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AbstractIn this paper, we shall write �! using a notation, item notation, which enables oneto make more redexes visible, and shall extend �-reduction to all visible redexes. Wewill prove that �! written in item notation and accommodated with extended reduc-tion, satis�es all its original properties (such as Church Rosser, Subject Reduction andStrong Normalisation). The notation itself is very simple: if I translates classical termsto our notation, then I(t1t2) � (I(t2)�)I(t1) and I(�v:�:t) � (��v)I(t). For exam-ple, t � ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1, can be written in our item notationas I(t) � (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 where the visible re-dexes are based on all the matching ��-couples. So here, the redexes are based on(x2�)(X4�x7), (x3�)(X3�x6) and (x1�)((X1 ! X2)�x5). In classical notation however,only the redexes based on (�x7:X4 : � �)x2 and (�x6:X3 : � �)x3 are immediately visi-ble. The third redex, (�x5:(X1!X2): � �)x2, only becomes visible when the �rst tworedexes have been contracted. We extend �-reduction so that we can contract newly vis-ible redexes even before other redexes have been contracted. So in our example above,(x1�)((X1 ! X2)�x5) can be contracted before (x2�)(X4�x7) or (x3�)(X3�x6). This re-�nement (which cannot be done in classical notation) is achieved by generalising the axiom� from (t1�)(��v)t2 !� t2[v := t1] to (t1�)s(��v)t2 ;� s(t2[v := t1]) for s consisting ofmatching ��-couples only. Hence, as (x2�)(X4�x7)(x3�)(X3�x6) consists of matching ��-couples, we get that I(t);� (x2�)(X4�x7)(x3�)(X3�x6)(((x4�)x5)[x5 := x1]).Furthermore, with our item notation, it is possible to re�ne reduction by rewriting (orreshu�ing) terms so that matching ��-couples occur adjacent to each other. For exam-ple, we can rewrite I(t) above as (x2�)(X4�x7)(x3�)(X3�x6)(x1�)((X1 ! X2)�x5)(x4�)x5.We shall formalise term reshu�ing and shall show that it is correct and preserves both�-reduction and typing.Keywords: �-reduction, Church Rosser, Subject Reduction, Strong Normalisation.
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1 IntroductionThe notation of this paper, item notation, is a novel notation where the argument is givenbefore the function, the type is given before the �, and where the parentheses are groupeddi�erently than those of the classical notation. So that, if I translates classical terms into ournotation, then I(t1t2) is written as (I(t2)�)I(t1) and I(�v:�:t) is written as (��v)I(t). Both(t�) and (��v) are called items.Example 1.1 I((�x:X1!(X2!X3):�y:X1 :xy)z) � (z�)(X1 ! (X2 ! X3)�x)(X1�y)(y�)x. Theitems are (z�), (X1 ! (X2 ! X3)�x), (X1�y) and (y�).Before we discuss the calculus and the properties of typing, let us see why we want to extendthe notion of a redex and to re�ne �-reduction.In the classical �-calculus, the notions of redex, and of �-reduction are described as follows:De�nition 1.2 (Redexes and �-reduction in classical notation)In the classical notation of the �-calculus, a redex is of the form (�v:�:t)t0. Moreover, one-step�-reduction!� is the compatible relation generated out of the axiom �: (�v:�:t)t0 !� t[v := t0].Many step �-reduction !!�, is the reexive transitive closure of !�.With our item notation, classical redexes and �-reduction take the following form:De�nition 1.3 (Classical redexes and �-reduction in item notation)In the item notation of the �-calculus, a classical redex is of the form (t0�)(��v)t. Wecall the pair (t0�)(��v), a ��-pair, or a ��-segment. The classical �-reduction axiom is:(t0�)(��v)t!� t[v := t0]. One and many step �-reduction are de�ned as in De�nition 1.2.Example 1.4 In the classical term t � ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1, we havethe following redexes (the fact that neither x6 nor x7 appear as free variables in their respectivescopes does not matter here; this is just to keep the example simple and clear):1. (�x6:X3 :�x5:X1!X2 :x5x4)x32. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2In item notation t becomes (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5. Here,the two classical redexes correspond to ��-pairs as follows:1. (�x6:X3 :�x5:X1!X2 :x5x4)x3 corresponds to (x3�)(X3�x6). ((X1 ! X2)�x5)(x4�)x5 isignored as it is easily retrievable in item notation. It is the maximal subterm of t to theright of (X3�x6).2. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2 corresponds to (x2�)(X4�x7).Again (x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 is ignored for the same reason as above.There is however a third redex which is not immediately visible in the classical term; namely,(�x5:X1!X2 :x5x4)x1. Such a redex will only be visible after we have contracted the above tworedexes (we will not discuss the order here). In fact, assume we contract the second redex inthe �rst step, and the �rst redex in the second step. I.e.((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1 !�((�x6:X3 :�x5:X1!X2 :x5x4)x3)x1 !�(�x5:X1!X2 :x5x4)x1 !� x1x44



Now, even though all these three redexes are needed in order to get the normal form oft, only the �rst two were visible in the classical term at �rst sight. The third could onlybe seen once we had contracted the �rst two redexes. In item notation, the third redex(�x5:X1!X2 :x5x4)x1 is visible as it corresponds to the matching (x1�)((X1 ! X2)�x5) where(x1�) and ((X1 ! X2)�x5) are separated by the segment (x2�)(X4�x7)(x3�)(X3�x6). Hence,by extending the notion of a redex from being a �-item adjacent to a �-item, to being amatching pair of �- and �-items, we can make more redexes visible. This extension furthermoreis simple, as in (t1�)s(��v), we say that (t1�) and (��v) match if s has the same structureas a matching composite of opening and closing brackets, each �-item corresponding to anopening bracket and each �-item corresponding to a closing bracket. For example, in t above,(x1�) and ((X1 ! X2)�x5) match as (x2�)(X4�x7)(x3�)(X3�x6) has the bracketing structure[ ][ ] (see Figure 1 which is drawn ignoring types just for the sake of argument). With this
(x1�) (x2�) (�x7) (x3�) (�x6) (�x5) (x4�) x5Figure 1: Redexes in item notationextension of redexes, we re�ne �-reduction in two di�erent ways:1. By changing (�) from (t1�)(��v)t2 !� t2[v := t1] to (t1�)s(��v)t2 ;� s(t2[v := t1]) if(t1�) and (��v) match.2. By reshu�ing terms so that matching �'s and �'s occur adjacently.We start by showing that ;;� (the reexive transitive closure of ;�) is a generalisation of!!� (Lemma 3.7). We will then show that �! with ;;� satis�es all the desirable typingproperties. In particular, we will establish that �! extended with;;� satis�es the following:1. Church Rosser: this says that if a program is evaluated in two di�erent ways, then theanswer stays the same (Theorem 3.10).2. Subject Reduction: this says that if a program P is well-typed then the program ob-tained from evaluating some steps in P is also well-typed (Theorem 3.13).3. Unicity of Types: this says that a well-typed program has a unique type and that twoequal programs have the same type (Lemma 3.15).4. Strong Normalisation: this says that all ways of evaluating a well-typed program ter-minate (Theorem 3.21).We will furthermore show that term reshu�ing is correct. In particular, we shall show that�! accommodated with term reshu�ing TS, satis�es the following:1. Reshu�ing a term, moves all �'s next to their matching �'s (Lemma 4.9).5



