
Canonical typing and �-conversion in the Barendregt CubeJournal of Functional Programming 6(2), 1995�Fairouz Kamareddine yDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukandRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlJune 5, 1996

�First of all, we are very grateful to our colleague Bert van Benthem Jutting who has read draft versions ofthe manuscript, and who has made very useful suggestions. Furthermore, we are grateful for the discussionswith Henk Barendregt, Roel Bloo, Tijn Borghuis, Herman Geuvers, Kevin Hammond, Bart-Jan de Leuw,Simon Peyton-Jones, Erik Poll and Phil Wadler, and for the helpful remarks received from them. Last but notleast, we are grateful to the anonymous referees for their constructive comments and criticisms.yKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven Universityof Technology, for their �nancial support and hospitality from October 1991 to September 1992, and duringvarious short visits in 1993 and 1994. Furthermore, Kamareddine is grateful to the Department of Mathematicsand Computer Science, University of Amsterdam, and in particular to Jan Bergstra and Inge Bethke for theirhospitality during the preparation of this article, and to the Dutch organisation of research (NWO) for its�nancial support. Last but not least, Kamareddine is grateful to the ESPRIT Basic Action for Researchproject \Types for Proofs and Programming" for its �nancial support.1

AbstractIn this article, we extend the Barendregt Cube with �-conversion (which is the ana-logue of �-conversion, on product type level) and study its properties. We use this exten-sion to separate the problem of whether a term is typable from the problem of what isthe type of a term.Keywords: Barendregt Cube, �-conversion, Canonical Typing, Typable Terms, SubjectReduction, Church Rosser, Strong Normalisation.Contents1 Introduction 32 The formal machinery of the Cube 63 The ordinary typing relation `� and its properties 84 The extended typing relation `�� and its properties 105 The canonical typing operator � and its properties 146 The typability relation ` and its properties 167 Conclusion 19

2

1 IntroductionAt the end of the nineteenth century, types did not play a role in mathematics or logic, un-less at the meta-level, in order to distinguish between di�erent `classes' of objects. Frege'sformalization of logical reasoning, as explained in the Begri�sschrift ([Frege 1879]), was un-typed. Only after the discovery of Russell's paradox, undermining Frege's work, one mayobserve various formulations of typed theories. Types could explain away the paradoxicalinstances. The �rst theory which aimed at doing so, was that of Russell and Whitehead,as exposed in their famous Principia Mathematica ([Whitehead and Russell 1910]). Their`rami�ed theory of types' has later been adapted and simpli�ed by Hilbert and Ackermann([Hilbert and Ackermann 1928]).Church was the �rst to de�ne a type theory `as such', almost a decade after he developeda theory of functionals which is nowadays called �-calculus ([Church 1932]). This calculuswas used for de�ning a notion of computability that turned out to be of the same power asTuring-computability or general recursiveness. However, the original, untyped version didnot work as a foundation for mathematics. In order to come round the inconsistencies in hisproposal for logic, Church developed the `simple theory of types' ([Church 1940]).From then till the present day, research on the area has grown and one can �nd variousreformulations of type theories. A taxonomy of type systems has recently been given byBarendregt ([Barendregt 92]). A version of Church's simple theory of types is found in thistaxonomy under the name �!. This �! has, apart from type variables, so-called arrow-typesof the form A! B. In higher type theories, arrow-types are replaced by dependent products�x:A:B, where B may contain x as a free variable, and thus may depend on x. This meansthat abstraction can be over types, similarly to the abstraction over terms: �x:A:b.But, once we allow abstraction over types, it would be nice to discuss the reduction ruleswhich govern these types. We propose reduction rules which treat alike types and terms.That is, not only we have (�x:A:b)C !� b[x := C], but also (�x:A:B)C !� B[x := C].This strategy of permitting �-application (�x:A:B)C in term construction is not commonlyused, yet is desirable for the following reasons:1. �-reduction behaves like �-reduction. One may say that �-reduction has been in-vented as an expedient in order to forebode a possible substitution. So why does one use adirect substitution as in equation 1 below, (which is used almost everywhere) if �-reductioncan be used to do the job, as shown in equation 2? (We omit the contexts, for the sake ofsimplicity):If f : �x:A:B and a : A; then fa : B[x := a] (1)If f : �x:A:B and a : A; then fa : (�x:A:B)a (which ��reduces to fa : B[x := a]): (2)In fact, it is more elegant and uniform to use the second notation instead of the �rst one.2. Compatibility. With �-reduction, one introduces a compatibility property for the typingof applications:M : N)MP : NP:This is in line with the compatibility property for the typing of abstractions, which does holdin general:M : N) �y:PM : �y:PN: 3

As an example, we give a simple derivation with the above-described compatible applicationrule and with conversion on �-application:A : �; b : A; a : A ` a : A (start)A : �; b : A ` (�a:A:a) : (�a:A:A) (abstraction)A : �; b : A ` (�a:A:a)b : (�a:A:A)b (application)A : �; b : A ` (�a:A:a)b : A (conversion)3. Uni�ed treatment of terms and types. It is our belief that with �-reduction it issimpler to treat terms and types in a uni�ed manner. Such a treatment provides a steptowards the generalisation of type systems which is an important topic of research at thepresent time. For example, Barendregt's taxonomy of type systems in [Barendregt 92], butalso Pure Type Systems (PTSs) introduced by Terlouw and Berardi (see [Ter 89]), and ourgeneralised system in [NK 94] are attempts at combining all the important results of typesystems in a compact and elegant way. As a step towards this goal, we believe that conversionshould apply to both types and terms. In fact, � is indeed a kind of �, hence eligible for anapplication. This is a quite natural approach and one may interpret (�x:A:B)a as the wishto select the \axis" B(a) in the Cartesian product �x:A:B. One might argue that implicit�-reduction (as is the case of the ordinary Cube) is closer to the intuition in the most usualapplications. However, experiences with the Automath-languages ([de Bruijn 74]), containingexplicit �-reduction, demonstrated that there exists no formal or informal objection againstthe use of this explicit �-reduction in natural applications of type systems.4. The ability to divide two important questions of typing. Introducing explicit �-reduction gives an elegant way to divide two important questions which are usually answeredtogether via the judgement � ` A : B. These questions are:1. Is A typable in �? (Below we use the simpli�ed judgement � ` A for this question.)2. Is B the type of A in �? (Below we use a canonical type �(�; A) for A and comparethis canonical type with B, for this question.)�-reduction is needed in order to split elegantly these two questions. In particular, we requirefor an applcation �(�; Fa) � �(�; F)a on the condition that �(�; F) = �x:A:B, hence weobtain (�x:A:B)a, a �-redex.There are reasons why separating the questions \what is the type of a term" (via �) and\is the term typable" (via `), is advantageous. Here are some:1. The canonical type of A is easy to calculate. The canonical type of A, �(�; A) is de-�ned by just scanning through A, removing all so called main �-items �x:B, replacing all main�-items �x:B by �x:B and replacing the heart of A by its obvious type in A. For example: ifA � �z:�:(�y:�:(�x:�:x�)y)(�w:�:(�x:�:x)y), then �z:� is the main �-item of A, �y:� and �x:� arethe main �-items and x� is the heart of A. Hence, �(�; A) � (�y:�:(�x:�:�)y)(�w:�:(�x:�:x)y).A consequence is that the mapping algorithm (in order to �nd a type for a term) isextremely simple. This contrasts with the mapping algorithm in the usual setting, whichneeds intermediate applications of the conversion rule. This is caused by the fact that Fa isonly typable if F has an appropriate �-type. If F has not (yet) a �-type, then the conversionrule must be used to �nd one. Of course we will need a conversion rule in order to checkwhether A has type B in context � (by establishing that �(�; A) = B). Note, however, thatwe use only typing for the calculation of the canonical type, and only conversion for the secondpart (\�(�; A) = B?"). This is clearly a separation of concerns.4

