Are Types needed for Natural Language?
In Applied Logic: How, What and Why, Poélos and Masuch
eds, 79-120, Kluwer 1995

Fairouz Kamareddine*
Department of Computing Science
University of Glasgow
Scotland

November 30, 1996

Abstract

Logic, due to the paradoxes, is absent from the type free A-calculus. This makes such
a calculus an unsuitable device for Natural Language Semantics. Moreover, the problems
that arise from mixing the type free A-calculus with logic lead to type theory and hence
formalisations of Natural Language were carried out in a strictly typed framework. It
was shown however, that strict type theory cannot capture the self-referential nature of
language ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]) and hence
other approaches were needed. For example, the approach carried out by Parsons is based
on creating a notion of floating types which can be instantiated to particular instances
of types whereas the approaches of Chierchia, Turner and Kamareddine, Klein are based
on a type free framework. In this paper, we will embed the typing system of [Parsons 79]
into a version of the one proposed in [Kamareddine, Klein 93] giving an interpretation of
Parsons’ system in a type free theory where logic is present. In other words, we take the
standpoint that type freeness is needed yet types are also indispensable. On this ground,
by constructing types in the type free theory, we obtain a framework which can be seen
as a formalisation of Parsons’ claim that Natural Language needs type freeness in order
to accommodate self referentiality yet many sentences should be understood as implicitly
typed.

Keywords: Type Freeness, Logic, Types, NL Semantics, Self-reference.

1 Introduction

Mixing type freeness and logic leads to contradictions. This can be seen by taking the following
simple example.

Example 1.1 (Russell’s paradoz)
Take the syntax of the type free terms of the A-calculus:

*This article has been prepared while the author was on a study leave at the Department of Mathematics
and Computing Science, Eindhoven University of Technology, the Netherlands. The author is grateful for
the hospitality, financial and academic support of the university of Eindhoven, and for the productive and
enjoyable year spent there.

E:=xz | E'E" | \¢.E
Increase this set of terms by adding negation so that whenever E is a term, —FE is also a
term.! Now of course, Az.—~zx is a term and applying it to itself one gets a contradiction
(known as Russell’s paradox).

One might deny this to be a contradiction by assuming non classical logics such as a three
valued one. So that ¢ = —a is acceptable when a gets undefined as a truth value. In fact, in
the type free A-calculus, every expression E has a fixed point a such that Fa = a. In particular
Az.—z has a fixed point a and one gets a = —a. This means of course that (Azx.—zz)(A\x.—zz)
is a fixed point of A\z.—zx.

This will still create a problem when one tries to discuss the axioms and rules of the logic
that is being used. The following example makes this point clear:

Example 1.2 (Curry’s paradox)
Once propositional logic has been defined in the type-free A-calculus, one must be precise
about which of the three concepts below hold in that logic:

e Modus Ponens (MP): From E — E' and E, deduce E'.
e Deduction Theorem (DT): If I is a context, and ' U{E} - E' then ' F E — E'.
e (-conversion (3): (Az.E)E' = E[z := FE'].

If all three were present then one gets Curry’s paradox. That is, one can show — F for any
term F by taking the term a = Az.(zxx — E).

Up to here, only propositional logic has been discussed in the context of the type free
A-calculus. This is not without a reason. Propositional logic, as mentioned above, can be
built inside the A-calculus. The difficulties of Examples 1.1 and 1.2 can be avoided by using
non classical logics or by not using all the above three concepts to the full. [Feferman 84]
and [Kamareddine 92C] provide a clear introduction to the possible ways of avoiding these
paradoxes.

What about quantificational logic? Why has it not been discussed above? The reason for
this is very important. It was possible to define propositional logic inside the type free A-
calculus, because the semantic values of all the propositional connectives do actually exist in a
model of the type free A-calculus. That is, if continuity was our basic concept for constructing
the model, then all the functions corresponding to the logical connectives will be continuous
and hence elements of the model.

With the quantifiers we have another story. The models of the type free A-calculus without
logic cannot model the addition of the quantifiers. The reason for this is that even though V
is continuous, its presence will trivialise the model as is seen from the following example:

Example 1.3 (Models of the type free A-calculus alone are not enough)
If V existed in the model of the type free A-calculus, one would get that:
(Vd € D)([[(p]]g[x:d} = 1) g [[(P]]g[x::u] =1
where u is the bottom element of the domain (see [Turner 84] and [Kamareddine 92D]).

! Alternatively one can use any of the standard methods of the A-calculus to define propositional logic,
inside the A-calculus.

This clause has serious consequences. To illustrate this, take in the formal language an
element ' which names u (i.e. [u'], = u always). Now see what happens if ¢ is z = u”:

Applying the above clause one gets: [z = ul]]g[:m:u] =1 (Vd e D)([x = u’]]g[ﬂ:d} =1).

This implies: u =u < (Vd € D)(d = u).

Hence (Vd € D)(d = u). That is absurd.

The presence of these foundational difficulties implied that logic and A-calculus, could not
be mated freely together. Some restrictions had to be made either on the logic or on type
freeness. These restrictions resulted in the following two routes of research:

1.1 Route 1: Logic is more important than expressiveness

The first route placed a big emphasis on logic and deduction systems, but avoided the difficulty
by restricting the language used to first or higher order allowing only a limited form of self-
reference or polymorphism. Let us here have another look at the paradox and then list the
three main examples of Route 1.

The paradox in Example 1.1 arises because any open well-formed formula was allowed to
stand for a concept. In fact, Example 1.1 has assumed the following axiom:

Comprehension
For each open well-formed formula ®[z], JyVz[(yx) < ®[z]] where y is not free in $[z].

By taking ®[z] to be =(zz) in the comprehension axiom above, one gets:
FyVz((yr) & ~(z2)] = Va[(yz) & ~(z2)] = [(yy) & ~(yy)].

The comprehension axiom assumes that each open well-formed expression determines a
concept whose extension exists and is the set of all those elements which satisfy the concept.
One could restrict the comprehension principle so that ®[z] stands for everything except
—(zx), but this will not save us from paradox. To see this let ®[z] stand for —(z2z) where
(yow) abbreviates (3z)((yz) A (zx)). Again, ruling out this instance is not enough for one will
still get the paradox if ®[z] was taken to be —=(z3x) where ysx abbreviates (3z1, 22)((yz1) A
(z122) A (227)). This process continues ad infinitum. Even if all such instances were ruled
out, the problem will persist. The following example shows this:

Example 1.4 Take ®(x) to be =(3z1, 22,...)[... (2223) A (2122) A (zz1)] and let y be the class
obtained from the comprehension axiom for ®[x].

o If (yy) then —(3z1,22,...)[...) A (2122) A (yz1)]. But one can take z; = 20 = ... =y,
and get a contradiction.

o If =(yy) then (3z1,22,...) [...22) A (2122) A (yz1)]. But as (yz1) then ®[y]; however we
have that —=®[y]. Contradiction.

For a further explanation of this process, see [Kamareddine 89] and [Kamareddine, Nederpelt 94B].

1.1.1 First Order Languages

The first route of avoiding the paradox by using a first order language, insisted that logic
must be strongly present but that self-reference should not. In fact, in first order languages,
a separation between functions and objects exists and a quantifier ranges only over objects
and not over functions. Of course in such a language no paradox arises because one cannot
have self-reference, as a function cannot be an object and so cannot apply to itself.

1.1.2 Second Order Languages

The problem is also faced with higher order languages. The following will show this to be the
case.

Notation 1.5 The following metavariables are used:
e F (... refer to n-place predicate variables.
e 1.y, 2, w,... refer to individual variables.
e a,b,... refer to singular terms. (These are the nominalisation of functions.)

The primitive symbols of the language are: =,—,=,V,A\. The others are defined in the
metalanguage.

Definition 1.6 (The two problematic Azioms)
In order to deal with self application and to allow self-reference, we need the following axioms:

o (A3%) dz(a =), for a singular term in which x is not free.

e (CP*) AFVz[F(z) < ®[z]] where F does not occur free in ®.

The paradox comes from (CP*) together with (A3*) under various logical laws as can be
seen from the following example:

Example 1.7 From (A3%*), one can derive that Ya® = ®[z := a]. Substituting F' for x in
the special instance of (CP*): 3FVz[F(z) < 3Gz = G A =G(z)]] will lead to the paradox.

