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AbstractIn usual type theory, if a function f is of type � ! �0 and an argument a is of type�, then the type of fa is immediately given to be �0 and no mention is made of the factthat what has happened is a form of �-conversion. A similar observation holds for thegeneralized Cartesian product types, �x:� :� . In fact, many versions of type theory assumethat � holds of both types and terms, yet only a few attempt to study the theory whereterms and types are really treated equally and where �-conversion is used for both.A uni�ed treatment however, of types and terms is becoming indispensible especiallyin the approaches which try to generalise many systems under a unique one. For example,[Barendregt 91] provides the Barendregt cube and the Pure Type Systems (PTSs) whichare a generalisation of many type theories. Yet even such a generalisation does not use�-conversion for both types and terms. This is unattractive, in a calculus where typeshave the same syntax as terms (such as the calculi of the cube or the PTSs). For example,in those systems, even though compatibility holds for the typing of abstraction, it doesnot hold for the typing of application. That is, even thoughM : N ) �y:P :M : �y:P :Nholds, the following does not hold:M : N )MP : NP:Based on this observation, we present a �-calculus in which the conversion rules applyto types as well as terms. Abstraction and application, moreover, range over both typesand terms. We extend the calculus with a canonical type operator � in order to associatetypes to terms. The type of fa will then be Fa, where F is the type of f and thestatement � ` t : � from usual type theory is split in two statements in our system:� ` t and �(�; t) = �. Such a splitting enables us to discuss the two questions of thetypability of a term and of what is its type separately. Again we believe that this splittingis important and should be usually considered.As a demonstration of what we can do with our calculus, we interpret Church's �!in our calculus. This enables us to view our approach as an attempt to extend �! with auni�ed treatment for type and term substitution and conversion and at splitting � ` t : �in the two statements: � ` t and �(�; t) =� �. Such an approach should eventually beused to deal with the Barendregt cube and the Pure Type Systems.Keywords: �-Calculus, Type Theory, Church Rosser Theorem, Types as Terms, �!.
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1 IntroductionAt the end of the nineteenth century, types did not play a role in mathematics or logic, unlessat the meta-level, in order to distinguish between di�erent `classes' of objects. Frege's formal-ization of logical reasoning, as explained in the Begri�sschrift ([Frege 1879]), was untyped.Only after the discovery of Russell's paradox, undermining Frege's work, one may observe var-ious formulations of typed theories. Types on the other hand, could explain away the paradox-ical instances. The �rst theory which aimed at doing so, was that of Russell and Whitehead,as exposed in their famous Principia Mathematica ([Whitehead and Russell 1910]). Their`rami�ed theory of types' has later been adapted and simpli�ed by Hilbert and Ackermann([Hilbert and Ackermann 1928]).Church was the �rst to de�ne a type theory `as such', almost a decade after he developeda theory of functionals which is nowadays called �-calculus ([Church 1932]). This calculuswas used for de�ning a notion of computability that turned out to be of the same power asTuring-computability or general recursiveness. However, the original, untyped version didnot work as a foundation for mathematics. In order to come round the inconsistencies in hisproposal for logic, Church developed the `simple theory of types' ([Church 1940]).>From then till the present day, research on the area has grown and one can �nd variousreformulations of type theories. A taxonomy of type systems has recently been given byBarendregt ([Barendregt 92]). A version of Church's simple theory of types can be found inthis taxonomy under the name �! or �!Church. This �! has, apart from type variables,so-called arrow-types of the form � ! �0, for each pair of types � and �0. In higher typetheories, arrow-types are replaced by dependent products �y:�:�0, where the type �0 maycontain y as a free variable, and thus may depend on y. This means that abstraction can beover types, similarly to the usual abstraction over terms: �y:�:t.But, once we allow abstraction over types, it would be nice to discuss the conversionrules which govern these types. We propose conversion rules which act similarly to thosefor terms. For example, if t, t0 are terms, �, �0 are types, and if � and � are used forabstraction over terms and types respectively, then not only (�y:�:t)t0 !� t[y := t0], but also(�y:�:�0)t0 !� �0[y := t0].This strategy of permitting �-application (�y:�:�0)t0 in term construction and using anextended version of �-reduction for such a �-application, however, is not commonly used. Yet,it is desirable. Especially now in the new tradition which attempts to unify and generalise thetype systems. See for example the Barendregt cube in [Barendregt 92] and the �ne structureof the �-calculus in [KN 9y].Moreover, one may say that �-reduction has been invented as an expedient in order toforebode a possible substitution. So why does one use a direct substitution as in equation 1below, (which is used almost everywhere) if �-reduction can be used to do the job, as shownin equation 2? (We omit the contexts, for the sake of simplicity):If f : �y:�:�0 and a : �; then fa : �0[y := a] (1)If f : �y:�:�0 and a : �; then fa : (�y:�:�0)a (which ��converts to fa : �0[y := a]): (2)In fact, it is more elegant and uniform to use the second notation instead of the �rst one.The formulation of the theories and the proofs becomes easier. Furthermore, with the secondnotation, one maintains a compatibility property for the typing of all applications:M : N )MP : NP: 4



This is in line with the compatibility property for the typing of abstractions, which does holdin general:M : N ) �y:PM : �y:PN:As an example, we give a simple derivation with the above-described compatible applicationrule and with conversion on �-application:A : �; b : A; a : A ` a : A (start)A : �; b : A ` (�a:A:a) : (�a:A:A) (abstraction)A : �; b : A ` (�a:A:a)b : (�a:A:A)b (application)A : �; b : A ` (�a:A:a)b : A (conversion)It is our belief that it is simpler to treat terms and types in a uni�ed manner. Moreover,such a uni�ed treatment provides a step towards the generalisation of type systems. In fact,such a generalisation is an important topic of research at the present time. For example,Barendregt's taxonomy of type systems in [Barendregt 92] and our generalised system in[NK 94] which accommodates all the systems of the Barendregt cube are attempts at com-bining all the important results and structures of type systems in a compact and elegant way.As a step towards this compact and elegant way, we believe that conversion should apply toboth types and terms. Hence, this paper aims at extending the conversion rules of terms totypes.We start in Section 2 by presenting the calculus �!� , being a form of �! in which termsand types can be treated alike and where types contain abstraction and application ratherthan being simple as in �!. The Church Rosser theorem is shown in Section 3 to holdfor the calculus. In Section 4, we present the technical machinery relevant for contexts andvariables. Important notions such as context ordering and the companion term of a context-and-expression pair are introduced and discussed for binding variables in terms and contexts.For substitution purposes, contexts must be restricted to the well-behaved ones but it is shownthat this restriction is only cosmetic, in that for any (�;M), we can �nd an �-variant (�0;M 0)where �0 is well-behaved. In Section 5, we introduce the typing operator � . This operatorwill �nd the types of terms within contexts. � will satisfy most of the desired properties oftyping operators, such as weakening, and substitution.Typing a term however, is not the only important notion. We need to study the type of theterm too and to study the well-typedness of the term. In fact, we think that a more elegantnotion of typing can be obtained if we split the judgement � ` t : � in two judgements:� ` t and �(�; t) =� � which say that t is well typed and has for type �. So instead ofconcentrating on the whole formula � ` t : � at once, we engage ourselves �rst in showing thewell-typedness of t and then in looking for its type. In fact, we believe that this separation isimportant especially when we move away from the simpler type theories such as �! to a moreinvolved ones such as those of the systems of the Barendregt cube where types and terms areinter-mingled. In such a case, not only we need to discuss � ` t but also that the type of tis well-typed (or consistent). We use the notion consistent instead of well-typed in order tocover for both cases when � ` t and � ` �(�; t). For this reason, we introduce in section 6the notion of consistency of an expression with respect to a context. All terms which areconsistent with respect to a context, are typable (via �) in the context and their types arealso consistent. I.e. if � ` t then �(�; t) is de�ned and � ` �(�; t). Hence, we de�ne � ` Mfor M being a type as well as a term. Furthermore, all the information about binding andfreeness relevant to t and to typing it in context �, is present in � and in t. So the expression5



� ` t can be treated as a term on its right. We believe that separating � ` t : � into � ` t and�(�; t) =� � deserves attention. Moreover, consistency ` has all the desirable properties oftype theory. For example, Basis Lemma, Generation Lemma, Correctness of Subexpressions,Weakening, Substitution, Context Reduction, Subject Reduction, Unicity and Correctness ofTypes all hold for consistent expressions.Hence the calculus presented uni�es the treatment of types and terms, while preserv-ing all the important properties, from Church Rosser to subject reduction and type unic-ity/correctness. To give the reader a feel for the elegance of the approach, we interpret inSection 7 Church's �! in our calculus. The main result is that � `�! t : � i� � ` I(t)and � ` I(�) in �!� , for I being the interpretation function from �! to �!� . Moreover,�(�;I(t)) =� I(�) in �!� . Furthermore, if �0 ` t0 in �!� then there are �; t and � in �!such that �0 !!� I(�), t0 !!� I(t), �(�0; t0) =� I(�) and � `�! t : �. We believe that ourcalculus can be used to provide similar conditions for other type systems and it would beinteresting to extend these results for the Pure Type Systems. Hence �!� can be looked atas a system which discusses and generalises conditions of typing in the known type systems.2 �!�We assume two kinds of expressions: types and terms. We assume moreover, an in�nite setV of type variables and an in�nite set V of term variables. We let T be the set of types andT be the set of terms and assume two abstraction operators � and �. The � abstracts overtypes and the � over terms. Both T and T are de�ned as follows:V = � j V 0V = x j V 0T = V j (�V :T :T ) j (T T )T = V j (�V :T :T ) j (TT )Note that this de�nition allows that types are applied to terms.Examples of types are: �00, (�x:�:(�0x0)) and ((�x:�:�0)x0).Examples of terms are: x000, (�x:�:(x00x)) and ((�x:�:x00)x).We often omit brackets conforming to the usual conventions. We use the meta-variable �to range over f�;�g. We let 
; 
1; : : : range over V and y; z; : : : range over V . Also, !; !0; : : :range over V [V and we assume that V \V = ;. We use �; �0; �00; : : : ; �1; �2; : : : to range overT (the types), t; t0; t00; : : : ; t1; t2; : : : to range over T (the terms), and let L;M;N;P; : : : rangeover T [ T . We call the elements of T [ T expressions.Lemma 2.1 T \ T = ;Proof: Easy. 22.1 Variable manipulationThe free and bound variables in an expression M , denoted FV (M) and BV (M)respectively, are de�ned as follows:De�nition 2.2 (Free Variables)1. FV (!) = ! 6



2. FV (�y:�:M) = FV (�) [ (FV (M) n fyg)3. FV (Mt) = FV (M) [ FV (t)De�nition 2.3 (Bound Variables)1. BV (!) = ;2. BV (�y:�:M) = fyg [BV (�) [BV (M)3. BV (Mt) = BV (M) [BV (t)Remark 2.4 Note that BV (M) � V .Now we de�ne the type of a bound variable in an expression as follows:De�nition 2.5 (Type of Bound Variables)� If y occurs free in M , then all its occurrences are bound with type � in �y:�:M where� � � if M 2 T and � � � if M 2 T .� If an occurrence of y is bound with type � in M , then it is also bound with type � in�y0:�0 :M , in Mt, and, in case M 2 T , in (M 0M).As is usual in the �-calculus, and for ease of the proofs that we will carry out, we assumeBarendregt's variable convention. That is: names of bound variables will always be chosensuch that they di�er from the free ones in an expression, so that one wouldn't have (�y:�:y)ybut instead (�z:�:z)y. Such a convention is guaranteed via the use of variable renaming andis formally stated as follows:Notation 2.6 (Barendregt's Variable Convention)For every M , BV (M) \ FV (M) = ;.Notation 2.7 (Extended Variable Convention, VC)We extend Barendregt's Variable Convention with the following clause: For every M , if �yand �z occur in M then y 6� z.Remark 2.8 Note that the condition that names of bound variables be distinct is desirablein order to obtain that for a term obeying VC, also its subterms obey VC. Take for examplethe term t � �y:�:�y:�0y:y. It is certainly the case that BV (t) \ FV (t) = ;, yet y occurs inthe free and bound variables of �y:�0y:y. Therefore, we impose the condition that names ofbound variables be distinct in order to make sure that for every expression we write down(whether it is an expression or a subexpression of another expression), the free variables andthe bound variables are disjoint.It should be further noted that without variable renaming, we could not have V C. Therefore,we identify expressions modulo �-conversion. With V C moreover, we get the following:Lemma 2.9 In �y:�:M , y 62 FV (�).Proof: BV (�y:�:M) = fyg[BV (�)[BV (M) and FV (�y:�:M) = FV (�)[(FV (M)nfyg).y 2 BV (�y:�:M) =)V C y 62 FV (�y:�:M) =) y 62 FV (�)[(FV (M)nfyg) =) y 62 FV (�). 27



