
The �-cube with classes which approximate reductionalequivalence�Roel Blooy, Fairouz Kamareddinez, Rob NederpeltxDecember 5, 1995AbstractWe study lambda calculus and re�ne the notions of �-reduction and �-equality. Inparticular, we de�ne the operation TS (term reshu�ing) on �-terms which reshu�esa term in such a way that more redexes become visible. Two terms are called shu�e-equivalent if they have syntactically equivalent TS-images. The shu�e-equivalence classesare shown to divide the classes of �-equal terms into smaller classes consisting of termswith similar reduction behaviour. The re�nement of �-reduction from a relation on termsto a relation on shu�e classes, called shu�e-reduction, allows one to make more redexesvisible and to contract these newly visible redexes. This enables one to have more freedomin choosing the reduction path of a term, which can result in smaller terms along thereduction path if a clever reduction strategy is used. Moreover, this gain in reductionalbreadth is not at the expense of reductional length.We show that the �-cube of [Barendregt 92] extended with shu�e-reduction satis�esall its properties such as Church Rosser, Strong Normalisation and Subject Reduction(the latter depends on allowing de�nitions in contexts).1 Introduction1.1 Term reshu�ing and reductional equivalence�-equality of two terms A and B is by the Church-Rosser property equivalent to the existenceof a common reduct C. Nothing can be said about the nature of the two reductions A!!� Cand B !!� C. It can be that both reductions consist of the same number of steps, orthat one of them is larger than the other. Also, the reduction behaviour of A and B canbe very di�erent, as is the case if A � KI
 and B � KII. We think it is an interestingproblem to characterize terms with equal reduction behaviour. In this paper we try to givean approximation to the reductional equivalence between two terms.�We are grateful for the Netherlands Computer Science Research Foundation (SION), the NetherlandsOrganisation for Scienti�c Research (NWO), the universities of Glasgow and Eindhoven, to the Basic Actionfor Research ESPRIT project \Types for Proofs and Programs", and to the EPSRC Grant nb GR/K 25014for their �nancial support.yDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,5600 MB Eindhoven, the Netherlands, email: bloo@win.tue.nlzDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, email: fairouz@dcs.glasgow.ac.ukxsame address as Bloo. email: wsinrpn@win.tue.nl1

Consider in a typed �-calculus of the �-cube as described in [Barendregt 92], the termsA � (��:�:�y:�:�f :�!�:fy)�xB � (��:�:(�y:�:�f :�!�:fy)x)�Both terms have the term �f :�!�:fx as a reduct, so A =� B. However, B has two redexeswhereas A has only one. Here are the redexes of B and their corresponding results in B:1. r1 = (��:�:(�y:�:�f :�!�:fy)x)� which when contracted in B results in (�y:�:�f :�!�:fy)x2. r2 = (�y:�:�f :�!�:fy)x which when contracted in B results in (��:�:�f :�!�:fx)�Here is the only redex in A and the result of contracting this redex in A:1. r01 = (��:�:�y:�:�f :�!�:fy)� which when contracted in A results in (�y:�:�f :�!�:fy)xNote that r1 in B and r01 in A are both based on (��:�:�)� and contracting r1 in B results inthe same term as contracting r01 in A.A closer look at A however, enables us to see that in A (as in B), �y:� will get matchedwith x resulting in a redex r02 = (�y:�:�)x. There are di�erences however between r2 in B andr02 in A. r2 in B is completely visible and may be contracted before r1 in B. r02 on the otherhand is a future redex in A. In fact, it is not a redex of A itself but a redex of a contractumof A, namely (�y:�:�f :�!�:fy)x, the result of contracting the redex r01 in A.We could however guess from A itself the presence of the future redex. That is, lookingat A itself, we see that �� is matched with � and �y is matched with x.In this paper, and in order to discuss reductional equivalence between terms, redexes willbe extended so that a future redex like (�y:�:�)x will be treated as a �rst class redex andwill be contracted in A even before the originator (��:�:�y:�:�f :�!�:fy)� has been contracted.Hence, with our extended notion of redexes and reduction we get in A:r02 = (�y:�:�f :�!�:fy)x which when contracted in A results in (��:�:�f :�!�:fx)�This is remarkable. Note that r02 is �y:� matched with x (exactly as r2 in B). Note moreoverthat contracting r02 in A gives the same result as contracting r2 in B.With this notion of extended redex, we can observe that there is a bijective correspondencebetween the (extended) redexes of A and B. That is, r1 corresponds to r01 and r2 correspondsto r02. Moreover, if one redex is contracted in A, the reduct is syntactically equal to the reductwhich results from contracting the corresponding redex in B and vice versa. That is, r1 andr01 yield the same values; similarly r2 and r02 yield the same values.If on the other hand, we consider the term C � (�y:�:(��:�:�f :�!�:fy)�)x, we see thatthere is no such correspondence between (extended) redexes of A and C: contracting theoutermost redex in C gives the same result as contracting the mentioned extended redex inA, but contracting the innermost redex inC yields (�y:�:�f :�!�:fy)x which is not syntacticallyequivalent to (�y:�:�f :�!�:fy)x.These considerations lead us to de�ne reductional equivalence �inf informally by:De�nition 1.1 We say that A and B are reductionally equivalent and write A �inf B i�1. There is a bijective correspondence between the (extended) redexes of A and B.2

2. Contracting an (extended) redex in A results in a value syntactically equal (�) or re-ductionally equivalent (�inf) to the result of contracting the corresponding redex in Band vice versa.Alas however, it may not be easy to decide on the reductional equivalence of two terms. Weconjecture that in general it is undecidable whether two terms are reductionally equivalent.Conjecture 1.2 It is undecidable whether two terms are reductionally equivalent.It seems interesting to �nd notions that are more easy to decide which approximate �inf. Oneapproach could be to de�ne degrees of reductional equivalence (�n with n � 0 for short) inthe following way:� M �0 N i� M � N .� M �n+1 N i� there is a bijective correspondence between the (extended) redexes ofM and N such that contracting one in M yields a term �m, m � n to the result ofcontracting the corresponding redex in N .These are not very well behaved notions since the notions �n for n � 2 are not compatible.This can be seen as follows1:�z:g:(�x:c:�y:d:e)ba �1 �z:g:(�x:c:(�y:d:e)a)b but(�z:g:(�x:c:�y:d:e)ba)f �2 (�z:g:(�x:c:(�y:d:e)a)b)f .For this reason we follow a di�erent approach and consider what we call shu�e-equivalence.Our notion of shu�e-equivalence will be decidable but it is incomparable to reductionalequivalence of any degree �n, n � 0. It is however a good approximation to �inf.Term reshu�ing (see [KN 95]) amounts to rewriting a term so that more redexes thanusual become visible. Observe that extended redexes can be shu�ed to \classical" (i.e., nonextended) redexes without loosing reductional equivalence. This can be seen by our terms A,B, and C above. The extended redex r02 in A becomes classical in B. We call B the reshu�edversion of A. We have seen that A �inf B. C on the other hand is not equivalent to either Aor B, either shu�e-wise or reductional wise.Now to decide on the shu�e-equivalence of two terms A and B, we reshu�e both A and Band if we get in both cases the same result, then we say that A and B are shu�e-equivalent.We denote the reshu�ed version of a term A by TS(A); a concise de�nition of TS will begiven in subsection 3.2. Now, we go back to the terms given above and see what we mean:Example 1.3 Consider the terms A, B and C given above. We see that all redexes in B arevisible and so TS(B) � B. On the other hand, we see that A has a redex (�y:�:�)x whichbecomes visible after (��:�:�)� has been contracted. The idea of term reshu�ing is to makethis redex visible even before the other redex has been contracted. When we do so (via thefunction TS of De�nition 3.5), we get TS(A) � B. Now, TS(A) � TS(B). Moreover, wehave seen that A �inf B. C on the other hand, has all its redexes visible, hence TS(C) � C,and we see that TS(C) 6� TS(A) or TS(B).It will be easier to understand what the operation TS does if we change the classical notationwe have been using so far. For now, let us provide another example where we have moreextended redexes than above.1This counterexample will be better understood if it is translated into the item-notation of Section 2.3

