x2�x0)x1�x00)x00 �30

Example 5.31 (see Example 5.11)[j;; l; (�)(1�)(1�)3]j �([j;; l; "]j�x0)[jx0; l�2; (1�)(1�)3]j �("�x0)([jx0; l�2; 1]j�x00)[jx0x00; l�3; (1�)3]j �("�x0)(comp1(x0)�x00)([jx0x00; l�3; 1]j�)[jx0x00; l�3; 3]j �("�x0)(x0�x00)(comp1(x0x00)�)x3�jx0x00j �("�x0)(x0�x00)(x00�)x1If however we calculate [jx0; l; (�)(1�)(1�)3]j, then we would get ("�x0)(x0�x00)(x00�)x0 whichis not the intended meaning for (�)(1�)(1�)3. Note that the list v0 is superuous when wealways start with [j;; l; t0]j, since then v0 � l�jvj+1 and remains so.Lemma 5.32 For any v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2
��� ; FV ([jv; v0; t]j) � v [F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lemma 5.33 [j�; �; �]j as de�ned in De�nition 5.29 is well de�ned. That is for all v 2 L(l); v0 2L1(l); v \ v0 = ;; t 2
��� , [jv; v0; t]j is a unique term of �.Proof: By induction on t 2
��� using Corollary 5.24. 2Now we will prove that e and [j;; l; �]j return the same �-terms.Lemma 5.34 For all t 2
��� ; s segment from the mid-level and v 2 L1(l); c(t; s; v) �[jsl(s); v; t]j.Proof: By induction on t. 2Corollary 5.35 For all t 2
��� ; e(t) � [j;; l; t]j.Proof: Obvious. 2Example 5.36 Let t � ("�)((1�)((1�)(2�)3�)(2�)2�)3. Now, the reader can check that:e(t) � [j;; l; t]j � ("�x0)((x0�x00)((x00�)(x0�x000)x0�x000)(x00�x0000)x000�x00)x1:Furthermore, �(e(t)) � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x4)(x3�x5)x4�x3)x1 and the tree of�(e(t)) is given in Figure 8. We leave it to the reader to �ll in the tree of t.5.4 Extending the initial accountWe have not so far, in either the translation using e or that of [j�; �; �]j, de�ned the meaningof �-items and '-items. The meaning of the �rst is straightforward. In fact, for i 2 IP ,t1; t2 2
��� ; v 2 L(l) and v0 2 L1(l); v \ v0 = ;, we shall de�ne:[jv; v0; (t1�(i))t2]j =df [jv; v0; t2]j[[jv; v0; i]j := [jv; v0�1+nl(t2); t1]j]031

s s ss s s s ss ss s ss s
" x2 x3 x2x3

x1 x4x2�x2 �x3�x3 �x4 �x5� �x4
t � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x4)(x3�x5)x4�x3)x1 � ("�)((1�)((1�)(2�)3�)(2�)2�)3Figure 8: The tree of �(e(t))where t1[v := t2]0 is the substitution in the mid-level � (which uses F [l) given in De�ni-tion 5.4.When it comes to the meaning of [jv; v0; ('(k;i))t]j, then things may not be obvious. Infact, the intended meaning of ('(k;i))t is: add i to all free variables greater than k, occurringwithin term t. Let us moreover summarize what our semantic function does. In [jv; v0; t]j, theterm t is written exactly as it is (i.e. �'s and �'s stay at their original positions in t). The freevariables in t however (which are indices of course) are replaced by variables from v [F (seeLemma 5.32). The index itself decides which variable from v[F is to replace it. For example[jx000x00x0; l�4; (1�)(2�)3]j � (x0�)(x00�)x000[jx000x00x0; l�4; (1�)(2�)1]j � (x0�)(x00�x0)x0[jx0; l�2; 2]j � x1Now, when we come to look for the meaning of [jv; v0; ('(k;i)t]j, then all those variables in twhich are smaller than or equal to k, take the same value as if we were only calculating[jv; v0; t]j. Those variables bigger than k must not take the original values they would havetaken in [jv; v0; t]j. Rather, looking for their corresponding variables in v, we have to shift stilli positions to the left. I.e. if the index is n, where n > k then the variable corresponding ton is not the nth variable from right to left in v. Rather, it is the (n+ i)th variable from theright. For example:[jx0000x000x00x0; l�5; ('(1;2))(1�)2]j � (x0�)x0000Hence to calculate, let us say, [jv; v0; ('(k;i))t]j, we have to consider several cases:� Case jvj � k + i. Then the trailing k elements of list v are to be kept but the next ielements are to be erased resulting in a list v1 = left(v; jvj�k� i)++right(v; k) whereleft and right have the obvious meaning. I.e. left(v;m) = v�m, right(v;m) = v<m.Hence,[jv; v0; ('(k;i))t]j � [jv1; v0; t]jFor example: [jx0000x000x00x0; l�5; ('(1;2))2]j � [jx0000x0; l�5; 2]j � x0000.32