The problem here again has been avoided in many ways, one of them is to restrict the
language, disallowing some forms of self-reference. Cocchiarella’s two ways of avoiding the
paradox for example, have been to restrict (CP*) or (A3*) (see [Cocchiarella 84]).

1.1.3 Simple Type Theory

Since Russell’s letter to Frege, concerning the inconsistency of Frege’s system, there have
been many attempts at overcoming the paradox. The first two accounts of avoiding the
paradox by restricting the language were due to Russell and Poincaré (see [Russell 1908]
and [Poincaré 1900]). They both disallowed impredicative specification: only predicative
specification has been used, where A = {z : ®(x)} is predicative iff ® contains no variable
which can take A as a value. This theory obviously overcomes the paradox, for one assumes
all the elements of the set before constructing it and so —zz is no longer allowed.

It became obvious however, that this theory had many unattractive features. Of these fea-
tures we mention that at each level there exists a natural number system, such that 1,2, 3,...

at each level n are different from 1,2,3,... at level n + 1. Moreover, polymorphic functions
(that is functions which take arguments from many levels such as the polymorphic identity
function) do not exist in Russell’s type theory. In addition to that, this approach (of Russell
and Poincaré) is rather unsatisfactory from the point of view of self-reference because one
needs impredicative formulas such as the sentence it is nice to be nice. These formulas are
fundamental to natural language semantics.

1.2 Route 2: Expressiveness is more important than logic

The second route placed the emphasis on the expressiveness of the language and the richness of
functional application and self-reference, but at the expense of including logic in the language
except if restrictions are made (such as using non-classical logics). Church’s and Curry’s
work for example, was on the language side. They decided to enrich the syntax and the
language but to avoid or restrict logic. They introduced sophisticated systems of A-calculus
and combinators, but the importance was shifted from logic to the expressiveness properties
of the language. So fixed points were shown to exist, self application functions and solutions
to all sorts of equations were shown to exist. Of course they could move freely in the jungle
of the type free terms as logic was not the main theme. Moreover, they explained things like
a = —a by saying that every A-term has a fixed point, in particular the A-term Az.—x. Their
use of logic however was very elementary.

After a while, attention moved to various forms of the typed A-calculus. This may have
been due to the usefulness of the typing schemes, or to the presence already of some type
systems which aimed at combining expressiveness and logic. The basic aim in this route
became to provide systems which can type check as much as possible of self-referential terms.
The line remained however, to ignore logic (as a deduction system) and to make sense of as
many self-referential terms as possible.

This led to various formulations of typing systems; some of which can type check self-
referential sentences such as the self-application function Az.xx and the fixed point operator
Y = Af.(Az.f(zzx))A\z.f(zz) and some cannot. All these type systems, use the following as
their underlying syntax of types s ::= x|c|s — s which says that a type is either a variable or
a constant or an arrow. Type systems such as Ay, A\, and An (see [Barendregt, Hemerik 90]
and [Kamareddine 92A]), add other types to this set of types in order to typecheck more
terms such as Y and Az.zx.? Systems which use only the above syntax of types, even though
they can be polymorphic, cannot typecheck Y or Az.zz (Milners’s ML system in [Milner 78]
is such an example).

Of course this rich variety of typing systems has not reached Natural Language Semantics.
We find it a pity that in NL, some of these type systems have never been heard of. We believe
that only a perfect combination of expressivity (and here type theory plays a role) and logic
can be a sound system for NL. It might be asked moreover why did we move from expressivity
and type freeness to type theory? This is indeed a very good question, to which we devote a
whole section (see section 4).

?[Kamareddine, Nederpelt 94A] provides a way of unifying a significant number of type systems but again
[Kamareddine, Nederpelt 94A] takes the line of route 2 and logic is missing.

1.3 The major themes of the paper
1.3.1 Theme 1

Routes 1 and 2 resulted in a gap between strong logics and fully expressive languages. The
need to remove the gap created various theories such as Martin-Lof’s type theory and Fe-
ferman’s Ty which were polymorphic, allowed self reference and contained a big fragment of
logic (see [Martin-Lof 73] and [Feferman 79]).

While the polymorphically typed languages which contained logic (such as Martin-Lof’s
and Feferman’s) were being developed, research on natural language was already based on
Montague semantics and Russell’s type theory and there were enough problems to tackle from
the linguistic point of view that the limited formalism used was not regarded as a deficiency.

However the need for the combination of expressive languages and strong logics is unques-
tionable (see [Feferman 84]), and the necessity of such a combination for Natural Language
is undoutable (see [Kamareddine, Klein 93]). This combination was the main concern of many
linguists in the last decade ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]).
This paper will hence attempt, as a first theme, to review these three fundamental aproaches.
This will be done in Section 2. The approaches of [Parsons 79] and [Kamareddine, Klein 93]
will be the centre of attention of the paper. The former will be interpreted in a version of the
latter. The [Chierchia, Turner 88] approach will be used for comparisons.

1.3.2 Theme 2

The approach of [Kamareddine, Klein 93] is very attractive from the type theory point of
view. The typing strategy provided there, is based on the structure of the models of the type
free A-calculus which demands that (xa — xb) < *a for xa and *b being any variable types.
This ordering is the basis of applying functions to themselves as the following example shows:

Example 1.8 In \z.xz, the operator occurrence of x requires that x be of type xa — xb. For
this operator occurrence of x to apply to the argument occurrence of x, the second z must
also be of type *a.

Based on this observation, [Kamareddine, Klein 93] builds a relation between types which
guarantees that every arrow type is included in its domain space. The system allows only
typed abstraction, of the form Az : o.a, but permits any two terms to apply to themselves.
Logic, (including quantifiers) is present too. This might surely be thought to lead to the
paradox by applying the term (Az : (e — p).—zz) to itself. This will not be the case however,
due to the notion of circular types (see Section 2.3).

This paper will start from the system of [Kamareddine, Klein 93], but will add variable
types. This will enable the retrieval of the type free A-calculus in a systematic way. Moreo-
ever, the construction of types will become more general and one can make sense of all non
paradoxical terms. In fact, with the addition of variable types, the new system turns out to
have more polymorphic power than Xs, A, and An (see [Kamareddine 92A]) and allows typing
the fixed point operator Y = Af.(Az.f(zz))(Az.f(xx)), the self application function \z.xx
and all the possible mixtures of Y and Az.zz. This possiblity of type checking Y and Ax.xx
shows that the system allows all self-reference, as long as it is non paradoxical. This extension
will be found in Section 2.3.

1.3.3 Theme 3

The need for self reference, which requires a type free framework, confuses the fact as to
whether types are or are not needed. In fact, one often sees types being constructed inside a
type free framework and vice versa. Hence it is very difficult to answer whether or not types
are needed for natural language. If one looks back at the latest formalisations of natural
language ([Parsons 79], [Chierchia, Turner 88] and [Kamareddine, Klein 93]), one finds them
all jumping between type freeness and typing. Section 4 below discusses the questions of
typeness and type freeness and supports Parsons’ claim that NL is implicitly typed yet type
freeness is needed to represent it.

1.3.4 Theme 4

Based on the claim of Theme 3 that NL is implicitly typed yet self reference is necessary, one
is faced with the question of how to combine type freeness and typing in such a way that
self reference of NL can be accommodated, yet grammatical or ungrammatical sentences can
be explained. That is, one would like to have a rich typing scheme which can be used as a
classification for good/bad sentences, while the freedom of applying functions to themselves
is preserved. This paper claims that the approach of [Kamareddine, Klein 93] extended with
variable types, embodies in it such type freedom and classification scheme. This will be
shown by interpreting Parsons’ theory in the theory provided in Theme 2 and by drawing a
comparison with the theory of Chierchia, Turner.

In short, as a fourth theme of this paper, an embedding of the typing system of [Parsons 79]
into a version of the one proposed in [Kamareddine, Klein 93] will be given. This embedding
can be viewed as constructing a model which accommodates Parsons’ claim of typing and
non-typing of Natural Language. This model is a type free system where all types except
the circular ones can be constructed. The comparison drawn between the three approaches
will show that the typing scheme of [Kamareddine, Klein 93] is the most flexible for NL
interpretation. The embedding will be done in Section 5, the usefulness of the extended
system will be discussed in Section 6 and the comparisons of the three approaches will be
carried out in Section 7.