Example 1.4 Let A � ((�f :�u:�:�v:�:�:(�x:�:�y:�:fxy)m)+)n.The redexes inA are: (�f :�u:�:�v:�:�:(�x:�:�y:�:fxy)m)+, (�x:�:�y:�:fxy)m and (�y:�:fxy)n.The third redex is not classical, is not immediately visible, and is not subject to contractionwithout having �rst unfolded in �y:�:fxy the two de�nitions that f is + and x is m.Now, take B � (�f :�u:�:�v:�:�:(�x:�:(�y:�:fxy)n)m)+.The (classical) redexes inB are: (�f :�u:�:�v:�:�:(�x:�:(�y:�:fxy)n)m)+, (�x:�:(�y:�:fxy)n)mand (�y:�:fxy)n. All these redexes are classical, immediately visible and subject to contrac-tion. Moreover, A =� B.All the three redexes of A are needed in order to get its normal form and correspond to theredexes of B. B is already in reshu�ed form, B � TS(B). Moreover, reshu�ing A so that allredexes become visible results in B. I.e. TS(A) � B. Hence as TS(A) � TS(B), A �inf B.Now, consider A above and C � (((�f :�u:�:�v:�:�:�x:�:�y:�:fxy)+)m)n. Both A and Chave a bijective correspondence between their extended redexes and A =� C. A �inf Cbut this is hardly visible. Reshu�ing A and C however, makes this claim visible. That is,TS(A) � TS(C) � TS(B) and so all three terms A, B and C are reductionally equivalent.The classical notation cannot extend the notion of redexes or enable reshu�ing in an easy way.Item notation however (see [KN 93], [KN 94] and [KN 96b]), can. In item notation, complexterms of the �-cube are of the form (A!)B where ! 2 f�g[fOx;x is a variable, a � or a 2 andO = � or �g. We call (A!) an item and (A�)B means apply B to A (note the order). Aredex starts with a �-item next to a �-item ([KN 96b] discusses various advantages of thisnotation).Example 1.5 A of Example 1.4 reads (n�)(+�)((��u)(��v)��f)(m�)(��x)(��y)(y�)(x�)fin item notation (see Section 2). Here, the �rst two redexes, the classical redexes, correspondto ��-pairs followed by the body of the abstraction as follows: (�f :�u:�:�v:�:�:(�x:�:�y:�:fxy)m)+corresponds to (+�)((��u)(��v)��f)(m�)(��x)(��y)(y�)(x�)f and (�x:�:�y:�:fxy)m corre-sponds to (m�)(��x)(��y)(y�)(x�)f . Note that the so-called �-item (+�) and the so-called�-item ((��u)(��v)��f) are adjacent, showing the presence of a redex. Similarly, note theadjacency of (m�) and (��x).The third redex of A is obtained by matching � and �-items. (�y:�:fxy)n is visible as itcorresponds to the matching (n�)(��y) where (n�) and (��y) are separated by the segment(+�)((��u)(��v)��f)(m�)(��x) which has the bracketing structure [][] (see Figure 1 whichrepresents A).
(n�) (+�) ((��u)(��v)��f) (m�) (��x) (��y) (y�)(x�)fFigure 1: (Extended) redexes in item notation: ATerm reshu�ing amounts to moving �-items to occur next to their matching �-items.Hence A of Example 1.4 is reshu�ed to (+�)((��u)(��v)��f)(m�)(��x)(n�)(��y)(y�)(x�)fand Figure 1 changes to Figure 2 (which represents B). Furthermore, Figure 3 (which repre-sents C) also changes to Figure 2 when reshu�ed.4

(+�) ((��u)(��v)��f) (m�) (��x) (n�) (��y) (y�)(x�)fFigure 2: The reshu�ed term A in item notation: B
(n�) (m�) (+�) ((��u)(��v)��f)(��x) (��y) (y�)(x�)fFigure 3: More extended redexes: C1.2 Reduction modulo term classesHaving noted above that terms like A, B and C of Example 1.4 are shu�e-equivalent andthat for both A and C, we could �nd their TS form which makes more redexes visible, wedecide to study the classes of these shu�e-equivalent terms. For this reason, we de�ne [t],the class of t, to be ft0jTS(t) � TS(t0)g. Hence, A, B and C above belong to the same class.All elements of [A] are =� and have somehow the same redexes. We say A ;� A0 i�9B 2 [A]9B0 2 [A0] such that B !� B0. Note that from this de�nition, !��;��=�.1.3 The need for de�nitionsRecall that in Example 1.4 when we explained the third redex of A, we said that two de�nitionswere unfolded in �y:�:fxy. It turns out that this observation is necessary in order to showthat the �-cube extended with term reshu�ing and ;� satis�es Subject Reduction. Butthen de�nitions are important on their own (see [BKN 9y], [Con 86], [Dow 91], [KBN 9-],[NGV 94] and [SP 93]). We show that the �-cube extended with TS, ;� and de�nitions,preserves its original properties including Strong Normalisation and Subject Reduction andthat term reshu�ing preserves typing.2 The item notation and the formal machineryI translates terms from classical notation to item notation such that (O ranges over f�;�g):I(A) = A if A is a variable or a constantI(Ox:A:B) = (I(A)Ox)I(B) where O 2 f�;�gI(AB) = (I(B)�)I(A)Bound and free variables and substitution are de�ned as usual. We write BV (A) and FV (A)to represent the bound and free variables of A respectively. We write A[x := B] to denotethe term where all the free occurrences of x in A have been replaced by B. We take terms tobe equivalent up to variable renaming and use � to denote syntactical equality of terms. Weassume moreover, the Barendregt variable convention which is formally stated as follows:5

Convention 2.1 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent �'s have di�erent variables as subscript. Hence, we will not have(x�)(A�x)(x�y)(y�y)y, but (x�)(A�u)(u�y)(y�v)v instead.The systems of the �-cube are based on a set of pseudo-expressions T (also called terms)de�ned by:T = � j2 j V j (T �)T j (T OV)Twhere O ranges over f�;�g and V is an in�nite collection of variables over which x; y; z; : : :range. � and 2 are special constants called sorts over which S; S1; S2; : : : range. We takeA;B;C; a; b; : : : to range over pseudo-expressions.A relation! on terms is compatible i� the following holds for all ! 2 f�g[fOx j x 2 V g:A1 ! A2(A1!)B ! (A2!)B B1 ! B2(A!)B1 ! (A!)B2De�nition 2.2 ((main) items, (main, �O-)segments, heart, weight)� If x is a variable and A is a pseudo-expression then (A�x); (A�x) and (A�) are items(called �-item, �-item and �-item respectively); A is called the body of the item. Weuse s; s1; si; : : : to range over items.� Each pseudo-expression A is the concatenation of zero or more items and a variable orconstant: A � s1s2 � � � snB where B 2 V [f�;2g. These items s1; s2; : : : ; sn are calledthe main items of A, B is called the heart of A, notation ~(A).� A concatenation of zero or more items s1s2 � � � sn is called a segment. We use s; s1; si; : : :as meta-variables for segments. We write ; for the empty segment. The items s1; s2; : : : ; sn(if any) are called the main items of the segment. A concatenation of adjacent mainitems sm � � � sm+k, is called a main segment. A �O-segment is a �-item immediatelyfollowed by an O-item.� The weight of a segment s, weight(s), is the number of main items that compose thesegment. Moreover, we de�ne weight(st) = weight(s) for t 2 V [f�;2g.When one desires to start a reduction on the basis of a �-item and a �-item, the matchingof the � and the � in question is the important thing, even when the items are adjacent.Well-balanced segments separate matching � and �-items.De�nition 2.3 (well-balanced segments)� The empty segment ; is a well-balanced segment.� If s is well-balanced, then (A�)s(BOx) is well-balanced.� The concatenation of well-balanced segments is a well-balanced segment.A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each �- (or O-)item corresponding with an opening (resp. closing) bracket.6

