
Important Issues in Foundational Formalisms�Fairouz KamareddineyApril 7, 1997AbstractThis article discusses my work in the last few years on logical formalisms which havebeen shown to be useful to various aspects of Natural and Programming Languages and forfoundational formalisms. In this period, I have been involved in two extensive programs:1. The �rst program concerns languages which exhibit various ways of combining ex-pressiveness with logic. While I do not propose that any of these languages is ideal,I believe that they illustrate the fruitfulness of bringing together ideas from distinctdisciplines. Central to the program will be Logic, �-calculus and Type Theory, whichhave played an important role not only in foundational discussions, but also in ap-plied formal semantics; speci�cally, the semantics of natural language (nl) and ofprogramming languages (pl). The general goal here has been to �nd expressive andunifying theories which keep the earlier advantages but bring about new dimensions.This goal moreover extends to �nding a general framework which can be used tocompare earlier theories and to carry results from one theory to another without du-plication of work. Issues that play a great role in the general framework include fullexpressiveness and logic, intensionality versus extensionality, polymorphism, internalde�nability of determiners and quanti�ers, �xed point operators and self-application,avoidance of Russell's and Curry's paradoxes, and property and truth theories. Thisprogram comes from my ongoing work at and collaboration with Edinburgh wherethe stimulating environment of logic, foundation and language has been invaluable.2. From the point of view of notation and language, I aimed at studying typed and type-free formalisms and at investigating a �-notation which can be used to generalisethe various existing type theories, and to improve the computational power of the�-calculus by making substitution explicit, by re�ning reduction, by introducingde�nitions to the syntax and by rewriting terms so that their reduction can be mademore e�cient. This work comes from my ongoing collaboration with Eindhoven, thecentre of AUTOMATH, the theorem prover which have inspired much research onlanguage and formalisms.I hope that by studying general formalisms from the outside and by going inside andunpacking the notation, one can gain even much further insights than achieved so far.�Appears in Deduction and Language edited by Ruth Kempson, School of Oriental and African Studies,university of London.yI am grateful for the useful comments of Richard Oehrle and Aarne Ranta.1



Foundational Formalisms 21 Full expressiveness and logicAs is well-known, combining full type-free �-calculus with logic leads to contradiction. Thereason is that one can use R � �x::xx to derive RR = :(RR). This is known as Russell'sparadox. Even when Russell's paradox is avoided, one will still get a problem when one triesto discuss the axioms and rules of the logic that is being used. To be more precise, in anylogic, one must state which of the following �ve concepts hold:� Modus Ponens (MP): From � ` E � E0 and � ` E, deduce � ` E0.� Deduction Theorem (DT): If � is a context, and � [ fEg ` E0 then � ` E � E0.� �-conversion (�): (�x:E)E0 = E[E0=x].� Equality (=): If E = E0 and � ` E then � ` E0.� Start: If E 2 � then � ` E.Usually, in logic we assume all the above �ve concepts. If we do this however in a theorywhich has our above syntax, then we get in trouble as follows:Let ? be an equality between two terms that can't possibly be equal, such as true = false,Let a = �x:(xx � ?). The following is a proof of ?.1 faag = aa � ? (�)2 faag ` aa Start3 faag ` aa � ? 1 + 2 + (=)4 faag ` ? MP + 2 + 35 ` aa � ? DT + 46 ` aa 1 + 5 + (=)7 ` ? MP + 5 + 6Hence Type Theory stepped in and played an important role in applied formal semantics.In natural language semantics, where logic has been of more concern than expressiveness,restrictive typing systems have been the norm. By contrast, programming language semanticshas tended to focus on expressiveness (and functions) rather than logic, and hence dependedon a less restrictive, or polymorphic, type systems. For example, Milner's functional languageML in [Milner 84] used a polymorphic type theory (Curry's �! system).In Type Theory there are attempts at unifying the various formalisms (see [de Bruijn 78],[Barendregt 92] and [NK 94]) so that results can be carried across theories without duplicationof work. It is moreover elegant to have unique formulations of Type Theories. After all, suchuni�cation will help to rid of the anarchy present as a result of so many di�erent formulations.In fact, the presence of the paradoxes lead to the emergence of many Type Theories whichvary in how they combine logic and expressiveness. Each such theory has been used forsome applications, yet the need has come to extend results from one application to another.Hence, it is important to represent type theories in one unique framework. This is di�cultas the framework which formulates one theory may be incompatible with the framework ofKamareddine April 7, 1997



Foundational Formalisms 3the other. Unifying theories will result in elegant formulations, in man-e�ort saving (as workwill no longer be duplicated) and in giving insight into the relations of one theory to another.This can improve the applications of the various existing theories. We shall in this sectiondescribe the theory T
 presented in [Kamareddine 94c] which acts as a unifying fomalismsfor various existing formalisms of natural and programming languages. For further details,the reader is referred to [Kamareddine 94c].1.1 The System T
T
 was presented in [Kamareddine 94c] and was shown to be an extension of various othersystems. We will follow the line of Barendregt in [Barendregt 92], in constructing a tree whichwill have T
 at its top. All the other systems have been shown to have useful applicationsrelated to natural and programming languages. [Parsons 79] for example, presents a poly-morphic system which can accommodate self-referential terms. [Reddy 93] presents a systembased on linear logic but which attempts to add logical features to functional programming.[Chierchia, Turner 88] presents a type free theory and interprets a fragment of English in it.[Kamareddine 92b] provides powerful tools for the formalisation of quanti�ers and determin-ers, whereas [Kamareddine 92a] extends Milner's language ML (see [Milner 78]) with higherorder polymorphism and logic. [Kamareddine 92a] moreover can be extended in a simpleway to provide a type checker for the present system. The system of [KK93] interprets anextended fragment of natural language where self-reference and nominalisation are allowed.Martin-L�of's type theory moreover in [Martin-L�of 73] and Feferman's T0 in [Feferman 79],present systems which have been extensively used in pl. Those systems too are related to thepresent one as we shall see below. T
 accommodates most of the systems mentioned above,hence bringing in all the advantages. We will use � and � for types (two special instances ofwhich are e the type of objects, p the type of propositions and t the type of truths), � formetatypes and �; �1; �2 to range over both types and metatypes. (The reason why we usetypes and metatypes is related to avoiding the paradoxes. This is explained briey belowand in detail in [KK93].) We use c for constants (a special instance of which is ?), x; y forexpression variables, v for type variables drawn from a countable set V . (We assume that typevariables and expression variables are disjoint.) �; � are used for arbitrary object languageexpressions and '; ; � for expressions which denote propositions. We use � ` s to mean thats is derivable within context �, and �`� s to mean that s is derivable from the signature �within context �. ` s and `� s stand respectively for ; ` s and ;`� s, where ; is the emptycontext. The syntax of the various sorts of expression can now be speci�ed as follows:Signatures � ::= ; j �; c:�Contexts � ::= ; j �; x:� j �; �: tKinds K ::= type j c-type j metatypeTypes � ::= v j e j t j p j h�; �iMetatypes � ::= (�1 ! �2)Expressions � ::= c j x j �x:�:� j app(�; �) j 
� j [� j �(�) j :� j [� ^ �] j [� _ �]j [� � �] j [� = �] j 8x:�:� j 9x:�:�Kamareddine April 7, 1997