2 Three polymorphic systems of Natural Language

2.1 Parsons’ system

Parsons starts by explaining that if one is to accommodate various natural language con-
structs in Montague’s approach, then there needs to be an infinity of categories which contain
the same elements yet the types of those elements differ from one category to another. That
is, he argues that Montague’s approach is not polymorphic and that there is a need for a
language which allows functions to take arguments from variable types and to return argu-
ments in variable types. Moreover he claims that those variable types should be instantiated
as necessary.

Example 2.1 John talks about could take either Mary or a proposition as arguments as can
be seen from the following sentences:

1. John talks about Mary

2. John talks about a proposition

To deal with these polymorphic functions such as talks about, Parsons introduces two sorts
of types: the fized types and the floating types. The fixed types are always fixed; (e, t), the
type of propositional functions is an example of a fixed type. Floating types on the other
hand, change in value. They should be understood as variable types and can be instantiated
to various types instances.

Example 2.2 The semantic types of both individuals and propositions are fixed types. The
first is (e,t) and the second is ((s,t),t). Both individuals and propositions moreover, are
syntactically common nouns.

To represent the association of types to categories, Parsons records information relevant to
typing as a superscript to the category.

Example 2.3 women® is of category CN¢ and its type is (e,t) whereas proposition{* is of

category CN(®Y and its type is ((s,t),).
Syntactic rules should obey semantic typing as the following example shows:

Example 2.4 VP¢ which is of type (e,t) can be combined with John® which is of type
((e,t),t) but not with proposition®* which is of type ((s,t),).

Up to here one can guarantee that the following are well formed:
o That John runs or that he walks amazes Mary
o That John runs or he walks amazes Mary
o That John runs or walks amazes Mary
whereas the following are not:
o Bill or that John runs
o walks or obtains
o That John walks runs
e Bill obtains

How does the idea of floating types accommodate the sentences of Example 2.17 That is, how
can one make talk about take two different arguments, individuals as in 1 and propositions as
in 27 The solution is simple, make about be a floating type. Before we explain further what
type should about have, let us give the types and categories of the other constituents of the
two sentences in example 2.1. This is done as follows:

e John, of category NP€ has the fixed type ((e,t),t).
e talks, of category VP¢ has the fixed type (e, t).
e Mary, of category NP€ has the fixed type ((e,t),1).

e a proposition, of category NP has the fixed type (((s,t),t),t).

The next step is to be able to combine talks with about Mary or with about a proposition to
result in a construct of category V' P¢. This construct will then be combined with John of
category N P¢ and the result will be a sentence. For this we will need the following syntactic
rules:

e 52. If « € ONT then Fy(a), Fi(«a) and Fy(«) € NPT where Fy(a) = every a, Fi(a) =
the a and Fy(a) = a(n) a.

e S6. f a €™ PREP™ and # € NP™ then aff € ADV™
e S10. If a« € ADV”™ and 8 € VP7 then fa € VPT

Now, talks of category V P¢ will combine with about Mary or about a proposition of category
ADV € according to rule S6. about Mary and about a proposition will belong to the same cate-
gory ADV¢ and will have the same fixed type ((s, (e, t)), (e, t)). With Mary and a proposition
being of fixed types, it is about which should change its type as in the following two cases:

1. about is of category “PREP® and has for type ((s, f(NP€)), f(ADV*®)).
2. about is of category “PREP{*! and has for type ((s, f(NP®R)), f(ADV®)).

To accommodate this multi-typing, Parsons considers about to be of category ¢PREPT
and to have, for a particular type 7, the type {(s, f(NP7)), f(ADV¢)).> The following two
tables show how this works:

Table 2.5
Parsons’ account of | Category | Rule | Type ‘
John talks about Mary | - -
about ¢PRED* ((s, ({e,t), 1)), ((s, (e, 1)), (e, t)))
Mary NP ((e,t),t)
about Mary ADV® S6 ((s, (e, 1)), (e, 1))
talk |2 (e, t)
talk about Mary |2 S10 | (e, t)
John NP© ((e,t),t)
John talks about Mary t
Table 2.6
Parsons’ account of category Rule | Type ‘
John talks about a proposition
proposition CNs ((s,t),t)
a proposition NP S2 (((s,t,)t), t)
about ¢ PRED'! ((s, ({((s, t)t),1)
(s, (e, 1)),)e, 1))
about a proposition ADV* S6 ((s, (e, 1)), (e, t)
talk Vpe (e, t)
talk about a proposition vpe S10 | (e,)
John NP ((e,t),t)
John talks about a propostion t

3Note that each instance of a floating type is a fixed type.

The following tables summarize the vocabulary of types and words of these types as used

by Parsouns.
Table 2.7
‘ Categories PC ‘ Corresponding semantic types f(PC) ‘
s
CNT (1,t)
VP (1,)
NPT (f(VPT),¢)
Ty {(s, F(NP™)), fF(VP™))
ENEEE ((s, F(NP™)), (s, f(NP™)), f(VP™)))
ADV™ {(s, fF(VPT)), F(VPT))
ADF ((s,1), 1)
" PREP™ ((s, f(NP)), f(ADV™))
Table 2.8

Words of fixed type

man®, woman®, park®, fish®,
pen®, unicorn®, -body® CN® (e, t)
fact’® | proposition’s? | answer(>? CNs:) ((s,t),1)
run®, walk®, talk®, rise®, change® vpe (e, t)
obtain(sh VPsh ((s,t),1)
John®, Mary®, it§, it ... NP* ((e,t),t)
The Pythagorean theorem<5’t>7ités’t>, itls’t> ... | NP (((s,t),1),t)
®eat®, ¢date® Ve (s, (e, 1), 1)), (e, 1))
€helieve’> , €assertst) e pish ((s, (((s,1),t),t)), (e,),
$U amaze® sit) ye ((s, ({e,t), 1)), ((s,1),1))
“buy* cvee {(s, ({e, 1), 1)), (s, ({e, 1), 1)), {(e, £}, £)))
et@lle’<s’t> eye, s,t)
rapidly®, slowly®, voluntarily® ADV* ((s, (e, 1)), (e, t})
necessarily ADF ((s,t),1)
¢in° ¢*PREP¢
Table 2.9
‘ Words of floating types ‘ Type ‘ Semantic Type ‘
thing™ CN™ (1,t)
set{™ CN(0) (7,1),1t)
property’s(Ti) CNG&O) | (s, (1, 1)), t)
exist” vPT (1,t)
iy, ity . NP ((r, 1), 1)

¢find”, ¢lose”, Clove”,

®hate™, ®seek™, €conceive” eyt

€give®T cver
€about™ ‘PREP™
1 he™2 Ly <<57<<T27t>7t>>77-17t>>

10

2.2 The Chierchia, Turner system

The Chierchia, Turner system is based on Turner’s theory of properties which appeared in
[Turner 87]. In [Turner 87], Scott domains are completely abandoned and Frege’s comprehen-
sion principle is restricted in such a way that the paradox is no longer derivable. Turner starts
with a first order theory which has a pairing system and adds to this theory an operator p (to
serve as the predication operator) together with the lambda operator. Then in this case, if
one assumes full classical logic and Frege’s comprehension principle, one will certainly derive
the paradox.

Example 2.10 Take a = Az.—p(z,), then p(a,a) & —p(z,z)[r := a] & —p(a,a). Contra-
diction.

Let us look again at Example 1.2 and in particular at the third concept discussed there:
namely, 5. 0 could be divided into two parts:

1. Contraction p(Az.E,E') — E[E' := z]
2. Expansion E[E" := 2] = p(Az.E,E")
Contraction causes no problems but expansion does in the presence of negation.

Example 2.11 If A is atomic then we can accept A(t, z) — p(Az.A,t). But we cannot accept
it when A is like Russell’s property Ax.—p(x,z), an atomic term proceeded by a negation sign.