De�nition 2.4 (match, �O- (reducible) couple, partner, partnered, bachelor)Let A 2 T . Let s � s1 � � � sn be a segment occurring in A.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is an O-item, andsi+1 � � � sj�1 is a well-balanced segment.� If si and sj match, we call sisj a �O-couple. A ��-couple is called a reducible couple.� If si and sj match, we call si and sj partners or partnered items.� All non-partnered O- (or �-)items sk in A are called bachelor O- (resp. �-)items in A;a segment consisting of bachelor items only is called a bachelor segment.De�nition 2.5 (de�nitions, unfolding)� If s is well-balanced not containing ��-couples, then a segment (A�)s(B�x) occurringin a context is called a de�nition.� Let s be a well-balanced segment, We de�ne the unfolding of s in A, [A]s, inductivelyas follows: [A]; � A, [A](B�)s1(COx) � [A[x := B]]s1 and [A]s1 s2 � [[A]s2]s1 . Note thatsubstitution takes place from right to left and that when none of the binding variables ofs are free in A, then [A]s � A.We now introduce some general notions concerning typing rules which are the same as theusual ones when we do not allow de�nitions in the context (as is the case in the �-cube). Whende�nitions are present however, the notions are more general. Let ` be a typing relation andlet !! be a reduction relation whose equivalence closure is =�.De�nition 2.6 (declarations, pseudocontexts, �0, !!)1. A declaration d is a �-item (A�x). subj(d), pred(d) and d are x, A and ; respectively.2. For a de�nition d � (B�)s(A�x) we de�ne subj(d), pred(d), d and def(d) to be x, A,s and B respectively.3. We use d; d1; d2; : : : to range over declarations and de�nitions.4. A pseudocontext is a concatenation of declarations and de�nitions such that if (A�x)and (B�y) are two di�erent main items of the pseudocontext, then x 6� y. We use�;�;�0;�1;�2; : : : to range over pseudocontexts.5. For � a pseudocontext we de�nedom(�) = fx 2 V j (A�x) is a main �-item in � for some Ag,�-decl = fs j s is a bachelor main �-item of �g,�-def = fs j s � (A�)s1(B�x) is a main segment of � where s1 is well-balanced g,Note that dom(�) = fsubj(d) j d 2 �-decl [�-defg.6. De�ne �0 between pseudocontexts as the least reexive transitive relation satisfying:� �� �0 �(C�x)� if no �-item in � matches a �-item in �� �d� �0 �d� if d is a de�nition 7

� �s(A�x)� �0 �(D�)s(A�x)� if (A�x) is bachelor in �s(A�x)�, s is well-balanced7. If A ! B then �(A!)�0 ! �(B!)�0 for ! 2 f�g [f�v : v 2 V g. !! between contextsis the reexive transitive closure of !.De�nition 2.7 (De�nitional equality) For all contexts � we de�ne the binary relation � `� =def � to be the equivalence relation generated by� if A =� B then � ` A =def B� if d 2 �-def and A;B 2 T such that B arises from A by substituting one particularoccurrence of subj(d) in A by def(d), then � ` A =def B.De�nition 2.8 (statements, judgements, �)1. A statement is of the form A : B, A and B are called the subject and the predicate ofthe statement respectively.2. When � is a pseudocontext and A : B is a statement, we call � ` A : B a judgement,meaning A : B is derivable from the context �, and we write � ` A : B : C to mean� ` A : B ^ � ` B : C.3. For � a pseudocontext and d 2 �-def [�-decl, � invites d, notation � � d, i�� �d is a pseudocontext� �d ` pred(d) : S for some sort S.� if d is a de�nition then �d ` def(d) : pred(d) and FV (def(d)) � dom(�)Remark 2.9 Note that binding variables in d may occur free in pred(d) but not in def(d)if � � d.De�nition 2.10 Let � be a pseudocontext and A a pseudo-expression.1. Let d; d1; : : : ; dn be declarations and de�nitions. We de�ne � ` d and � ` d1 � � � dnsimultaneously as follows:� If d is a declaration: � ` d i� � ` subj(d) : pred(d).� If d is a de�nition: � ` d i� � ` subj(d) : pred(d) ^ � ` def(d) : pred(d)^� ` d ^ � ` subj(d) =def def(d).� � ` d1 � � � dn i� � ` di for all 1 � i � n.2. � is called legal if 9P;Q 2 T such that � ` P : Q.3. A 2 T is called a �`-term if 9B 2 T [� ` A : B or � ` B : A].We take �`-terms = fA 2 T j 9B 2 T [� ` A : B _ � ` B : A]g.A 2 T is called legal if 9�[A 2 �`-terms].4. We say that A is strongly normalising with respect to a reduction relation ! (writtenSN!(A)) i� every !-reduction path starting at A terminates.De�nition 2.11 We say that two terms A and B are semantically equivalent i� A =� B.8

In the �-cube of [Barendregt 92], the only declarations allowed are of the form (A�x). There-fore, � � d is of the form � � (A�x) and means that � ` A : S for some S and that x is freshin �; A. Moreover, for any d � (A�x), d � ;, subj(d) � x and pred(d) � A. Hence, in thenext de�nition, d is a meta-variable for declarations only, =def is the same as =�(which is independent of `) and the reduction relation is !�.De�nition 2.12 (Axioms and rules of the �-cube: d is a declaration, =def is =�)(axiom) <> ` � : 2(start rule) � � d�d ` subj(d) : pred(d)(weakening rule) � � d �d ` D : E�d ` D : E(application rule) � ` F : (A�x)B � ` a : A� ` (a�)F : B[x := a](abstraction rule) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(conversion rule) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(formation rule) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a ruleEach of the eight systems of the �-cube is obtained by taking the (S1; S2) rules allowed froma subset of f(�; �); (�;2); (2; �); (2;2)g. The basic system is the one where (S1; S2) = (�; �)is the only possible choice. All other systems have this version of the formation rules, plusone or more other combinations of (�;2), (2; �) and (2;2) for (S1; S2). Here is the tablewhich presents the eight systems of the �-cube:System Set of speci�c rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)3 Term reshu�ingIn this section we rewrite terms so that all the newly visible redexes can be subject to !�.We shall show in this section that this term rewriting function is correct in the sense thatA =� TS(A), i.e., A and TS(A) are semantically equivalent. In Section 4, we show that thisterm reshu�ing preserves reduction in the sense that if A!� B then TS(A);� TS(B) and9

9B0 2 [B] [TS(A) !� B0]. In Section 5, we show that this term reshu�ing preserves typingin the sense that if � `sh A : B then � `sh TS(A) : B.Let us go back to the de�nition of �O-couples. Recall that if s � s1 � � � sm for m > 1where s1sm is a �O-couple then s2 � � � sm�1 is a well-balanced segment, s1 is the �-item of the�O-couple and sm is its O-item. Now, we can move s1 in s so that it occurs adjacently tosm. That is, we may rewrite s as s2 � � � sm�1s1sm. As legal terms and contexts of the �-cubecontain no ��-couples, we focus only on ��-couples.Example 3.1 The term A � (u�)(w�)(P�x)(v�)(Q�y)(R�z)(z�)(y�)x reshu�es to TS(A) �(w�)(P�x)(v�)(Q�y)(u�)(R�z)(z�)(y�)x by moving the item (u�) to the right. Such a reshuf-ing is not easy to describe in the classical notation. That is, it is di�cult to describe how((�x:P :(�y:Q:�z:R:xyz)v)w)u is reshu�ed to (�x:P :(�y:Q:(�z:R:xyz)u)v)w.Note furthermore that the shu�ing is not problematic because we use the Barendregt Con-vention which means that no free variable will become unnecessarily bound after reshu�ingdue to the fact that names of bound and free variables are distinct.Lemma 3.2 Let s be a well-balanced segment not containing ��-couples.1. [A]s =� sA.2. If none of the binding variables of s is free in A, then [A]s � A and for any segment s1,s1(A�)sB =� s1 s(A�)B.Proof: [A]s =� sA is by induction on weight(s); the other statement is now obvious. 2To reshu�e terms, we study the classes of partnered and bachelor items in a term.3.1 Partitioning the term into bachelor and well-balanced segmentsWith De�nition 2.4, we may categorize the main items of a term A into di�erent parts towhich the partnered or bachelor items belong:Lemma 3.3 Let s be a segment. Then the following holds:1. Each bachelor main O-item in s precedes each bachelor main �-item in s.2. The removal from s of all bachelor main items, leaves behind a well-balanced segment.3. The removal from s of all main �O-couples, leaves behind a O � � � O| {z }n � � � � �| {z }m -segment,consisting of all bachelor main O- and �-items.Proof: 1 is by induction on weight(s0) for s � s0(BOx)s00 and (BOx) bachelor in s. 2and 3 are by induction on weight(s). 2Note that we have assumed ; well-balanced. We assume it moreover non-bachelor. Thefollowing lemma is informative on the form of the terms:Lemma 3.4 Every term has one of the following three forms:� (AOx)B� (A1�) � � � (An�)C, where C 2 V [f�;2g and n � 0� (A1�) � � � (An�)(B�)(COx)D, where n � 010

