Canonical typing and II-conversion *

Fairouz Kamareddine
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G12 8QQ), Scotland
email: fairouz@dcs.glasgow.ac.uk
and

Rob Nederpelt
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513
5600 MB Eindhoven, the Netherlands
email: wsinrpn@win.tue.nl

April 12, 1997

*First of all, we are very grateful to our colleague Bert van Benthem Jutting who has read draft versions of
the manuscript, and who has made very useful suggestions. Furthermore, we are grateful for the discussions
with Henk Barendregt, Inge Bethke, Tijn Borghuis, Herman Geuvers and Erik Poll, and for the helpful remarks
received from them.

fKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven University
of Technology, for their financial support and hospitality from October 1991 to September 1992, and during
the summer of 1993. Furthermore, Kamareddine is grateful to the Department of Mathematics and Computer
Science, University of Amsterdam, and in particular to Jan Bergstra and Inge Bethke for their hospitality
during the preparation of this article.

Abstract

In usual type theory, if a function f is of type ¢ — ¢’ and an argument a is of type
o, then the type of fa is immediately given to be ¢’ and no mention is made of the fact
that what has happened is a form of SB-conversion. A similar observation holds for the
generalized Cartesian product types, II,.,.7. In fact, many versions of type theory assume
that 3 holds of both types and terms, yet only a few attempt to study the theory where
terms and types are really treated equally and where 3-conversion is used for both.

A unified treatment however, of types and terms is becoming indispensible especially
in the approaches which try to generalise many systems under a unique one. For example,
[Barendregt 91] provides the Barendregt cube and the Pure Type Systems (PTSs) which
are a generalisation of many type theories. Yet even such a generalisation does not use
[B-conversion for both types and terms. This is unattractive, in a calculus where types
have the same syntax as terms (such as the calculi of the cube or the PTSs). For example,
in those systems, even though compatibility holds for the typing of abstraction, it does
not hold for the typing of application. That is, even though

M:N = A.p.M:1l,.p.N
holds, the following does not hold:
M:N= MP:NP.

Based on this observation, we present a A-calculus in which the conversion rules apply
to types as well as terms. Abstraction and application, moreover, range over both types
and terms. We extend the calculus with a canonical type operator 7 in order to associate
types to terms. The type of fa will then be Fa, where F is the type of f and the
statement I' F ¢ : o from usual type theory is split in two statements in our system:
'k ¢t and 7([,t) = 0. Such a splitting enables us to discuss the two questions of the
typability of a term and of what is its type separately. Again we believe that this splitting
is important and should be usually considered.

As a demonstration of what we can do with our calculus, we interpret Church’s A_,
in our calculus. This enables us to view our approach as an attempt to extend A_, with a
unified treatment for type and term substitution and conversion and at splitting ' F ¢ : o
in the two statements: I' - ¢ and 7(I',t) =3 . Such an approach should eventually be
used to deal with the Barendregt cube and the Pure Type Systems.

Keywords: \-Calculus, Type Theory, Church Rosser Theorem, Types as Terms, A_,.

Contents

1

2

Introduction

Aot

2.1 Variable manipulation o L
2.2 Substitution and reduction

The Church Rosser Theorem

3.1 Substitution and Reduction in T UT,
3.2 The relations between T UT and TUT
3.3 The theorem and its corollaries

Statements and Contexts

4.1 Context ordering .

4.2 Well-Behaved contexts e

A Typing Operator for A,

Consistency in A\,

The relation of _,; to A_
7.1 Church’s A_, and its interpretation in A,
7.2 Some useful machinery L L o

7.3 A, generalises A_,

Conclusion

(=]

10
10
13
17

20
21
25

26

30

41
41
43
45

50

1 Introduction

At the end of the nineteenth century, types did not play a role in mathematics or logic, unless
at the meta-level, in order to distinguish between different ‘classes’ of objects. Frege’s formal-
ization of logical reasoning, as explained in the Begriffsschrift ([Frege 1879]), was untyped.
Only after the discovery of Russell’s paradox, undermining Frege’s work, one may observe var-
ious formulations of typed theories. Types on the other hand, could explain away the paradox-
ical instances. The first theory which aimed at doing so, was that of Russell and Whitehead,
as exposed in their famous Principia Mathematica ([Whitehead and Russell 1910]). Their
‘ramified theory of types’ has later been adapted and simplified by Hilbert and Ackermann
([Hilbert and Ackermann 1928]).

Church was the first to define a type theory ‘as such’, almost a decade after he developed
a theory of functionals which is nowadays called A-calculus ([Church 1932]). This calculus
was used for defining a notion of computability that turned out to be of the same power as
Turing-computability or general recursiveness. However, the original, untyped version did
not work as a foundation for mathematics. In order to come round the inconsistencies in his
proposal for logic, Church developed the ‘simple theory of types’ ([Church 1940]).

i From then till the present day, research on the area has grown and one can find various
reformulations of type theories. A taxonomy of type systems has recently been given by
Barendregt ([Barendregt 92]). A version of Church’s simple theory of types can be found in
this taxonomy under the name A_, or A_,Church. This A_, has, apart from type variables,
so-called arrow-types of the form o — o', for each pair of types o and ¢’. In higher type
theories, arrow-types are replaced by dependent products II,.,.0’, where the type o' may
contain y as a free variable, and thus may depend on y. This means that abstraction can be
over types, similarly to the usual abstraction over terms: Ay.;.2.

But, once we allow abstraction over types, it would be nice to discuss the conversion
rules which govern these types. We propose conversion rules which act similarly to those
for terms. For example, if ¢, ¢ are terms, o, ¢’ are types, and if A and II are used for
abstraction over terms and types respectively, then not only (A,.s.t)t" =3 t[y := t'], but also
(Oy.p.0")t —5 o'y :=1].

This strategy of permitting II-application (Il,.;.0’)t' in term construction and using an
extended version of G-reduction for such a II-application, however, is not commonly used. Yet,
it is desirable. Especially now in the new tradition which attempts to unify and generalise the
type systems. See for example the Barendregt cube in [Barendregt 92] and the fine structure
of the A-calculus in [KN 9y].

Moreover, one may say that g-reduction has been invented as an expedient in order to
forebode a possible substitution. So why does one use a direct substitution as in equation 1
below, (which is used almost everywhere) if G-reduction can be used to do the job, as shown
in equation 2?7 (We omit the contexts, for the sake of simplicity):

If f:1,.,.0" and a: o, then fa: o'y :=d (1)
If f:1,.0" and a: o, then fa: (Il,.,.0")a (which 3—converts to fa:o'[y :=a]). (2)

In fact, it is more elegant and uniform to use the second notation instead of the first one.
The formulation of the theories and the proofs becomes easier. Furthermore, with the second
notation, one maintains a compatibility property for the typing of all applications:

M:N= MP:NP.

This is in line with the compatibility property for the typing of abstractions, which does hold
in general:

M : N = Ay.pM : II,.pN.

As an example, we give a simple derivation with the above-described compatible application
rule and with conversion on II-application:

A:xb:Aa:A F a:A (start)

A:xb: A F o (Ag:a-a) : (ITg.4.A) (abstraction)
A:x,b: A Fo (Aga.a)b: (I14.4.A)b (application)
A:xb: A Fo (Aga-a)b: A (conversion)

It is our belief that it is simpler to treat terms and types in a unified manner. Moreover,
such a unified treatment provides a step towards the generalisation of type systems. In fact,
such a generalisation is an important topic of research at the present time. For example,
Barendregt’s taxonomy of type systems in [Barendregt 92] and our generalised system in
[NK 94] which accommodates all the systems of the Barendregt cube are attempts at com-
bining all the important results and structures of type systems in a compact and elegant way.
As a step towards this compact and elegant way, we believe that conversion should apply to
both types and terms. Hence, this paper aims at extending the conversion rules of terms to

types.

We start in Section 2 by presenting the calculus A_, -, being a form of A_, in which terms
and types can be treated alike and where types contain abstraction and application rather
than being simple as in A_,. The Church Rosser theorem is shown in Section 3 to hold
for the calculus. In Section 4, we present the technical machinery relevant for contexts and
variables. Important notions such as context ordering and the companion term of a context-
and-expression pair are introduced and discussed for binding variables in terms and contexts.
For substitution purposes, contexts must be restricted to the well-behaved ones but it is shown
that this restriction is only cosmetic, in that for any (I, M), we can find an a-variant (I, M')
where I"” is well-behaved. In Section 5, we introduce the typing operator 7. This operator
will find the types of terms within contexts. 7 will satisfy most of the desired properties of
typing operators, such as weakening, and substitution.

Typing a term however, is not the only important notion. We need to study the type of the
term too and to study the well-typedness of the term. In fact, we think that a more elegant
notion of typing can be obtained if we split the judgement I' - ¢ : ¢ in two judgements:
I' =t and 7(I',t) =g o which say that ¢ is well typed and has for type o. So instead of
concentrating on the whole formula I' - ¢ : o at once, we engage ourselves first in showing the
well-typedness of ¢ and then in looking for its type. In fact, we believe that this separation is
important especially when we move away from the simpler type theories such as A_, to a more
involved ones such as those of the systems of the Barendregt cube where types and terms are
inter-mingled. In such a case, not only we need to discuss I' - ¢ but also that the type of ¢
is well-typed (or consistent). We use the notion consistent instead of well-typed in order to
cover for both cases when I' - ¢ and T' F 7(I',¢). For this reason, we introduce in section 6
the notion of consistency of an expression with respect to a context. All terms which are
consistent with respect to a context, are typable (via 7) in the context and their types are
also consistent. Le. if I' - ¢ then 7(I',¢) is defined and I" - 7(I',¢). Hence, we define I - M
for M being a type as well as a term. Furthermore, all the information about binding and
freeness relevant to ¢ and to typing it in context I, is present in [and in t. So the expression

I’ =t can be treated as a term on its right. We believe that separating I' - ¢ : o into [' - ¢ and
7(I',t) = o deserves attention. Moreover, consistency - has all the desirable properties of
type theory. For example, Basis Lemma, Generation Lemma, Correctness of Subexpressions,
Weakening, Substitution, Context Reduction, Subject Reduction, Unicity and Correctness of
Types all hold for consistent expressions.

Hence the calculus presented unifies the treatment of types and terms, while preserv-
ing all the important properties, from Church Rosser to subject reduction and type unic-
ity /correctness. To give the reader a feel for the elegance of the approach, we interpret in
Section 7 Church’s A_, in our calculus. The main result is that I' -y, ¢ : o iff I' - Z(¢)
and I' - Z(o) in A_,;, for Z being the interpretation function from A_, to A_,,. Moreover,
7(I,Z(t)) = Z(o) in A_,,. Furthermore, if I F ¢ in A_,; then there are I',¢ and o in A_,
such that I'" —»g Z(T'), t' =5 Z(t), 7(I'",t') =3 Z(0) and ' k5, t : 0. We believe that our
calculus can be used to provide similar conditions for other type systems and it would be
interesting to extend these results for the Pure Type Systems. Hence A_,; can be looked at
as a system which discusses and generalises conditions of typing in the known type systems.

2 Aor

We assume two kinds of expressions: types and terms. We assume moreover, an infinite set
V of type variables and an infinite set V' of term variables. We let T be the set of types and
T be the set of terms and assume two abstraction operators IT and A. The II abstracts over
types and the A over terms. Both 7 and T are defined as follows:

V=al|V

V=x|V

T =V |y T)[(TT)

T=V|QAv7T)|(TT)

Note that this definition allows that types are applied to terms.

Examples of types are: o, (Il;.o.(¢/2)) and ((I1;.q.0/)2").

Examples of terms are: 2", (Ag.q.(2"2)) and ((Ap.q-2")2).

We often omit brackets conforming to the usual conventions. We use the meta-variable 7
to range over {\,IT}. We let ,~1,... range over V and y, z, ... range over V. Also, w,u’, ...
range over VUV and we assume that VNV = (. We use o,0’,0",...,01,09,... to range over
T (the types), t,t',t" ... t1,t9,... to range over T (the terms), and let L, M, N, P, ... range
over T UT. We call the elements of 7 UT expressions.

Lemma 2.1 7TNT =)
Proof: FEasy. O

2.1 Variable manipulation

The free and bound variables in an expression M, denoted F'V (M) and BV (M)
respectively, are defined as follows:

Definition 2.2 (Free Variables)

1. FV(w) =w

2. FV(my.e.M) = FV (o) U(FV(M)\ {y})
3. FV(Mt) = FV (M) U FV (t)
Definition 2.3 (Bound Variables)
1. BV(w) =10
2. BV (m,..-M) = {y} U BV (o) U BV (M)
3. BV(Mt) = BV (M) U BV (t)
Remark 2.4 Note that BV(M) C V.

Now we define the type of a bound variable in an expression as follows:
Definition 2.5 (Type of Bound Variables)

o If y occurs free in M, then all its occurrences are bound with type o in my...M where
T=ANifMeT andrm=1Lif M eT.

o If an occurrence of y is bound with type o in M, then it is also bound with type o in
Ty .M, in Mt, and, in case M € T, in (M'M).

As is usual in the A-calculus, and for ease of the proofs that we will carry out, we assume
Barendregt’s variable convention. That is: names of bound variables will always be chosen
such that they differ from the free ones in an expression, so that one wouldn’t have (my.;.y)y
but instead (7,.s.2)y. Such a convention is guaranteed via the use of variable renaming and
is formally stated as follows:

Notation 2.6 (Barendregt’s Variable Convention)
For every M, BV(M)NFV(M) = 0.

Notation 2.7 (Extended Variable Convention, VC)
We extend Barendregt’s Variable Convention with the following clause: For every M, if A,
and A, occur in M then y # z.

Remark 2.8 Note that the condition that names of bound variables be distinct is desirable
in order to obtain that for a term obeying VC, also its subterms obey VC. Take for example
the term ¢ = Ay.q-Ayiary-y. It is certainly the case that BV (t) N FV(t) = 0, yet y occurs in
the free and bound variables of A,.q/y.y. Therefore, we impose the condition that names of
bound variables be distinct in order to make sure that for every expression we write down
(whether it is an expression or a subexpression of another expression), the free variables and
the bound variables are disjoint.