2. �(A) plays the role of a preference type for A. To de�ne the type of a term, inthe traditional Cube, one starts with the types of variables, and subsequently deduces otherstatements of the form � ` A : B, by regarding more complex terms and their types. Finally,a conversion rule expresses that the types of terms are given modulo conversion; i.e., if A : Band B =� C, then A : C. The typing relation is the smallest relation satisfying these rules.In our opinion, the approach in the traditional frameworks is, in a sense, ambiguous. Notethat with each variable x and pseudo-context �, there is associated a preference type, whichis B for x : B 2 �. For terms in general no preference type has been given, but a wholecollection of types, which are typeable by themselves and linked by means of �-reduction.We de�ne however, the canonical type of A, �(A), which plays the role of a preferencetype. For example, the preference type of A � �x:�:(�y:�:y)x is �(<>;A) � �x:�:(�y:�:�)x.This type indeed reduces with the relation !!�� to �y:�:�, the type traditionally given to A.3. The conversion rule is no longer needed as a separate rule in the de�nition of`. In our approach, �-conversion �nds its place in the application condition of the rules of `,where it naturally belongs. The conversion rule of the cube is redundant in our system. It isaccommodated in our application rule:� ` A � ` B� ` AB if �(�; A) =�� �x:C :D and �(�; B) =�� CIt will be the case that �(�; AB) � �(�; A)B =�� (�x:C :D)B !�� D[x := B] and so indeed�(�; AB) =�� D[x := C].4. Higher degrees If we use �1 for � and �2 for � then we can aim for a possible general-ization. In fact, we can extend our system by incorporating more di�erent �'s. For example,with an in�nity of �'s, viz. �0, �1, �2, �3 : : :, we replace �(�; �x:A:B) � �x:A:�(�:�x:A; B) and�(�;�x:A:B) � �(�:�x:A; B) by the following:�(�; �i+1x:A:B) � �ix:A:�(�:�x:A; B); for i = 0; 1; 2; : : : where �0x:A:B � BThere is no reason why one cannot use as many �i as possible in a type system. In fact, eventhough in the Cube there are only two, there are other systems with more. There may becircumstances in which one desires to have more \layers" of �'s. As an example we refer to[de Bruijn 74].Following the above observations, we introduce and study three typing relations (`�, `��and `) and a canonical typing operator � . `� is the typing relation of [Barendregt 92] and`�� is what we propose as its extension with �-conversion. ` and � are what we use to dividethe two important questions of typing as mentioned above. We divide the paper as follows:� In Section 2, we introduce the formal machinery needed for `�, `��, ` and � .� In Section 3, we introduce the usual properties of the Cube for `� and !!� which willbe studied for our extensions.� In Section 4, we study in detail the properties of the Barendregt Cube extended with�-conversion and show that `�� satis�es all the essential properties of `� except forSubject Reduction. That is: � `�� A : B ^ A !!�� A0 6) � `�� A0 : B. SubjectReduction however holds for the case B � 2 or � `�� B : S. This Weak SubjectReduction is su�cient to obtain the desirable typing properties such as unicity of typing.5

The explanation for this is that, this B which is not 2 or of type S, reduces via !!��to B0 which is itself either 2 or of type S, and hence � `�� A : B implies � `� B0 whereB !!�� B0 and B0 has no �-redexes.� In Sections 5 and 6 we study the properties of the two separate typing questions regard-ing � and `.2 The formal machinery of the CubeThe systems of the Cube (see [Barendregt 92]), are based on a set of pseudo-expressions orterms T de�ned by the following abstract syntax (let � range over both � and �):T = � j2 j V j T T j �V :T :Twhere V is an in�nite collection of variables over which x; y; z; : : : range. � and 2 are calledsorts over which S; S1; S2; : : : are used to range. We take A;B;C; a; b : : : to range over T .Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respectively. We write A[x := B] todenote the term where all the free occurrences of x inA have been replaced byB. Furthermore,we take terms to be equivalent up to variable renaming. For example, we take �x:A:x � �y:A:ywhere � is used to denote syntactical equality of terms. We assume moreover, the Barendregtvariable convention which is formally stated as follows:Convention 2.1 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent �'s have di�erent variables as subscript. Hence, we will not have(�x:A:x)x, but (�y:A:y)x instead.Terms can be related via a reduction relation. An example is �-reduction (see Section 3). Wesay that a reduction relation ! on terms is compatible i� the following holds:A1 ! A2A1B ! A2B B1 ! B2AB1 ! AB2A1 ! A2�x:A1 :B ! �x:A2:B B1 ! B2�x:A:B1 ! �x:A:B2A statement is of the form A : B with A;B 2 T . A is the subject and B is the predicate ofA : B. A declaration is of the form �x:A with A 2 T and x 2 V . A pseudo-context is a �niteordered sequence of declarations, all with distinct subjects. The empty context is denoted by<>. If � = �x1:A1 : : : : :�xn:An then �:�x:B = �x1:A1 : : : : :�xn:An:�x:B and dom(�) = fx1; : : : ; xng.We use �;�;�0;�1;�2; : : : to range over pseudo-contexts.A typability relation ` is a relation between pseudo-contexts and pseudo-expressions writ-ten as � ` A. The rules of typability establish which judgements � ` A can be derived. Ajudgement � ` A states that A is typable in the pseudo-context �.A type assignment relation is a relation between a pseudo-context and two pseudo-expressionswritten as � ` A : B. The rules of type assignment establish which judgements � ` A : B canbe derived. A judgement � ` A : B states that A : B can be derived from the pseudo-context�. 6