3.2 A reshu�ing procedure and its propertiesDe�nition 3.5 The reshu�ing function TS is de�ned such that:TS((BOx)C) =df (TS(B)Ox)TS(C)TS((B1�) � � � (Bn�)A) =df (TS(B1)�) � � � (TS(Bn)�)A if A 2 V [f�;2gTS((B1�) � � � (Bn�)(C�)(DOx)E) =df (TS(C)�)(TS(D)Ox)TS((B1�) � � � (Bn�)E)Note that the second and third clauses also apply for n = 0.TS can be viewed to work in the following way: if a term starts with a main bachelor O-item, the body of this item is reshu�ed and the rest of the term is reshu�ed. If a termdoes not start with a (bachelor) O-item, then either it consists of (possibly zero) bachelormain �-items followed by the heart of the term, in which case only the bodies of the mainitems are reshu�ed, or it starts with some (possibly zero) bachelor �-items followed by awell-balanced segment. Then TS looks for the leftmost ��-segment and shifts all preceeding�-items (bachelor as well as partnered) to the right of it. The bodies of the ��-segment arereshu�ed and the new, longer, term to the right of the ��-segment is reshu�ed.Note that partnered �-items which were to the left of the ��-segment are now still part-nered and next to their matching �-items, and there are no bachelor �-items to the left of a��-segment.Hence, for any A, TS(A) is of the form s0 s1A0 where A0 2 V [f�;2g, s1 consists of allbachelor main �-items of A and s0 is of the form s2 s3 � � � sn where si is either a �O-segmentor a bachelor main O-item.As an example, the term(w�x)(w�) +(x�) �(y�) ((x�) �(y�) �(z�u) �u�v) �(v�) 00(x�) 00(v�w) �(w�t) +(y�s) (s�)twill be reshu�ed to the term(w�x) �(y�) (�(y�) �(z�u) (x�)u ��v) 00(x�) 00(v�w) �(v�) �(w�t) +(x�) +(y�s) (w�)(s�)tOne might wonder why TS moves bachelor �-items but doesn't move bachelor O-items.Consider P � (A�z)(B�)(C�x)(D�y)x. Can we move a bachelor main O-item (to the left orright)? The answer is no. For example, D may contain variables bound by the �x and wecannot rewrite P as (A�z)(D�y)(B�)(C�x)x. Moreover, in P , B and C may contain variablesbound by �z so �z cannot move to the right of (B�)(C�x). Hence, in a term, the order of themain O-items is �xed and cannot in general be changed without changing the meaning of theterm. Now, let us show the properties of TS.Lemma 3.6 (Decidability of TS) For any A, B, it is decidable whether TS(A) � TS(B).Proof: This is obvious as � is decidable. 2Lemma 3.71. For all pseudo-expressions M , TS(M) is well de�ned.2. FV (M) = FV (TS(M))3. If s is well-balanced, then TS((A1�) � � � (An�)sB) � TS(s(A1�) � � � (An�)B).11

Proof: 1. Every time at most one case of the de�nition of TS(M) is applicable, andweights of the resulting terms to which TS is applied become smaller or TS disappears. 2.Induction on the structure of M . 3. By induction on weight(s). 2Lemma 3.8 For a term A, TS(A) � s0 s1~(A), where s1 consists of the term reshu�ings ofall bachelor main �-items of A and s0 is a sequence of term reshu�ings of main �O-segmentsand bachelor main O-items.Proof: Induction on weight(A).� A � (BOx)C, use IH on C.� A � (B1�) � � � (Bn�)C, C 2 V [f�;2g. Then s0 is empty.� A � (B1�) � � � (Bn�)(C�)(DOx)E.Then TS(A) � (TS(C)�)(TS(D)Ox)TS((B1�) � � � (Bn�)E). By the induction hypothesisTS((B1�) � � � (Bn�)E) is of the form s0 s1~(E) � s0 s1~(A). 2Lemma 3.9 For all pseudo-expressions A;B and variable x:1. TS(A) � TS(TS(A))2. TS(A[x := B]) � TS(TS(A)[x := TS(B)])3. If A doesn't contain partnered �-items then A =� TS(A)Proof: 1. By induction on the structure of A.2. Induction on the number of symbols in A, using 1.3. By induction on the number of symbols in A. If A � (A1�) � � � (An�)A0 where A0 2V [f�;2g or A � (A1Ox)A2 then use the induction hypothesis.If A � (A1�) � � � (An�)(B�)(C�x)D thenTS(A) � (TS(B)�)(TS(C)�x)TS((A1�) � � � (An�)D) IH=�(B�)(C�x)(A1�) � � � (An�)D =� ((A1�) � � � (An�)D)[x := B] x=2FV (Ai)=�(A1�) � � � (An�)D[x := B] =� (A1�) � � � (An�)(B�)(C�x)D2Corollary 3.10 For all pseudo-expressions A;B without partnered �-items: TS(A) =� TS(B)i� A =� B. 2Remark 3.11 Our notion of term reshu�ing is related to the canonical forms and �-equi-valence of [Reg 92] and [Reg 94]. The di�erence is that Regnier studies untyped �-terms anda Curry-style type system whereas we study Church-style type systems. Therefore, termslike (A�)(B�x)(C�y)D and (C�y)(A�)(B�x)D which have the same canonical form whenthe types C;B are omitted, cannot have the same term reshu�ing due to the possibility ofcorruption of variable bindings.
12

4 Equivalence classes and shu�e ��-reductionDe�nition 4.1 (Shu�e Class, shu�e-reduction, extended redexes and ,!�)� For a pseudo-expression A, we de�ne [A], the shu�e class of A, to be fB j TS(A) �TS(B)g.� One-step shu�e-reduction ;� is the least compatible relation generated by:A;� A0 i� 9B 2 [A]9B0 2 [A0][B !� B0]Note that ;� is compatible and transitive because !� is. Many-step shu�e-reduction;;� is the reexive and transitive closure of ;� and �� is the least equivalence relationgenerated by ;;�.� An extended redex starts with the �-item of a ��-couple (i.e. is of the form (C�)s(B�x)Awhere s is well-balanced).� ,!� is the least compatible relation generated by (B1�)s(B2�x)B3 ,!� s(B3[x := B1])for s well-balanced, that is, ,!�-reduction contracts an (extended) redex. ,!,!� is thereexive and transitive closure of ,!� and �� be the least equivalence relation closedunder ,!,!�.,!,!� has been used in [BKN 9y] and [KN 95]. We will use [BKN 9y] to obtain Strong Nor-malisation for the present paper.Example 4.2 Let A � (z�)(w�)(u�x)(x�y)y. Then [A] = fA; (w�)(u�x)(z�)(x�y)yg. More-over, A;� (w�)(u�x)z and A;� (z�)(w�y)y.Lemma 4.3 TS(A) ,!� B i� TS(A)!� B. Proof: This is a direct consequence of 3.8Lemma 4.4 If A;� B then for all A0 2 [A], for all B0 2 [B], A0 ;� B0.Proof: As A ;� B then 9A1 2 [A]9B1 2 [B][A1 !� B1]. Let A0; B0 2 [A]; [B] respec-tively. Then A1 2 [A0], B1 2 [B0], A1 !� B1. So A0 ;� B0. 2Corollary 4.5 A;� B , TS(A);� TS(B)Remark 4.6 It is not in general true that A;;� B) 9A0 2 [A]9B0 2 [B][A0 !!� B0]. Thiscan be seen by the following counterexample:Let A � ((��u)(��v)v�)((��u)(��v)��x)(w�)(w�)x and B � (w�)(��u)w. Then A ;�(w�)(w�)(��u)(��v)v ;� B. But [A] has three elements, namely: A,(w�)((��u)(��v)v�)((��u)(��v)��x)(w�)x and (w�)(w�)((��u)(��v)v�)((��u)(��v)��x)x,[B] = fBg and if A0 2 [A] then the only !� reduct of A0 is (w�)(w�)(��u)(��v)v, whichdoesn't !�-reduce to B. In Lemma 4.12 however, we show that there is a correspondancebetween ;;� on classes and !!� on terms.Lemma 4.7 !!� � ,!,!� �;;�.Proof: It su�ces to show (A�)(B�x)C ,!� C[x := A] and (A�)s(B�x)C ;� sC[x := A].But (A�)(B�x)C � (A�);(B�x)C ,!� ;C[x := A] � C[x := A], by induction on weight(s)we can show that (A�)s(B�x)C 2 [s(A�)(B�x)C], and since s(A�)(B�x)C !� sC[x := A] wehave (A�)s(B�x)C ;� sC[x := A]. 213