Remark 2.10 Note here that with the identi�cation of expressions modulo �-conversion, thenotion of a bound variable becomes useless.Notation 2.11 M � N means that M and N are the same expressions or can be obtainedfrom each other by renaming bound variables. For example: �y:�:y � �z:�:z for z not free in�. Now, if in clause 5 of De�nition 2.12 below, y 2 FV (P ), then we write (�y:�:M)[! := P ] �(�z:�:M [y := z])[! := P ] for z a fresh variable (note from Lemma 2.9 that y 62 FV (�)). Withthis notation, we follow the lines of Barendregt in [Barendregt 92] in identifying expressionsthat di�er only in the name of bound variables, rather than using �-conversion. That is, theidenti�cation is done in our mind rather than on paper.2.2 Substitution and reductionWe introduce substitution, reduction and conversion by the following de�nitions:De�nition 2.12 (Substitution)We de�ne M [! := P ] to be the result of substituting P in M for all free occurrences of !.In this de�nition, we assume that FV (P ) \ BV (M) = ;; this is consistent with the variableconvention. M [! := P ] is de�ned by induction as follows:1. ![! := P ] � P2. !1[!2 := P ] � !1 if !1 6� !23. (Mt)[! := P ] �M [! := P ]t[! := P ]4. (�y:�:M)[y := P ] � �y:�:M15. (�y:�:M)[! := P ] � �y:�[!:=P ]:M [! := P ] if y 6� !Lemma 2.13 (Substitution in Terms and Types)1. If y 2 V , N 2 T then� M 2 T =)M [y := N ] 2 T� M 2 T =)M [y := N ] 2 T2. If 
 2 V, N 2 T then� M 2 T =)M [
 := N ] 2 T� M 2 T =)M [
 := N ] 2 TProof: Both by simultaneous induction on the structure of M . 2Lemma 2.14 If M;M1;M2 2 T [ T , ! 6� !0 and ! 62 FV (M2) thenM [! :=M1][!0 := M2] �M [!0 :=M2][! :=M1[!0 := M2]]:Proof: This is a corollary of Lemma 3.3 below. 21Note that y could not be free in � according to VC, by Lemma 2.9.8



De�nition 2.15 (One step Reduction !�, a relation on T [ T )One step reduction !� on T [ T is the least relation closed under the �-rule (rule 1, below)and the compatibility conditions (rules 2,3 and 4 below).1. (�y:�:M)t!� M [y := t]2. If t!� t0 then Mt!� Mt03. If M !� N then Mt!� Nt and �y:�:M !� �y:�:N4. If � !� �0 then �y:�:M !� �y:�0 :MDe�nition 2.16 (Reduction !!�, a relation on T [ T )Reduction!!� on T [ T is the re
exive and transitive closure of !�. That is, !!� is de�nedby the following rules:1. M !!� M2. If M !� N then M !!� N3. If M !!� N and N !!� L then M !!� LDe�nition 2.17 (Conversion =�, a relation on T [ T )Conversion =� on T [ T is the least equivalence relation closed under !!�. That is:1. If M !!� N then M =� N2. If M =� N then N =� M3. If M =� N and N =� L then M =� LLemma 2.18Let � be !� or !!� or =�. Now, if M 2 T (respectively M 2 T ) and if M�N then N 2 T(respectively N 2 T ).Proof: Use Lemma 2.13 and induction. 2Lemma 2.19 (!�-substitution lemma on T [ T )For M;N 2 T [ T; z 2 V and t0 2 T , if M !� N , then M [z := t0]!� N [z := t0].Proof: This is a corollary of Lemma 3.5 and Lemma 3.6 below. 2Corollary 2.20 (!!�-substitution lemma on T [ T )For M;N 2 T [ T; z 2 V and t0 2 T , if M !!� N , then M [z := t0]!!� N [z := t0].Proof: By induction on !!� using Lemma 2.19. 2De�nition 2.21 (�-redexes, �-nf)� An expression of the form (�y:�:M)t is called a �-redex.� If an expression M has no �-redexes as a subexpression then M is said to be in �-nf.� If t =� t0 where t0 is in �-nf, then t is said to have a �-nf.9



3 The Church Rosser TheoremTo prove the Church Rosser Theorem (in short CR theorem), we shall follow the methodpresented in [Barendregt 84] working with types and terms alike. That is, even though weuse a similar strategy to that of [Barendregt 84] to prove the CR theorem, the details willextend all the notions of reductions, substitution and all the proofs in order to treat types aswell as terms in a uni�ed manner. We start by extending T and T to the following:T = V j (�y:T :T ) j (T T ) j (�y:T :T )TT = V j (�y:T :T ) j (T T ) j (�y:T :T )TIn this section, M;N and P range over T [ T . Moreover, �; �0; : : : range over T andt; t0; : : : range over T . Furthermore, we use � to range over f�;�g.Remark 3.1 Note that when we write an expression M this will never indicate �y:�:M 0 forsome M 0, even if M occurs with an argument N in MN .We extend the de�nition of free and bound variables by adding to De�nition 2.2, the �rstclause below and to De�nition 2.3, the second clause below (recall here however remark 2.10).FV ((�y:�:M)t) = FV (�) [ (FV (M) n fyg) [ FV (t)BV ((�y:�:M)t) = fyg [BV (�) [BV (M) [BV (t)We still assume moreover the variable convention for T [ T and consider expressions to beequivalent up to variable renaming.3.1 Substitution and Reduction in T [ TSubstitution is exactly as in De�nition 2.12 except that we add the following:((�y:�:M)t0)[! := P ] = (�y:�[!:=P ]:M [! := P ])(t0[! := P ]) if y 6� !((�y:�:M)t0)[y := P ] = (�y:�:M)t0.2Now a similar version of Lemma 2.13 holds for T [ T . That is,Lemma 3.2 (Substitution in Terms and Types)1. If y 2 V , N 2 T then� M 2 T =)M [y := N ] 2 T� M 2 T =)M [y := N ] 2 T2. If 
 2 V, N 2 T then� M 2 T =)M [
 := N ] 2 T� M 2 T =)M [
 := N ] 2 TProof: Both by simultaneous induction on the structure of M . 2Lemma 3.3 If M;M1;M2 2 T [ T , ! 6� !0 and ! 62 FV (M2) thenM [! :=M1][!0 := M2] �M [!0 :=M2][! :=M1[!0 := M2]]:Proof: By induction on the length of terms and types in T [ T .2The second clause is in accordance with the variable convention as y 62 FV (t0).10



� M � ! then lhs �M1[!0 :=M2] � rhs.� M � !0 then lhs �M2 � rhs as ! 62 FV (M2).� M � !00 and !00 6� ! and !00 6� !0 then lhs � rhs � !00.� Assume the property holds for M; t then obviously it holds for Mt, i.e.(Mt)[! :=M1][!0 :=M2] � (Mt)[!0 :=M2][! :=M1[!0 :=M2]]� Assume the property holds for M , then let us show it holds for �y:�:M .{ case ! 6� y and !0 6� y then(�y:�:M)[! :=M1][!0 :=M2] ��y:�[!:=M1][!0:=M2]:M [! :=M1][!0 := M2] �IH�y:�[!0:=M2][!:=M1[!0:=M2]]:M [!0 :=M2][! :=M1[!0 := M2]] �(�y:�:M)[!0 :=M2][! :=M1[!0 := M2]]{ case ! � y then(�y:�:M)[y :=M1][!0 :=M2] ��y:�[!0:=M2]:M [!0 :=M2] and(�y:�:M)[!0 :=M2][y :=M1[!0 := M2]] ��y:�[!0:=M2]:M [!0 :=M2].{ case !0 � y and y 62 FV (M1) then(�y:�:M)[! :=M1][y :=M2] ��y:�[!:=M1]:M [! :=M1]Moreover, (�y:�:M)[y :=M2][! :=M1[y := M2]] �(�y:�:M)[! :=M1[y := M2]] ��y:�[!:=M1]:M [! :=M1]{ case !0 � y and y 2 FV (M1) then (�y:�:M)[! :=M1][y :=M2] �(�z:�:M [y := z])[! :=M1][y :=M2] (for fresh z) �(�z:�[!:=M1]:M [y := z][! :=M1])[y := M2] ��z:�[!:=M1][y:=M2]:M [y := z][! :=M1][y :=M2] �IH�z:�[y:=M2][!:=M1[y:=M2]]:M [y := z][y :=M2][! := M1[y :=M2]] �(since y 62 FV (�) by VC and y 62 FV (M [y := z]))�z:�[!:=M1[y:=M2]]:M [y := z][! :=M1[y :=M2]].Moreover, (�y:�:M)[y :=M2][! := M1[y :=M2]] �(�z0:�:M [y := z0])[y := M2][! :=M1[y :=M2]] (for fresh z0) �(�z0:�[y:=M2]:M [y := z0][y := M2])[! :=M1[y :=M2]] �(since y 62 FV (�) and y 62 FV (M [y := z0])(�z0:�:M [y := z0])[! := M1[y :=M2]] ��z0:�[!:=M1[y:=M2]]:M [y := z0][! := M1[y := M2]]� For ((�y:�:M)t)[! :=M1][!0 := M2] use a similar proof. 211



We extend De�nitions 2.15 and 2.16 to the following:De�nition 3.4 (Extended Reduction !� and !!�)1. (�y:�:M)t!� M [y := t]2. (�y:�:M)t!� M [y := t]3. If t!� t0 then (�y:�:M)t!� (�y:�:M)t0 and Pt!� Pt04. If M !� N thenMt!� Nt, �y:�:M !� �y:�:N and (�y:�:M)t!� (�y:�:N)t5. If � !� �0 then �y:�:P !� �y:�0 :P and (�y:�:P )t!� (�y:�0 :P )t6. !!� is the transitive and re
exive closure of !�.The relation !� on T [ T is indeed an extension of the relation !� on T [ T :Lemma 3.5Let M;N 2 T [ T . Then: M !� N i� M !� N .Proof: By induction on M !� N or M !� N , respectively. 2Lemma 3.6 (!�-substitution lemma on T [ T )For M;N 2 T [ T ; z 2 V and t0 2 T , if M !� N , then M [z := t0]!� N [z := t0].Proof: By induction on M !� N .� Case (�y:�:M)t!� M [y := t],1. Case z 6� y:((�y:� :M)t)[z := t0] � (�y:�[z:=t0]:M [z := t0])t[z := t0]!�M [z := t0][y := t[z := t0]] � M [y := t][z := t0] by Lemma 3.3, since y 62 FV (t0) byVC.2. Case z � y:((�y:� :M)t)[y := t0] � (�y:�:M)t!�M [y := t] �M [y := t][y := t0] since y 62 FV (t) by V C.� Case (�y:�:M)t!� M [y := t] is similar to the above case.� The other cases are easy. 2Corollary 3.7 (!!�-substitution lemma on T [ T )For M;N 2 T [ T ; z 2 V and t0 2 T , if M !!� N , then M [z := t0]!!� N [z := t0].Proof: By induction on !� using Lemma 3.6 2
12



3.2 The relations between T [ T and T [ TDe�nition 3.8 The map j j: T [ T �! T [ T is de�ned as the erasing of all underlinings.De�nition 3.9 � : T [ T �! T [ T is de�ned as follows:1. �(!) � !2. �(Mt) � �(M)�(t)33. �((�y:�:M)t) � �(M)[y := �(t)]4. �(�y:�:M) � �y:�(�):�(M)We denote jM j � N and �(M) � N by M !jj N and M !� N respectively.Lemma 3.10 For every M 2 T [ T , FV (�(M)) � FV (M):Proof: By induction on the structure of M . 2In what follows, read dashed lines as a quest for existence, or a proof and non dashed linesas hypotheses.Lemma 3.11 For every M;N 2 T [ T and M 0 2 T [ T , if M 0 !jj M and M !!� N then(9N 0)[M 0 !!� N 0 ^N 0 !jj N ]. This is pictured as follows:MM 0 NN 0--�--�? ?jj jjProof: Clearly this property holds for !�:If M !� N is the result of contracting in M a redex obtaining N , then N 0 can be obtainedfrom M 0 by contracting the corresponding redex in M 0. Now we prove by induction on thede�nition of !!� that it holds for !!�.� If M !!� M obvious.� If M !!� N comes from M !� N then from above.� If M !!� N comes from M !!� N1 and N1 !!� N and property holds for M !!� N1and N1 !!� N then:MM 0 N1N 01 NN 0-- ---- --� �� �? ? ?jj jj jj 23Note here that M is not �y:�:N . 13



Lemma 3.12 For all !;M; and P in T [T with FV (P )\BV (M) = ;, we have �(M)[! :=�(P )] � �(M [! := P ]).Proof: By induction on M� Case !:![! := P ] � P so �(![! := P ]) � �(P )and �(!)[! := �(P )] � ![! := �(P )] � �(P )� Case !1 6� !:!1[! := P ] � !1 so�(!1[! := P ]) � �(!1) � �(!1)[! := �(P )]� Case Mt:Mt[! := P ] �M [! := P ]t[! := P ] where IH holds for M; t. Hence�(Mt)[! := �(P )] ��(�(M)�(t))[! := �(P )] �sub(�(M)[! := �(P )])(�(t)[! := �(P )]) �IH�(M [! := P ])�(t[! := P ]) ���(M [! := P ]t[! := P ]) �sub�(Mt[! := P ])� Case �y:�:M and ! � y:(�y:�:M)[y := P ] � �y:�:M so�((�y:� :M)[y := P ]) � �(�y:�:M) ��y:�(�):�(M) �(�y:�(�):�(M))[y := �(P )] ��(�y:�:M)[y := �(P )]� Case �y:�:M and ! 6� y:(�y:�:M)[! := P ] � �y:�[!:=P ]:M [! := P ] so�(�y:�:M)[! := �(P )] ��(�y:�(�):�(M))[! := �(P )] �sub�y:�(�)[!:=�(P )]:(�(M)[! := �(P )]) �IH�y:�(�[!:=P ]):�(M [! := P ]) ���(�y:�[!:=P ]:M [! := P ]) ��((�y:� :M)[! := P ])� Case (�y:�:M)t0 and ! � y:((�y:�:M)t0)[y := P ] � (�y:�:M)t0, so{ �((�y:�:M)t0)[y := �(P )] ���(M)[y := �(t0)][y := �(P )] ��(M)[y := �(t0)] because y 62 FV (t0) due to the variable convention.{ �(((�y:�:M)t0)[y := P ]) ��((�y:�:M)t0) ���(M)[y := �(t0)].� Case (�y:�:M)t0 and ! 6� y:((�y:�:M)t0)[! := P ] � (�y:�[!:=P ]:M [! := P ])(t0[! := P ]) so14



