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1 Brief SynopsisAutomath was invented by de Bruijn ([Nederpelt 73]) with the basic goal of automatingMathematics. The language and theory of Automath were designed to deal with very basicquestions of which only now the computing community is becoming aware. Of these topics,we mention explicit substitution and de�nitions ([1] and [SP 93]). In the beginning, it wasclaimed that the notation of Automath is too di�cult. Now, it became clear that the inuenceof Automath on various theorem provers is invaluable.In Automath, (�x:A:B) and (AB) are written as (A�xB) and (B�A) respectively. Wepropose to change slightly the Automath notation so that the above two terms would bewritten in our notation (item notation), as (A�x)B and (B�)A respectively. This slight changehas been studied for explicit substitution in [KN 93], generalised reduction and de�nitionsin [BKN 9x] and was shown to bear attractive advantages over both the classical and theAutomath notations. This paper will concentrate on a new feature related to reshu�ingterms so that more redexes become visible. The idea is explained as follows:Assume a redex is a `[' next to a `]'. What will happen in a term of the form `[ [ ] [ ] ]'?We know that the two internal `[ ]' are redexes, but classical notation does not allow us tosay that the outside `[' and `]' form a redex. In [BKN 9x], we generalised the notion of aredex from a pair of adjacent matching parentheses to simply a pair of matching parentheses.Hence, with generalised reduction all the three redexes are visible in `[ [ ] [ ] ]'. In this paper,we propose to reshu�e `[ [ ] [ ] ]' to `[ ] [ ] [ ]' where the �rst `[' has been moved next to the last`]'. The item notation enables us to see the matching parentheses and to reshu�e terms sothat all matching paretheses become adjacent.We show that term reshu�ing is correct in that it preserves the semantical meaning andthe type of a term. Moreover, when de�nitions are added, the Cube with term reshu�ing,would satisfy all its original properties including Church Rosser, Subject Reduction and StrongNormalisation.�We are grateful for the Netherlands Computer Science Research Foundation (SION), the NetherlandsOrganisation for Scienti�c Research (NWO), the universities of Glasgow and Eindhoven and to the BasicAction for Research ESPRIT project \Types for Proofs and Programs", for their �nancial support.yDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,5600 MB Eindhoven, the Netherlands, fax: +31 40 43 66 85, email: bloo@win.tue.nlzDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.glasgow.ac.ukxsame address as Bloo. email: wsinrpn@win.tue.nl1
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Based on these observations related to reduction and de�nitions, we divide the paper intothe following sections:� In Section 2, we start by introducing the item notation and the formal machinery of theCube as in [Barendregt 92] using this notation.� In Section 3, we introduce the ordinary typing rules of the cube and the properties thatwill be shown for our extended typing with de�nitions and shu�e reduction.� In Section 4, we introduce term reshu�ing and study their characteristics.� In Section 5, we introduce shu�e reduction ;;�, and show that it is a generalisationof !!� such that =� and �� are the same and hence ;;� is Church Rosser. We showmoreover that A;� B then 9B0 2 [B][TS(A)!� B0].� In Section 6, we study the Cube as in [Barendregt 92] with term reshu�ing using shu�ereduction and adding de�nitions. We show that this extension of the Cube preservesits original properties. In particular, we show that SR, SN and CR hold. We showmoreover that term reshu�ing preserves typing in the sense that � `sh A : B then� `sh TS(A) : B.2 The formal machinery and item notationAssume a translation function I from terms in classical notation to terms in item notationsuch that:I(A) = A if A is a variable or a constantI(Ox:A:B) = (I(A)Ox)I(B) O = � or �I(AB) = (I(B)�)I(A)With this notation, a redex is a term that starts with a �-item next to a �-item. Anextended redex is a term that starts with a �-item followed by a sequence of matching ��-items followed by a �-item. Term reshu�ing amounts to moving �-items in the term throughsequences of de�nitions in order to occupy a place next to their matching �-item.Example 2.1 I((�x:A!(B!C):�y:A:xy)z) � (z�)(A ! (B ! C)�x)(A�y)(y�)x. The itemsare (z�), (A ! (B ! C)�x), (A�y) and (y�)and the whole term is a redex. Note that thetranslation into item notation of a redex (�x:B :A)C becomes (I(C)�)(I(B)�x)I(A) and thatthe scope of a � is precisely the term to the right of it.Let us explain here why this notation enables us to see more redexes and to reshu�e termsenabling one to contract any visible redex independently of other redexes. Let us start �rstby rewriting the axiom � in item notation:De�nition 2.2 (Classical redexes and �-reduction in item notation)In the item notation of the �-calculus, a classical redex is of the form (C�)(B�x)A. Wecall the pair (C�)(B�x), a ��-pair, or a ��-segment. The classical �-reduction axiom is:(C�)(B�x)A!� A[x := C]. Many step �-reduction !!�, is the reexive transitive closure of!�, and =� is the least equivalence relation closed under !�.3



Bound and free variables and substitution are de�ned as usual. We write BV (A) and FV (A)to represent the bound and free variables of A respectively. We write A[x := B] to denotethe term where all the free occurrences of x in A have been replaced by B. Furthermore, wetake terms to be equivalent up to variable renaming. For example, we take �x:A:x � �y:A:ywhere � is used to denote syntactical equality of terms. We assume moreover, the Barendregtvariable convention which is formally stated as follows:Convention 2.3 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent �'s have di�erent variables as subscript. Hence, we will not have(�x:A:x)x, but (�y:A:y)x instead.Now, let us look at A � ((�x:P :(�y:Q:�z:R:xyz)v)w)u and B � (�x:P :(�y:Q:(�z:R:xyz)u)v)w.Note that A =� wvu and B =� wvu. In other words, A and B are semantically equivalent.There is an even closer relation between A and B. Namely, a relation between the redexes.Example 2.4 In A � ((�x:P :(�y:Q:�z:R:xyz)v)w)u, we have the following redexes which areall needed to get the normal form of A:1. (�y:Q:�z:R:xyz)v2. (�x:P :(�y:Q:�z:R:xyz)v)w3. (�z:R:wvz)u which appears as ((�z:R:xyz)[y := v][x := w])uThe �rst and second redexes are classical redexes, immediately visible and subject to con-traction. The third redex is neither a classical redex nor is immediately visible, nor is subjectto contraction without having unfolded in �z:R:xyz the two de�nitions that y is v and xis w. It will only be a proper visible classical redex and subject to contraction, after wehave contracted the �rst two redexes (we will not discuss the order here). For example, as-sume we contract the second redex in the �rst step, and the �rst redex in the second step, then((�x:P :(�y:Q:�z:R:xyz)v)w)u !�((�y:Q:�z:R:xyz)v)u !�(�z:R:wvz)u !� wvuThere is however a need to make as many needed redexes visible as possible (see [BKKS 87]).In fact, even though the notion of a needed redex is undecidable, much work has been carriedout in order to study some classes of needed redexes (as in [BKKS 87] and [Gardena 94]). InB � (�x:P :(�y:Q:(�z:R:xyz)u)v)w, the redexes are:1. (�y:Q:(�z:R:xyz)u)v2. (�x:P :(�y:Q:(�z:R:xyz)u)v)w3. (�z:R:xyz)uAll the three redexes of B are classical, immediately visible and subject to contraction.Hence, for A, there is a semantically equivalent term B where more redexes of A becomevisible, and even subject to contraction before any other redexes.4



Looking again at A and B, we see that not only A has a semantically equivalent term B wheremore redexes become visible and subject to contraction, but also we can �nd that there is arelation between the redexes of A and B.Basic to our study in this paper will be a new notation the item notation and a termrewriting called term reshu�ing. The term reshu�ing of a term will rewrite it so that asmany redexes as possible become visible.With the presence of more visible redexes, and with the fact that in the reshu�ed versionof a term all visible redexes are classical, we generalise reduction and instead of reducing aterm, we reduce its reshu�ed version.Example 2.5 Let A � ((�x:P :(�y:Q:�z:R:za)b)c)d and B � (�x:P :(�y:Q:(�z:R:za)d)b)c. Wedenote the reshu�ed version of A by TS(A). Now, TS(A) � TS(B) � B and it is obviousthat A =� B. Hence, A and B are semantically equivalent. Moreover, it is evident that allextended redexes of A, namely: (�x:P :�)c, (�y:Q:�)b and (�z:R:�)d, are classical redexes ofB. Furthermore, these redexes can be contracted independently of each other.Of course here, there will be complaints that this reshu�ing is not so easy or obvious. Weagree and this is what we are trying to say. The classical notation which we have used so farcannot extend redexes or enable reshu�ing in an easy way. Our notation however, the itemnotation will solve these problems. We call this reduction which works with the reshu�edversion of the term, shu�e reduction.Extending redexes and enabling newly visible redexes to be contracted before other ones,and studying the classes of terms that are semantically equivalent, may act as a power-ful tool in the study of some programming languages. For example, in lazy evaluation([Launchbury 93]), some redexes get frozen while other ones are being contracted. Now,if we had the ability of choosing which redex to contract out of all visible redexes, rather thanwaiting for some redex to be evaluated before we can proceed with the rest, then we can saythat we have achieved a exible system where we have control over what to contract ratherthan letting reductions force themselves in some order. This may lead to some advantagesconcerning optimal reductions as in [L�evy 80].Moreover, we may avoid explosion if we had the choice of making more redexes visibleand the ability of contracting any visible redex before any other ones:Example 2.6 Let M � (�x:u:�y:u:y(Cxx : : : x))B(�z:u:u) where B is a BIG term. ThenM !� (�y:u:y(CBB : : : B))(�z:u:u) !� (�z:u:u)(CBB : : : B) !� u and u is in normal form.Now the �rst and second reduct both contain the segment CBB � � �B, so they are very, verylong terms. Shu�e reduction however allows us to reduce M in the following way: TS(M) �(�x:u:(�y:u:y(Cxx : : : x))�z:u:u)B !� (�x:u:(�z:u:u)(Cxx : : : x))B !� (�x:u:u)B !� u, and inthis reduction all the terms are of equal or smaller size than M ! So shu�e reduction mightallow us to de�ne clever strategies that reduce terms via paths of relatively small terms.Let us assure the reader again here that one must not be anxious that it is not obvious howto reshu�e the term or to work with classes of terms. The notation that we will providewill make term reshu�ing a straightforward operation. Furthermore, reshu�ing terms makesus realise that there is a certain part of the term which passes through another part whichcan be viewed as a de�nition. In fact, look at how we rewrote ((�x:P :(�y:Q:�z:R:xyz)w)v)uto ((�x:P :(�y:Q:(�z:R:xyz)u)v)w. u went through two de�nitions (or redexes) (�x:P :�)w and(�y:Q:�)v to occupy a place next to its matching �z.5



Example 2.7 A of Example 2.4 is written (u�)(w�)(P�x)(v�)(Q�y)(R�z)(z�)(y�)x in itemnotation (for convenience sake, we assume u; v; w; P;Q;R are variables). Here, the �rst tworedexes, the classical redexes, correspond to ��-pairs as follows:1. (�y:Q:�z:R:xyz)v corresponds to (v�)(Q�y). (R�z)(z�)(y�)x is omitted as it is easilyretrievable in item notation. It is the maximal subterm of A to the right of (Q�y).2. (�x:P :(�y:Q:�z:R:xyz)v)w corresponds to (w�)(P�x).Again (v�)(Q�y)(R�z)(z�)(y�)x is ignored for the same reason as above.If one looks more closely at A written in item notation however, one sees that the third redexcan be obtained by just matching �- and �-items. The third redex (�z:R:xyz)u is visible as itcorresponds to the matching (u�)(R�z) where (u�) and (R�z) are separated by the segment(w�)(P�x)(v�)(Q�y). Hence, by extending the notion of a redex from being a �-item adjacentto a �-item, to being a matching pair of �- and �-items, we can make more redexes visible.This extension furthermore is simple, as in (C�)s(B�x), we say that (C�) and (B�x) matchif s has the same structure as a matching composite of opening and closing brackets, each �-item corresponding to an opening bracket and each �-item corresponding to a closing bracket.For example, in A above, (u�) and (R�z) match as (w�)(P�x)(v�)(Q�y) has the bracketingstructure [ ][ ] (see Figure 1).
(u�) (w�) (P�x) (v�) (Q�y)(R�z) (z�) (y�)xFigure 1: Extended redexes in item notationNow, when we see a �-item which matches a �-item, we move the �-item to occur next toits matching �-item. With this extension of redexes and term reshu�ing, we re�ne one-step�-reduction by making it a sequence of two operations: a reshu�ing of the original term(so that all matching ��-couples occur adjacent) followed by a classical one-step �-reduction.Hence A of Example 2.7 will be reshu�ed to (w�)(P�x)(v�)(Q�y)(u�)(R�z)(z�)(y�)x andFigure 1 changes to Figure 2. Note that the item (u�) is being shu�ed into the scope of(P�x) and (Q�y), so we have to make sure by variable-renaming that no unwanted bindingsare being introduced. Note also that no items are being shu�ed outside scopes of �-itemsthey previously were in.We use TS(A) to describe the term reshu�ed version of A. Now, we apply classical�-reduction to TS(A) and we contract the classical redex (u�)(R�z). We use ;� for onestep shu�e reduction which is the sequence of term reshu�ing followed by one-step ordinaryreduction !�. The following example summarizes all this.Example 2.8 Back to Example 2.4, A � (u�)(w�)(P�x)(v�)(Q�y)(R�z)(z�)(y�)x. Now,TS(A) � (w�)(P�x)(v�)(Q�y)(u�)(R�z)(z�)(y�)x. As TS(A)!� (w�)(P�x)(v�)(Q�y)(u�)(y�)x,6



(w�) (P�x) (v�) (Q�y) (w�) (R�z) (z�) (y�)xFigure 2: Term reshu�ing in item notationwe get that A;� (w�)(P�x)(v�)(Q�y)(u�)(y�)x. I.e. one-step;� amounts to a term reshuf-ing followed by one-step !�.It is this shu�e reduction that we will put on the top of the Cube and we will investigateits properties. This reduction will be introduced in Section 5.Notation 2.9 Throughout the whole paper, we take O to range over f�;�g and ! overf�; �x;�xg.2.1 Pseudo-Expressions in item notationThe Cube is a generalisation of some type systems which are explicitly typed �a la Church(see [Barendregt 92]). The system �! of [Church 40] is one of the systems of the Cube. Nowthe systems of the Cube are based on a set of pseudo-expressions T de�ned by the followingabstract syntax (again see [Barendregt 92]):T = V j C j (T �)T j (T OV )Twhere V and C are in�nite collections of variables and constants respectively. We assumethat x; y; z; : : : range over V and we take two special constants � and 2. These constantsare called sorts and the meta-variables S; S1; S2; : : : are used to range over the set of sortsS = f�;2g. We take A;B;C; a; b; : : : to range over pseudo-expressions. Note furthermorethat there is no distinction between term- and type-variables and that there are two notionsof abstraction: �- and �-abstraction. Parentheses will be omitted when no confusion occurs.For convenience sake, we divide V in two disjoint sets V � and V 2, the sets of objectrespectively constructor variables. We take x�; y�; z�; : : : to range over V � and x2; y2; z2; : : :to range over V 2.De�nition 2.10 (Compatibility)Let ! range over f�g [ fOx j x 2 V g. We say that a relation ! on terms is compatible i�the following holds: A1 ! A2(A1!)B ! (A2!)B B1 ! B2(A!)B1 ! (A!)B2Basically compatibility means that if A ! B then T [A] ! T [B] where T [ ] is a \pseudo-expression with a hole in it". 7