2. Reshu�ing terms preserves !�. That is, if t ;� t0 then there exists t00 such thatTS(t)!� t00 and TS(t0) � TS(t00) (Lemma 4.11).3. Reshu�ing terms preserves types. That is, if � ` t : � then � ` TS(t) : � (Lemma 4.13).2 �! in item notationIn this section, we shall introduce the known �! (which uses the ordinary �-reduction !!�),and its properties. We shall write �! immediately in item notation. That is, we assume atranslation function I from terms in classical notation to terms in item notation such that:I(v) = v if v is a variableI(�v:�:t) = (��v)I(t)I(t1t2) = (I(t2)�)I(t1)2.1 The basic theoryIn Church's system �!, types and terms are de�ned as follows:De�nition 2.1 (Types of �!)The set of types T of �! is de�ned as follows:T ::= V j (T ! T ) TypesV ::= fX0;X1; � � �g Type variablesThat is, types are either variables such as X0;X1;X2; : : : or arrow types.De�nition 2.2 (Terms of �!)The set of terms �T of �! is de�ned as follows:�T ::= V j (T �V )�T j (�T �)�T TermsV ::= fx0; x1; � � �g VariablesIn other words, a term is either a variable x0; x1; x2; : : :, or an abstraction or an application.Notation 2.3 We let �; �0; �1; �2; : : : range over types, �; �0; �1; �2; : : : range over type vari-ables. Furthermore, we take t; t0; t1; t2; : : : to range over terms and let v; v0; v1; : : : range overvariables.Parentheses moreover will be omitted when no confusion occurs.We understand �1 ! �2 ! � � � �n to mean (�1 ! (�2 ! � � � ! (�n�1 ! �n) � � �)).Bound and free variables in �! are de�ned as usual. We write BV (t) and FV (t) to representthe bound and free variables of t respectively. Substitution moreover, is de�ned in the usualway. Furthermore, we take terms to be equivalent up to variable renaming. For example, wetake (��x0)x0 � (��x1)x1. We assume moreover, the Barendregt variable convention which isformally stated as follows:De�nition 2.4 (BC: Barendregt's Convention for �!)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Hence, we will not have (v�)(��v)v, but (v�)(��v0 )v0 instead.6



De�nition 2.5 (Compatibility)We say that a relation ! on terms is compatible i� the following holds:t! t0(t�)t1 ! (t0�)t1 t! t0(t1�)t! (t1�)t0t! t0(��v)t! (��v)t0Basically compatibility means that if t ! t0 then T [t] ! T [t0] where T [ ] is a \term with ahole in it".De�nition 2.6 (�-reduction !� in �!)In �!, �-reduction !�, is the least compatible relation generated out of the following axiom:(�) (t1�)(��v)t!� t[v := t1]We take !!� to be the reexive transitive closure of !� and =� to be the least equivalencerelation generated by !!�.De�nition 2.7 ((main) items, (main, ��-)segments, context, body, endvar, weight)� If v is a variable, � is a type and t is a term then (��v) and (t�) are items (the �rst iscalled �-item, the second �-item). We use s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.� Each term t is the concatenation of zero or more items and a variable: t � s1s2 � � � snv.These items s1; s2; � � � ; sn are called the main items of t.� Analogously, a segment s is a concatenation of zero or more items: s � s1s2 : : : sn;again, these items s1; s2; : : : ; sn (if any) are called the main items, this time of s.� A concatenation of adjacent main items (in t or s), sm � � � sm+k, is called a mainsegment (in t or s).� A context is a segment which consists of only �-items. We use �;�0;�1;�2; : : : to rangeover contexts.� A ��-segment is a �-item immediately followed by a �-item.� Let t � sv be a term. Then we call s the body of t, denoted body(t), and v the endvariable of t, or endvar(t). It follows that t � body(t) endvar(t).� The weight of a �!-segment s, weight(s), is the number of main items that composethe segment. Moreover, we de�ne weight(t) = weight(body(t)).De�nition 2.8 (Statements)A statement is of the form t : �, t and � are called the subject and the type of the statementrespectively. 7



Convention 2.9 In a context, we never have two occurrences of �v (for the same v). Hence,contexts are what [Barendregt 92] calls bases.We need the following de�nition over contexts:De�nition 2.10 Let � = (�1�v1)(�2�v2) � � � (�k�vk) be a context. Then1. dom(�) = fv1; v2; : : : ; vkg2. (��v) 20 � i� (��v) is an item of �. If �0 is a context such that all items of �0 are alsoitems of �, we write �0 �0 �.3. Let V0 be a set of term variables. � j�V0 (the restriction of � to V0) is the context whichonly contains the items (��v) 20 � for which v 2 V0, in the original order.Now for the formulation of the typing rules we can use the following de�nitions for thederivation of so-called judgements of the form � ` t : �.De�nition 2.11 (Typing rules of �!)A statement t : � is derivable in the context �, notation � ` t : �, if t : � can be derived usingthe following rules:(Axiom) � ` v : � if (��v) 20 �(! �elimination) � ` t : � � ` t0 : (�! �0)� ` (t�)t0 : �0(! �introduction) �(��v) ` t : �0� ` (��v)t : (�! �0)2.2 Properties of �!Here we list the properties of �! (that we will establish for extended reduction) withoutproofs. The reader can refer to [Barendregt 92] for details.Theorem 2.12 (The Church Rosser Theorem)If t!!� t1 and t!!� t2 then there exists t3 such that t1 !!� t3 and t2 !!� t3 2Lemma 2.13 (Context lemma)1. 8�;�08t8�[� �0 �0 ^ � ` t : �) �0 ` t : �]2. 8�8t8�[� ` t : �) FV (t) � dom(�)]3. 8�8t8�[� ` t : �) � j�FV (t) ` t : �]Proof: All by induction on the derivation � ` t : �. 2Lemma 2.14 (Generation lemma)1. 8�8v8�[� ` v : �) (��v) 20 �]2. 8�8t;t08�[� ` (t0�)t : �) 9�0 [� ` t : (�0 ! �) ^ � ` t0 : �0]]8