� Case jvj < k where v 2 L(l). Each free variable n in t, greater than k has to be increasedby i. Now because jvj < k+i < n+i, such a free variable will be associated with xn�jvj+i.For example, [jx0; l�2; ('(2;3))3]j � x5 and [j;; l; ('(2;3))3]j � x6. For a free variable n in twith n � k, nothing changes: take xn�jvj. For example: [jx0; l�2;'(2;3)2]j � x1.� Case k � jvj < k + i. This is a mixture of the above two cases. For example[jx00x0; l�3; ('(1;2))(1�)2]j = (x0�)x2In all these cases, the list v has to be updated, when calculating '-items. There are essentiallytwo ways to update the list so that the above three cases are accommodated. The �rstalternative will be called eager erasing and conceptually consists in immediately erasing thesuperuous elements in x. The second alternative is a stepwise approach and will be namedlazy erasing.Eager erasing just deletes the elements. So, if jvj � k + i, then some function like[jv; v0; ('(k;i))t]j � [j(left(v; jvj � k � i) + +right(v; k); v0; t]j would do the job.Now for lazy erasing, the trick is to allow a special symbol to become an element of v.The operational meaning of is: on going left, delete the �rst named variable. We will uselazy erasing in this paper. Moreover, as is traditional with our approach, we will use withsuperscripts. We write 1 as and 0 as the empty string ;. n will be ++ � � �++ | {z }n .Such a , will not only be used to erase variables but will also say which free variable in Fcorreponds to the variable in hand.Example 5.37 The idea is that:1. To calculate [jv; v0; ('(k;i))t]j where jvj � k + i; v = v1 + +v2 and jv2j = k, we calculate[jv1 ++ i ++v2; v0; t]j. Hence when calculating [jx0000x000x00x0; l�5; ('(1;2))2]j, we calculate[jx0000x000x00 + + 2 + +x0; l�5; 2]j. Now, this evaluates to [jx0000x000x00 + + 2; l�5; 1]j. Thepresence of 2 means ignore x000x00. Therefore the result reduces to [jx0000; l�5; 1]j which isx0000.2. For every n 2 IN;m 2 IP; [jv ++ n; v0;m]j = [jv; v0;n+m]j and [j n; v0;m]j = xn+m.Looking at the �rst part of Example 5.37, we see that we need to have v = v1 + +v2 wherejv2j = k. Now, we are interested in a stepwise fashion. Moreover, the length of v2 has to becalculated somehow. In other words, we have to go through the list v from right to left untilwe pass the kth element. In order to accommodate such a stepwise fashion, we introduce anextra argument in the semantic meaning of '-terms. We will give an example which explainsthe point even though it is ahead of its time in the section. We believe however, that thereader can still follow it, once point 2 of Example 5.37 is remembered.Example 5.38 Notice how we save x0 to use it later on:[jx00x0; l�3; ('(1;2))(1�)2]j �[jx00;x0; l�3; ('(1;2))(1�)2]j �[jx00 ++ 2 ++x0; l�3; (1�)2]j �([jx00 ++ 2 ++x0; l�3; 1]j�)[jx00 ++ 2 ++x0; l�3; 2]j �(x0�)[jx00 ++ 2; l�3; 1]j �(x0�)[jx00; l�3; 3]j �(x0�)x2 33

For reasons that will become clear below, we extend our lists from being elements of L(l) (as inDe�nition 5.29) to being elements of Lsplit. So not only we accommodate bound variables and 's in our lists, but also we include free variables. Those lists moreover become denumerablyin�nite.Now, here is [j�; �; �]je, the extended de�nition of the semantics of �- and �-items.De�nition 5.39 (Extended �- and �-semantics)We de�ne [j�; �; �]je : Lsplit �L1(l) �
���'� 7! �, such that:For all t1; t2 2
��� ; v 2 Lsplit; v0 2 L1(l); v \ v0 = ;; n 2 IP ,[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�X)[jv ++X; v0�i+1; t2]je for i = nl(t1) + 1;X = hdi(v0)[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�)[jv; v0�i; t2]je for i = nl(t1) + 1[jv; v0;n]je =df compn(v)[jv; v0; "]je =df "The meaning of the remaining
���'-terms will be given below.The following lemmas will be used in what follows:Lemma 5.40 For all v 2 Lsplit; v0 2 L1(l); (v ++�) \ v0 = ;; � 2 �; n;m 2 IP and k 2 IN ,we have:1: [jv ++�; v0; 1]je � �2: [jv; v0;n+ k]je � [jv ++ k; v0;n]je3: [jv ++�; v0;n+ 1]je � [jv; v0;n]je4: [jF�m ++ k; v0;n]je � xn+k+m�15: [jv; v0;n]je 2 v6: If n 6= m then [jv; v0;n]je 6� [jv; v0;m]jeProof: Easy, using Lemma 5.26 and the de�nition of comp. 2Lemma 5.41 For all v0 2 Lsplit; v 2 L(� [f g); v00 2 L1(l); (v0 ++v) \ v00 = ;; � 2 � andn; i 2 IP , we have:1. If n > jjvjj � 0 then [jv0 ++v; v00;n]je � [jv0; v00;n� jjvjj]je2. If n > jjvjj � 0 then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.3. If n � jjvjj then [jv0 ++v; v00;n]je � compn(v)4. [jv0 ++� ++ ++v; v00;n]je � [jv0 ++v; v00;n]jeProof: This is an obvious corollary of Lemma 5.27. 2Corollary 5.42 For all v0 2 Lsplit, v00 2 L1(l); (v0 + +v) \ v00 = ;, and n; i 2 IP , we havefor v 2 L(�):1. If n > jvj then [jv0 ++v; v00;n]je � [jv0; v00;n� jvj]je2. If n > jvj then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.34

3. If n � jvj then [jv0 ++v; v00;n]je � compn(v)Proof: Obvious by Lemmas 5.21 and 5.41. 2Remark 5.43 Note that if v 2 Lsplit; v0 2 L(�[f g); v00 2 L1(l); (v0 ++v)\ v00 = ;; n; i 2IP; jjv0jj < 0, then even though n > jjv0jj, it is not necessarily the case that:1. [jv ++v0; v00;n]je � [jv; v00;n� jjv0jj]je2. [jv ++ i ++v0; v00;n]je � [jv ++v0; v00;n+ i]jeThis can be seen as follows:[jF ++ 5x0; l�2; 1]je � x0 whereas [jF ; l�2; 1 � jj 5x0jj]je � [jF ; l�2; 5]je � x5.Now the following lemma is needed to show that [j�; �; �]je is an extension of [j�; �; �]j.Lemma 5.44 For all v 2 L(l); v0 2 L1(l); v\v0 = ;; n 2 IP [f"g, [jv; v0;n]j � [jF++v; v0;n]je.Proof: Left as an exercise. 2Finally, here we show that [j�; �; �]je is an extension of [j�; �; �]j.Lemma 5.45 For all v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2
��� , [jv; v0; t]j � [jF ++v; v0; t]je.Proof: By induction on t, using Lemma 5.44. 25.5 The semantics of �- and '-termsDe�nition 5.46 (�-semantics)For all t1; t2 2
���'� ; v 2 Lsplit; v0 2 L1(l); v \ v0 = ;; i 2 IP we de�ne[jv; v0; (t1�(i))t2]je =df [jv; v0; t2]je[[jv; v0; i]je := [jv; v0�1+nl(t2); t1]je]0where t1[v := t2]0 is the substitution in the mid-level given in De�nition 5.4.De�nition 5.47 ('-semantics)For all t 2
���'� ; v 2 Lsplit; v0 2 L(�); v00 2 L1(l); (v + +�) \ v00 = ;; � 2 �; i 2 IP; k 2 IN ,we have:[jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]j[jv; v0; v00; ('(0;i))t]j =df [jv ++ i ++v0; v00; t]je[jv ++�; v0; v00; ('(k+1;i)t]j =df [jv; � ++v0; v00; ('(k;i))t]j[jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jNote here that v00 does not play a role because we do not have bound variables that we aretrying to replace by variable names. What the v0 does however is to save the �rst k variablesof v which are actually the variables in t which should not be updated because they are � k.Once the �rst k variables of v have been saved in v0, we remove the �rst i variables from theresulting v. Hence in the end, we get the correct list from which we �nd the meaning of t.35