Remark 4.8 Note that A ,!� B 6) TS(A) ,!,!� TS(B) nor do we have A !� B)TS(A)!!� TS(B). Take for example A and B where A � ((z�u)(z�v)v�)(v�x)(y�)(y�)x andB � (y�)(y�)(z�u)(z�v)v. It is obvious that A !� B (hence A ,!� B) yet TS(A) � A 6,!,!�and 6!!� TS(B) � (y�)(z�u)(y�)(z�v)v.Lemma 4.9 If A;� B or A ,!� B then A =� B.Proof: For ;�: say A0 2 [A], B0 2 [B], A0 !� B0. Then by lemma 3.9: A =� TS(A) �TS(A0) =� A0 =� B0 =� TS(B0) � TS(B) =� B.For ,!�: it su�ces to consider the case A � s1(C�)s(D�x)E where the contracted redex isbased on (C�)(D�x), B � s1 s(E[x := C]), and s is well-balanced (hence weight(s) is even).We shall prove the lemma by induction on weight(s). If weight(s) = 0 then it is obvious as,!� coincides with !� in this case. Assume the property holds when weight(s) = 2n. Takes such that weight(s) = 2n + 2. Now, s � (C 0�)s0(D0�y)s00 where s0, s00 are well-balanced.Assume x 6� y (if necessary, use renaming).� As s(E[x := C]) ,!� s0(s00(E[x := C])[y := C 0]), we get by IH and compatibility thatB =� s1 s0(s00(E[x := C])[y := C 0]) � s1 s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.� Moreover, A � s1(C�)(C 0�)s0(D0�y)s00(D�x)E ,!� s1(C�)s0(s00(D�x)E[y := C 0]) �BCs1(C�)s0(s00[y := C 0])(D[y := C 0]�x)(E[y := C 0]) � B0. Hence by IH, A =� B0.� Now, B0 ;� s1s0(s00[y := C 0])(E[y := C 0][x := C]).But by BC, x, y 62 FV (C) [FV (C 0). Hence, by IH and substitution,B0 =� s1s0(s00[y := C 0])(E[x := C][y := C 0]) � B00.Therefore, A =� B0; B0 =� B00 and B =� B00, hence A =� B. 2Corollary 4.101. If A;;� B or A ,!,!� B then A =� B.2. A �� B i� A =� B i� A �� B i� TS(A) =� TS(B). 2Theorem 4.11 (The general Church Rosser theorem for ;;�) Let !! be ;;� or ,!,!�.If A!! B and A!! C, then there exists D such that B !! D and C !! D.Proof: As A !! B and A !! C then by Corollary 4.10, A =� B and A =� C. Hence,B =� C and by CR for!!�, there exists D such that B !!� D and C !!� D. But, M !!� Nimplies M !! N . Hence we are done. 2As we noted in Remark 4.8, we can have TS(C)!� D where D 6� TS(D). But we still canshow that in a certain sense, term reshu�ing preserves �-reduction.Lemma 4.12 If A;B 2 T and A ;� B then (9B0 2 [B])[TS(A) !� B0]. In other words,the following diagram commutes:TS(A)A B0 2 [B]B!�;�
14

Proof: We prove by induction on the structure of A0 that if A0 !� B0 2 [B], then forsome B00, TS(A0)!� B00 2 [B]. The compatibility cases are easy, distinguish cases accordingto the de�nition of TS. If A0 � (C�)(D�x)E and B0 � E[x := C] 2 [B] then TS(A0) �(TS(C)�)(TS(D)�x)TS(E) !� TS(E)[x := TS(C)] and by Lemma 3.9, TS(TS(E)[x :=TS(C)]) � TS(E[x := C]) 2 [B]. 2Corollary 4.13 If A;;� B then there exist A0; A1; : : : ; An such that[(A � A0) ^ (TS(A0)!� A1) ^ (TS(A1)!� A2) ^ � � � ^ (TS(An�1)!� An 2 [B])]Proof: By induction on ;;�. 2Lemma 4.14 Let A 2 SN;� . Then for all A0 2 [A], A0 �inf A.Proof: It is su�cient to show that (B�)sC is reductionally equivalent to s(B�)C if s iswell-balanced and (B�)sC 2 SN;� . We prove this by induction on the maximal length of;�-reduction paths of (B�)sC.If (B�)sC is in normalform then s � ; so (B�)sC � s(B�)C. If (B�)sC is not innormalform then contraction of some redex yields a term which is either of the form (B0�)s0C 0(if the redex was inside B, s or C) or of the form sC 0 if the redex consisted of (B�) and itspartnered item.Then in the �rst case s(B�)C can reduce to s0(B0�)C 0 by contracting the correspondingredex, now by the induction hypothesis (B0�)s0C 0 is reductionally equivalent to s0(B0�)C 0. Inthe second case, s(B�)C also reduces to sC 0.Hence (B�)sC is reductionally equivalent to s(B�)C. 2Hence we have provided a relation between terms which approximates reductional equivalence.Here are some facts on this relation and on reductional equivalence:1. Let A 2 SN;� . If TS(A) � TS(B) then A �inf B (Lemma 4.14).2. TS(A) � TS(B) 6=) A �inf B (Example 4.15).3. A �inf B does not imply TS(A) � TS(B) (Example 4.16 below).4. TS(A) � TS(B) is decidable (Lemma 3.6).5. A �inf B is not decidable (Conjecture 1.2).Example 4.15 Take the termsA andB whereA � (a�)(b�)(c�x)(d�y)((e�z)(z�)z�)(e�z)(z�)zand B � (b�)(c�x)(a�)(d�y)((e�z)(z�)z�)(e�z)(z�)z. These terms read in classical notation(�x:c:�y:d:
)ba respectively (�x:c:(�y:d:
)a)b. Now, TS(A) � TS(B) but A 6�inf B. Thisexample shows that one cannot drop the assumption that A is strongly normalising.Example 4.16 Let A � ((a�)(b�x)x�)(c�y)y and B � (a�)(b�x)(x�)(c�y)y. A �inf B butTS(A) 6� TS(B). The same holds for the terms (a�)(b�y)(y�)y and (a�)(b�y)(y�)a.We shall now show that due to the fact that shu�e-reduction on classes makes more redexesvisible, it allows for smaller terms during reductions.
15