De�nition 2.11 (�-reduction !� for the Cube)In the Cube, �-reduction !�, is the least compatible relation generated out of the followingaxiom:(�) (C�)(B�x)A!� A[x := C]We take !!� to be the reexive transitive closure of !� and we take =� to be the leastequivalence relation generated by !!�.Note that in the Cube, �-reduction is only assumed for �-expressions and not for �-expressions.That is, we do not have (C�)(B�x)A!� A[x := C]. For an extension of (�) to �-expressions,see [KN 9y].De�nition 2.12 ((main) items, (main, �O-)segments, end variable, weight)� If x is a variable and A is a pseudo-expression, then (A�x); (A�x) and (A�) are items(called �-item, �-item and �-item respectively). We use s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.� Each pseudo-expression A is the concatenation of zero or more items and a variable orconstant: A � s1s2 � � � snx. These items s1; s2; : : : ; sn are called the main items of A,x is called the end variable of A, notation endvar(A).� Analogously, a segment s is a concatenation of zero or more items: s � s1s2 � � � sn;again, these items s1; s2; : : : ; sn (if any) are called the main items, this time of s.� A concatenation of adjacent main items (in A or s), sm � � � sm+k, is called a mainsegment (in A or s).� A �O-segment is a �-item immediately followed by an O-item.� The weight of a segment s, weight(s), is the number of main items that compose thesegment. Moreover, we de�ne weight(sx) = weight(s).When one desires to start a �-reduction on the basis of a certain �-item and a �-item occurringin one segment (recall, no reductions are based on �- and �-items), the matching of the �and the � in question is the important thing, even when the �- and �-items are separated byother items. I.e., the relevant question is whether they may together become a ��-segmentafter a number of �-steps. This depends solely on the structure of the intermediate segment.If such an intermediate segment is well-balanced then the �-item and the �-item match and�-reduction based on these two items may take place. Some well-balanced segments also playan important role. They may act as a de�nition. For example, (A�)(B�x)C means de�ne x oftype B to be A in C. Sometimes, de�nitions are interleaved as in (A1�)(B1�)(B2�x)(A2�y)Dwhere the de�nition \x becomes B1" is used inside the de�nition \y becomes A1". We willassume de�nitions not to contain �-items in this paper. Extending this work to the casewhere for example (A�)(B�x) is a de�nition will be investigated in [?]. (TOEVOEGEN inliteratuurlijst: artikel over ��-reduction) Here is the de�nition of well-balanced/de�nitionalsegments and applying de�nitions:De�nition 2.13 (well-balanced segments, de�nitions, de�nition application)8



� The empty segment ; is a well-balanced segment.� If s is well-balanced, then (A�)s(BOx) is well-balanced.� If s is well-balanced which does not contain main �-items, then (A�)s(B�x) is a de�-nition.� The concatenation of well-balanced segments is a well-balanced segment.� Let s be a well-balanced segment which is a sequence of de�nitions and A 2 T . Wede�ne the application of the de�nition s in A, [A]s inductively as follows: [A]; � A,[A](B�)s1(C�x) � [A[x := B]]s1 and [A]s1 s2 � [[A]s2 ]s1. Note that substitution takes placefrom right to left and that when none of the binding variables of s are free in A, then[A]s � A.Lemma 2.14 If s2 is a de�nition, none of the binding variables in s2 is free in A, and (A�)does not match a �-item in B, thens1(A�)s2B =� s1s2(A�)BProof: induction on weight(s2):� s2 � ;: by de�nition of �-equality.� s2 � (D�)(E�x) then s1(A�)s2B � s1(A�)(D�)(E�y)B =�s1(A�)(B[y := D]) �V C s1((A�)B[y := D]) =�s1(D�)(E�y)(A�)B� s2 � (D�)s3(E�y), s3 well-balanced, thens1(A�)s2B � s1(A�)(D�)s3(E�y)B IH=�s1(A�)s3(D�)(E�y)B � s1s3(A�)(D�)(E�y)B IH=�s1s3(D�)(E�y)(A�)B IH=� s1s3(D�)(E�y)(A�)B IH=�s1(D�)s3(E�y)(A�)B 2Corollary 2.15 If s2 is a sequence of de�nitions, none of the binding variables in s2 is freein A, and (A�) does not match a �-item in B, thens1(A�)s2B =� s1s2(A�)B 2Remark 2.16 Note that this does not hold in case s2 is well-balanced but neither a de�nitionnor a sequence of de�nitions. The reason for this failure is that we have no way of reducing��-segments. For example, (u�)(x�)(x�y)(y�z)z 6=� (x�)(x�y)(u�)(y�z)z. This will not bea problem we face as in legal terms of the cube, all �-items are bachelor.Lemma 2.171. If none of the binding variables of the sequence of de�nitions s is free in A, then [A]s �A. 9



2. [A]s =� sA.Proof:1. Obvious.2. Induction on weight(s):� If s � ;, then [A]s � sA by de�nition.� If s � (B�)s1(C�x), then [A]s � [A[x := B]]s1 IH=� s1(A[x := B]) =� s1(B�)(C�x)ALemma2:14=� (B�)s1(C�x)A as none of the binding variables of s1 is free in B by V C.� s � s1s2: [A]s � [[A]s2 ]s1 IH=� s1[A]s2 IH=� s1s2A. 2A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each �- (or O-)item corresponding with an opening (resp. closing) bracket.In a de�nition, the �rst [ matches the last ] and no �-items are allowed.Remark 2.18 Note that the de�nition of well-balanced segments and de�nitions is equivalentto saying that1. ; is well-balanced.2. If s1; s2 are well-balanced, then (A�)s1(BOx)s2 is well-balanced.3. If s is well-balanced and does not contain �-items, then (A�)s(B�x) is a de�nition.Sometimes we use this de�nition in proofs by induction.Now we can easily de�ne what matching �O-couples are, given a segment s. Namely, they area main �-item and a main O-item separated by a well-balanced segment. Such couples arereducible couples in case O = �. The �-item and O-item of the �O-couple are said to matchand each of them is called a partner or a partnered item. The items in a segment that arenot partnered are called bachelor items. The following de�nition summarizes all this:De�nition 2.19 (match, �O- (reducible) couple, partner, partnered item, bachelor item)Let A 2 T . Let s � s1 � � � sn be a segment occurring in A.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is a O-item, andthe sequence si+1; : : : ; sj�1 forms a well-balanced segment.� When si and sj match, we call sisj a �O-couple. If O = � and si+1 � � � sj�1 containsno �-item then sisj is a reducible couple.� When si and sj match, we call both si and sj the partners in the �O-couple. We alsosay that si and sj are partnered items.� All the O- (or �-)items sk in A that are not partnered, are called bachelor O- (resp.�-)items.Example 2.20 In s � (a�x)(b�y)(c�)(d�z)(e�u)(f�)(g�)(h�)(i�v )(j�w)(k�):10



� (c�) matches with (d�z), (h�) matches with (i�v) and (g�) with (j�w). The segments(c�)(d�z) and (h�)(i�v) are ��-segments (and ��-couples). There is another ��-couplein s, viz. the couple of (g�) and (j�w).� (c�), (d�z), (g�), (h�), (i�v) and (j�w), are the partnered main items of s. (a�x), (b�y),(e�u), (f�) and (k�), are bachelor items.� (g�)(h�)(i�v )(j�w) is a well-balanced segment.2.2 Background for Typing in item notationIn this section, we let ` range over the typing relations of Sections 3 � � � 7 and !! range overboth !!� and ;;�.De�nition 2.21 (declarations, statements, pseudocontexts, `^, judgements, �0)1. A declaration is of the form s(A�x) where s � ; or s � (B�)s1 with s1 well-balancednot containing main �-items. Hence declarations are either de�nitions or of the form(A�x). We take d; d1; : : : to range over declarations.2. In a declaration d � s(A�x), we de�ne subj(d) and pred(d) to be x and A respectively.d and def(d) are de�ned to be ; if s � ; and to be s1, B respectively if s � (B�)s1.3. We de�ne dom(d) to be fx j (A�x) is a main item in dg.4. A statement is of the form A : B, A and B are called the subject and the predicate ofthe statement respectively.5. A pseudocontext is a concatenation of declarations such that if (A�x) and (B�y) aretwo di�erent main items of the pseudocontext, then x 6� y. We use �;�;�0;�1;�2; : : :to range over pseudocontexts.6. If � � d1 � � � dk then dom(�) = [1�i�kdom(di) and d 20 � i� 9i[d � di].7. If � � d1 � � � dn, we de�ne the set of subdeclarations of �, �-decl inductively as follows:� fd1; : : : ; dng � �-decl.� If d 2 �-decl and d 6� ; then for all d0 2 d-decl, d0 2 �-decl.Note that dom(�) = fsubj(d) j d 2 �-declg. We de�ne the set of de�nitions of � by�-def = fd 2 �-decl j d is a de�nitiong.8. Let � be a pseudocontext and d be a declaration. We say that � invites d with respectto `, notation � `^ d i�� Case d � (A�x) then � ` A : S for some sort S, x is fresh in �; A, case S � �then x 2 V � and case S � 2 then x 2 V 2.� Case d � (A�)d(B�x) then �d ` A : B, �d ` B : S for some sort S, x is fresh in�d;A;B, [A]d � A, case S � � then x 2 V � and case S � 2 then x 2 V 2.9. When � is a pseudocontext and A : B is a statement, we call � ` A : B, a judgement,and write � ` A : B : C to mean � ` A : B ^ � ` B : C.11



10. We de�ne �0 between pseudocontexts to be the least reexive transitive relation whichsatis�es:� �� �0 �(C�x)� if x is fresh in �;�; C and no �-item in � matches a �-item in� and FV (C) � dom(�).� �d� �0 �d� if d is a de�nition, subj(d) is fresh in �d�; def(d); pred(d) andFV (def(d)) � dom(�), FV (pred(d)) � dom(�d),� �s(A�x)� �0 �(D�)s(A�x)� if (A�x) is bachelor, s is well-balanced and FV (D) �dom(�).De�nition 2.22 (De�nitional �-equality) For all legal contexts � we de�ne the binary rela-tion � ` � =def � to be the equivalence relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T such that B arises from A by substituting one particular freeoccurrence of subj(d) in A by def(d), then � ` A =def B.Remark 2.23 If no de�nitions are present in � then � ` A =def B is the same as A =� B.De�nition 2.24 Let � be a pseudocontext and A be a pseudo-expression.1. Let d; d1; : : : ; dn be declarations. We de�ne � ` d and � ` d1 � � � dn simultaneously asfollows:� � ` d i� � ` subj(d) : pred(d) ^ � ` def(d) : pred(d) ^ � ` d ^ � `subj(d) =def def(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.2. � is called `-legal if 9P;Q 2 T such that � ` P : Q.3. A 2 T is called a �`-term if 9B 2 T [� ` A : B or � ` B : A].We take �`-terms = fA 2 T j 9B 2 T [� ` A : B _ � ` B : A]g.4. We take �`-kinds = fA j � ` A : 2g and �`-types = fA 2 T j � ` A : �g.5. A 2 T is called a �`-element if 9B 2 T 9S 2 S[� ` A : B and � ` B : S]. We havetwo categories of elements: constructors and objects. We take �`-constructors = fA 2T j 9B 2 T [� ` A : B : 2]g and �`-objects = fA 2 T j 9B 2 T [� ` A : B : �]g.6. A 2 T is called `-legal if 9�[A 2 �`-terms]. Moreover, A is a `-X, if 9�[A 2 �`-Xs]for X 2 ftype, term, kind, object, constructorg.De�nition 2.25 De�ne a map # : T �! f0; 1; 2; 3g by #(2) = 3, #(�) = 2, #(x2) = 1,#(x�) = 0, #(A) = #(endvar(A)). For A 2 T , #(A) is called the degree of A.We shall use # to prove that the classes of kinds, constructors and objects are mutuallyexclusive. First we collect some basic facts about 2 and � in the type systems:Lemma 2.26 12



1. If � ` A : B then A 6� 2.2. If � is a legal context, then 2 =2 �.3. If A is a legal term, then A � 2 or 2 =2 A.4. Suppose � ` A : B, then endvar(A) � � () B � 2.5. If (A�) is an item in a legal context then endvar(A) 6� �.6. If (A�) is an item in a legal term then endvar(A) 6� �.Proof:1. induction on the derivation rules.2. simultaneous induction with 3. on the derivation rules using 1.4. induction on the derivation rules; for ) use 1. and 3. We treat the case in which� ` A : B0 is a consequence of � ` A : B, � ` B0 : S and � ` B = B0. From theinduction hypothesis it follows that B � 2. Then substituting and reducing introduceno 2 in B0 as by 1. 2 =2 �, so 2 2 B0. But then by 3.: B0 � 2.5. induction on the derivation rules; use 4. and 2.6. induction on the derivation rules; use 5., 4. and 3. 2Now we can prove that whenever � ` A : B then #(A) + 1 = #(B).Lemma 2.27 Call a statement A : B OK i� #(A) + 1 = #(B), call a de�nition d OK i�#(def(d)) = #(subj(d)) = #(pred(d)) � 1, and call a judgement � ` A : B OK i� A : B isOK, all de�nitions d 2 �-def are OK and for all items (COx) 2 �; A;B (O 2 f�;�g): x : Cis OK.Then for all contexts � and terms A;B: if � ` A : B then � ` A : B is OK.Proof: We use induction on the derivation rules, we treat three cases.� � ` (a�)F : B[x := a] as a consequence of � ` F : (A�x)B, � ` a : A, then by theinduction hypothesis #(x) = #(A) � 1 = #(a) and it can easily be seen that #(x) =#(a)) #(B[x := a]) = #(B).� � ` dC : [D]d out of �d ` C : D, then by the induction hypothesis: for all subde�nitionsd0 of d, #(def(d0)) = #(subj(d0)) so by repeatedly applying #(x) = #(a)) #(B[x :=a]) = #(B) we get #([D]d) = #(D).� � ` A : B0 out of � ` A : B, � ` B0 : S0, � ` B = B0, then by the generation corollary3.12 B � 2 or � ` B : S for some sort S.If B � 2 then � ` B = B0 implies B0 � 2 as in the proof of lemma 2.26.If B 6� 2 then S 6� 2 ^ B0 6� 2 implies S � S0; suppose now S � 2, then � ` B : 2so by lemma 2.26 endvar(B) � � so again by lemma 2.26 also endvar(B0) � �, hence#(B0) = #(B) = 2. If S0 � 2 then similar #(B) = #(B0) = 2.13