It should be further noted that without variable renaming, we could not have V C'. Therefore,
we identify expressions modulo a-conversion. With V' C moreover, we get the following:

Lemma 2.9 In my.,.M, y & FV (o).
Proof: BV (ny...M) = {y}UBV (0)UBV (M) and FV (ny.c.M) = FV(o)U(FV (M)\{y}).
y € BV (my:e. M) =VC y & FV (myg. M) =5 y & FV(0)U(FV (M)\{y}) = y € FV(0). D

Remark 2.10 Note here that with the identification of expressions modulo a-conversion, the
notion of a bound variable becomes useless.

Notation 2.11 M = N means that M and N are the same expressions or can be obtained
from each other by renaming bound variables. For example: 7y.;.y = 7,.5.2 for z not free in
0. Now, if in clause 5 of Definition 2.12 below, y € F'V (P), then we write (7y.,.M)[w := P] =
(7y:0- My := z])[w := P] for z a fresh variable (note from Lemma 2.9 that y € F'V(0)). With
this notation, we follow the lines of Barendregt in [Barendregt 92] in identifying expressions
that differ only in the name of bound variables, rather than using a-conversion. That is, the
identification is done in our mind rather than on paper.

2.2 Substitution and reduction

We introduce substitution, reduction and conversion by the following definitions:

Definition 2.12 (Substitution)

We define M[w := P] to be the result of substituting P in M for all free occurrences of w.
In this definition, we assume that FV(P) N BV (M) = 0; this is consistent with the variable
convention. M|w := P] is defined by induction as follows:

2. wilwz =P =wi if w # wo

3. (Mt)jw = P] = Mlw := P)tfw = P]

4. (myo- M)y == P] = my.g.M'

5. (Tyio-M)w := P| = mypmp) Mw = Pl if y Zw

Lemma 2.13 (Substitution in Terms and Types)

1. IfyeV, N €T then

e MeT= Mly:=N]eT
e MeT = Mly:=N]eT

2. If yeV, NeT then

e MeT = My:=N]eT
e MeT = M[y:=N|eT

Proof: Both by simultaneous induction on the structure of M. O

Lemma 2.14 If MM, My € TUT, w Z ' and w & FV (M) then
M[w := Mi|[w' := Ms] = MW" := Ms][w := M;[w' := M>]].

Proof: This is a corollary of Lemma 3.3 below. O

!Note that y could not be free in ¢ according to VC, by Lemma 2.9.

Definition 2.15 (One step Reduction — g, a relation on T UT)
One step reduction —5 on T UT is the least relation closed under the 3-rule (rule 1, below)
and the compatibility conditions (rules 2,3 and 4 below).

1. (my:e. M)t =g My :=t]

2. If t =5 t' then Mt —5 Mt

3. If M —3 N then Mt —g Nt and my.c.M —g my.c.N
4. If 0 =g o' then my.e.M —g my.0r . M

Definition 2.16 (Reduction —»3, a relation on T UT)
Reduction—»3 on T UT is the reflexive and transitive closure of —g. That is, —»g is defined
by the following rules:

1. M —g M
2. If M —3 N then M —»3 N
3. If M —»3 N and N —»g L then M —»g5 L

Definition 2.17 (Conversion =g, a relation on T UT)
Conversion =g on T UT is the least equivalence relation closed under —%g. That is:

1. If M —»g N then M =g N
2. If M =5 N then N =g M
8. If M =3 N and N =g L then M =g L

Lemma 2.18
Let = be —g or —»5 or =3. Now, if M € T (respectively M € T) and if M>N then N € T
(respectively N € T).

Proof: Use Lemma 2.13 and induction. |

Lemma 2.19 (—3-substitution lemma on T UT)
For M,\N € TUT,z€V andt' €T, if M —3 N, then Mz :=1t] =3 N[z :=1].
Proof: This is a corollary of Lemma 3.5 and Lemma 3.6 below. O

Corollary 2.20 (—g-substitution lemma on T UT)
For M,N € TUT,z€V and t' €T, if M —»3 N, then M[z :=t'] —»g N[z :={'].
Proof: By induction on —»g using Lemma 2.19. O

Definition 2.21 (B-redezes, 3-nf)

o An expression of the form (my.,.M)t is called a B-redex.
o If an expression M has no (-redexes as a subexpression then M is said to be in B-nf.

o Ift=pt" where t' is in B-nf, then t is said to have a (3-nf.

3 The Church Rosser Theorem

To prove the Church Rosser Theorem (in short CR theorem), we shall follow the method
presented in [Barendregt 84] working with types and terms alike. That is, even though we
use a similar strategy to that of [Barendregt 84] to prove the CR theorem, the details will
extend all the notions of reductions, substitution and all the proofs in order to treat types as
well as terms in a unified manner. We start by extending 7 and 7T to the following:
T=V|y.rT) | (TT) | (1L, 7)T
r=Vv| (Ay:I-I) | (LT) | (Ay:I-I)I

In this section, M, N and P range over 7 UT. Moreover, o,0’,... range over 7 and
t,t',... range over T. Furthermore, we use x to range over {\, I1}.

Remark 3.1 Note that when we write an expression M this will never indicate m,.,.M " for
some M', even if M occurs with an argument N in M N.

We extend the definition of free and bound variables by adding to Definition 2.2, the first
clause below and to Definition 2.3, the second clause below (recall here however remark 2.10).

FV((ry..-M)t) = FV(o)U(FV(M)\{y}) UFV(t)
BV ((xye-M)t) = {y}UBV(s)UBV(M)UBV(t)

We still assume moreover the variable convention for 7 U T and consider expressions to be
equivalent up to variable renaming.
3.1 Substitution and Reduction in T UT

Substitution is exactly as in Definition 2.12 except that we add the following:
((Ey:U'M)tl)[w = P] = (Ey:zr[w::P}'M[w = P])(tl[w = P]) lfy 7_é w
(zyeg M)y = P] = (my ML 2
Now a similar version of Lemma 2.13 holds for 7 UT. That is,

Lemma 3.2 (Substitution in Terms and Types)
1. IfyeV, NeT then

e MeT = M[y:=N]eT
e MeT = M[y:=N|eT

2. IfyeV, N e then

e MeT = M[y:=N]eT
e MeT = M[y:=N]eT

Proof: Both by simultaneous induction on the structure of M. O

Lemma 3.3 If M, My,My € TUT, w# W' and w & FV (M,) then
Mw := Mi|[w' := Ms] = MW" := Ms][w := M;[w' := M>]].

Proof: By induction on the length of terms and types in T UT.

2The second clause is in accordance with the variable convention as y & FV (¢').

10

o M =w then lhs = Mi[w' := M| = rhs.
o M = then lhs = My = rhs as w & FV (Ms).

o M =" and W" Z w and " Z W' then lhs = rhs = W".

Assume the property holds for M,t then obviously it holds for Mt, i.e.
(Mt)[w = Ml][w = MQ] (Mt)[MQ][W — Ml[wl — MQ]]

o Assume the property holds for M, then let us show it holds for my.,. M.

— case w Zy and W' £y then
(Tyso-M)[w := M][w' := Mo] =
Tysolwi=My|[wi=M,]-M[w 1= M][w' == M] EIH
Tyioluw' smMalwsmtt o' s=ta]) MW = Ma]lw
(Tyso-M)[w' = My][w := M [:= M>]]

— case w =y then
(Tyso-M)[y := My][w' := My] =
Tysolw =] -M[W' := Ma] and
(Ty:o- M) W' := Ma][y := My[w' == Mp]] =

Tyofw =My - M W' 1= Ma].

— case w' =y and y & FV(My) then
(Tyeo- M) [w := Mi][y := My] =
Tyiolw=nn]-Mw = Mi]

Moreover, (Ty.e.M)[y := Ms][w := My := Ms]] =
(Tyso-M)[w := My := Ms]] =
Tyiolwi=n]-M[w = Mi]

— case W' =y and y € FV (M) then (my.o.M)w := Mi][y := Ms] =
(T2:0-Mly := z])|[w := M|y := Ms] (for fresh z) =
(Wz:a[w:ZMﬂ'M[y = Z] [w = MI])[y = MQ] =
Toolw=M =M, -M[y i= 2][w := Mi]ly := Mp] =
Tocoly:=Ms)[w=My [y:=M]|-M [y = 2][y := Mal[w := Mily := Ma]] =
(since y € FV (o) by VC and y ¢ FV(M[y := z]))
Toolw=M =M -My = 2]lw := Mily == My]].

Moreover, (my.q.M)[y := Ms)[w := Mi[y := Ms]] =

(Moo My := 2'|)[y := Ma]w := Mily := Ms]| (for fresh ') =
(7o ofy=am)- My = 2'[y 1= Mp))[w 1= Mi[y := Mp]] =

(since y & FV (o) and y & FV(Mly :=2'])

(70 Mly = 2w := Mi[y = MQ]] =

Tt olw=M [y:=M)-M [y = 2][w 1= My := Mp]]

e For ((m

Tyo-M)t)[w := My][w' := M>] use a similar proof.

11

We extend Definitions 2.15 and 2.16 to the following:
Definition 3.4 (Eztended Reduction —g and —»g)

1. (my:e- M)t = My := 1]

2. (@y.o-M)t —p My := 1]

8. Ift =gt then (my.,. M)t —p (7.0 M)t and Pt —5 Pt

4. If M —5 N then
Mt =3 Nt, my.0.M =g 7y.g.N and (z,.,.M)t =3 (7,.,.N)t

5 If o —=p o' then my.g.P —p Ty.or. P and (1., P)t —p (7,0 P)t
6. —»g 1s the transitive and reflexive closure of —g.
The relation —5 on 7 U T is indeed an extension of the relation —g on 7 UT"

Lemma 3.5
Let M,N € TUT. Then: M —3 N iff M —5 N.
Proof: By induction on M —g N or M :>5 N, respectively. O

Lemma 3.6 (—g-substitution lemma on TUT)
For M,\N € TUT,z€V andt' €T, if M —g N, then M[z :=t'] =g N[z :=1'].
Proof: By induction on M —g N. B B

o Case (my.q. M)t =5 My :=t],

1. Case z Z y:
((Tyso- M)E)[2 1= t'] = (Tygimp)- Mz =]tz =] =g
Mz =ty :=t[z :=t']] = M|y := t][z := '] by Lemma 3.3, since y & FV(t') by
VC.

2. Case z =y
(g M)y = t'] = (7y:0. M)t =
Mly :=t] = My := t]ly :=t'] since y & FV(t) by VC.

o Case (my.,. M)t =3 Mly :=t] is similar to the above case.

o The other cases are easy.

O
Corollary 3.7 (—»g-substitution lemma on TUT)
For M,\N € TUT,2 €V andt' € L, if M —»3 N, then M[z :=t] —»5 N[z :=1].
Proof: By induction on —pg using Lemma 3.6
O

12

3.2 The relations between 7 U7 and T UT
Definition 3.8 The map | |: T UT — T UT is defined as the erasing of all underlinings.
Definition 3.9 ¢: TUT — T UT s defined as follows:
1. p(w) =w
2. ¢(Mt) = ¢(M)o(t)®
3. d((my:o-M)t) = ¢(M)]y := ¢(1)]
4o ATy M) = 7y 6)-H(M)
We denote | M | = N and ¢(M) = N by M —ll N and M —? N respectively.

Lemma 3.10 For every M € TUT, FV(p(M)) C FV(M).
Proof: By induction on the structure of M.
O

In what follows, read dashed lines as a quest for existence, or a proof and non dashed lines
as hypotheses.

Lemma 3.11 For every M,N € TUT and M' € TUT, if M' =!Il M and M —»3 N then
(AN')[M' =5 N' AN' =l N|. This is pictured as follows:

M -==-=--- — N’
1] B

\
M N

@

Proof: Clearly this property holds for —g:

If M —g N is the result of contracting in M a redex obtaining N, then N' can be obtained
from M' by contracting the corresponding redex in M’'. Now we prove by induction on the
definition of —»g that it holds for —»g.

o If M —»3 M obvious.
o If M —»3 N comes from M —g N then from above.

o If M —»3 N comes from M —»5 N1 and N1 —»g N and property holds for M —»g Ny
and N1 —»g N then:

M’ —————— —— N{ —————— —— N’

1] B B

M]\'71](f
5 B

3Note here that M is not .-V

13

Lemma 3.12 For all w,M, and P in T UT with FV(P)NBV (M) =0, we have ¢(M)[w :=

P(P)] = p(Mw := P]).
Proof: By induction on M

o (Case w:
wlw:= P] = P so ¢p(wlw]) = ¢(P)
and ¢p(w)[w := (P)] = [= ¢(P)] = ¢(P)

o Case w) #Z w:
wilw:= P] =w; so

p(wifw = Pl) = ¢(wr) = glwr)w := ¢(P)]

o Case Mt:
Mtw = P] Mw := Plt{w := P] where IH holds for M,t. Hence
P(Mi)[w <15() =*
(p(M)¢>(t))[= ¢(P)] =
(D = $(P) (G = 6(P)]) =11
B(M[w := P)(tlw = P]) =

¢(M[w := P]tjw := P]) =40
S(Mtlw = P))

o Case my.e.M and w = y:
(Ty:o-M)[y := P] = 7y:e.M s0
O((Tyr M)y 1= P]) = 6(myr. M) =
Ty:g(0)-P(M) =
(ﬂy:¢(a)'¢(M))[y = ¢(P)]
P(my:o- M)y := ¢(P)]

o Case my.e.M and w Z y:
(Ty:o-M)[w 1= P] = mygi=p]-M|w := P] s0

Tyig(o)wi=o(P)]-(O(M)[w := p(P)]) ="
Ty:(olw=P))-¢(M[w := P]) =7
(b(ﬂ-y:zr[w::P}'M[w = P]) =
P((my:o-M)[w := P]

o Case (m,.,- :
(@y:g- M)y := P] = (mye- MY, 50
= ¢((my- M)ty = p(P)] =*
M)y == ¢(t")]ly == ¢()=
d(M)[y := ¢(t")] because y & FV (t') due to the variable convention
= A(((my- M)y := P]) =
H((mye- M) =2
P(M)[y := o(t)].
o Case (1.,

(b((ﬂy:U-M)t,)[w = (P)] Ed)
H(M)[y := ¢(t")][w := ¢(P)] =Lemmas 3.3 and 3.10
(note that y ¢ FV(P) since FV(P) N BV((Ey;U.M)t’) =0)