Example 4.17 Let M � (�x:u:�y:u:y(Cxx � � � x))B(�z:u:u) where B is a BIG term. ThenM !� (�y:u:y(CBB � � �B))(�z:u:u) !� (�z:u:u)(CBB � � �B) !� u and u is in normal form.Now the �rst and second reducts both contain the segment CBB � � �B, so they are very, verylong terms. Shu�e reduction however allows us to reduce M in the following way: TS(M) �(�x:u:(�y:u:y(Cxx � � � x))�z:u:u)B !� (�x:u:(�z:u:u)(Cxx � � � x))B !� (�x:u:u)B !� u, and inthis reduction all the terms are of smaller size than M ! So shu�e reduction might allow us tode�ne clever strategies that reduce terms via paths of relatively small terms. Note also thatthe length of the reduction path to normal form doesn't change.5 The �-cube with equivalence classes, de�nitions and shu�e��-reductionIf we extend the �-cube with ;;� then Subject Reduction fails. That is: � ` A : B andA;;� A0 6) � ` A0 : B.Example 5.1 (SR does not hold in �2 using ;;�)(���)(��y0) `�2 (y0�)(��)(���)(��y)(y�)(��x)x : �.Moreover, (y0�)(��)(���)(��y)(y�)(��x)x;� (��)(���)(y0�)(��x)x.Yet, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : �.Even, (���)(��y0) 6`�2 (��)(���)(y0�)(��x)x : � for any � .This is because (��x)x : (��x)� and y : � yet � and � are unrelated and hence we fail in�ring the application rule to �nd the type of (y0�)(��x)x. Looking closer however, one �ndsthat (��)(���) is de�ning � to be �, yet no such information can be used to combine (��x)�with �. De�nitions take such information into account. Finally note that failure of SR in �2,means its failure in �P2; �! and �C.Example 5.2 (SR does not hold in �P using ;;�)(���)(��t)((��q) � �Q)((t�)Q�N) `�P (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z : (t�)Q.And (N�)(t�)(��x)((x�)Q�y)(y�)((x�)Q�Z)Z ;;� (t�)(��x)(N�)((x�)Q�Z)ZNow, N : (t�)Q; y : (x�)Q; (t�)Q 6= (x�)Q.(���)(��t)((��q) � �Q)((t�)Q�N) 6`�P (t�)(��x)(N�)((x�)Q�Z)Z : � for any � .Here again the reason of failure is similar to the above example. At one stage, we needto match (x�)Q with (t�)Q but this is not possible even though we do have the de�nitionsegment: (t�)(��x) which de�nes x to be t. All this calls for the need to use these de�nitions.Finally note that failure of SR in �P , means its failure in �P2; �P! and �C.We conjecture that Subject Reduction is valid for �! and �! with;;� and that the proof issimilar to the one in [BKN 9y] for ,!,!�.We extend the �-cube with de�nitions,;;� and equivalence classes modulo TS. Contextsnow consist of declarations (A�x) and de�nitions. We take the typing rules `sh to be exactlythose of ` with the addition of the de�nition rule:(def rule) �d `sh C : D� `sh dC : [D]d if d is a de�nition>From the point of view of e�ciency, it may seem unsatisfactory that in the (def rule) de�ni-tions are being unfolded in D, since this will usually mean a size explosion of the predicate.The unfolding is not necessary for non-topsorts (i.e. for D 6� 2) however:16

Lemma 5.3 The following rule is a derived rule:(derived def rule) �d `e C : D �d `e D : S� `e dC : dD if d is a de�nitionProof: If �d `e C : D then by the (def rule), � `e dC : [D]d; if �d `e D : S then by the (defrule) � `e dD : S. Now by conversion � `e dC : dD since � `e dD =def [D]d.If D is a sort then of course unfolding d in D is not ine�cient since d will disappear.Due to the possibility of using the (def rule) to type a redex, by using the (derived defrule), in some cases it is even possible to circumvent a size explosion: suppose we want toderive in �C a type for the term (B�)(���)(��x)((��y)��f)(x�)f .In �C without de�nions, we will have to derive �rst the type (���)(��x)((��y)��f)� forthe subterm (���)(��x)((��x)��f)(x�)f , and by the application rule we will �nally derivethe type (B�x)((B�y)B�f)B. Note that due to the last applied application rule the term Bhas been copied four times, which could make the resulting type very large.Using our type system extended with de�nitions however, we would �rst derive the type(��x)((��y)��f)� for the term (��x)((��y)��f)(x�)f , and then by the derived de�nitionrule we would derive the type (B�)(���)(��x)((��y)��f)� and avoid the substitution of Bfor �. This is a further evidence for the advantage of using de�nitions.Now, we proceed to show the properties of `sh.Lemma 5.4 (Free Variable Lemma for `sh)Let � be a legal context such that � `sh B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl[�-def, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�).3. If � = �1s1�2 then FV (s1) � dom(�1).Proof: All by induction on the derivation of � `sh B : C. 2Lemma 5.5 (Start Lemma for `sh)Let � be a legal context. Then � `sh � : 2 and 8d 2 �[� `sh d].Proof: � is legal) 9B;C[� `sh B : C]; use induction on the derivation � `sh B : C. 2Lemma 5.6 (Transitivity Lemma for `sh)Let � and � be legal contexts and de�ne � `sh � as usual. Then we have:[� `sh � ^� `sh A : B]) � `sh A : B.Proof: Induction on the derivation � `sh A : B. Note that by the compatibility of� `sh C =def D it follows that if d 2 � and D arises from C by substituting one particularfree occurrence of subj(d) in C by def(d), then � `sh C =def D and hence � `sh C =def Dimplies � `sh C =def D. 2Lemma 5.7 (De�nition-shu�ing for `sh) Let d be a de�nition.1. If �d� `sh C =def D then �d(def(d)�)(pred(d)�subj(d))� `sh C =def D.2. If �d� `sh C : D then �d(def(d)�)(pred(d)�subj(d))� `sh C : D.Proof: 1. is by induction on the generation of �d� `sh C =def D. 2. is by induction on thederivation of �d� `sh C : D using 1. for conversion. 217

Lemma 5.8 (Thinning for `sh)1. If �1�2 `sh A =def B, �1��2 is a legal context, then �1��2 `sh A =def B.2. If � and � are legal contexts such that � �0 � and � `sh A : B, then � `sh A : B.Proof: 1. is by induction on the derivation �1�2 `sh A =def B. 2. is done by showing:� If �� `sh A : B, � `sh C : S, x is fresh, and no �-item in � is partnered by a �-item in �, then also �(C�x)� `sh A : B. We show this by induction on the derivation�� `sh A : B using 1. for conversion.� If �s� `sh A : B, �s `sh C : D : S, FV (C) � dom(�), x is fresh, s is well-balanced, thenalso �(C�)s(D�x)� `sh A : B. We show this by induction on �s� `sh A : B. In thecase of (start) for instance where �(A�)s(B�y) `sh y : A comes from �s `sh A : B : S, yfresh and FV (A) � dom(�), then �(C�)s(D�x) `sh A : B : S by IH so again by (start),�(C�)(A�)s(B�y)(D�x) `sh x : A.� If �s(A�x)� `sh B : C; (A�x) bachelor, s well-balanced, �s `sh D : A, FV (D) � dom(�,then �(D�)s(A�x)� `sh B : C. We show this by induction on �s(A�x)� `sh B : C. 2Lemma 5.9 (Substitution lemma for `sh) Let d be a de�nition.1. If �d� `sh A =def B, A and B are �d�-legal terms, then�d�[subj(d) := def(d)] `sh A[subj(d) := def(d)] =def B[subj(d) := def(d)]2. If B is a �d-legal term, then �d `sh B =def [B]d3. If �(A�)s(B�x)� `sh C : D then �s(�[x := A]) `sh C[x := A] : D[x := A]4. If �(B�x)� `sh C : D, � `sh A : B, (B�x) bachelor in �, then��[x := A] `sh C[x := A] : D[x := A]5. If �d� `sh C : D, then �[�]d `sh [C]d : [D]dProof: 1. Induction to the derivation rules of =def. 2. Induction on the structure of B. 3.Induction to the derivation rules, use 1., 2. and the thinning lemma. 4. Idem. 5. Corollaryof 3. 2Lemma 5.10 (Generation Lemma for `sh)1. If � `sh x : A then for some B: (B�x) 2 �, � `sh B : S, � `sh A =def B and � `sh A : S0for some sort S0.2. If � `sh (A�x)B : C then for some D and sort S: �(A�x) `sh B : D, � `sh (A�x)D : S,� `sh (A�x)D =def C and if (A�x)D 6� C then � `sh C : S0 for some sort S0.3. If � `sh (A�x)B : C then for some sorts S1; S2: � `sh A : S1, � `sh B : S2, (S1; S2) 2 R,� `sh C =def S2 and if S2 6� C then � `sh C : S for some sort S.4. If � `sh (A�)B : C, (A�) bachelor in B , then for some terms D;E, variable x: � `sh A :D, � `sh B : (D�x)E, � `sh E[x := A] =def C and if E[x := A] 6� C then � `sh C : Sfor some sort S. 18