Corollary 2.28 If � is a legal context, then1. �`-kinds \ �`-constructors = ;,�`-kinds \ �`-objects = ;,�`-constructors \ �`-objects = ;,2 =2 �`-kinds [ �`-constructors [ �`-objects.2. If (A�x)B is a �`-term then A and B are both a �`-kind or a �`-type.3. If (A�x)B is a �`-term then A is a �`-kind or a �`-type and B is a �`-constructor ora �`-object.4. If (A�)B is a �`-term then A and B are both a �`-constructor or a �`-object.Proof: 1. is a direct consequence of lemma 2.27.2., 3. and 4. are an easy corollary of the relevant Generation Lemma and GenerationCorollary. 22.3 Machinery for Strong NormalisationIn [BKN 9x], we used the technique of [Barendregt 92] to show Strong Normalisation for�! with extended reduction. However, here we use the proof of [Geuvers 94] due to itsexibility and the possibility of its generalisation to systems beyond the Cube, which we maybe investigating in the future. Here is the terminology that will be needed. Let !! be areduction relation containing !!�, which is Church Rosser and where the least equivalencerelation closed under it, denoted =!! is the same as =�, and let ` be a typing relation forwhich the sets of objects, constructors and kinds are pairwise disjoint.Lemma 2.29 (Soundness of !!) If A;B 2 T are legal terms such that A =!! B then thereis a path of one-step reductions and expansions via legal terms between A and B.Proof: By Church-Rosser there exists a term C such that A !!� C and B !!� C. BySubject Reduction for ordinary �-reduction all terms on the path A � � �C � � �B are legal. 2De�nition 2.30� De�ne the set of untyped �-terms by� = V j C j (��)� j (�V )�� We say that a term M 2 � is strongly normalising with respect to !! i� every!!-reduction path starting at M , terminates.� We de�ne SN!! = fM 2 � :M is strongly normalising with respect to!!g.� For A;B � � we de�ne A �! B = fM 2 � j 8N 2 A[(N�)M 2 B]g.De�nition 2.31 De�ne the key redex of a term M as follows:1. (A�)(B�x)C has key redex (A�)(B�x)C.14



2. If M has key redex N , then (P�)M has key redex N .De�ne redk(M) to be the term obtained from M by contracting its key redex. Note that notall terms have a key redex and that if a term has a key redex then it is unique.De�nition 2.32� De�ne the set of base terms B!! � � by1. V � B!!.2. If M 2 B!!; N 2 SN!! then also (N�)M 2 B!!.� We call X � � saturated!! i�:1. X � SN!!.2. B!! � X.3. For all M 2 �: if M 2 SN!! and redk(M) 2 X then also M 2 X.� We de�ne SAT!! = fX � � : X is saturated!!gLemma 2.331. SN!! 2 SAT!!.2. 8X 2 SAT!! : X 6= ;:3. If N 2 SN!!;M 2 X 2 SAT!! and x =2 FV (M) then (N�)(�x)M 2 X. (Note here that[Geuvers 94] takes (N�)(M�)(�y)(�x)y instead of (N�)(�x)M . The �rst however, willnot �t our purposes as is explained in Remark 5.12)4. A;B 2 SAT!! ) A �! B 2 SAT!!.5. If I is a set and Xi 2 SAT!! for all i 2 I, then Ti2I Xi 2 SAT!!.Proof:1. SN!! � SN!!, B!! � SN!!. Furthermore, if M 2 SN!! and redk(M) 2 SN!! then alsoM 2 SN!! as !!��!!.2. By 2 : of the de�nition of saturated sets.3. By 3 : of the de�nition of saturated sets.4. Suppose A;B 2 SAT!!.� As v 2 A for all v 2 V , we see: t 2 A �! B ) (v�)t 2 B ) (v�)t 2 SN!! ) t 2SN!!. So A �! B � SN!!.� If x 2 V , N 2 A then (N�)x 2 B as B!! � B, so V � A �! B. Also, ifM 2 B!!\A �! B, N 2 SN!! then for all N 0 2 A : N 0 2 SN!! so (N 0�)(N�)M 2B!! � B so (N�)M 2 A �! B. Hence B!! � A �! B.� If M 2 SN!!, redk(M) 2 A �! B then for all N 2 A: (N�)redk(M) 2 B hence(N�)M 2 B, hence also M 2 A �! B.15



5. Easy. 2We de�ne three maps, �rst CP!̀! of �`-kinds to the function space of SAT!!, then [[ ]]�!̀! of�`-termsn�`-objects to elements of the function space of SAT!!, and third ([ ])�!̀! of �`-termsto �, such that when certain conditions are met we have:� ` A : B : 2) [[A]]�!̀! 2 CP!̀!(B); [[B]]�!̀! 2 SAT!! and � ` A : B ) ([A])�!̀! 2 [[B]]�!̀! .De�nition 2.34 De�ne for all kinds A the set of computability predicates for A in the fol-lowing way:� CP!̀!(�) = SAT!!,� CP!̀!((A�x2)B) = CP!̀!(A)! CP!̀!(B)� CP!̀!((A�x�)B) = CP!̀!(B)� CP!̀!(dA) = CP!̀!(A) if d a de�nition(with CP!̀!(A)! CP!̀!(B) is meant the function space of CP!̀!(A) to CP!̀!(B)).Now de�ne CP!̀! = SfCP!̀!(A) j A is a `-kind g.Lemma 2.351. If A is a legal kind, B a legal constructor and C is a legal object, then CP!̀!(A) =CP!̀!(A[x2 := B]) and CP!̀!(A) = CP!̀!(A[x� := C]).2. If dA is a legal kind (remember Remark ??) where d is a de�nition, then CP!̀!(dA) =CP!̀!(A).Proof: 1. is by induction on the structure of A, noting that A cannot contain bachelor�- or �-items, 2. is by 1. noting that all de�nienda in a de�nition are either constructors orobjects. 2De�nition 2.36 Let � be a `-legal context.� A �-constructor valuation, notation �!̀! j=2 �, is a map �!̀! : V 2 �! CP!̀! such thatfor all (A�x) 20 � with A a �-kind (i.e. x 2 V 2): �!̀!(x) 2 CP!̀!(A).� If �!̀! is a constructor valuation, then [[ ]]�!̀! : �`-termsn�`-objects ! CP!̀! is de�nedinductively as follows:[[2]]�!̀! := SN!![[�]]�!̀! := SN!![[x2]]�!̀! := �!̀!(x2)[[(A�)B]]�!̀! := ( [[B]]�!̀! [[A]]�!̀! if A 2 �`-constructors[[B]]�!̀! if A 2 �`-objects[[(A�x)B]]�!̀! := ( �f 2 CP!̀!(A):[[B]]�!̀!(x:=f) if A 2 �`-kinds[[B]]�!̀! if A 2 �`-types[[(A�x)B]]�!̀! := ( [[A]]�!̀! ! Tf2CP!̀!(A)[[B]]�!̀!(x:=f) if A 2 �`-kinds; x 2 V 2[[A]]�!̀! ! [[B]]�!̀! if A 2 �`-types; x 2 V �16



where �!̀!(x := N) is the valuation that assigns �!̀!(y) to y 6� x and N to x. Furthermore,with [[A]]�!̀! [[B]]�!̀! we mean application of the function [[A]]�!̀! onto its argument [[B]]�!̀!and by � we mean function-abstraction.Now we have to verify that [[ ]]�!̀! is a well de�ned mapping, but �rst we need some helpfulfacts about [[ ]]�!̀! .Lemma 2.37 Let A;A0 2 �`-termsn�`-objects; B 2 �`-constructors; C 2 �`-objects; x2 aconstructor variable and x� an object variable. Then1. [[A[x2 := B]]]�!̀! = [[A]]�!̀!(x2:=[[B]]�!̀!)2. [[A[x� := C]]]�!̀! = [[A]]�!̀!3. A =� A0 ) [[A]]�!̀! = [[A0]]�!̀!Proof: 1. and 2. are by induction on the structure of A.3. is by induction on the generation of =�. 2Remark 2.38 Note that we use =� and not =!!, because the equality relations generatedby !!� and ,!,!� are both =�.Lemma 2.39 (Soundness of [[ ]]�!̀!)If � ` A : B : 2 then for all �!̀! such that �!̀! j=2 �, we have: [[A]]�!̀! and [[B]]�!̀! arewell-de�ned and [[A]]�!̀! 2 CP!̀!(B), [[B]]�!̀! 2 SAT!!.Proof: By induction on the derivation rules. We treat two cases:� � ` (a�)F : B[x := A] as a consequence of � ` F : (A�x)B and � ` a : A. It isnot di�cult to see that [[B[x := A]]]�!̀! 2 SAT!! if [[B[x := A]]]�!̀! is a kind, because byLemma 2.27, then also B is a kind. Furthermore, by the induction hypothesis [[F ]]�!̀! 2CP!̀!((A�x)B) and if A is a kind then also [[a]]�!̀! 2 CP!̀!(A).If A is not a kind, then [[(a�)F ]]�!̀! = [[F ]]�!̀! 2 CP!̀!((A�x)B) = CP!̀!(B). If A isa kind, then [[F ]]�!̀! 2 CP!̀!((A�x)B) = CP!̀!(A) ! CP!̀!(B) and hence [[(a�)F ]]�!̀! =[[F ]]�!̀! [[a]]�!̀! 2 CP!̀!(B) Lemma 2.35= CP!̀!(B[x := a]).� � ` dC : [D]d as a consequence of �d ` C : D. Then by the induction hypothesis[[C]]�!̀! 2 CP!̀!(D) for all �!̀! j=2 �d and if D is a kind, then [[D]]�!̀! 2 SAT!!. Nowlet �!̀! j=2 �, then [[dC]]�!̀! Lemma 2.37.3= [[[C]d]]�!̀! = [[C]]�0!!` where �0!!`(x2) = �!̀!(x2) ifx2 is not the subject of a subde�nition in d, and �0!!`(x2) = [[def(d0)]]�!̀! if x2 is thesubject of a d0 a subde�nition of d.But �0!!` j=2 �d, so [[C]]�0!!` 2 CP!̀!(D) Lemma 2.35= CP!̀!([D]d). 2De�nition 2.40 If �!̀! j=2 �, then we call �!̀! cute with respect to � if for all d 2 �-def suchthat subj(d) 2 V 2, �!̀!(subj(d)) = [[def(d)]]�!̀!.Lemma 2.41 17



1. If �!̀! j=2 � and A is �-legal, then [[A]]�!̀! depends only on the values of �!̀! on the freeconstructor variables of A.2. If �!̀! j=2 � then there is a cute �0!!` such that �0!!` j=2 � and �0!!` = �!̀! on thenon-de�nitional constructor variables of dom(�).3. If �!̀! j=2 � and �!̀! is cute with respect to � then � ` A =def B =) [[A]]�!̀! = [[B]]�!̀!.Proof: 1. is easy, 2. is a consequence of 1. and 3. is proved by induction on thegeneration of =def using Lemma 2.37.De�nition 2.42� Let �!̀! j=2 � such that �!̀! is cute with respect to �. An object valuation of � withrespect to �!̀!, notation �!̀!; �!̀! j= �, is a map �!̀! : V ! � such that for all (A�x) 20 �:�!̀!(x) 2 [[A]]�!̀! (regardless of whether A 2 �`-kinds or A 2 �`-types).� For �!̀!; �!̀! j= � we de�ne a map ([ ])�!̀! : �`-terms �! � as follows:([x])�!̀! := �!̀!(x)([�])�!̀! := �([2])�!̀! := 2([(N�)M ])�!̀! := (([N ])�!̀!�)([M ])�!̀!([(A�x)B])�!̀! := (([A])�!̀!�)(�y)(�x)([B])�!̀!(x:=x) (where y =2 FV (B))([(A�x)B])�!̀! := ((�x)([B])�!̀!(x:=x)�)(([A])�!̀!�)x� We de�ne another map d e : �`-terms �! � bydxe := xd�e := �d2e := 2d(N�)Me := (dNe�)dMed(A�x)Be := (dAe�)(�y)(�x)dBe (where y =2 FV (B))d(A�x)Be := ((�x)dBe�)(dAe�)xDe�nition 2.43 Let � be a context, A;B 2 �`-terms. We say that � satis�es that A is oftype B with respect to ` and !!, notation � j=!̀! A : B, i�8�!̀!; �!̀![�!̀!; �!̀! j= �) ([A])�!̀! 2 [[B]]�!̀! ].Lemma 2.441. If �(A�)d(B�x)� is a legal context and �!̀!; �!̀! j= �(A�)d(B�x)� then ([A])�!̀! 2 [[B]]�!̀!and ([B])�!̀! 2 SAT!!.2. �d j= A : B =) � j= dA : [B]d 18



Proof:1. Induction on the derivation rules of `.2. Induction on weight(d). If d � ; then nothing to prove, suppose now d � (C�)s1(D�x)s2.Then by the induction hypothesis �(C�)s1(D�x) j= s2A : [B]s2 .� Suppose x 2 V �. Let �!̀!; �!̀! j= �s1. Then for all E 2 [[D]]�!̀! we have �!̀!(x :=E); �!̀! j= �(C�)s1(D�x). Hence ([s2A])�!̀!(x:=E) 2 [[[B]s2 ]]�!̀!, hence (�x)([s2A])�!̀!(x:=x) 2[[D]]�!̀! ! [[[B]s2 ]]�!̀! and also (([D])�!̀!�)(�y)(�x)([s2A])�!̀!(x:=x) 2 [[D]]�!̀! ! [[[B]s2 ]]�!̀!(by 1. ([D])�!̀! 2 SAT!!, use Lemma 2.33).This means �s1 j= (D�x)s2A : (D�x)[B]s2 , so by the induction hypothesis � j=s1(D�x)s2A : ([D]s1�x)[B]s1s2 . If �!̀!; �!̀! j= � then by 1. ([C])�!̀! 2 [[D]]�!̀! and([s1(D�x)s2A])�!̀! 2 [[[D]s1 ]]�!̀! ! [[[B]s1s2 ]]�!̀!, hence (([C])�!̀!�)([s1(D�x)s2A])�!̀! 2[[[B]s1s2 ]]�!̀! = [[[B](C�)s1(D�x)s2 ]]�!̀!, so � j= (C�)s1(D�x)s2A : [B](C�)s1(D�x)s2 .� Suppose x 2 V 2. Let �!̀!; �!̀! j= �s1. Then �!̀!(x := E); �!̀!(x := f) j= �(C�)s1(D�x)for all f 2 CP!̀!(D) and E 2 [[D]]�!̀!, so ([s2A])�!̀!(x:=E) 2 [[[B]s2 ]]�!̀!�!̀!(x := f),hence (�x)([s2A])�!̀!(x:=x) 2 [[D]]�!̀! ! Tf2CP!̀!(D)[[[B]s2 ]]�!̀!(x:=f). But then also (use1. and Lemma 2.33) (([D])�!̀!�)(�y)(�x)([s2A])�!̀!(x:=x) 2 [[D]]�!̀! ! Tf2CP!̀!(D)[[[B]s2 ]]�!̀!(x:=f).Hence we see: �s1 j= (D�x)s2A : (D�x)[B]s2 , so by the induction hypothesis� j= s1(D�x)s2A : ([D]s1�x)[B]s1s2 .Now let �!̀!; �!̀! j= �. Then ([s1(D�x)s2A])�!̀! 2 [[([D]s1�x)[B]s1s2 ]]�!̀! and ([C])�!̀! 2[[[D]s1 ]]�!̀! by 1., so (([C])�!̀!�!̀!�)(([s1(D�x)s2A])�!̀!�!̀!) 2 Tf2CP!̀!(D)[[[B]s1s2 ]]�!̀!(x:=f).This means ([(C�)s1(D�x)s2A])�!̀!�!̀! 2 [[[B]s1s2 ]]�!̀!(x:=[[C]]�;̀;� = [[[B]s1s2 [x := C]]]�;̀;� V C=[[[B](C�)s1(D�x)s2 ]]�;̀;� , hence � j= (C�)s1(D�x)s2A : [B](C�)s1(D�x)s2 . 2Lemma 2.45 (([ ])�!̀! versus d e)1. For all M 2 �`-terms, for all �!̀!: ([M ])�!̀! � dMe[~x := ~�!̀!(x)] where ~x are the freevariables of M .2. If s is a well-balanced segment then dsAe � dsedAe and dse is also well-balanced. More-over, FV (dAe) = FV (A).3. For all M 2 �`-terms: dMe is strongly normalising )M is strongly normalising.Proof: The �rst statement is easy to verify. The second statement is also easy. Thethird statement can be proved as follows: we prove by induction on the structure of M , thatwhenever M !! N , then dMe !! dNe. We show the only non-trivial case (note that when !!is !!�, then s � ;).If M � (A�)s(B�x)C !! s(C[x := A]) � N ,then dMe � (dAe�)ds(B�x)Ce � (dAe�)dse(dBe�)(�y)(�x)dCe!! (dAe�)dse(�x)dCe (note that y 62 FV ((�x)dCe))!! dsedCe[x := dAe] � dsedC[x := A]e � ds(C[x := A])e � dNe. 219