Example 5.481: [jF ++x0; l�2; ('(2;3))3]je = [jF ++x0; ;; l�2; ('(2;3))3]j= [jF ;x0; l�2; ('(1;3))3]j= [jF�2;x1 ++x0; l�2; ('(0;3))3]j= [jF�2 ++ 3 ++x1 ++x0; l�2; 3]je= x52: [jF ++x0; l�2; ('(2;3))1]je = x03: [jF ; l�2; ('(1;2))('(0;1))1]j = x4Now the following lemma is basic about '-items.Lemma 5.49 For all t 2
���'� , v 2 Lsplit; v0 2 L(�); v00 2 L1(l); (v + +v0) \ v00 = ; andi 2 IP , we have:[jv ++v0; v00; ('(jv0 j;i))t]je � [jv ++ i ++v0; v00; t]jeProof: Easy. First prove by induction on jv0j that if v 2 Lsplit; v0; v1 2 L(�) such that(v ++v0 ++v1) \ v00 = ; then[jv ++v0; v1; v00; ('(jv0 j;i))t]j � [jv; v0 ++v1; v00; ('(0;i))t]j 2The following lemma opens the road to working with lists which do not contain .Lemma 5.50 For all v0 2 Lsplit; v 2 L(�[f g); v1 2 L1(l); (v0 ++�++v) \ v1 = ;; � 2 �and n 2 IP , we have:[jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]jeProof: By nested induction. We prove by induction on t that IH1(t) holds where IH1(t) is:[jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]je� Case t = n, use case 4 of lemma 5.41.� Case (t1�)t2 or (t1�)t2 or (t1�(i))t2 where IH1(t1) and IH1(t2) hold, easy.� Case ('(k;i))t where IH1(t) holds, prove by induction on k that IH2(k) holds whereIH2(k), for all v00 2 L(�) is:[jv0 ++� ++ ++v; v00; v1; ('(k;i))t]je � [jv0 ++v; v00; v1; ('(k;i))t]je{ case k = 0, use IH1(t).{ Assume IH2(k). Now, prove by induction on jvj that IH3(v) holds where IH3(v)is: [jv0 ++� ++ ++v; v00; v1; ('(k+1;i))t]je � [jv0 ++v; v00; v1; ('(k+1;i))t]je� case jvj = 0, use De�nition 5.47.36

� Case v ++� where � 2 � and IH3(v) holds, use De�nition 5.47 and IH2(k).� Case v + +� + + j where � 2 �; j 2 IP and IH3(v + + j�1) holds, useDe�nition 5.47 and IH3(v ++ j�1).� Case j where j 2 IP , use De�nition 5.47. 2Now this lemma is very important. It says that all the 's can be removed from lists.Lemma 5.51 For all v 2 Lsplit;9v0 2 Lsplit which is free for such that for all t 2
���'� ; v00 2 L1(l) such that v \ v00 = ;; [jv; v00; t]je � [jv0; v00; t]je.Proof: We can write v as v1 + +� ++v2 such that � 2 �; v1 2 Lsplit; v2 2 L(� [f g),v1 is free of and v2 has as its leftmost element. Now, the proof is by induction on jv2jusing Lemma 5.50. Note moreover, that v0 is independent of t. Hence, we may assume fromnow on that our start lists do not contain . 2Finally, we give the translation of any term t of
���'� :De�nition 5.52 (The semantic function)We de�ne [j�]j :
���'� 7! � such that for all t in
���'� ; [jt]j =df [jF ; l; t]jeLemma 5.53 [j�]j is well de�ned. That is, for all t 2
���'� , [jt]j is a unique term in �.Proof: By induction on t 2
���'� . 2Now this is our �rst lemma towards the correctness of our semantics:Lemma 5.54 For all t 2
���'� , we have:1. BV ([jv; v0; t]j) � v0 for every v 2 Lsplit and v0 2 L1(l) such that v \ v0 = ;.2. FV ([jv; v0; t]j) � v for every v 2 Lsplit and v0 2 L1(l) such that v \ v0 = ;.3. BV ([jt]j) � l and FV ([jt]j) � F .Proof: 1 and 2 are by induction on t. 3 is a corollary of 1 and 2. 2What this lemma means is that the term [jt]j in � can be translated using De�nition 5.6 to aterm in �.Let us give now a few examples:Example 5.55 (Note that we sometimes combine many steps in one.)[j('(2;1))(1�)(2�)3]j � [jF ; l; ('(2;1))(1�)(2�)3]je� [jF ; ;; l; ('(2;1))(1�)(2�)3]j� [jF�2;x1; l; ('(1;1))(1�)(2�)3]j� [jF�3;x2 ++x1; l; ('(0;1))(1�)(2�)3]j� [jF�3 ++ ++x2 ++x1; l; (1�)(2�)3]je� (x1�)(x2�x0)x437