When � ` A or � ` A : B then A and B are called (legal) expressions and � is a (legal)context.We write � ` A : B : C for � ` A : B ^ � ` B : C. If � � �x1:A1 : : : : :�xn:An with n � 0is a pseudo-context, then � ` �, for � a type assignment, means � ` xi : Ai for 1 � i � n.If A ! B then we also say �1:�x:A:�2 ! �1:�x:B:�2 and de�ne !! on pseudo-contexts to bethe reexive transitive closure of !.Remark 2.2 Note that we di�er from [Barendregt 92] in that we take a declaration to be�x:A rather than x : A. The reason for this is that we want pseudo-contexts to be as closeas possible to terms. In fact the context � can be mapped to the term �:� for example, andde�nitions of boundness/freeness of variables in a term and the Barendregt convention arethus easily extended to pseudo-contexts.De�nition 2.3 (Type of Bound Variables, ~)� If x occurs free in B, then all its occurrences are bound with type A in �x:A:B.� If an occurrence of x is bound with type A in B, then it is also bound with type A in�y:C:B for y 6� x, in BC, and in CB.� De�ne ~(x) = x, ~(�x:A:B) = ~(B) and ~(AB) = ~(A).In this paper (Section 6) we introduce a system where the type information B of a judge-ment � ` A : B is no longer needed. Hence, judgements obtain the form � ` A (a simplejudgement). In the following de�nition, we include these simple judgements.De�nition 2.4 Let � be a pseudo-context, A be a pseudo-expression and ` be a typability ora type assignment relation.1. � is called legal if 9P;Q 2 T such that � ` P (: Q).2. A 2 T is called a �-term if � ` A(9B 2 T [� ` A : B _ � ` B : A]).We take �-terms = fA 2 T j � ` A (9B 2 T [� ` A : B _ � ` B : A])g.3. A 2 T is called legal if 9�[A 2 �-terms].4. We say that A is strongly normalising with respect to a reduction relation !! (writtenSN!!(A)) i� every !!-reduction path starting at A terminates.De�nition 2.5 Let � � �x1:A1 : : : : :�xn:An and � � �y1:B1 : : : : :�ym:Bm be pseudo-contexts.1. We write �x:A 2 � if x � xi and A � Ai for some i.2. � is part of �, notation � � �, if every �x:A in � is also in �.3. Let X be a set of variables. Then � j�X is � where �xi:Ai is removed for every xi 62 X.
7

3 The ordinary typing relation `� and its propertiesDe�nition 3.1 (�-reduction !� for the Cube)�-reduction !�, is the least compatible relation generated out of the following axiom:(�) (�x:B:A)C !� A[x := C]We take !!� to be the reexive transitive closure of !� and we take =� to be the leastequivalence relation generated by !!�.De�nition 3.2 (`�) The type assignement relation `� is de�ned by the following inferencerules: (axiom) <> `� � : 2(start rule) � `� A : S�:�x:A `� x : A x 62 �(weakening rule) � `� A : S � `� D : E�:�x:A `� D : E x 62 �(application rule) � `� F : �x:A:B � `� a : A� `� Fa : B[x := a](abstraction rule) �:�x:A `� b : B � `� �x:A:B : S� `� �x:A:b : �x:A:B(conversion rule) � `� A : B � `� B0 : S B =� B0� `� A : B0(formation rule) � `� A : S1 �:�x:A `� B : S2� `� �x:A:B : S2 if (S1; S2) is a ruleEach of the eight systems of the Cube is obtained by taking its set of (S1; S2) rules allowedin the formation rule out of f(�; �); (�;2); (2; �); (2;2)g. The basic system is the one where(S1; S2) = (�; �) is the only possible choice. All other systems have this version of the forma-tion rules, plus one or more other combinations of (�;2), (2; �) and (2;2) for (S1; S2). Hereis the table which presents the eight systems of the Cube (see also Figure 1):System Allowed (S1; S2) rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)Now, we list the properties of the Cube without proofs (see [Barendregt 92]). Theseproperties will be studied in Section 4 for the Cube extended with �-conversion and will bediscussed for the two di�erent subjects of canonical typing and typability in Sections 5 and 6respectively. 8

t t
t t

-
-6 6t t

t t
-
-6 6

�����
�����

�����
�����

�!
�2

�P
�P2�! �P!

�! �C

Figure 1: The CubeTheorem 3.3 (The Church Rosser Theorem CR, for !!�)If A!!� B and A!!� C then there exists D such that B !!� D and C !!� D 2Lemma 3.4 (Free variable lemma for `�)Let � � �x1:A1 : : : : :�xn:An be a `�-legal context such that � `� B : C. Then we have:1. The x1 : : : xn are all distinct.2. FV (B); FV (C) � fx1; : : : ; xng.3. FV (Ai) � fx1; : : : xi�1g for 1 � i � n. 2Lemma 3.5 (Start Lemma for `�)Let � be a `�-legal context. Then � `� � : 2 and 8�x:C 2 �[� `� x : C]. 2Lemma 3.6 (Transitivity Lemma for `�)Let � and � be `�-legal contexts. Then: [� `� � ^� `� A : B]) � `� A : B. 2Lemma 3.7 (Substitution Lemma for `�)Assume �:�x:A:� `� B : C and � `� D : A then �:(�[x := D]) `� B[x := D] : C[x := D]. 2Lemma 3.8 (Thinning Lemma for `�)Let � and � be `�-legal contexts such that � � �. Then � `� A : B) � `� A : B 2Lemma 3.9 (Generation Lemma for `�)1. � `� S : C) S � �; C =� 2; and if C 6� 2 then � `� C : S0 for some sort S0.2. � `� x : C) 9B =� C[�x:B 2 � ^ if C 6� B then � `� C : S for some sort S].3. � `� �x:A:B : C) 9(S1; S2)[� `� A : S1 ^ �:�x:A `� B : S2 ^ (S1; S2) is a rule ^ C =�S2 ^ [C 6� S2) 9S[� `� C : S]]]4. � `� �x:A:b : C) 9(S;B)[� `� �x:A:B : S ^ �:�x:A `� b : B ^ C =� �x:A:B ^ [C 6��x:A:B) 9S[� `� C : S]]]. 9