3. 8�8v8t8�;�0[� ` (�0�v)t : �) 9�00 [� � �0 ! �00 ^ �(�0�v) ` t : �00]]Proof: By induction on the derivation of � ` t : �. 2Lemma 2.15 (Subterm lemma)8�8t8�8t0 [(� ` t : � ^ t0 is a subterm of t)) 9�09�0 [�0 ` t0 : �0]]Proof: By induction on t. 2Lemma 2.16 (Substitution lemma)1. 8�8t8�;�08�2V [� ` t : �) �[� := �0] ` t[� := �0] : �[� := �0]]2. 8�8t;t08�;�0 [�(��v) ` t : �0 ^ � ` t0 : �) � ` t[v := t0] : �0]Proof: 1: by induction on � ` t : �. 2: by induction on �(��v) ` t : �0. 2Theorem 2.17 (Subject Reduction)8�8t8t0jt!!�t08�[� ` t : �) � ` t0 : �]Proof: By induction on !!� using the Generation and Substitution lemmas for the basiccase. 2Lemma 2.18 (Unicity of Types)1. 8�8t8�;�0 [� ` t : � ^ � ` t : �0 ) � � �0]2. 8�8t;t08�;�0 [� ` t : � ^ � ` t0 : �0 ^ t =� t0 ) � � �0]Proof: 1 is by an easy induction on t. 2 is by Church Rosser, Subject Reduction and 1. 2De�nition 2.19 (Strongly Normalising terms with respect to !!�)We say that a term t is strongly normalising with respect to !!� i� every reduction path using!!� and starting at t terminates.Theorem 2.20 (Strong Normalisation with respect to !!�)If � ` t : � then t is strongly normalising with respect to !!�. 23 Generalising reductionIn this section we shall extend the classical notions of redexes and �-reduction of �!. Weshall show that this extension of �! satis�es all the listed properties in Section 2.3.1 Extending redexes and �-reductionWhen one desires to start a �-reduction on the basis of a certain �-item and a �-item occurringin one segment, the matching of the � and the � in question is the important thing, even whenthe �- and �-items are separated by other items. I.e., the relevant question is whether theymay together become a ��-segment after a number of �-steps. This depends solely on thestructure of the intermediate segment. If such an intermediate segment is well-balanced thenthe �-item and the �-item match and �-reduction based on these two items may take place.Here is the de�nition of well-balanced segments:9



De�nition 3.1 (well-balanced segments in �!)� The empty segment ; is a well-balanced segment;� If s is a well-balanced segment, then (t0�)s(��v) is a well-balanced segment.� The concatenation of well-balanced segments is a well-balanced segment;A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each �- (or �-)item corresponding with an opening (resp. closing) bracket.Now we can easily de�ne what matching ��-couples are, given a segment s. Namely, theyare a main �-item and a main �-item separated by a well-balanced segment. Such couplesare reducible couples. The �-item and �-item of the ��-couple are said to match and each ofthem is called a partner or a partnered item. The items in a segment that are not partneredare called bachelor items. The following de�nition summarizes all this:De�nition 3.2 (match, ��- or reducible couple, partner, partnered item, bachelor item, bach-elor segment)Let t be a �!-term. Let s � s1 : : : sn be a segment occurring in t.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is a �-item, andthe sequence si+1; : : : ; sj�1 forms a well-balanced segment.� When si and sj match, we call sisj a ��-couple or reducible couple.� When si and sj match, we call both si and sj the partners in the ��-couple. We alsosay that si and sj are partnered items.� All �- (or �-)items sk in t that are not partnered, are called bachelor �- (resp. �-)items.� A segment consisting of bachelor items only, is called a bachelor segment.� The segment si1 � � � sim consisting of all bachelor main �- (or �-)items of s is called thebachelor �- (or �-)segment of s.Example 3.3 In s � (�1�v1)(�2�v2)(t1�)(�3�v3)(�4�v4)(t2�)(t3�)(t4�)(�5�v5)(�6�v6)(t5�):� (t1�) matches with (�3�v3), (t4�) matches with (�5�v5) and (t3�) with (�6�v6). Thesegments (t1�)(�3�v3) and (t4�)(�5�v5) are ��-segments (and ��-couples). There isanother ��-couple in s, viz. the couple of (t3�) and (�6�v6).� (t1�), (�3�v3), (t3�), (t4�), (�5�v5) and (�6�v6), are the partnered main items of s.(�1�v1), (�2�v2), (�4�v4), (t2�) and (t5�), are bachelor items.� (�1�v1)(�2�v2) and (�4�v4)(t2�) are bachelor segments, whereas (t3�)(t4�)(�5�v5) and(t3�)(t4�)(�5�v5)(�6�v6) are non-bachelor, the latter also being a well-balanced segment.De Bruijn uses another terminology; see e.g. [de Bruijn 93]. In his phrasing, �-items are appli-cators or A's, and �-items are abstractors or T 's. For ��-segments he uses the word AT-pairand for ��-couples he uses AT-couples. Void �-reduction (i.e.: the reduction (t1�)(��v)t!� tif v 62 FV (t)), he calls AT-removal. 10