[j('(2;3))('(1;2))(1�)(2�)3]j � [jF ; l; ('(2;3))('(1;2))(1�)(2�)3]je� [jF�2;x1; l; ('(1;3))('(1;2))(1�)(2�)3]j� [jF�3;x2 ++x1; l; ('(0;3))('(1;2))(1�)(2�)3]j� [jF�3 ++ 3 ++x2 ++x1; l; ('(1;2))(1�)(2�)3]je� [jF�3 ++ 3 ++x2;x1; l; ('(0;2))(1�)(2�)3]j� [jF�3 ++ 3 ++x2 ++ 2 ++x1; l; (1�)(2�)3]je� (x1�)([jF�3 ++ 3 ++x2 ++ 2 ++x1; l; 2]je�)[jF�3 ++ 3 ++x2 ++ 2 ++x1; l; 3]je� (x1�)([jF�3 ++ 3 ++ ; l; 1]je�)[jF�3 ++ 3 ++ ; l; 2]je� (x1�)([jF�7; l; 1]je�)[jF�7; l; 2]je� (x1�)(x7�)x86 The soundness of �- and '-reductionIn this section we will show that if t! t0 where! is the result of a '-transition or destructionrule, or of a �-destruction rule, then [jt]j � [jt0]j. That is, we will show that both ' and � aresound in what concerns variable updating and substitution. We will show moreover, that ift !� t0 where ! is the �ring of the �-generation rule, then [jt]j = [jt0]j. That is, �-generationis a form of �-conversion in our system. Furthermore, �-transition accommodates in it �-conversion. That is, if t !� t0 where !� is a �-transition rule, then [jt]j =� [jt0]j. For this, letus group all the de�nitions of the meaning of the di�erent terms together:De�nition 6.1 (Semantics of
���'�) For all t; t1; t2 2
���'� ; v 2 Lsplit; v0 2 L(�); v00 2L1(l); (v ++�) \ v00 = ;; � 2 �; i; n 2 IP and k 2 IN , we de�ne:M1: [jt]j =df [jF ; l; t]jeM2: [jv; v00; "]je =df "M3: [jv; v00;n]je =df compn(v)M4: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�X)[jv ++X; v00�i+1; t2]je for i = nl(t1) + 1;X = hdi(v00)M5: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�)[jv; v00�i; t2]je for i = nl(t1) + 1M6: [jv; v00; (t1�(i))t2]je =df [jv; v00; t2]je[[j[v; v00; i]je := [jv; v00�i; t1]je]0 for i = nl(t2) + 1M7: [jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]jM8: [jv; v0; v00; ('(0;i))t1]j =df [jv ++ i ++v0; v00; t]jeM9: [jv ++�; v0; v00; ('(k+1;i))t1]j =df [jv; � ++v0; v00; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jLet us furthermore recall here that
 = f�; �; �; 'g and that
� is de�ned in De�nition 2.21.Finally, the '-rules are given in De�nition 3.4 and the �-rules are given in De�nition 3.8. (Weleave the discussion of � till the next section.)Now, the following lemmas inform us about the place of (�) in our system.Lemma 6.2 If n 2 IP; v 2 Lsplit; v0; v00 2 L1(l) and v \ v0 = v \ v00 = ;, then [jv; v0;n]je =[jv; v00;n]je.Proof: Obvious. 238

Lemma 6.3 If t 2
���'� ; v 2 Lsplit; v0 2 L1(l) and v \ v0 = ;, then for all v00 2 L1(v0),[jv; v0; t]je =� [jv; v00; t]je.Proof: By induction on t. 2Now we de�ne the notions of (�-, �-) soundness:De�nition 6.4� We say that a reduction rule ! is sound if: (8t; t0; v; v0)[t! t0) [jv; v0; t]je � [jv; v0; t0]je].� We say that a reduction rule ! is �-sound if:(8t; t0; v; v0)[t! t0) [jv; v0; t]je =� [jv; v0; t0]je]:� We say that a reduction rule ! is �-sound if:(8t; t0; v; v0)[t! t0) [jv; v0; t]je =� [jv; v0; t0]je]:� We say that a reduction rule ! is ��-sound if:(8t; t0; v; v0)[t! t0) [jv; v0; t]je = [jv; v0; t0]je]:Lemma 6.5 '-transition through a �-item is sound. That is, for all t1; t2 2
���'� ; v1 2Lsplit; v00 2 L1(l); v1 \ v00 = ;; i 2 IP , and k 2 IN , we have:[jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k;i))t2]jeProof: According to Lemma 5.51, we may assume that v1 is -free. Assume moreoverthat v1 = v ++v0 such that jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k;i))t2]je �j=1+nl(t1)([jv ++v0; v00; ('(k;i))t1]je�)[jv ++v0; v00�j ; ('(k;i))t2]je �Lemma 5:49([jv ++ i ++v0; v00; t1]je�)[jv ++ i ++v0; v00�j; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lemma 5:49[jv ++v0; v00; ('(k;i))(t1�)t2]je 2Lemma 6.6 '-transition through a �-item is sound. That is, for all t1; t2 2
���'� ; v1 2Lsplit; v00 2 L1(l); v1 \ v00 = ;; i 2 IP , and k 2 IN , we have:[jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k+1;i))t2]jeProof: Similarly to the above lemma, we may assume that v1 is -free. Assume moreoverthat v1 = v ++v0 such that jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k+1;i))t2]je �j=1+nl(t1);X=hdj(v00)([jv ++v0; v00; ('(k;i))t1]je�X)[jv ++v0 ++X; v00�j+1; ('(k+1;i))t2]je �Lemma 5:49([jv ++ i ++v0; v00; t1]je�X)[jv ++ i ++v0 ++X; v00�j+1; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lemma 5:49[jv ++v0; v00; ('(k;i))(t1�)t2]je 239

Lemma 6.7 '-destruction is sound. That is, for all v1 2 Lsplit; v2 2 L1(l); v1\v2 = ;; n; i 2IP; k 2 IN , we have:1. If n > k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n+ i]je.2. If n � k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n]je.Proof: Assume v1 is -free and v1 = v ++v0 such that jv0j = k.1. [jv++v0; v2; ('(k;i))n]je �Lemma 5:49 [jv++ i++v0; v2;n]je �Corollary 5:42 [jv++v0; v2;n+i]je2. [jv ++v0; v2; ('(k;i))n]je �Lemma 5:49 [jv ++ i ++v0; v2;n]je �Corollary 5:42compn(v0) �Corollary 5:42 [jv ++v0; v2;n]je 2Lemma 6.8 �-destruction is sound. That is, for all t 2
���'� ; v 2 Lsplit; v0 2 L1(l); v\v0 =;; i; j 2 IP , we have:1. [jv; v0; (t�(i))i]je � [jv; v0; t]je.2. [jv; v0; (t�(i))j]je � [jv; v0; j]je if j 6= i.3. [jv; v0; (t�(i))"]je � ".Proof:1. [jv; v0; (t�(i))i]je � [jv; v0; i]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; t]je.2. [jv; v0; (t�(i))j]je � [jv; v0; j]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; j]je, as [jv; v0; j]je 6= [jv; v0; i]jefrom Lemma 5.40.3. [jv; v0; (t�(i))"]je � [jv; v0; "]je[[jv; v0; i]je := [jv; v0; t]je]0 � ", as " 62 v, for every v. 2Lemma 6.9 �-transition is �-sound. That is, for all v 2 Lsplit; v0 2 L1(l); v \ v0 = ;; i 2IP; t1; t2; t 2
���'� , we have:1. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)((')t1�(i+1))t]je2. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)(t1�(i))t]jeProof: Left to the reader. 2Theorem 6.10 For all t; t0 2
���'� , if t!r t0 where r is any �- or '-transition rule, or any�- or '-destruction rule, then [jt]j � [jt0]j.Proof: This is a corollary of Lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 above. 240