This is exactly what guides Turner in setting his theory. For the theory now will have the
following axioms replacing Frege’s comprehension principle:

(E1) A(t,x) — p(Ax.A,t) when A is atomic.
(R) p(Ax. A t) — A(t, x).
(I) p(Az.p(Ay.A,t),u) — p(Ay.p(Ax.A, u),t)

To build models for T" above, one uses the fixed point operator to turn an ordinary model
of the first order theory into a model which will validate in it as many instances of the
comprehension axiom as possible. It will of course validate only the safe instances whereas
the paradoxical ones will oscillate in truth-values. The inductive step to build the model
should be obvious. The following example illustrates how they work:

Example 2.12 One way is to start with the first order model, and an operator PI which

is empty at the beginning. Then at the next step, extend PI to also contain the pairs

([Az.A], [t],) such that [[A]]g[x'—[[t]] | = 1 and so on until one gets a limit ordinal y where PI
Ty

then is to have in it all the pairs (e, d) such that for some ordinal smaller than this y, < e,d >
belongs to all the intermediate PI’s.

The above discussion goes as far as the theory is concerned. The system used however by
Chierchia and Turner, despite the fact that it is based on a type free theory, still constructs
types (these are called sorts in that paper). In fact in their paper, the authors provide a
lengthy discussion on the usefulness of types for NL.

The construction of types — recall they call them sorts — is very straightforward in
[Chierchia, Turner 88], it goes as follows (Only PT} will be considered):

11

Definition 2.13 (Sorts)

Basic sorts: The basic sorts are e,u,nf,i,pw, Q. These stand for individuals, urelements,
nominalised functions, information units, possible worlds and generalised quantifiers respec-
tively.

Complex sorts: The complex sorts are {ay,(...,{an,b)...) where for 1 < i < n,a; and b
are any of the basic sorts.

In section 7, we will see a comparison between this system and that of [Kamareddine, Klein 93].

2.3 The extended version of the Kamareddine, Klein system

Here, an extended version of [Kamareddine, Klein 93] will be presented, rather than their
initial system. The extension will be to allow type variables. This is done in order to allow the
extraction of the type free terms from this calculus as will be seen in Section 3. Moreover, this
extension will enable the representation of all non paradoxical sentences regardless of whether
their forming parts were originally typed or not. That is for example, not only the fixed point
operator for a particular type will be shown to exist, but the fixed point operator of any
type (as long as it’s not circular). Section 3 elaborates more on the properties of this system.
Moreover, a type checker for this extended system has been written in [Kamareddine 92A].
Let us call this extended system Ay standing of course for A and Logic.

It is assumed that term variables are x, 2’ y, vy, 2,2’ ..., that V, V', V" ... range over these
variables and that «, o, a1, ..., 3, 5o, 31 - .., range over type variables. It is assumed further
that E,E',E",... B, Es,...,®, ¥, ..., range over expressions and T, T', T}, T5, . . . range over
type expressions.

Definition 2.14 (Types)
Types are constructed as follows:
T ::= (| Basic | (Ty — T3)
Basic ::=p|t]e

This syntax of types is similar to that of [Kamareddine, Klein 93] except that type variables
are allowed. Here p is the type of propositions, t is the type of truths (that is, of all the
true propositions) and e is the type of objects. In fact e contains everything, variable types,
basic types and arrow types. This is the case due to the subsumption relation < on the types
defined as follows:

Definition 2.15 (Subsumption Relation)
The ordering/subsumption relation on types is given by the following rules:
i)T<e
i)t <p
i) (T —-T)<T
w) T <T
v) if T<T and T' <T then T =T'
vi) if T < T and T' <T" then T <T"
vig) if T <T' then (Th = T) < (T} = T")

We say that by (T <T"), T subsumes T"; intuitively it means that any expression which is of
type T is also of type T".

12

It is mainly clause iii) of Definition 2.15 which enables one to have self application in the
system and it is the notion of circular types defined below, which allows the avoidance of the
paradoxes.

Definition 2.16 (Monotypes)
We say that a type T is a monotype if it contains no type variables.

This is how this system deviates from that of [Kamareddine, Klein 93] which allows only
monotypes.

Definition 2.17 (Circular Type)
We say that a type T — T' is circular iff:

o Either T' <p and T =T, — Ty where T, < p
e Or T is circular

o Or T’ is circular

Lemma 2.18 If T — T" is not circular, then neither T nor T' are circular.
Proof: Obvious. U

Example 2.19 (8 — p) = t,((e = p) = p) = e and (e = p) — (p — p) are circular types.

Remark 2.20 Here it will be asked what will happen to Noun Phrases and Generalised
Quantifiers like John, which are usually taken to be of type (e — p) — p; i.e. their type is
circular. The answer is to make John of type (e — e) — p instead. This will be done via a
function H to be defined in Section 5. Syntactically John and runs can combine because the
first is CN® and the second is VP¢, this is exactly like the treatment of Parsons where a VP¢
takes an NP€¢ and returns a p. Semantically this mixing is allowed because the type of John
can mix with the type of run which is e — p as e — p < e — e according to our relation <.

Definition 2.21 (Ezpressions)
The following syntax of expressions is assumed:
E = V|(E1E2)|(>\V . TE1)|(E1 AN E2)|(E1 — E2)|(—|E1)|(VV H TE1)|(E1 == Eg)

Constants, disjunctive and existential expressions are omitted for the sake of clarity. It might
be remarked here that our terms are typed, so how are we talking about type free terms?
It will be shown however that the type free A-calculus can be embedded in our system (see
Section 3), and hence we have all the type free terms at our disposal. In fact, it is precisely
the addition of variable types which enables such embedding.

Notation 2.22 Sometimes, when 7' contains only variable types and when none of these
variable types occur in E, we write AV.E instead of AV : T.E. For example, instead of
Az @ a.z we write simply Az.x.

Definition 2.23 (L)
A particular expression L will be defined in the usual way (such as: L =g Azy.xy = Azy.y)
and will have the property that it should never be derivable.

13

Finally, we assume the usual conventions for the dropping of parentheses when no confusion
occurs, and the usual definition of implicit substitution of the A-calculus in contrast to the
explicit one presented in [Kamareddine, Nederpelt 93] and [Kamareddine, Nederpelt 94B].

When an expression F has type T we write £ : T. In particular we write ® : p for ® a
proposition and @ : ¢ for ® true.

Definition 2.24 (Environments)

An environment is a set of type assignments (V : T) which assigns the type T to the
variable V', such that a variable is not assigned two different types. We let I' range over
environments.

Notation 2.25 When (V : T) € T, we say that the type of V' in the environment T is T.
Moreover, the notation I' = E : T means that from the environment I', we can deduce that the
expression E has type T

Definition 2.26 (Typing \-expressions)
The following rules are used to type the expressions:

(V:T)eTl (1)
r=v:T
'-E:T T<T @)
r-E:T1"
'FE :T—>T '-Ey:T 3)
Fl‘ElEgtT’

(V:T)UT+HE:T'
FEANVE:T =T

'-E:T 'FEy:T
F"(Eleg):p

where T — T is not circular (4)

Fl—(EleQ):t F"EltT (6)
'FEy:T
r-e:p
‘)
r-o:p o t-1:¢ (8)
'F-®:t¢
-®:tk-L:t Io:p)
FrFo:t
F'Fo: Ew:
p p (10)
FH(@AY):p
FFo:t FrEw:t
11
FHE(®AY):t (11)

14

IH(@AD):t IH(®AD):t

r-ao:t r-w:t (12)
eé:t-U:p '-®:p
(13)
FE(@®—>"):p
No:t-U: '-ao:
, t t p (14)
FE(®—U):t
PE®:¢ FH(@—Y):t
Wt (15)
E:TFH®:p
FEVYV:T.®:p (16)
LV :TE®:t)) . .
TEvwW T8 1 where V' is not free in ® or any assumptions in I’ (17)
FEVYV:T.®:t '-E:T
(18)
P-®z:=FE]:t
L=[AV:T.E)= AV : T.E[V :=V'])] : t, where V' is not free in E (19)
I'=[\V :T.E)E' = E[V := E']] : t, (20)
FH[E, =Es):t CH[E]=E)]:t (21)
F"[ElEi:EgEé)]t
r-E:T
_— 22
FF[E=E]:t (22)
PH[E, =Es]:t FF[E, =E3]:t
[E) = By [E) = B3] (23)

Fl‘[EQZEg]:t

T'H([E\V =FEV]:t
F"[Eleg]:t

where V' is not free in E;, Ey or any assumptions in I' (24)

3 Type freeness, logic and the paradoxes in the proposed sys-
tem

The type free A-calculus, has the following syntax of terms: E := V|(E1E2)|A\V.E;). With
Notation 2.22, the type free A-calculus is retrieved. In fact here is how we can embed the
type free A-calculus (A for short), in our system Az via the embedding function J:

Definition 3.1
We define an embedding function J : X\ — A, which embeds X in A\p as follows:

e J(V)=V
° j(ElEg) = j(El)j(E2)

15

o J(A\V.Ey) = AV : B.J(E1) where (3 is a fresh variable type. This is to avoid any type
variable clashes inside terms.