Pp(M)[w = ¢§P)] y = ¢(t")w := ¢(P)]] = by IH

Lemma 3.13 For M,M' € TUT, if M —» M’ then ¢(M) —»5 ¢(M'). That is:

M M’
0| B e
S(M)— — — — — - —yon)

Proof: Induction on M —»g M':

o (myg- M)t =g My := t] then

(o M)1) = 0{ (1 M)O(E) = (o) HOD)OLE) 5
¢(M [y = (]S(t)] =VC=FV(t)NBV(M)=0,Lemma 3.12 (,ZS(M[y — t])

o (my.o-M)t =g My :=1t] then
H(Zyo M) —5 Sy 1= B{1)] =V OFVONBYOD=0Lemma 312 (11 =
o Ift =5t implies ¢(t) —5 ¢(t') then
— ¢(Pt) = ¢(P)o(t) —p o(P)p(t') = ¢(Pt')
- (b((ﬂy:a'P)t) —p (b((ﬂy:a'P)t,)
o If M —p N implies p(M) —g ¢(N) then
— ¢(Mt) =5 ¢(Nt)
- (b(ﬂ'y:zr-M) —g QS(T"y:U-N)
- (b((ﬂy:a'M)t) -5 QS((Ey:U'N)t)
o If o —p o' implies (o) —p ¢(0') then
- ¢(7ry:U-P) -3 ¢(7ry:zr’-P)
- ¢((£y:U'P)t) —B ¢((£y:a"P)t)
o If M —»3 M then obviously (M) —»3 $(M)

o If M —»p M' comes from M —g M’ then ¢(M) —»5 ¢(M')

o If M —»g M' comes from M —»g M" and M" —»g M’ and the induction hypothesis

holds for M, M" and M",M' then ¢(M) —»5 ¢(M')

15

Lemma 3.14 For M € TUT and My{,My € TUT, if M My and M =9 M,y then
My —»g My. That is:

M
W
My ———— > M,
g
Proof: By induction on M € TUT

o If M = w obvious.
o If M = M't where

M’ t

W W
M{————ﬂ—»Mﬁ ty ____ﬁ_»t2

then | M't |=| M' || t |= Mit; and ¢p(M't) = ¢(M'")p(t) = Mjte. Hence

M't
W
Mit;— — - —ﬁ+>M§t2
o If M = my.e.M' where
M o
W W
M{—————»—»Mé 0] — — — — &> 09

then

16

o If M = (z,.,.M')t where

A A A

—————»M2 —————»0'2 _____»tZ

then (Ty.g, -M{)t1 =g (Ty:0y . My)ta =5 My[y := t2] and hence

3.3 The theorem and its corollaries

First we start by proving the strip lemma which will be used in the proof of the CR theorem.
Then we show the theorem and three of its corollaries.

Lemma 3.15 (Strip Lemma) For M, M, My, M3 € T UT we have:

M My
5] Y
M1 —————— —B’ M3

Proof: Let My be the result of contracting R = (my.e.M')M" in M. Let M{ € TUT be
obtained from M by replacing R by R' = (m,.,.M")M". Then | M{ |= M and $(Mj) = M;.
By Lemmas 3.11, 3.13 and 3.14 we have M5, Ms (= ¢(MJ)) and the following diagram:

M M.
|| AN
M ———=—-—-—-—-—-~- 3 M;
8y 6 By ¢
1 - - - — - - —B’Ma

17

Theorem 3.16 (The Church Rosser Theorem)
For M,Ny1,No € TUT, if M —»5 N1 and M —»g No then there exists N3 € T UT such that
N g N3 and Ny -3 N3

Proof: M —»3 Ny then M = My —g My —g My —g ... =g M, = Ny. Hence from
Lemma 3.15 we have:

M Ny
g gos
Moo -
ﬁ* ;ﬁ

G _B» |

| |

| |

| |

| |
3 +3
5! Pois
N —————— _E» N3

Corollary 3.17 For M,N € T UT, if M =g N then there exists L € T UT such that
M -3 L and N —»g L

Proof: by induction on =g.

If M =5 N comes from M —»3 N then take L = N

If M =5 N comes from N =g M where property holds for N =g M, nothing to prove.

If M =3 N comes from M =g L and L =3 N where property holds for M =g L and
L =35 N then there exists L1, Ly such that:

M L N

NN

Ly Ly

As L —»g Ly and L —»g3 Lo then by CR there exists L3 such that:

18

Hence M —»5 L3 and N —»g Lg. O

Corollary 3.18
1. For M,N € TUT, if M has N as 3-nf then M —»3 N
2. An expression has at most one (3-nf.

Proof:

1. M has N as B-nf then M =g N and N is a B-nf. Hence by corollary above, there
exists L such that M —»g L and N —»g L. This implies that N = L up to renaming of
variables and so M —»g N.

2. If M has N1 and No as 3-nf then M —»g N1 and M —»5 N2 and so there ewists M’
such that:

Ny No
\\\]w/

But as N1, Ny are in 3-nf then Ny = M' = Ny and hence Ny = N».

O
Corollary 3.19 If M =g ny.c.M' and N =g o then
(HUI,M”)[M —»g Wy;gl.M” and N —g 01].
Proof: By Corollary 3.17, (30')[N —»5 o' and o —»3 o'].
Hence of course, M =g .. M'.
We apply again Corollary 3.17 to get
(o, M")[M =g Ty.q, M" and mwy.er . M' =55 7y.o M" and o' =55 01].
Hence M —»g my.g) . M" and N —»3 o71. O

Corollary 3.20 (=g-substitution lemma)
For M,\N € TUT, z€V andt' €T, if M =g N, then M[z :=t'] =g N[z :=1].

Proof: If M =3 N, then there exists M' such that M —»3 M' and N —»3 M' by
Corollary 3.17. By Lemma 2.20, M[z :=t'] =53 M'[z :=t'] and N[z :=t'] =3 M'[z :={'].
Hence, M|z :=t'] =g N[z :=1]. O

19

4 Statements and Contexts

Fundamental in typed lambda calculus is the relation “t has type ¢”. This relation is formal-
ized as the statement ¢ : . In associating types to terms, contexts play an important role.
The following definitions concern statements and contexts.

Definition 4.1 (Statement, subject, type)
A statement is of the formt:o witht €T, oc e T.
t is the subject, o is the type of the statement t : o.

Definition 4.2 (Contexts)
[is a context if I is a finite linearly ordered set of statements with (term) variables as subjects.

We let CONS be the collection of all contexts. Contexts are written as lists of pairs (y : o)
where y € V and o € T. We write I'(y : o) for the context obtained by appending (y : o) at
the end of the list I'. Notations like I'(y : 0)I" etc. are used in the same manner.

We use I', IV, "1, 'y, ... as meta variables for contexts.

Definition 4.3 (Domain and Range of contexts)
For ' € CONS, we define the domain of T', dom(T") and the range of T, ran(T") as follows:

o dom(I') ={yeV;(3oceT)[(y:0) eI}
e ran(I') ={ceT;(AyeV)l(y:0) eI}

Definition 4.4 (Free Variables of contexts)
For T € CONS, we define the free variables of ', FV(T'), to be Uyepanm)F'V (o).

Definition 4.5 (Bound Variables of contexts)
For I' € CONS, we define the bound variables of ', BV (L), to be Useranm)yBV (o).

Definition 4.6 (Variables of contexts)
For ' € CONS, we define the variables of ', VAR(T) to be FV(I') U BV (T') U dom(T).

Definition 4.7 (Substitution in contexts)
For'€e CONS, ' = (y1:01)...(yn : on),
Mw:=N]=(y1 : o1[w := N]) ... (yn : opw := NJ).

Definition 4.8 (One-step reduction of contexts)
For I, " € CONS, we say I =3 I" if the following holds:
F'=(yi:01)...(yn : 0n) andI" = (y1 : o) ... (yn : 0},) with o; —p o} for somei € {1,...,n}.

Definition 4.9 (Reduction of contexts)
I' =3 I is the reflexive transitive closure of I' =5 I".

Note that we use —5 and — g to mean both reduction of contexts and reduction of expressions.
This should not lead to confusion.

Example 4.10

20

L (y: (o) 2) (Y (o) 2 (Azy0021)2") -3 (W ()2 (Nsy0021)2")
2. (y: (e)2)Y (zio7) 2 (Nzyo-21)2") -3 (v : (Ley)2") (Y 2 (Hepy)2'2")
3. (y: (Mo)2)W+ (Haio7)2 (Nayo-21)2") =25 (v 1 (aio7)2) (Y 2 v2)

4. (y: (egy)2) Y 1 (Wsio07)2' (Aay0021)2") =5 (y 2 7) (Y 2 v2")

Definition 4.11 (Restriction of contexts to sets of variables)
IfT € CONS and S CV then T'|S is the restriction of ' to S, that is the list T obtained
from T’ by removing all (y : o) from T' with y ¢ S.

Remark 4.12 Note that (I'[S")[S =T |(SNS’). Note moreover that (IT')[S = (T'[S)(I'[S).

4.1 Context ordering

We need an ordering relation on contexts:

Definition 4.13 (Ordering of contexts)
FCITY ifT =T, IV =T (y : 0)T2 and y € dom(T1)
The relation T is the reflezive and transitive closure of C'.

Example 4.14 (z:0)(y:0') C! (y:0)(2 : 0)(y : o) and

(z:0)(y:0") Tl (z:0)(y:0)(y:0) fory # 2.

Furthermore, (y1 : 01)(y2 : 02) C (y1 : 02)(y1 : 01)(y2 : 01)(ys : 02)(y2 : 02)(ys : o1) for
yi #yj it i #j.

The motivation of the condition y & dom(I';) will be given in Lemma 4.28. Be careful not to
confuse C with set inclusion which we write as C. In fact, L T I' = I' C IV, but the reverse
is not true. The reverse however is true in the following case:

Lemma 4.15 If dom(T') Ndom(I") = () then T CT'T".

Proof: By induction on the length of I". O
Lemma 4.16
IfTCT, thenT(y:0) CT(y: o).

Proof:

e Case T C'TY since T =TIy C Ty (2 : 0)T2 =TV and z & dom(T1).
Then T'(y:0) =T1la(y: o) CL Ti(z: 0\a(y : 0) =1 (y : 0) since z & dom(I'y), both
ifz=y and if z Z y.

o Case I' C IV by reflexivity or transitivity.
These cases are trivial.

Now, a notion which helps one understand C is that of part:

21

Definition 4.17 (Part)
A context I is a part of another context I'' if I is a sequence consisting of some statements
of T written in the order in which they occurred in I". We use < as a notation for ‘is a part

of .
For example, (y2 : 02)(ys : 04) < (y1: 01)(y2 : 02)(y3 : 03)(y4 : 04) for y; # y; for i # 5.

Definition 4.18 For ' a context and (y : 0)° a particular occurrence of (y : o) € T' we
define L((y : 0)°,T') to be the context formed from the beginning (to the left) of I' until (and
excluding) this occurrence of (y : o).

Example 4.19

L((y2 : 02), (y1 : 1) (y2 : 02) (41 = 01)*(Y
L((y1 : o1)', (1 1)1(y2 o2)(y1 : 01)*(y3 : 93)) = 0,
L((y1 : 01)%, (y1 : 01) (y2 = 02)()?

Note that it is possible that I' < TY but I' Z I". For example, (y : 0) < (y : 0)(y : o'). It is
the case however that if I' C IV then I' < I". Here is the lemma which gives the relationship
between C and the easier notion <.

Lemma 4.20

FCTif T <T and V(y:0)° € T'\ T,y & dom(L((y : 0)°,T")) N dom(T).
Proof:

= By induction on T C T".

e Case T C' T" then T =4Iy C T'y(y : o)y =", Hence T’ < T'. Furthermore, (y : o)
is the only occurrence in I'\ T, and as I C' I then
y & dom(T'1) = dom(L((y : 0),T")) N dom(T).

e Case ' C I' obuvious.

e Case ' CI'y and I'y C I use IH and transitivity of < to get I' < I"'. Furthermore, let
(y:0)° €eI"\T.

— Case (y:0)° €Ty then (y:0)° € I"\T';. Hence by IH,

y & dom(L((y : 0)°,I")) N dom(T1) D'<I dom(L((y : 0)°, ")) N dom(T).
— Case (y:0)° €'y then (y:0)° €' \I'. Hence by IH,
y & dom(L((y : 0)°,T1)) Ndom(T) == dom/(L((y : 0)°,I")) N dom(T).

< By induction on the size of I\ T, [I'"\ T|.

o Case'\I'y <T'y(y:0)'2 andy & dom(L((y : 0),['1(y : 0)I'2)) Ndom(I'1'2) = dom (1),
then Fl El FQ.

o Assume IH holds for any U',T" where |I"\T'| = n. Take I',I" such that |I"\T| =n+1,
I <IMandV(y:0)° €'\, y & dom(L((y : 0)°,I"))Ndom(T). As|T'\T| =n+1, let
(z : 01) be the leftmost element in I\ T'. Hence I' =T (z : 01)T' and z ¢ dom (') N
dom(T) = dom(T}). AsT < T' and (z : 1) € T, then T < T'\T",. Furthermore,
V(y : 0)° € I"\ T, y & dom(L((y : 0)°,I")) N dom(T") implies V(y : 0)° € ([T \ T,
y & dom(L((y : 0)°,T1T%)) Ndom(T') can be seen as follows: Let (y: o)° € (I'1TH) \T.

22

— Case (y:0)° € then L((y:0)°,T") = L((y : 0)°,I'\T) = L((y : 0)°,T).
— Case (y : 0)° € I'y then dom(L((y : 0)°,I")) = dom(L((y : 0)°, T\ T%)) U {z}.
x Case z # y then as y & dom(L((y : 0)°,I")) Ndom(T), then
y & dom(L((y : 0)°,T\T%)) Ndom(T).
x Case z =y then as (z:0)° € (T TH)\ T, (z:0)° € I"\T'. Hence
z & dom(L((z : 0)°,T")) Ndom(T"). But (2 : 01) € L((z : 0)°,T'). Hence
z & dom(T"). And so, z & dom(L((y : 0)°,T1I'5)) N dom(T).