Foundational Formalisms 4All the above expressions � should be obvious except for 
� and [� which we explain asfollows. 
� is to be understood as saying that � is a proposition. In [Kamareddine 92b], itwas needed to make the construction of logic inside the type free �-calculus non paradoxical.Although the system in this paper is in fact typed, we will see in Section 1.1.3 that it containsthe system TH of [Kamareddine 92b] which is type free. Moreover, the typing system willavoid Russell's paradox with the help of the notion of circular types which will be de�nedfurther on in this section. So it might seem that 
 is only cosmetic. This is not so however.We will below de�ne a property theory and this will need the 
 operator. There will of coursebe a relation between the two ways of avoiding the paradox (i.e. the one presented here andthat presented in [Kamareddine 92b]). It may be questioned why we have three kinds: types,ctypes and metatypes. In particular, why we need both types and metatypes and what is thedi�erence between h�; �i and (� ! �). First, for types we have the non-problematic types ashe; ei and he; pi and the circular types which lead to the problems as hhe; pi; pi (see the rule:c-type base). Abstraction over these circular types is what leads to paradoxes. For example,if R � �x:<e;p>::(xx) then RR = :(RR) and RR is of type p, which is a contradiction.This is the reason why in the rule (�) in De�nition 1.2, we forbid abstracting over circulartypes. Hence, as << e; p >; p > is circular, R above is not allowed. As for metatypes, theyplay another role. Namely, they give the type of a lifting function. Here, let us recall thatwe live in a domain where all types are subsumed by e. Hence, for example, an expressionof type he; ei is also an expression of type e. Hence, we are taking a similar line to thatof Bealer in [Bealer 82] where everything is an object and app applies an object to another.Now, sometimes we need to lift an object to a real function, so that if the object � wasof type he; ei, the function [� will be of metatype e ! e, and where ([�)(�) = app(�; �).This is necessary when we want to claim that our approach doesn't restrict itself to Bealer'sclaim that one only needs objects, nor to Chierchia's claim that one needs both objects andfunctions. We have a exible account where one can use the one or the other. Moreover, wehave two ways of forming predicative expressions: via � (which forms a predicative expressiondenoting an object) and via [ (which forms a predicative expression denoting a function).There are also two ways of applying a predicative expression to an argument: via app, whichtakes a predicative expression denoting an object and via real functional application, whichtakes a predicative expression denoting a function. These two ways of forming predicativeexpressions and of saturating them are related, as we shall see below.Judgements ` � sig � is a signature`� � context � is a context�`� � K � has kind K�`� ��� type � is contained in type ��`� ��� type � is equivalent to type ��`� �:� � has type �Note that the � relation between types is the symmetric closure of �below.Valid SignatureKamareddine April 7, 1997



Foundational Formalisms 5(null sig ) ` ; sigThe empty relation is a signature.(: sig) ` � sig `� � K` �; c:� sig if c 62 dom (�)Valid Context(null context ) ` � sig`� ; context(: context) `� � context �`� � type`� �; x:� context if x 62 dom (�)(: truthcontext) `� � context`� �; ':t context if ' 62 dom (�)There is a containment relation � (in fact, a partial order) which is imposed on the types.When ��� , we say that � is contained in, or is a subtype of, � . ��� means that any expressionwhich is of type � is also of type � ; moreover, any object in the model which belongs to thedomain D� associated with � also belongs to the domain D� associated with � . The mostsalient containments in our system are the following:t � p � e� � eh�; �i � �We assume here three notions of kinds: types such as he; pi, metatypes such as (e ! p) andc-types (or circular types) as in hhe; pi; pi. It is basically the c-types which cause the paradoxand therefore we will restrict abstraction to the non circular types:Kinds, Types and Metatypes(base types) `� � context v 2 V�`� v type`� � context�`� e type`� � context�`� t typeKamareddine April 7, 1997



Foundational Formalisms 6`� � context�`� p type(complex types) �`� � type �`� � type�`� h�; �i type( c-types base) �`� � type �`� ��p �`� ��p�`� hh�; �i; �i c-type( c-types 1) �`� � c-type �`� � type�`� h�; � i c-type( c-types 2) �`� � c-type �`� � type�`� h� ; �i c-typeLemma 1.1 If h� ; �i is not a c-type, then neither � nor � is a c-type. 2�which plays an important role in polymorphism is governed by the following conditions:Containment (e�) �`� � type�`� ��e(p�) `� � context�`� t�p(Dom�) �`� �1 type �`� �2 type�`� h�1; �2i��1(Ran�) �`� � type �`� �1��2�`� h�; �1i�h�; �2i(Id�) �`� � type�`� ���(Trans�) �`� ��� �`� ����`� ���(Anti�) �`� ��� �`� ����`� � � �
Kamareddine April 7, 1997



Foundational Formalisms 7De�nition 1.2 (Type Inference for T
)(Base) `� � context�`� �:� where �:� 2 �(Contain) �`� ��� �`� �:��`� �:�(�) �; x:�`� �:� � 6 `� h�; �i c-type�`� (�x:�:�):h�; �i(app) �`� �:h�; �i �`� �:��`� app(�; �):�(Funct) �`� �:(� ! �) �`� �:��`� �(�):�([I) �`� �:he; �i�`� [�:(e! �) where � is p or e(
I) �`� ':p�`� 
':t(
E) �`� 
' : t�`� ' : p(= prop) �`� �:� �`� �:�0�`� [� = �]:p (note � and �0. This gives more propositions)(= E) �`� [� = �]:t �`� �:��`� �:�(:prop) �`� ':p�`� :':p(:I) �`� ':p �; ':t`� ?:t�`� :':t(:E) �;:':t`� ?:t �`� ':p�`� ':t(^prop) �`� ':p �`�  :p�`� [' ^  ]:pKamareddine April 7, 1997