A moreover, assumes the following three axioms (as we will not discuss reduction in the
A-calculus, we shall consider the axioms in terms of equality rather than reduction. Once
reduction is introduced, the results below will still hold):

() AV.E = \V'.E[V :=V'] if V' is not free in E
(B) (A\V.E)E' = E[V := F'|
(1) AV.EV =FE if V' is not free in E.

Lemma 3.2 If\F E=FE' then A\ - (E=FE') : t.
Proof: By an easy induction on the derivation of E = E' in \. O

Hence we have the full type free A-calculus. Moreover, we have all the logical connectives
(both propositional and quantificational). The question arises however, as to where exactly
is the paradox avoided. One might wonder if the paradox is actually avoided. The reader is
to be assured that this is the case. Let us start by looking at the type of the following term:
AV.=V. What type should this term have? Recall from our notational convention that this
term is an abbreviation for something like AV : a.=V. The « will be unified with p and we
get from equation (7) that =V is of type p and the whole term gets type p — p from equation
(4).

Can we then now find the fixed point of this term? I.e. can we find the a such that ¢ = —a?
The answer is no. We can apply AV.=V to any proposition and obtain a proposition. But
once we want to apply it to the Russell’s sentence, we have to make sense of the type of that
sentence. But the Russell’s sentence is not typeable in our system. This can be seen from the
following lemma:

Lemma 3.3 \V : T — T'.=VV where T' < p is not well-formed.

Proof:
(@) V:T->T hypothesis
(it) T—->T<T from <
(its) VV T from (3)
(iv) =VV:p from (8), asT' <p

But as (T — T') — p is circular, we cannot apply (4) to get that \V.=VV has type
(T = T') — p. In fact we cannot type \V.=VV. Le. the type is circular. O

It should be noted here that one can have type freeness and logic while avoiding the paradox
without the use of the notion of circular types. [Kamareddine 92B] for example provides
another way of avoiding the paradox.

We have built types such that all types (except the circular ones which cause the paradox)
are possible. This should enable us to type all the terms that should not be problematic, that
have types, but that other existsing theories cannot deal with. Moreover, it is obvious that
some expressions have many types. For example, Az.x is of type @ — « for any type variable
a. Now let us illustrate with typing Az.xzz and Y.

16

Example 3.4 \x.zz has type (g = 1) = -

(7) Tiapg— ap Assumption
(i7) ag = a1 < ap clause 1) of <
Gii) @i (), i), (2)

Ew) TT o (1), (ui1), (?E)

v)Ar.xzx : (g = a1) = (2)... (), (4)

Example 3.5 Af.(\z.f(zz))(Ax.f(xx)) has type (ay — ag) — ay:

(i) fras— ay assumption

(i7) (] = ag) = a assumption
(i31) (1 = ag) = ag <y = clause i) of <
(iv) Tiap — ay (i1), (411), (2)
(v) 2z : 0 (i), (iv), (3)
(v2) flaz) : on (4), (v), (3)
(i) Aaf(am) : (1 - a) > az) - ag (i) .- (v, (4)
(viig) (. = a9) = ag) = as < (1 = a2) = o clause i) of <
(iz) Ax.f(zz) : (g — ag) = ay (vii), (viii), (2)
() (Az.f(z2))(Az.f(22)) : 0 (éid), (i), (3)
()N f.Ax.f(xx))(Az.f(z2)) : (00 = q9) = o (i) ...(x),(4)

Example 3.6 (A\x : ag.z)y where y : a1 and g,y are type variables, is also typable and
the system will deduce that the type of (Azx : ag.x) is ay — g and it will try to check and
see if ap < a1 but as «y is a variable, the system makes o1 become g and returns g as the
result. Here some work is involved in unifying these variable types and this can be found in
[Kamareddine 92A].

It should be added moreover, that the theory provided in this paper has a tidy seman-
tics which is provided in [Kamareddine, Klein 93] (excluding variable types). The models of
this theory are constructed following the lines of [Aczel 80] or of [Scott 75]. Furthermore,
[Kamareddine, Klein 94] provides a tree of theories where an extension of Az, is the root and
where all relevant theories of natural and programming languages are the roots of subtrees of
the big tree, by showing that all the other theories are interpretable in that extension. The
extension however differs from Az only by the addition of meta-types. Now, as meta-types
have not been used in [Parsons 79] or [Chierchia, Turner 88], we can conclude that Az can be
seen as superior to these two systems.

4 Type freeness or types

Let us recall the discussion in Section 1 where we said that the presence of the paradox
led to two routes of research. The first route concentrated on logic and abandoned various
forms of self-reference. The second route, abandoned logic and concentrated on self-reference.
We said moreover that type theory was created under both routes. This was not without a
reason of course. Moreover, the reason was not only due to the paradoxes. The fact is, type

17

theory provides with a powerful classification scheme which can explain the meaningfulness or
senselessness of many constructs. In fact, looking at both programming and natural languages,
one finds that types are indispensable. For an extensive discussion of why types are useful as
a classification scheme for natural language, the reader is referred to [Chierchia, Turner 88].
In this paper however, we shall in order to complete the discussion of [Chierchia, Turner 88],
ask four questions and attempt to answer them.

Question 4.1 Are types or levels necessary in the avoidance of the paradox?.

Answer Not necessarily. For example, ZF was another solution to the paradox where we don’t
need to classify sets iteratively ([Boolos 71]), yet the Foundation Axiom FA was included
in ZF despite the fact that it was shown that antifoundation axioms are consistent with
ZF (see [Aczel 84] for such a discussion). The formulation of the Foundation Axiom FA is
(Fx)(x € a) = (Fz € a)(Vy € z)—~(y € a). As a corollary of it, we do not get solutions to
x = {x}, or x = {{z}}. Moreover, the inclusion of FA was unnecessary and it was not the
responsible axiom for avoiding the paradox.

Question 4.2 Are types needed?

Answer Yes of course. The fact that we ask for the full expressive power of the type free
A-calculus does not mean that types are not needed. In fact when we ask for a type free set
theory, or a set theory where the definition of a set may be impredicative, we don’t go and
forget completely about sets. In type free theories, one asks for the furthest expressive power,
where we can live with self reference and impredicativity but without paradoxes. The better
such an expressive system is, the more we are moving towards type freeness. Just it is enough
to remember that up to the discovery of the paradoxes, the most ideal system was of course
type free. Due to the paradoxes, helas this type free paradise had to be abandoned. Types
too found an attractive place in the history of foundation and in most areas of applications of
logic. For after all types help in the classification of programs, in the mixing of terms (such
as a noun and a verb) and so on. And moreover they play an important role in explaining
the paradoxes (if such an explanation is actually possible). For example, Girard’s system F
([Girard 86]) is no less type free than Feferman’s theory Tj yet types play a valuable role in
that system with respect to impredicativity. The difference between F and 7j might be in
the explicitness or implicitness of the typing scheme. Now even though one works in a type
free system such as that of Feferman, one needs to introduce types such as recursive types,
dependent types and the like. After all many of our proofs are for a particular collection of
objects and not for all possible objects. Exactly as in set theory, intersection, union and so
on are absolute necessity. Note also that a fully type free language cannot accommodate an
unrestricted logic or an unrestricted (3-conversion. It is also the case that Natural Language
implicitly has inside it a notion of type. In fact Parsons’ paper gives many insights on how
natural language is implicitly typed, yet type freeness must be present to deal with self
referentiality.

Question 4.3 So if types are needed why talk about type free theories? Why not ignore
type freeness?