Hence by IH, ' C I\, Furthermore, as z ¢ dom(l}), then DT C T (z : o1)T%.
Hence by transitivity of C, T C TV,

O
Corollary 4.21
If Vy;,y; € dom(I'),i # j = y; #yj and T’ <T' then T C T".
Proof: Apply Lemma 4.20 |

Now if, for example, I' = T'1(y : 01)T2(y : 09)'s, with y & dom(T'3), then the statement
meaningful to a free y in I's is the rightmost, viz. (y : 02), as we will see below. The following
lemma shows that context ordering preserves this property.

Lemma 4.22 IfT' C IV and (y : 0) is the rightmost statement in I' whose subject is y, then
(y : o) is the rightmost statement in T whose subject is y.
Proof: By induction on I' T I". O

This lemma is important. It says that if y gets type o in I' and if I' C I then y gets type o
in I''. Le. I knows everything that T" knows together with some information about variables
which do not belong to dom(I'). We can capture this information by defining the binding
structure of a context-and-expression pair:

Definition 4.23 (The Binding Structure of a Context-and-Ezpression Pair; Companion ez-
pression)
We say that a variable occurrence y is free, respectively bound (with type o) in the pair (I', M)
= ((y1 : 01) .- (Yn : on), M) iff the corresponding occurrence of y is free, respectively bound
(with type o) in the expression

Tyriop- - - Tyn:on-M where m =X if M €T and m =11 if M € T.
This expression is called the companion expression of (I'y M).

Example 4.24 Let (I''M) = ((y1 : 01) ... (yn 2 o), M). If M = y; and y; & {Yit1,---,Yn},
then y; is bound with type o; in the pair (I',y;) with T' as above. If M = y and y &
{yi,v2,...,yn}, then y is free in (I',y). If M = (\y:s.y), then y is bound in (I, M) with type
o (as it already was in M itself). If o9 = (0 — 7)y;, then the occurrence of y; in o3 is bound
in (' M) with type o7.

Definition 4.25

FV(D,M) = the free variables of the companion expression of M
BV(I',M) = the bound variables of the companion expression of M

23

We define a notion of a-reduction between context-and-expression pairs:

Definition 4.26 (Variants of Context-and-expression Pairs)

(D, M) is a-equivalent with (or an a-variant of) (I',M') if the corresponding companion
expressions are a-equivalent. (Recall that we use a-equivalence in our mind rather than on
paper.)

Lemma 4.27

e ycdom(l')=y ¢ FV([',M).

o FV(I''M) = (FV(I') U FV(M))\dom(T").
e BV(I'y M) =BV (') UBV (M) Udom(I")
Proof:

e By the variable convention which holds for my,.q,..... Tynion-M,
where again I' = (y1 : 01) ... (yn : op).

e There may be free variables in I’ which are also elements of dom(I'), but these variables
are bound in (U, M) and we have VC holds for the companion expression of (I'y M).

e Obvious.

a

Note that Definition 4.23 establishes the binding pattern in a pair (I, M): each occurrence of
a variable in BV (I'; M') which is neither a subscript of a 7 in M nor a domain variable of T,
is linked to an occurrence of the same variable which is such a subscript or domain variable.
This linkage can be found by inspecting the companion expression of (I, M). Now it can be
shown that context ordering does not disturb this binding pattern:

Lemma 4.28

Let T' C IV, If an occurrence of a bound wvariable y is linked in (T, M) to a certain other
occurrence of this y in (I', M) (being either a subscript of a m or a domain variable), then
this is also the case in (', M), for the corresponding occurrences.

Proof: It is sufficient to investigate the case I' = 'y CT! Iy(y :)0y = I'. The
binding pattern can only be disturbed when the inserted domain variable y “takes over” the
binding for an already present bound occurrence of y. (Note that y cannot be free in (I, M)
by Lemma 4.27.) Now it cannot be the case that an occurrence of y in (I'y M) becomes linked
to the inserted domain variable y, instead of its original linkage. The reason is the restriction
y & dom(I'y) which is a consequence of C1. O

A consequence of this lemma is that context ordering does not influence types of bound
variables:

Corollary 4.29 IfT' C IV and if y is bound with type o in (I, M), then y is bound with type
o in (T, M). O

24

4.2 Well-Behaved contexts

In certain circumstances, which will become clear below, we need a condition on the variables
in a context. Such a condition says that all variables in the domain of a context must be
distinct and that in a context I'(y : o), FV (o) Ndom((y : o)T") = (.

The intuition is that we wish to be free to substitute o for a variable in I or for a variable
‘depending on’ IV, without running the risk that a free variable of o becomes unintentionally
bound. See [Barendregt 91] where a similar discussion is given for contexts.

Definition 4.30 (Well-behaved contexts)
A context T' = (y1 : 01) ... (yn : o) is well-behaved, and we write W B(T), if for all i,j,k €

{1,...,n}:
L oyi=y;=1=7],
2. FV (o) N {yky--- yn} =0. That is, y; € FV (o) =1 < i <k.
We give a few lemmas concerning the well-behavedness of contexts.
Lemma 4.31
1. If WB(T) and I" < T then WB(T').
2. If WB(), y € dom('), y € FV(I') and y € FV (o), then WB(I'(y : 0)).
3. If WB(T') and I' =g I then WB(I").
Proof:
1. Easy.

2. LetT' = (y1:01)...(yn : 0p). Then for all k € {1,...,n}: FV(og) " {yk,...,yn} = 0.
Hence, since y & FV (o), FV(ok) NV {Yks---,Yn,y} = 0. Moreover, FV (o) N{y} =0
and y Z vy for any i € {1,...,n}. So WB(I'(y : 0)).

3. Assume ' =g I'" and comes from T’ =T'1(y : o)’y where 0 =3 0’ and I =T'1(y : o')Ty.
Then use the fact that FV (o) C FV (o) and FV (o) N ({y} Udom(Ts)) = 0.

The case I' =g I is now a trivial consequence.

Corollary 4.32
1. If WB(I'1I'y) then WB(T'y).
2. If WB(I'1I') then WB(I'1I'Y) where T'y is a prefiz of I's.
3. If WB(T') and T" C T then WB(T").
Proof: All of 1, 2, and 3 are corollaries of Lemma 4.51, part 1. O

Lemma 4.33
IfWB([I(y: o)), then D C' I'(y : o).
Proof: Note that WB(I'(y : o)) implies that y & dom(L').

25

Corollary 4.34
If WB(Fng), then Fl E F1F2.

Proof: Induction on the length of the list I's. Note that by Corollary 4.52, part 2, all
1 T% with T, prefix of Ty are well-behaved. Lemma 4.33 plus transitivity of T give the desired
result. O

Lemma 4.35 If WB(I') then T C IV iff T <T".
Proof: This is o corollary of Lemma 4.20. |

Corollary 4.36 If WB(T') and T'y <T9 <T, then I'y C T's.
Proof: Use Lemmas 4.31 and 4.35. O

The following lemma shows that each context-and-expression pair is «-equivalent with a
context-and-expression pair which has a well-behaved context. Hence, the restriction to well-
behaved contexts is not an essential restriction.

Lemma 4.37
For each (T, M) there is an a-variant (I, M') such that W B(T").

Proof: Assume I' = (y1 : 01)...(yn : on). Replace all occurrences of the first domain
variable y1 and of all occurrences of y1 linked to this y1 in (I'y M), by a fresh variable v} and
repeat this procedure successively for the other domain variables yo,...y,. It is clear that we
obtain a pair (I, M') with a-equivalent companion expression and such that W B(T"). O

5 A Typing Operator for _,;

We let 7 be a canonical type operator in A_,;. That is 7 takes a context I' in CONS and
a term ¢ in T of A_,; and gives the type of ¢ with respect to I', according to the following
typing rules:

Definition 5.1 (Canonical Type Operator)
7 : CONS x T — T is defined as follows:

1. 7(T,y) = o if y is bound with type o in (L', y)
2. 7(D,tt")y = (T,)t
3. 7(T, Ao t) = Iyeo.7(C(y 2 0),8)

Here clause 2 may not be obvious at first sight. In fact, one may have expected 7(T, tt') to be
defined as 7(I', t)7(T", ¢'). This certainly cannot be the case for many reasons. First, recall that
a type applies to a term and not to a type. Second, if we allow types as arguments to types,
then we must let Il range over type variables instead of only term variables. Furthermore,
think about the intuition behind such a definition. When we look for the type of ¢, where ¢
has the form A,.,.t" then we obtain a II-type II,.,.0’. Now certainly the type of ¢ must be
o[y := t'], which is a reduct of (II.;.0")t'.

Here moreover, we should draw some attention to the power of typing in A, .. We will
show below that any term which is typable in Church’s A_, is also typable in A_,;. This
should not be surprising as A_, types fewer terms than other systems (see [Barendregt 92],

26

and [BH 90]). We can type more terms however in A_,,. For instance, we will see in Exam-
ple 5.4 that w = Ay.;.yy is typable. Such a term cannot be typed in A_,. Furthermore, the
fixed point operator t = Ay .11, .0) (Aya:o-¥1(¥2y2)) (Ayz:0-91(y2y2)) has a type which reduces
to Iy .(11..,.0)0 (see Example 5.4). This makes sense: it says that the type of the fixed point
operator is (o0 — o) — o. Such a term however is not typable in A_, nor in the second order
system Ao (see [Barendregt 92]). Now this brings the question of strong normalisation. We
say that an expression M is strongly normalising iff all reduction sequences starting with M
terminate. Now ww is not strongly normalising. Nor is the term (Ay.s.2)(ww) even though
this term has z as a normal form. Furthermore, we can type (via 7) such a non strongly
normalising term. That is, 7(0, ww) = (Il:s.0y)w (see Example 5.4). This should not lead to
problems however. That is, we conjecture that A_,; is strongly normalising in the following
form:

Forall M € TUT, for alI' € CONS, if I' = M then M is strongly normalising and if
M € T then 7(I', M) is strongly normalising.

Remark 5.2 The variable convention also holds for all pairs (I,). For example,
((y : 02), A\sior.y) is not allowed, since for this (I',¢) both z € BV(I',t) and z € FV (T, t).

Remark 5.3 Note that 7 is a partial function. For example 7(0,2) doesn’t exist. We write
1T 7(0,t) for 7(T',t) defined.

Example 5.4
l. w = Ayo-(yy) has type T((Z),Ay;g.(yy)) = yo.m(y = o,yy) = Uy (t(y & 0,9)y) =

o-(0y). Moreover, y € FV (o) by Lemma 2.9. If we allow n-conversion in our system,
7(0,w) would convert to o.

=
<

2. T(ma >‘y1:(H;;J.U)-(Ayzza-yl(y2y2))(>\y2:0-y1(y2y2))) =
Hylz(Hz:J.a)-((Hy2:t7-(HZ:G-U)(yQyZ))(Ayz:a-yl(?JQy?))) —p
Hylz(H;;a.U)-((Hyzzzr-U) (Ayz:a-yl (y2y2))) —p Hylz(Hz;a.zr)-U
Furthermore, by VC, y; & FV(Il,.,.0) and z & o.
Hence we write Il .1, .0)-0 as (0 — o) — 0.

Remark 5.5 Note that FV(7(I',t)) # FV(I',t). For example, consider the pair (I,?)

(=
((y1, 1) (y2, a2y1)(y3, a3y), y2). Then 7(I',t) = aoyr. Now y1 € FV(7(L,t)), but y1 &
FV(T,t). Also, yo € FV(L,t), but yo € FV(7(L,1)).

The following lemmas show that 7 is a well-behaved typing operator. That is, it satisfies
the weakening, reduction, restriction and substitution lemmas. In particular, the following
weakening lemma states that if ' C IV and 7(I',¢) is defined then 7(I",¢) is defined and is
equal to 7(T, t).

Lemma 5.6 (T-weakening)
IfT CI and T 7(1,t) then t 7(I",¢t) and 7(0,t) = 7(I",1).
Proof: By induction on t.

o Ift =y then y is bound with type o in (U,t) iff y is bound with type o in (I',t), by
Lemma 4.28. Hence, 7(T',t) = 7(T',t).

27

o Ift =tty then 7(I,t) = 7(I, tite) = 7(1, ty)te =11 7(IV, 1)ty = (17, 1).

o Ift = Ay.s.t' then by induction hypotheses (see Lemma 4.16):
T(C(y : 0),t') =7 (y : 0),t"). It follows that
T(0,t) = Uy 7(D(y 2 0),) = Wy (U (y 2 0),) = 7(1, Ay t).

The following lemma states that if T' reduces to I and if 7(T',¢) is defined then 7(I",¢) is
defined and 7(T', t) reduces to 7(I",).

Lemma 5.7 (Contect-reduction for)
IfT =3 T and 1 7(T,t) then T 7(I",t) and 7(T',t) =5 7(I",t).
Proof: By induction on 7(I',t) = o, as given in Definition 5.1.

o If 7(T',y) = o since y is bound with type o in (T',y), then use Definitions 4.9 and 5.1.

o If (T, tt') = 7(T,t)t, then 1 7(L',t), so by IH, T 7(I",t) and 7(I',t) —»5 7(I",).
Hence t (I, tt') and 7(T,tt') = 7(T,)t —»5 7(I7,0)t' = (I, tt).
)

o If T(T, A\yiot') = yio.7(I(y : 0),1), then

(asT(y:0) »3T"(y:0) and T T(F(y 0),t')), it holds by IH that

71y :0),t') and 7(C(y : 0),t") =5 7(I"(y : 0),t"). Hence T 7(I", \y.s.t") and
T(L, Ay t') = Iy (T(D(y 2 0), 1)) — ya((T'(y: o)) = (I, Ay 1)

The following lemma states that if T 7(I", ¢) then 1 7(I'[FV (¢),t) and 7(I' [FV (¢),t) = 7(T, t).

Lemma 5.8 (7-restriction)
If t 7(',t) then 7(L'[FV(t),t) = 7(T, t).
Proof: By induction on t.

e If7(T,y) = o since y is bound with type o in (I',y), then inspection of the corresponding
companion expressions shows that y is bound with type o in (I' {y},y), so7(l,y) =0 =

T(LTFV(y),y).

o 7(T t1te) = 7(T',t1)t2 = =/H T(CIFV (1), t1)t2 —Remark 4.12
T((DCIFV (t1t2)) [FV (t1), tr)ty =M 1(D) FV (t1t2), 1)ty = T(DTFV (tita), tata)

o We have to show that 7(I', Ay:p.t) = T(T' [FV (Ayio-t), Ayiorot).
First note that
(L, Ay t) =
Hy.o.7(T'(y : 0),1) =11
Hy.e.7(C(y : 0) [FV(2),1).