Foundational Formalisms 8(^I) �`� ':t �`�  :t�`� [' ^  ]:t(^E) �`� [' ^  ]:t�`� ':t �`� [' ^  ]:t�`�  :t(_prop) �`� ':p �`�  :p�`� [' _  ]:p(_I) �`� ':t �`�  :p�`� [' _  ]:t �`� ':p �`�  :t�`� [' _  ]:t(_E) �; ':t`� �:t �;  :t`� �:t �`� [' _  ]:t�`� �:t(� prop) �`�  :p �`� ':p�`� [' �  ]:p(� I) �; ':t`�  :t �`� ':p�`� [' �  ]:t(� E) �`� ':t �`� [' �  ]:t�`�  :t(8prop) �; x:�`� ':p�`� 8x:�:':p(8I) �; x:�`� ':t�`� 8x:�:':t where x is not free in ' or any assumptions in �(8E) �`� 8x:�:':t �`� �:��`� '[�=x]:t(9prop) �; x:�`� ':p�`� 9x:�:':p(9I) �; x:�`� '[�=x]:t�`� 9x:�:':t(9E) �`� 9x:�:':t �; '[�=x]:t`�  :t�`�  :tKamareddine April 7, 1997



Foundational Formalisms 9(�) �`� [(�x:�:�) = (�y:�:�[y=x])]:t; where y is not free in �:(�) �`� [app(�x:�:�; a) = �[a=x]]:t;() �`� [�1 = �2]:t �`� [�1 = �2]:t�`� [app(�1; �1) = app(�2; �2)]:t(�) �`� �:��`� [� = �]:t(�) �`� [�1 = �2]:t �`� [�1 = �3]:t�`� [�2 = �3]:t(�) �`� [app(�1; x) = app(�2; x)]:t�`� [�1 = �2]:t where x is not free in �1; �2 or any assumptions in �:1.1.1 Interpreting �, the Type Free �-calculus in T
The type free �-calculus (� for short) has � ::= xj(�1�2)j(�x:�1) for terms. We can embedthe type free �-calculus in our system T
 via the embedding function J�:De�nition 1.3We de�ne an embedding function J� : � 7! T
, which embeds � in T
 as follows:� J�(x) = x� J�(�1�2) = app(J�(�1);J�(�2))� J�(�x:�1) = �x : v:J�(�1) where v is a fresh type variable. This is to avoid any typevariable clashes inside terms.Note that we use free(�) for the set of the free variables of �.Lemma 1.4 For any expression � and variable x, x 2 free(�) i� x 2 free(J�(�)).Proof: By an easy induction on � in �. 2Lemma 1.5 J�(�[�0=x]) = J�(�)[J�(�0)=x].Proof: By an easy induction on � in �. 2As we consider the pure type-free �-calculus (i.e. no constants are used), we can ignoresignatures in this subsection. Hence, we drop the subscript � from � `� �:�.Lemma 1.6 For any term � 2 �;9�, uni�cation function �, � such that � ` �(J�(�)):�.Proof: This is long, but straightforward by induction on the terms in �. 2Kamareddine April 7, 1997



Foundational Formalisms 10The following is an example which illustrates this lemma:Example 1.7 Here we see how this lemma applies to �x:xx. We know that J�(�x:xx) =�x:v1:app(x; x). Now, if we take �(v1) = hv1; v2i and the empty context, then we can show that` �(�x:v1:app(x; x)):hhv1; v2i:v2i as follows: (note that �(�x:v1:app(x; x)) = �x:hv1; v2i:app(x; x)1: x:hv1; v2i ` x:hv1; v2i (Base)2: x:hv1; v2i ` hv1; v2i� v1 (Dom�)3: x:hv1; v2i ` x:v1 1; 2; (Contain)4: x:hv1; v2i ` app(x; x):v2 1; 3; (App)5: ` �x:hv1; v2i:app(x; x):hhv1; v2i; v2i 4; (�)� moreover assumes the usual �, � and � axioms.Lemma 1.8 If � ` � = �0 then there exists �, � such that � ` [�(J�(�)) = �(J�(�0))] : t.Proof: By an easy induction on the derivation of � = �0 in �. 2Hence we have the full type free �-calculus in T
. With this interpretation, we are free nowto write some of our expressions as type free terms. That is, a term of the form �x:� is anacceptable term of our theory, even though it doesn't occur in the syntax given for expressions.1.1.2 Interpreting the System �L in T
The types in �L (see [Kamareddine 94a]) are exactly those of T
, but �L does not have anymetatypes. The ordering on the types is exactly the same in both systems. All the typingrules of �L are also typing rules of T
. Moreover, the expressions of �L are as follows:� ::= x j app(�; �) j �x:�:� j :� j [� ^ �] j [� � �] j 8x:�:� j � = �In fact, all the expressions of �L are also expressions of T
. Hence, the translation functionfrom �L to T
, J�L is simply the identity function.Now, as all the expressions, types, type ordering and type inference rules of �L are includedin T
, then the following Lemma is easily provable:Lemma 1.9 If in �L, we prove � ` �:� then in T
, we prove � ` J�L(�):�. 2Corollary 1.10 If in �L, we prove � ` �:p then in T
, we prove � ` J�L(�):p. 21.1.3 Interpreting the System TH in T
The system TH of [Kamareddine 92b] has the following syntax of terms:(1) � ::= x j �x:� j �� j 
� j [� ^ �] j [� _ �] j [� � �] j [� = �] j 8x:� j 9x:�Kamareddine April 7, 1997



Foundational Formalisms 11We interpret the �rst three terms exactly as we interpreted the type free �-calculus. Weinterpret the terms [� op �] where op is =;^;_ or � by [JT H(�) op JT H(�)] where JT H(�) isthe interpretation of � in T
. We interpret 
� by 
(JT H(�)), 8x:� and 9x:� similarly to theinterpretation of �x:�. For example, JT H(8x:�) = 8x:v:� where v is a fresh type variable.Lemma 1.11 If TH ` � then 9� such that in T
, we can prove � ` JT H(�) : t.Proof: By an easy induction on the derivation of TH ` �. 21.1.4 Interpreting the System L�in T
The system L� of [KK93] has the same signature and contexts as T
. Kinds however in L�are di�erent. They include, like the system here, types and metatypes. c-types however arereplaced by three other types, le-, fp- and wb-types. The idea is that fp-types play a similarrole to c-types. That is, they are both circular. le- and wb-types however, are there to avoidnegative judgements in the type inference rule (�). That is, instead of adding the condition6` � c-type we add the condition ` � wb-type, meaning that � is a well behaved type andthat abstracting to the type � will not lead to contradiction. le-types were an intermediatestep between fp-types and wb-types. That is not the end of the story. In fact, the typingsystem obtained in [KK93] is rather di�erent from that of this paper. We can understand thedi�erence by giving two types which are comparable in one and not in the other.Example 1.12 In T
, hp; ei � p but in [KK93], there is a lemma which says that if h�1; �2i � �then either � = e or � is a complex type. Hence, it is not the case that hp; ei � p in [KK93].Moreover, in [KK93], as p � e then he; ei � hp; ei which is not derivable in T
.The syntax of expressions of L� is as follows:(2) � ::= c j x j �x:�:� j app(�; �) j �(�) j :� j [� j [� ^ �] j [� _ �] j [� � �] j [� = �] j8x:�:� j 9x:�:�TH and L� are related. In fact, L�c (which is L� without constants) can be interpreted inTH as follows: we take variables to variables, �x:�:� to �x:�, app(�; �) and �(�) to ��, [�to �, :� to :� and [� op �] to the obvious interpretation.Lemma 1.13 If � `L� ':p then � `TH 
'.Proof: By an easy induction on � `L� ':p. 21.1.5 Interpreting the System L� in T
The types in L� [Kamareddine 92a] are exactly those of T
, but L� does not have anymetatypes. The ordering on the types is exactly the same in both systems. All the typ-ing rules of L� are also typing rules of T
. Moreover, the expressions of L� are as follows:Kamareddine April 7, 1997