Answer. The reason is that we may not want to be inflexible from the start if we could
afford to be flexible. Type free theories are very elegant and simple, so we can have a clear
picture of how much we have and how is the paradox avoided. Then the detail of constructing
types if followed will produce all the polymorphic higher order types that are needed. So a

18

lot of unnecessary details (like constructing types) are left till later which will make it easier
to prove results about the strength of the system, the expressive power, completeness and so
on. Also from the point of view of computation, type free theories could be regarded as first
order theories and hence are computionally more tractable than typed theories. Completeness
also holds for first order logics but has to be forced for higher order ones. Hence what I am
arguing for is the use of type freeness followed by the construction of flexible polymorphic
types. It is also the case that the self referentiality of language requires type freeness. So
we can talk about a property having itself as a property. For example, the property of those
things equal to themselves is equal to itself.

Question 4.4 Where does Natural Language fit between the type free and typed paradigms?
Answer. Natural language is implicitly typed in that sentences don’t really carry their type
with them but we do attribute types to them and to their constituents in order to make
sense of certain combinations. Moreover, not only we attribute types to the constituents of a
sentence to make sense of it, but many sentences, when spoken are immediately assumed to
be well typed. This is an evidence that NL is implicitly typed.

5 Embedding Parsons’ system into ours

Recall that the paradox was avoided by using the notion of circular types. Recall moreover
Remark 2.20. Hence in our interpretation of Parsons’ system, the categories and types will
have to be changed accordingly. We will avoid intensions via s for the sake of clarity. What we
will do is basically use the same syntax of expressions but make sure that the corresponding
semantic types are not circular. Let us start by formalising the syntax of parsons’ categories
and semantic types (called here Pcategories and Ptypes respectively).

Definition 5.1 (Ptypes)

Parsons’ types are defined by the following syntaz:
PT :=e|t| <s,PT > | < PT,PT >

We let PT, PT', PTy, PT, ... range over Ptypes.

Definition 5.2 (Unlabelled Pcategories)
The unlabelled categories used are the following:
UC ::= Cu|Cr|Clr|Clrr where
Cu = s|ADF
Cr = CN|VP|NP|ADV
Clr == V|PREP
Clrr ==V

Definition 5.3 (Pcategories)
The categories of Parsons are defined as follows:
PC ::= Cu|CrPT|PT O PT | PT Qe PTPT”
We let PC,PC', PCy, PCs,... range over Pcategories.

We will define a function which rules out all the s’s from a Parsons’ type. This function is
defined as follows:

Definition 5.4
The flattening function ext : Ptypes — Ptypes is defined as follows:

19

o cxt((s, PT)) = ext(PT)
o cxt

(PT,PT")) = (ext(PT),ext(PT")) if PT # s.

Lemma 5.5 ext is well defined.
Proof: This is easy because we never get pairs (PT, PT"} of the form (PT,s). That is, we
never have to apply ext to s. O

The function Z below will take Ptypes into types.

Definition 5.6 We define the function I : Ptypes — T'ypes as follows:

I(e) =

Z(t) =

Z({(s, PT)) = Z(PT)
I((PT,PT")) = Z(PT) — Z(PT")

Lemma 5.7 7 is well defined.
Proof: Obvious. |

Note that some Z(PT') might be circular. For example Z(((e,t),t)) = (e — p) — p. For this
reason we introduce the functions H and g. The function g will flatten the range types. This
will be used inside the function H below, in order to avoid the circular types. For example,
if we have the type (e — p) — p, which is circular, we look for H((e — p) — p) = g((e —
p) — p) = (e = p) — e which is not circular.

Definition 5.8 The function g : Types — Types is defined as follows:
° 9(B) =5
e g(T) =e if T is basic
o g(T1 — Ty) = H(T1) — e otherwise.

Definition 5.9 We define the function H: Types — Types as follows:

20

Note that ¢ and H are mutually recursive. Moreover, they are related by the following
Lemma:

Lemma 5.10 goH = Hog.
Proof: By cases on Types.

e If T is a variable type then go H(T) = H og(T) =T.
e If T is a basic type then go H(T) = H o g(T) = e.
« [T=T, > T
— Case Th — T' is non circular,
g(H(Ty - T") =g(H(Ty) - H(T")) = H(H(T})) — € and
Hog(Th - T)=H(H(T\) - e)=H(H(Ty)) — e
— Case Th — T' is circular,

gH(TL = T) =g(g(Ty = T")) = g(H(T1) — €)) = H(H(T1)) = e and
H(g(Ty = T") = H(H(T1) —e) = H(H(T1)) —» €

O
Lemma 5.11 Hog=gog.
Proof: By cases on T.
o If T is basic or is a variable type then obvious.
e Hog(T' »T")=H(H(T) — ¢e) and
gog(T =T =g(H(T) —»e)=H(H(T) — e.
O
Lemma 5.12
e Hog#HoH
e HoH #gog
Proof:
e Hoy(p)=e# HoH(p)=p.
® goglp)=e# HoH(p) =p.
O

Lemma 5.13 H(T) and g(T) are not circular for any T in types.
Proof: By induction on 1" in Types.

21

o If T is basic or s a variable type then obvious.
o If T =Ty — T where property holds for Ty and T, then:

— Case Ty — Ty is circular
H(T\ — Ty) = g(Th — T,) = H(T\) — e which is not circular by IH and the
definition of circular types.

— Case Ty — Ty is not circular
g(Thy — Ty) = H(T1) — e which is not circular by IH and the definition of circular

types.

H(Ty —» Ty) = H(Th\) — H(T»). Again, by IH, H(T\) and H(T2) are not circular
by IH. Moreover, it can’t be the case that H(Ty) < p and that H(T}) =T — T"
where T" < p, because if this was the case, we get Ty — Ty is circular, absurd.

The following Lemma is very useful. It says that once we have made sure the type is not
circular (via H), then another application of H is useless. That is:

Lemma 5.14 Ho H = H.
Proof: By induction on T.

o IfT is basic or is a variable type then obvious.
o Assume the property holds for T and Th then

— Case Ty — T5 is not circular then
HoH(T\ —Ty)=H(H(T) - H(Tv)) =
H(H(Ty)) = H(H(Tz)) = H(T\) —» H(T») =
H(Ty — T3).
— Case Ty — Ty is circular then
HoH(Iy —15) = H(g(T1y — 1T%)) =
H(H(T\) —»e)=H(H(T))) » e ==
H(T\) —e=g(T1 > T2) =
H(Ty — T3).

Note that we could have defined H and g so that for example H((e — p) — p) = (e —
e) — p, but this faces two problems:

e First is that we lose all the closure properties stated in the above lemmas.

e Second, it is precisely this which makes our system superior to that of Parsons. In fact
as we will see in the next section, Parsons system allows some sentences which involve
polymorphic types but there are many more that he can’t represent. These can be easily
represented in our system.

22

We assume similar unlabelled syntactic categories as Parsons (as given in Definition 5.2) and
let f be the function which maps the syntactic types of Parsons into his semantic ones. That
is, f is defined in Table 2.7 and Tables 2.8 and 2.9 give examples of categories and their
corresponding Ptypes. Our set of labelled categories will also be defined similarly to that of
Parsons except that our labels are elements of T'ypes rather than of Ptypes. That is:

Definition 5.15 (Categories)
C == culCrT | el | T Ol

In fact, categories can be defined in terms of Pcategories as follows:

Definition 5.16 (Translating Pcategories to Categories)
C : Pcategories — Categories

Cu) =

CrPTy = OrZ(PT)

C(
C(
C(PTCIrPT'y =Z(PT)) O Z(PT)
C(

C(PTClprPT5PT"y ZT(PT) O T(PT)Z(PTY)
We define f’ to be our function which corresponds to Parsons’ f. That is, f’ takes a syntactic
category and returns an element in Types.

/! is defined via Table 5.17. Moreover, Tables 5.18 and 5.19 show examples of the result
of f'. Tables 5.17 ... 5.19 correspond to Tables 2.7 ... 2.9

Table 5.17

‘ Categories C ‘ Corresponding semantic types f'(C) ‘
s p
CNT H(t — p)
VPT H(t — p)
NP APV =)
nyn H((NP™) = F(VP)
i H(F(NP™) = P(7)
ADVT H((VPT)) = f(VP)
ADF p—=p
I PREP™ H(f(NP?) = f(ADV™))

It is now easy to check that the words of fixed type of PTQA, which are listed below have
the corresponding semantic types:?

“Note the semantic type corresponding to ?V¢. This is because p — p < p and hence ((e = €) = p) =
(p = p) < ((e > €) = p) — p which is circular.