5. � `� Fa : C) 9A;B; x[� `� F : �x:A:B ^ � `� a : A ^ C =� B[x := a] ^ (B[x := a] 6�C) 9S[� `� C : S])]. 2Corollary 3.10 (Correctness of types for `�)If � `� A : B then (B � 2 or � `� B : S for some sort S). 2Lemma 3.11 (Legal terms and contexts for `� and !!�)`�-legal terms and contexts contain no �-redexes. 2Theorem 3.12 (Subject Reduction SR, for `� and !!�)� `� A : B ^A!!� A0) � `� A0 : B 2Corollary 3.13 (SR Corollary for `� and !!�)1. If � `� A : B and B !!� B0 then � `� A : B0.2. If A is a �`� -term and A!!� A0 then A0 is a �`� -term. 2Lemma 3.14 (Unicity of Types for `� and !!�)1. � `� A : B1 ^ � `� A : B2) B1 =� B22. � `� A : B ^ � `� A0 : B0 ^A =� A0) B =� B03. � `� B : S;B =� B0;� `� A0 : B0 then � `� B0 : S. 2Theorem 3.15 (Strong Normalisation with respect to `� and !!�)For all `�-legal terms M , SN!!�(M); i.e. M is strongly normalising with respect to !!�. 24 The extended typing relation `�� and its propertiesDe�nition 4.1 (��-reduction !�� for the Cube)��-reduction !��, is the least compatible relation generated out of the following axiom:(��) (�x:B:A)C !�� A[x := C]We take !!�� to be the reexive transitive closure of !�� and we take =�� to be the leastequivalence relation generated by !!��.De�nition 4.2 (`��) We de�ne `�� as `� of Section 3 with the di�erence that the applica-tion and conversion rules change as follows:(new application rule) � `�� F : �x:A:B � `�� a : A� `�� Fa : (�x:A:B)a(new conversion rule) � `�� A : B � `�� B0 : S B =�� B0� `�� A : B0The following lemmas hold for `�� and !!�� and have the same formulation (only change �to �� everywhere) and proofs as for the case of `� and !!�:� The Church Rosser Theorem for !!�� 10

� Free variable lemma for `��� Start lemma for `��� Transitivity lemma for `��� Thinning lemma for `��� Substitution lemma for `��� Generation lemma for `�� where in clause 5, we replace B[x := a] by (�x:A:B)aRemark 4.3 (Correctness of types does not hold for `��)The new legal terms of the form (�x:B:C)A imply the failure of Corollary 3.10 for `��. Thatis, even in �!, � `�� A : B 6) (B � 2 or � `�� B : S for some sort S). For example, if� � �z:�:�x:z then � `�� (�y:z:y)x : (�y:z:z)x, but � 6`�� (�y:z:z)x : S from Lemma 4.5.Failure of correctness of types implies failure of Subject Reduction even in �!:Example 4.4 In �!, �z:�:�x:z 6`�� x : (�y:z:z)x. Otherwise, by generation: �z:�:�x:z `��(�y:z:z)x : S, which is absurd by Lemma 4.5. Yet in �!, �z:�:�x:z `�� (�y:z:y)x : (�y:z:z)x.We do have however, a weak subject reduction which we will prove after we show the rela-tionship between `�� and `�.Lemma 4.5 For any A;B;C; S, � 6`�� (�x:A:B)C : S.Proof: If � `�� (�x:A:B)C : S then by generation, � `�� �x:A:B : �x:A0 :B0 and again bygeneration, �:�x:A `�� B : S0 ^ S0 =�� �x:A0 :B0 which is absurd. 2We do have the following lemma which is a sort of weak generation corollary:Lemma 4.6 � `�� A : B ^ B is not a �-redex) (B � 2 or � `�� B : S for some sort S).Proof: By a trivial induction on the derivation of � `�� A : B noting that the applicationrule does not apply as (�x:A:B)a is not a �-redex. 2Lemma 4.7 (Legal terms and contexts for `�� and !!��)1. If � `�� A : B then A and � are free of �-redexes, and either B contains no �-redexesor B is the only �-redex in B.2. If A � (�x:D:E)B is `��-legal, then E[x := B] contains no �-redexes.Proof: 1. is by induction on the derivation of � `�� A : B. 2. By 1, we only need to showthat if B � �y:G:H, then E does not contain a subterm xF . Now, suppose B � �y:G:H andE � C[xF], then it is easy to see that D � �z:I :J for some I; J , and � `�� B : D for somecontext �. But � `�� �y:G:H : �z:I :J is impossible. 2To relate `� and `��, we introduce a notation which removes the unique �-redex in a `��-legal term (if it exists):De�nition 4.8 For A `��-legal, let Â be C[x := D] if A � (�x:B:C)D and A otherwise.Lemma 4.9 11

1. If � `�� A : B then � `� A : B̂.2. If � `� A : B then � `�� A : B.Proof: 1. By a trivial induction on the derivations � `�� A : B. 2. By induction onthe derivation � `� A : B. The only interesting cases come from conversion and application.The conversion case is easy as if B =� B0 then B =�� B0. The application case is shownas follows: If � `� Fa : B[x := a] comes from � `� F : �x:A:B and � `� a : A, thenby IH, � `�� F : �x:A:B and � `�� a : A. Hence, by application, � `�� Fa : (�x:A:B)a.But (�x:A:B)a =�� B[x := a]. If � `�� B[x := a] : S for some S, then by conversion� `�� Fa : B[x := a]. But � `�� B[x := a] : S is shown as follows:� `�� F : �x:A:B then �x:A:B is `�-legal and � `�� �x:A:B : S0 for some S0 by Lemma 4.6.Now, by the generation lemma �:�x:A `�� B : S for some S. But � `�� a : A. Hence by thesubstitution lemma: � `�� B[x := a] : S. 2Remark 4.10 Note that we may have � `� A : B̂ without having � `�� A : B, evenif B is `��-legal. Take for example � � �x:�:�y:�, A � x and B � (�y:�:�)x. We have� `�� (�y:�:y)x : B hence B is `��-legal. We also have � `� x : B̂. Yet � 6`�� x : B.Lemma 4.11 If � `�� A : B and A!!�� A0 then A0 has no �-redexes.Proof: We only show this for A!�� A0. Note that A has no �-redexes and so A!� A0.Now, from � `�� A : B we get by Lemma 4.9, 1, � `� A : B̂ and so by Subject reduction for!!� we get � `� A0 : B̂. Hence A0 has no �-redexes by Lemma 4.7. 2Lemma 4.12 (Weak Subject Reduction for `�� and !!��)1. � `�� A : B ^A!!�� A0) � `�� A0 : B̂2. � `�� A : B ^A!!�� A0 ^B is `�-legal) � `�� A0 : BProof: 1. From � `�� A : B, and Lemma 4.9, 1, � `� A : B̂. also, from A!!�� A0, andA and A0 have no �-redexes (Lemmas 4.7 and 4.11), A !!� A0. Now, from SR for !!� weget � `� A0 : B̂. Hence, by Lemma 4.9, 2, we get � `�� A0 : B̂. 2. is a corollary of 1. 2Corollary 4.13 (WSR Corollary for `�� and !!��)1. If � `�� A : B and �!!�� �0 then �0 `�� A : B.2. If � `�� A : B1 and B1 !!�� B2 then � `�� A : B̂2.3. If � `�� A : B and B =�� S then � `�� A : S.4. If A is �`��-term and A!!�� A0 then A0 is a �`��-term.Proof: 1. By an easy induction on � `�� A : B using Lemma 4.12. 2. Use � `� A : B̂,B̂ !� B̂0 and SR for !�. 3. is a corollary of 2. 4. Case � `�� A : B and A !!�� A0then it is easy to show A0 is `��-legal using Lemma 4.12. Here we show that if � `�� B : Aand A !!�� A0 then A0 is `��-legal. We will only consider the case where A !�� A0 as thereexivity and transitivity of !!�� are easy. There are only three cases to consider:� Case A � Â then A !� A0 and by Lemma 4.9, 1, � `� B : A. Hence, � `� B : A0 bySR for !!� and so � `�� B : A0 by Lemma 4.9, 2.12