�((�y:�:M)t0)[! := �(P )] ���(M)[y := �(t0)][! := �(P )] �Lemmas 3:3 and 3:10(note that y 62 FV (P ) since FV (P ) \ BV ((�y:�:M)t0) = ;)�(M)[! := �(P )][y := �(t0)[! := �(P )]] � by IH�(M [! := P ])[y := �(t0[! := P ])] ���((�y:�[!:=P ]:M [! := P ])(t0[! := P ])) ��(((�y:�:M)t0)[! := P ]). 2Lemma 3.13 For M;M 0 2 T [ T , if M !!� M 0 then �(M)!!� �(M 0). That is:
�(M)M �(M 0)M 0--�--�? ?� �Proof: Induction on M !!� M 0:� (�y:�:M)t!� M [y := t] then�((�y:� :M)t) � �((�y:�:M))�(t) � (�y:�(�):�(M))�(t)!��(M)[y := �(t)] �V C)FV (t)\BV (M)=;;Lemma 3:12 �(M [y := t])� (�y:�:M)t!� M [y := t] then�((�y:�:M)t)!� �(M)[y := �(t)] �V C)FV (t)\BV (M)=;;Lemma 3:12 �(M [y := t])� If t!� t0 implies �(t)!� �(t0) then{ �(Pt) � �(P )�(t)!� �(P )�(t0) � �(Pt0){ �((�y:�:P )t)!� �((�y:�:P )t0)� If M !� N implies �(M)!� �(N) then{ �(Mt)!� �(Nt){ �(�y:�:M)!� �(�y:�:N){ �((�y:�:M)t)!� �((�y:�:N)t)� If � !� �0 implies �(�)!� �(�0) then{ �(�y:�:P )!� �(�y:�0 :P ){ �((�y:�:P )t)!� �((�y:�0 :P )t)� If M !!� M then obviously �(M)!!� �(M)� If M !!� M 0 comes from M !� M 0 then �(M)!!� �(M 0)� If M !!� M 0 comes from M !!� M 00 and M 00 !!� M 0 and the induction hypothesisholds for M;M 00 and M 00;M 0 then �(M)!!� �(M 0)15



2Lemma 3.14 For M 2 T [ T and M1;M2 2 T [ T , if M !jj M1 and M !� M2 thenM1 !!� M2. That is:
M1 M2M����	 @@@@R--�jj �

Proof: By induction on M 2 T [ T� If M � ! obvious.� If M �M 0t where
M 01 M 02M 0����	 @@@@R--�jj � t1 t2t����	 @@@@R--�jj �

then jM 0t j�jM 0 jj t j�M 01t1 and �(M 0t) � �(M 0)�(t) �M 02t2. Hence
M 01t1 M 02t2M 0t����	 @@@@R--�jj �

� If M � �y:�:M 0 where
M 01 M 02M 0����	 @@@@R--�jj � �1 �2�����	 @@@@R--�jj �

then
16



�y:�1 :M 01 �y:�2 :M 02�y:�:M 0����	 @@@@R--�jj �
� If M � (�y:�:M 0)t where

M 01 M 02M 0����	 @@@@R--�jj � �1 �2�����	 @@@@R--�jj � t1 t2t����	 @@@@R--�jj �
then (�y:�1 :M 01)t1 !!� (�y:�2 :M 02)t2 !!� M 02[y := t2] and hence

(�y:�1 :M 01)t1 M 02[y := t2](�y:�:M 0)t����	 @@@@R--�jj �
23.3 The theorem and its corollariesFirst we start by proving the strip lemma which will be used in the proof of the CR theorem.Then we show the theorem and three of its corollaries.Lemma 3.15 (Strip Lemma) For M;M1;M2;M3 2 T [ T we have:M1M M3M2--�--�? ??� �Proof: Let M1 be the result of contracting R � (�y:�:M 0)M 00 in M . Let M 01 2 T [ T beobtained from M by replacing R by R0 � (�y:�:M 0)M 00. Then j M 01 j� M and �(M 01) � M1.By Lemmas 3.11, 3.13 and 3.14 we have M 02, M3 (� �(M 02)) and the following diagram:

M1M M3M2--�
--�@@@I���	 jj� M 01 --� M 02@@I���	 jj�? ??� �17



2Theorem 3.16 (The Church Rosser Theorem)For M;N1; N2 2 T [ T , if M !!� N1 and M !!� N2 then there exists N3 2 T [ T such thatN1 !!� N3 and N2 !!� N3Proof: M !!� N1 then M � M0 !� M1 !� M2 !� : : : !� Mn � N1. Hence fromLemma 3.15 we have:

N1 N3--�--�
--�--�
--�? ?????

??? ????
M1 N2M ��
�� �

��
� 2Corollary 3.17 For M;N 2 T [ T , if M =� N then there exists L 2 T [ T such thatM !!� L and N !!� LProof: by induction on =�.If M =� N comes from M !!� N then take L � NIf M =� N comes from N =� M where property holds for N =� M , nothing to prove.If M =� N comes from M =� L and L =� N where property holds for M =� L andL =� N then there exists L1; L2 such that:

L1M L NL2@@@R ���	 ���	@@@R@@R ��	 ��	@@R
As L!!� L1 and L!!� L2 then by CR there exists L3 such that:

18



L3L1 L2@@@R ���	@@R ��	
Hence M !!� L3 and N !!� L3. 2Corollary 3.181. For M;N 2 T [ T , if M has N as �-nf then M !!� N2. An expression has at most one �-nf.Proof:1. M has N as �-nf then M =� N and N is a �-nf. Hence by corollary above, thereexists L such that M !!� L and N !!� L. This implies that N � L up to renaming ofvariables and so M !!� N .2. If M has N1 and N2 as �-nf then M !!� N1 and M !!� N2 and so there exists M 0such that:

M 0N1 N2@@@R ���	@@R ��	
But as N1; N2 are in �-nf then N1 �M 0 � N2 and hence N1 � N2. 2Corollary 3.19 If M =� �y:�:M 0 and N =� � then(9�1;M 00)[M !!� �y:�1 :M 00 and N !!� �1].Proof: By Corollary 3.17, (9�0)[N !!� �0 and � !!� �0].Hence of course, M =� �y:�0 :M 0.We apply again Corollary 3.17 to get(9�1;M 00)[M !!� �y:�1 :M 00 and �y:�0 :M 0 !!� �y:�1 :M 00 and �0 !!� �1].Hence M !!� �y:�1 :M 00 and N !!� �1. 2Corollary 3.20 (=�-substitution lemma)For M;N 2 T [ T , z 2 V and t0 2 T , if M =� N , then M [z := t0] =� N [z := t0].Proof: If M =� N , then there exists M 0 such that M !!� M 0 and N !!� M 0 byCorollary 3.17. By Lemma 2.20, M [z := t0] !!� M 0[z := t0] and N [z := t0] !!� M 0[z := t0].Hence, M [z := t0] =� N [z := t0]. 219



4 Statements and ContextsFundamental in typed lambda calculus is the relation \t has type �". This relation is formal-ized as the statement t : �. In associating types to terms, contexts play an important role.The following de�nitions concern statements and contexts.De�nition 4.1 (Statement, subject, type)A statement is of the form t : � with t 2 T , � 2 T .t is the subject, � is the type of the statement t : �.De�nition 4.2 (Contexts)� is a context if � is a �nite linearly ordered set of statements with (term) variables as subjects.We let CONS be the collection of all contexts. Contexts are written as lists of pairs (y : �)where y 2 V and � 2 T . We write �(y : �) for the context obtained by appending (y : �) atthe end of the list �. Notations like �(y : �)�0 etc. are used in the same manner.We use �, �0;�1;�2; : : : as meta variables for contexts.De�nition 4.3 (Domain and Range of contexts)For � 2 CONS, we de�ne the domain of �, dom(�) and the range of �, ran(�) as follows:� dom(�) = fy 2 V ; (9� 2 T )[(y : �) 2 �]g� ran(�) = f� 2 T ; (9y 2 V )[(y : �) 2 �]gDe�nition 4.4 (Free Variables of contexts)For � 2 CONS, we de�ne the free variables of �, FV (�), to be [�2ran(�)FV (�).De�nition 4.5 (Bound Variables of contexts)For � 2 CONS, we de�ne the bound variables of �, BV (�), to be [�2ran(�)BV (�).De�nition 4.6 (Variables of contexts)For � 2 CONS, we de�ne the variables of �, V AR(�) to be FV (�) [BV (�) [ dom(�).De�nition 4.7 (Substitution in contexts)For � 2 CONS, � = (y1 : �1) : : : (yn : �n),�[! := N ] = (y1 : �1[! := N ]) : : : (yn : �n[! := N ]).De�nition 4.8 (One-step reduction of contexts)For �;�0 2 CONS, we say �!� �0 if the following holds:� = (y1 : �1) : : : (yn : �n) and �0 = (y1 : �01) : : : (yn : �0n) with �i !� �0i for some i 2 f1; : : : ; ng.De�nition 4.9 (Reduction of contexts)�!!� �0 is the re
exive transitive closure of �!� �0.Note that we use!� and!!� to mean both reduction of contexts and reduction of expressions.This should not lead to confusion.Example 4.10 20



1. (y : (�z:�:
)z0)(y0 : (�z:�:
)z0(�z1:�:z1)z0)!� (y : 
)(y0 : (�z:�:
)z0(�z1:�:z1)z0)2. (y : (�z:�:
)z0)(y0 : (�z:�:
)z0(�z1:�:z1)z0)!� (y : (�z:�:
)z0)(y0 : (�z:�:
)z0z0)3. (y : (�z:�:
)z0)(y0 : (�z:�:
)z0(�z1:�:z1)z0)!!� (y : (�z:�:
)z0)(y0 : 
z0)4. (y : (�z:�:
)z0)(y0 : (�z:�:
)z0(�z1:�:z1)z0)!!� (y : 
)(y0 : 
z0)De�nition 4.11 (Restriction of contexts to sets of variables)If � 2 CONS and S � V then � j�S is the restriction of � to S, that is the list �0 obtainedfrom � by removing all (y : �) from � with y 62 S.Remark 4.12 Note that (� j�S0) j�S � � j�(S\S0). Note moreover that (��0) j�S � (� j�S)(�0 j�S).4.1 Context orderingWe need an ordering relation on contexts:De�nition 4.13 (Ordering of contexts)� v1 �0 if � � �1�2, �0 � �1(y : �)�2 and y 62 dom(�1)The relation v is the re
exive and transitive closure of v1.Example 4.14 (z : �)(y : �0) v1 (y : �)(z : �)(y : �0) and(z : �)(y : �0) v1 (z : �)(y : �)(y : �0) for y 6� z.Furthermore, (y1 : �1)(y2 : �2) v (y1 : �2)(y1 : �1)(y2 : �1)(y3 : �2)(y2 : �2)(y4 : �1) foryi 6� yj if i 6= j.The motivation of the condition y 62 dom(�1) will be given in Lemma 4.28. Be careful not toconfuse v with set inclusion which we write as �. In fact, � v �0 ) � � �0, but the reverseis not true. The reverse however is true in the following case:Lemma 4.15 If dom(�) \ dom(�0) = ; then � v ��0.Proof: By induction on the length of �0. 2Lemma 4.16If � v �0, then �(y : �) v �0(y : �).Proof:� Case � v1 �0 since � � �1�2 v1 �1(z : �0)�2 � �0 and z 62 dom(�1).Then �(y : �) � �1�2(y : �) v1 �1(z : �0)�2(y : �) � �0(y : �) since z 62 dom(�1), bothif z � y and if z 6� y.� Case � v �0 by re
exivity or transitivity.These cases are trivial. 2Now, a notion which helps one understand v is that of part:21



De�nition 4.17 (Part)A context � is a part of another context �0 if � is a sequence consisting of some statementsof �0 written in the order in which they occurred in �0. We use � as a notation for `is a partof'.For example, (y2 : �2)(y4 : �4) � (y1 : �1)(y2 : �2)(y3 : �3)(y4 : �4) for yi 6= yj for i 6= j.De�nition 4.18 For � a context and (y : �)� a particular occurrence of (y : �) 2 � wede�ne L((y : �)�;�) to be the context formed from the beginning (to the left) of � until (andexcluding) this occurrence of (y : �).Example 4.19L((y2 : �2); (y1 : �1)1(y2 : �2)(y1 : �1)2(y3 : �3)) = (y1 : �1),L((y1 : �1)1; (y1 : �1)1(y2 : �2)(y1 : �1)2(y3 : �3)) = ;,L((y1 : �1)2; (y1 : �1)1(y2 : �2)(y1 : �1)2(y3 : �3)) = (y1 : �1)(y2 : �2).Note that it is possible that � � �0 but � 6v �0. For example, (y : �) � (y : �)(y : �0). It isthe case however that if � v �0 then � � �0. Here is the lemma which gives the relationshipbetween v and the easier notion �.Lemma 4.20� v �0 i� � � �0 and 8(y : �)� 2 �0 n �; y 62 dom(L((y : �)�;�0)) \ dom(�).Proof:) By induction on � v �0.� Case � v1 �0 then � � �1�2 v �1(y : �)�2 � �0. Hence � � �0. Furthermore, (y : �)is the only occurrence in �0 n �, and as � v1 �0 theny 62 dom(�1) = dom(L((y : �);�0)) \ dom(�).� Case � v � obvious.� Case � v �1 and �1 v �0 use IH and transitivity of � to get � � �0. Furthermore, let(y : �)� 2 �0 n �.{ Case (y : �)� 62 �1 then (y : �)� 2 �0 n �1. Hence by IH,y 62 dom(L((y : �)�;�0)) \ dom(�1) ����1 dom(L((y : �)�;�0)) \ dom(�).{ Case (y : �)� 2 �1 then (y : �)� 2 �1 n �. Hence by IH,y 62 dom(L((y : �)�;�1)) \ dom(�) =�1��0 dom(L((y : �)�;�0)) \ dom(�).( By induction on the size of �0 n �, j�0 n �j.� Case �1�2 � �1(y : �)�2 and y 62 dom(L((y : �);�1(y : �)�2))\dom(�1�2) = dom(�1),then �1 v1 �2.� Assume IH holds for any �;�0 where j�0 n �j = n. Take �;�0 such that j�0 n �j = n+ 1,� � �0 and 8(y : �)� 2 �0 n�, y 62 dom(L((y : �)�;�0))\dom(�). As j�0 n�j = n+1, let(z : �1) be the leftmost element in �0 n �. Hence �0 = �01(z : �1)�02 and z 62 dom(�01) \dom(�) = dom(�01). As � � �0 and (z : �1) 62 �, then � � �01�02. Furthermore,8(y : �)� 2 �0 n �, y 62 dom(L((y : �)�;�0)) \ dom(�) implies 8(y : �)� 2 (�01�02) n �,y 62 dom(L((y : �)�;�01�02)) \ dom(�) can be seen as follows: Let (y : �)� 2 (�01�02) n �.22