23

Table 5.18

Words of fixed type

‘ Syn

Type ‘ Sem Type

man®, woman®, park®, fish®,

pen®, unicorn®, -body°® CN® e—=p

fact?, proposition? , answer? CNP p—=p

run®, walk®, talk®, rise®, change® VPe e—=p

obtain? VPP p—=p

John®, Mary®, itf,it§ ... NPe (e =>p)—e

The Pythagorean theorem? ,ith, ith ... | NPP (p—p) —e

€eat®, ©date” eye ((e = p) —e)—(e—p)

Pbelieve?, ©assert? eV (p—=p) —e)—(e—=p)

Pamaze® pye ((e—=p)—e) — (p—=Dp)

€buy®*® eyee (e—=p) —e) = (((e—=p —e)—(e—=p
“tell*P eyep (e—=p) —e)—=({((p—=p)—e)—=>(e—=p
rapidly®, slowly®, voluntarily® ADV* ((e = p) = (e = p))

necessarily ADF p—=p

€in® “PREP* ((e = p)—e) = ((e—=p) — (e —p))

The syntactic rules of PTQA are exactly those listed in Parsons’ paper. We are in the
same position as Parsons in that the sentences walks or obtains, Bill obtains, That John walks
runs, ... are ungrammatical. The formation of these sentences depends on the syntactic rule
S4 and has nothing to do with the subsumption of types. The above fixed types will not
accommodate polymorphism which will be able to deal with John talks about Mary and John
talks about a proposition. For this we will follow Parsons in his notion of floating types.’

Table 5.19
‘ Words of floating types ‘ Type ‘ Semantic Type ‘
thing™ CN™ H(t —p)
set™ 7P CN'™7P | H(T = p) —e
property” P CN™7P | H(r = p)—e
exist” VPP | H(T,p)
ith, it], ... NPT H(f'(VPT) —p)=H(H(T = p) = p)
€find™, €lose”, ¢love”,
“hate”, ¢seck”, ®conceive” | VT H(f'(NP7)) = (e = p)
Thave” 7P Texemplify” P TyTP H(f'(NPT7P) — f/(VPT))
€ givetT eyeT H(fI(NPe) N fl(eVT))
€about” CPREP™ | H(f'(NP7) — ((e = p) = (e = p)))
1 e LT H(f'(NP™) — f'(NP™))

Helas however, we still do not have f’ and f related by the following equation:

f'(€(PC)) = H(Z(f(PC))).

In fact, the following diagram does not commute:

That is: HoZo f # f'oC.

*Note the semantic type of °V7. This is because f(NP7) — (e — p) is not circular.

24

Pcategories f Ptypes
C HoTl
Y \4
categories f! Types

Example 5.20 H(Z(f(°V®))) = ((e = p) = €) — e, whereas f'oC(°V¢) = ((e = p) =€) —

(e — p).

According to this translation, the accounts of John talks about Mary and John talks about
a proposition are the same as Parsons except that the values that we obtain out of the table
says that the type of the sentence is e rather than p. The type however is still p as the
sentence is of category s and we are consistent because p < e.

Table 5.21
Our account of category | Rule | Type ‘
John talks about Mary
about ¢PRED* ((e = p)—e)— ((e—=p) — (e —Dp))
Mary NP (e > p)—e
about Mary ADV® S6 (e =p) — (e —=p)
talk Vpe e—=p
talk about Mary vpe S10 |e—p
John NP (e =>p)—e
John talks about Mary | s e
Table 5.22
Our account of Category | Rule | Type
John talks about a proposition
proposition CNP p—=p
a proposition NPP S2 (p—p —e
about *PREDP ((p—=p) —e)—=((e—=>p)—(e—=p)
about a proposition ADV*® S6 (e =p) = (e—=p)
talk VPe e—=p
talk about a proposition Vpe SI10 |e—p
John NP (e > p)—e
John talks about a propostion s e

25

Also, like him this approach captures that a property runs is ungrammatical. Up to
here, all Parsons framework is accommodated in a type free theory with logic and where the
paradoxes are avoided via circular types. In order to give Parsons’ framework an interpretation
in this type free theory, we kept exactly the same syntax and syntatctic categories, yet we
changed the semantic domains. This is because for type free A-calculus, to have logic inside
it, there must be a way to avoid the paraodxes.

6 Paradoxical sentences, Parsons approach and usefulness of
AL

Parsons’ approach is very attractive and explains in an elegant way the grammaticality or
ungrammaticality of sentences. For example, we can say that john runs but not that a
property runs. The problem that we find with his approach is its limitation in terms of self
reference. For example, Parsons approach rules out sentences such as a property has itself. In
fact the following examples which are an implementation of the theory of types in which we
implemented Parsons system ([Kamareddine 92A]) will give a feel of how the system works:

‘ ‘ Expressions ‘ Types
1 AT.x Bo — Bo
2 | Axr:ex e—e
3 AL.XT (ﬁo — ﬁl) — ﬁl
4 | (Az.zx)(Az.zz) B
5 | Ax:pxzx p—= 0
6 | \r:e—pax error: (e — p) — p is circular
7 | Vo: (B — Br).xy p
8 |Vx:ex error, not a proposition
9 |Vx:(e— fr)xy D
10 | Vz.zx P
11| Az : (Bo — Bu)-wy (Bo — B1) = B
12 | Af.(As:e = pf(ss))(As:e — pf(ss)) error: (p — p) — p is circular
13| Af:e—=p.(As:e—pf(ss))(As:e— pf(ss)) error: (e — p) — p is circular
14| Af.(Az.f (z2))(Az. f (z2)) (B2 = B2) = B
15 | (AMf.(Az.f(zz))(Ax.f(zx))) (A @ p.ax) P
16 | (Af-(Az.f(zz))(Az.f (z2)))(Af-(Az. | (z2)) (Az. f (z2))) | Ba
17 | M.z f(zz))(Ax.f(zx)))(Az.22) Bo
18 | (Az.zz)(Nf.(Ax.f(zz))(Az.f(zx))) 51
19 | Az.—zx error, circular type
20 | Az : (B — t).—xx error, circular type
21 | Az : (By = p).ozx error, circular type
22 | Ar.xx — L error, circular type

Example 6 shows that Parsons’ system cannot have a property which holds of itself.
Example 12 shows that he can’t find the fixed points of properties. Example 11 shows that
he can have everything holds of everything and so on. Of course we can solve the problem
of a property holds of itself. For example the first thing that we can do is take have to
have for syntactic type "have”, and to have semantic type "V7. This will also enable him
to say John has a letter, John has Mary and so on. This idea however would have to be

26

carried out very carefully because syntactically this is how Parsons avoided the paradox. In
our language however, syntactically anything is acceptable because we are working in a type
free framework. Hence it is semantically that we have to explain the meaning of a property
having itself or not having itself. Assume here that we change have to the following, then our
generation of a property has itself and of a property not having itself are as follows:

property CN7—P H(tr —p)—e

a property NPpP7—P H((tr —p)—p —e=(H(T —p)—e)—e
T-)phaST%p T—)pVT—>p

itself NP7—P

has itself VPpP7TP

a property has itself | s e

A property does not have itself is dealt with by adding the syntactic clause for not.
If B is in VP77P then not (is in VPT 7P,

It must be noted here that parsons’ system is much weaker than that described by listing
the 22 examples above. In fact, parsons’ system is not capable of typechecking term 14 above
(which is the fixed point operator). In fact, we have improved Parsons’ system by allowing
it to accommodate and type check many sentences that it could not do originally. Even
more, we don’t have the limitation of Parsons’ system. That is a property can apply to
itself in our system. It is not without a reason that the negation operator accepts objects
and returns objects rather than just accepting propositions and returning propositions. If we
allowed the latter, we will fall foul of the paradox. For example, Az : (e — p).—~zz applied to
itself gives that a proposition is equal to its negation. According to our approach however,
Az(e — e).—zz applied to itself will be equal to its negation. This however, will not result
in a paradox, because it is not obvious how to show that the result is a proposition. So in
summary, for the non problematic sentences, we get propostions but for the probelmatic ones,
we restrict the types to those non circular via the function H.