Lemma 2.46 � ` A : B ) � j= A : BProof: Use induction on the structure of A to prove that if �!̀!; �!̀! j= � then ([A])�!̀! 2[[B]]�!̀!:� A � x. Then by the generation lemma for some B0: � ` B0 =def B and (B0�x) 2�-decl, so by �!̀!; �!̀! j= �; (B0�x) 2 �-decl, and Lemma 2.37, we get ([A])�!̀! = �!̀!(x) 2[[B0]]�!̀! = [[B]]�!̀! .� A � (P�x)Q, with P 2 �`-kinds.Then by the generation lemma for some R, �(P�x) ` Q : R with � ` (P�x)R =def B,� ` P : 2. By IH we �nd that ([Q])�!̀!(x:=p) 2 [[R]]�!̀!(x:=f) for all p 2 [[P ]]�!̀! ; f 2CP!̀!(P ), so ([Q])�!̀!(x:=p) 2 Tf2CP!̀!(P )[[R]]�!̀!(x:=f). By IH also ([P ])�!̀! 2 [[2]]�!̀! = SN!!so by Lemma 2.33 ([A])�!̀! = ([(P�x)Q])�!̀! = (([P ])�!̀!�)(�y)(�x)([Q])�!̀!(x:=x) 2 [[P ]]�!̀! !Tf2CP!̀!(P )[[R]]�!̀!(x:=f) = [[B]]�!̀!.� A � (P�x)Q with P 2 �`-types. Then similar to the previous case.� If ` is ordinary typing and A � (P�)Q with P 2 �`-objects. Then � ` Q : (R�x)T ,� ` P : R for some R;T with � ` T [x := P ] =def B (again generation lemma). Nowby IH and lemma 2.33 we see that ([Q])�!̀! 2 [[R]]�!̀! �! [[T ]]�!̀! and ([P ])�!̀! 2 [[R]]�!̀!,so ([A])�!̀! = ([(P�)Q])�!̀! = (([P ])�!̀!�)([Q])�!̀! 2 [[T ]]�!̀! = [[T [x := P ]]]�!̀! = [[B]]�!̀!.� A � dP where d is a de�nition. Then by the Generation Lemma �d `e P : C, �d `eC =def B. By the induction hypothesis we then know that ([P ])�`sh!! 2 [[C]]�`sh!! . Now byLemma 2.44 we get that also ([dP ])�!̀! 2 [[C]]�!̀! .� A � (P�)Q with P 2 �`-constructors where (P�) is bachelor in (P�)Q then also similar.� A � (P�x)Q. Then by generation � ` P : S1, �(P�x) ` Q : S2, S2 =� B.If P 2 �`-kinds, then IH says ([P ])�!̀! 2 [[2]]�!̀!, ([Q])�(x:=p) 2 [[S2]]�!̀!(x:=f) for all p 2[[P ]]�!̀! ; f 2 CP (P ), hence [[P ]]�!̀! 2 SN; (�x)([Q])�(x:=x) 2 SN .But this means ([A])�!̀! = ((�x)([Q])�(x:=x)�)(([P ])�!̀!�)x 2 SN = [[S2]]�!̀! = [[B]]�!̀!.If P 2 �`-types, then similar. 23 The ordinary typing relation and its propertiesIn the Cube as presented in [Barendregt 92], the only declarations allowed are of the form(A�x). Hence there are no de�nitions. Therefore, � `^ d is of the form � `^ (A�x) andmeans that � ` A : S for some S and that x is fresh in �; A. Moreover, for any d � (A�x),d � ;, subj(d) � x and pred(d) � A.
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3.1 The typing relationAs the Cube is a generalisation of eight systems, the rules of the Cube are divided in two:1. The general axioms and rules valid for all systems of the Cube.2. The speci�c rules, which are speci�c to the various systems of the Cube. All thesespeci�c rules are parameterised �-introduction rules.Now the general rules are as follows:De�nition 3.1 (General axioms and rules of the Cube)(axiom) <> ` � : 2(start rule) � `^ d�d ` subj(d) : pred(d)(weakening rule) � `^ d �d ` D : E�d ` D : E(application rule) � ` F : (A�x)B � ` a : A� ` (a�)F : B[x := a](abstraction rule) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(conversion rule) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0The speci�c rules are given by (S1; S2) rules which we sometimes refer to as formation rules:De�nition 3.2 (The speci�c rules of the Cube)(S1; S2) rule � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2The systems of the Cube are de�ned by taking the general rules plus a speci�c subset ofthe set f(�; �); (�;2); (2; �); (2;2)g as (S1; S2) rules. In this Cube, there are eight systemsof typed lambda calculus. They di�er in whether � and/or 2 may be taken for S1 and S2respectively in the above (S1; S2) rule. The basic system is the one where (S1; S2) = (�; �)is the only possible choice. All other systems have this version of the formation rules, plusone or more other combinations of (�;2), (2; �) and (2;2) for (S1; S2). The system withonly (�; �) for (S1; S2) is the system �-Church or �! (this is essentially the Automath-systemAUT-68). The addition of (�;2) gives �P , which is a system that is rather close to anothervariant of the Automath-family, AUT-QE (see [de Bruijn 80]). The addition of (2; �) to �!gives the second order typed lambda calculus, also called �2. Adding (2;2) to �!, we obtain�!. There are three systems that are de�ned by adding a combination of two of the threelast-mentioned possibilities to �!. When all mentioned (S1; S2)-combinations are permitted,we have a version of the Calculus of Constructions (�C) (see [CH 88]). Here is the tablewhich presents the eight systems of the Cube:21
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Figure 3: The CubeHere are examples of typable terms in some systems of the Cube that we will use furtheron.Example 3.31. `�2 (���)(��y)� : � as we have the rule (2; �), but 6`L (���)(��y)� : � for any � whereL 2 f�!; �!; �P; �P!g.2. (���)(��y0) `�2 (y0�)(��)(���)(��y)(y�)(��x)x : � can be seen by using the following
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derivation steps and �lling in the extra conditions:` � : 2(���) `�2 � : � : 2(���)(��y0) `�2 y0 : � : � : 2(���)(��y0)(���) `�2 � : �(���)(��y0)(���)(��y) `�2 y : � : �(���)(��y0)(���)(��y)(��x) `�2 x : � : �(���)(��y0)(���)(��y) `�2 (��x)� : � (�; �)(���)(��y0)(���)(��y) `�2 (��x)x : (��x)� : �(���)(��y0)(���)(��y) `�2 (y�)(��x)x : �(���)(��y0)(���) `�2 (��y)� : � (�; �)(���)(��y0)(���) `�2 (��y)(y�)(��x)x : (��y)� : �(���)(��y0) `�2 (���)(��y)� : � (2; �)(���)(��y0) `�2 (���)(��y)(y�)(��x)x : (���)(��y)�(���)(��y0) `�2 (��)(���)(��y)(y�)(��x)x : (��y)�(���)(��y0) `�2 (y0�)(��)(���)(��y)(y�)(��x)x : �But If L 2 f�!; �!g, then (���)(��y0) 6`L (y0�)(��)(���)(��y)(y�)(��x)x : �. The reason isthat the term of part 1 of this example is not typable in these systems. Note that when weintroduce de�nitions in the Cube, the last 9 of the above steps will be replaced by a singleone. See Example 6.4.3. (���)(��t)((��q) � �Q)((t�)Q�N ) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z )Z : (t�)Qbut this derivation could not be obtained in �!, �! or �2 as we need the (�;2) rule in orderto derive that (��q)� : 2 and hence that ((��q) � �Q) is allowed in the context.3.2 Properties of the ordinary typing relationHere we list the properties of the Cube without proofs. The reader can refer to [Barendregt 92]for details. These properties will be established for the Cube extended with term reshu�ing,shu�e reduction and de�nition mechanisms. Now, here are the properties of the Cube thatwe will concentrate on.Theorem 3.4 (The Church Rosser Theorem for !!�)If A!!� B and A!!� C then there exists D such that B !!� D and C !!� D. 2Lemma 3.5 (Free variable lemma for `)Let � be a legal context such that � ` B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. For s1 a main item of �, FV (s1) � fsubj(d) j d 2 �-decl; d is to the left of s1 in �g.Proof: All by induction on the derivation of � ` B : C. 2The following lemmas show that legal contexts behave as expected.23



Lemma 3.6 (Start Lemma for `)Let � be a legal context. Then � ` � : 2 and 8d 20 �[� ` d].Proof: As � is legal, then 9A;B 2 T such that � ` A : B. Now use induction on thederivation � ` A : B. 2Lemma 3.7 (Invitation Lemma for `)If �d is legal then � `^ d.Proof: By induction on the derivation �d ` A : B. 2Lemma 3.8 (Transitivity Lemma for `)Let � and � be legal contexts. Then: [� ` � ^� ` A : B]) � ` A : B.Proof: Induction on the derivation rules. 2Lemma 3.9 (Substitution Lemma for `)Assume �(A�x)� ` B : C and � ` D : A then �(�[x := D]) ` B[x := D] : C[x := D].Proof: By induction on the derivation rules. 2Lemma 3.10 (Thinning Lemma for `)Let � and � be legal contexts such that � �0 �. Then � ` A : B ) � ` A : BProof: By induction on the length of the derivation of � ` A : B. 2Lemma 3.11 (Generation Lemma for `)1. � ` x : C ) 9S1; S2 2 S9B =� C[� ` B : S1 ^ (B�x) 20 � ^ � ` C : S2].2. � ` (A�x)B : C ) 9(S1; S2 2 S)[� ` A : S1 ^ �(A�x) ` B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ (C 6� S2 ) 9S[� ` C : S])]3. � ` (A�x)b : C ) 9(S;B)[� ` (A�x)B : S ^ �(A�x) ` b : B ^ C =� (A�x)B ^ (C 6�(A�x)B ) 9S 2 S[� ` C : S])].4. � ` (a�)F : C ) 9A;B; x[� ` F : (A�x)B ^ � ` a : A ^ C =� B[x := a] ^ (B[x :=a] 6� C ) 9S 2 S[� ` C : S])].Proof: By induction on the derivation rules, using thinning lemma. 2Corollary 3.12 (Generation Corollary for `)1. � ` A : B ) 9S[B � S or � ` B : S]2. � ` A : (B1�x)B2 ) 9S[� ` (B1�x)B2 : S]3. If A is a �`-term, then A is 2, a �`-kind or a �`-element.4. If A is legal and B is a subexpression of A then B is legal. 2Theorem 3.13 (Subject Reduction for ` and !!�)� ` A : B ^A!!� A0 ) � ` A0 : BProof: � ` A : B ^A!� A0 ) � ` A0 : B and � ` A : B ^ �!� �0 ) �0 ` A : B, where� !� �0 means � � �1(A�x)�2, �0 � �1(A0�x)�2 and A !� A0, are proved simultaneouslyby induction on the derivation rules. 224



Corollary 3.14 (SR Corollary for ` and !!�)1. If � ` A : B and B !!� B0 then � ` A : B0.2. If A is a �`-term and A!!� A0 then A0 is a �`-term. 2Lemma 3.15 (Unicity of Types for ` and !!�)1. � ` A : B1 ^ � ` A : B2 ) B1 =� B22. � ` A : B ^ � ` A0 : B0 ^A =� A0 ) B =� B03. � ` B : S;B =� B0;� ` A0 : B0 then � ` B0 : S.Proof: 1. by induction on the structure of A, 2. by Church Rosser, Subject Reduction and1, and 3. by Corollary 3.12, Subject Reduction and 1. 2Theorem 3.16 (Strong Normalisation with respect to ` and !!�)For all `-legal terms M , M is strongly normalising with respect to !!�. 24 Term reshu�ingIn this section we shall rewrite terms so that all the newly visible redexes (obtained as aresult of our item notation), can be subject to the ordinary classical �-reduction !!�. Weshall show in this section that this term rewriting is correct in the sense that A is semanticallyequivalent to B in that A =� TS(A). Moreover, A and TS(A) are procedurally equivalent.Let us go back to the de�nition of �O-couples. Recall that if s � s1 � � � sm for m > 1where s1sm is a �O-couple then s2 � � � sm�1 is a well-balanced segment, s1 is the �-item of the�O-couple and sm is its O-item. Now, we can move s1 in s so that it occurs adjacently to sm.That is, we may rewrite s as s2 � � � sm�1s1sm.Example 4.1 The term A � (u�)(w�)(P�x)(v�)(Q�y)(R�z)(z�)(y�)x is reshu�ed to TS(A) �(w�)(P�x)(v�)(Q�y)(u�)(R�z)(z�)(y�)x by moving the item (u�) to the right. Hence, we canrewrite (or reshu�e) a term so that all �-items stand next to their matching O-items. Thismeans that we can contract redexes in any order. Such an action of reshu�ing is not easy to de-scribe in the classical notation. That is, it is di�cult to describe how ((�x:P :(�y:Q:�z:R:xyz)u)w)uis reshu�ed to (�x:P :(�y:Q:(�z:R:xyz)u)v)w.Note furthermore that the shu�ing is not problematic because we use the Barendregt Con-vention which means that no free variable will become unnecessarily bound after reshu�ingdue to the fact that names of bound and free variables are distinct.Lemma 4.2 If x� is a free occurrence of x in s s1 A, then x� is free in s1 s A.Proof: By BC as �x does not occur in s s1A. 2Example 4.3 Note that in Example 4.1, reshu�ing does not a�ect the \meaning" of theterm. In fact, in A � (u�)(w�)(P�x)(v�)(Q�y)(R�z)(z�)(y�)x, none of the free variable of ucan be captured by �x or �y. Moreover, A is equivalent, semantically and procedurally, toTS(A) � (w�)(P�x)(v�)(Q�y)(u�)(R�z)(z�)(y�)x.We call this process of moving �-items of �O-couples in a term to occupy positions adjacent totheir O-partners, term reshu�ing. This term reshu�ing should be such that all the �-itemsof well-balanced segments in a term are shifted to the right until they meet their O-partners.To do this however, we must study the classes of partnered and bachelor items in a term.25