The transition and destruction rules of � and ' work like substitution and variable updating.Therefore, they should return equivalent terms. �-generation on the other hand, accommo-dates in it �-reduction.Example 6.11[jF ; l; (2�)(3�)1]je � ([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF ++x0; l�2; 1]je � (x2�)(x3�x0)x0Moreover,[jF ; l; (2�)(3�)((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF ++x0; l�2; ((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)([jF ++x0; l�2; 1]je[[jF ++x0; l�2; 1]je := [jF ++x0; l�2; (')2]je]0 �([jF ; l; 2]je�)([jF ; l; 3]je�x0)(x0[x0 := x2]0) �([jF ; l; 2]je�)([jF ; l; 3]je�x0)x2 �(x2�)(x3�x0)x2Of course (x2�)(x3�x0)x0 and (x2�)(x3�x0)x2 are not �-equivalent but are �-equivalent. Infact, (x2�)(x3�x0)x0 !� x2 and (x2�)(x3�x0)x2 !� x2:Hence, our task is to show that if t !� t0 where !� is �-generation, then [jt]j = [jt0]j. This isdone in the following lemma:Lemma 6.12 �-generation is ��-sound. That is, for all t; t1; t2 2
���'� , for all v 2Lsplit; v0 2 L1(l), such that v \ v0 = ;, [jv; v0; (t1�)(t2�)t]je = [jv; v0; (t1�)(t2�)((')t1�(1))t]je.Proof: Let i = 1 + nl(t1); j = 1 + nl(t2);X = hdj(v�i); k = 1 + nl(t).[jv; v0; (t1�)(t2�)((')t1�(1))t]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X; v0�i+j ; ((')t1�(1))t]je) �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X; v0�i+j ; t]je[X := [jv ++X; v0�i+j+k; (')t1]je]0) = 5:49; 5:50�([jv ++X; v0�i+j; t]je[X := [jv; v0�i+j+k; t1]je]0[X := [jv; v0; t1]je]0) =Lemma 6:3�([jv ++X; v0�i+j; t]je[X := [jv; v0; t1]je]0[X := [jv; v0; t1]je]0) �Lemma 5:54[jv ++X; v0�i+j; t]je[X := [jv; v0; t1]je]0Moreover,[jv; v0; (t1�)(t2�)t]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv ++X; v0�i+j; t]je =�[jv ++X; v0�i+j; t]je[X := [jv; v0; t1]je]0 2
41

7 The meaning and soundness of �-reductionRecall from De�nition 3.20 how we de�ned �-reduction. There �-reduction was de�ned as acombination of �-, '- and �-reduction. Hence, as we have proved the soundness of �- and'-reduction, all we have left to show here is that �-reduction is sound, where �-reductionhas been de�ned in De�nition 3.19. In fact, this is what we will show in this section. Moreprecisely, we will show that �-generation is ��-sound and that �-destruction and transitionare sound. Let us �rst de�ne the meaning of terms with �-leading items.De�nition 7.1 (�-semantics)If t is an
��-term, v 2 L�1(�); v0 2 L(�); � 2 �; v00 2 L1(l); v \ v00 = ;; i 2 IP and i doesnot refer to any free variable of t, we de�ne:[jv; v00; (�(i))t]je � [jv; ;; v00; (�(i))t]j[jv; v0; v00; (�(1))t]j � [jv ++hd(v00) + +v0; v00�2; t]je[jv ++�; v0; v00; (�(i+1))t]j � [jv; � ++v0; v00; (�(i))t]jNote here that the provision \i does not refer to a free variable of t" can be assumed due toLemma 3.22. In fact, this is the only case we need to de�ne the semantics for. Note moreoverthat it is enough to take v 2 L�1(�) (see De�nition 5.18), because t is an
��-term, so wenever generate 's in the list v.Example 7.21: [j(�(1))(2�)1]j �[jF ; l; (�(1))(2�)1]je �[jF ; ;; l; (�(1))(2�)1]j �[jF ++x0; l�2; (2�)1]je �([jF ++x0; l�2; 2]je�x00)[jF ++x0; l�3; 1]je �(x1�x00)x002: [j(�(2))(1�)1]j �[jF ; l; (�(2))(1�)1]je �[jF ; ;; l; (�(2))(1�)1]j �[jF�2;x1; l; (�(1))(1�)1]j �[jF�2 ++x0 ++x1; l�2; (1�)1]je �([jF�2 ++x0 ++x1; l�2; 1]je)�x00)[jF�2 ++x0 ++x1 ++x00; l�3; 1]je �(x1�x00)x00Note that [j(�(1))(1�)1]j is not allowed, since the superscript 1 refers to the free variable 1 (the�rst 1) in (1�)1.Lemma 7.3 Let t be an
��-term. If �� does not bind any variable in (��)(�1)(�2) : : : (�k)t,then 8v 2 L�1(�); v00 2 L(�); v0 2 L1(l); �; �0 2 �, such that (v0 + +v00) \ v0 = ;; �; �0 62v [v0 [v00; jv00j = k, we have:[jv ++� ++v00; v0; t]je � [jv ++�0 ++v00; v0; t]jeProof: By induction on t using Lemmas 5.40 and 6.2. 242