Foundational Formalisms 12(3) � ::= x j �� j �x:� j �x:�:� j 
� j :� j [� ^ �] j [� � �] j 8x:�:� j 8x:�In fact, all the expressions of L� are also expressions of T
 (look at the interpretation of thetype free terms as done previously).Now, as all the expressions, types, type ordering and type inference rules of L� are includedin T
, then the following Lemma is easily provable (proof similar to that of Lemma 1.9):Lemma 1.14 If in L�, � ` �:� then in T
, � ` JL�(�):�. 2Corollary 1.15 If in L�, � ` �:p then in T
, � ` JL�(�):p. 21.1.6 Interpreting the Chierchia-Turner System� could be divided into two parts where we replace equality by an asymmetric relation !!:1. Contraction (�x:�)�0!!�[�0=x]2. Expansion �[�0=x]!!(�x:�)�0Contraction causes no problems but expansion does in the presence of negation. This iswhat guided Turner and Chierchia in developing their theory PT1 [Chierchia, Turner 88]. Wenow show this can be interpreted in T
. The construction of types (sorts) in PT1 is verystraightforward.De�nition 1.16 (Sorts)The basic sorts of PT1 are e; u; nf and i. These stand for individuals, urelements, nominalizedfunctions and information units, respectively. The only complex sort is (e! e).De�nition 1.17 (Syntax of PT1) The syntax of PT1 is as follows: For any sort �, let ME�be the meaningful expressions of sort �. If � = e; i; u or nf , then V ar� is a denumerable setof variables of sort �. If � is any sort, Con� is a set of constants of sort �. The expressionsof each sort are de�ned as follows:i: V ar�; Con� �ME�ii: If � 2MEe and x 2 V are; then �x:� 2ME(e!e)iii: If � 2MEnf ; then [� 2ME(e!e)iv: If � 2ME(e!e); then \� 2MEnfv: If � 2ME(e!e) and � 2MEe; then �(�) 2MEevi: MEi �MEu;MEu;MEnf �MEevii: If � 2MEe; then y � 2MEiviii: If  ;' 2MEi; �; �0 2MEe; and x 2 V ar�; for any sort �; then� = �0;: ; _ '; ^ ';8x: ;9x: ;  � '; $ ' are all in MEiNote that y� asserts the truth of �, such that if � 2 MEi then y� is its truth value but if� 62MEi then y� will be false.Kamareddine April 7, 1997



Foundational Formalisms 13De�nition 1.18 (Axioms of PT1)The axioms of the theory are as follows:(1) (�x:�)�0 = �[�0=x](2) i. y , where  is a tautologyii.  � y ; where  is atomic, i.e. of the form �(�)iii. y �  iv. (8x: y  ) � y(8x: )v. (y ^ y( � ')) � y'vi. y(: y  )$ y y : That is, one can go from  to y if  is an information unit (i.e. a proposition) and is atomic.Now let us interpret PT1 in T
. First we start by interpreting the sorts into our kinds. Forthis we introduce the function � : Sorts 7! Kind [ fu0g such that:�(e) = e�(i) = p�(u) = u0�(nf) = he; ei�(e! e) = e! eThe sort u strictly corresponds to our type e minus the type he; ei. Since we have no way ofproving that there is such a type in T
, we postulate u0 which represents u. This will nota�ect our discussion below, and hence we shall proceed.We introduce for each expression � of PT1 the relevant environment of �, env(�) as follows:1: env(�) = (�:�(�)) if � 2 var� [ Con�2: env(�x:�) = env(�) if � 2MEe and x 2 V are3: env([�) = env(�) if � 2MEnf4: env(\�) = env(�) if � 2MEe!e5: env(�(�)) = env(�) [ env(�) if � 2MEe!e and � 2MEe6: env(y�) = env(�) if � 2MEe7: env(� = �) = env(�) [ env(�) if �; �0 2MEe8: env(: ) = env( ) if  2MEi9: env( op ') = env( ) [ env(') if  ;' 2MEi; op = ^;_;�;$10: env(Qx: ) = env( ) if  2MEi; x 2 V ar� and Q = 8;9What if env(�) and env(�0) overlap? That is, what if env(�) contains (x:e) and env(�0)contains (x:p)? If this is the case, we can solve it by taking (x:p) to be the common element.This should not occur however if we assume that the variables and constants of each sort areKamareddine April 7, 1997