4.1 Partitioning the term into bachelor and well-balanced segmentsWith De�nition 2.19, we may categorize the main items of a term A into di�erent classes:1. The \partnered" items (i.e. the �- and O-items which are partners, hence \coupled" toa matching one).2. The \bachelors" (i.e. the bachelor O-items and bachelor �-items).Lemma 4.4 Let s be the body (NIET GEDEFINIEERD???) of a term A. Then the followingholds:1. Each bachelor main O-item in s precedes each bachelor main �-item in s.2. The removal from s of all bachelor main items, leaves behind a well-balanced segment.3. The removal from s of all main �O-couples, leaves behind a O � � � O| {z }n � � � � �| {z }m -segment,consisting of all bachelor main O- and �-items.Proof: 1 is by induction on weight(s0) for s � s0(BOx)s00 and (BOx) bachelor in s. 2and 3 are by induction on weight(s). 2Note that we have assumed ; well-balanced. We assume it moreover non-bachelor.Corollary 4.5 For each non-empty segment s, there is a unique partitioning in segmentss0; s1; : : : ; sn, such that1. s � s0 s1 � � � sn,2. For all 0 � i � n, si is well-balanced for even i and si is bachelor in s for odd i.3. For all 0 � i; j � n: if si contains bachelor O-items and sj contains bachelor �-itemsthen i � j.4. s2n 6� ; for n > 0. 2Example 4.6 s � (A�x)(B�y)(C�)(D�z)(E�u)(F�)(a�)(b�)(c�v )(d�w)(e�) has the follow-ing partitioning:� well-balanced segment s0 � ;,� bachelor segment s1 � (A�x)(B�y),� well-balanced segment s2 � (C�)(D�z),� bachelor segment s3 � (E�u)(F�),� well-balanced segment s4 � (a�)(b�)(c�v )(d�w),� bachelor segment s5 � (e�).
26



4.2 A reshu�ing procedure and its propertiesIn what follows, we use !1; !2; : : : to range over f�g [ f�x;x 2 V g [ f�x;x 2 V g.De�nition 4.7 TS is de�ned recursively such that:TS(sx) =df TS(s)xTS((A1!1) � � � (An!n)) =df (TS(A1)!1) � � � (TS(An)!n) if (A1!1) � � � (An!n) is bachelorTS(s0 � � � sn) =df TS(s0) � � � TS(sn) If s0; : : : ; sn is the uniquepartitioning of Corollary 4.5TS(s1 : : : sn) =df TS(s1) : : : TS(sn) if si is well-balancedTS((A�)s(B�x)) =df TS(s)(TS(A)�)(TS(B)�x) if s is well-balancedTS((A�)s(B�x)) =df (TS(A)�)TS(s)(TS(B)�x) if s is well-balancedNote that in this de�nition, we use s bachelor to mean s bachelor in s.The following lemma will be needed in the proofs:Lemma 4.81. If s contains no items which are partnered in A then TS(sA) � TS(s)TS(A).2. If s is bachelor in sA or is well-balanced, then TS(sA) � TS(s)TS(A).Proof: 1: let A � s0 � � � snv and s � s00 � � � s0m be partitionings. Use cases on s0 beingempty or not and on s0m being bachelor or well-balanced. 2: This is a corollary of 1. 2The following lemma shows that TS(A) changes all ��-couples of A to ��-segments.Lemma 4.9 For every term M , the following holds:1. TS(M) is well-de�ned.2. If s � (B�)s0(C�x) is a segment occurring in M where s0 is well-balanced, then TS(s) �TS(s0)(TS(B)�)((TS(C)�x).3. If s � (A1!1) � � � (An!n) is a bachelor segment inM , then TS(s) � (TS(A1)!1) � � � (TS(An)!n)is a bachelor subterm of TS(A).4. If s is a subsegment occurring in M which is well-balanced, then TS(s) is well-balanced.Proof: By induction on the structure of M .� Case M � x then all 1 � � � 4 hold.� Case M � (B!)C where (B!) bachelor in M . Then M � sC 0 where s is of maximalweight and bachelor in M , and TS(M) � TS(s)TS(C) by Lemma 4.8(2) and 1 � � � 4hold by IH on s and C.� Case M � (B�)s1(D�x)s2E where s1, s2 well-balanced, E a variable or starting with abachelor item. Then by using Lemma 4.8, we see:TS(M) � TS((B�)s1(D�x)s2E)� TS(s1)(TS(B)�)(TS(D)�x)TS(s2)TS(E)and again 1 � � � 4 hold by IH. 27



� Case M � (B�)s1(D�x)s2E where s1, s2 well-balanced, E a variable or starting with abachelor item. Then by using Lemma 4.8, we see:TS(M) � TS((B�)s1(D�x)s2E)� (TS(B)�)TS(s1)(TS(D)�x)TS(s2)TS(E)and again 1 � � � 4 hold by IH. 2Note that it is not the case in general that TS(A[x := B]) � TS(A)[x := TS(B)]. Thiscan be seen by the following counterexample: let A � (y�)(y�)x and B � (z�u)(z�v)v. ThenTS(A[x := B]) � TS((y�)(y�)(z�u)(z�v)v) � (y�)(z�u)(y�)(z�v)v, whereas TS(A)[x :=TS(B)] � (y�)(y�)(z�u)(z�v)v.Lemma 4.10 For all variables x and terms A;B we have:1. TS(A) � TS(TS(A))2. TS(A[x := B]) � TS(TS(A)[x := TS(B)]).Proof:1. Induction on the structure of A like in the proof of Lemma 4.9.2. Induction on the structure of A, use 1. in case A � (COy)D where y � x. 2Lemma 4.11 For all pseudoterms A without ��-couples: A =� TS(A).Proof: by induction on the number of symbols in A:� A � x, nothing to prove.� A � (B!)C, where (B!) is bachelor in A, then A � (B!)C IH=� (TS(B)!)TS(C) �TS((B!)C) � TS(A).� A � (B�)s(C�x)D, s well-balanced, then s contains no �-items and TS(A) �Lemmas 4:8; 4:9TS(s)(TS(B)�)(TS(C)�x)TS(D) =IH� s(B�)(C�x)D =Lemmas 2:14� (B�)s(C�x)D � A,as no binding variables of s are free in B by V C 2Corollary 4.12 For all pseudoterms A;B which do not contain partnered �-items, we have:TS(A) =� TS(B) i� A =� B.Proof: A =� TS(A) =� TS(B) =� B. 2Corollary 4.13 Let B contain no partnered �-item. For all A 2 [B], A and B are seman-tically equivalent.Proof: A 2 [B] implies A contains no partnered �-items. As TS(A) � TS(B), then byCorollary 4.12, A =� B.
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4.3 Another reshu�ing procedure and its propertiesThe reshu�ing that we introduced in Section 4.2, takes a term sx � s0 s1 : : : snx accordingto the partitioning of Corollary 4.5 and reshu�es it to s00 s01 : : : s0nx where: s01 � TS(si) and ifsi � (A1!1) : : : (Am!m), is bachelor, then s0i � (TS(A1)!1) : : : (TS(Am)!m), is bachelor andif si is well-balanced, then all the ��-couples in si become ��-segments. This means that thestructure s0 s1 : : : sn does not change as the partitioning s00 s01 : : : s0n corresponds to s0 s1 : : : sn.Example 4.14 Let s � (u�)(x�)(x�y)(y�z) and s0 � (x�)(x�y)(u�)(y�z). Now, (u�x)(x�)s(z�)zis reshu�ed to (u�x)(x�)s0(z�)zIt can be claimed however that A � (u�x)s(x�)(z�)z and B � (u�x)(x�)s(z�)z have the samemeaning semantically and procedurally and that if TS(A) is to create the class of all termswhich are equivalent semantically and procedurally, then TS(A) must be the same as TS(B).For this, we re�ne TS as follows:De�nition 4.15 TS is de�ned recursively such that:TS(sx) =df TS(s)xTS((AOx)s) =df (TS(A)Ox)TS(s) if (AOx) is bachelor in sTS((A1�) : : : (An�)x) =df (TS(A1)�) : : : (TS(An)�)TS((A1�) : : : (An�)sB) =df TS(s)TS((A1�) : : : (An�)B) if s is well-balanced,(Ai�) bachelor in BTS((A�)s(B�x)) =df TS(s)(TS(A)�)(TS(B)�x) if s is well-balancedTS((A�)s(B�x)) =df (TS(A)�)TS(s)(TS(B)�x) if s is well-balancedNow, TS((u�x)(x�)s2(z�)z) � (u�x)TS(s2)(x�)(z�)z. This means that [A] = fB j TS(A) �TS(B)g according to the reshu�ing of this section contains more elements than according tothe TS of Section 4.2. These extra terms should themselves belong to [A].Now we come to the point of whether we can also increase the class of those terms whichare equivalent procedurally and semantically. With term reshu�ing, well-balanced segmentsmust only be rewritten so that ��-couples become ��-segments. Moreover, all bachelor main �-items, are moved to the right of all well-balanced segements. Hence, for any A, TS(A) becomess0s1x where s1 consists of all the bachelor main �-items of A. s0 is of the form s2s3 : : : sn wheresi is either a ��-segment or a ��-couple where all ��-couples are ��-segments or a bachelormain O-item. Now, look for example at P � (A�z)(B�)(C�x)(D�y)(F�)(G�u)(H�)(I�)x.The question one poses now is whether all the bachelor main O-items can be moved to theleft of all nonempty well-balanced segments. I.e. can we rewrite P above (assuming A : : : Iare already reshu�ed) as P 0 � (A�z)(D�y)(B�)(C�x)(F�)(G�u)(H�)(I�)x? The answer isno as D may contain variables bound by the �x. So, we can't move main bachelor O-itemsto the right, but can we move them to the left? The answer is again no. In P above, B andC may contain variables bound by �z so �z cannot move to the right of (B�)(C�x). Hence,in a term A, all main bachelor O-items will occur in the same position as in TS(A).In this paper we shall stick to the term reshu�ing of this section as in De�nition 4.15.Now, let us show the properties of this new TS.Lemma 4.161. For all pseudoterms M , TS(M) is well de�ned.2. If s is well-balanced, then TS(sA) � TS(s)TS(A).29



Proof:1. Every time a rule TS(M) is used, weights of the resulting terms become shorter or TSdisappears.2. By induction on s. 2Lemma 4.17If s is a well-balanced segment, then TS(s) is well-balanced.Proof: By induction on weight(s). 2Lemma 4.18 For a term A, TS(A) � s0 s1x where x � endvar(A), s1 consists of the termreshu�ings of all bachelor main �-items of A and s0 is a sequence of term reshu�ings ofmain ��-segments and bachelor main O-items.Proof: Induction on weight(A).� A � x, then nothing to prove.� A � (BOx)C or A � sC where s well-balanced, use lemma 4.16 and IH on C.� A � (B1�) � � � (Bn�)sC where s well-balanced and (s 6� ; or (C � x and n > 0)).TS(A) � TS(s)TS((B1�) � � � (Bn�)C). By lemma 4.17, s is well-balanced and hence byIH on s, TS(s) is a sequence of �O-segments, if s 6� ; then by IH on (B1�) � � � (Bn�)Cwe are done, else C � x and by IH TS((B1�) � � � (Bn�)C) � (TS(B1)�) � � � (TS(Bn)�)xwhich also has the required format. 2Lemma 4.19 For all pseudoterms A;B and variable x:1. TS(A) � TS(TS(A))2. TS(A[x := B]) � TS(TS(A)[x := TS(B)])Proof:1. induction on the structure of A.� A � x, then A � TS(A).� A � (BOx)C, use IH.� A � (B1�) � � � (Bn�)sC where s well-balanced and (s 6� ; or (C � x and n > 0)),use lemma 4.16.2 and IH.2. induction on the structure of A, use 1. 2Lemma 4.20 For all pseudoterms A not containing partnered �-items: A =� TS(A).Proof: by induction on the number of symbols in A:30



� A � x obvious.� A � (B1�) � � � (Bn�)x, then TS(A) � (TS(B1)�) � � � (TS(Bn)�)x IH=� (B1�) � � � (Bn�)x �A.� A � (BOx)C, then TS(A) � (TS(B)Ox)TS(C) IH=� (BOx)C � A.� A � (B1�) � � � (Bn�)sE, where n � 1, s 6� ; and s well-balanced. Then TS(A) �TS((B1�) � � � (Bn�)sE) � TS(s)TS((B1�) � � � (Bn�)E) IH=� s(B1�) � � � (Bn�)En times Lemma 2.14=� (B1�) � � � (Bn�)sE � A (use V C).� A � (B�)s(C�x)D, where s well-balanced, then TS(A) Lemmas 4.16, 4.17� TS(s)(TS(B)�)(TS(C)�x)TS(D)IH=� s(B�)(C�x)D Lemma 2.14=� (B�)s(C�x)D � A. 2Corollary 4.21 For all pseudoterms A;B not containing partnered �-terms: if TS(A) =�TS(B) then A =� B. 2Lemma 4.22 If A contains no partnered �-items then for all B 2 [A], B contains no part-nered �-items.Lemma 4.23 Let B contain no partnered �-item. For all A 2 [B], A and B are semanticallyand procedurally equivalent.Proof: A 2 [B] implies A contains no partnered �-items. As TS(A) � TS(B), then byCorollary 4.12, A =� B.Lemma 4.24 for all A 2 [B], A and B are semantically and procedurally equivalent.Proof: By induction on the number of symbols in A:� A � x nothing to prove.� A � (C!)D where ! � Ox or ! � � and (C�) is bachelor, then B � (C 0!)D0 whereC 2 [C 0] and D 2 [D0].{ Case r is in C then by IH, 9r0 2 C 0 such that rC =� r0C0 . Hence rA � rC =�r0C0 � r0B.{ Case r is in D then by IH 9r0 2 D0 such that rD = jber0D0 . Hence rA �(C!)rD =Corollary 4:12� (C 0!)r0D0 � rB.� If A � (C�)S(DOx)E then B � s1(C 0�)s2(D0Ox)E0 where TS((C�)s(DOx)) � TS(s1(C 0�)s2(D0Ox)).The only case worth considering is if r � (C�)(DOx). The other cases have been dealtwith above. Take r0 � (C 0�)(D0Ox). Now, rA � A and rB � B and by Corollary 4.12,A =� B. Hence, we are done. 2
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5 Shu�e reductionLet us recall that to reduce A, we reshu�e it and then use ordinary �-reduction. As we see,A;� A0 for any A0 2 fB;TS(A)!� Bg.De�nition 5.1 (Extended redexes and �-reduction in item notation)In the item notation of the �-calculus, an extended redex is of the form (C�)s(B�x)A wheres is well-balanced not containing partnered �-items. The shu�e class of a term A is [A] =fA0 j TS(A) � TS(A0)g. General one-step �-reduction ;� is the least compatible relationgenerated out of the following axiom:(C�)s(B�x)A;� TS(s)(TS(A)[x := TS(C)])In other words,(C�)s(B�x)A;� B i� TS((C�)s(B�x)A)!� BNote that ;� is compatible and transitive because !� is. General ;;� is the reexive andtransitive closure of ;� and �� is the least equivalence relation generated by ;;�.Remark 5.2 Now it is not in general true that A;;� B ) 9A0 2 [A]9B0 2 [B][A0 !!� B0].This can be seen by the following counterexample:Let A � ((��u)(��v)v�)((��u)(��v)��x)(w�)(w�)x and B � (w�)(��u)w. Now A ;�(w�)(w�)(��u)(��v)v ;� B,but [A] = fA; (w�)((��u)(��v)v�)((��u)(��v)��x)(w�)x; (w�)(w�)((��u)(��v)v�)((��u)(��v)��x)xg,[B] = fBg and if A0 2 [A] then the only !� reduct of A0 is (w�)(w�)(��u)(��v)v, whichdoesn't !�-reduce to B.Lemma 5.3 Let A be a pseudoterm which does not contain partnered �-items. If A !� Bthen for all A0 2 [A] A0 ;� B.Proof: It is su�cient to prove (A�)(B�x)C !� C[x := B] and TS(A0) � (A�)(B�x)Cthen A;� C[x := B]. The compatibility cases are easy. 2Lemma 5.4 If C is an extended redex in A, then C is a classical redex in TS(A), and if(B�)(C�x) is a classical redex in TS(A) then there exist terms B0; C 0 such that TS(B0) � B,TS(C 0) � C and (B0�)(C 0�x) is an extended redex in A.Proof: by induction on the number of symbols in A:� A � (B1�) � � � (Bn�)x, then extended redexes of A are extended redexes of Bi for some i,use IH on Bi. As TS(A) � (TS(B1)�) � � � (TS(Bn)�)x, classical redexes in TS(A) arein one of TS(Bi), use IH on Bi.� A � (B1Ox)B2, then similar to the previous case.� A � (D�)(E�x)F . then the extended redex (D�)(E�x) in A corresponds to the classicalredex (TS(D)�)(TS(E)�x) in TS(A), for extended redexes in D,E or F use IH, forclassical redexes in TS(D), TS(E) or TS(F ), use IH.� A � (D1�) � � � (Dn�)(D�)(E�x)F , then TS(A) � (TS(D)�)(TS(E)�x)TS((D1�) � � � (Dn�)F ).Now extended redexes of A are either in (D1�) � � � (Dn�)F or in (D�)(E�x), use IHon these terms. Classical redexes in TS(A) are either in (TS(D)�)(TS(E)�x)x orin TS((D1�) � � � (Dn�)F ), so use IH on these terms, noting that an extended redex in(D1�) � � � (Dn�)F is also an extended redex in (D1�) � � � (Dn�)(D�)(E�x)F ).32