Lemma 7.4 If (t1�)(t2�) is void in (t1�)(t2�)t, i = 1+nl(t1); j = 1+nl(t2) then for all v 2L�1(�), v0 2 L1(l), such that v \ v0 = ; and X = hdi+j�1(v0), ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)is void in [jv; v0; (t1�)(t2�)t]je.Proof: By induction on
��-terms t. 2Lemma 7.5 �-generation is ��-sound. That is, for all t1; t2; t
��-terms, for all v 2L�1(�); v0 2 L1(l) such that v \ v0 = ;, if (t1�)(t2�) is void in t then: [jv; v0; (t1�)(t2�)t]je =[jv; v0; (�(1))t]jeProof: By induction on t. Let i = 1+nl(t1); j = 1+nl(t2);X = hdi(v0�j) = hdi+j�1(v0).� If t � " then obvious.� If t � m then m > 1. Moreover, ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv ++X; v0�i+j ;m]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv; v0�i+j ;m� 1]je =Lemma 7:4�[jv; v0�i+j;m� 1]je �Lemmas 5:40 and 6:2[jv ++hd(v0); v0�2;m]je � [jv; v0; (�(1))m]je.� If t � (t01�)t02 then: [jv; v0; (t1�)(t2�)(t01�)t02]je �k=1+nl(t01);X0=hdk(v0�i+j)([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv++X; v0�i+j ; t01]je�X0)[jv++X++X 0; (v0�i+j)�k+1; t02]je =Lemma 7:4�[jv ++X; v0�i+j; (t01�)t02]je =Lemma 6:3�[jv ++X; v0�2; (t01�)t02]je �Lemma 7:3[jv ++hd(v0); v0�2; (t01�)t02]je � [jv; v0; (�(1))(t01�)t02]je� If t � (t01�)t02 then similar. 2Remark 7.6 Note that �-generation is not sound. In particular,[jF ; l; (4�)(�)2]je � (x4�)(�x0)x1 and[jF ; l; (�(1))2]je � [jF ++x0; l�2; 2]j � x1Now (x4�)(�x0)x1 =� x1 and (x4�)(�x0)x1 6� x1.Lemma 7.7 �-transition is sound. That is, for all
��-terms t1; t2, for all v 2 L�1(�) andv000 2 L1(l) such that v \ v000 = ;, for all i 2 IP , if i 6= all free variables of (t1�)t2; k =1 + nl(t1);X = hdk(v000) then:1: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]j�X)[jv ++X; v000�k+1(�(i+1))t2]je2: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]j�)[jv; v000�k; (�(i+1))t2]jeProof:1: Let v = v0 ++v00 such that jv00j = i� 1([jv; v000; (�(i))t1]je�X)[jv ++X; v000�k+1; (�(i+1))t2]je �([jv0 ++hd(v000) + +v00; v000�2; t1]je�X)[jv0 ++hd(v000�k+1) + +v00 ++X; v000�k+2; t2]je �Lem 7:3[jv0 ++hd(v000) + +v00; v000�2; (t1�)t2]je �[jv; v000; (�(i))(t1�)t2]je2: Is similar: 43

2Lemma 7.8 �-destruction is sound. That is, for all v 2 L�1(�) and v000 2 L1(l) such thatv \ v000 = ;, for all i;m 2 IP , we have:� [jv; v000; (�(i))"]je � ".� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m]je if m < i.� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m� 1]je if m > i.Proof:� [jv; v000; (�(i))"]je � ", easy.� [jv; v000; (�(i))m]je � [jv0 ++hd(v000) + +v00; v000�2;m]je where v = v0 ++v00 and jv00j = i� 1{ If m < i then m � i� 1 and [jv0 ++hd(v000) + +v00; v000�2;m]je � [jv0 ++v00; v000;m]je.{ If m > i then m � i+1 and [jv0++hd(v000)++v00; v000�2;m]je � [jv0++v00; v000;m�1]je.28 Comparison and conclusionsIn this paper we presented a calculus of substitution which is explicit hence mending theproblem of the implicit substitution of the �-calculus. Our calculus
� is based on a calculus� in which terms are written in item-notation. Moreover,
� uses de Bruijn's indices ratherthan variable names. We wrote our calculus in the most general way in order to apply ourresults to the various existing �-calculi and type theories. In fact, the item-notation assumedin this paper has been shown to be general enough to accommodate the type free and all thesystems of the Barendregt cube (see [NK 94]). We believe that this notation has helped tode�ne substitution explicitly and in a modular way with the other terms. Moreover, with ourapproach, local reduction and substitution can be accommodated very naturally, somethingwhich is di�cult in the classical �-calculus. In fact we have shown that it is enough to addone reduction rule in order to obtain local substitution.In order to show the soundness of our calculus we provided a translation from
� into �,a variant of � where bound variables are taken from a particular ordered list. Our translationfunctions are important on their own. First, it is nice to have a mechanical procedure whichtakes terms written with variable names and returns terms with de Bruijn's indices. Second,it is equally important and interesting to go the other way. For instance, when translatinga lambda term (with de Bruijn indices) that represents some mathematical theory/proof toa lambda term with named variables, we want particlular names to be used. In fact, one ofthe advantages of de Bruijn's indices is that �-conversion is no longer needed. Now, termswritten with de Bruijn's indices are di�cult to understand even for those who are familiarwith them. Variable names on the other hand, clarify the term in hand but cause a lot ofcomplications when applying reduction and substitution. If however, we order our lists of freeand bound variables, then we can avoid the di�culty caused by variable names. In fact, this44