Having argued above that �-reduction should not be restricted to the ��-segments butmay take into account other candidates, we can extend our notion of �-reduction in this vein.That is to say, we may allow ��-couples to have the same \reduction rights" as ��-segments.In order to accomplish this, we change the �-reduction of De�nition 2.6 to the following:De�nition 3.4 (General �-reduction ;� for �!)General one-step �-reduction;�, is the least compatible relation generated out of the followingaxiom:(general �) (t1�)s(��v)t;� s(t[v := t1]) if s is well-balancedGeneral ;;� is the reexive and transitive closure of ;� and �� is the least equivalencerelation generated by ;;�.Example 3.5 Take Example 1.4. As (x2�)(X4�x7)(x3�)(X3�x6) is a well-balanced segment,then (x1�)((X1 ! X2)�x5) is a ��-couple andt � (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 ;�(x2�)(X4�x7)(x3�)(X3�x6)(((x4�)x5)[x5 := x1]) �(x2�)(X4�x7)(x3�)(X3�x6)(x4�)x1The reducible couple (x1�)((X1 ! X2)�x5) also has a corresponding (\generalised") redexin the traditional notation, which will appear after two one-step �-reductions, leading to(�x5:X1!X2 :x5x4)x1. With ;�, we could reduce ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1 to(�x7:X4 :(�x6:X3 :x1x4)x3)x2. This reduction is di�cult to carry out in the classical �-calculus.The item notation enables a new and important sort of reduction which has not yet beenstudied in relation to the standard �-calculus up to date. We believe that this generalisedreduction (introduced in [Nederpelt 73]) can only be obtained tidily in a system formulatedusing some form of our item notation. In fact, one is to compare the bracketing structure ofthe classical term t of Example 1.4, with the bracketing structure of the corresponding termin item notation:Example 3.6 The \bracketing structure" of ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :��)x3)x2)x1 is com-patible with `[1 [2 [3 ]2 ]1 ]3', where `[i' and `]i' match. In item notation however, it has thebracketing structure [[ ][ ]].We strongly believe that it is the item notation which enables us to extend reduction smoothlybeyond !!�. Because a well-balanced segment may be empty, the general �-reduction rulepresented above is really an extension of the classical �-reduction rule.Lemma 3.7 Let t1; t2 be �!-terms. If t1 !� t2 in the sense of De�nition 2.6, then t1 ;� t2in the sense of De�nition 3.4. Moreover, if t1 ;� t2 comes from contracting a ��-segmentthen t1 !� t2.Proof: Obvious as a ��-segment is a ��-couple. 23.2 Properties of �! with generalised reductionIf we look at Section 2.2, we see that Context, Generation, Subterm, Substitution and Unicityof Types (part 1) lemmas are not a�ected by our extension of Reduction. Hence, they allstill hold for �! with ;;�. The only three (and very important) properties that get a�ected11



by ;;� are: Church Rosser (Theorem 2.12), Subject Reduction (Theorem 2.17), Unicity ofTypes (part 2, Lemma 2.18), and Strong Normalisation (Theorem 2.20). In this section, weshall show that these properties are preserved for ;;� .The proof of the generalised Church Rosser theorem is simple. The idea is to show thatif t;;� t0 then t =� t0 and to use the Church Rosser property for =�.Lemma 3.8 If t;� t0 then t =� t0.Proof: It su�ces to consider the case t � s1(t1�)s(��v)t2 where the contracted redex isbased on (t1�)(��v), t0 � s1 s(t2[v := t1]), and s is well-balanced (hence weight(s) is even).We shall prove the lemma by induction on weight(s).� Case weight(s) = 0 then obvious as ;� coincides with !� in this case.� Assume the property holds when weight(s) = 2n. Take s such that weight(s) = 2n+2.Now, s � (t3�)s0(�0�v0)s00 where s0, s00 are well-balanced. Assume v 6� v0 (if necessary,use renaming).{ As s(t2[v := t1]);� s0(s00(t2[v := t1])[v0 := t3]), we get by IH and compatibility thatt0 =� s1 s0(s00(t2[v := t1])[v0 := t3]) � s1 s0(s00[v0 := t3])(t2[v := t1][v0 := t3]) � t.{ Moreover, t � s1(t1�)(t3�)s0(�0�v0)s00(��v)t2 ;� s1(t1�)s0(s00(��v)t2[v0 := t3]) �BCs1(t1�)s0(s00[v0 := t3])(��v)(t2[v0 := t3]) � t00. Hence by IH, t =� t00.{ Now, t00 ;� s1s0(s00[v0 := t3])(t2[v0 := t3][v := t1]). But by BC, v, v0 62 FV (t1) [FV (t3). Hence, by IH and substitution,t00 =� s1s0(s00[v0 := t3])(t2[v := t1][v0 := t3]) � t000.Therefore, t =� t00; t00 =� t000 and t0 =� t000, hence t =� t0. 2Corollary 3.9 If t;;� t0 then t =� t0. 2Theorem 3.10 (The general Church Rosser theorem)If t;;� t1 and t;;� t2, then there exists t3 such that t1 ;;� t3 and t2 ;;� t3.Proof: As t ;;� t1 and t ;;� t2 then by Corollary 3.9, t =� t1 and t =� t2. Hence,t1 =� t2 and by the Church Rosser property for the classical lambda calculus, there exists t3such that t1 !!� t3 and t2 !!� t3. But, t0 !!� t00 implies t0 ;;� t00. Hence the Church-Rossertheorem holds for the general �-reduction. 2For the proof of Subject Reduction, we need the following \shu�e lemma".Lemma 3.11 � ` s1(t1�)s2t2 : � , � ` s1 s2(t1�)t2 : � where s2 is well-balanced and thebinding variables in s2 are not free in t1.Proof: By induction on weight(s2).� case weight(s2) = 0 then nothing to prove.� case weight(s2) = 2, say s2 � (t3�)(�1�v). We use induction on weight(s1).
12



{ Suppose weight(s1) = 0.)) suppose � ` (t1�)(t3�)(�1�v)t2 : �.Using the Generation lemma three times, we obtain:� ` (t3�)(�1�v)t2 : �0 ! �� ` t1 : �0 (1)� ` (�1�v)t2 : �1 ! (�0 ! �)� ` t3 : �1 (2)�(�1�v) ` t2 : �0 ! � (3)Hence �(�1�v) ` (t1�)t2 : � (Context, !-elimination, (1), (3)) (4)Now, � ` (�1�v)(t1�)t2 : �1 ! � (!-introduction, (4)) (5)And so, � ` (t3�)(�1�v)(t1�)t2 : � (!-elimination, (5), (2))() Suppose � ` (t3�)(�1�v)(t1�)t2 : �.Using the Generation lemma three times we obtain:� ` (�1�v)(t1�)t2 : �1 ! �� ` t3 : �1 (6)�(�1�v) ` (t1�)t2 : ��(�1�v) ` t2 : �0 ! � (7)�(�1�v) ` t1 : �0 (8)Hence, � ` (�1�v)t2 : �1 ! (�0 ! �) (!-introduction, (7)) (9)� ` (t3�)(�1�v)t2 : �0 ! � (!-elimination, (6), (9)) (10)� ` t1 : �0 (context, (8), as v 62 FV (t1)) (11)� ` (t1�)(t3�)(�1�v)t2 : � (!-elimination, (10), (11)){ Now suppose weight(s1) = n+ 1.� Case s1 � (t4�)s01 then� ` (t4�)s01(t1�)(t3�)(�1�v)t2 : �,Generation;!�elimination� ` s01(t1�)(t3�)(�1�v)t2 : �0 ! � ^ � ` t4 : �0 ,IH� ` s01(t3�)(�1�v)(t1�)t2 : �0 ! � ^ � ` t4 : �0 ,!�elimination;Generation� ` (t4�)s01(t3�)(�1�v)(t1�)t2 : �� Case s1 � (�2�v0)s01 then� ` (�2�v0)s01(t1�)(t3�)(�1�v)t2 : �,Generation;!�introduction�(�2�v0) ` s01(t1�)(t3�)(�1�v)t2 : �3 ^ � � �2 ! �3 ,IH�(�2�v0) ` s01(t3�)(�1�v)(t1�)t2 : �3 ^ � � �2 ! �3 ,!�introduction;Generation� ` (�2�v0)s01(t3�)(�1�v)(t1�)t2 : �.� case weight(s2) = 2(n+1); n � 1. If s2 � (t3�)s3(�1�v)s4 where s3; s4 are well-balancedand IH holds for them, then:� ` s1(t1�)(t3�)s3(�1�v)s4t2 : �,IH� ` s1(t1�)s3(t3�)(�1�v)s4t2 : �,IH� ` s1 s3(t1�)(t3�)(�1�v)s4t2 : �,IH 13