Foundational Formalisms 14disjoint from those of any other sort. We now introduce a mapping Tr which takes expressionsof PT1 and returns expressions in T
. This is de�ned as follows:1: Tr(�) = � if � 2 var� [Con�2: Tr(�x:�) = [(�x:e:Tr(�)) if � 2MEe and x 2 V are3: Tr([�) = [Tr(�) if � 2MEnf4: Tr(\�) = �x:e:app(Tr(�); x) if � 2MEe!e5: Tr(�(�)) = Tr(�)(Tr(�)) if � 2MEe!e and � 2MEe6: Tr(y�) = ( Tr(�) ifTr(�):pc1 = c2 otherwise if � 2MEe; c1; c2 di�erent constants7: Tr(� = �0) = Tr(�) = Tr(�0) if �; �0 2MEe8: Tr(: ) = :Tr( ) if  2MEi9: Tr( op ') = Tr( ) op Tr(') if  ;' 2MEi; op = ^;_;�10: Tr( $ ') = (Tr( ), Tr(')) if  ;' 2MEi;  , ' � ( � ') ^ (' �  )11: Tr(op x: ) = op x:�:Tr( ) if  2MEi; x 2 V ar� and op = 8;9Note that Tr(y�) is always of type p. This is the reason why we couldn't take Tr(y�) tobe T (�) � 
(Tr(�)) � �. Note moreover that for any expression � of PT1, it is decidablewhether Tr(�) is a proposition or not; i.e. it is decidable whether 
(Tr(�)):t or not. This canbe seen by the following lemma.Lemma 1.19 For any expression � of PT1, if � 2MEe then env(�) `� Tr(�):p is decidableand if � 2MEe!e then for any a 2MEe, env(�) `� Tr(�(a)):p is decidable.Proof: By a double induction on � in PT1. 2Lemma 1.20 If � 2ME� where � is an expression of PT1, then env(�) `� Tr(�):�(�).Proof: By an easy induction on � in PT1. Work with the assumption of the existence of u0which denotes u and which satis�es its inclusion relationships. 2Lemma 1.21 The axioms of PT1 are all valid in T
.Proof: This is easy, by going through De�nition 1.18. 2The above shows that PT1 of [Chierchia, Turner 88] can be considered as a subtheory of T
.1.1.7 T-TreeNow collecting the results, we draw the picture which relates all these various theories. Weadd Milner's ML as it has been shown in [Kamareddine 92a] to be interpretable in L�.
Kamareddine April 7, 1997
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 is the system of [Kamareddine 94c].� is the type free �-calculus.PT1 is the Chierchia-Turner system of [Chierchia, Turner 88].TH is the system of [Kamareddine 92b].�L is the system of [Kamareddine 94a].P is the system of Parsons in [Parsons 79]L� is the system of [KK93].L� is the system of [Kamareddine 92a].ML is Milner's ML system of [Milner 84].2 Property TheoriesOur interest in property theory stems from the fact that properties and propositions arestrongly related and provide the logical part of the system (whereas type theory is going toprovide the expressive part of the system). Our domain of properties will satisfy importantclosure properties which will make the logic simple to reason with. Moreover, properties willplay an important role in predicatives which can be looked at in the Fregean sense or in thesense of Bealer. Our approach furthermore, permits us to distinguish between predicationand abstraction. To talk about such predicative expressions, we introduce in our language T
the operator � (see [Kamareddine 92b]), understanding �� to mean that � is a property. �is de�ned as �� =df 8x:
(app(�; x)). That is, something is a property i� whenever it appliesto an object, the result is a proposition. We construct further properties in the following way:1. � [ �0 =df �x:(app(�; x) _ app(�0; x))2. � \ �0 =df �x:(app(�; x) ^ app(�0; x))3. � =df �x::app(�; x)4. �! �0 =df �x:8y(app(�; y) � app(�0; app(x; y))5. � =df �x:(x = x)6. � =df �x::(x = x)Kamareddine April 7, 1997



Foundational Formalisms 16Lemma 2.1 The following are provable1. ` ��:t2. ` �� :t3. ` f��:t;��0:tg ` �(� [ �0):t4. f��:t;��0:tg ` �(� \ �0):t5. ` f��:tg ` ��:t6. ` f��:t;��0:tg ` �(�! �0):t 2The following lemma shows that the internal logic (which occurs inside the �, such as �x:' �  and �x:' give �x: ) and the external logic (which occurs outside and is the usual one), canbe uni�ed. That is, the logic of our propositions and the logic of our properties are the same.Computationally, this means that logical connectives can be pushed inside the �-operator.Lemma 2.2 The following are provable1. [app(�x:�; �) ^ app(�x:�0; �) = app(�x:(� ^ �0); �)]:t2. [app(�x::�; �) = :app(�x:�; �)]:t3. [app(�x:�; �) _ app(�x:�0; �) = app(�x:(� _ �0); �)]:t4. [app(�; �) = :app(�; �)]:t5. [app(� \ �0; �) = app(�; �) ^ app(�0; �)]:t6. [app(� [ �0; �) = app(�; �) _ app(�0; �)]:t7. [app((�); �) = ::app(�; �)]:t8. f��:t;��0:tg ` [app((� [ �0); �), app((�); �) ^ app((�0); �)]:t9. f��:t;��0:tg ` [app(� [ �0; �) = app(�; �) _ app(�0; �)]:t10. f��:t;��0:tg ` [app(� \ �0�), app((� [ �0); �)]:t11. fapp(�; �):tg ` [app(�; �)]:t12. If �`� 
�:t then �`� [8y:app(�x:�; �0) � app(�x:8:y�; �0)]:t13. If �`� 
�:t then [9y:app(�x:�; �0) � app(�x:9y:�; �0)]:t 2
Kamareddine April 7, 1997



Foundational Formalisms 17Now we discuss what would happen to the lemmas above if we change the functional ap-plication of the �-calculus by a more intensional application, call it pred. That is, fromapp(�; x) = app(�; y), we can deduce nothing about the relationship between � and � and xand y. pred on the other hand, will satisfy the condition that if pred(�; a) = pred(�; b) then� = � and a = b. So let us introduce pred such thatpred(�; x):tapp(�; x):t app(�; x):tpred(�; x):t 
(pred(�; x)):t
(app(�; x)):t 
(app(�; x)):t
(pred(�; x)):t(4) [8x(pred(�; x) = pred(�; x))]:t) [� = �]:t(5) [pred(�; a) = pred(�; b)]:t) [(� = � ^ a = b)]:t(6)Lemma 2.3 If �`� (��):t then �`� [8x:(app(�; x), pred(�; x))]:t. 23 De�nability of determiners and quanti�ers in T
We de�ne the two determiners every' and a' in our framework:every0 =df �x:�y:8z(xz ! yz)a0 =df �x:�y:9z(xz ^ yz)The characteristic property of every', �, is de�ned by: P1 � P2 =df 8x(P1x! P2x).Lemma 3.1 � is a transitive, reexive and equisymmetric relation on properties. 2Lemma 3.2 If P1 and P2 are properties then 
(every0P1P2) and every0P1P2 = P1 � P2. 2We de�ne P1 \1 P2 =df 9z(P1z ^ P2z).Lemma 3.3 If P1 and P2 are properties then 
(a0P1P2) and a0P1P2 = P1 \1 P2. 2Outside the collection of properties, we cannot draw useful conclusions about every' becausewe cannot decide the propositionhood of an arbitrary formula in which! is the main connec-tive. This is not a disadvantage as we only want every' to have meaning when we are workingwith properties. Moreover, we cannot de�ne the type of every' or of determiners inside ourformal language. That is if we de�ne Quant and Det as followsQuant t =df 8x(�x! 
(tx))Det t =df 8x(�x! Quant (tx)):Kamareddine April 7, 1997