is what we do in this paper. We take our lists of variables to be ordered and we translateevery term of
� into a term of � (i.e. using variable names) in a unique way via [j�]j. Whenin �, it is up to us to equate terms modulo �-conversion rather than being forced to do it inthe translation (see Appendix A).In order to make substitution explicit and to discuss �-reduction, we had to add threekinds of reduction rules: the '-, �- and �-reductions. ' updates variables, � substitutes termsfor variables and � decreases the indices as a result of a �-conversion which removes a � froma term. Each kind of reduction has three rules: generation, transition and destruction. Now,substitution and reduction in � are given similarly to that of the classical calculus; i.e. implicitand global. Therefore, we show that our reduction rules actually do represent reduction andsubstitution in �. This shows the soundness of our reduction rules. In particular, we showthat �-, �- '-destruction and '-, �-transition are sound in that if t !r t0 where r is one ofthese rules, then [jt]j � [jt0]j. This is very nice because the corresponding reductions in � alsoreturn equivalent rather than �-equivalent terms. Furthermore, we show that �-transition is�-sound in that if t !��transition t0 then [jt]j =� [jt0]j. We also show that �- and �-generationare ��-sound in that if t !r t0 where r is one of these two rules, then [jt]j =�� [jt0]j. Now, weare satis�ed with the result concerning �-conversion. In fact, these last two rules do actuallyrepresent �-conversion in
�. What we have been disappointed with however is that we hadto use �-conversion rather than equivalence in the soundness proof of �-transition and �- and�-generation. So even though we have avoided �-conversion in our translation function, it stillhad to be assumed in the soundness of three reduction rules. Look for example at the proofof Lemma 7.5. When t � (t01�)t02, we had to apply Lemma 6.3 to obtain an �-equivalent term.This, we have not quite understood yet. Maybe in �- and �-generation and in �-transition, �-conversion is necessary. Or maybe it is possible to complicate even more our lists of variablesand our de�nition of the semantic functions so that �-conversion is really avoided. This isa point for further investigation. Finally, note that we did not discuss completeness becausethis becomes here a trivial matter. In fact, everything that can be shown in the classical�-calculus can be shown in our own. Even better, our calculus is more expressive in that itaccommodates explicit substitution whereas the classical one does not.So to summarize, we believe that our item notation used in conjunction with de Bruijn'sindices provide a precise formulation of the �-calculus that can be used e�ciently for imple-mentation and theoretical purposes and that can generalise a whole collection of type and�-theories. The usefulness of the notation is not discussed in this paper but the reader is re-ferred to [NK 94]. This notation however provides an explicit approach of substitution whichis the most general up to date and which can be used to generalise other existing approachesof explicit substitution as shown in [KN 93]. Furthermore, the soundness of the explicit sub-stitution and the resulting reductions is shown in terms of the classical notions of substitutionand reductions. The translation functions between terms written with de Bruijn indices andterms written with variable names are useful and provide a detailled account of the notion of�-conversion. Finally, we believe that our account of explicit substitution is the most generaland detailled up to date, from the point of view of both syntax and semantics. Here is asummary of the various existing accounts of explicit substitution that we are aware of and oftheir relation to our own:[KN 93] provides an account of explicit substitution which is used to discuss local andglobal substitution and reduction. No semantics is provided for that account and the preci-sion of this paper is not assumed there. The reduction rules however of the present paper are45

based on [KN 93] even though there, there was no �-reduction and �-reduction was assumed.We believe that we have in this paper presented the most extensive approach of variable ma-nipulation, substitution and reduction. Our approach can be easily and in a straightforwardfashion implemented because we have carried out all the di�cult work related to variables.The article [Abadi et al. 91] provides an algebraic syntax and semantics for explicit substi-tution where de Bruijn's indices are used. The connection with the classical �-calculus is notinvestigated. Furthermore, [KN 93] has shown that the approach in [Abadi et al. 91] can beinterpreted in [KN 93] and can be further simpli�ed. [Hardin and L�evy 89] proposes conu-ent systems of substitution based on the study of categorical combinators yet we believe thatour account is more comprehensive. [Field 90] provides an account of explicit substitutionsimilar to that of [Abadi et al. 91] hence it can also be accommodated in our account. Themaster thesis of [van Horssen 92] discusses explicit substitution in the classical notation andthe item notation assumed in this paper. [van Horssen 92] deduces that the item notationhas advantages over the classical one. The master thesis of [Krab93] provides a semantics ofthe explicit substitution of
� which originated from our function e of this paper. [Krab93]however, ignores to order the list of bound variables which we call l. This makes it impossiblefor him to impose �-conversion. In appendix A, we will provide a semantics of substitutionwhere all �-equivalent terms are identi�able.A An alternative semanticsIn the de�nition of the semantic function from
� to �, we took F and l which were bothordered (see De�nition 6.1). This enabled us to translate every term t of
� in a unique termt0 of � which is not equivalent to any other term in the �-equivalence class of t0. The price wehad to pay is of course having to manipulate not only the list of free variables but also the listof bound ones. This is not a high price to pay if we compare with the substitution we haveto manipulate if we assume a semantic function which identi�es terms modulo �-conversion.Moreover, ignoring �-conversion is remaining with the essence of de Bruijn's indices andavoiding all this renaming of variables. Here is how we illustrate the point:Look at De�nition 5.29. We could use another semantic function which does not choosea particular index for the lambda, but any of the indices which has not been yet used. Hereis this new de�nition:De�nition A.1 (�- and �-semantics) For all t1; t2 2
��� ; v 2 L(l); n 2 IP [f"g,[jv; (t1�)t2]j =df ([jv; t1]j�v)[jv ++v; t2]j where v 2 l n v[jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]j[jv;n]j =df 8><>: compn(v) if n � jvjxn�jvj n > jvj" if n = "Example A.2
46

[j;; (�)(1�)(1�)3]j �X12l;X1 is arbitrary([j;; "]j�X1)[jX1; (1�)(1�)3]j �("�X1)([jX1; 1]j�X2)[jX1X2; (1�)3]j �X22l;X2 is arbitrary;X2 6�X1("�X1)(comp1(X1)�X2)([jX1X2; 1]j�)[jX1X2; 3]j �("�X1)(X1�X2)(comp1(X1X2)�)x3�jX1X2j �("�X1)(X1�X2)(X2�)x1We need the following de�nition of substitution which de�nes variable substitution of lists ofvariables.De�nition A.3 (Substitution in lists) If v is a list of variables of �, then we de�ne v[v := v0]0to be the list v but where all occurrences of v have been replaced by v0.Now the following lemmas are needed to show that [j�; �]j is well de�ned.Lemma A.4 For any v; t; FV ([jv; t]j) � v [F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lemma A.5 If X 0 2 l n v;X 2 v; v 2 L(l) and t 2
��� , then[jv; t]j[X := X 0]0 =� [jv[X := X 0]0; t]j:Proof: By induction on t 2
��� .1. [jv;n]j[X := X 0]0 � [jv[X := X 0]0;n]j for n 2 IP [f"g.2. [jv; (t1�)t2]j[X := X 0]0 � (([jv; t1]j�)[jv; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�)[jv; t2]j[X := X 0]0 =IH�([jv[X := X 0]0; t1]j�)[jv[X := X 0]0; t2]j � [jv[X := X 0]0; (t1�)t2]j.3. [jv; (t1�)t2]j[X := X 0]0 �X12lnv;X1 6�X0 (([jv; t1]j�X1)[jv ++X1; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�X1)[jv ++X1; t2]j[X := X 0]0 �IH([jv[X := X 0]0; t1]j�X1)[j(v ++X1)[X := X 0]0; t2]j �([jv[X := X 0]0; t1]j�X1)[jv[X := X 0]0 ++X1; t2]j � [jv[X := X 0]0; (t1�)t2]j.4. [jv; (t1�)t2]j[X := X 0]0 �X02lnv (([jv; t1]j�X0)[jv ++X 0; t2]j)[X := X 0]0 �X00 62FV ([jv++X0;t2]j)(([jv; t1]j�X00)[jv ++X 0; t2]j[X 0 := X 00]0)[X := X 0]0 =Lemma A:4;IH�(([jv; t1]j�X00)[jv ++X 0[X 0 := X 00]0; t2]j)[X := X 0]0 � (([jv; t1]j�X00)[jv ++X 00; t2]j)[X := X 0]0Now, refer to case 3 above. 2Lemma A.6 ([jv; t1]j�X1)[jv ++X1; t2]j =� ([jv; t1]j�X2)[jv ++X2; t2]j for X1;X2 2 l n v.Proof: If X1 = X2, then nothing to prove.If X1 6= X2, then noting that X2 62 FV ([jv ++X1; t2]j) by Lemma A.4, we get:([jv; t1]j�X1)[jv ++X1; t2]j �([jv; t1]j�X2)[jv ++X1; t2]j[X1 := X2]0 =Lemma A:5�([jv; t1]j�X2)[j(v ++X1)[X1 := X2]0; t2]j �X1;X2 62v([jv; t1]j�X2)[jv ++X2; t2]j �[jv; (t1�)t2]j 47