2Lemma 5.5 Let A;B 2 T . If A !� B in the sense of De�nition 2.11, then A ;� B inthe sense of De�nition 5.1. Moreover, if A;� B comes from contracting a ��-segment thenA!� B.Proof: easy induction on the structure of A. 2Lemma 5.6 If A0 2 [A] then A0 =� A.Proof: See Corollary 4.12 2Lemma 5.7 Let A;B have no partnered �-items. If A;� B then A =� B.Proof: If A ;� B then TS(A) !� B. But by Lemma 4.20, A =� TS(A) =� B =�TS(B). 2Corollary 5.81. If A;;� B then A =� B.2. A �� B i� A =� B. 2This Corollary is important. It shows the typing relation of Section 3 does not change as aresult of the conversion rule.Theorem 5.9 (The general Church Rosser theorem for ;;�)If A;;� B and A;;� C, then there exists D such that B ;;� D and C ;;� D.Proof: As A ;;� B and A ;;� C then by Corollary 5.8, A =� B and A =� C. Hence,B =� C and by the Church Rosser property for the classical lambda calculus, there exists Dsuch that B !!� D and C !!� D. But, A!!� B implies A;;� B. Hence the Church-Rossertheorem holds for the general �-reduction. 2Note that our example in subsection 4.2, can be easily adapted to an example showing thefollowing: if A!� B and if all the ��-couples in A are ��-segments, then it is not necessarythat all the ��-couples of B are ��-segments. In other words, we can have TS(C) !� Dwhere D 6� TS(D). Consider for example the terms C � ((z�u)(z�v)v�)(w�x)(y�)(y�)x andD � (y�)(y�)(z�u)(z�v)v. Then TS(A) � C !� D whereas TS(D) � (y�)(z�u)(y�)(z�v)v.But we still can show that in a certain sense, term reshu�ing preserves �-reduction.Lemma 5.10 If A;B 2 T and A ;� B then (9B0 2 [B])[TS(A) !� B0]. In other words,the following diagram commutes:TS(A)A B0 2 [B]B!� ;�? ?TS
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Proof: we prove with induction to the structure of A0 that if A0 !� B0 2 [B], then forsome B00, TS(A0)!� B00 2 [B].� A0 � x, then nothing to prove.� A0 � (C!)D, where (C!) bachelor in A0. Assume B0 � (C 0!)D, the case B0 � (C!)D0is similar. Then by IH there is C 00 such that TS(C)!� C 00 2 [C 0].Now TS(A0) � (TS(C)!)TS(D)!� (C 00!)TS(D), and TS((C 00!)TS(D)) � (TS(C 00)!)TS(TS(D))Lemma 4.16� (TS(C 00)!)TS(D) � TS((C 0!)D) 2 [B].� A0 � (C�)s(DOx)E, where s well-balanced. If B0 � (C 0�)s(D0Ox)E0 then similar to theprevious case, assume now B0 � sE[x := C]. Then TS(A0) � TS(s)(TS(C)�)(TS(D)Ox)TS(E)!� TS(s)(TS(E)[x := TS(C)]), and TS(TS(s)(TS(E)[x := TS(C)])) � TS(TS(s))TS(TS(E)[x :=TS(C)]) Lemma 4.16� TS(s)TS(E[x := C]) � TS(B0) 2 [B]. 2Corollary 5.11 If A;;� B then there exist A0; A1; : : : ; An such that[(A � A0) ^ (TS(A0) !� A1) ^ (TS(A1) !� A2) ^ � � � ^ (TS(An�1) !� An) ^ (TS(An) �TS(B))]Proof: 25.1 Properties of ordinary typing with generalised reductionIf we look at Section 3.2 and because =� and�� are equivalent according to Lemma 5.8, we seethat the only lemmas/theorems a�ected by our extension of reductions are those which have!!� in their heading. Hence, the only (very important) properties that get a�ected by ;;�are: Church Rosser (Theorem 3.4), Subject Reduction (Theorem 3.13) and its Corollary 3.14,Unicity of Types (Lemma 3.15) and Strong Normalisation (Theorem 3.16). In this section, weshall show that Church Rosser and Strong Normalisation hold for the Cube with generalisedreduction. We shall moreover show that Subject Reduction holds for �! and �! but not forany of the other six systems. Unicity of typing depends on SR and on the fact that =� is thesame as ;;� . Hence, we ignore it here as once we prove SR, its proof will be exactly that ofLemma 3.15.Now we come to the proof of Strong Normalisation for the Cube with extended reduction.Those familiar with the proof of Strong Normalisation of the Cube, will notice that we haveaccommodated ;;� in the de�nition of SN;;� (recall Section 2.3).Remark 5.12 With De�nition ??, it becomes clear why we depart from [Geuvers 94] byusing d(A�x)Be to be (dAe�)(�y)(�x)dBe instead of (dAe�)((�x)dBe�)(�u)(�v)u.Consider for example P � (A�)(B�)(C�x)(D�y)E and Q � (B�)(C�x)E[y := A]. It isobvious that P ;� Q and that dP e � (dAe�)(dBe�)(dCe�)(�p)(�x)(dDe)�)(�q)(�y)dEe ;;�dQe � (dBe�)(dCe�)(�p)(�x)dEe[y := dAe]. Yet, if we use the translation of [Geuvers 94],then we get dP e � (dAe�)(dBe�)(dCe�)((�x)d(D�y)Ee�)(�u)(�v)u6;;� dQe � (dBe�)(dCe�)((�x)dEe[y := dAe]�)(�s)(�t)s.Theorem 5.13 (Strong Normalisation with respect to ` and ;;�)For all `-legal terms M , M is strongly normalising with respect to ;;�.34



Proof: Let M be a legal term. Then either M � 2 or for some context � and term N ,� `M : N .In the �rst case, clearly M is strongly normalising.In the second case, de�ne canonical elements cA 2 CP;̀;�(A) for all A 2 �`-kinds asfollows:c� := SN;;�c(A�x)B := �f 2 CP;̀;�(A):cB if A 2 �`-kindsc(A�x)B := cB if A 2 �`-typesTake �;̀;� such that �;̀;�(x) = cA whenever (A�x) 20 � and take �;̀;� = id.Then �;̀;� ; �;̀;� j= �, hence ([M ])�;̀;� 2 [[N ]]�;̀;� , where ([M ])�;̀;� = dMe as mentioned inlemma 2.45. Hence dMe 2 [[N ]]�;̀;� � SN;;� . By lemma 2.45 now also M 2 SN;;. 2Hence, up to now, almost all the properties of the Cube hold when reduction is generalised.The only exception is Subject Reduction. Here we show that it holds for �! and �!, yet failsfor �2. In the following, L stands for one of the systems �!, �!.Lemma 5.14 If � `L A : 2 then A 2 f�; (��x)�; (��x)(��y)�; ((��x) ��y)�; : : :g.Proof: By induction on the derivation rules. 2Lemma 5.15 If B is a legal L-term, B0 is a L-kind and B =� B0 then B is a kind.Proof: First show by induction on the derivations: If � is a subterm of A and A is legalthen A is a kind or � is type-information in A (as in (��x)y). Now, as B0 is a kind, B0 is innormal form, hence B !� B0 and it can easily be seen using the former result that B mustbe a kind too. 2Lemma 5.16 If � `L (A�x)B : S, then � `L A : S, �(A�x) `L B : S and x 62 FV (B).Proof: Show by induction on the derivation of � `L A : B that if B a kind, then for all(C�x�) 2 �-decl, x� =2 FV (A).� application rule: � `L (a�)F : B[x := a] out of � `L F : (A�x)B and � `L a : A.Suppose B[x := a] is a kind and (C�y) 20 �, � `L C : �. If x =2 FV (B) then B isa kind, so A and (A�x)B are kinds too, hence y =2 FV (a); FV (F ) by the inductionhypothesis.If x 2 FV (B) then a is a kind (as B[x := a] is a kind) and hence A � 2 which isimpossible as � `L F : (A�x)B.� conversion rule: � `L A : B0 out of � `L A : B, � `L B0 : S, B =� B0. Suppose B0 is akind, then by lemma 5.15: B is a kind, hence by induction hypothesis we are done.� the other cases are easy. 2Lemma 5.171. � ` (A�)B : C ) � ` C : S for some sort S.2. If � `L A : S1;� `L B : S2 and A =� B then S1 � S2.Proof: 35



1. Generation Lemma gives � ` A : D� ` B : (D�x)EE[x := A] =� Cif E[x := A] 6� C then � ` C : SSo suppose E[x := A] � C, then � ` B : (D�x)E implies by lemma 5.16 that � ` E :S; x =2 FV (E) hence C � E and we are done.2. Note that S1 � 2 or S2 � 2, hence by Lemma 5.15, S1 � S2. 2The crucial step in the proof of Subject Reduction in �! and �! will be proved in the following'shu�e'-lemma:Lemma 5.18 (Shu�e Lemma for �! and �!)� `L s1(A�)s2B : C () � `L s1s2(A�)B : C where s2 is well-balanced and the bindingvariables in s2 are not free in A.Proof: By induction on weight(s2).� Case weight(s2) = 0 then nothing to prove.� Case weight(s2) = 2, say s2 � (D�)(E�x). We use induction on weight(s1). Suppose�rst, weight(s1) = 0.)) suppose � `L (A�)(D�)(E�x)B : CUsing the Generation Lemma three times, we obtain:� `L A : F (1)� `L (D�)(E�x)B : (F�y)G (2)G � G[y := A] =� C (Lemma 5:16; Corollary 3:12) (3)� `L D : H (4)� `L (E�x)B : (H�z)II � I[z := D] =� (F�y)G (Lemma 5:16; Corollary 3:12) (5)� `L (E�x)J : S1�(E�x) `L B : J (6)(H�z)I =� (E�x)J (7)Out of (7) and Lemma 5.16 we see that x � z, H =� E, I =� J , y =2 FV (G); x =2FV (I) [ FV (J); � `L F;G;H; I; E : S1 (8)and out of (7) and (5): J =� (F�y)G. Hence (9)�(E�x) `L B : (F�y)G (conversion, (6), (9), (8) implies (10)by the generation and thinning36



lemmas: �(E�x) `L (F�y)G : S1)�(E�x) `L A : F (thinning lemma, (1)) (11)�(E�x) `L (A�)B : G ((10), (11), application, G[y := A] � G) (12)� `L (H�x)G; (E�x)G : S1 (formation, thinning, � `L H;G;E : S1) (13)� `L (E�x)(A�)B : (H�x)G ((12), (13), abstraction, conversion, (14)(8)) (E�x)G =� (H�x)G)� `L (D�)(E�x)(A�)B : G ((14), application, (4), G[x := D] � G) (15)� `L C : S (Lemma 5.17, hypothesis) (16)� `L (D�)(E�x)(A�)B : C (conversion, (15), (16), (3)) (17)(18)() Suppose � `L (D�)(E�x)(A�)B : CThen � `L C : S1 (Lemma 5.17) (19)and by generation three times we get:� `L D : F (20)� `L (E�x)(A�)B : (F�y)GG � G[y := D] =� C (Lemma 5:16; Corollary 3:12) (21)� `L (E�x)H : S2 (22)�(E�x) `L (A�)B : H(E�x)H =� (F�y)G (23)�(E�x) `L A : I (24)�(E�x) `L B : (I�z)J (25)J � J [z := A] =� H (Lemma 5:16; Corollary 3:12) (26)Now (25) and Corollary 3.12 imply that for some S3, �(E�x) `L (I�z)J : S3.Hence, by Lemma 5.16, z 62 FV (J);�(E�x) `L J : S3.Also, by Lemma 5.16, we get out of (22) that � `L E : S2;�(E�x) `L H : S2 andx 62 FV (H).Now, J =� H from (26), hence x 62 FV (J).Moreover, by Lemma 5.17, we see S2 � S3. Hence,� `L (E�x)(I�z)J : S2 formation (27)� `L (E�x)B : (E�x)(I�z)J ((27), (25), abstraction) (28)� `L (D�)(E�x)B : (I�z)J (application, (28), x 62 FV (I; J)� `L D : E because (23) (29)implies E =� Fand we use conversion, (20), � `L E : S2)� `L (A�)(D�)(E�x)B : J (out of �(E�x) `L A : I and � ` D : E (30)we �nd by substitution (x 62 FV (A; I)),37