Now also
T(C]FV (Ayio-t), Ayio-t) =
H;%a T(F() fF (t)vt ’

T(T)FV (Ao t), Ayo-t)

28

oo 7(CTEV (M) : 0), 1) =
Lyoo7(D [(EV (o) U (FV(O\y})(y : 0),8) =¥
oo (T NEV(0) U(FV(O\y})(y : o) [FV(8),1) =

1. caseyEFV()

yo' T(TNFEV (o) U (FV\{y})) [FV () (y:0),t) —Remark 4.12
e (L [V)PV V) VD)) 920
y o T(TNEV()\{y})(y:0),t) = —Sincel (FV(t)\{y})(y:0)CT(y:0) | FV(t); seeLemma 5.6
Iy:g.7(D(y : o) [FV (1),).
2. case y & FV(t) (then FV(t)\{y} = FV (t)):

IL,.;.7(C [(FV(0) U FV (1)) [FV(t),t) =Remark 412

Iy 7(CI(FV(2),1) =

Iy:g.7(D(y = o) [(FV(2), 7).

Corollary 5.9 If 1 7(T',t) then there is a T'y T T such that T 7(T'¢,t), 7(T'y,t) = 7(T',t) and
for allT'1,T9,y and o with I'y =Ty (y : o)y, we have y € FV (t).
Proof: Take I'y =T [FV (t). O

Lemma 5.10 (7-Substitution Lemma)
1. If t 7(T,t) then 7(C[y := o'}, t[y :==0']) = (T, t)[y := o'].

2. Assume WB(I'(y : o/)IV).
IfT(T(y: oI t) =0, y € FV(t') and (L', ') ~ o', then
T(TT)]y =], t[y :=t']) ~ oly :=], for ~ being —»3,=p or =.

Proof:
1. By induction on the length of t

o If 7(I',y) = o since y is bound with type o in (I',y), then
7(Cly := o'],y[y := o)) = 7(T]y := o'],y) = o[y := '] because y is then bound
with type o[y :=o'] in Ty := o'].
o If T(I',t1te) = 7(1, t1)ty where IH holds for ty,ts, then
T7(Cly := o], tita]y :=0')) = 7(Ty := o'], t1[y := o'))te[y := 0] =
(F(Ty i)y = 0 Daly = o] = (2(T,)a) [1= o) = (D, o) [y 1= o).
o If T(I', A\yio-t) = o 7(T'(y : 0),t) where IH holds for t, then
T(Cly :=0'], Ao t)[y 1= 0']) = 7(Ly := 0], Ayioyimor) tly = 0])) =
yioyi=o- 7Ly i=0'I(y : oy := 0']), 2]y :=0']) =
Hy:a[’y::a’]'T(F(o)y := U]vth/ =
Hy:a['y::zr’]'((F(y U))[’7 :O—I]?

I1H

2. By induction on the length of t. We give the proof for —+5. Note that y & FV(L') and
y & FV(d') by WB(I'(y: o).

29

o [ft =y then
T((FF')[y = t'],y[y . tl]) = T(F(F'[y = t']),t') —Lemmas 4.15and 5.6
7D, t") »p o’ =0 ly:=t]=(7(C(y: ")V, y)|y == ¢'].

o Ift=zwhereyZ z and T =T1(z: 0")Ty, then
T(IT)y =], 2ly :=1'])) = 7Py :=1]),2) = 0" =
o'ly =t]= (r(L(y : o), 2))[y = 1'].

o Ift =1z wherey #Z z and I" =T1(z : 0"y, then
T(IT)y =], 2ly :=1']) = 7(P(']y :=1]),2) =
o'ly =t]=(r(T(y :), 2))[y :=1'].

o Ift = \,.,,.t1 where z is a fresh variable* then

T(IT)y =], (Ao, 1) [y :=1]) =

Ty = 1)), Aoy =) trly = t]) =
1L, gzt 7 (TT (2 - 01))[?J = t'],tily == t']) {10
o gzt (T(D(y : 0N (z 2 01), 1)y == 1]) =
(.o, . 7(C(y : T (22 01),01)) [y =] =

T(D(y : oI, Asiy 1) [y = 1]

o Ift =11ty then
T(IT)[y == t], titafy :=1]) =

T(TM)[y :=], tiy = t'tay = 1']) =
T(CT)[y := '], iy := t' Dty == t'] =4
(T(T(y : o) 1)y ==ty ==t =
(T(T(y : o) ta)to) [y := 1] =

(T(T(y = o), tata)) [y == t'].

6 Consistency in A_,;

Note that our canonical type operator 7, can be defined for some term without being defined
for all its subterms. This can be seen from the following example:

Example 6.1 Let t = (\y.0.y)z where z Zy. Then 7(0,t) = (Iy.g.0)z =g oly := 2| =0 as
y & FV (o). But 7(0,2) is not defined.

For this reason, we introduce the relation F which takes a context and an expression (rather
than only a term) and checks the well typedness of the expression. We take - to range over
contexts and expressions rather than contexts and terms because a term might involve a type,
and hence F also needs to check which are the types that are consistent within a term. When
I' = M, we say that M is consistent in I'.

First, we state the following convention:

Convention 6.2 (WB-convention)
All contexts T' occurring in expressions I' = M are well-behaved.

“Without loss of generality.
’Note that WB(I'(y : ¢/)I"(z : 01)) because z was fresh and the variable condition holds for A..,.t1

30

The relation F is defined as follows:

Definition 6.3 (+)

1. -

'y

I'to

2, -

C(y:0)"Fy

I T(y:0) M
3. 7 y:0) witht =Xif MeT and r =T if M €T

' 7mye.M

) LHt DRt 7(T,8) =4y, .09 T(I,t') g o1
’ I'Et
5 Tko TFt o-»sll,,, .00 7([',t) =g 01

I'Fot

By this definition, we rule out Example 6.1. In fact () I/ ¢ where ¢ = (A\y:s.y)2.

Remark 6.4 Note that in 2 and 3 above, y & dom(T") and y € FV (o) by the WB-convention.

Also, y & FV ().

Recall moreover that we identify a-equal expressions. For example, if

I'+my.e.M, then also I' - 7.0 M[y := 2] for 2 & FV (o) UFV(M).

Example 6.5 The following can be derived in A_,;. (We use o1 — o2 as an abbreviation for
IIy.5, .02 in the case that y ¢ F'V(02).) Let 0,0" and ¢” € T, let moreover

— / / "
Nh=yr:0—=0,y2:0 = 0",y3:0,

hy=y:0—0,y:0 — ",
[3=y;:0—>0

Then,

'y =13
't Fy2(y1y3)

F2 H Ayg:a-y2 (yly?))

Iy)‘y210’%0” '>‘y3:0-y2(yly3)

+ Aylza%a’ -Aygza’ﬂa” ->\y3:0-y2 (y1y3)

The following lemma relates - and 7.

with 7(I'1,y1y3) = (0 = o')yz —»p o',
with 7(I'1, y2(y1y3)) = (0" —= 0")(y1y3) =5 0",

with 7(I'2, Ays:o-2(Y193)) =
My,.0.(0" = 0")(y1y3) =g o0 = 0",

with 7(I'q,)\yQ;U/%gu.)\y3;0.y2(y1y3)) =
Hyg:a’—)o”-nyg:zr-(al — UI’)(yly?)) g
(¢! = d") = (6 = "),

with T(m, Ayl:aﬁa’-Ayz:a’ﬂa”-Ayg:a-y2 (y1y3)) =
Hyl:a—m’-Hy2:0’—>0”-Hy3:0'(UI — U”)(yly3) g
(0 = 0") = ((6! = d") = (60 = "))

Lemma 6.6 (Well-typedness of consistent terms)
For everyt € T,T' € CONS, if I' =t then 1 (I, t).

Proof: By induction on T' - t.

31

o Ift =y, then I' Ft comes from Definition 6.3, clause 2, and 7(I',t) = 0.

o Ift = \y..t', then T ¢ comes from Definition 6.3, clause 3, and the induction hypoth-
esis holds for U(y : o) = t'. Hence we get from IH that (30")[7(T(y : 0),t') = o']. Now,
(L, Ayior ') =y 7(T(y 2 0),¢') = 1yp.0'.

o If t = tito, then I' F i1t comes from Definition 6.3, clause 4, and the induction
hypothesis holds for I' =t and T' & ta. Hence, as I - t1, we have (3o1)[7(T,t1) = o01].
Now, 7(T,t1te) = 7(L, t1)ty = o1ts.

Now if we go back to the previous section, we see that, even though 7 satisfied some of the
desirable lemmas such as weakening and substitution, other lemmas that are important in
type theory are not satisfied by 7. For example, there are no restrictions on the free term
variables used in a term. Moreover, the type of a term is not necessarily “preserved” when
the term is reduced. The use of the derivation rules of Definition 6.3 give more satisfying
results: see the Basis Lemma and the Subject Reduction Lemma, which follow below.

Lemma 6.7 (Basis Lemma)
IfT' =M then FV(M)NV C dom(T)°.
Proof: By induction on ' - M.

e The basic case (clauses 1 and 2 of Definition 6.3) is trivial.

o IfI' = my.q.t is the result of clause 3 then
(induction:) FV(t) NV Cdom(T(y : o)) and FV (o) NV C dom(T), so
FV(rmyet) NV = (FV(e)NV)U ((FV(t) \ {y}) N V) C dom(I') U dom(I') = dom(I').

e Clauses 4 and 5 of Definition 6.3 are also trivial to check using the Induction Hypotheses.

a

Note that this does not hold for T 7(I', M) instead of I' = M. For example, 7((y : 0),yz) = oz
but FV(yz) NV € dom(I').

Corollary 6.8
IfT ¢, then FV(I,t)NV C FV(I)NV.
Proof: Use that FV(I',t) = (FV (') U FV (t)) \ dom(I').

Lemma 6.9 (Generation Lemma)
For all expressions M, for all contexts T, if I' = M then:

1. If M =y then (3T, T")[T =T"(y : 7(T, y))I"] such that y & dom(T")

2. If M = myg.M' then T -0 and T'(y : o) = M’

5Note that if we replace I' - M by 7(I',t) = o only, then we don’t necessarily get FV(t) NV C dom(T).
Take for instance example 6.1 above.

32

3. If M = tity then I' = ty, I' Ety and (Jo1,00,y)[7(L,t1) = y.o,.00 and 7(I', t2) =g
0'1]7

4. If M = ot thenT' ko, ' =t and (Jo1,02,y)[0 = e, .00 and 7(T',t) =53 o1].
Proof: By cases on the derivation I' = M

1. If M =y, then T' = M comes from clause 2 of Definition 6.3, so (Jo,I',I")[[=T"(y :
)T, with y & dom(T") by the WB-convention. Hence 7(T,y) = 7(I"(y : o)T",y) = 0.

2. If M = my.e.M', then T = M comes from clause 3, so I'(y : 0) = M' and T' - 0.

3. If M = tity, then I' = M comes from clause 4. Hence (Jo1,092,y)[7(T,t1) =g Ily.p, .00 A
T(F,tz) -3 0'1], 'k 1 and I' - to.

4. If M = ot, then I' = M comes from clause 5 and the proof is similar to that of clause
4.

The following lemma states that subexpressions of consistent expressions are also consistent.

Lemma 6.10 (Correctness of subexpressions)
IfT' =M and M' is a subexpression of M then (3T")[TT' - M'].
Proof: By induction on I' - M.

o If clauses 1 or 2 apply then obvious.
o If clause 3 applies, i.e. if I' - my.p. M where I' -0 and I'(y : o) & M, then

— case M' =y: AsT'F o, then we get from clause 2, Definition 6.3,
that T'(y : o) Fy. (Note that WB(I'(y : 0)).

— case M' is a subexpression of M, then use IH on T'(y : o) F M.

— case M' is a subexpression of o, then use IH on T' F o.

o If clause 4 applies, i.e. if t = t1ty then t is a subexpression of t1 or t is a subexpression
of ta. But I' =t comes from amongst other things, I' F t1 and I' - to. Now from the
induction hypothesis the rest follows.

o [f clause 5 applies, then use same argument as that of clause 4.

With the help of this lemma, we can prove the following:

Lemma 6.11 If ' = M, then M fulfills the variable condition.
Proof: By induction on the derivation of '+ M.

o If clauses 1 or 2 apply then obvious.

"Note that we have conversion —»5 and not equivalence =.

33

o [f clause 3 applies, then M fulfills the variable condition by induction. Now y & FV (o)
since WB(I'(y : o)) by the WB-convention, so also my.q.M fulfills the variable conven-
tion.

o If clause 4 applies, i.e. if t = tito, then I' Ft1 and T' - to, and both t1 and to fulfill the
variable condition by induction. By the Basis Lemma, all free term-variables in both t1
and to are elements of dom(T"). Now assume that y is free in t1 and bound in ta. Then y
occurs in a subezpression \y.o.t' of ta. By Correctness of Subexpressions, IT' = A5t
Hence, by the Generation Lemma, TT'(y : o) - t'. But since y is free in t1, y € dom(T")
and thus TT'(y : o) is not well-behaved, contradicting the WB-convention.

o If clause 5 applies, then use the same arqgument as that of clause 4.

The following lemma uses the well-behavedness of contexts in a derivation of I' - M.

Lemma 6.12 (Weakening)
IfTFM,TCI' and WB(I), then I'" F M.

Proof: By induction on the derivation of I' = M, Definition 6.3. First, rename bound
variables in M such that dom(I")NBV (M) =0 and FV(I")NBV (M) = 0 (see Remark 6.4).
It is sufficient to prove the lemma for the case T T T,

e Basic case where I' -~ is obvious.
o Assume I' =T'1(y: o)y and I'1(y : 0)I'9 -y comes from I'y Fo. Then
— either I' =T (y : o)y with T'y =TT and T} =T (2 : o")TY,
— or I"=T1(y : o) with Ty = T4TY and Ty, = T4 (2 : o')TY'.
In the first case, by induction from 'y F o: T\ & o (note that W B(I'}) by Corollary 4.32,

part 1). So T y.
In the second case, I'" =y follows immediately from 'y F o.

e Assume T =TIy C' Iy(2 : o)\[o =", T & 7o M (for y # z and y ¢ FV(do'))?
and comes from clause 3, so ' - o and I'(y : o) = M. Now I'(y : o) CL I'(y : o) by
Lemma 4.15. Moreover, WB(I"(y : o)) as WB(['(y : 0)) and y #Z z and y & FV (o).
So, by induction: I' -0 and I'(y : o) & M. Hence I' - my.s. M.

o IfT' = Mt comes from I' = M, T' - t and clauses 4 or 5, use IH to get I" = M and
I + t. Moreover, use Lemma 5.6 to deduce 7(I',t) = 7([,t) and if case applies to
deduce 7(I', M) = 7([', M). Hence T = Mt.