� Case A � (�x:D:E)A, A0 � E[x := C] then by Lemma 4.9, 1, � `� B : Â � A0. hence,� `�� B : A0 by Lemma 4.9, 2.� Case A � (�x:D:E)C, A0 � (�x:D0 :E0)C 0, then C;D;E are `�-legal, B � FC, � `��F : �x:D:E, � `�� C : D and hence � `� F : �x:D:E, � `� C : D. So � `� F : �x:D0 :E0,� `� C 0 : D0. Therefore, � `�� F : �x:D0 :E0, � `�� C 0 : D0 and so � `�� FC 0 :(�x:D0 :E0)C 0. 2Remark 4.14 We cannot replace 2 of Corollary 4.13 by: If � `�� A : B and B !!��B0 then � `�� A : B0. For example, take � � ��:�:�y:�, A � (�z:�:z)((�x:�:x)y), B �(�z:�:�)((�x:�:x)y) and B0 � (�z:�:�)y. Then, � `�� A : B but � 6`�� A : B0 because ifotherwise, we get by generation, � `�� (�z:�:�)y : S, absurd by Lemma 4.5.The result concerning WSR might look a bit disappointing. It is however discussed in detailin Section 7 which explains how the legal terms for `�� are not rich enough even though theyare richer than the legal terms for `�. Furthermore, in Section 7, we also explain how WSRcan be pushed back to full SR if the system is extended further.Lemma 4.15 (Unicity of Types for `�� and !!��)1. � `�� A : B1 ^ � `�� A : B2) B1 =�� B22. � `�� A : B ^ � `�� A0 : B0 ^A =�� A0) B =�� B03. � `�� B : S;B =� B0;� `�� A0 : B0 then � `�� B0 : S.Proof: 1. by induction on the structure of A using the generation lemma. 2. by ChurchRosser, Weak Subject Reduction, 1, and Lemma 4.7. 3. This is the same as � `� B :S;B =� B0;� `� A0 : B0 then � `� B0 : S which is 3 of lemma 3.14 and hence has thesame proof. It is to be noted here that 3 fails for the case B =�� B0. Take for example� `�� � : 2; � =�� (��:�:�)�; ��:� `�� (��:�:�)� : (��:�:�)�;� 6`�� (��:�:�)� : 2 2Lemma 4.16If SN!!��(B[x := C]), SN!!��(A), SN!!��(B) and SN!!��(C) then SN!!��((�x:A:B)C).Proof: This is standard. 2Theorem 4.17 (Strong Normalisation with respect to `�� and !!��)For all `��-legal terms A, SN!!��(A); i.e. A is strongly normalising with respect to !!��.Proof: Note that if A is �-redex free and SN!!�(A) then SN!!��(A). We show that if� `�� A : B then SN!!��(A) and SN!!��(B). By Lemma 4.9, 1, � `� A : B̂. Hence, byTheorem 3.15, SN!!�(A) and SN!!� (B̂). Hence, SN!!��(A) and we only have to show thatSN!!��(B).� Case B � B̂ then SN!!��(B).� Case B � (�x:B1 :B2)B3 then B̂ � B2[x := B3], B1; B2; B3 are `�-legal. By Lemma 4.16,SN!!��(Bi) for 1 � i � 3 and SN!!��(B̂), we get SN!!��((�x:B1 :B2)B3). 2
13

5 The canonical typing operator � and its propertiesDe�nition 5.1 (Canonical Type Operator) For any pseudo-context � and pseudo-expressionA, we de�ne the canonical type of A in �, �(�; A) as follows:�(�; �) � 2�(�; x) � A if �x:A 2 ��(�; Fa) � �(�; F)a�(�; �x:A:B) � �x:A:�(�:�x:A; B) if x 62 dom(�)�(�;�x:A:B) � �(�:�x:A; B) if x 62 dom(�)Example 5.2 In usual type theory, the type of �x:�:�y:x:y is �x:�:�y:x:x and the type of�x:�:�y:x:x is �. Now, with our � , we get the same result:�(<>;�x:�:�y:x:y) � �x:�:�(�x:�; �y:x:y) � �x:�:�y:x:�(�x:�:�y:x; y) � �x:�:�y:x:x�(<>;�x:�:�y:x:x) � �(�x:�;�y:x:x) � �(�x:�:�y:x; x) � �Remark 5.3 Note that �(�;2) is unde�ned. We write # �(�; A) for �(�; A) de�ned. Notealso that FV (�(�; A)) 6= FV (�:A). For example, if � � �x:��y:x:�z:p, then �(�; y) � x,x 2 FV (�(�; y)) n FV (�:y), and p 2 FV (�:y) n FV (�(�; y)).In what follows, we study the properties of � .Lemma 5.4 (� -weakening)Let �;�0 be pseudo-contexts. � � �0^ # �(�; A)) [# �(�0; A) and �(�; A) � �(�0; A)].Proof: By induction on A, noting that bound variables in A can always be renamed sothat they don't occur in dom(�0). 2Lemma 5.5 (Context-reduction for �)For �;�0 be pseudo-contexts, �!!� �0^ # �(�; A)) [# �(�0; A) ^ �(�; A)!!� �(�0; A)].Proof: By induction on �(�; A). 2Lemma 5.6 (� -restriction)If # �(�; A) then �(� j�FV (A); A) � �(�; A).Proof: By induction on A. 2Lemma 5.7 (� -Substitution Lemma) Let � be !!��;=�� or �.If �(�:�x:A:�; B) � C and �(�;D) � A then �(�:(�[x := D]); B[x := D]) � C[x := D].Proof: By induction on the structure of A. 2Note that when �; A contain no �-redexes, �(�; A) is exactly as A except that:1. An occurrence of �x:B in A which is not an occurrence in some C where �y:C :D or DCis a subterm of A, disappears in the case � = � and becomes �x:B in the case � = �.2. ~(A) is replaced by �(�0;~(A)) where �0 = �:�x1:A1 : : : :�xn:An and xi : Ai are those of�y:B which have either disappeared or been replaced by �y:B, taken in the same orderin which they appeared in A. 14