{ Case (y : �)� 2 �01 then L((y : �)�;�0) = L((y : �)�;�01�02) = L((y : �)�;�01).{ Case (y : �)� 2 �02 then dom(L((y : �)�;�0)) = dom(L((y : �)�;�01�02)) [ fzg.� Case z 6= y then as y 62 dom(L((y : �)�;�0)) \ dom(�), theny 62 dom(L((y : �)�;�01�02)) \ dom(�).� Case z = y then as (z : �)� 2 (�01�02) n �, (z : �)� 2 �0 n �. Hencez 62 dom(L((z : �)�;�0)) \ dom(�). But (z : �1) 2 L((z : �)�;�0). Hencez 62 dom(�). And so, z 62 dom(L((y : �)�;�01�02)) \ dom(�).Hence by IH, � v �01�02. Furthermore, as z 62 dom(�01), then �01�02 v �01(z : �1)�02.Hence by transitivity of v, � v �0. 2Corollary 4.21If 8yi; yj 2 dom(�0); i 6= j ) yi 6= yj and � � �0 then � v �0.Proof: Apply Lemma 4.20 2Now if, for example, � � �1(y : �1)�2(y : �2)�3, with y 62 dom(�3), then the statementmeaningful to a free y in �3 is the rightmost, viz. (y : �2), as we will see below. The followinglemma shows that context ordering preserves this property.Lemma 4.22 If � v �0 and (y : �) is the rightmost statement in � whose subject is y, then(y : �) is the rightmost statement in �0 whose subject is y.Proof: By induction on � v �0. 2This lemma is important. It says that if y gets type � in � and if � v �0 then y gets type �in �0. I.e. �0 knows everything that � knows together with some information about variableswhich do not belong to dom(�). We can capture this information by de�ning the bindingstructure of a context-and-expression pair:De�nition 4.23 (The Binding Structure of a Context-and-Expression Pair; Companion ex-pression)We say that a variable occurrence y is free, respectively bound (with type �) in the pair (�;M)� ((y1 : �1) : : : (yn : �n);M) i� the corresponding occurrence of y is free, respectively bound(with type �) in the expression�y1:�1 : : : : :�yn:�n :M where � = � if M 2 T and � = � if M 2 T .This expression is called the companion expression of (�;M).Example 4.24 Let (�;M) � ((y1 : �1) : : : (yn : �n);M). If M � yi and yi 62 fyi+1; : : : ; yng,then yi is bound with type �i in the pair (�; yi) with � as above. If M � y and y 62fy1; y2; : : : ; yng, then y is free in (�; y). If M � (�y:�:y), then y is bound in (�;M) with type� (as it already was in M itself). If �2 � (� ! �)y1, then the occurrence of y1 in �2 is boundin (�;M) with type �1.De�nition 4.25FV (�;M) = the free variables of the companion expression of MBV (�;M) = the bound variables of the companion expression of M23



We de�ne a notion of �-reduction between context-and-expression pairs:De�nition 4.26 (Variants of Context-and-expression Pairs)(�;M) is �-equivalent with (or an �-variant of) (�0;M 0) if the corresponding companionexpressions are �-equivalent. (Recall that we use �-equivalence in our mind rather than onpaper.)Lemma 4.27� y 2 dom(�)) y 62 FV (�;M).� FV (�;M) = (FV (�) [ FV (M))ndom(�).� BV (�;M) = BV (�) [BV (M) [ dom(�)Proof:� By the variable convention which holds for �y1:�1 : : : : :�yn:�n :M ,where again � � (y1 : �1) : : : (yn : �n).� There may be free variables in � which are also elements of dom(�), but these variablesare bound in (�;M) and we have V C holds for the companion expression of (�;M).� Obvious. 2Note that De�nition 4.23 establishes the binding pattern in a pair (�;M): each occurrence ofa variable in BV (�;M) which is neither a subscript of a � in M nor a domain variable of �,is linked to an occurrence of the same variable which is such a subscript or domain variable.This linkage can be found by inspecting the companion expression of (�;M). Now it can beshown that context ordering does not disturb this binding pattern:Lemma 4.28Let � v �0. If an occurrence of a bound variable y is linked in (�;M) to a certain otheroccurrence of this y in (�;M) (being either a subscript of a � or a domain variable), thenthis is also the case in (�0;M), for the corresponding occurrences.Proof: It is su�cient to investigate the case � � �1�2 v1 �1(y : �)�2 � �0. Thebinding pattern can only be disturbed when the inserted domain variable y \takes over" thebinding for an already present bound occurrence of y. (Note that y cannot be free in (�0;M)by Lemma 4.27.) Now it cannot be the case that an occurrence of y in (�;M) becomes linkedto the inserted domain variable y, instead of its original linkage. The reason is the restrictiony 62 dom(�1) which is a consequence of v1. 2A consequence of this lemma is that context ordering does not in
uence types of boundvariables:Corollary 4.29 If � v �0 and if y is bound with type � in (�;M), then y is bound with type� in (�0;M). 224



4.2 Well-Behaved contextsIn certain circumstances, which will become clear below, we need a condition on the variablesin a context. Such a condition says that all variables in the domain of a context must bedistinct and that in a context �(y : �)�0, FV (�) \ dom((y : �)�0) = ;.The intuition is that we wish to be free to substitute � for a variable in �0 or for a variable`depending on' �0, without running the risk that a free variable of � becomes unintentionallybound. See [Barendregt 91] where a similar discussion is given for contexts.De�nition 4.30 (Well-behaved contexts)A context � � (y1 : �1) : : : (yn : �n) is well-behaved, and we write WB(�), if for all i; j; k 2f1; : : : ; ng:1. yi = yj ) i = j,2. FV (�k) \ fyk; : : : ; yng = ;. That is, yi 2 FV (�k)) 1 � i < k.We give a few lemmas concerning the well-behavedness of contexts.Lemma 4.311. If WB(�) and �0 � � then WB(�0).2. If WB(�), y 62 dom(�), y 62 FV (�) and y 62 FV (�), then WB(�(y : �)).3. If WB(�) and �!!� �0 then WB(�0).Proof:1. Easy.2. Let � � (y1 : �1) : : : (yn : �n). Then for all k 2 f1; : : : ; ng: FV (�k) \ fyk; : : : ; yng = ;.Hence, since y 62 FV (�k), FV (�k) \ fyk; : : : ; yn; yg = ;. Moreover, FV (�) \ fyg = ;and y 6� yi for any i 2 f1; : : : ; ng. So WB(�(y : �)).3. Assume �!� �0 and comes from � = �1(y : �)�2 where � !� �0 and �0 = �1(y : �0)�2.Then use the fact that FV (�0) � FV (�) and FV (�) \ (fyg [ dom(�2)) = ;.The case �!!� �0 is now a trivial consequence. 2Corollary 4.321. If WB(�1�2) then WB(�1).2. If WB(�1�2) then WB(�1�02) where �02 is a pre�x of �2.3. If WB(�) and �0 v � then WB(�0).Proof: All of 1, 2, and 3 are corollaries of Lemma 4.31, part 1. 2Lemma 4.33If WB(�(y : �)), then � v1 �(y : �).Proof: Note that WB(�(y : �)) implies that y 62 dom(�). 225



Corollary 4.34If WB(�1�2), then �1 v �1�2.Proof: Induction on the length of the list �2. Note that by Corollary 4.32, part 2, all�1�02 with �02 pre�x of �2 are well-behaved. Lemma 4.33 plus transitivity of v give the desiredresult. 2Lemma 4.35 If WB(�0) then � v �0 i� � � �0.Proof: This is a corollary of Lemma 4.20. 2Corollary 4.36 If WB(�) and �1 � �2 � �, then �1 v �2.Proof: Use Lemmas 4.31 and 4.35. 2The following lemma shows that each context-and-expression pair is �-equivalent with acontext-and-expression pair which has a well-behaved context. Hence, the restriction to well-behaved contexts is not an essential restriction.Lemma 4.37For each (�;M) there is an �-variant (�0;M 0) such that WB(�0).Proof: Assume � � (y1 : �1) : : : (yn : �n). Replace all occurrences of the �rst domainvariable y1 and of all occurrences of y1 linked to this y1 in (�;M), by a fresh variable y01 andrepeat this procedure successively for the other domain variables y2,. . . yn. It is clear that weobtain a pair (�0;M 0) with �-equivalent companion expression and such that WB(�0). 25 A Typing Operator for �!�We let � be a canonical type operator in �!� . That is � takes a context � in CONS anda term t in T of �!� and gives the type of t with respect to �, according to the followingtyping rules:De�nition 5.1 (Canonical Type Operator)� : CONS � T �! T is de�ned as follows:1. �(�; y) � � if y is bound with type � in (�; y)2. �(�; tt0) � �(�; t)t03. �(�; �y:� :t) � �y:�:�(�(y : �); t)Here clause 2 may not be obvious at �rst sight. In fact, one may have expected �(�; tt0) to bede�ned as �(�; t)�(�; t0). This certainly cannot be the case for many reasons. First, recall thata type applies to a term and not to a type. Second, if we allow types as arguments to types,then we must let � range over type variables instead of only term variables. Furthermore,think about the intuition behind such a de�nition. When we look for the type of t, where thas the form �y:�:t00 then we obtain a �-type �y:�:�0. Now certainly the type of tt0 must be�0[y := t0], which is a reduct of (�y:�:�0)t0.Here moreover, we should draw some attention to the power of typing in �!� . We willshow below that any term which is typable in Church's �! is also typable in �!� . Thisshould not be surprising as �! types fewer terms than other systems (see [Barendregt 92],26



and [BH 90]). We can type more terms however in �!� . For instance, we will see in Exam-ple 5.4 that ! � �y:�:yy is typable. Such a term cannot be typed in �!. Furthermore, the�xed point operator t � �y1:(�z:�:�)(�y2:�:y1(y2y2))(�y2:�:y1(y2y2)) has a type which reducesto �y1:(�z:�:�)� (see Example 5.4). This makes sense: it says that the type of the �xed pointoperator is (� ! �)! �. Such a term however is not typable in �! nor in the second ordersystem �2 (see [Barendregt 92]). Now this brings the question of strong normalisation. Wesay that an expression M is strongly normalising i� all reduction sequences starting with Mterminate. Now !! is not strongly normalising. Nor is the term (�y:�:z)(!!) even thoughthis term has z as a normal form. Furthermore, we can type (via �) such a non stronglynormalising term. That is, �(;; !!) = (�y:� :�y)! (see Example 5.4). This should not lead toproblems however. That is, we conjecture that �!� is strongly normalising in the followingform:For all M 2 T [ T , for all � 2 CONS, if � ` M then M is strongly normalising and ifM 2 T then �(�;M) is strongly normalising.Remark 5.2 The variable convention also holds for all pairs (�; t). For example,((y : �z); �z:�0 :y) is not allowed, since for this (�; t) both z 2 BV (�; t) and z 2 FV (�; t).Remark 5.3 Note that � is a partial function. For example �(;; x) doesn't exist. We write" �(�; t) for �(�; t) de�ned.Example 5.41. ! � �y:�:(yy) has type �(;; �y:� :(yy)) � �y:�:�(y : �; yy) � �y:�:(�(y : �; y)y) ��y:�:(�y). Moreover, y 62 FV (�) by Lemma 2.9. If we allow �-conversion in our system,�(;; !) would convert to �.2. �(;; �y1:(�z:�:�):(�y2:�:y1(y2y2))(�y2:�:y1(y2y2))) ��y1:(�z:�:�):((�y2:�:(�z:�:�)(y2y2))(�y2:�:y1(y2y2)))!��y1:(�z:�:�):((�y2:�:�)(�y2:�:y1(y2y2)))!� �y1:(�z:�:�):�Furthermore, by V C, y1 62 FV (�z:�:�) and z 62 �.Hence we write �y1:(�z:�:�):� as (� ! �)! �.Remark 5.5 Note that FV (�(�; t)) 6= FV (�; t). For example, consider the pair (�; t) �((y1; �1)(y2; �2y1)(y3; �3y); y2). Then �(�; t) � �2y1. Now y1 2 FV (�(�; t)), but y1 62FV (�; t). Also, y2 2 FV (�; t), but y2 62 FV (�(�; t)).The following lemmas show that � is a well-behaved typing operator. That is, it satis�esthe weakening, reduction, restriction and substitution lemmas. In particular, the followingweakening lemma states that if � v �0 and �(�; t) is de�ned then �(�0; t) is de�ned and isequal to �(�; t).Lemma 5.6 (� -weakening)If � v �0 and " �(�; t) then " �(�0; t) and �(�; t) � �(�0; t).Proof: By induction on t.� If t � y then y is bound with type � in (�; t) i� y is bound with type � in (�0; t), byLemma 4.28. Hence, �(�; t) � �(�0; t). 27