� ` s1 s3(t3�)(�1�v)(t1�)s4t2 : �,IH� ` s1(t3�)s3(�1�v)(t1�)s4t2 : �,IH� ` s1(t3�)s3(�1�v)s4(t1�)t2 : �. 2Remark 3.12 Note that in Lemma 3.11 above, we insisted on the condition that the bindingvariables in s2 are not free in t1 in order to avoid cases such as moving (v�) in (t0�)(��v)(v�)to the left of (t0�)(��v).Now we can prove Subject Reduction for generalised �-reduction.Theorem 3.13 (Generalised Subject Reduction)If � ` t : � and t;;� t0 then � ` t0 : �.Proof: By induction on ;;�.� Basic Case: (t1�)s2(�1�v)t2 ;� s2(t2[v := t1]) and � ` (t1�)s2(�1�v)t2 : �.� ` (t1�)s2(�1�v)t2 : �)Lemma 3:11� ` s2(t1�)(�1�v)t2 : �)Lemma 2:17� ` s2(t2[v := t1]) : �.� The reexivity, transitivity and compatibility cases are easy. 2For Unicity of Types, we just need the following lemma:Lemma 3.14 If t �� t0 then t =� t0.Proof: By induction on t �� t0 using Corollary 3.9. 2Lemma 3.15 (Generalised Unicity of Types)1. 8�8t8�;�0 [� ` t : � ^ � ` t : �0 ) � � �0]2. 8�8t;t08�;�0 [� ` t : � ^ � ` t0 : �0 ^ t �� t0 ) � � �0]Proof: The proof of 1 is the same for Lemma 2.18. The proof of 2 is also carried fromLemma 2.18 using Lemma 3.14 above. 2Now we come to the proof of Strong Normalisation. For this, we need the following de�nition:De�nition 3.16� We say that t 2 �T is strongly normalising with respect to ;;� i� every reductionpath (with respect to ;;�) starting at t, terminates.� We de�ne SN = ft 2 �T : t is strongly normalising with respect to;;�g.� For A;B � �T we de�ne A �! B = ft 2 �T : 8t0 2 A[(t0�)t 2 B]g.� We de�ne [j ]j : T �! Power Set of �T as follows:[j�]j = SN[j�! �0]j = [j�]j �! [j�0]j� We call X � SN saturated i�: 14



1. 8n � 0; t1; � � � tn 2 SN; v 2 V [(t1�) � � � (tn�)v 2 X].2. 8n � 0; t; t1; � � � ; tn 2 SN; � 2 T ; s well-balanced; t0 2 �T[(t1�) � � � (tn�)s(t0[v := t]) 2 X ) (t1�) � � � (tn�)(t�)s(��v)t0 2 X].� We de�ne SAT = fX � �T : X saturatedgThose familiar with the proof of Strong Normalisation of �!, will notice that we have accom-modated ;;� in the de�nition of SN and that in the second condition of a saturated set, wehave accommodated extended redexes. The accommodation of saturated sets with extendedredexes is not necessary, the proof can go without it. Furthermore, the following is the cruciallemma which highlights the di�erence between!!� and;;�. Once this lemma is established,the proof of Strong Normalisation proceeds similarly to that of ordinary !!� .Lemma 3.171. SN 2 SAT .2. A;B 2 SAT ) A �! B 2 SAT .3. � 2 T ) [j�]j 2 SAT .Proof:1. SN � SN and if t1; � � � ; tn 2 SN; v 2 V then similarly (t1�) � � � (tn�)v 2 SN .Now, if t; t1; � � � ; tn 2 SN; � 2 T ; s is well-balanced and t0 2 �T such that(t1�) � � � (tn�)s(t0[v := t]) 2 SN then also (t1�) � � � (tn�)(t�)s(��v)t0 2 SN :� Reductions inside t0; t; s or one of the ti must terminate since these terms are SN(subterms of SN -terms are themselves SN , t0[v := t] is SN ) t0 is SN).� A reduction path of (t1�) � � � (tn�)(t�)s(��v)t0 goes to (t01�) � � � (t0n�)(t00�)s0(��v)t000with t0 ;;� t000 etc. and then to (t01�) � � � (t0n�)s0(t000[v := t00]); since(t1�) � � � (tn�)s(t0[v := t]) 2 SN also (t01�) � � � (t0n�)s0(t000[v := t00]) 2 SN .2. Suppose A;B 2 SAT .� As v 2 A for all v 2 V , we see: t 2 A �! B ) (v�)t 2 B ) (v�)t 2 SN ) t 2SN . So A �! B � SN .� If t1; � � � ; tn 2 SN; v 2 V then for all t 2 A, as t 2 SN and B 2 SAT , we get that(t�)(t1�) � � � (tn�)v 2 B. Hence (t1�) � � � (tn�)v 2 A �! B which proves condition1 of saturation.� As to condition 2, suppose t; t1; � � � ; tn 2 SN; t0 2 �T ; s is well-balanced, � a typeand (t1�) � � � (tn�)s(t0[v := t]) 2 A �! B.Let t00 2 A. Then (t00�)(t1�) � � � (tn�)s(t0[v := t]) 2 B, by de�nition of A �! B.Hence (t00�)(t1�) � � � (tn�)(t�)s(��v)t0 2 B since B 2 SAT; t00 2 A � SN .This means (t1�) � � � (tn�)(t�)s(��v)t0 2 A �! B.3. Easy induction on the generation of � using 1 and 2. 215