7 Comparison and Conclusion

From the previous section, we have improved a lot in the expressivity of Parsons’ system by
allowing him to talk about sentences that he could not talk about previously. Even more, we
said that with our flexible typing scheme, we can allow any sentence and type check it as long
as its type was not circular. If the type is circular, we change the final type of the sentence
so that a paradox is impossible to derive. This approach is certainly flexible. Furthermore,
all the type free A-calculus is accommodated in this approach, all self reference and all logic.
Let us now complete the comparison that we started in the previous section by remarking on
the differences between our system and that of [Chierchia, Turner 88].

There is a broad correspondence between our type ‘(e,p)’ and the sort ‘nf’ of the Chier-
chia and Turner paper, and to this extent the two fragments are quite similar. However,
[Chierchia, Turner 88]’s semantic domain D, is the nominalization of all functions from e to
e, rather than those from e to p.

Second, for Chierchia and Turner, only expressions of type nf are nominals. Since their
nominalization operator is exclusively defined for expressions of type (e, e), and they do not
have any kind of type containment for functional types, they do not allow transitive verbs like
love and ditransitives like give to be nominalised. Yet examples such as 1 (from [Parsons 79])

27

and 2 in the example below, show that untensed transitive verbs enter into the same nominal
patterns as intransitives:

Example 7.1

1. To love is to exalt.

2. To give is better than to receive.

By contrast, our approach can accommodate such data straightforwardly.

Third, recall that Turner abandoned the comprehension principle. Now the abandonment
of Frege’s full comprehension axiom will impose the use of two logics, one inside the predi-
cation operator in addition to the usual one for wifs. This is due to the fact that breaking
the equivalence between p(Az.A,t) and A(t,z) will disconnect the reasoning about wifs and
properties.

We have argued in this paper that Natural Language items cannot be rigidly typed and
that if we start from the type free A-calulus, we can flexibly type natural language terms.
That is anything is an expression and anything non problematic will have a type. These types
are polymorphic in the sense that expressions can have variable types and these variable types
may be instantiated to anything. For example, the identity function has type 8y — By, and
the identity function applied to of type e will result in elements of type e. The polymorphic
power of the system comes from the ability to typecheck all polymorphic functions even
those which are problematic in other systems. For example the fixed point operator, Y =
M.z f(xx))(Ax.f(zz)) is typechecked to (B2 — [B2) — (2 and even can apply to itself.
Even YY is typechecked to (35. w = Az.zzx is also typechecked to (8y — (1) — (1 and w
applied to itself is typechecked to 81 . As said earlier, these types can be instantiated so that
YI where I is the identity function over e (i.e. I = Az : e.z), is typechecked to e naturally.
We believe this system is one of the first which can typecheck all the above while remaining
a very expressive and simple one. Another nice characteristic of the system is its ability
to combine logic and the type free A-calculus while remaining consistent. So even though
the Russell sentence (Az.—(zz)) is a well formed sentence of the system, its type cannot
be found. In fact, the system returns an error message explaining that this sentence has a
circular type. The same thing applies to Curry’s sentence (Ax.zz — L). Finally, the typing
scheme that we presented can have a wide range of applications (see [Kamareddine, Klein 93],
[Kamareddine, Klein 94] and [Kamareddine 94]). The reason being that even though types
are very informative either in programming or in natural languages, type freeness and the
non-restricted typing schemes are a necessity in interpreting many natural and programming
language constructs. We believe in the need to have your cake and eat it in the disciplines of
programming and natural languages. That is, we believe it necessary not to be too scared of
the paradoxes to the point of using too restricted languages. We must have the courage to
touch as much as we can the boundary of logic and type freeness between safety and danger.

References

[Aczel 80] Aczel, P., Frege structures and the notions of truth and proposition, Kleene Symposium,
1980.

28

[Aczel 84] Aczel, P., Non well founded sets, CSLI lecture notes, No 14, 1984.

[Barendregt, Hemerik 90] Barendregt, H., and Hemerik, C., Types in Lambda calcului and program-
ming languages, in: European Symposium on programming, ed. N. Jones, Lecture notes in Com-
puter Science 423, Springer, pp. 1-36, 1990.

[Boolos 71] Boolos, g., The iterative conception of sets, Journal of Philosophy LXVIII, pp 215-231,
1971.

[Chierchia, Turner 88] Chierchia, and Turner, R., Semantics and property theory, Linguistics and
Philosophy 11, pp 261-302, 1988.

[Cocchiarella 84] N. Cocchiarella, Frege’s Double Correlation Thesis and Quine’s set theories NF and
ML, Journal of Philosophical Logic 14, pp. 1-39, 1984.

[Feferman 79] Feferman, S., Constructive theories of functions and classes, Logic Colloguium ’78, M.
Boffa et al (eds), pp 159-224, North Holland, 1979.

[Feferman 84] Feferman, S., Towards useful type free theories I, Journal of Symbolic logic 49, pp
75-111, 1984.

[Girard 86] Girard, J.Y., The system F of variable types, fifteen years later, Theoretical Computer
Science 45, pp 159- 192, North-Holland, 1986.

[Kamareddine 89] Kamareddine, F., Semantics in a Frege structure, PhD thesis, University of Edin-
burgh, 1989.

[Kamareddine 92A] Kamareddine, F., A system at the cross roads of logic and functional program-
ming, Science of Computer Programming 19, pp. 239-279, 1992.

[Kamareddine 92B] Kamareddine, F., A-terms, logic, determiners and quantifiers, Journal of Logic,
Language and Information, Volume 1, No 1, pp 79-103, 1992.

[Kamareddine 92C] Kamareddine, F., Set Theory and Nominalisation, Part I, Journal of Logic and
Computation, Volume 2, No 5, pp. 579-604, 1992.

[Kamareddine 92D] Kamareddine, F., Set Theory and Nominalisation, Part II, Journal of Logic and
Computation, Volume 2, No 6, pp 687-707, 1992.

[Kamareddine, Klein 93] Kamareddine, F., and Klein, E., Polymorphism, Type containment and
Nominalisation, Journal of Logic, Language and Information 2, pp 171-215, 1993.

[Kamareddine, Nederpelt 93] Kamareddine, F., and Nederpelt, R.P., On Stepwise explicit substitu-
tion, International Journal of Foundations of Computer Science 4 (3), 197-240, 1993.

[Kamareddine, Klein 94] Kamareddine, F., and Klein, E., Polymorphism and Logic in Natural and
Programming Languages, submitted for publication.

[Kamareddine 94] Kamareddine, F., Non well-typedness and Type-freeness can unify the interpre-
tation of functional application, to appear in the Journal of Logic, Language and Information,
1994.

[Kamareddine, Nederpelt 94A] Kamareddine, F., and Nederpelt, R.P., A unified approach to Type
Theory through a refined A-calculus, Proceedings of the 1992 conference on Mathematical Foun-
dations of Programming Langauge Semantics, edited by Michael Mislove et al, 1994.

[Kamareddine, Nederpelt 94B] Kamareddine, F., and Nederpelt, R.P., The beauty of the \-calculus,
to appear.

[Martin-Lof 73] Martin-Lof, P., An intuitionistic theory of types: predicative part, logic colloquium
78 , Rose and Shepherdson (eds), North Holland, 1973.

[Milner 78] Milner, R., A theory of type polymorphism in programming, Journal of Computer and
System Sciences, Volume 17, No 3, 1978.

29

arsons arsons, T., Type Theory and Natural Language, Linguistics, Philosophy and Montague
P 79 P T.,T Th dN | Language, Li istics, Phil h d M
grammar, S Davis and M Mithum (eds), University of Texas press, pp 127-151, 1979.

[Poincaré 1900] H. Poincaré, Du role de l'intuition et de la logique en mathematiques, C.R. du II
Congr. Intern. des Math., pp. 200-202, 1900.

[Russell 1908] B. Russell, Mathematical logic as based on the theory of types, American Journal of
of Math. 30, pp. 222-262, 1908.

[Scott 75] Scott, D., Combinators and classes, in Lambda Calculus and Computer Science, Lecture
Notes in Computer Science 37, Bshm (ed), Springer, Berlin, pp 1-26, 1975.

[Turner 84] Turner, R., Three Theories of Nominalized Predicates, Studia Logica XLIV?2, pp. 165-186,
1984.

[Turner 87] Turner, R., A Theory of properties Journal of Symbolic Logic 52, pp. 63-89, 1987.

30