Foundational Formalisms 18then there is no way to prove that Det and Quant always return propositions when appliedto terms, because 8x(�x ! Quant (tx)) and 8x(�x ! 
(tx)) are not propositions for anyt. In fact even if t is a property, we still do not have a guarantee that Det t and Quant t arepropositions, due to the fact that �x is not a proposition. This is not serious as there is noparticular reason for wanting determiners and quanti�ers to be determinate. We can provemany desirable features of our determiners, so why insist on determinability?Having determiners such as every', a' is one thing; being able to deduce that every', a'are determiners is something else. I.e. can we prove that Det(every'), Det(a'), etc..? Takefor every', �x:�y:8z[xz ! yz]. To show that Det(every') we have to show that 8x(�x !8y(�y ! H(every0xy))). But to be able to show the implication we need to have 
(�x), and
(�y), which we cannot assume. For this we need an extension for implication as follows:We always have that if fag ` b then f
ag ` a ! b (our version of the deduction theorem).We need that if f
ag ` b then ` 
a! b. Can we assert this rule? That is:(�) If f
ag ` b then ` 
a! b:Lemma 3.4 Det(every'), Det(a'), if (*) holds. (See [Kamareddine 92b] for the proof.) 2Here we are concerned with some characteristics of determiners that can be proven in ourtheory. We start with the �rst theorem that asserts that the result of applying a quanti�erto a property results in a proposition.Lemma 3.5(i) fQuant(Q);DPg ` 
(QP )(ii) fQuant(a); Quant(b)g ` Quant(a \ b)(iii) fQuant(a); Quant(b)g ` Quant(a [ b)(iv) fQuant(a)g ` Quant(ac) where ac is the complement of a(v) fevery0P1P2; every0P2P3g ` every0P1P3 24 Intensionality and ExtensionalityIt is often observed that sentence accent, as an indicator of focus, can a�ect the interpretationof sentences, or at least the contexts in which they are appropriate. Thus(7) Felix ate the pie(with accent on the pie) is felicitous as an answer to the (perhaps only implicit) questionWhat did Felix do? or Who did Felix ate?. By contrast,(8) Felix ate the pieKamareddine April 7, 1997



Foundational Formalisms 19answers the question Who ate the pie?[Krifka 91] has suggested that the information structure of such sentences should be repre-sented by separating sentence meaning into a pair consisting of a focus part and a back-ground part, where \the background is of a type that can be applied to the focus." Moreover,[Krifka 91], following [Jacobs 84], has proposed that even if there is no focus-sensitive oper-ator (such as only), the focus should be `bound' by an illocutionary operator that expressesthe sentence mood. Suppose, for example, that assert is the assertion operator. Then (7)will receive the following representation:(9) assert(h�x:eat(felix; x); the-piei)One question which this proposal raises is whether `free' focus constructions such as (7) and(8) can ever occur in embedded constructions. Thus consider the following examples:(10) Sandy was surprised that Felix ate the pie.(11) Sandy was surprised that Felix ate the pie.Intuitively, these two sentences can have di�erent truth conditions. Suppose, for example,that Felix is known to be both a glutton and a gourmand. Given the alternative delicaciesavailable, it may surprise Sandy that Felix chose the pie to eat. Yet knowing that the pie didin fact get eaten, Sandy may not be surprised that it was Felix that did the eating. If thisis correct, then it seems unlikely that the partitioning of meaning into focus and backgroundcan be entirely separated out from propositional content.The relation pred which we introduced appears to give us an appropriate amount of structurewithin propositions. By comprehension, we know that the following equations hold:(12) app(�x:eat(felix; x); the-pie) =eat(felix; the-pie) =app(�y:eat(y; the-pie); felix)However, pred does not support these identities:(13) pred(�x:eat(felix; x); the-pie) 6= pred(�y:eat(y; the-pie); felix)Obviously, there is an additional pragmatic burden being supported by information structure.Nevertheless, it seems clear that the apparatus we have de�ned gives the right kind of �ne-grainedness at the propositional level to support the distinctions which need to be drawn.In fact, the problem of identifying app(�x:eat(felix; x); the-pie) with app(�y:eat(y; the-pie); felix)is a problem of intensionality. Our account does not face this problem as we have another pred-icate supported by our logic which is intensional. So even though pred(�x:eat(felix; x); the-pie)Kamareddine April 7, 1997



Foundational Formalisms 20has the same truth value as pred(�y:eat(y; the-pie); felix), they are not equal. This problemis similar to another one of Bealer and Aczel in [Aczel 84a] which is as follows:Rajneeshee = �x:follows(x;Rajneesh)Fondalee = �x:follows(JaneFonda; x)app(Rajneeshee; JaneFonda) = follows(JaneFonda;Rajneesh)app(Fondalee;Rajneesh) = follows(JaneFonda;Rajneesh)Therefore app(Rajneeshee; JaneFonda) = app(Fondalee;Rajneesh)This conclusion might be questioned since someone could believe that Rajneeshee holds ofFonda, without believing that Fondalee holds of Rajneesh. The solution here is to use predinstead of app. So we obtain that pred(Rajneeshee; JaneFonda) is equivalent in truth valueto pred(Fondalee;Rajneesh) but not equal to it. This is another example of the suitabilityof our framework for intensional and �nely-grained contexts.5 PolymorphismTypes or levels are not necessary in the avoidance of the paradox. The Foundation AxiomFA was included in ZF despite the fact that it was shown that antifoundation axioms areconsistent with ZF (see [Aczel 84] for such a discussion). In fact, it is the Axiom of Separationwhich avoids the paradox. Moreover, the claim in the foundation of NL has been concentratingon abandoning well foundedness. It has been put forward that non well foundedness and typefreeness are necessary for NL. [Kamareddine 94b], for example, provides a uni�ed accountof plurals and singulars by using the concept of non well foundedness and type freeness and[KK93] uses the notion of type freeness to give a more general interpretation of NL.The fact that we ask for the full expressive power of the type free �-calculus does not meanthat types are not useful. In fact when we ask for a type free set theory, or a set theorywhere the de�nition of a set may be impredicative, we don't go and forget completely aboutsets. In type free theories, one asks for the furthest expressive power, where we can livewith self reference and impredicativity but without paradoxes. The better such an expressivesystem is, the more we are moving towards type freeness. It is enough to remember that upto the discovery of the paradoxes, the most ideal system was of course type free. Due to theparadoxes, alas this type free paradise had to be abandoned. Types found an attractive placein the history of foundation and in most areas of applications of logic. However, types areuseful yet we must have as much type freeness as possible. In fact we may not want to beinexible from the start if we could a�ord to be exible. Type free theories are very elegantand simple, so we can have a clear picture of how much we have and how the paradox isavoided. Then the detail of constructing types if followed will produce all the polymorphichigher order types that are needed. So a lot of unnecessary details (like constructing types)are left till later which will make it easier to prove results about the strength of the systemand the expressive power. Also from the point of view of computation, type free theories couldbe regarded as �rst order theories and hence are computionally more tractable than typedtheories. Completeness also holds for �rst order logics but has to be forced for higher orderones. Hence what we are arguing for is the use of type freeness followed by the construction ofKamareddine April 7, 1997