Corollary 3.18 For all � 2 T , we have [j�]j 6= ; and [j�]j � SN .Proof: Note that no saturated set is empty (use SN 6= ; and condition 1 of saturatedsets). 2De�nition 3.19� A valuation is a map g : V �! �T� If g is a valuation then [j ]jg is de�ned inductively as follows:[jv]jg = g(v)[j(t�)t0]jg = ([jt]jg�)[jt0]jg[j(��v)t]jg = (��v)[jt]jg(v:=v)where g(v := N) is the valuation that assigns g(v0) to v0 6� v and N to v. Note that [jt]jgsubstitutes g(v0) for v0 in t for all free variables v0 of t. For example, [j(��x)(y�)x]jg =(��x)(g(y)�)x.� j= is de�ned as follows:g j= t : � i� [jt]jg 2 [j�]jg j= � i� for all (��v) 20 �; we have g j= v : �� j= t : � i� for all valuations g, if g j= � then g j= t : �Lemma 3.20 (Soundness)If � ` t : � then � j= t : �.Proof: By a straightforward induction on the derivation of � ` t : �. We only treat the!-introduction.Suppose � ` (��v)t : �! �0 out of �(��v) ` t : �0.Suppose g j= � in order to show g j= (��v)t : �! �0 (i.e. for all t0 2 [j�]j: (t0�)[j(��v)t]jg 2 [j�0]j).Let t0 2 [j�]j. Then g(v := t0) j= �(��v), so by the induction hypothesis [jt]jg(v:=t0) 2 [j�0]j.Since (t0�)[j(��v)t]jg � (t0�)(��v)[jt]jg(v:=v) !� [jt]jg(v:=v)[v := t0] � [jt]jg(v:=t0), t0 2 [j�]j � SNand [j�0]j 2 SAT , also (t0�)[j(��v)t]jg 2 [j�0]j. 2Theorem 3.21 (Strong Normalisation with respect to ;;�)If � ` t : � then t is strongly normalising with respect to ;;�.Proof: Suppose � ` t : �. De�ne g(v) = v. Then g j= � (because [j�]j 2 SAT , so V � [j�]j).Hence by soundness [jt]jg 2 [j�]j � SN . But [jt]jg � t. 24 Term reshu�ingIn this section we shall rewrite terms so that all the newly visible redexes (obtained as aresult of our item notation), can be subject to the ordinary classical �-reduction !!�. Weshall show that this term rewriting is correct and preserves both reduction (be it only in acertain sense) and typing.Let us go back to the de�nition of ��-couples. Recall that if s � s1 � � � sm for m > 1 wheres1sm is a ��-couple then s2 � � � sm�1 is a well-balanced segment, s1 � (t1�) is the �-item of the��-couple and sm � (��v) is its �-item. Now, we can move s1 in s so that it occurs adjacentlyto sm. That is, we may rewrite s as s2 � � � sm�1s1sm.16



Example 4.1 The term (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 can be eas-ily rewritten as (x2�)(X4�x7)(x3�)(X3�x6)(x1�)((X1 ! X2)�x5)(x4�)x5 by moving the item(x1�) to the right. Hence, we can rewrite (or reshu�e) a term so that all �-items stand nextto their matching �-items. This means that we can keep the old �-axiom and we can contractredexes in any order. Such an action of reshu�ing is not easy to describe in the classicalnotation. That is, it is di�cult to describe how ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1, isrewritten as (�x7:X4 :(�x6:X3 :(�x5:X1!X2 :x5x4)x1)x3)x2. This is another advantage of our itemnotation.Note furthermore that the shu�ing is not problematic because we use the Barendregt Con-vention which means that no free variable will become unnecessarily bound after reshu�ingdue to the fact that names of bound and free variables are distinct.Lemma 4.2 If v� is a free occurrence of v in ss1 t, then v� is free in s1s t.Proof: By BC as �v does not occur in ss1t. 2Example 4.3 Note that in Example 4.1, reshu�ing does not a�ect the \meaning" of theterm. In fact, in t � (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5, the free variablex1 cannot be captured by �x7 or �x6 . Moreover, t is equivalent, semantically and procedurally,to (x2�)(X4�x7)(x3�)(X3�x6)(x1�)((X1 ! X2)�x5)(x4�)x5.We call this process of moving �-items of ��-couples in a term to occupy positions adjacent totheir �-partners, term reshu�ing. This term reshu�ing should be such that all the �-itemsof well-balanced segments in a term are shifted to the right until they meet their �-partners.To do this however, we must study the classes of partnered and bachelor items in a term.4.1 Partitioning the term into bachelor and well-balanced segmentsWith De�nition 3.2, we may categorize the main items of a term t into di�erent classes:1. The \partnered" items (i.e. the �- and �-items which are partners, hence \coupled" toa matching one).2. The \bachelors" (i.e. the bachelor �-items and bachelor �-items).Lemma 4.4 Let s be the body of a term t. Then the following holds:1. Each bachelor main �-item in s precedes each bachelor main �-item in s.2. The removal from s of all bachelor main items, leaves behind a well-balanced segment.3. The removal from s of all main ��-couples, leaves behind a � : : : �| {z }n � : : : �| {z }m -segment, con-sisting of all bachelor main �- and �-items.4. If s � s1(t�)s2(��v)s3 where (��v) and (t�) match, then s2 is well-balanced.Proof: 1 is by induction on weight(s0) for s � s0(��v)s00 and (��v) bachelor in s. 2 and3 are by induction on weight(s). 4 is by induction on weight(s2). 2Note that we have assumed ; well-balanced. We assume it moreover non-bachelor.17



Corollary 4.5 For each non-empty segment s, there is a unique partitioning in segmentss0; s1; : : : ; sn, such that1. s � s0 s1 � � � sn,2. For all 0 � i � n, si is well-balanced in s for even i and si is bachelor in s for odd i.3. each bachelor �-segment sj precedes each bachelor �-segment sk in s.4. s2n 6� ; for n > 0. 2Example 4.6 s � (�1�v1)(�2�v2)(t1�)(�3�v3)(�4�v4)(t2�)(t3�)(t4�)(�5�v5)(�6�v6)(t5�) has thefollowing partitioning:� well-balanced segment s0 � ;,� bachelor segment s1 � (�1�v1)(�2�v2),� well-balanced segment s2 � (t1�)(�3�v3),� bachelor segment s3 � (�4�v4)(t2�),� well-balanced segment s4 � (t3�)(t4�)(�5�v5)(�6�v6),� bachelor segment s5 � (t5�).4.2 The reshu�ing procedure and its propertiesIn what follows, we use !1; !2; : : : to range over f�g[f�v ; v 2 V g, and we shall use A1; A2; : : :to range over both terms and types (i.e. over �T [ T ).De�nition 4.7 TS and T are de�ned mutually recursively such that:TS(�) =df �TS(sv) =df TS(s)vTS((A1!1) � � � (An!n)) =df (TS(A1)!1) � � � (TS(An)!n) if (A1!1) � � � (An!n) is bachelorTS(s) =df T (;; s) if s is well-balancedTS(s0 � � � sn) =df TS(s0) � � � TS(sn) If s0 � � � sn, is the uniquepartitioning of Corollary 4.5T (s(t�); (��v)s0) =df (t�)(��v)T (s; s0)T (s; (t�)s0) =df T (s(TS(t)�); s0)T (;; ;) =df ;Note that in this de�nition, we use s bachelor to mean s bachelor in s.The following lemma will be needed in the proofs:Lemma 4.81. If s is well-balanced, then T (s1; s s2) � TS(s)T (s1; s2).2. If (t�) matches (��v) in s0 � (t�)s(��v)s00 then TS(s0) � TS(s(t�)(��v)s00).11Note here that, from BC, no binding variables of s are free in t.18