Lemma A.7 [j�; �]j as de�ned in De�nition A.1 is well de�ned. That is for all v; t, [jv; t]j isunique up to �-conversion, (I.e. does not depend on the choice of v in clause 1 of De�ni-tion A.1).Proof: By induction on t 2
��� , noting that the only interesting case is that of t � (t1�)t2.For this case, we use Lemma A.6. 2Now compare this with the proof of Lemma 5.33. Note moreover that the versions of Lem-mas 5.34 and 5.35 are:Lemma A.8 For all t 2
��� ; c(t; s; l n sl(s)) =� [jsl(s); t]j.Proof: By induction on t. 2Lemma A.9 For all t 2
��� ; e(t) =� [j;; t]j.Proof: Obvious. 2Now the de�nition which replaces De�nition 6.1 is the following:De�nition A.10 (Semantics of
���'�) For all t; t1; t2 2
���'� ; v 2 Lsplit; v0 2 L(�); � 2�; i; n 2 IP; k 2 IN , we de�ne:M1: [jt]j =df [jF ; t]jM2: [jv; "]j =df "M3: [jv;n]j =df [jcompn(v)M4: [jv; (t1�)t2]j =df ([jv; t1]j�X)[jv ++X; t2]j where X 2 l n vM5: [jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]jM6: [jv; (t1�(i))t2]j =df [jv; t2]j[[j[v; i]j := [jv; t1]j]0M7: [jv; ('(k;i))t]j =df [jv; ;; ('(k;i))t]jM8: [jv; v0; ('(0;i))t1]j =df [jv ++ i ++v0; t]jM9: [jv ++�; v0; ('(k+1;i))t1]j =df [jv; � ++v0; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; t]j =df [jv ++ k; v0; t]jWe leave it to the reader to check the soundness of the reduction rules with respect to thisde�nition.References[Abadi et al. 91] Abadi, M., Cardelli, L., Curien, P.-L. and L�evy, J.-J., (1991) Explicit substitutions,Functional Programming 1 (4), 375-416.[Barendregt 84] Barendregt, H., (1984) Lambda Calculus: its Syntax and Semantics, North-Holland.[Barendregt 91] Barendregt, H., (1991) Introduction to generalised type systems, Functional Program-ming 1(2), 125-154.[Barendregt 92] Barendregt, H., (1992) Lambda calculi with types, Handbook of Logic in ComputerScience, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press.48

[de Bruijn 70] Bruijn, N.G. de, (1970) The mathematical language AUTOMATH, its usage and someof its extensions, in: Symposium on Automatic Demonstration, IRIA, Versailles, 1968, LectureNotes in Mathematics, 125, 29-61, Springer.[de Bruijn 72] Bruijn, N.G. de, (1972) Lambda calculus with nameless dummies, a tool for automaticformula manipulation, with application to the Church-Rosser theorem, Indagationes Math. 34(5), 381-392.[Church 40] Church, A., (1940) A formulation of the simple theory of types, Journal of Symbolic Logic5, 56-68.[CH 88] Coquand T., and Huet G., (1988) The calculus of constructions, Information and Computa-tion 76, 95-120.[Field 90] Field, J., (1990) On laziness and optimality in lambda interpreters: tools for speci�cationand analysis, 17th Annual Symposium on Principles of Programming Languages, San Fransisco,1-15.[Hardin and L�evy 89] Hardin, Th. and L�evy, J.-J., (1989) A conuent calculus of substitutions, Lec-ture notes of the INRIA-ICOT symposium, Izu, Japan, November.[van Horssen 92] Horssen, J.J. van, (1992) Explicit substitution in two versions of typed lambda calcu-lus, Master's thesis, Department of Mathematics and Computing Science, Eindhoven Universityof Technology.[KN 93] Kamareddine, F., and Nederpelt, R.P., (1993) On stepwise explicit substitution, InternationalJournal of Foundations of Computer Science 4 (3), 197-240, 1993.[KN 9x] Kamareddine, F., and Nederpelt, R.P., (199x) The Beauty of the Lambda Calculus, to appear.[Krab93] Krabbendam, J., (1993) On the soundness of explicit substitution, Master's thesis, Depart-ment of Mathematics and Computing Science, Eindhoven University of Technology.[Nederpelt 87] Nederpelt, R.P., (1987) De Taal van de Wiskunde, Versluys, Almere.[NK 94] Nederpelt, R.P., and Kamareddine, F., (1994) A uni�ed approach to type theory througha re�ned �-calculus, paper presented at the 1992 conference on Mathematical Foundations ofProgramming Semantics, to appear in the proceedings.[NGdV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., eds, (1994) Selected papers on Au-tomath, North-Holland, Amsterdam.

49