� If t � t1t2 then �(�; t) � �(�; t1t2) � �(�; t1)t2 �IH �(�0; t1)t2 � �(�0; t).� If t � �y:�:t0 then by induction hypotheses (see Lemma 4.16):�(�(y : �); t0) � �(�0(y : �); t0). It follows that�(�; t) � �y:�:�(�(y : �); t0) �IH �y:�:�(�0(y : �); t0) � �(�0; �y:�:t0). 2The following lemma states that if � reduces to �0 and if �(�; t) is de�ned then �(�0; t) isde�ned and �(�; t) reduces to �(�0; t).Lemma 5.7 (Contect-reduction for �)If �!!� �0 and " �(�; t) then " �(�0; t) and �(�; t)!!� �(�0; t).Proof: By induction on �(�; t) � �, as given in De�nition 5.1.� If �(�; y) � � since y is bound with type � in (�; y), then use De�nitions 4.9 and 5.1.� If �(�; tt0) � �(�; t)t0, then " �(�; t), so by IH, " �(�0; t) and �(�; t)!!� �(�0; t).Hence " �(�0; tt0) and �(�; tt0) � �(�; t)t0 !!� �(�0; t)t0 � �(�0; tt0).� If �(�; �y:�:t0) � �y:�:�(�(y : �); t0), then(as �(y : �)!!� �0(y : �) and " �(�(y : �); t0)), it holds by IH that" �(�0(y : �); t0) and �(�(y : �); t0)!!� �(�0(y : �); t0). Hence " �(�0; �y:� :t0) and�(�; �y:� :t0) � �y:�(�(�(y : �); t0))!!� �y:�(�(�0(y : �); t0)) � �(�0; �y:�:t0). 2The following lemma states that if " �(�; t) then " �(� j�FV (t); t) and �(� j�FV (t); t) � �(�; t).Lemma 5.8 (� -restriction)If " �(�; t) then �(� j�FV (t); t) � �(�; t).Proof: By induction on t.� If �(�; y) � � since y is bound with type � in (�; y), then inspection of the correspondingcompanion expressions shows that y is bound with type � in (� j�fyg; y), so �(�; y) � � ��(� j�FV (y); y).� �(�; t1t2) � �(�; t1)t2 �IH �(� j�FV (t1); t1)t2 �Remark 4:12�((� j�FV (t1t2)) j�FV (t1); t1)t2 �IH �(� j�FV (t1t2); t1)t2 � �(� j�FV (t1t2); t1t2)� We have to show that �(�; �y:�:t) � �(� j�FV (�y:�:t); �y:�:t):First note that�(�; �y:� :t) ��y:�:�(�(y : �); t) �IH�y:�:�(�(y : �) j�FV (t); t).Now also�(� j�FV (�y:�:t); �y:� :t) ��y:�:�(�(y : �) j�FV (t); t),since:�(� j�FV (�y:�:t); �y:� :t) � 28



�y:�:�((� j�FV (�y:�:t))(y : �); t) ��y:�:�(� j�(FV (�) [ (FV (t)nfyg))(y : �); t) �IH�y:�:�(� j�(FV (�) [ (FV (t)nfyg))(y : �) j�FV (t); t) �1. case y 2 FV (t):�y:�:�((� j�(FV (�) [ (FV (t)nfyg)) j�FV (t))(y : �); t) �Remark 4:12�y:�:�(� j�((FV (�) [ (FV (t)nfyg)) \ FV (t))(y : �); t) �y 62FV (�) by V C�y:�:�(� j�(FV (t)nfyg)(y : �); t) �Since� j�(FV (t)nfyg)(y:�)v�(y:�) j�FV (t); seeLemma 5:6�y:�:�(�(y : �) j�FV (t); t).2. case y 62 FV (t) (then FV (t)nfyg = FV (t)):�y:�:�(� j�(FV (�) [ FV (t)) j�FV (t); t) �Remark 4:12�y:�:�(� j�(FV (t); t) ��y:�:�(�(y : �) j�(FV (t); t). 2Corollary 5.9 If " �(�; t) then there is a �t v � such that " �(�t; t), �(�t; t) � �(�; t) andfor all �1;�2; y and � with �t � �1(y : �)�2, we have y 2 FV (t).Proof: Take �t � � j�FV (t). 2Lemma 5.10 (� -Substitution Lemma)1. If " �(�; t) then �(�[
 := �0]; t[
 := �0]) � �(�; t)[
 := �0].2. Assume WB(�(y : �0)�0).If �(�(y : �0)�0; t) � �, y 62 FV (t0) and �(�; t0) � �0, then�((��0)[y := t0]; t[y := t0]) � �[y := t0], for � being !!�;=� or �.Proof:1. By induction on the length of t� If �(�; y) � � since y is bound with type � in (�; y), then�(�[
 := �0]; y[
 := �0]) � �(�[
 := �0]; y) � �[
 := �0] because y is then boundwith type �[
 := �0] in �[
 := �0].� If �(�; t1t2) � �(�; t1)t2 where IH holds for t1; t2, then�(�[
 := �0]; t1t2[
 := �0]) � �(�[
 := �0]; t1[
 := �0])t2[
 := �0] �IH(�(�; t1)[
 := �0])t2[
 := �0] � (�(�; t1)t2)[
 := �0] � �(�; t1t2)[
 := �0].� If �(�; �y:�:t) � �y:�:�(�(y : �); t) where IH holds for t, then�(�[
 := �0]; (�y:� :t)[
 := �0]) � �(�[
 := �0]; (�y:�[
:=�0]:t[
 := �0])) ��y:�[
:=�0]:�(�[
 := �0](y : �[
 := �0]); t[
 := �0]) ��y:�[
:=�0]:�(�(y : �)[
 := �0]; t[
 := �0]) �IH�y:�[
:=�0]:(�(�(y : �); t)[
 := �0] �(�y:� :�(�(y : �); t))[
 := �0] � �(�; �y:�:t)[
 := �0].2. By induction on the length of t. We give the proof for !!�. Note that y 62 FV (�) andy 62 FV (�0) by WB(�(y : �0)�0. 29



� If t � y then�((��0)[y := t0]; y[y := t0]) � �(�(�0[y := t0]); t0) �Lemmas 4:15 and 5:6�(�; t0)!!� �0 � �0[y := t0] � (�(�(y : �0)�0; y))[y := t0].� If t � z where y 6� z and � � �1(z : �00)�2, then�((��0)[y := t0]; z[y := t0]) � �(�(�0[y := t0]); z) � �00 ��00[y := t0] � (�(�(y : �0)�0; z))[y := t0].� If t � z where y 6� z and �0 � �1(z : �00)�2, then�((��0)[y := t0]; z[y := t0]) � �(�(�0[y := t0]); z) ��00[y := t0] � (�(�(y : �0)�0; z))[y := t0].� If t � �z:�1 :t1 where z is a fresh variable4 then�((��0)[y := t0]; (�z:�1 :t1)[y := t0]) ��(�(�0[y := t0]); �z:�1[y:=t0]:t1[y := t0]) ��z:�1[y:=t0]:�((��0(z : �1))[y := t0]; t1[y := t0])!!IH� 5�z:�1[y:=t0]:(�(�(y : �0)�0(z : �1); t1)[y := t0]) �(�z:�1 :�(�(y : �0)�0(z : �1); t1))[y := t0] ��(�(y : �0)�0; �z:�1 :t1)[y := t0].� If t � t1t2 then�((��0)[y := t0]; t1t2[y := t0]) ��((��0)[y := t0]; t1[y := t0]t2[y := t0]) ��((��0)[y := t0]; t1[y := t0])t2[y := t0]!!IH�(�(�(y : �0)�0; t1)[y := t0])t2[y := t0] �(�(�(y : �0)�0; t1)t2)[y := t0] �(�(�(y : �0)�0; t1t2))[y := t0]. 26 Consistency in �!�Note that our canonical type operator � , can be de�ned for some term without being de�nedfor all its subterms. This can be seen from the following example:Example 6.1 Let t � (�y:�:y)z where z 6� y. Then �(;; t) � (�y:�:�)z !!� �[y := z] � � asy 62 FV (�). But �(;; z) is not de�ned.For this reason, we introduce the relation ` which takes a context and an expression (ratherthan only a term) and checks the well typedness of the expression. We take ` to range overcontexts and expressions rather than contexts and terms because a term might involve a type,and hence ` also needs to check which are the types that are consistent within a term. When� `M , we say that M is consistent in �.First, we state the following convention:Convention 6.2 (WB-convention)All contexts � occurring in expressions � `M are well-behaved.4Without loss of generality.5Note that WB(�(y : �0)�0(z : �1)) because z was fresh and the variable condition holds for �z:�1 :t130



The relation ` is de�ned as follows:De�nition 6.3 (`)1. � ` 
2. � ` ��(y : �)�0 ` y3. � ` � �(y : �) `M� ` �y:�:M with � � � if M 2 T and � � � if M 2 T4. � ` t � ` t0 �(�; t)!!� �y:�1 :�2 �(�; t0)!!� �1� ` tt05. � ` � � ` t � !!� �y:�1 :�2 �(�; t)!!� �1� ` �tBy this de�nition, we rule out Example 6.1. In fact ; 6` t where t � (�y:�:y)z.Remark 6.4 Note that in 2 and 3 above, y 62 dom(�) and y 62 FV (�) by the WB-convention.Also, y 62 FV (�). Recall moreover that we identify �-equal expressions. For example, if� ` �y:�:M , then also � ` �z:�:M [y := z] for z 62 FV (�) [ FV (M).Example 6.5 The following can be derived in �!� . (We use �1 ! �2 as an abbreviation for�y:�1 :�2 in the case that y 62 FV (�2).) Let �; �0 and �00 2 T , let moreover�1 � y1 : � ! �0; y2 : �0 ! �00; y3 : �;�2 � y1 : � ! �0; y2 : �0 ! �00;�3 � y1 : � ! �0Then, �1 ` y1y3 with �(�1; y1y3) � (� ! �0)y3 !!� �0;�1 ` y2(y1y3) with �(�1; y2(y1y3)) � (�0 ! �00)(y1y3)!!� �00;�2 ` �y3:�:y2(y1y3) with �(�2; �y3:�:y2(y1y3)) ��y3:�:(�0 ! �00)(y1y3)!!� � ! �00;�1 ` �y2:�0!�00 :�y3:�:y2(y1y3) with �(�1; �y2:�0!�00 :�y3:�:y2(y1y3)) ��y2:�0!�00 :�y3:�:(�0 ! �00)(y1y3)!!�(�0 ! �00)! (� ! �00);` �y1:�!�0 :�y2:�0!�00 :�y3:�:y2(y1y3) with �(;; �y1:�!�0 :�y2:�0!�00 :�y3:�:y2(y1y3)) ��y1:�!�0 :�y2:�0!�00 :�y3:�:(�0 ! �00)(y1y3)!!�(� ! �0)! ((�0 ! �00)! (� ! �00))The following lemma relates ` and � .Lemma 6.6 (Well-typedness of consistent terms)For every t 2 T , � 2 CONS, if � ` t then " �(�; t).Proof: By induction on � ` t. 31



� If t � y, then � ` t comes from De�nition 6.3, clause 2, and �(�; t) � �.� If t � �y:�:t0, then � ` t comes from De�nition 6.3, clause 3, and the induction hypoth-esis holds for �(y : �) ` t0. Hence we get from IH that (9�0)[�(�(y : �); t0) � �0]. Now,�(�; �y:� :t0) � �y:�:�(�(y : �); t0) � �y:�:�0.� If t � t1t2, then � ` t1t2 comes from De�nition 6.3, clause 4, and the inductionhypothesis holds for � ` t1 and � ` t2. Hence, as � ` t1, we have (9�1)[�(�; t1) � �1]:Now, �(�; t1t2) � �(�; t1)t2 � �1t2. 2Now if we go back to the previous section, we see that, even though � satis�ed some of thedesirable lemmas such as weakening and substitution, other lemmas that are important intype theory are not satis�ed by � . For example, there are no restrictions on the free termvariables used in a term. Moreover, the type of a term is not necessarily \preserved" whenthe term is reduced. The use of the derivation rules of De�nition 6.3 give more satisfyingresults: see the Basis Lemma and the Subject Reduction Lemma, which follow below.Lemma 6.7 (Basis Lemma)If � `M then FV (M) \ V � dom(�)6.Proof: By induction on � `M .� The basic case (clauses 1 and 2 of De�nition 6.3) is trivial.� If � ` �y:�:t is the result of clause 3 then(induction:) FV (t) \ V � dom(�(y : �)) and FV (�) \ V � dom(�), soFV (�y:�:t) \ V = (FV (�) \ V ) [ ((FV (t) n fyg) \ V ) � dom(�) [ dom(�) = dom(�).� Clauses 4 and 5 of De�nition 6.3 are also trivial to check using the Induction Hypotheses.2Note that this does not hold for " �(�;M) instead of � `M . For example, �((y : �); yz) � �zbut FV (yz) \ V 6� dom(�).Corollary 6.8If � ` t, then FV (�; t) \ V � FV (�) \ V .Proof: Use that FV (�; t) = (FV (�) [ FV (t)) n dom(�).Lemma 6.9 (Generation Lemma)For all expressions M , for all contexts �, if � `M then:1. If M � y then (9�0;�00)[� � �0(y : �(�; y))�00] such that y 62 dom(�00)2. If M � �y:�:M 0 then � ` � and �(y : �) `M 06Note that if we replace � ` M by � (�; t) � � only, then we don't necessarily get FV (t) \ V � dom(�).Take for instance example 6.1 above. 32