3. If s contains no items which are partnered in t then TS(st) � TS(s)TS(t).4. If s is bachelor in st or is well-balanced, then TS(st) � TS(s)TS(t).Proof: 1: by induction on weight(s). Case weight(s) = 0 then obvious.Case s � (t�)s0(��v)s00 thenT (s1; (t�)s0(��v)s00 s2) � T (s1(TS(t)�); s0(��v)s00 s2) �IHTS(s0)T (s1(TS(t)�); (��v)s00 s2) � TS(s0)(TS(t)�)(��v)T (s1; s00 s2) �IHTS(s0)(TS(t)�)(��v)TS(s00)T (s1; s2) � TS(s0)T ((TS(t)�); (��v)s00)T (s1; s2) �IHT ((TS(t)�); s0(��v)s00)T (s1; s2) � TS((t�)s0(��v)s00)T (s1; s2)2: using 1. 3: let t � s0 � � � snv and s � s00 � � � s0m be partitionings. Use cases on s0 beingempty or not and on s0m being bachelor or well-balanced. 4: This is a corollary of 3 above. 2The following lemma shows that TS(t) changes all ��-couples of t to ��-segments.Lemma 4.9 For every subterm t0 of a term t, the following holds:1. TS(t0) is well-de�ned.2. If s � (t00�)s0(��v) is a subsegment of t0 where s0 is well-balanced, then TS(s) �TS(s0)(TS(t00)�)(��v).3. If s � (A1!1) � � � (An!n) is bachelor in t0, then TS(s) � (TS(A1)!1) � � � (TS(An)!n) isbachelor in TS(t0).4. If s is a subsegment of t0 which is well-balanced, then TS(s) is well-balanced.Proof: By induction on t.� Case t � v then t is the unique subterm of t and all 1 � � � 4 hold.� Assume t � (A!)t2 where IH holds for A if A � t1 and for t2. Let t0 be a subterm of t.If t0 is a subterm of t1 (for A � t1) or t2 then use IH. If t0 � t then:{ Case (A!) is bachelor then TS(t) �Lemma 4:8 (4) (TS(A)!)TS(t2). Here all 1 � � � 4hold by IH on A and t2.{ Case A � t1 ^ (t1�) matches (��v) in t. I.e. t � (t1�)s(��v)t3 thenTS(t) �Lemma 4:8(1;3) TS(s)(TS(t1)�)(��v)TS(t3). Now use IH to show 1 � � � 4. 2Lemma 4.10 For all variables v and terms t; t0 we have:TS(t) � TS(TS(t)) and TS(t[v := t0]) � TS(TS(t)[v := TS(t0)]).Proof: By induction on t we show that for all subterms t00 of t, TS(t00) � TS(TS(t00))and TS(t00[v := t0]) � TS(TS(t00)[v := TS(t0)]). 2Note that if t!� t0 and if all the ��-couples in t are ��-segments, then it is not necessary thatall the ��-couples of t0 are ��-segments. In other words, we can have TS(t1)!� t2 where t2 6�TS(t2). For example, (x1�)(x2�)(��x3)((�0�x4)x4�)(�00�x5)x5 !� (x1�)(x2�)(��x3 )(�0�x4)x4.Following this remark, we show that in a sense, term reshu�ing preserves �-reduction.Lemma 4.11 If t; t0 2 �! and t ;� t0 then (9t00)[(TS(t) !� t00) ^ TS(t00) � TS(t0)]. Inother words, the following diagram commutes:19



TS(t)t t00?TS(t00) � TS(t0)t0!� ;�? ?TS TSProof: By induction on the general ;�.� Case t � s0(t1�)s(��v)t3 ;� t0 � s0 s(t3[v := t1]), we use induction on the number n ofbachelor �-items of s0 that are partnered in t3. Recall that s is well-balanced.{ Case n = 0 thenTS(s0(t1�)s(��v)t3) �Lemma 4:8 (3;4)TS(s0)TS((t1�)s(��v))TS(t3) �Lemma 4:8 (2;4)TS(s0)TS(s)(TS(t1)�)(��v)TS(t3) !�TS(s0)TS(s)(TS(t3)[v := TS(t1)]) � t00:TS(t00) �Lemmas 4:9; 4:10; 4:8 (3;4)TS(s0)TS(s)TS(TS(t3)[v := TS(t1)]) �Lemma 4:10TS(s0)TS(s)TS(t3[v := t1]) �TS(s0 s(t3[v := t1])){ Assume the property holds for n and let us show it for the case where s0 containsn + 1 �-items which match �-items of t3. Let (t00�) be the leftmost such �-itemof s0. Take s0 � s01(t00�)s001 and t3 � s02(�0�v0)t2 where (t00�) matches (�0�v0). ByLemma 4.4, (t00�)s001(t1�)s(��v)s02(�0�v0) is well-balanced. Moreover, no item of s01has a partner in (t00�)s001(t1�)s(��v)t3.As s001(t1�)s(��v)s02(t00�)(�0�v0)t2 ;� s001s(s02(t00�)(�0�v0)t2[v := t1]), we �nd by IH,t000 such thatTS(s001(t1�)s(��v)s02(t00�)(�0�v0)t2)!� t000^TS(t000) � TS(s001s(s02(t00�)(�0�v0)t2[v := t1]))Now, TS(s01)t000 is the wanted term because:TS(t) �Lemma 4:8 (4) TS(s01)TS((t00�)s001(t1�)s(��v)s02(�0�v0)t2) �Lemma 4:8 (2)TS(s01)TS(s001(t1�)s(��v)s02(t00�)(�0�v0)t2)!� TS(s01)t000and TS(TS(s01)t000) �Lemma 4:10TS(s01)TS(s001s(s02(t00�)(�0�v0)t2[v := t1])) �Lemma 4:8 (2); BCTS(s01)TS((t00�)s001s(s02[v := t1])(�0�v0)(t2[v := t1])) �Lemma 4:8 (4);s001 s s02 well�balancedTS(s01(t00�)s001s(s02(�0�v0)t2[v := t1])) � TS(t0).� The proof of compatibility is technical. The di�cult case is: t � (t1�)t2 and t2 ;� t02.Distinguish the cases: (t1�) is bachelor or non-bachelor in t. 2Corollary 4.12 If t;;� t0 then there exist t0; t1; � � � tn such that[(t � t0) ^ (TS(t0)!� t1) ^ (TS(t1)!� t2) ^ � � � ^ (TS(tn�1)!� tn) ^ (TS(tn) � TS(t0))]Proof: By induction on !!�.� Case t;� t0 use Lemma 4.11. 20