Example 5.8�(<>;�z:�: (�y:�: (�x:�: x)y)(�w:�:(�x:�:x)y) �(�y:�: (�x:�: �)y)(�w:�:(�x:�:x)y)�(<>; ((�x:�: (�y:�: �z:�: z)x)C)D �((�x:�: (�y:�: �z:�: �)x)C)DThis can be made clearer by using the item notation via a translation function I whereI(�x:A:B) � (I(A)�x)I(B) and I(AB) � (I(B)�)I(A). Note that for each A, I(A) �I1I2 : : : Inx where each main item Ii is of the form (Ai!) for ! 2 f�g [f�y; y 2 V g andx � ~(A). Moreover, any �-redex (�y:B:C)D in A will be (I(D)�)(I(B)�y)I(C). Hence,�-redexes start by a �-item just before a �-item.With this item notation, it is clearer to evaluate � . In fact, we go through I(A) from leftto right and for every Ii we reach, we keep it unchanged if it is a �-item, we remove it if it isa �-item and we change the � to � if it is a �-item. Finally, we replace ~(A) which is x by�(�0; x) where �0 � I(�):I 0i1 : : : : :I 0ik and I 0ij are all the �-items of A where � is changed to �. Ofcourse I(�(�; A)) � �(I(�);I(A)). For example, for A � �z:�:(�y:�:(�x:�:x)y)(�w:�:(�x:�:x)y),I(A) � (��z) ((��w)(y�)(��x)x�) (��y) (y�) (��x) x�(<>;I(A)) � ((��w)(y�)(��x)x�) (��y) (y�) (��x) �((��z)(��y)(��x); x)� ((��w)(y�)(��x)x�) (��y) (y�) (��x) �Note that I1 has disappeared, I2 and I4 remained unchanged whereas the � in I3 and I5changed to �. Note also that I(�(<>;A)) � �(<>;I(A)). In item notation, every term isof the form Sx or S� where S is a segment, i.e. a sequence of items. For a segment S, wede�ne S� as S where all the main �-items are written as �-items and where all the main�-items are removed. We de�ne S� as S where all the main �-items are replaced by �-items,all the main �-items remain unchanged and all the main �-items are removed. For example,if S � (x�)(y�z)(z�r) then S� � (y�z)(z�r) and S� � (x�)(y�z). With these notations,�(�; Sx) � S��(�S�; x).This item notation has been used to study, extend and clarify many notions of the �-calculus (see [KN 93] and [KN 9y]).Remark 5.9 Note that typability of subterms fails for � . That is, � can be de�ned for someA without being de�ned for all its subterms. For example, �(<>; (�x:�:x)y) � (�x:�:�)y,but �(<>; y) is not de�ned. Note also that unicity of types fails for � . That is, we canhave A!!�� A0 without having �(�; A) =�� �(�; A0). For example, A � (�x:�:x)(�y:�:y)!���y:�:y � A0 yet �(<>;A) � (�x:�:�)(�y:�:y) 6=�� �(<>;�y:�:y) � �y:�:�. Moreover, SN!!��(A)6) SN!!��(�(�; A)). For example, take � � �x:(�x:�:xx)(�x:�:xx) and A � x. In Lemmas 6.7and 6.17, we show that typability of subterms and unicity of types hold for � when � ` A.We conjecture moreover, that if � ` A then �(�; A) is strongly normalising.
15

6 The typability relation ` and its propertiesDe�nition 6.1 (`) The Typability relation ` is de�ned by the following rules:(`-axiom) <> ` �(`-start rule) � ` A�:�x:A ` x if vc(`-weakening rule) � ` A � ` D�:�x:A ` D if vc(`-application rule) � ` F � ` a� ` Fa if ap(`-abstraction rule) �:�x:A ` b � ` �x:A:B� ` �x:A:b if ab(`-formation) � ` A �:�x:A ` B� ` �x:A:B if fcvc (variable condition): x 62 � and �(�; A)!!�� S for some Sap (application condition): �(�; F) =�� �x:A:B and �(�; a) =�� A for some A;B.ab (abstraction condition): �(�:�x:A; b) =�� B and �(�;�x:A:B)!!�� S for some S.fc (formation condition): �(�; A)!!�� S1 and �(�:�x:A; B)!!�� S2 for some (S1; S2) rule.When � ` A, we say that A is typable in �.Lemma 6.2 (Free variable lemma and type-de�nability for ` and �)Let � � �x1:A1 : : : : :�xn:An. If � ` A. Then we have:1. The x1 : : : xn are all distinct.2. FV (A) � fx1; : : : ; xng.3. FV (Ai) � fx1; : : : xi�1g for 1 � i � n.4. # �(�; A) and FV (�(�; A)) � fx1; : : : ; xng.Proof: By induction on � ` A. 2Lemma 6.3 (Start Lemma for ` and �)If � is `-legal, then � ` � and 8�x:C 2 �[� ` x ^ �(�; x) � C].Proof: By induction on the derivation � ` A. 2Lemma 6.4 (Substitution Lemma for ` and �)If �:�x:A:� ` B and � ` D and �(�;D) =�� A, then �:(�[x := D]) ` B[x := D] and�(�:(�[x := D]); B[x := D]) =�� �(�:�x:A:�; B)[x := D].Proof: By induction on the derivations of �:�x:A:� ` B. 2Lemma 6.5 (Thinning Lemma for ` and �)If � and � be `-legal and � � �, then � ` A) � ` A (note that �(�; A) � �(�; A)).Proof: By induction on the length of the derivations � ` A. 216