3. If M � t1t2 then � ` t1, � ` t2 and (9�1; �2; y)[�(�; t1) !!� �y:�1 :�2 and �(�; t2) !!��1]74. If M � �t then � ` �, � ` t and (9�1; �2; y)[� !!� �y:�1 :�2 and �(�; t)!!� �1].Proof: By cases on the derivation � `M1. If M � y, then � `M comes from clause 2 of De�nition 6.3, so (9�;�0;�00)[� � �0(y :�)�00], with y 62 dom(�00) by the WB-convention. Hence �(�; y) � �(�0(y : �)�00; y) � �.2. If M � �y:�:M 0, then � `M comes from clause 3, so �(y : �) `M 0 and � ` �.3. If M � t1t2, then � `M comes from clause 4. Hence (9�1; �2; y)[�(�; t1)!!� �y:�1 :�2^�(�; t2)!!� �1], � ` t1 and � ` t2.4. If M � �t, then � ` M comes from clause 5 and the proof is similar to that of clause4. 2The following lemma states that subexpressions of consistent expressions are also consistent.Lemma 6.10 (Correctness of subexpressions)If � `M and M 0 is a subexpression of M then (9�0)[��0 `M 0].Proof: By induction on � `M .� If clauses 1 or 2 apply then obvious.� If clause 3 applies, i.e. if � ` �y:�:M where � ` � and �(y : �) `M , then{ case M 0 � y: As � ` �, then we get from clause 2, De�nition 6.3,that �(y : �) ` y. (Note that WB(�(y : �)).{ case M 0 is a subexpression of M , then use IH on �(y : �) `M .{ case M 0 is a subexpression of �, then use IH on � ` �.� If clause 4 applies, i.e. if t � t1t2 then t is a subexpression of t1 or t is a subexpressionof t2. But � ` t comes from amongst other things, � ` t1 and � ` t2. Now from theinduction hypothesis the rest follows.� If clause 5 applies, then use same argument as that of clause 4. 2With the help of this lemma, we can prove the following:Lemma 6.11 If � `M , then M ful�lls the variable condition.Proof: By induction on the derivation of � `M .� If clauses 1 or 2 apply then obvious.7Note that we have conversion !!� and not equivalence �.33



� If clause 3 applies, then M ful�lls the variable condition by induction. Now y 62 FV (�)since WB(�(y : �)) by the WB-convention, so also �y:�:M ful�lls the variable conven-tion.� If clause 4 applies, i.e. if t � t1t2, then � ` t1 and � ` t2, and both t1 and t2 ful�ll thevariable condition by induction. By the Basis Lemma, all free term-variables in both t1and t2 are elements of dom(�). Now assume that y is free in t1 and bound in t2. Then yoccurs in a subexpression �y:�:t0 of t2. By Correctness of Subexpressions, ��0 ` �y:�:t0.Hence, by the Generation Lemma, ��0(y : �) ` t0. But since y is free in t1, y 2 dom(�)and thus ��0(y : �) is not well-behaved, contradicting the WB-convention.� If clause 5 applies, then use the same argument as that of clause 4. 2The following lemma uses the well-behavedness of contexts in a derivation of � `M .Lemma 6.12 (Weakening)If � `M , � v �0 and WB(�0), then �0 `M .Proof: By induction on the derivation of � ` M , De�nition 6.3. First, rename boundvariables in M such that dom(�0)\BV (M) = ; and FV (�0)\BV (M) = ; (see Remark 6.4).It is su�cient to prove the lemma for the case � v1 �0.� Basic case where � ` 
 is obvious.� Assume � � �1(y : �)�2 and �1(y : �)�2 ` y comes from �1 ` �. Then{ either �0 � �01(y : �)�2 with �1 � �001�0001 and �01 � �001(z : �0)�0001 ,{ or �0 � �1(y : �)�02 with �2 � �002�0002 and �02 � �002(z : �0)�0002 .In the �rst case, by induction from �1 ` �: �01 ` � (note that WB(�01) by Corollary 4.32,part 1). So �0 ` y.In the second case, �0 ` y follows immediately from �1 ` �.� Assume � � �1�2 v1 �1(z : �0)�2 � �0, � ` �y:�:M (for y 6� z and y 62 FV (�0))8and comes from clause 3, so � ` � and �(y : �) ` M . Now �(y : �) v1 �0(y : �) byLemma 4.15. Moreover, WB(�0(y : �)) as WB(�(y : �)) and y 6� z and y 62 FV (�0).So, by induction: �0 ` � and �0(y : �) `M . Hence �0 ` �y:�:M .� If � ` Mt comes from � ` M , � ` t and clauses 4 or 5, use IH to get �0 ` M and�0 ` t. Moreover, use Lemma 5.6 to deduce �(�0; t) � �(�; t) and if case applies todeduce �(�0;M) � �(�;M). Hence �0 `Mt. 2The following lemmas are needed in some of the proofs:8Note here that this condition is necessary. For example, ; ` �y:�:y but (y : �) 6` �y:�:y. Furthermore,; ` �y:�:y but (z : �y) 6` �y:�:y. (See Remark 6.4.) The condition is satis�ed since we started the proof withrenaming bound variables in M . 34



Lemma 6.13 If WB(�) and � j�X `M then � j�X 0 `M for any X 0 � X.Proof: WB(�)) WB(� j�X 0) by Lemma 4.31. Furthermore, as � j�X � � j�X 0 � � thenby Corollary 4.36, � j�X v � j�X 0. Now using Lemma 6.12 we get � j�X 0 `M . 2Remark 6.14 In the proofs of � ` M below, we only show WB(�) when it is not obviousthat � is well-behaved. Otherwise, we don't mention anything about WB(�).The following lemma is important. It states that if t is consistent within a well behavedcontext �, then the type of t is also consistent in �.Lemma 6.15 (Correctness of types)If � ` t, then � ` �(�; t).Proof: (Note that " �(�; t) by Lemma 6.6.) Induction on � ` t.� If � ` t is �0(y : �)�00 ` y and comes from �0 ` �, then also �0(y : �)�00 ` � byLemmas 4.35 and 6.12 so � ` � � �(�; y).� If � ` �y:�:t comes from clause 3 of De�nition 6.3, then �(y : �) ` t and � ` �. By IH,�(y : �) ` �(�(y : �); t). Hence � ` �y:�:�(�(y : �; t)) � �(�; �y:� :t).� If � ` t1t2 comes from clause 4 of De�nition 6.3, then� ` t1;� ` t2 and (9�1; �2; y)[�(�; t1)!!� �y:�1 :�2 ^ �(�; t2)!!� �1].Hence from IH, � ` �(�; t1). Now �(�; t1t2) � �(�; t1)t2.Using clause 5 of De�nition 6.3, we get that � ` �(�; t1)t2. 2The following lemma states that if M is consistent in a context � then it is consistent in therestriction of the context to the free variables of M and to those of its type (if applicable).In other words, if � `M then �0 `M where �0 is � from which statements S not relevant tothe free variables of M or the free variables of the context to the right of M are removed.Lemma 6.16If �(y : �)�0 `M;y 62 FV (�0) and y 62 FV (M), then1. ��0 `M and2. If " �(�(y : �)�0;M), then " �(��0;M) and �(�(y : �)�0;M) � �(��0;M).Proof: Simultaneously, by induction on �(y : �)�0 `M .� If M � 
 then obvious.� If �1(z : �0)�2 ` z comes from �1 ` �0, then:{ Case �1 � �01(y : �)�001; by IH, �01�001 ` �0, hence �01�001(z : �0)�2 ` z. Moreover,�(�01�001(z : �0)�2; z) � �(�1(z : �0)�2; z) � �0.{ Case �2 � �02(y : �)�002, then immediately from �1 ` �0, �1(z : �0)�02�002 ` z and�(�1(z : �0)�02(y : �)�002 ; z) � �(�1(z : �0)�02�002; z) � �0.35



{ Case (z : �0) � (y : �) is impossible since y 62 FV (M).� If �(y : �)�0 ` �z:�0 :M comes from �(y : �)�0 ` �0 and �(y : �)�0(z : �0) ` M , thensince y 62 FV (�z:�0 :M), y 62 FV (�0) and y 62 FV (M). Hence by IH: ��0 ` �0 and��0(z : �0) `M , so ��0 ` �z:�0 :M .Moreover, �(�(y : �)�0; �z:�0 :t) � �z:�0 :�(�(y : �)�0(z : �0); t) �IH�z:�0 :�(��0(z : �0); t) � �(��0; �z:�0 :t).� If �(y : �)�0 ` tt0 comes from �(y : �)�0 ` t,�(y : �)�0 ` t0, �(�(y : �)�0; t) !!� �z:�1 :�2 and �(�(y : �)�0; t0) !!� �1, then notethat y 62 FV (t) and y 62 FV (t0). Hence by IH: ��0 ` t and ��0 ` t0. Moreover,�(��0; t) �IH �(�(y : �)�0; t) !!� �z:�1 :�2 and �(��0; t0) �IH �(�(y : �)�0; t0) !!� �1,so ��0 ` tt0.Also, �(�(y : �)�0; tt0) � �(�(y : �)�0; t)t0 �IH �(��0; t)t0 � �(��0; tt0).� If �(y : �)�0 ` �t comes from �(y : �)�0 ` �,�(y : �)�0 ` t, � !!� �z:�1 :�2 and �(�(y : �)�0; t)!!� �1, then similar. 2Corollary 6.17 If � ` M then there is a �M v � such that �M ` M and for all �1;�2; yand � with �M � �1(y : �)�2, we have y 2 FV (�2) or y 2 FV (M). Moreover, such a �M isunique.Proof: By induction on the length of �. Assume � � (y1 : �1) : : : (yn : �n). If forall i; yi 2 FV ((yi+1 : �i+1) : : : (yn : �n)) or yi 2 FV (M), then we are ready. Otherwise,let (yi : �i) be the last statement in � such that yi 62 FV ((yi+1 : �i+1) : : : (yn : �n)) andyi 62 FV (M). Then by Lemma 6.16, (y1 : �1) : : : (yi�1 : �i�1)(yi+1 : �i+1) : : : (yn : �n) ` M ,and we can apply induction. We leave it to the reader to show the uniqueness of �M . 2Compare this with Corollary 5.9 and note that �1(y : �)�2 of the present corollary needs notonly y 2 FV (M) but also y 2 FV (�2). This is because our �'s in � `M check types as wellas terms. � however only deals with terms.De�nition 6.18 If � `M , then �M is the (unique) context described in the Corollary 6.17.We call �M the context relevant for � `M . When � and �M are the same, we simply say �is relevant for M .Now the following lemma shows that consistency accommodates substitution.Lemma 6.19 (`-substitution Lemma)If �(�; t) =� �;� ` t;�(y : �)�0 `M , then ��0[y := t] `M [y := t]. (Note that y 62 FV (�) bythe WB-convention.)Proof: By induction on �(y : �)�0 `M .Remark: as �(y : �)�0 is well-behaved, then from Remark 6.4, y 62 (FV (�) [ FV (�)). More-over,as � ` t then FV (t) \ V � dom(�) by Lemma 6.7.Hence FV (t) \ dom(�0) = ;. Therefore, ��0[y := t] is well-behaved.36



� If M � 
 then obvious.� If �(y : �)�0 ` y comes from � ` �, then note that � v ��0[y := t] from Corollary 4.36.Now, ��0[y := t] ` t, using Lemma 6.12 and the remark in the beginning of this proof.� If �1(z : �0)�2(y : �)�0 ` z comes from �1 ` �0, then use the same remark.� If �(y : �)�1(z : �0)�2 ` z comes from �(y : �)�1 ` �0 then��1[y := t] ` �0[y := t] by IH.Hence, ��1[y := t](z : �0[y := t])�2[y := t] ` z by De�nition 6.3 and the remark above.� If �(y : �)�0 ` �z:�0 :M comes from �(y : �)�0 ` �0 and �(y : �)�0(z : �0) ` M then byIH, ��0[y := t] ` �0[y := t] and ��0[y := t](z : �0[y := t]) `M [y := t].Hence, ��0[y := t] ` �z:�0[y:=t]:M [y := t] by De�nition 6.3.� If �(y : �)�0 ` t1t2 comes from �(y : �)�0 ` t1;�(y : �)�0 ` t2; �(�(y : �)�0; t1) !!��y0:�1 :�2 and �(�(y : �)�0; t2)!!� �1 then (take y0 6� y):{ by IH, ��0[y := t] ` t1[y := t] and ��0[y := t] ` t2[y := t].{ �(��0[y := t]; t1[y := t]) =� �(�(y : �)�0; t1)[y := t] by Lemma 5.109=� �y0:�1 :�2[y := t] by Corollary 3.20{ �(��0[y := t]; t2[y := t]) =� �(�(y : �)�0; t2)[y := t] =� �1[y := t].Hence by Corollary 3.19, 9�01; �02 such that�(��0[y := t]; t1[y := t])!!� �y:�01 :�02 and �(��0[y := t]; t2[y := t])!!� �01.Hence, ��0[y := t] ` (t1t2)[y := t].� If clause 5 of De�nition 6.3 applies, then similar to above. 2The following lemma is not interesting on its own, but is needed to show the subject reductiontheorem.Lemma 6.201. If � ` (�y:�:M)t then � `M [y := t].2. If � ` (�y:�:t1)t2 then �(�; (�y:� :t1)t2) =� �(�; t1[y := t2]).10Proof:1. As � ` (�y:�:M)t then by Lemma 6.9 we get that �(�; t) =� � as follows:� Case M � t1 and � � �:�(�; �y:� :t1) � �y:�:�(�(y : �); t1)!!� �y:�1 :�2 and�(�; t)!!� �1. Hence � !!� �1 and so �(�; t) =� �.9Note that y 62 FV (t) as y 62 dom(�) by Lemma 6.7.10It is this �-convertibility which will disable proving Theorem 6.24 and its �rst corollary using !!� insteadof =� . (See the �nal case of the proof of Theorem 6.24.)37