The following lemmas are needed in some of the proofs:

8Note here that this condition is necessary. For example, () - Ayioy but (y : o) ¥ Ayio.y. Furthermore,
O F Ayio.y but (2 : oy) I Ayio.y. (See Remark 6.4.) The condition is satisfied since we started the proof with
renaming bound variables in M.

34

Lemma 6.13 If WB(I') and T'[X = M then ' X' = M for any X' D X.
Proof: WB(I') = WB(I'| X') by Lemma 4.31. Furthermore, as I'| X <T[X' <T then
by Corollary 4.36, T| X CT'|X'. Now using Lemma 6.12 we get I'| X' - M. O

Remark 6.14 In the proofs of I' M below, we only show W B(I') when it is not obvious
that I' is well-behaved. Otherwise, we don’t mention anything about W B(T').

The following lemma is important. It states that if ¢ is consistent within a well behaved
context ['; then the type of ¢ is also consistent in I'.

Lemma 6.15 (Correctness of types)
IfT Ht, then T+ 7(T,¢t).
Proof: (Note that 1+ 7(I',t) by Lemma 6.6.) Induction on I' - t.

e IfT FtisT(y : o)T" - y and comes from T + o, then also T'(y : o)T" + o by
Lemmas 4.35 and 6.12 so ' -0 =71(L,y).

o IfI't= Ayt comes from clause 3 of Definition 6.3, then I'(y : o) =t and I' - 0. By IH,
I(y:o)F7(l(y:0),t). Hence I' = 1y.o.7(L(y : 0,t)) = 7(L, Ao .t).

o If ' tite comes from clause 4 of Definition 6.3, then
I'-t,T'Fty and (301,02,y)[T(F,t1)] Hy;gl.ag VAN T(F,tQ) —»3 01].
Hence from IH, I' = 7(I',t1). Now 7(I',t1t2) = 7(L, t1)ts.
Using clause 5 of Definition 6.3, we get that T' = 7(T, t1)ts.

The following lemma states that if M is consistent in a context I' then it is consistent in the
restriction of the context to the free variables of M and to those of its type (if applicable).
In other words, if I' = M then IV = M where I is ' from which statements S not relevant to
the free variables of M or the free variables of the context to the right of M are removed.

Lemma 6.16
IfT(y: o)l - M,y & FV(I') and y & FV (M), then

1. TT' = M and

2. If 1 7(T(y : o)I', M), then + 7(L'T', M) and 7(T'(y : o)I', M) = 7(CT', M).
Proof: Simultaneously, by induction on I'(y : o)I'" + M.

o If M =~ then obvious.

o IfT1(2:0")To F 2 comes from Ty F o', then:

— Case Ty =T (y : o)T; by IH, T\ + o', hence T\ T (2 : o')T9 b z. Moreover,
T(DiT{(z : 0")g,2) = 7(T1(2 : 09, 2) = 0.

— Case 'y =T (y : o)1y, then immediately from T'y - o', T'1(z : o")TLTS F 2 and
T(T1(z: 0")Dh(y : o)1, 2) = 7(T1(2 : 6 TLTY, 2) = 0.

35

— Case (z:0') = (y: 0) is impossible since y & FV (M).

o If D(y: o)" b mypr.M comes from I'(y : o)I' = o' and T'(y : o)I"(2 : ¢') b M, then
since y & FV(my,.oo.M), y &€ FV(0o') and y ¢ FV(M). Hence by IH: TT' + o' and
IT(z:0")F M, soTT' F 7,00 M.

Moreover, T(I(y : o)V, \.gr.t) = .. 7(D(y : o)V (2 : o), t) =11
IL,...7(CT (2 : '), 8) = 7(DTY, Ay).

o If T'(y:o)I" Ftt' comes from T'(y: o) ¢,

Ly : o)I" Ht', 7(C(y : o), t) =g Ili0,.02 and 7(T(y : o)I',t') —»3 o1, then note
that y & FV(t) and y ¢ FV(t'). Hence by IH: TT' + t and TT" + t'. Moreover,
(P, t) =2 7(D(y : o)V, t) =5 Uop, .00 and (LT,) =2 7(D(y : o)1V, ¢') =5 o4,
so I'T - tt'.

Also, 7(T(y : o), tt") = 7(D(y : o),)t =7 (T, 1)t = 7(TT, tt").

o IfT'(y:0)" ot comes from T'(y : o) F o,
L(y:o)"Ft, 0 5 ,.0,.00 and T(I(y : 0)I",t) =5 01, then similar.

Corollary 6.17 If I' = M then there is a I'py E I' such that T'ps = M and for all T'1,T9,y
and o with Iy =01 (y : 0)'e, we have y € FV(I'y) or y € FV(M). Moreover, such a Iy is
unique.

Proof: By induction on the length of I'. Assume I' = (y1 : 01)...(yn : opn). If for
all i,y; € FV((Yi+1 ¢ 0ix1) - (Yn @ 0n)) or yi € FV(M), then we are ready. Otherwise,
let (y; : o0;) be the last statement in T such that y; & FV((yix1 : 0ix1) .- (Yn : opn)) and
y; & FV(M). Then by Lemma 6.16, (y1 : 01) ... (yi—1 : 05—1)(Yit1 : Oit1) --- (Yn : o) F M,
and we can apply induction. We leave it to the reader to show the uniqueness of I'pys. O

Compare this with Corollary 5.9 and note that I'y (y : o)y of the present corollary needs not
only y € FV(M) but also y € FV(I's). This is because our I'’s in I' = M check types as well
as terms. 7 however only deals with terms.

Definition 6.18 If '+ M, then 'y is the (unique) context described in the Corollary 6.17.
We call T'pr the context relevant for ' = M. When ' and 'y are the same, we simply say T
is relevant for M.

Now the following lemma shows that consistency accommodates substitution.

Lemma 6.19 (-substitution Lemma)
If 1(T,t) =g 0, Ft,T'(y : o) = M, then I'T'[y :=t] - M[y :=t]. (Note that y ¢ FV(T') by
the WB-convention.)

Proof: By induction on I'(y: o)[" F M.
Remark: as T'(y : o) is well-behaved, then from Remark 6.4, y & (FV(I') U FV(0)). More-
over,

as '+t then FV(t) NV C dom(l) by Lemma 6.7.
Hence FV(t) Ndom(T") = 0. Therefore, TT'[y := t] is well-behaved.

36

o If M =~ then obuvious.

e IfT(y:0)"Fy comes from T' & o, then note that T C T'T[y := t| from Corollary 4.36.
Now, I'T'[y :=t] - t, using Lemma 6.12 and the remark in the beginning of this proof.

o IfT'1(z:0")o(y : o)I' F z comes from 'y - o', then use the same remark.

o IfT(y:0)T1(z:0")T2 F z comes from T'(y : 0)T'1 F o then
Ty :=t|F o'y :=t] by IH.
Hence, TT1[y :=t](z : o[y :=t])T2y := t] F z by Definition 6.3 and the remark above.

o If T(y: o)l F N\,.oo.M comes from T'(y : o)I' -0’ and T'(y : o)'(2 : 0') = M then by
IH IT'y =t Fo'ly :=1t] and TT[y :=t](z : o'[y :=t]) F My :=t].
Hence, I'T'[y :=t] = \,.gr1y.=-M [y := t] by Definition 6.3.

o If I'(y : o)I" F tity comes from I'(y : o)I" F t1,T(y : o)1 F to, 7(D(y : o)V, t1) —»p
My, .00 and 7((y : 0)T',t2) = 01 then (take y' #y):

- by IH, FF,[?J = t] + tl[y t] and IT'[y = t] = tQ[y = t].

- 7(CMy :==t), tily :=t]) =5 T(C(y : o), t1)[y := t] by Lemma 5.1(°
=4 Iy, .00[y := t] by Corollary 3.20

= 7Py :=t],toly :=1t]) =3 T(L(y : o)1, t2)[y :=t] =p o1y :==t].

Hence by Corollary 3.19, 30,04 such that
(LM y =], tay :=1]) =5 1L,.0r .05 and 7(PT'[y :=], tay := t]) —»p 07.
Hence, TT[y := t] - (t1ta)[y := t].

o If clause 5 of Definition 6.3 applies, then similar to above.

The following lemma is not interesting on its own, but is needed to show the subject reduction
theorem.

Lemma 6.20

1. IfT F (myo-M)t then T - My := t].

2. If T+ (Ayo-t1)t2 then 7(D, (Ayip-t1)t2) =g 7(T, t1[y := ta]).1°

Proof:

1. As ' (my.e. M)t then by Lemma 6.9 we get that 7(I',t) = o as follows:

e Case M =t1 and m = A:
(L, Ayio-t1) =1y 7(T(y : 0),t1) =g Ilyp, .00 and
7(I',t) =3 01. Hence 0 =5 01 and so 7(I',t) =g 0.

“Note that y € FV(t) as y € dom(I") by Lemma 6.7.
197t is this B-convertibility which will disable proving Theorem 6.24 and its first corollary using —4 instead
of =p. (See the final case of the proof of Theorem 6.24.)

37

o Case M =o' and m =11:
Hy;o—.O', %)B Hy:ol-UQ and
7(I',t) =3 01. Hence 0 =5 01 and so 7(I',t) =g 0.

Moreover, I' = (my.o.M)t then by Lemma 6.9, we get I' = my.o.M and I' - ¢.

We apply Lemma 6.9 again to I' = 7y.e. M and get: I'(y : 0) = M. Now, I' = t,7(I',t) =
o, and I'(y : 0) = M. So from Lemma 6.19, we get I' = M|y := t].

First, we prove that 7(I',t2) =g o in the same way as above.
Furthermore, WB(I'(y : 0)) as y & dom(I') U FV (o) and WB(L).
Moreover, y & FV (t3) by VC.

Hence, by Lemma 5.10, 7(I',t1]y :==t2]) =g T(L'(y : 0), t1)[y :=1] Also,
P(T, O t1)12) = (Mg 7(Ty : 0),80)) 82 =5 7(Dy 5 0), 00y 5= o).
Hence 7(I', (Ay:o-t1)t2) =5 7(I', tiy := ta]).

In what follows, if 7(I", M) is undefined (in particular if M € T), we take F'V (7(I', M)) to be
empty.

Lemma 6.21 If z € FV(M)U FV(7(I'(z : 0)I",M)) and I'(z : o)I" - M then ' F 0.
Proof: By induction on T'(z: o)T' = M.

['(z:0)T" v obvious.

If U(z: o) F z comes from T o obvious.

Iy(y: 0"\a(z: o) Fy is not applicable as FV(o') Nz = 0.

If (2 :0)l1(y : 0)[o =y comes from T'(z : o)’y + o' where z € FV(o'), then use IH.
IfT(z: 0)I" b my.or. M comes from T'(z : o) o' and T'(2 : o) (y : o) = M then

— case z € FV(o') then use IH.
— case z € FV (M) then use IH.

— case z € FV(7(T(z : o), .. M), then m = X and z € FV (I.0r.7(T(2 : o) (y
o'),M). If z € FV(o'): see above. If z € FV(r(I'(z : o)I"(y : 0'), M)), then use
IH.

If M = M't then use IH.

Lemma 6.22 IfT'(z: o)+ M, I'(z : 0)I" is relevant for M and z € FV(I"), then T o.
Proof: By induction on the length of T".
Assume I" =T'1(y : 0')I'y and z € FV (o).

If y € FV(M), then by Lemma 6.21: T'(z : o)1 F o'. Again by Lemma 6.21: T 0.

38

o Ifye FV([y) then by IH: I'(z : 0)I'y - o'. Hence by Lemma 6.21: T 0.

The case y ¢ FV (M) and y & FV(T'2) cannot occur since T'(z : o)T1(y : o')Ty is

relevant for M ; see Definition 6.18.

Corollary 6.23 IfT'+ M, T is relevant for M and T' =T1(z : o)y, then T’y 0.
Proof: As I is relevant for M, then either z € FV (I's) or z € FV(M). In the first case
use Lemma 6.22. In the second case use Lemma 6.21. O

The following theorem is important. It shows that our notions of consistency and of typing
are compatible with that of reduction.

Theorem 6.24 (Subject and Context Reduction Theorem)

1. If M =g M" and '+ M then I' = M" and if M € T then 7(I', M) =5 7(I', M').

2. If T -3 and T = M then T" - M.

Proof: Simultaneously by induction on the derivation I' - M.

case I' =y then 1 is obvious. Moreover, 2 is obvious as W B(I") from Lemma 4.31, part
3.

case U(y : o)y comes from T+ o then 1 is obvious. Moreover,

— case ' =3 I" then by IHT" o and so I (y : o)I" F y.
— case 0 =g o then by IHT F o' and so T'(y : o')" Fy.
— case IV =g T then T(y: o)T" Fy

case I' b my.e. M comes from I' =0 and T'(y : 0) = M then

— case 0 =g o' then by IH, I'F o' and I'(y : 0') b M and hence, I' - 7.0 M.
Furthermore, if 1 = XA and M =t then 7(I', \yip.t) = Iy 7(T(y : 0),t) =5
.. 7(L(y : 0'),t) by Lemma 5.7.

— case M —g M' then by IHT(y : o) = M’ and hence I' - my.e. M.

Furthermore, if t =X\, M =t and M' =t' then
(0, Ao t) = yeo.7(D(y = 0),t) =g y:o.7(C(y : 0),t') by IH.

Moreover by IH, T" o and I'(y : o) = M, hence I - my.o. M

case I' = tit comes from T'=t,I' Ft,7(T',t1) =3 Iy, .00 and 7(I',t) =g 01. Assume
t1 —pg to, then by IH, T' F ty and 7(I',t2) =g 7(I',t1). Hence, by Corollary 3.19,
(Fo1,05) [T (L, t2) =5 00 .05 and 7(L',t) =5 o1].