Foundational Formalisms 21exible polymorphic types. It is also the case that the self referentiality of language requirestype freeness. So we can talk about a property having itself as a property. For example,the property of those things equal to themselves is equal to itself. We can talk about moreinvolved self-referential properties such as the property of properties that apply to themselves,the set of functions which given an argument x, apply the function �x:f(xx) to itself.5.1 Promiscuity and PolymorphismFrom a pretheoretic point of view, natural language expressions clearly enjoy a great dealof combinatorial exibility. A familiar example is the conjunctive and which places veryfew constraints on the category of its arguments, except perhaps that they be of the samecategory. Similarly, many verbs can combine with a range of di�erent complements:(14) a. Lee proved that 13 was a prime number.b. Lee proved the proposition that 13 was a prime number.c. Lee proved his claim.d. Lee proved it.Such combinatorial exibility deserves a name: let us call it functional promiscuity, followingthe lead of [Hobbs 85]. How should we model functional promiscuity? We could take theapproach favoured by [Bealer 82], and claim that natural language is entirely type free; orelse we could say that there are some type restrictions, but that the type system has enoughslop in it to allow the requisite amount of promiscuity.Although Bealer's approach certainly deserves to be explored, it seems to be committed to theview that syntactic categories in natural language are entirely arbitrary, in that they have nosemantic import. It seems implausible that we can analyse natural languages in an economicalmanner while completely eschewing syntactic categories. Yet it also seems implausible that,say, the distinction between noun phrases and sentences is completely unmotivated from asemantic point of view. Yet if we concede that syntactic categories do have some correlationwith semantic domains, then we are essentially admitting types after all.Let us assume, then, that types are an appropriate tool in the task of analysing naturallanguages. Then we might still jump in one of two ways in the face of data like (14). Wecould conclude that each of the complements shown in (14) is of the same type, in which casewe would be forced to the conclusion that words like it, this and something have multipletypes. Alternatively, we might suppose that it has just the type of singular NPs, as distinctfrom the type of propositions, in which case we have to conclude that prove is polymorphicallytyped.As Parsons ([Parsons 79]) shows, some amount of polymorphism is also entailed on the ap-proach where noun phrases like the proposition are analysed as having the same type assubordinate clauses such as that 13 was a prime number. For then we see that, for example,about must be polymorphic:(15) a. Kim talked about the proposition.Kamareddine April 7, 1997



Foundational Formalisms 22b. Kim talked about Sandy.[Kamareddine 94a] gives a detailed account of Parsons' approach and interprets it in a theory�L which we showed earlier to be a subtheory of T
. Hence Parsons account can also belooked at as a subtheory of T
.5.2 Fixed points, self application and a programming example�-calculus is at the heart of the denotational semantics of programming languages. Program-ming languages moreover range between the strictly and inexibly typed languages (such asPascal where you can only apply functions to a certain type) and the polymorphically typedones such as Milner's ML. Even the polymorphically typed languages are not polymorphicenough. In fact, the programming discipline which praises polymorphism non stop and whichclaims to be o�ering highly polymorphic languages, namely functional programming, has notyet provided a language which can make sense of the type of a �xed point operator, or anyfunction which involves self application. This is somewhat anomalous, as functional languagesare claimed to be based on the �-calculus (and in particular on the type free or the polymor-phic �-calculus). Now in these �-calculus, the �xed point operators and self application playa very important role. Without them, we could not show that the solution to the recursiveequations exists. So isn't it strange that the most important items such as self application andthe �xed point operators cannot be typechecked in functional languages? After all they arethe items which show us what the computable/non computable functions are. They are theitems which solve the recursive equations, and they are the items which inform us about thelooping/nonlooping programs. Furthermore, Milner's ML is based on the language �!Currywhich cannot typecheck �x:xx nor Y . The polymorphism of ML which is based on �!Curryis not strong enough. The polymorphism introduced in this paper however, is strong enoughto type check items involving self application. We shall illustrate this below.Example 5.1 The translation of �f:(�x:f(xx))(�x:f(xx)) in T
 has type hhv2; v2i; v2i. Be-fore we show this, let us write A for �x:hhv1; v2i; v2i:app(f; app(x; x)) and write B for�x:hv1; v2i:app(f; app(x; x)). Now, the magical part of the program which takes the type of f tobe hv2; v2i and the type of x to be hhv1; v2i; v2i is a very important part of [Kamareddine 92a]and there is no room to discuss it here. But let us see how, when the types of f and x are
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Foundational Formalisms 23chosen, the type checker deduces the type of the translation of Y .(i) f : hv2; v2i assumption(ii) x : hhv1; v2i; v2i assumption(iii) hv1; v2i; v2i � hv1; v2i (Dom �)(iv) x : hv1; v2i (ii); (iii); (Contain)(v) app(x; x) : v2 (ii); (iv); (app)(vi) app(f; app(x; x)) : v2 (i); (v); (app)(vii) �x:hhv1; v2i; v2i:app(f; app(x; x)) : hhhv1; v2i; v2i; v2i (ii) : : : (vi); (�)(viii) hhhv1; v2i; v2i; v2i � hhv1; v2i; v2i (Dom �)(ix) �x:hv1; v2i:app(f; app(x; x)) : hhv1; v2i; v2i (vii); (viii); (Contain)(x) app(A;B) : v2 (iii); (ix); (app)(xi) �f :hv2; v2i:app(A;B) : hhv2; v2i; v2i (i) : : : (x); (�)The type of Y is really what it should be. Not only that, but functional languages tookpolymorphism on their shoulders and avoided logic due to the reason that logic and strongpolymorphism together lead to paradoxes. Now we have showed that our system supportsa higher polymorphism than functional languages but it also contains logic as we've seenbefore. In fact this system has been used to extend ML with polymorphism and logic in[Kamareddine 92a]. And even though the system allows terms such as �x:xx and type checkthem, all terms which are paradoxical are not typed and the system displays the message thattheir type is circular. So Russell's and Curry's sentences cannot be type checked and we aretold that they are circular. Of course here, one may wonder if the paradox is really avoided,and may give as an example � � �y:(�x:y(xx)) which is typechecked to hhv2; v2i; hhv2; v2i; v2ii,and then instantiate it to :� which would be of type hhp; pi; pi. This does not hold howeverbecause hhp; pi; pi is circular and the system does not accept such instantiation.Now, let us say a few words about the computable tractability of the type system T
. Thisquestion is particularly important as we have a rich set of types and as the subsumptionrelation may lead to complex (and non-terminating) type checkers. We have no problemshowever with T
. The reason being that the system of [Kamareddine 92a] is the same systemas this paper except that there, we did not have metatypes. Now, subsumption does not playany role in metatypes. So computable tractability (which is a characteristic of the system of[Kamareddine 92a] and of its type checker) transforms easily to T
. In fact, one can take theimplementation we have for [Kamareddine 92a] and extend it with just the rules for metatypesand we obtain an automatic type checker for T
. Finally, let us list some terms and say howthe type checker of [Kamareddine 92a] treats them and type check them. This is relevant forthis paper as if we write a type checker for T
, then it will behave exactly the type checkerbehaves for [Kamareddine 92a] except of course that there are no metatypes. Hence, on typeswe are the same. Note that if a term contains �x where x is not explicitly typed (as in the�rst term below) then the type checker will �nd the type itself.
Kamareddine April 7, 1997