� Case M � �0 and � � �:�y:�:�0 !!� �y:�1 :�2 and�(�; t)!!� �1. Hence � !!� �1 and so �(�; t) =� �.Moreover, � ` (�y:�:M)t then by Lemma 6.9, we get � ` �y:�:M and � ` t.We apply Lemma 6.9 again to � ` �y:�:M and get: �(y : �) `M . Now, � ` t; �(�; t) =��, and �(y : �) `M . So from Lemma 6.19, we get � `M [y := t].2. First, we prove that �(�; t2) =� � in the same way as above.Furthermore, WB(�(y : �)) as y 62 dom(�) [ FV (�) and WB(�).Moreover, y 62 FV (t2) by VC.Hence, by Lemma 5.10, �(�; t1[y := t2]) =� �(�(y : �); t1)[y := t2]. Also,�(�; (�y:� :t1)t2) � (�y:�:�(�(y : �); t1))t2 !!� �(�(y : �); t1)[y := t2].Hence �(�; (�y:� :t1)t2) =� �(�; t1[y := t2]). 2In what follows, if �(�;M) is unde�ned (in particular if M 2 T ), we take FV (�(�;M)) to beempty.Lemma 6.21 If z 2 FV (M) [ FV (�(�(z : �)�0;M)) and �(z : �)�0 `M then � ` �.Proof: By induction on �(z : �)�0 `M .� �(z : �)�0 ` 
 obvious.� If �(z : �)�0 ` z comes from � ` � obvious.� �1(y : �0)�2(z : �)�0 ` y is not applicable as FV (�0) \ z = ;.� If �(z : �)�1(y : �0)�2 ` y comes from �(z : �)�1 ` �0 where z 2 FV (�0), then use IH.� If �(z : �)�0 ` �y:�0 :M comes from �(z : �)�0 ` �0 and �(z : �)�0(y : �0) `M then{ case z 2 FV (�0) then use IH.{ case z 2 FV (M) then use IH.{ case z 2 FV (�(�(z : �)�0;�y:�0 :M), then � � � and z 2 FV (�y:�0 :�(�(z : �)�0(y :�0);M). If z 2 FV (�0): see above. If z 2 FV (�(�(z : �)�0(y : �0);M)), then useIH.� If M �M 0t then use IH. 2Lemma 6.22 If �(z : �)�0 `M , �(z : �)�0 is relevant for M and z 2 FV (�0), then � ` �.Proof: By induction on the length of �0.Assume �0 � �1(y : �0)�2 and z 2 FV (�0).� If y 2 FV (M), then by Lemma 6.21: �(z : �)�1 ` �0. Again by Lemma 6.21: � ` �.38



� If y 2 FV (�2) then by IH: �(z : �)�1 ` �0. Hence by Lemma 6.21: � ` �.� The case y 62 FV (M) and y 62 FV (�2) cannot occur since �(z : �)�1(y : �0)�2 isrelevant for M ; see De�nition 6.18. 2Corollary 6.23 If � `M , � is relevant for M and � � �1(z : �)�2, then �1 ` �.Proof: As � is relevant for M , then either z 2 FV (�2) or z 2 FV (M). In the �rst caseuse Lemma 6.22. In the second case use Lemma 6.21. 2The following theorem is important. It shows that our notions of consistency and of typingare compatible with that of reduction.Theorem 6.24 (Subject and Context Reduction Theorem)1. If M !� M 0 and � `M then � `M 0 and if M 2 T then �(�;M) =� �(�;M 0).2. If �!� �0 and � `M then �0 `M .Proof: Simultaneously by induction on the derivation � `M .� case � ` 
 then 1 is obvious. Moreover, 2 is obvious as WB(�0) from Lemma 4.31, part3.� case �(y : �)�0 ` y comes from � ` � then 1 is obvious. Moreover,{ case �!� �00 then by IH �00 ` � and so �00(y : �)�0 ` y.{ case � !� �0 then by IH � ` �0 and so �(y : �0)�0 ` y.{ case �0 !� �00 then �(y : �)�00 ` y� case � ` �y:�:M comes from � ` � and �(y : �) `M then{ case � !� �0 then by IH, � ` �0 and �(y : �0) `M and hence, � ` �y:�0M .Furthermore, if � = � and M � t then �(�; �y:� :t) � �y:�:�(�(y : �); t) =��y:�0 :�(�(y : �0); t) by Lemma 5.7.{ case M !� M 0 then by IH �(y : �) `M 0 and hence � ` �y:�:M 0.Furthermore, if � = �, M � t and M 0 � t0 then�(�; �y:� :t) � �y:�:�(�(y : �); t) =� �y:�:�(�(y : �); t0) by IH.Moreover by IH, �0 ` � and �0(y : �) `M , hence �0 ` �y:�:M� case � ` t1t comes from � ` t1;� ` t; �(�; t1)!!� �y:�1 :�2 and �(�; t)!!� �1. Assumet1 !� t2, then by IH, � ` t2 and �(�; t2) =� �(�; t1). Hence, by Corollary 3.19,(9�01; �02)[�(�; t2)!!� �y:�01 :�02 and �(�; t)!!� �01].Now, from �(�; t2)!!� �y:�01 :�02; �(�; t)!!� �01;� ` t and � ` t2 we get � ` t2t.Furthermore, �(�; t1t) � �(�; t1)t =� �(�; t2)t by IH.Moreover, by IH and Lemma 5.7, �0 ` t1;�0 ` t; �(�0; t1) =� �(�; t1) and �(�0; t) =�39



�(�; t).Hence, by Corollary 3.19, (9�01; �02)[�(�0; t1)!!� �y:�01 :�02 and �(�0; t)!!� �01].Now, from �(�0; t1)!!� �y:�01 :�02; �(�0; t)!!� �01;�0 ` t and �0 ` t1 we get �0 ` t1t.� case t1 !� t2 and � `Mt1 then similar to above.� case �0 !� �00 and � ` �0t then similar to above.� case (�y:�:M)t2 !� M [y := t2] and � ` (�y:�:M)t2 then from Lemma 6.20,� `M [y := t2]. Moreover, if M 2 T then again we use Lemma 6.20to get �(�; (�y:� :M)t2) =� �(�;M [y := t2]).Furthermore,{ case M � t then � ` (�y:�:t)t2 comes from � ` �y:�:t, � ` t2, �(�; �y:�:t) !!��z:�1 :�2 and �(�; t2)!!� �1. Now the fact that�0 ` (�y:� :t)t2 follows from � ` (�y:�:t)t2 has already been treated above (case� ` t1t).{ case M � �0 then similar to above. 2Corollary 6.25 If M !!� M 0 and � ` M then � ` M 0 and if M 2 T then �(�;M) =��(�;M 0).Proof: By induction on M !!� M 0 where � `M .� If M !!� M then obvious.� If M !!� M 0 comes from M !� M 0 and if � `M then use Theorem 6.24.� If M !!� M 0 comes from M !!� M1 and M1 !!� M 0 and if � `M thenby IH, � `M1 and � `M 0.Also if �(�;M) � � then by IH, �(�;M1) =� �(�;M). Similarly by IH, �(�;M 0) =��(�;M1). Hence �(�;M) =� �(�;M 0). 2Note here that the version of this corollary for the case ` is replaced by � does not hold.Example 6.26 Take t � (�y:�:y)x. Then " �(;; (�y:� :y)x) and �(;; (�y:� :y)x) !!� �x yet�(;; y[y := x]) = �(;; x) is unde�ned. Note however that in the case of (�y:� :z)(!!) !� z,we have that �((z : �0); (�y:� :z)(!!))!� �0 � �((z : �0); z).Now the following lemma is obvious. It states that if M is consistent in a context �, then itis consistent in any reduct of �. 40



Corollary 6.27If �1 !!� �2 and �1 `M then �2 `M and if M 2 T , then �(�1;M) =� �(�2;M).Proof: By induction on the number of one step reductions of �1 !!� �2, using Theo-rem 6.24 and Lemma 5.7. 2Here note that the version of this corollary replacing ` by � holds, as has been shown inLemma 5.7.Finally, the following lemma is very useful. It shows that if t and t0 are consistent and�-equal, then their types are also equal.Lemma 6.28 (Unicity of types)If t =� t0, � ` t and � ` t0 then �(�; t) =� �(�; t0).Proof: By Corollary 3.17, (9t00)[(t !!� t00) ^ (t0 !!� t00)]. >From Corollary 6.25 we getthat �(�; t00) =� �(�; t) and �(�; t00) =� �(�; t0). Hence �(�; t) =� �(�; t0). 2Note that it is possible that � `M and M =� M 0 without � `M 0. For example, (y : 
) ` yand a � (�x:
 :�y:
0 :x)y(�x:
00 :xx) =� y but (y : 
) 6` a.Up to here, we have shown that our calculus is attractive. Terms and types are treatedalike and �-conversion is used with both forms of expressions. Church-Rosser holds for thecalculus and all the desirable typing conditions are satis�ed. The following table summarisesthese properties for � and `.Table 6.29 (Properties of � and `)� `Subject-Reduction No YesContext-Reduction Yes YesRestriction Yes YesSubstitution Yes YesBasis No YesGeneration | YesSubexpressions | YesWeakening Yes YesUnicity of Types | YesNext, we will interpret Church's �! in our calculus showing that a term t of �! is consistenti� the type of t via � converges to the type of the term in �!. We will show moreover that allthe work that one carries out in �! can also be carried out in �!� . Moreover, �!� gives auni�ed treatment of types and terms. Such a treatment can generalise to many known typingsystems.7 The relation of �!� to �!7.1 Church's �! and its interpretation in �!�We start by presenting the system �!. We present types of �!, (T!), terms of �!, (T!)and the typing rules of �!. 41



De�nition 7.1 (�!)We use the same object and meta level notation as in �!� and de�ne types and terms asfollows:T! = V j (T! ! T!)T! = V j (�V :T! :T!) j (T!T!)We de�ne statements here similarly to the way we de�ned them in De�nition 4.1. Further-more, we take a basis (instead of a context) to be a set of statements where the subjects arevariables which occur at most once. So we no longer insist on the idea of a context as anordered set for this section. This is consistent with our assumption that in a well-behavedcontext, all subject variables occur at most once. The second condition of a well-behavedcontext which says that in �(y : �)�0, FV (�) \ dom((y : �)�0) = ; is satis�ed because fromRemark 7.4 below, FV (�)\V = ;. In fact, bases are the �! version of well-behaved contexts(see Corollary 7.12). Even stronger, bases of �! correspond to the simply typed contexts of�!� (see Corollary 7.13).We take K to be the collection of all bases of �! and use the same meta-notation forcontexts. That is �;�0;�1;�2 : : : will range over elements in K.De�nition 7.2 The typing rules of �! are the following:1. � `�! y : � if (y : �) 2 �2. � `�! t : (� ! �0) � `�! t0 : �� `�! tt0 : �03. �(y : �) `�! t : �0� `�! (�y:�:t) : (� ! �0)Example 7.3 The following can be derived in �! (cf. Example 6.5).Let �; �0 and �00 2 T!. Let moreover,�1 � y1 : � ! �0; y2 : �0 ! �00; y3 : ��2 � y1 : � ! �0; y2 : �0 ! �00�3 � y1 : � ! �0Then, �1 ` y1y3 : �0�1 ` y2(y1y3) : �00�2 ` �y3:�:y2(y1y3) : � ! �00�3 ` �y2:�0!�00 :�y3:�:y2(y1y3) : (�0 ! �00)! (� ! �00)` �y1:�!�0 :�y2:�0!�00 :�y3:�:y2(y1y3) : (� ! �0)! ((�0 ! �00)! (� ! �00))Remark 7.4 Note that for � 2 T!, we have FV (�) � V and BV (�) = ;.We de�ne an interpretation function from �! to �!� as followsDe�nition 7.5 I : (T! [ T!) �! (T [ T ) is de�ned as follows:1. I(
) � 
2. I(y) � y 42



3. I(� ! �0) � �y:I(�):I(�0) where y is fresh.4. I(tt0) � I(t)I(t0)5. I(�y:�:t) � �y:I(�):I(t)De�nition 7.6 We extend I to K as follows:I(f(y1 : �1) : : : (yn : �n)g) � (y1 : I(�1)) : : : (yn : I(�n))), in some order.Note that even though I(M) is well-de�ned, I(�) is not well-de�ned, because the elementsof a set can be listed in many di�erent orders. However, this does not a�ect our main results,as Theorem 7.8 below shows.De�nition 7.7� A well-behaved context � in �!� is called permutable if � � (y1 : �1) : : : (yn : �n) withyi 62 FV (f�1; : : : ; �ng) for all i.� A permutation of a well-behaved context � � (y1 : �1) : : : (yn : �n) is a context �0 �(yi1 : �i1) : : : (yin : �in) such that i1; : : : ; in is a permutation of 1; : : : ; n.Theorem 7.8 Let � be a permutable context in �!� (and hence well-behaved) and let �0 bea permutation of �. Then for all M such that � `M , we have:1. �0 `M and2. If " �(�;M) then " �(�0;M) and �(�;M) � �(�0;M).Proof: By simultaneous induction on � `M . The only non-trivial case is that � `M is�1(y : �)�2 ` y as a consequence of �1 ` �. It follows from Lemma 6.16 that ; ` � (inductionon the number of statements in �1). Let �0 � �01(y : �)�02 be a permutation of �1(y : �)�2.Then ; ` � implies �01 ` �, by Lemma 6.12. Hence �0 ` y and �(�0; y) � �(�; y) � �. 27.2 Some useful machineryIn this section we present some lemmas and remarks which will be used in proving the mainlemmas and theorems concerning the interpretation of �! in �!� .Lemma 7.9 For M 2 (T! [ T!), we have FV (I(M)) = FV (M).Proof: Obvious. 2Remark 7.10 Note that in I(� ! �0) � �y:I(�):I(�0), y 62 V AR(I(�)) [ V AR(I(�0)), fromthe condition that y is fresh.Corollary 7.11 For � 2 T!, FV (I(�)) � V.Proof: Obvious using Remark 7.4. 243