Lemma 6.6 (Generation Lemma for ` and �)1. � ` S) S � �.2. � ` x) 9A[�x:A 2 � ^ �(�; x) � A].3. � ` �x:A:B) 9S1; S2[� ` A ^ �:�x:A ` B ^ �(�; A) =�� S1 ^ �(�:�x:A; B) =�� S2 ^(S1; S2) is a rule].4. � ` �x:A:b) 9S;B[� ` �x:A:B ^�:�x:A ` b^ �(�:�x:A; b) =�� B ^ �(�;�x:A:B) =�� S].5. � ` Fa) 9A;B; x[� ` F ^ � ` a ^ �(�; F) =�� �x:A:B ^ �(�; a) =�� A].Proof: By induction on the derivations � ` A. 2Lemma 6.7 (Typability of subterms)If � ` A and A0 is a subexpression of A then (9�0)[�:�0 ` A0].Proof: By induction on � ` A. 2Lemma 6.8 (Legal terms and contexts for `)`-legal terms and contexts are free of �-redexes,Proof: By induction on � ` A. The only interesting case is application. Assume � ` F ,� ` a, �(�; F) =�� �x:A:B and �(�; a) =�� A. By IH, �; F; a are �-redexes free. Also,F 6� �x:C :D, otherwise, �(�:�x:C ;D) � �(�; F) =�� S2 =�� �x:A:B, absurd. 2Note that � ` A 6) (�(�; A) � 2 _ � ` �(�; A)). For example, �x:� ` (�y:�:y)x and �x:� 6`(�x:�:�)x, by Lemma 6.8. The property however holds when �(�; A) is �-redex free. We need�rst the following lemma:Lemma 6.9If � ` A, � ` B and A =� B then �(�; A) =�� �(�; B).Proof: By induction on A =� B using Lemmas 5.5 and 5.7. 2Lemma 6.10 If � ` A and �(�; A) is �-redex free, then �(�; A) � 2 or � ` �(�; A).Proof: By induction on � ` A using Lemma 6.9 (application cannot apply otherwise,�(�; Fa) ��(�; F)a =�� (�x:A:B)a) �(�; F) � �x:A0 :B0 and �(�; Fa) is a �-redex). 2Now, let us study the relationship between `�� and `.Lemma 6.11 If � `�� A : B then � ` A and �(�; A) =�� B.Proof: By induction on the derivations � `�� A : B. 2De�nition 6.12 For A a pseudo-term, we take A to be the ��-normal form of A.
17

Lemma 6.13 If � ` A then # �(�; A) and � `� A : �(�; A)Proof: By induction on � ` A. We only treat three cases:application: Assume � ` F and � ` a give � ` Fa where the application condition (ap)holds and IH holds for the �rst two derivations. �(�; F) =�� �x:A:B ^ �(�; a) =�� A) 9C;D where A!!�� C, B !!�� D, �(�; F) � �x:C :D and �(�; a) � C.Moreover, by IH � `� �(�; F) : S (otherwise by Corollary 3.10, �x:C:D � 2 absurd).Now, use application on � `� a : C, � `� F : �x:C :D to get � `� Fa : D[x := a].Hence by Strong Normalisation of `�, # D[x := a].But, �(�; Fa) � �(�; F)a � (�x:C :D)a � D[x := a] and so # �(�; Fa).Now, by Corollary 3.10, � `� Fa : D[x := a]) D[x := a] � 2 _ 9S[� `� D[x := a] : S].� Case D[x := a] � 2 then �(�; Fa) � D[x := a] � D[x := a] and � `� Fa : �(�; Fa).� Case � `� D[x := a] : S, then by SR for `�, as D[x := a]!!� D[x := a],� `� D[x := a] : S.Now, use � `� Fa : D[x := a], � `� D[x := a] : S and D[x := a] =� D[x := a] andconversion for `� to get � `� Fa : D[x := a]. Hence, � `� Fa : �(�; Fa).abstraction: assume � ` �x:A:B and �:�x:A ` b imply � ` �x:A:b where �(�:�x:A; b) =�� B,and �(�;�x:A:B)!!�� S. Hence, �(�;�x:A:B) � S.By IH, � `� �x:A:B : �(�;�x:A:B) � S. Moreover, by ab as �(�:�x:A; b) =�� B, we getB !!�� �(�:�x:A; b). Hence, �x:A:B !!�� �x:A:�(�:�x:A; b) and � `� �x:A:�(�:�x:A; b) : S bySR for `�.Furthermore, by IH, �:�x:A `� b : �(�:�x:A; b).Now, use �:�x:A `� b : �(�:�x:A; b), � `� �x:A:�(�:�x:A; b) : S and abstraction to get� `� �x:A:b : �x:A:�(�:�x:A; b).But �x:A:�(�:�x:A; b)!!� �x:A:�(�:�x:A; b) � �(�; �x:A; b).Hence by Corollary 3.13, � `� �x:A:b : �(�; �x:A:b).formation: Assume � ` A and �:�x:A ` B give � ` �x:A:B and IH holds for the �rst twoderivations. Hence, # �(�; A), �(�:�x:A; B), � `� A : �(�; A) and �:�x:A `� B : �(�:�x:A; B).Hence, as �(�;�x:A:B) � �(�:�x:A; B), we get # �(�;�x:A:B).Furthermore, as by fc, �(�; A) =�� S1 and �(�:�x:A; B) =�� S2, for some (S1; S2) rule, weget �(�; A) � S1 and �(�:�x:A; B) � S2.Now, we use formation to get � `� �x:A:B : �(�;�x:A:B). 2Lemma 6.14 (Subject Reduction for ` and �)� ` A ^A!!�� A0) [� ` A0 ^ �(�; A) =�� �(�; A0)]Proof: Use Lemmas 6.11, 6.13 and SR for `�. 2Corollary 6.15 (SR corollary for ` and �)1. If � ` A and �!!� �0 then �0 ` A and �(�; A) =�� �(�0A).2. If A is �`-term and A!!� A0 then A0 is a �`-term.Proof:1. � `� A : �(�; A)) �0 `� A : �(�; A). Hence, by Lemma 6.11 �0 ` A and�(�0; A) =�� �(�; A) =�� �(�; A). 218