� Case t;;� t then obvious (n = 1 ^ t0 � t ^ t1 � TS(t)).� Case t0 ;;� t00 ^ t00 ;;� t000, then by IH, there exist t0; t1; � � � ; tn; t00; t01; � � � t0m such that(t0 � t0)^(TS(t0)!� t1)^(TS(t1)!� t2)^� � �^(TS(tn�1)!� tn)^(TS(tn) � TS(t00))^(t00 � t00) ^ (TS(t00) !� t01) ^ (TS(t01) !� t02) ^ � � � ^ (TS(t0m�1) !� t0m) ^ (TS(t0m) �TS(t000)). Hence, (t0 � t0) ^ (TS(t0) !� t1) ^ � � � ^ (TS(tn�1) !� tn) ^ (TS(tn) !�t01) ^ � � � ^ (TS(t0m�1)!� t0m) ^ (TS(t0m) � TS(t000)).Note that for the basic and reexive cases, n = 1 for sure. For the transitive case, thismay not be so. For example, t � (��x1)((�0�x2)(�00�x3)x1�)(�000�x4)(x1�)(x1�)x4 ;;� t0 �(��x1)(x1�)(�0�x2)x1 yet t ;;� t0 does not imply there exists t00 such that TS(t) !!� t00 ^TS(t00) � TS(t0). There is however t1 � (��x1)(x1�)(x1�)(�0�x2)(�00�x3)x1 and t2 � t0 suchthat TS(t)!� t1 ^ TS(t1)!� t2 and TS(t2) � TS(t0). 2Finally, we show that term reshu�ing preserves typing:Lemma 4.13 If � ` t : � then � ` TS(t) : �.Proof: By induction on t.� Case t � v, then nothing to prove.� Case t � (�0�v)t0 then� ` (�0�v)t0 : � )Generation�(�0�v) ` t0 : �00 ^ � � �0 ! �00 )IH�(�0�v) ` TS(t0) : �00 ^ � � �0 ! �00 )!�introduction; Lemma 4:8 (3)� ` TS((�0�v)t0) : �� Case t � (t0�)t00 then{ Case (t0�) is bachelor in t then� ` (t0�)t00 : � )Generation� ` t0 : �0 ^ � ` t00 : �0 ! � )IH� ` TS(t0) : �0 ^ � ` TS(t00) : �0 ! � )!�elimination� ` (TS(t0)�)TS(t00) : � )Lemma 4:8 (3)� ` TS((t0�)t00) : �{ Case (t0�) is partnered in t, then t � (t0�)s(�0�v)t1 where s is well-balanced, andno binding variables of s are free in t0.� ` (t0�)s(�0�v)t1 : � )Generation� ` t0 : �0 ^ � ` s(�0�v)t1 : �0 ! � )IH� ` TS(t0) : �0 ^ � ` TS(s(�0�v)t1) : �0 ! � )!�elimination� ` (TS(t0)�)TS(s(�0�v)t1) : � )Lemma 4:8 (4)� ` (TS(t0)�)TS(s)(�0�v)TS(t1) : � )Lemma 3:11� ` TS(s)(TS(t0)�)(�0�v)TS(t1) : � )Lemma 4:8 (4)� ` TS(s(t0�)(�0�v)t1) : � )Lemma 4:8 (2)� ` TS((t0�)s(�0�v)t1) : � ) � ` TS(t) : � 221



5 ConclusionIn this paper, we observed that if we change slightly the classical �-notation, then we canmake more redexes visible. This is useful and is in line with current research on the neededredexes (for normal forms) as in [BKKS 87]. Making more redexes visible will work to ouradvantage if we could also contract these redexes before other ones. For example, in lazyevaluation ([Launchbury 93]), some redexes get frozen while other ones are being contracted.Now, if we had the ability of choosing which redex to contract out of all visible redexes, ratherthan waiting for some redex to be evaluated before we can proceed with the rest, then we cansay that we have achieved a exible system where we have control over what to contract ratherthan letting reductions force themselves in some order. This may lead to some advantagesconcerning optimal reductions as in [L�evy 80].With our notation, and our new �-reduction, we achieve this exibility and freedom ofchoice. Moreover, we do not lose any of the original properties. We have shown in fact thatwhat we provide is a more general �-reduction where more redexes are visible and where allthe original properties (using ordinary classical reduction) still hold for our general reduction.We believe this to be an important breakthrough which may lead to new reduction strategiesthat may explain various programming principles (such as lazy evaluation) in an elegant way.We have shown further that, using item notation (which makes more redexes visible), oneis able to stick to the old �-reduction and just do a simple reshu�ing so that these newlyvisible redexes can be contracted before other redexes. We have shown that this reshu�ing(which is very simple and can only be enabled in our notation), is correct. In fact, reshu�ingdoes really make all redexes subject to immediate contraction and preserves typing. So, ift has type � then the reshu�ed version of t also has type �. It is moreover the case thatif t ;;� t0 using our extended reduction, then TS(t) can be transformed into TS(t0) usingclassical reduction and intermediate term reshu�ing.The work carried out in this paper will have many applications. We mentioned thesemantics of lazy evaluation and the new reduction strategies which may lead to furtheroptimal results. These points are under investigation. The new notation moreover deservesattention. [KN 93] and [NK 94] have shown many of its advantages for formulating andgeneralising type theory and for rendering substitution explicit in the �-calculus. Furtheradvantages are also studied in [KN 9z].References[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction andspine strategies for the �-calculus, Information and Computation 75 (3), 1191-231, 1987.[de Bruijn 93] Bruijn, N.G. de, Algorithmic de�nition of lambda-typed lambda calculus, in Huet, G.and Plotkin, G. eds. Logical Environments, 131-146, Cambridge University Press, 1993.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-nal of Foundations of Computer Science 4 (3), 197-240, 1993.[KN 9z] Kamareddine, F., and Nederpelt, R.P., The beauty of the �-calculus, in preparation.22
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