5. If � `sh sA : B, then �s `sh A : BProof: 1., 2., 3. and 4. follow by a tedious but straightforward induction on the deriva-tions (use the thinning lemma). As to 5., use induction on weight(s). 2Corollary 5.11 (Correctness of Types)If � `sh A : B then B � 2 or � `sh B : S for some sort S.Proof: By induction to the derivation rules. The interesting cases are the de�nition andapplication rules. In case � `sh dA : [B]d as a consequence of �d `sh A : B, then by IH B � 2or �d `sh B : S for some sort S. In the �rst case also [B]d � 2, in the second case by theSubstitution Lemma � `sh [B]d : [S]d � S.In case � `sh (a�)F : B[x := a] as a consequence of � `sh F : (A�x)B, � `sh a : A,then by the induction hypothesis � `sh (A�x)B : S for some sort S and hence by Generation�(A�x) `sh B : S. Then by Thinning �(a�)(A�x) `sh B : S, so by the de�nition rule� `sh (a�)(A�x)B : S[x := a] � S 2Now, �rstly we prove SR for `sh using !!� rather than ;;�.Theorem 5.12 (Subject Reduction for `sh and !!�)If � `sh A : B and A!!� A0 then � `sh A0 : B.Proof: By simultaneous induction on the derivation rules:1. If � `sh A : B and �!� �0 then �0 `sh A : B2. IF � `sh A : B and A!� A0 then � `sh A0 : B 2Lemma 5.13 If � `sh A : B and A0 2 [A], �0 results from � by substituting some main items(C!) by (C 0!) where C 0 2 [C], then �0 `sh A0 : B.Proof: Induction on the derivation rules. We treat two cases:� (start): �(A�)d(BOx) `sh x : B as a consequence of �d `sh A : B, �d `sh B : S andFV (A) � dom(�).We must show �0(A0�)d0(B0Ox) `sh x : B. By the induction hypothesis �0d0 `sh A0 : B,�0d0 `sh B0 : S, by Lemma 3.9, B =� B0 so by conversion �0d0 `sh A0 : B0, by Lemma 3.7FV (A0) = FV (A) � dom(�), hence by the start rule �0(A0�)d0(B0Ox) `sh x : B0 and byconversion �0(A0�)d0(B0Ox) `sh x : B.� (de�nition): � `sh dA : [B]d as a consequence of �d `sh A : B.By the induction hypothesis �0d00 `sh A0 : B, where d00 is the items of d0 in the order ofd. Now by Lemma 5.7 �0d0 `sh A0 : B and by the de�nition rule �0 `sh d0A0 : [B]d0. Bythe induction hypothesis also �0d `sh A : B, hence �0 `sh dA : [B]d, so by Lemma 5.11[B]d � 2 or �0 `sh [B]d : S for some sort S. In the �rst case also [B]d0 � 2 and we aredone, in the second case by Lemma 3.9 [B]d =� [B]d0 so by conversion �0 `sh d0A0 : [B]d.2Corollary 5.14 (TS preserves typing)1. � `sh A : B () � `sh TS(A) : B.2. If � `sh A : B and A0 2 [A], B0 2 [B] then � `sh A0 : B0.19

Proof:1. By lemma 5.13 as A 2 [TS(A)] and TS(A) 2 [A].2. By lemma 5.13 using Correctness of Types and conversion. 2Here is now the proof of SR using `sh and ;;�.Corollary 5.15 (Subject Reduction for `sh and ;;�)If � `sh A : B and A;;� A0 then � `sh A0 : B.Proof: We prove � `sh A : B, A;� A0 =) � `sh A0 : B.By Corollary 5.14 � `sh TS(A) : B, by Lemma 4.12 there is a term C such that TS(A)!�C and C 2 [A0], now by Theorem 5.12 � `sh C : B and by Lemma 5.14 � `sh A0 : B. 2Lemma 5.16 (Unicity of Types for `sh)1. � `sh A : B ^ � `sh A : B0) � `sh B =def B02. � `sh A : B ^ � `sh A0 : B0 ^A =� A0) � `sh B =def B0Proof:1. By induction on the structure of A using the Generation Lemma.2. By Church-Rosser and Subject Reduction using 1. 2Remark 5.17 We didn't prove the property � `sh B : S, � `sh A : B0, B =� B0)� `sh B0 : S. It seems di�cult to prove because if � `sh B0 : S0 then by Unicity of Types� `sh S =def S0 and it is unclear whether S � S0.Also, it would be interesting whether � `sh A : B, � `sh A0 : B0, � `sh A =def A0 implies� `sh B =def B0, but to prove this we face similar problems. We claim that one can prove itby showing �rst that � `sh A : B implies � `sh [A]� : [B]�, where [A]� means all de�nitionsin � to be unfolded in A.We don't need these properties for our theory however.Now we shall prove Strong Normalisation for the �-cube with de�nitions and shu�e �-reduction. The proof is based on Strong Normalisation of the �-cube extended with de�nitionsand ,!,!� as in [BKN 9y].Lemma 5.18 If � `sh A : B then � `e A : B, where `e is the typing relation of systems ofthe �-cube extended with de�nitions and generalised reduction.Proof: Induction on the derivation rules of `sh. All rules are trivial since they are alsorules in `e. 2Corollary 5.19 If A is a `sh-legal term then A is strongly normalising with respect to ,!,!�.Proof: If A is `sh-legal then A is `e-legal by Lemma 5.18 and hence A is strongly nor-malising with respect to ,!,!� (see [BKN 9y]). 2De�nition 5.20 For a `sh-legal term A, de�ne the natural number height(A) to be themaximal length of a ,!,!�-reduction path starting with A.20

Lemma 5.211. If A is legal and A ,!� B, then height(A) > height(B).2. If A is legal and A0 2 [A], then height(A0) = height(A).3. If A is legal and A;� B, then height(A) > height(B).Proof: Long but straightforward. 2Corollary 5.22 Every legal term is strongly normalising with respect to ;;�. 2Fact 5.23 Subtyping does not hold for `sh. Consider the following derivable judgement:(���) `sh (��)(���)(��y)(y�)(��z)z : (��y)�The subterm (���)(��y)(y�)(��z)z is not typable: suppose � `sh (���)(��y)(y�)(��z)z : A,then by the Generation Lemma, �0 `sh z : �0 where �0 � �(���)(��y)(y�)(��z) and �0 satis�es�0 `sh � =def �0 and �0 `sh �0 : S.Since � cannot contain bachelor �-items, we know that (���) is not partnered in �0, hence�0 6`sh � =def �. But since (y�)(��z) 2 �0-def we know that �(���)(��y) `sh y : � : S, also�(���)(��y) `sh y : � so by Unicity of Types, �(���)(��y) `sh � =def �, contradiction.The reason for failure of subtyping is that when we typed the term (��)(���)(��y)(y�)(��z)z,we used the context (���)(��)(���) to type (��y)(y�)(��z)z. In this context, � is de�ned tobe �. Now, to type (���)(��y)(y�)(��z)z, the de�nition (��)(���) cannot be used. Hence,we don't have all the information necessary to derive the type of (���)(��y)(y�)(��z)z. Wedo however have a partial result concerning subtyping:Lemma 5.24 (Restricted Subtyping) If � `sh A : B, A0 is a subterm of A such that allbachelor items in A0 are also bachelor in A, then A0 is legal.Proof: We prove by induction on the derivations: if A0 is a subterm of � or A such thatall bachelor items in A0 are also bachelor items in � respectively A, then A0 is legal.Note that in the case of the (def rule) subterms s2C where d � s1 s2 and s1 is not theempty segment, do not satisfy the restrictions, since at least one item of s2 is bachelor in s2Cbut partnered in dC. 2Subterms satisfying the bachelor restriction as in Lemma 5.24 above, seem to be more impor-tant than those not satisfying the bachelor restriction. The reason for this is that the latterterms have an extra abstraction (the newly bachelor �-item) and hence are �-types whichmakes them more involved, whereas the subterm property is usefull because it tells somethingabout less involved terms.6 Conclusion and ComparisonWe have proposed an extension of �-reduction called shu�e-reduction, which makes moreredexes visible and hence allows for more exibility in reducing a term. It seems a feasibleapproximation of the informal notion of reductional equivalence.We used the item-notation to give a clearer description of term shu�ing and shu�e-reduction and to be able to add nested de�nitions to typing systems. We think that the21