Remark 6.16 Note that � ` A and A !!� A0 6) �(�; A) !!� �(�; A0). For example, IfA � (�z:w:z)y and � � �w:�:�y:(�x:�:x)w, then A!!� y, �(�; A) � (�z:w:w)y 6!!� �(�; y).Lemma 6.17 (Unicity of Types for ` and �)1. � ` A ^ � ` B ^A =� B) �(�; A) =�� �(�; B)Proof: Use CR and SR to show � ` C, �(�; A) =�� �(�; C) =�� �(�; B). 2Theorem 6.18 (Strong Normalisation for `)If A is �`-legal, then SN!!� (A).Proof: By Lemma 6.13, � `� A : �(�; A). Hence, by Theorem 3.15, SN!!�(A). 2We believe that if � ` A then SN!!��(�(�; A)). We leave this as an open problem for themoment.Remark 6.19 Note that from Lemmas 6.11, 6.13 and 4.9 , �-reduction is necessary forsplitting � ` A : B into � ` A and �(�; A) =�� B, yet `�� is not necessary. This is shownby the following proposition (call B `�-legal type i� B � 2 or � `� B : S for some �; S).Proposition 6.20� `� A : B , � ` A ^ �(�; A) =�� B ^B is `�-legal type.Proof:)) By Lemma 4.9, � `�� A : B. Hence, by Lemma 6.11, � ` A and �(�; A) =�� B.Moreover, by Corollary 3.10, as � `� A : B, B is `�-legal type.() By Lemma 6.13, # �(�; A) and � `� A : �(�; A). Moreover, B !!� �(�; A).� Case B � 2 then �(�; A) � 2 and � `� A : B.� Case � `� B : S then by � `� A : �(�; A), B =� �(�; A) and conversion, we get� `� A : B. 2Note in this proposition that B is `�-legal type is needed. The reason is obvious of course. Wemay have �(�; A) =�� B and � ` A, yet B contains �-redexes, hence making it impossible tohave � `� A : B. For example, if � � �p:�:�z:�:�u:z, A � (�x:z:(�y:z:p)u)u and B � (�y:z:�)uthen obviously � ` A and �(�; A) � (�x:z:(�y:z:�)u)u =�� B but � 6`� A : B. In fact, B isnot a legal term nor type for `� according to Lemma 3.11. We do however have the following:Lemma 6.21If B is in ��-normal form, then � `� A : B , � ` A ^ �(�; A) =�� B.Proof:)) is a corollary of Proposition 6.20. () As B is in ��-normal form and �(�; A) =�� B,we get �(�; A) � B. Now, use Lemma 6.13 to get � `� A : B. 27 ConclusionIn Section 1 we introduced various desirable properties for type theory. In this section weremark how these properties have been treated in our paper discussing any limitations orfuture work. 19

1. �-reduction behaves like �-reduction. This has of course been a fundamental pointto our paper. In fact, recall Remark 6.19 which explained that �-reduction is necessary forsplitting the question does A have B as a type into the two questions about whether A istypable and whether its preference type is equal to B.2. Compatibility. This has certainly been achieved in `�� via the new application rule.3. Uni�ed treatment of terms and types. This is achieved slightly in the BarendregtCube. With our �-reduction we go a step further allowing types to have similar reductionrights as terms.4. The ability to divide two important questions of typing. This has been achieved inour paper by replacing `� or `�� by ` and � . The important relation between the standardway of typing terms and our two separate questions is given in Proposition 6.20.As for the other points, it has been made clear in the paper that �(A) plays the role of apreference type for A and that it is very easy to calculate. Furthermore, we have eliminatedthe conversion rule from the typing rules for `.Now, let us reect on the legal terms obtained via `�� comparing them to those legalterms of `�. Lemma 3.11 informs us that `��-legal terms and contexts have no �-redexes.Lemma 4.7 tells us that if � `�� A : B then we can only have �-redexes in B and if this isthe case than B is itself the unique �-redex. So really, we have not increased our terms ortypes much via `��. Still this tiny increase is what led to the loss of SR (even though we getWSR). It is however easy to get back full SR in two di�erent ways which have been ignoredin this article because they emphasize di�erent issues than those we emphasize in this paper.We will here just briey discuss how these two methods work.The �rst method (which is being investigated) adds de�nitions to `�� via the followingextra typing rule (note � = � or �):(def rule) �:(�x:A:�)B `�� C : D� `�� (�x:A:C)B : D[x := B]The intuition behind this rule is obvious. It says that if C : D can be typed using thede�nition that x of type A is B, then (�x:A:C)B : D[x := B] can be typed without thisde�nition. With de�nitions, terms, types and contexts contain as many �-redexes as theylike.A second method to retrieve back full SR would be to add the following rule to `��:� `�� �x:A:C : S � `�� B : A� `�� (�x:A:C)B : SThe intuition behind this rule is obvious. In fact, think of the formation rule. For �x:A:B : Swe needed B : S. Now, if B : S then B[x : a] : S and hence (�x:A:B)a : S. With thisextension, terms would contain as many �-redexes as they like. Contexts however would stillnot contain any �-redex.References[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,volume II, eds. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 118-414,1992. 20

[de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4 family, Dept. of Math-ematics, Eindhoven University of Technology, 1974.[Church 1932] Church, A., A set of postulates for the foundation of logic, Annals of Math. 33 (1932),346{366 and 34 (1933), 839{864.[Church 1940] Church, A., A formulation of the simple theory of types, Journal of Symbolic Logic 5(1940), 56{68.[Frege 1879] Frege, G., Begri�sschrift, eine der arithmetischen nachgebildete Formelsprache des reinenDenkens (Halle, Verlag von Louis Nebert, 1879). Reprint 1964 (Hildesheim, Georg Olms Verlags-buchhaltung).[Hilbert and Ackermann 1928] Hilbert, D. and Ackermann, W., Grundz�uge der theoretischen Logik(Berlin, Springer Verlag, 1928).[How 80] Howard, W.A., The formulae-as-types notion of constructions, in To H.B. Curry: Essayson Combinatory Logic, Lambda Calculus and Formalism, eds. Hindley J.R., and Seldin, J.P.Academic Press, 1980.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-nal of Foundations of Computer Science 4 (3), 197-240, 1993.[NK 94] Kamareddine, F., and Nederpelt, R.P., A uni�ed approach to type theory through a re�ned�-calculus, Theoretical Computer Science 136, 183-216, 1994.[KN 9y] Kamareddine, F., and Nederpelt, R.P., The Beauty of the �-Calculus, in preparation.[KN 94] Kamareddine, F., and Nederpelt, R.P., Canonical Typing and �-Conversion, Research report,Department of Mathematics and Computing Science, Eindhoven University of Technology, 1994.[Ter 89] Terlouw, J., Een nadere bewijstheoretische analyse van GSTT's. Technical report, Depart-ment of Computer Science, University of Nijmegen, 1989.[Whitehead and Russell 1910] Whitehead, A.N. and Russell, B., Principia Mathematica (Cambridge,Cambridge University Press, 1910/1913). Reprint 1960, same editor.

21