Corollary 7.12 � 2 K ,WB(I(�)).Proof: Obvious. 2Corollary 7.13 � 2 K ) I(�) is permutable.Proof: Use Corollary 7.12 and Remark 7.10. 2Lemma 7.14 For any � 2 T! and � 2 CONS, if WB(�) then � ` I(�).Proof: By induction on T!.� If � is 
 then according to De�nition 6.3, clause 1, � ` 
.� Assume � is �1 ! �2 where IH holds for �1 and�2 and I(�1 ! �2) � �y:I(�1):I(�2) where y is fresh. Then by IH,� ` I(�1) and �(y : I(�1)) ` I(�2).Now apply clause 3 of De�nition 6.3 to � ` I(�1) and �(y : I(�1)) ` I(�2), to obtain� ` I(�1 ! �2). 2Corollary 7.15 For any � 2 T , for any permutable � 2 CONS, � ` I(�).Proof: Use Lemma 7.14. 2Lemma 7.16 If � 2 T! and I(�)!!� �0 then I(�) � �0.Proof: By induction on � 2 T!� Case � � 
 then obvious.� Assume � � �1 ! �2 where IH holds for �1 and �2. I(�) � �y:I(�1):I(�2) where y isfresh and I(�)!!� �0.Now this can only be possible if �0 � �y:�01 :�02 where I(�1) !!� �01;I(�2) !!� �02 and yis still fresh.By IH, �01 � I(�1) and �02 � I(�2) and so, �0 � I(�1 ! �2) � I(�). 2Lemma 7.17 If �; �0 2 T! and I(�)!!� I(�0) then �0 � �.Proof: By induction on � 2 T! using Lemma 7.16. 2
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7.3 �!� generalises �!Here we shall prove that t is typable in �! i� I(t) is consistent in �!� . Furthermore, if �is the type of t in �! then the type of I(t) in �!� �-reduces to I(�). Note here that thereason why we get �-reduction instead of equivalence is that we keep the whole structure ofour terms and types. I.e. we don't assume the traditional lines of saying that if f has thearrow type � ! �0 and a has the type � then fa has the type �0. Rather we say that fa hastype (� ! �0)a. So we still have to perform a �-reduction. �! on the other hand, followsthe traditional lines.Lemma 7.18 Let � 2 K; t 2 T! and � 2 T!. If � `�! t : � then I(�) ` I(t) and�(I(�);I(t))!!� I(�).Proof: By induction on the derivation � `�! t : �.� � `�! y : � comes from (y : �) 2 �, then I(�) � I(�0)(y : I(�))I(�00) for some �0 and�00 with �0[�00[f(y : �)g � �. Now, WB(I(�0)) by Corollary 7.12, hence I(�0) ` I(�)be Lemma 7.14. It follows that I(�0)(y : I(�))I(�00) � I(�) ` y by De�nition 6.3 and�(I(�); y) � I(�).� � `�! tt0 : �0 comes from � `�! t : � ! �0 and � `�! t0 : � and where IH holdsfor t and t0 then �(I(�);I(t)) !!� I(� ! �0) � �y:I(�):I(�0)), where y 62 I(�0), and�(I(�);I(t0))!!� I(�).Hence �(I(�);I(tt0)) � �(I(�); I(t)I(t0)) � �(I(�);I(t))I(t0)!!��y:I(�):I(�0))I(�) !!� I(�0)[y := I(�)] � I(�0) as y 62 FV (I(�0)). Moreover, by IHwe also have I(�) ` I(t) and I(�) ` I(t0). Now use clause 5 of De�nition 6.3 to getthat I(�) ` I(tt0).� � `�! �y:�:t : � ! �0 comes from �(y : �) `�! t : �0 and IH holds for t then�(I(�)(y : I(�));I(t)) !!� I(�0) and�(I(�);I(�y:�:t)) � �(I(�); �y:I(�):I(t)) � �y:I(�):�(I(�)(y : I(�));I(t))!!��y:I(�):I(�0) � I(� ! �0).Moreover, by IH, I(�)(y : I(�)) ` I(t). Moreover, from Lemma 7.14, we get thatI(�) ` I(�). So now, apply clause 3 of De�nition 6.3 to obtain that I(�) ` I(�y:�:t).2Theorem 7.19 Let � 2 K; t 2 T! and � 2 T!. If � `�! t : � then1. I(�) ` I(�)2. I(�) ` I(t)3. �(I(�);I(t))!!� I(�).Proof: Use Lemmas 7.14 and 7.18. 245



Theorem 7.20 If t 2 T! and � is a set of statements of �! then I(�) ` I(t) implies(9� 2 T!)[� `�! t : � ^ �(I(�);I(t))!!� I(�)].Proof: Note that I(�) ` I(t) implies that WB(I(�)) and hence by Corollary 7.12, � 2 K.Now the proof is by induction on t 2 T!.� Case t � y then from Lemma 6.9, (9�0�00)[I(�) � I(�0)(y : �(I(�); y))I(�00)]. Hence,9� 2 T! such that I(�) � �(I(�); y) and so �(I(�);I(t)) � �(I(�); y) � I(�). More-over, �0(y : �)�00 `�! t : � as WB!(�0(y : �)�00) and y 62 dom(�0�00).� Case t � �y:�:t0 then from Lemma 6.9, I(�) ` I(�) and I(�)(y : I(�)) ` I(t0). Nowby IH, (9�0 2 T!)[�(I(�)(y : I(�));I(t0)) !!� I(�0) ^ �(y : �) `�! t0 : �0. Hence�(I(�);I(�y:�:t0)) � �y:I(�):�(I(�)(y : I(�));I(t0)) ! �y:I(�):I(�0) � I(� ! �0) and� `�! �y:�:t0 : � ! �0.� Case t � t1t2. If I(�) ` I(t1t2) then by lemma 6.9, I(�) ` I(t1), I(�) ` I(t2),�(I(�);I(t1))!!� �y:�1 :�2 and �(I(�);I(t2))!!� �1.But by IH, 9�01; �001 2 T! such that:�(I(�);I(t1))!!� I(�01) ^ � `�! t1 : �01�(I(�);I(t2))!!� I(�001 ) ^ � `�! t2 : �001But by Church Rosser, (9�002 )[�1 !!� �002 ^ I(�001 )!!� �002 ].As �001 2 T! then �002 � I(�001), from Lemma 7.16, so �1 !!� I(�001).Now, �y:�1 :�2 !!� �y:�001 :�2 = I(�01),hence again by Church Rosser, (9�3)[�y:�001 :�2 !!� �3 ^ I(�01)!!� �3,As �01 2 T! then �3 � I(�001) from Lemma 7.16.Hence, �y:I(�001 ):�2 !!� I(�01). It follows that I(�01) must start with a �, so �01 � �3 !�4 for some �3 and �4 2 T!.Then I(�01) � �z:I(�3):I(�4), hence�y:I(�001 ):I(�2)!!� �z:I(�3):I(�4). It follows thaty � z, I(�001)!!� I(�3) (hence �001 � �3 by Lemma 7.17) and �2 !!� I(�4).Concluding:1. >From � `�! t1 : �01 (i.e. � `�! t1 : (�3 ! �4), or � `�! t1 : (�001 ! �4)) and� `�! t2 : �001 , we obtain � `�! t1t2 : �4.2. �(I(�);I(t1))!!� �y:I(�001 ):�2 !!� �y:I(�3):I(�4), so�(I(�);I(t1t2)) � (�(I(�);I(t1))t2 !!� I(�4). 2Corollary 7.21 If t 2 T! and � 2 K,then I(�) ` I(t) i� (9� 2 T!)[� `�! t : � ^ �(I(�);I(t))!!� I(�) ^ I(�) ` I(�)]Proof: Use Theorems 7.19 and 7.20. 2
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Hence, if �0 and t0, belonging to �!� , are images of � and t in �!, i.e. �0 � I(�) and t0 � I(t),then �0 ` t0 implies � `�! t : � for some �. There is a comparable theorem for general �0 andt0 in �!� :If �0 ` t0, then there are �; t and � in �! such that �0 !!� I(�); t0 !!� I(t), �(�0; t0) =� I(�),and � `�! t : �.In order to prove this, we �rst give a number of de�nitions and lemmas.De�nition 7.22� Let � 2 T . We call � simple (or a simple type) if there are no applications in �. Theset of all simple types in T is denoted by T s.� A context � in �!� is called simple if all � 2 ran(�) are simple.It follows that simple types in �!� can be constructed using the following abstract syntacticrule: T 0 = V j (�V :T 0 :T 0)which is a restricted version of the syntactic rule:T = V j (�V :T :T ) j (T T )of Section 2. Now we have the following:Lemma 7.23 All simple types are in normal form.Proof: A simple type contains no application, hence no redexes. 2Lemma 7.24 If � 2 T s and � 2 CONS then � ` �.Proof: By induction on � 2 T s. 2It is also clear that simple types do not contain occurrences of terms t 2 T (except for thebinding variables y being a subscript of the �). In particular, there are no occurrences ofvariables in a simple type, but for the mentioned binding variables. This means that allbinding variables y (subscripts of �'s) actually bind nothing at all.Hence, there is a well-de�ned backwards translation from �!� to �! for simple types:De�nition 7.25 The mapping J : T s �! T! is de�ned as follows:J (
) � 
J (�y:�:�0) � � ! �0Note that the mapping I, being injective, de�nes an embedding of the types of �! in thoseof �!� (i.e. T ). The mapping J is the inverse of I on T s.We will now show that every consistent type in �!� is �-equal to a simple type.Lemma 7.26 Let � 2 T be such that � ` � for some �. Then there is a �0 2 T s such that� !!� �0.Proof: By induction on � ` �. 47



1. Case � ` 
 is trivial.2. Case � ` �y:�:�1 comes from � ` � and �(y : �) ` �1. By IH: � !! �0 2 T s and�1 !!� �01 2 T s. Hence �y:�:�1 !!� �y:�0 :�01 2 T s.3. Case � ` �t comes from � ` �, � ` t, � !!� �y:�1 :�2 and �(�; t) !!� �1. Then by IH:� !! �0 2 T s. By Theorem 3.16 and Lemma 7.23 it follows that �y:�1 :�2 !!� �0. Hence,�0 � �y:�01 :�02 2 T s. Hence �t!!� (�y:�1 :�2)t!!� (�y:�01 :�02)t!!� �02[y := t] = �02 since�02 is also a simple type, containing no (free) variables. 2Corollary 7.27 If � ` � then there is a �1 2 T! such that � !!� I(�1). 2Next we concentrate on the terms of �!� .De�nition 7.28 We call a term t 2 T a Church-term if all types occurring in t are simple.We denote the set of all Church-terms by T ch.There is a nice relation between terms in �!� and Church-terms:Lemma 7.29 Let t 2 T such that � ` t for some �. Then there is a t0 2 T ch such thatt!!� t0.Proof: By induction on � ` t.1. Case �(y : �)�0 ` y is trivial.2. Case � ` �y:�:t comes from � ` � and �(y : �) ` t. By Lemma 7.26: there is �0 2 T ssuch that � !! �0. Moreover, by IH: there is t0 2 T ch such that t !!� t0. Hence,�y:�:t!!� �y:�0 :t0 2 T ch.3. Case � ` tt1 comes from � ` t;� ` t1, �(�; t)!!� �y:�1 :�2 and �(�; t1)!!� �1.By IH: there is t0 2 T ch such that t !!� t0 and t01 2 T ch such that t0 !!� t01. Hencett1 !!� t0t01 2 T ch since the application of t0 to t01 cannot introduce an application in thetypes occurring in t0t01. 2We can extend the mapping J of De�nition 7.25 to Church-terms:De�nition 7.30 J : (T s [ T ch) �! T! is de�ned as follows:J (
) � 
J (�y:�:�0) � � ! �0J (y) � yJ (�y:�:t) � �y:J (�):J (t)J (t1t2) � J (t1)J (t2) 48



Note that J is well-de�ned. Note also that a Church-term t cannot contain a �-redex of theform (�y:�:t1)t2, since simple types contain no applications.As the main result of this section, we prove the following theorem. Recall the de�nitionof �M , being the context relevant to � `M (see De�nition 6.18).Theorem 7.31 Let �0 ` t0. Then there �; t and � in �! such that � `�! t : �, t0 !!� I(t)and �(�0; t0) =� I(�). Moreover, �0t0 !!� I(�).Proof: >From �0 ` t0 follows �0t0 ` t0 (Corollary 6.17).Let �0t0 be (y1 : �1) : : : (yn : �n). Then (y1 : �1) : : : (yi�1 : �i�1) ` �i by Lemma 6.21.Hence there are �0i 2 T s (i = 1; : : : ; n) such that �i !!� �0i by Lemma 7.26. It follows that�00 � (y1 : �01) : : : (yn : �0n) ` t0 by Corollary 6.27. Take � � (y1 : J (�01)) : : : (yn : J (�0n)).Then clearly I(�) � �00, so �0t0 !!� I(�).Moreover, by Lemma 7.29, there is t00 2 T ch such that t0 !!� t00 and I(�) ` t00 by Coro-laary 6.25. Take t � J (t00), then t00 � I(t) and I(�) ` I(t). Then by Corollary 7.21,there is � 2 T! such that � `�! t : �. From Theorem 7.20: �(I(�);I(t)) !!� I(�), i.e.�(�00; t00)!!� I(�). By Corollary 6.27: �(�00; t0) =� I(�) and it follows from Lemma 5.7 that�(�0; t0) =� I(�).The various entries in this proof can be pictured in Figure 1. 2
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t : �t00 2 T st0t
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Figure 1: Dependencies between �! and �!�Finally, note that even for Church-terms, � and � do not coincide. That is, we know that if� ` t then " �(�; t). However, even if t 2 T ch and if " �(�; t), we still don't get � ` t. In fact,look at Example 6.26 where " �(;; t) yet ; 6` t, for t � (�y:� :y)z.
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