item-notation is a good candidate for answering the two questions posed in the conclusionsof [Reg 94] concerning the existence of a syntax for terms realising shu�e-equivalence (whichRegnier calls �-equivalence, see below).Shu�e reduction is shown to behave well with respect to several aspects of the typed�-calculi of the Barendregt cube. As far as reduction is concerned, shu�e-reduction hasthe Church-Rosser property, shu�e-equivalence classes partition �-equivalence classes intosmaller parts and the equivalence relation generated by shu�e-reduction is just �-equality.Furthermore the typing systems with shu�e-reduction are shown to have the same niceproperties as the typing systems with �-reduction possess, providing that they are extendedwith de�nitions.We showed that using shu�e-reduction we indeed may avoid size explosion without thecost of a longer reduction path.Before closing, it is worth mentioning where reductions related to our generalised notionhave been used elsewhere. At the time of writing this paper, we were unaware of many relatedwork and we are grateful to Joe Wells who has compiled most of the following details. Wewill be short in what follows but we refer to [KW 95b] which discusses the subject in detail.Here are two rules related to our term reshu�ing:(�) (Q�)(P�)(�x)N ! (P�)(�x)(Q�)N() (P�)(�x)(�y)N ! (�y)(P�)(�x)NIt is obvious that � may move the �-item (Q�) next to a �-item in N if N � (�y)M , and hencethe �-couple (Q�)(�y) becomes a �-pair making the generalised redex a classical one (visible)and subject to contraction. The rule is unrelated to what we do here yet has almost alwaysbeen used with � for technical reasons. Furthermore, the transfer of rule to explicitly typedlambda calculus is not straightforward, since the type of y may be a�ected by the reduciblepair (P�)(�x). This is our reason for avoiding . In fact, in explicitly typed �-calculi, doesnot return reductionally equivalent terms.Regnier's notion of `premier redex' (see [Reg 92]) is the same as our notion of generalisedredex on untyped terms. We study it for Church-style type systems whereas Regnier studiesCurry-style type systems. [Reg 94] uses � and (and calls the combination �) to showthat the perpetual reduction strategy �nds the longest reduction path when the term is SN.[Vid 89] also introduces reductions similar to those of [Reg 94]. Furthermore, [KTU 94] uses �(and other reductions) to show that typability in ML is equivalent to acyclic semi-uni�cation.[SF 92] uses a reduction which has some common themes to �. [dG 93] uses a restricted versionof � and [KW 95a] uses to reduce the problem of strong normalisation for �-reduction to theproblem of weak normalisation for related reductions. [KW 94] uses amongst other things,� and to reduce typability in the rank-2 restriction of system F to the problem of acyclicsemi-uni�cation. [AFM 95] uses � (which they call \let-C") as a part of an analysis of howto implement sharing in a real language interpreter in a way that directly corresponds to aformal calculus.7 AcknowledgementsWe are grateful for the useful discussions with Henk Barendregt, Bob Constable, Jan-WillemKlop and Joe Wells. 22

References[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P., A call by need lambdacalculus, Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM, 1995.[Barendregt 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science,volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.[BKKS 87] Barendregt, H.P., Kennaway, J.R., Klop, J.W., and Sleep M.R., Needed reduction andspine strategies for the �-calculus, Information and Computation 75 (3), 1191-231, 1987.[BKN 9y] Bloo, R., Kamareddine, F., Nederpelt, R., The Barendregt Cube with De�nitions andGeneralised Reduction, Computing Science Note, University of Glasgow, Computing Science de-partment, 1994. To appear in Information and Computation.[Con 86] Constable, R.L. et al., Implementing Mathematics with the Nuprl proof development system,Prentice Hall 1986.[Dow 91] Dowek, G. et al. The Coq proof assistant version 5.6, users guide, rapport de recherche 134,INRIA, 1991.[Gardner 94] Gardner, P., Discovering Needed Reductions Using Type Theory, TACS, 1994.[dG 93] de Groote, P., The conservation theorem revisited, Int'l Conf. Typed Lambda Calculi andApplications, vol. 664 of LNCS, 163-178, Springer-Verlag, 1993.[KN 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution, International Jour-nal of Foundations of Computer Science 4 (3), 197-240, 1993.[KN 94] Kamareddine, F., and Nederpelt, R.P., A uni�ed approach to type theory through a re�ned�-calculus, Theoretical Computer Science 136, 183-216, 1994.[KN 95] Kamareddine, F., and Nederpelt, R.P., Generalising reduction in the �-calculus, Journal ofFunctional Programming 5 (4), 1995.[KN 96a] Kamareddine, F., and Nederpelt, R.P., On �-conversion in the Barendregt Cube, Journalof Functional Programming 6 (2), 1996.[KN 96b] Kamareddine, F., and Nederpelt, R.P., A useful �-notation, Theoretical Computer Science155, 1996.[KBN 9-] Kamareddine, F., Bloo, R., and Nederpelt, R.P., De�nitions and �-reductions in type theory,submitted.[KTU 94] Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., An analysis of ML typability, J. ACM 41(2),368-398, 1994.[KW 94] Kfoury, A.J. and Wells, J.B., A direct algorithm for type inference in the rank-2 fragmentof the second order �-calculus, Proc. 1994 ACM Conf. LISP Funct. Program., 1994.[KW 95a] Kfoury, A.J. and Wells, J.B., New notions of reductions and non-semantic proofs of �-strongnormalisation in typed �-calculi, LICS, 1995.[KW 95b] Kfoury, A.J. and Wells, J.B., Addendum to new notions of reduction and non-semanticproofs of �-strong normalisation in typed �-calculi, Boston University.[Launchbury 93] Launchbury, J., A natural semantics of lazy evaluation, ACM POPL 93, 144-154,1993.[L�evy 80] L�evy, J.-J. Optimal reductions in the lambda calculus, in To H. B. Curry: Essays onCombinatory Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, AcademicPress, 1980. 23

[NGV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., (eds) Selected papers on Automath,Studies in Logic and the Foundations of Mathematics, 133, North Holland, 1994.[Reg 92] Regnier, L., Lambda calcul et r�eseaux, Th�ese de doctorat de l'universit�e Paris 7, 1992.[Reg 94] Regnier, L., Une �equivalence sur les lambda termes, Theoretical Computer Sci. 126, 281-292,1994.[SF 92] Sabry, A., and Felleisen, M., Reasoning about programs in continuation-passing style, Proc.1992 ACM Conf. LISP Funct. Program., 288-298, 1992.[SP 93] Severi, P., and Poll, E., Pure Type Systems with De�nitions, Computing Science Note 93/24,Eindhoven University of Technology, Department of Mathematics and Computing Science, 1993.[Vid 89] Vidal, D., Nouvelles notions de r�eduction en lambda calcul, Th�ese de doctorat, Universit�e deNancy 1, 1989.

24