� `L A : I. Now, use application)� `L (A�)(D�)(E�x)B : C ((30), (conversion; C =� Jfollows from (26),(23) and (21))Now suppose weight(s1) = n+ 1.Using the generation lemma we obtain �0 `L s01(A�)s2B : C 0, where weight(s01) = n,hence the induction hypothesis says �0 `L s01s2(A�)B : C 0 and by applying the appropri-ate derivation rule we obtain � `L s1s2(A�)B : C.� case weight(s2) = 2(n+ 1); n � 1.Then s2 � (D�)s3(E�x)s4 for some terms C;D, variable x and well-balanced segmentss3; s4. Then, weight(s3); weight(s4) � 2n and we see:� `L s1(A�)(D�)s3(E�x)s4B : C I:H:()� `L s1(A�)s3(D�)(E�x)s4B : C I:H:()� `L s1s3(A�)(D�)(E�x)s4B : C I:H:()� `L s1s3(D�)(E�x)(A�)s4B : C I:H:()� `L s1(D�)s3(E�x)(A�)s4B : C I:H:()� `L s1(D�)s3(E�x)s4(A�)B : C 2Now we can prove Subject Reduction for generalised �-reduction.Theorem 5.19 (Generalised Subject Reduction for �! and �! for ` and ;;�)If � `L A : B and A;� A0 then � `L A0 : B.Proof: We prove by simultaneous induction on the generation of � `L A : B that� `L A : B ^A;� A0 ) � `L A0 : B (i)� `L A : B ^ �;� �0 ) �0 `L A : B (ii)where �;� �0 means � � �1(A�x)�2;�0 � �1(A0�x)�2 and A;� A0 for some �1;�2; A;A0; x.The cases in which the last rule applied is axiom, start, weakening or conversion are easy (forstart: use conversion). We treat the three other cases.� The last rule applied is the formation rule: � `L (A1�x)B1 : S1 is a direct consequenceof � `L A1 : S1 and �(A1�x) `L B1 : S1. Now (i) follows from IH(i) and IH(ii); (ii)follows from IH(ii).� The last rule applied is the abstraction rule: similar to the previous case.� The last rule applied is the application rule: � `L (a�)F : B1[x := a] is a directconsequence of � `L F : (A1�x)B1 and � `L a : A1. Now (ii) follows from IH(ii). Weconsider various cases:{ Subcase 1: (a�)F ;� (a�)F 0 because F ;� F 0. Then (i) follows from IH(i).38



{ Subcase 2: (a�)F ;� (a0�)F because a ;� a0. Then from IH(i) and application,it follows that � ` (a0�)F : B1[x := a0]. Moreover, from Corollary 3.12, it followsthat for some sort S1: � `L (A1�x)B1 : S1 and hence by the generation lemma:�(A�x) `L B1 : S1 and thus by the substitution lemma � `L B1[x := a] : S1. Nowconversion gives � `L (a0�)F : B1[x := a] which proves (i).{ Subcase 3: F � s(A0�y)F 0, s well-balanced and (a�)F ;� sF 0[y := a]. Now,by lemma 5.18 we have � `L s(a�)(A0�y)F 0 : B1[x := a] and s(a�)(A0�y)F 0 !�sF 0[y := a] so by subject reduction for ordinary �-reduction we have:� `L sF 0[y := a] : B1[x := a] which proves (i). 2Hence SR is valid for �! and �!. It is not however valid for the remaining six systems of theCube as the following examples show:Example 5.20 (SR does not hold in �2 using ;;�)(���)(��y0) `�2 (6`L for L 2 f�!; �!g) (y0�)(��)(���)(��y)(y�)(��x)x : � (see Example 3.3).Moreover, (y0�)(��)(���)(��y)(y�)(��x)x;� (��)(���)(y0�)(��x)x.Yet, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : �.Even, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : � for any � .The reason why this really fails is that (��x)x : (��x)� and y : � yet � and � are unrelatedand hence we fail in �ring the application rule to �nd the type of (y0�)(��x)x. If one lookscloser however, one �nds that (��)(���) is de�ning � to be �, yet no such information canbe used to combine (��x)� with �. We will rede�ne the rules of the Cube so that suchinformation can be taken into account. Finally note that failure of SR in �2, means its failurein �P2; �! and �CExample 5.21 (SR does not hold in �P using ;;�)(���)(��t)((��q)��Q)((t�)Q�N ) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z )Z : (t�)Q. Notehere that this cannot be derived in �!, �2 or �! (see Example 3.3).And (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z )Z ;� (t�)(��x)(N�)((x�)Q�Z )ZNow, N : (t�)Q; t : �; y : (x�)Q;x : �; (t�)Q 6= (x�)Q.(���)(��t)((��q) � �Q)((t�)Q�N ) 6`�P (t�)(��x)(N�)((x�)Q�Z )Z : � for any � .Here again the reason of failure is similar to the above example. At one stage, we needto match (x�)Q with (t�)Q but this is not possible even though we do have the de�nitionsegment: (t�)(��x) which de�nes x to be t. All this calls for the need to use these de�nitions.Finally note that failure of SR in �P , means its failure in �P2; �P! and �C6 Extending the Cube with de�nition mechanismsAs a �rst step in the direction of including extended reduction in the systems of the Cube,we now investigate adding de�nitions to the Cube. We already de�ned what de�nitions arelike in contexts, now we shall extend the derivation rules so that we can use de�nitions in thecontext. The rules remain unchanged except for the addition of one rule, the (def rule), andthat the use of � ` B =def B0 in the conversion rule really has an e�ect now, rather thansimply postulating B =� B0.
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6.1 The de�nition mechanisms and extended typingDe�nition 6.1 (General axioms and rules of the Cube extended with de�nitions)(axiom) <> `sh � : 2(start rule) � `sĥ d�d `sh subj(d) : pred(d)(weakening rule) � `sĥ d �d `sh D : E�d `sh D : E(application rule) � `sh F : (A�x)B � `sh a : A� `sh (a�)F : B[x := a](abstraction rule) �(A�x) `sh b : B � `sh (A�x)B : S� `sh (A�x)b : (A�x)B(def rule) �d `sh C : D� `sh dC : [D]d if d is a de�nition(conversion rule) � `sh A : B � `sh B0 : S � `sh B =def B0� `sh A : B0De�nition 6.2 (The speci�c rules of the Cube)(S1; S2) rule � `sh A : S1 �(A�x) `sh B : S2� `sh (A�x)B : S2Remark 6.3 Note that in the abstraction rule, it follows that (A�x) is bachelor in �(A�x).The reason is that we can show that if � is legal then � contains no bachelor main �-items.Hence as � `sh (A�x)B : S, � has no bachelor �-items and so (A�x) cannot be matched in�.The (def rule) says that if C : D can be deduced from a concatenation of de�nitions d, thendC will be of type D where all the sub-de�nitions in d have been unfolded in D. Note that the(def rule) does global substitution in the predicate of all the occurrences of subjects in d. Thereason is that d no longer remains in the context. In the conversion rule however, substitutionis local as � keeps all its information (see De�nition 2.22). The following examples show howthis works:Example 6.4 With this de�nition, let us show how the term in Example 3.3 is typed in �2and how its ;�-contractum of Example 5.20 is given the same type too.(���)(��y0) `sh�2 (y0�)(��)(���)(��y)(y�)(��x)x : � can be seen by using the following deriva-
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tion steps and �lling in the needed conditions:`sh�2 � : 2(���) `sh�2 � : � : 2(���)(��y0) `sh�2 y0 : � : � : 2(���)(��y0)(��)(���) `sh�2 y0 : � : � : 2; � : �(���)(��y0)(��)(���) `sh�2 � =def �(���)(��y0)(��)(���) `sh�2 y0 : � : �(���)(��y0)(y0�)(��)(���)(��y) `sh�2 y : � : �(���)(��y0)(y0�)(��)(���)(��y)(y�)(��x) `sh�2 x : �(���)(��y0) `sh�2 (y0�)(��)(���)(��y)(y�)(��x)x : �[x := y][y := y0][� := �] � �Note how much quicker we can type terms here once we have a context. Note also that theother derivation given in Example 3.3 of this term is also valid here. Yet it is more clear ande�cient to use the de�nitional segments (y�)(��x) and (y0�)(��)(���)(��y), and furthermorewe see that this derivation is even valid in the system �!, because we don't need the term(���)(��y)(y�)(��x)x to have a type due to the (def rule).Now, also (���)(��y0) `sh�2 (��)(���)(y0�)(��x)x : � as follows (needed derivation steps,including (���)(��y0)(��)(���) `sh�2 y0 : � by (conversion) , are left to the reader):(���)(��y0)(��)(���)(y0�)(��x) `sh�2 x : � so by (def rule):(���)(��y0) `sh�2 (��)(���)(y0�)(��x)x : �[x := y0][� := �] � �Example 6.5 Also the term of Example 5.20 can be easily and quickly typed in �P (notethat this term cannot be typed in �! as the term Q can't):(���)(��t)((��q) � �Q)((t�)Q�N )(N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z ) `sh�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N ) `sh�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z )Z : (t�)QIts ;�-contractum gets the same type as follows:(���)(��t)((��q) � �Q)((t�)Q�N )(t�)(��x)(N�)((x�)Q�Z ) `sh�P Z : (x�)Q(���)(��t)((��q) � �Q)((t�)Q�N ) `sh�P (t�)(��x)(N�)((x�)Q�Z )Z : (t�)QRemark 6.6 It might be asked why we need � `sh A =def B instead of A =� B in theconversion rule? The reason is that we want from (��A)(A�)(��x) `sh A : � and y is freshto derive not only (��A)(A�)(��x)(A�y) `sh y : Abut also (��A)(A�)(��x)(A�y) `sh y : x.This is not possible if conversion is left with B =� B0:how can we ever derive (��A)(A�)(��x)(A�y) `sh y : x as x 6=� A?If we change to the conversion rule using =def, then we are �ne:(��A)(A�)(��x)(A�y) `sh y : A(��A)(A�)(��x)(A�y) `sh x : �(��A)(A�)(��x)(A�y) `sh x =def A and so with conversion,(��A)(A�)(��x)(A�y) `sh y : x 41



6.2 Properties of the Cube with de�nitionsIf we look at Section 3.2 and because we have changed ` to `sh but left !!� unchanged,we see that all the lemmas and theorems which had ` in their heading get a�ected. In thissection, we will list these lemmas and theorems for `sh and give their proofs.Lemma 6.7 (Free variable lemma for `sh)Let � be a legal context such that � `sh B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. For s1 a main item of �, FV (s1) � fsubj(d) j d 2 �-decl; d is to the left of s1 in �g.Proof: All by induction on the derivation of � `sh B : C. 2The following lemmas show that legal contexts behave as expected.Lemma 6.8 (Start Lemma for `sh)Let � be a legal context. Then � `sh � : 2 and 8d 20 �[� `sh d].Proof: As � is legal, then 9B;C 2 T such that � `sh B : C. Now use induction on thederivation � `sh B : C. 2Lemma 6.9 (Invitation Lemma for `sh)If �d is legal then � `sĥ d.Proof: By induction on the derivation �d `sh A : B. 2Lemma 6.10 (Transitivity Lemma for `sh)Let � and � be legal contexts. Then: [� `sh � ^� `sh A : B]) � `sh A : B.Proof: Induction on the derivation � `sh A : B. 2Lemma 6.11 (De�nition-shu�ing for `sh)1. If �d� `sh C =def D then �d(def(d)�)(pred(d)�subj(d))� `sh C =def D for d ade�nition.2. If �d� `sh C : D then �d(def(d)�)(pred(d)�subj(d))� `sh C : D for d a de�nition.Proof: 1. is by induction on the generation of �(A�)s(B�x)� `sh C =def D. 2. is byinduction on the proof of �(A�)s(B�x)� `sh C : D using 1. for conversion. 2Lemma 6.12 (Thinning for `sh)1. If �1�2 `sh A =def B, �1��2 is a legal context, then �1��2 `sh A =def B.2. If � and � are legal contexts such that � �0 � and if � `sh A : B, then � `sh A : B.Proof: 1. is proved by induction on the derivation �1�2 `sh A =def B.2. is done by showing: 42



� If �� `sh A : B, � `sh C : S, x is fresh, and no �-item in � is bound by a �-itemin �, then also �(C�x)� `sh A : B. We show this by induction on the derivation�� `sh A : B using 1. for conversion.� If �s� `sh A : B, �s `sh C : D : S, [C]s � C, x is fresh, s is well-balanced,then also �(C�)s(D�x)� `sh A : B. We show this by induction on the derivation�s� `sh A : B. In the case of (start) where �(A�)s(B�x) `sh x : A comes from�s `sh A : B : S, [A]s � A, x fresh, then [A](C�)s(D�x) � A because x fresh and�(C�)s(D�x) `sh A : B : S by IH.� If �s(A�x)� `sh B : C; (A�x) bachelor, s well-balanced, �s `sh D : A; [D]s � D, then�(D�)s(A�x)� `sh B : C. We show this by induction on the derivation �s(A�x)� `shB : C (for conversion, use 1.). 2Lemma 6.13 (Substitution lemma for `sh)1. If �d� `sh A =def B, d a de�nition, A and B are �d�-legal terms, then �[�]d `sh[A]d =def [B]d2. If B is a �d-legal term, d a de�nition, then �d `sh B =def [B]d3. If �(A�)(B�x)� `sh C : D then ��[x := A] `sh C[x := A] : D[x := A]4. If �(B�x)� `sh C : D, � `sh A : B, (B�x) bachelor in �, then ��[x := A] `sh C[x :=A] : D[x := A]5. If �d� `sh C : D, d a de�nition, then �[�]d `sh [C]d : [D]dProof:1. Induction to the derivation rules of =def.Case �d� `sh d1C =def d1(C[subj(d1) := pred(d1)]).Then [d1C]d � ([def(d1)]d�)[d1]d([pred(d1)]d�subj(d1)(d1C is �d�-legal ) subj(d1) =2 dom(d))and [d1(C[subj(d1) := pred(d1)])]d � [d1]d([C]d[subj(d1) := [pred(d1)]d]),hence �[�]d `sh [d1C]d =def [d1(C[subj(d1) := pred(d1)])]d2. Induction on the structure of B.Case B � x 2 dom(d): use (=def def).Case B � x =2 dom(d): use (=def re).Case B � (C�)D: use (=def comp1).Case B � (COx)D (O 2 f�;�g): use (=def comp2).3. Induction to the derivation rules, use 1., 2. and the thinning lemma.4. Idem. 43