Now, from 7(I',ta) =g IL,.0r.05,7(1',t) =g 01, 1" t and I' =t we get I' - tot.
Furthermore, (L', t1t) = 7(I',t1)t =g 7(I', t2)t by IH.

Moreover, by IH and Lemma 5.7, T' = t,T" F ¢,7(I",t1) =g 7(T,t1) and 7(I',t) =4

39

(I, t).

Hence, by Corollary 3.19, (301, 0%)[T(I", t1) —»p .1 .05 and T(I',1) =5 o1].
Now, from 7(I',t1) —»3 Hy:gfl.a’Z,T(F’,t) —»g o, Tt and T" Fty we get T F tyt.

o case ty —g ty and I' = Mty then similar to above.
o case o' =g 0" and ' F o't then similar to above.

o case (my.e. M)ty =3 My :=to] and I' = (my.o.M)ta then from Lemma 6.20,

' My := t3]. Moreover, if M € T' then again we use Lemma 6.20
to get T(I', (Ay:o-M)t2) =5 7(I', My := t3]).

Furthermore,

— case M =t then I' = (Ayo.t)ta comes from ' = Ayipt, T' F to, (T, Ayiornt) =5
I,.0,.09 and 7(I',t2) =3 01. Now the fact that
I F (Ayio-t)ta follows from T' & (Ay.q.t)ta has already been treated above (case
T+ tit).

— case M = o' then similar to above.

Corollary 6.25 If M —»g M' and I' = M then T = M' and if M € T then 7(T,M) =g
(T, M'").
Proof: By induction on M —»5 M' where I' = M.

o If M —»3 M then obvious.
o If M —»g M' comes from M —3 M' and if T' = M then use Theorem 6.24.

o If M —»g M' comes from M —»g My and My —»3 M’ and if T' = M then
by IH, '+ M, and ' = M’.

Also if T(I'; M) = o then by IH, 7(I',My) =g 7(I', M). Similarly by IH, 7(I',M') =4
7(I',My). Hence 7(T', M) =g (T, M").

Note here that the version of this corollary for the case I is replaced by 7 does not hold.

Example 6.26 Take t = (Ay.;.y)xz. Then 1T 7(0, (A\y:o.y)z) and 7(0, (A\y:e.y)z) —»5 oz yet
7(0,yly := z]) = 7(0,) is undefined. Note however that in the case of (Ay:s.2)(ww) —3 2,
we have that 7((z : 0'), (Ay:s.2)(ww)) =5 0o =7((2 : '), 2).

Now the following lemma is obvious. It states that if M is consistent in a context I', then it
is consistent in any reduct of I'.

40

Corollary 6.27
IfI'y =gy and I'y = M then I'y = M and if M €T, then 7(I'y, M) =g 7(I'y, M).

Proof: By induction on the number of one step reductions of I'v —»g I'a, using Theo-
rem 6.24 and Lemma 5.7. g

Here note that the version of this corollary replacing - by 7 holds, as has been shown in
Lemma 5.7.

Finally, the following lemma is very useful. It shows that if ¢ and ¢ are consistent and
(B-equal, then their types are also equal.

Lemma 6.28 (Unicity of types)
Ift=t,TFtand T+t then 7(T,t) =5 7(T,¢').

Proof: By Corollary 3.17, (3t")[(t =5 t") A (t' =5 t")]. sFrom Corollary 6.25 we get
that 7(L',t") = 7(T',t) and 7(T',t") =5 7(T,t'). Hence 7(T',t) =5 7(T,t'). O

Note that it is possible that I' - M and M =3 M’ without I" = M’. For example, (y:7) Fy
and a = (Apiy-Ayiy - 2)y(Agiyr.zx) =5 y but (y :) ¥ a.

Up to here, we have shown that our calculus is attractive. Terms and types are treated
alike and (-conversion is used with both forms of expressions. Church-Rosser holds for the

calculus and all the desirable typing conditions are satisfied. The following table summarises
these properties for 7 and .

Table 6.29 (Properties of T and)

| K [F |
Subject-Reduction | No Yes
Context-Reduction | Yes Yes
Restriction Yes Yes
Substitution Yes Yes
Basis No Yes
Generation — Yes
Subezpressions — Yes
Weakening Yes Yes
Unicity of Types — Yes

Next, we will interpret Church’s A_, in our calculus showing that a term ¢ of A_, is consistent
iff the type of ¢ via 7 converges to the type of the term in A_,. We will show moreover that all
the work that one carries out in A_, can also be carried out in A_,.. Moreover, A_,, gives a
unified treatment of types and terms. Such a treatment can generalise to many known typing
systems.

7 The relation of _,. to A\,

7.1 Church’s _, and its interpretation in _,,

We start by presenting the system A_,. We present types of A_,, (7-), terms of A_,, (7T_,)
and the typing rules of A_,.

41

Definition 7.1 (A\,,)
We use the same object and meta level notation as in A+ and define types and terms as
follows:

T, =V [(Ts = 7o)

T, =V | (/\V:T_>-T—>) | (T—>T—>)

We define statements here similarly to the way we defined them in Definition 4.1. Further-
more, we take a basis (instead of a context) to be a set of statements where the subjects are
variables which occur at most once. So we no longer insist on the idea of a context as an
ordered set for this section. This is consistent with our assumption that in a well-behaved
context, all subject variables occur at most once. The second condition of a well-behaved
context which says that in I'(y : o)I, FV (o) Ndom((y : o)) = 0 is satisfied because from
Remark 7.4 below, FV (o)NV = (). In fact, bases are the A_, version of well-behaved contexts
(see Corollary 7.12). Even stronger, bases of A_, correspond to the simply typed contexts of
A+ (see Corollary 7.13).

We take K to be the collection of all bases of A_, and use the same meta-notation for
contexts. That is I',TV,T';, 'y ... will range over elements in K.

Definition 7.2 The typing rules of A_, are the following:

1. 'y, y:o if(y:0)el

9 C'ky, t:(oc—0d) Fky,t:0o
' TChy, tt o

g L(y:o)Fy, t:0

I'Ex, Ayoet) i (0= o)

Example 7.3 The following can be derived in A_, (cf. Example 6.5).
Let 0,0’ and ¢” € T_,. Let moreover,

h=y1:0—0,ys:0 =0"y3:0
Ihy=y1:0—0,y3:0 — "
[3=y;:0—0

Then,

Iy Fyys:o

Iy Fya(yrys) : 0"

Lo Aysio-y2(y1ys) : 0 — o”

L3 Aysior 07 - Aysio-Y2(y1ys) : (0! = ") = (0 = o")

F Ayrioool - Aysio'—o -Aysio-Y2(11y3) = (0 = 0') = ((0o' = ") = (0 = "))

Remark 7.4 Note that for o € T_,, we have FV (o) CV and BV (o) = 0.

We define an interpretation function from A_, to A_,; as follows

Definition 7.5 Z : (T, UT.) — (T UT) is defined as follows:

1. I(v) =~
2. I(y) =y

42

Definition 7.6 We extend Z to K as follows:
IH{(yr:01) - (Yn:on)}) = (w1 : Z(01)) .- (yn : Z(04n))), in some order.

Note that even though Z(M) is well-defined, Z(T") is not well-defined, because the elements
of a set can be listed in many different orders. However, this does not affect our main results,
as Theorem 7.8 below shows.

Definition 7.7

o A well-behaved context T in A_,; is called permutable if I' = (yy : 01) ... (yp : opn) with
yi € FV({o1,...,0n}) for all i.

e A permutation of a well-behaved context T = (y1 : 01) ... (yn : on) is a context T' =
(Yi, 2 03y) - (yi, : 04,) such that iy, ... iy is a permutation of 1,... n.

Theorem 7.8 Let ' be a permutable context in A_,,; (and hence well-behaved) and let T be
a permutation of I'. Then for all M such that I' = M, we have:

1. TV M and
2. If + 7(T, M) then + 7(I", M) and (T, M) = r(I", M).

Proof: By simultaneous induction on I' = M. The only non-trivial case is that I' = M is
Ti(y : 0)Ta by as a consequence of Ty = o. It follows from Lemma 6.16 that) - o (induction
on the number of statements in I'1). Let I' =T (y : o)y be a permutation of T'y(y : o)s.
Then O = o implies T, & o, by Lemma 6.12. Hence 'y and 7(I'",y) = 7(T,y) = 0. O

7.2 Some useful machinery

In this section we present some lemmas and remarks which will be used in proving the main
lemmas and theorems concerning the interpretation of A_, in A, ;.

Lemma 7.9 For M € (T, UT.), we have FV(Z(M)) = FV(M).
Proof: Obvious. U

Remark 7.10 Note that in Z(oc — o) = I,.7(,).Z(0"), y € VAR(Z(0)) UV AR(Z(0")), from
the condition that y is fresh.

Corollary 7.11 For o €7, FV(Z(0)) C V.
Proof: Obvious using Remark 7.4. O

43

Corollary 7.12 I' € K & WB(Z(I)).
Proof: Obuvious. |

Corollary 7.13 I' € K = Z(I') is permutable.
Proof: Use Corollary 7.12 and Remark 7.10. O

Lemma 7.14 For any o € T, and I’ € CONS, if WB(I') then I' - Z(0).
Proof: By induction on T_,.

o If o is v then according to Definition 6.3, clause 1, ' - ~.

o Assume o is 01 — o9 where IH holds for o1 and
o2 and (o1 — 02) = l.7(5,)-L(02) where y is fresh. Then by IH,
C'FZ(o1) and T(y : Z(o1)) F Z(02).

Now apply clause 3 of Definition 6.3 to T' = Z(o1) and T'(y : Z(o1)) = Z(02), to obtain
'+ I(Ul — 0'2).

Corollary 7.15 For any o € T, for any permutable T' € CONS, T'+ Z(0).
Proof: Use Lemma 7.14. O

Lemma 7.16 If o0 € T_, and Z(0) —»3 o' then Z(o) = o'.
Proof: By induction ono € T,

o Case o =~y then obvious.
o Assume o = 01 — o3 where IH holds for o1 and o3. I(0) = l.17(4,)-Z(02) where y is
fresh and Z(o) —»p o'.

Now this can only be possible if o' =11,.,1.05 where I(o1) —»5 01,Z(02) —»g 05 and y
is still fresh.

By IH, o = I(01) and o, = I(03) and so, o' =ZL(o1 — 09) =Z(0).

Lemma 7.17 If 0,0’ € T_, and Z(0) —»3 Z(0’) then o’ = 0.
Proof: By induction on o € T_, using Lemma 7.16. O

44

7.3)., generalises _,

Here we shall prove that ¢ is typable in A_, iff Z(¢) is consistent in A_,,. Furthermore, if o
is the type of ¢ in A_, then the type of Z(¢) in A_,; [-reduces to Z(o). Note here that the
reason why we get (-reduction instead of equivalence is that we keep the whole structure of
our terms and types. l.e. we don’t assume the traditional lines of saying that if f has the
arrow type o — ¢’ and a has the type o then fa has the type o’. Rather we say that fa has
type (6 — o')a. So we still have to perform a (-reduction. A_, on the other hand, follows
the traditional lines.

Lemma 7.18 Let I' € K,t € T, and 0 € T,. IfT 5, t : o then Z(T') F Z(t) and
7(Z(),Z(t)) =5 L(0).
Proof: By induction on the derivation I' =y, t: 0.

e 'y, y:0 comes from (y:0) €L, then Z(I') = Z(
" with T'"UT"U{(y : o)} =T. Now, WB((")) by
be Lemma 7.14. It follows that Z(T')(y : Z(o))Z(T")
7(Z(D),y) =Z(o0).

M (y : Z(o))Z(T") for some I" and
Corollary 7.12, hence Z(I') = Z(o)
=ZI(I') - y by Definition 6.3 and

o I' -y, tt': 0" comes from T by, t:0 — o and T Fx, t' : 0 and where IH holds
for t and t' then 7(Z(T),Z(t)) —»p L(oc — o') = .1(5).Z(0")), where y & I(o'), and
T(Z(I), Z(¥)) =5 Z(0).

Hence 7(Z(1),Z(tt")) = 7(Z(1),Z(t)Z(t")) =

yz(0)-Z(0"))Z(0) =5 Z(o')y := Z(0)] =
we also have Z(T') - (t) and Z(T') - Z(t").
that Z(T) & Z(tt').

T(Z(T),Z(t)Z(t) =5
Z(o') asy & FV(Z(c')). Moreover, by IH
Now use clause 5 of Definition 6.3 to get

o ' by, Aot : 0 = o' comes from T'(y
T(Z(@)(y : Z(0)),Z(t)) —»3 Z(o") and
I, ZO0-0)) = 7T) Ayiz(oy Z(1)) = gy 7 (T = T(0)), T(1) —5
y.70)-Z(0") =Z(0 — o).

Moreover, by IH, Z(I')(y : Z(o)) & Z(t). Moreover, from Lemma 7.14, we get that
I(T') F Z(0). So now, apply clause 3 of Definition 6.3 to obtain that T(I') = I(Ay.4-t).

—~

:0) Fa, t: o and IH holds for t then

a
Theorem 7.19 LetI' e K,t €T, and o € T,. If Ty, t: o then
1. Z(T) - Z(o)
2. Z(I) F Z(¢t)
3. T(Z(I),Z(t)) =5 I(0).
Proof: Use Lemmas 7.14 and 7.18.
a

45

Theorem 7.20 Ift € T_, and I is a set of statements of A_, then Z(I') - Z(t) implies

(Fo e TL)[DEx, tioAT(Z(L),Z(t) =5 Z(o)].