5. Corollary of 3. 2Lemma 6.14 (Generation Lemma for `sh)1. If � `sh x : A then for some B: (B�x) 20 �, � `sh B : S, � `sh A =def B and� `sh A : S0 for some sort S0.2. If � `sh (A�x)B : C then for some D and sort S: �(A�x) `sh B : D, � `sh (A�x)D :S, � `sh (A�x)D =def C and if (A�x)D 6� C then � `sh C : S0 for some sort S0.3. If � `sh (A�x)B : C then for some sorts S1; S2: � `sh A : S1, � `sh B : S2,(S1; S2) 2 R, � `sh C =def S2 and if S2 6� C then � `sh C : S for some sort S.4. If � `sh (A�)B : C, (A�) bachelor in B , then for some terms D;E, variable x:� `sh A : D, � `sh B : (D�x)E, � `sh E[x := A] =def C and if E[x := A] 6� C then� `sh C : S for some sort S.5. If � `sh sA : B, then �s `sh A : BProof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the deriva-tions (use the thinning lemma).As to 5., we use induction on weight(s):� weight(s) = 0: nothing to prove.� If we have proven the hypothesis for all segments s that obey weight(s) � 2n andweight(s) = 2n + 2, s � s1s2 (neither s1 � ; nor s2 � ;) then by the inductionhypothesis:�s1 `sh s2A : B, again applying the induction hypothesis gives �s1s2 `sh A : B.� If we have proven the hypothesis for all segments s for which weight(s) � 2n andweight(s) = 2n + 2; s � (D�)s1(E�x) where weight(s1) = 2n then an easy inductionto the derivation rules shows that one of the following two cases is applicable:{ �s `sh A : B0, � `sh [B0]s =def B and if [B0]s 6� B then � `sh B : S for some sortS.{ � `sh D : F , � `sh s1(E�x)A : (F�y)G, � `sh B =def G[y := D] and ifG[y := D] 6� B then � `sh B : S for some sort S.In the �rst case we note that FV (B)\dom(s) = ; and that by thinning �s `sh [B0]s =defB, by substitution �s `sh [B0]s =def B0 so �s `sh B0 =def B and by conversion we get�s `sh A : B.In the second case we know by the induction hypothesis that �s1 `sh (E�x)A : (F�y)G,Now 2. tells us �s1(E�x) `sh A : L, �s1 `sh (E�x)L =def (F�y)G and if (E�x)L 6�(F�y)G then �s1 `sh (F�y)G : S1 for some sort S1.44



This means that x � y, �s1 `sh E =def F , �s1 `sh L =def G. Out of �s1 `sh (E�x)L :S we get by 3. that �s1 `sh E : S2 for some sort S2, thinning gives �s1 `sh D : F soby conversion and thinning �s `sh A : L.Out of � `sh B =def G[x := D] we get (thinning and substitution) �s `sh B =def G,out of �s1 `sh L =def G we get �s `sh L =def G, hence �s `sh B =def L.Now if G[y := D] 6� B then � `sh B : S for some sort S, and if G[y := D] � B then weget out of �s1 `sh (E�x)A : (F�y)G that �s1 `sh G : S0 for some sort S0, by thinningand substitution we get that �s `sh G[y := D] : S0. In any case, we get �s `sh B : Sfor some sort S and by conversion we may conlude �s `sh A : B. 2Theorem 6.15 (Subject Reduction for `sh and !!�)� `sh A : B and A!! A0 then � `sh A0 : B.Proof: We only need to consider A!� A0.Basic case: suppose � `sh (A�)(B�x)C : D.Then by the generation lemma: �(A�)(B�x) `sh C : D, and by the substitution lemmawe get � `sh C[x := A] : D[x := A], but as x =2 FV (D), D[x := A] � D.The compatibility cases are easy. 2Now here is the proof of Strong Normalisation for the Cube extended with de�nitions.Theorem 6.16 (Strong Normalisation for the Cube with respect to `sh and !!�)For all `sh-legal terms M , M is strongly normalising with respect to !!�.Proof: Let M be a `sh-legal term. Then either M � 2 or for some context � and termN , � `sh M : N .In the �rst case, clearly M is strongly normalising.In the second case, de�ne canonical elements cA 2 CP `sh!!� (A) for all A 2 �`sh-kinds asfollows:c� := SN!!�c(A�x)B := �f 2 CP `sh!!� (A):cB if A 2 �`sh-kindsc(A�x)B := cB if A 2 �`sh-typesTake �`sh!! such that �`sh!! (x) = cA whenever (A�x) 20 � and �`sh!! (subj(d)) = [[def(d)]]�`sh!!whenever d 20 �-def and take �`sh!!� such that �`sh!!� (subj(d)) = ([def(d)])�`sh!! for all subde�ni-tions d of � and �`sh!!� (x) = x otherwise.Then �`sh!!� ; �`sh!! j= �, hence ([M ])�`sh!! 2 [[N ]]�`sh!! , where ([M ])�`sh!! = dMe as mentioned inlemma 2.45. Hence dMe 2 [[N ]]�`sh!! � SN!!� . By lemma 2.45 now also M 2 SN!!� . 27 The Cube with de�nitions and shu�e-reductionNow we extend the type system of section 6 by changing the reduction!!� into;;�. As wasthe case in section ?? the derivation rules stay the same as those with classical �-reduction,45



hence almost all lemmas that have been proved for the system in section 6 are still valid.The only properties that have to be investigated are Church-Rosser, Subject Reduction andStrong Normalisation. We will show now that all these properties too are still valid.Theorem 7.1 (The general Church Rosser theorem for ;;�)If A;;� B and A;;� C, then there exists D such that B ;;� D and C ;;� D.Proof: see theorem 5.9. 2Theorem 7.2 (Subject Reduction for `sh and ;;�)If � `sh A : B and A;;� A0 then � `sh A0 : B.Proof: We only need to consider A;� A0.Basic case: suppose � `sh dC : D.Then by the generation lemma: �d `sh C : D. Hence by de�nition-shu�ing (6.11, sayA � def(d), B � pred(d) and x � subj(d)): �d(A�)(B�x) `sh C : D, hence by substitution�d `sh C[x := A] : D[x := A], and by (def rule) � `sh d(C[x := A]) : [D[x := A]]d, which is� `sh d(C[x := A]) : [D]d.Now by the variable convention [D]d � D so we are done.The compatibility cases are easy. 2Theorem 7.3 (Strong Normalisation for the Cube with respect to `sh and ;;�)For all `sh-legal terms M , M is strongly normalising with respect to ;;�.Proof: This is exactly as the proof of Theorem 6.16 where every occurrence of !!� isreplaced by ;;�. 28 Comparing the type system with de�nitions to the originaltype systemIn this section we will compare the type system generated by `sh with the one generatedby `, from two di�erent points of view. The �rst is the conservativity, where we show thatin a certain sense, de�nitions are harmless. That is, even though we can type more termsusing `sh than using `, whenever a judgement is derivable in a theory L using de�nitionsand `sh, it is also derivable in the theory L without de�nitions, using only ` and where allthe de�nitions are unfolded. The second viewpoint is about the e�ectiveness of derivations.More work has to be done yet but it is certain that there is a gain in using de�nitions.8.1 ConservativityAs we already saw in example 6.4, in the type systems with de�nitions there are more legalterms. Therefore, it has to be investigated to what extent the set of legal terms has changed.Note �rst that all derivable judgements in a type system of the �-cube are derivable in thesame type system extended with de�nitions as we only extended, not changed, the derivationrules.A second remark concerns the bypassing of the formation rule by using the weakeningand de�nition rule instead: In �2 without de�nitions we can derive the following judgementby using the formation rules (�; �) and (2; �):� `sh (y�)(��)(���)(��x)x : � where � � (���)(��y), namely:46



� `�2 y : � : � : 2�(���) `�2 � : � (start)�(���)(��x) `�2 x : � : � (start resp weakening)�(���) `�2 (��x)� : � (formation rule (�; �) )�(���) `�2 (��x)x : (��x)� (abstraction)� `�2 (���)(��x)� : � (fromation rule (2; �) )� `�2 (���)(��x)x : (���)(��x)� (abstraction)� `�2 (��)(���)(��x)x : (��x)� (application, we already knew � `�2 � : � )� `�2 (y�)(��)(���)(��x)x : � (application, we already knew � `�2 y : � )It is not possible to derive this judgement in �! as the formation rule (2; �) is needed. Nowwe observe that the term (y�)(��)(���)(��x)x can be seen as x with two de�nitions added,and using this observation we can derive the judgement in a type system with de�nitionwithout having to use the formation rules (�; �) and (2; �):� `sh�! y : � : � : 2�(��)(���) `sh�! y : �; � : � (weakening resp. start)�(��)(���) `sh�! � =def � (use the de�nition in the context)�(��)(���) `sh�! y : � (conversion)�(y�)(��)(���)(��x) `sh�! x : � (start)� `sh�! (y�)(��)(���)(��x)x : �[x := y][� := �] � � (de�nition rule)This example shows that in �!def we have more legal judgements than in �!. Now we takea look at the judgement � ` (��)(���)(M�x)x : (M�x)M where M � (y�)(��z)(��)(�� )and � � (���)(��y). This judgement can be derived in �C using the formation rules (2;2),(2; �), (�;2) and (�; �) in the following way:� `�C � : � : 2�(���) `�C � : � : 2 (weakening)�(���)(��z) `�C z : � : � : 2 (start resp. weakening)�(���)(��z)(��) `�C  : � : 2 (start resp. weakening)�(���)(��z) `�C (��)� : 2 (formation rule (2;2) )�(���)(��z) `�C (��) : (��)� (abstraction)�(���)(��z) `�C (��)(�� ) : � (application)�(���) `�C (��z)� : 2 (formation rule (�;2) )�(���) `�C (��z)(��)(�� ) : (��z)� (abstraction)�(���) `�C M : � (application, M � (y�)(��z)(��)(�� ))�(���)(M�x) `�C x : M : � (start resp. weakening)�(���) `�C (M�x)M : � (formation rule (�; �) )�(���) `�C (M�x)x : (M�x)M (abstraction)� `�C (���)(M�x)M : � (formation rule (2; �) )� `�C (���)(M�x)x : (���)(M�x)M (abstraction)� `�C (��)(���)(M�x)x : (M�x)M (application)Note that it is impossible to derive this judgement in any other system of the cube than47



�C as all four formation rules are needed. Analogous to the previous example we can alsoderive this judgement in �!def:� `sh�! � : � : 2�(��)(���) `sh�! � : � : 2 (weakening)�(��)(���)(y�)(��z) `sh�! � : � : 2 (weakening)�(��)(���)(y�)(��z)(��)(�� ) `sh�!  : � (weakening)�(��)(���) `sh�! (y�)(��z)(��)(�� ) : �[ := �][z := y] i.e. M : � (de�nition rule)�(��)(���)(M�x) `sh�! x : M : � (start resp. weakening)�(��)(���) `sh�! (M�x)M : � (formation rule (�; �) )�(��)(���) `sh�! (M�x)x : (M�x)M (abstraction)� `sh�! (��)(���)(M�x)x : (M�x)M [� := �] � (M�x)M (de�nition rule)This example shows that in every system of the �-cube (except �C), adding de�ni-tions gives more derivable judgements. As was shown in example 6.4, also the judgement(���)(��y0) `sh�2 (��)(���)(y0�)(��x)x : � is derivable in �2def and hence is also derivable in�Cdef, but this judgement cannot be derived in �C as the term y is of type � and not of type�. At �rst sight this might cause the reader to suspect type systems with de�nitions ofhaving too much derivable judgements. However, we have a conservativity result stating thata judgement that can be derived in Ldef can be derived in L when all de�nitions in the wholejudgement have been unfolded.De�nition 8.1 For � `sh A : B a judgement we de�ne the unfolding of � `sh A : B to bethe judgement obtained from � `sh A : B in the following way:� �rst, mark all visible ��-couples in �, A and B,� second, contract in �, A and B all these marked ��-couples.It is meant here when � � � � � (C�)s(D�x) � � �, then contracting (C�)(D�x) amounts to sub-stituting all free occurrences of x in the scope of �x by C; these free occurrences may also bein one of the terms A and B. The result is independent of the order in which the redexes arecontracted, as one can see this unfolding as a complete development (see [Barendregt 84]) ina certain sense.Example 8.2 The unfolding of(���)(��y)(y�)(��)(���)(��x)(��z) `sh ((��u)u�)((��u)��v)(x�)v : � is the judgement(���)(��y)((��z)[x := y][� := �]) `sh (((x�)v)[v := (��u)u])[x := y][� := �] : �[x := y][� := �],which is (���)(��y)(��z) `sh (y�)(��u)u : �.Note that the resulting context contains only �-items and that the resulting subject andpredicate need not be in normal form.Theorem 8.3 Let L be one of the systems of the �-cube, � a context with de�nitions andA;B pseudoterms.If � `shL A : B then �0 `L A0 : B0, where �0 `L A0 : B0 is the unfolding of � `shL A : Baccording to de�nition 8.1 48



Proof: use induction on the derivation of � `shL A : B. axiom, abstraction and formationrules are easy, we treat the other cases.� The last rule applied is the start rule. Then �d `shL subj(d) : pred(d) as a consequenceof � `sĥL d. Now if d � (A�x) then by the induction hypothesis �0 `L A0 : S (S a sort,x fresh) so by the start rule �0(A�x) `L x : A0.On the other hand, if d is a de�nition, say d � (A�)d(B�x), then by the inductionhypothesis (�d)0 `L A0 : B0 : S (S a sort), which is �0 `L A0 : B0 : S as d will be fullyunfolded, and the unfolding of �d `shL subj(d) : pred(d) is �0 `L def(d)0 : pred(d)0which is �0 `L A0 : B0 so we are done.� The last rule applied is the weakening rule, say � `shL as a consequence of � `shL and� `sĥL d. Because subj(d) is fresh we have that (�d)0 `L D0 : E0 is the same as(�d)0 `L D0 : E0 so by the induction hypothesis we are done.� The last rule applied is the application rule. Then � `shL (a�)F : B[x := a] as aconsequence of � `shL F : (A�x)B and � `shL a : A. By the induction hypothesis andthe application rule we get �0 `L (a0�)F 0 : B0[x := a0]. Now by subject reduction also�0 `L ((a0�)F 0)0 : B0[x := a0]. If B0[x := a0] � (B0[x := a0])0 then we are done, otherwise,by the Generation Corollary �0 `L B0[x := a0] : S for some sort S, so by subject reduction�0 `L (B0[x := a0])0 : S and as B0[x := a0] =� (B0[x := a0])0 by conversion we are done.� The last rule applied is the conversion rule . Then � `shL A : B2 as a consequence of� `shL A : B1, � `shL B2 : S and � `shL B1 =def B2. Now � `shL B1 =def B2 impliesB01 =� B02 because if C results from D by locally unfolding a de�nition of � then C 0 � D0,so the result follows by the induction hypothesis.Remark 8.4 It is not su�cient in theorem 8.3 to unfold all the de�nitions in the contextonly, because a redex in the subject may have been used to change the type when it was stillin the context, this is illustrated by the judgement (���)(��y) `sh�! (��)(���)(y�)(��x)x : �which cannot be derived using `�! . It is the case however that this judgement where allthe de�nitions are unfolded in context, subject and predicate, is derivable using `. That is,(���)(��y) `�! y : �.8.2 Shorter derivationsAs we already noted, derivations using the de�nition mechanism tend to need considerably lessderivation steps to derive a judgement that can also be derived without de�nitions. Withoutmaking precise too much details about the specifc way in which a term is being typed, wecan still make some remarks on this subject.The idea is that there exists an algorithm that determines for any given term M whetherM is well typed and if so, it gives a derivation of a type of this term M . Now for every ��-segment in M this typing algorithm has to do all of the following steps (say the ��-segmentis (A�)(B�x) followed by the term C, and A, B and C have been type checked already, thetype of C being D):� is the type of A �-equal to B?� add (B�x) to the context 49
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