Proof: Note that Z(T') = Z(t) implies that W B(Z(T")) and hence by Corollary 7.12, T € K.
Now the proof is by induction on t € T_,.

e Case t =y then from Lemma 6.9, (IU'T")[Z(T) = Z(I")(y : 7(Z(T),y))Z(I'")]. Hence,
do € T, such that Z(o) = 7(Z(T),y) and so 7(Z(T"),Z(t)) = 7(Z(T),y) = Z(o). More-
over, I'(y : o)["" Fx_, t: 0 as WBL(I'(y : o)I'") and y & dom(I'T").

o Case t = \yp.t' then from Lemma 6.9, Z(T') - Z(o) and Z(T)(: Z(o)) F Z(¢'). Now
by IH, (30’ € T2)[7(Z(T)(y : Z(0)),Z(t")) —»p Z(o') AT (y : o) Fa, t' = o'. Hence
T(Z(T), Z(Ay:o-t') = Hyiz(o)-7(Z(T)(y : Z(0)), Z(t)) — Tyz(e) I(a’) =7Z(oc — o') and
Ly, Aot 10— 0.

o Case t = tity. If Z(I') F Z(t1t2) then by lemma 6.9, Z(I') = Z(t1), Z(I') F Z(t2),
T(I(F),I(tl)) —»3 Hy:o—l-a—Q and T(I(F),I(h)) —»3 01
But by IH, 301,07 € T, such that:

T(Z(T),Z(t1)) »p Z(0]) AT Fa t1: 0'1

T(Z(),Z(t2)) = Z(of) AT b, ta:

But by Church Rosser, (3o5)[o1 —»3 04 /\I(a’l') —»g 05).

As of € T-, then o = Z(oY), from Lemma 7.16, so o1 —»5 Z(o7).

Now, Ily.0,.09 =5 1L, ;n.09 = I(01),

hence again by Church Rosser, (303)[Ll,.5r.00 =g 03 NL(0]) =5 03,

As o € T-, then o3 =Z(07) from Lemma 7.16.

Hence, I1,.7(y1).02 =5 L(01). It follows that Z(o}) must start with a 11, so o} = 03 —
o4 for some o3 and o4 € T_,.

Then Z(o7) = 1,.7(5,)-Z(04), hence

1L, 7(07)- I(ag) =6 U,.7(55)-L(04). 1t follows that

y =2z, L(o}) —»p I(o3) (hence o] = o3 by Lemma 7.17) and oo —»g I(04).
Concluding:

1. ;From T k) t1: 0} (ie. T by, t1: (03 = 04), or T by t1 : (0] — 04)) and
I'Fa to:of, we obtain T by, tity : 04.

2. T(I(F),I(tl)) -3 Hy:I(a’l’)-U2 -3 Hy11(03).z(04), SO
T(Z(T'), Z(t1t2)) = (7(Z(T'), Z(t1))t2 =5 Z(04).

O
Corollary 7.21 Ifte T, and I' € K,
then Z(T) = Z(t) iff Qo € T)[L Fa, t: o AT(Z(T),Z(t)) =5 Z(o) AZ(T) - Z(0)]
Proof: Use Theorems 7.19 and 7.20. O

46

Hence, if I and ¢/, belonging to A_, ., are images of ' and ¢ in A\, i.e. I' = Z(T") and t' = Z(¢),
then IV ' implies I k-, ¢ : o for some o. There is a comparable theorem for general I and
t'in A\, :

If IV - #', then there are I', ¢ and o in A_, such that IV —»3 Z(I'), ¢ —»3 Z(t), 7(I'",t") =5 Z(0),
and 'y t:0.

In order to prove this, we first give a number of definitions and lemmas.

Definition 7.22

e Let o € T. We call o simple (or a simple type) if there are no applications in o. The
set of all simple types in T is denoted by T?*.

o A context I' in Ay, is called simple if all o € ran(I") are simple.

It follows that simple types in A_,; can be constructed using the following abstract syntactic
rule:

T =V|Uy.7.T')

which is a restricted version of the syntactic rule:
T=V|My.7.T)|(TT)

of Section 2. Now we have the following:

Lemma 7.23 All simple types are in normal form.
Proof: A simple type contains no application, hence no redexes. O

Lemma 7.24 Ifo € T° andI' € CONS then ' 0.
Proof: By induction on o € T?%. O

It is also clear that simple types do not contain occurrences of terms t € T' (except for the
binding variables y being a subscript of the II). In particular, there are no occurrences of
variables in a simple type, but for the mentioned binding variables. This means that all
binding variables y (subscripts of II's) actually bind nothing at all.

Hence, there is a well-defined backwards translation from A_,; to A_, for simple types:

Definition 7.25 The mapping J : T° — T is defined as follows:

J()
J(y.0.0")

~
oc—=o

Note that the mapping Z, being injective, defines an embedding of the types of A_, in those
of A_,+ (i.e. 7). The mapping J is the inverse of Z on 7°.
We will now show that every consistent type in A_,; is S-equal to a simple type.

Lemma 7.26 Let o € T be such that I' = o for some I'. Then there is a o' € T*® such that

og—»go.
Proof: By induction on T' - o.

47

1. Case L' -y is trivial.

2. Case T' - Il,.5.01 comes from T F o and T'(y : 0) F o1. By IH: 0 = o' € T*® and
o1 =g oy € T%. Hence lly.g.01 =g 0.0 € TP,

3. Case I' = ot comes from I' =0, I'=t, 0 =g Ily.,.00 and 7(I',t) —»3 o1. Then by IH:
o —» o' € T®. By Theorem 3.16 and Lemma 7.23 it follows that 1., .00 —» o’. Hence,

o' =1l,.,r.05 € T°. Hence ot =3 (Ily:0,.02)t =5 (IL,.01.0%)t =5 03]y == t] = 03 since
ohy is also a simple type, containing no (free) variables.
O
Corollary 7.27 IfT'F o then there is a 01 € T, such that o —»3 Z(01). O

Next we concentrate on the terms of A_,.

Definition 7.28 We call a term t € T a Church-term if all types occurring in t are simple.
We denote the set of all Church-terms by T°".

There is a nice relation between terms in A_,, and Church-terms:

Lemma 7.29 Let t € T such that T' = t for some I'. Then there is a t' € T" such that
t —g .
Proof: By induction on T' - t.

1. CaseI'(y: o)y is trivial.

2. Case I' = M\y.o.t comes from I't o and I'(y : 0) = t. By Lemma 7.26: there is o' € T*
such that o —» o'. Moreover, by IH: there is t' € T" such that t —»5 t'. Hence,
)\y;g.t —8)\y;gl.t’ € Tch,

3. Case I' k- tty comes from I' = ¢, T t1, 7(T',t) =g [0, .00 and 7(T', t1) =5 01.
By IH: there is t' € T" such that t —»5 t' and t; € T" such that ' —»5 t|. Hence
tty —»g t'th € T" since the application of t' to t| cannot introduce an application in the
types occurring in t't].

We can extend the mapping J of Definition 7.25 to Church-terms:

Definition 7.30 J : (T*UT") — T, is defined as follows:

J() = v
J([Myp.0') = o—0o

T (y) =

j(/\y:a-t) = /\y:J(U)'j(t)
J (t1t2) = J(t1)J(ta)

48

Note that J is well-defined. Note also that a Church-term ¢ cannot contain a II-redex of the
form (Ily.s.t1)t2, since simple types contain no applications.

As the main result of this section, we prove the following theorem. Recall the definition
of I'ys, being the context relevant to I' = M (see Definition 6.18).

Theorem 7.31 Let I'" = t'. Then there I',;t and o in A_, such that Tty t: 0, t' =3 Z(t)
and 7(I'",t') =5 Z(0). Moreover, T}, —»3 Z(T').

Proof: ;From I'" =t follows I'), = t" (Corollary 6.17).

Let T be (y1 : 01)...(yn : on). Then (y1 : 01)...(Yi—1 : 0i—1) F o0; by Lemma 6.21.
Hence there are o € T® (i = 1,...,n) such that o; =g o} by Lemma 7.26. It follows that
M= (yy:0))...(yn : o)) F t" by Corollary 6.27. Take I' = (y1 : T(0)))...(yn : T(0})).
Then clearly Z(T') =T, so T}, =5 Z(T).

Moreover, by Lemma 7.29, there is t" € T" such that ¢ —5 t" and Z(I') F " by Coro-
laary 6.25. Take t = J(t"), then t" = Z(t) and Z(T) &+ Z(t). Then by Corollary 7.21,
there is 0 € T such that I' =y t : 0. From Theorem 7.20: 7(Z(I'),Z(t)) —»g Z(0), i.e.
(", #") =5 Z(0). By Corollary 6.27: T(I'",t') =5 Z(0) and it follows from Lemma 5.7 that
(I, t") =5 Z(0).

The various entries in this proof can be pictured in Figure 1. O

T*-context: I

| J

Figure 1: Dependencies between A_, and A_,,

Finally, note that even for Church-terms, 7 and I' do not coincide. That is, we know that if
I' -t then 1 7(T,t). However, even if t € T°" and if T 7(T', t), we still don’t get I" - £. In fact,
look at Example 6.26 where 1 7(0,t) yet 0 t ¢, for t = (\y:0.y)2.

8 Conclusion

In this paper, we presented a calculus A_,; where types and terms are treated alike and where
(B-conversion is used for both forms of expressions. We showed that the Church Rosser theorem
holds for the calculus and extended it with typing and consistency operators. These operators
satisfy most of the important results concerning typing, such as weakening and substitution.
The aim of our calculus is to provide a general calculus which accommodates types and
terms in a unified way and which preserves the characteristics of the typing systems. More
importantly, compatibility of typing in our calculus holds for both abstraction and application
whereas in most of the known type theories (especially in PTSs), compatibility holds only for
abstraction. Furthermore, I - ¢ : o is split in two judgments: ' - ¢ and 7(I',%) =g o which
is another step towards getting a fine structure for the typing relation and for separating the
two distinct notions of whether a term has a type and of what is its type.

As an example, we interpreted Church’s A_, in our calculus and showed that in order to
type a term in _,, it is enough to show it consistent in A_, . Similarly, one can interpret other
typing systems in A_,; and show similar results. The system A_,; is the first which provides
an extended treatment of unifying types and terms while preserving most of the desirable
properties of typing systems. Furthermore, the line of this paper should be followed in the
future to deal with other systems than A_,. We believe that the same startegy can be used
for those systems of the Barendregt cube giving yet a more elegant structure of generalised
type systems.

References

[Barendregt 84] Barendregt, H., Lambda calculus: its syntax and semantics, North-Holland, 1984.

[BH 90] Barendregt, H. and Hemerik, K., Types in lambda calculi and programming languages, in
European Symposium on Programming, Copenhagen, Ed. N. Jones, LNCS, 432, 1-36, Springer,
1990.

[Barendregt 91] Barendregt, H. Introduction to generalised type systems, Functional programming
1(2), 125-154, 1991.

[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M.,
Maibaum T.S.E., Oxford University Press, 1992.

[van Benthem Jutting 92] van Benthem Jutting, B., Postponement of Expansion in Pure Type Sys-
tems, University of Eindhoven, 1992.

[Church 1932] A set of postulates for the foundation of logic, Annals of Math. 33 (1932), 346-366 and
34 (1933), 839-864.

[Church 1940] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic 5
(1940), 56-68.

[Frege 1879] Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens (Halle, Verlag von Louis Nebert, 1879). Reprint 1964 (Hildesheim, Georg Olms Verlags-
buchhaltung).

[GN 94] Geuvers, J.H. and Nederpelt, R.P., Typed and untyped A-calculus, two chapters in Logic,
Language and Computer Science, part 11, Eds. de Swart, H.C.M. et al.

20

[Hilbert and Ackermann 1928] Hilbert, D. and Ackermann, W., Grundziige der theoretischen Logik
(Berlin, Springer Verlag, 1928).

[Kamareddine 89] Kamareddine, F., Semantics in a Frege structure, Ph.D. thesis, University of Edin-
burgh, 1989.

[Kamareddine 92a] Kamareddine, F., A system at the cross roads of logic and functional programming,
Science of Computer Programming 19, 239-279, 1992.

[Kamareddine 92b] Kamareddine, F., A-terms, logic, determiners and quantifiers, Logic, Language and
Information 1 (1), 79-103, 1992.

[Kamareddine 92c] Kamareddine, F., Set Theory and Nominalisation, Part I, Logic and Computation
2 (5), 579-604, 1992.

[Kamareddine 92d] Kamareddine, F., Set Theory and Nominalisation, Part I, Logic and Computation
2 (6), 687-707, 1992.

[Kamareddine 92¢] Kamareddine, F., Are types needed for Natural Language?, Proceedings for the
applied Logic conference, Amsterdam, December 1992. The proceedings will appear (in revised
form) as a book published by Kluwer.

[KK 93] Kamareddine, F., and Klein, E., Polymorphism, Type containment and Nominalisation,
Logic, Language and Information 2, 171-215, 1993.

[Kamareddine 93] Kamareddine, F., Non well foundedness and type freeness can unify the interpre-
tation of functional application, to appear in Logic, Language and Information, 1993.

[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-
nal of Foundations of Computer Science 4 (8), 197-140, 1993.

[KK 9x] Kamareddine, F., and Klein, E., Polymorphism and Logic in Programming and Natural
languages, submitted for publication.

[KN 9x] Kamareddine, F., and Nederpelt, R.P., A useful lambda notation, submitted for publication.

[KN 9y] Kamareddine, F., and Nederpelt, R.P., A semantics for a fine A-calculus with De Bruijn
indices, submitted for publication.

[KN 9y] Kamareddine, F., and Nederpelt, R.P., The Beauty of the \-Calculus, in preparation.

[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda struc-
tured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and
Computer Science, 1973.

[Nederpelt 80] Nederpelt, R.P., An approach to theorem proving on the basis of a typed lambda-
calculus, in 5th Conference on Automated Deduction, Les Arcs, France, 1980, Eds. W. Bibel and
R. Kowalski, LCNS, 87, 182-194, Springer, 1980.

[Nederpelt 87] Nederpelt, R.P., De Taal van de Wiskunde, Versluys, Almere, 1987.

[Nederpelt 90] Nederpelt, R.P., Type systems — basic ideas and applications, in: CSN 90, Computing
Science in the Netherlands 1990, Stichting Mathematisch Centrum, Amsterdam, 1990.

[Nederpelt 92] Nederpelt, R.P., The fine structure of lambda calculus, Computing Science Note 92/07,
Eindhoven University of Technology, 1992.

[NK 94] Nederpelt, R.P., and Kamareddine, F., A unified approach to type theory through a refined
A-calculus, paper presented at the 1992 conference on Mathematical Foundations of Programming
Semantics, to appear in the proceedings.

[NGdV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., eds, Selected Papers on Automath,
North-Holland, Amsterdam 1994.

[Whitehead and Russell 1910] Whitehead, A.N. and Russell, B., Principia Mathematica (Cambridge,
Cambridge University Press, 1910/1913). Reprint 1960, same editor.

51