Foundational Formalisms 24Expressions Types1 �x:x hv0; v0i2 �x : e:x he; ei3 �x:app(x; x) hhv0; v1i; v1i4 app((�x:app(x; x)); (�x:app(x; x))) v15 �x : p:app(x; x) hp; v0i6 �x : he; pi:app(x; x) error: hhe; pi; pi is c-type7 8x : hv0; v1i:app(x; y) p8 8x : e:x error, not a proposition9 8x : he; v1i:app(x; y) p10 8x:app(x; x) p11 �x : hv0; v1i:app(x; y) hhv0; v1i; v1i12 �x::app(x; x) error, c-typeHere don't be alarmed by the type of the sentences 7-10. These are sentences which involve8 and hence their type should be p. When the system can't make the type p, it returns anerror message as in sentence 8.6 The item notationThe work described in the previous section extends to various other applications that I havenot described in this paper due to lack of space. The second program however that I havebeen involved with is related to a new notation (the item notation) inuenced by the AU-THOMATH of de Bruijn. The results that we have obtained in the last four years are verynice and are summarized in our literature below. Of these results, I will briey describe somepoints. First let me explain what is the item notation.The item notation is very simple. It follows the AUTHOMATH by writing the argument be-fore the function. The di�erence however is that parenthesis in a term are grouped di�erentlythan in usual lambda calculus or in AUTHOMATH. The best to describe the item notationis to give the translation from classical lambda calculus to item notation based one. So that,if I translates classical terms into our notation, then I(AB) is written as (I(B)�)I(A) andI(�x:A:B) is written as (I(A)�x)I(B). Both (A�) and (A�x) are called items.6.1 Explicit substitutionSubstitution is the most basic operation of the �-calculus. Manipulation of �-terms dependson substitution. The �- and �-axioms are given in terms of substitution. What substitutionare we talking about? Substitution in the �-calculus is usually de�ned (up to some variation)as t[x := t0]. So what is happening in t[x := t0]? We are replacing all free occurrences of x int by t0, but without any disastrous side e�ects such as binding occurrences of variables whichwere originally free. Take for example xx[x := y]. This will result in yy. (�y:u:xy)[x := y]will result in �z:u:yz. So this process of substitution works �ne. It is a metalevel processhowever. That is, this substitution takes t; x; t0 and returns a �nal result t[x := t0]. TheKamareddine April 7, 1997



Foundational Formalisms 25various stages of moving from the t; x; t0 to t[x := t0] are lost and nothing matters but theresult. This works �ne for many applications but fails in areas which are now becoming vitalin Computer Science. In functional programming for example, there is an interest in partialevaluation. That is, given xx[x := y], we may not be interested in having yy as the result ofxx[x := y] but rather only yx[x := y]. In other words, we only substitute one occurrence of xby y and continue the substitution later. This issue of being able to follow substitution anddecide how much to do and how much to postpone, has become a major one in functionallanguage implementation. However, in order to have this spreading control over substitutionand to be able to manipulate those partially substituted terms, we must render the latterfrom being a metalevel notion to an object level notion. It turns out that our new notationwill enable such rendering e�ciently and will enable the representation of various forms ofsubstitution: local, global, implicit and explicit.[KN 93] introduces substitution which is object level but which can evaluate �-terms fullyobtaining the result of the metalevel substitution. More precisely, we introduce the processof stepwise substitution, which is meant to re�ne reduction procedures. Since substitution isthe fundamental operation in �-reduction, being in its turn the most important relation inlambda calculus, we are in the heart of the matter. The stepwise substitution is embedded inthe calculus, thus giving rise to what is nowadays called explicit substitution. It is meant asthe �nal re�nement of �-reduction, which has { to our knowledge { not been studied beforeto this extent. This substitution relation, being the formalization of a process of stepwisesubstitution, leads to a natural distinction between a global and a local approach. Withglobal substitution we mean the intended replacement of a whole class of bound variables(all bound by the same abstraction-�) by a given term; for local substitution we have onlyone of these occurrences in view. Both kinds of substitution play a role in mathematicalapplications, global substitution in the case of function application and local substitutionfor the \unfolding" of a particular instance of a de�ned name. We discuss several versions ofstepwise substitution and the corresponding reductions. We also extend the usual notion of �-reduction, an extension which is an evident consequence of local substitution. The frameworkfor the description of terms, as explained before, is very adequate for this matter.6.2 Generalising reduction and term reshu�ingExample 6.1 In the classical term t � ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1, we havethe following redexes (the fact that neither x6 nor x7 appear as free variables in their respectivescopes does not matter here; this is just to keep the example simple and clear):1. (�x6:X3 :�x5:X1!X2 :x5x4)x32. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2In item notation t becomes (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5. Here,the two classical redexes correspond to ��-pairs as follows:1. (�x6:X3 :�x5:X1!X2 :x5x4)x3 corresponds to (x3�)(X3�x6). ((X1 ! X2)�x5)(x4�)x5 isKamareddine April 7, 1997



Foundational Formalisms 26ignored as it is easily retrievable in item notation. It is the maximal subterm of t to theright of (X3�x6).2. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2 corresponds to (x2�)(X4�x7).Again (x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 is ignored for the same reason as above.There is however a third redex which is not immediately visible in the classical term; namely,(�x5:X1!X2 :x5x4)x1. Such a redex will only be visible after we have contracted the above tworedexes (we will not discuss the order here). In fact, assume we contract the second redex inthe �rst step, and the �rst redex in the second step. I.e.((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1 !�((�x6:X3 :�x5:X1!X2 :x5x4)x3)x1 !�(�x5:X1!X2 :x5x4)x1 !� x1x4Now, even though all these three redexes are needed in order to get the normal form oft, only the �rst two were visible in the classical term at �rst sight. The third could onlybe seen once we had contracted the �rst two redexes. In item notation, the third redex(�x5:X1!X2 :x5x4)x1 is visible as it corresponds to the matching (x1�)((X1 ! X2)�x5) where(x1�) and ((X1 ! X2)�x5) are separated by the segment (x2�)(X4�x7)(x3�)(X3�x6). Hence,by extending the notion of a redex from being a �-item adjacent to a �-item, to being amatching pair of �- and �-items, we can make more redexes visible. This extension furthermoreis simple, as in (t1�)s(��v), we say that (t1�) and (��v) match if s has the same structureas a matching composite of opening and closing brackets, each �-item corresponding to anopening bracket and each �-item corresponding to a closing bracket. For example, in t above,(x1�) and ((X1 ! X2)�x5) match as (x2�)(X4�x7)(x3�)(X3�x6) has the bracketing structure[ ][ ] (see Figure 1 which is drawn ignoring types just for the sake of argument). With this
(x1�) (x2�) (�x7) (x3�) (�x6) (�x5) (x4�) x5Figure 1: Redexes in item notationextension of redexes, we re�ne �-reduction in two di�erent ways:1. By changing (�) from (t1�)(��v)t2 !� t2[v := t1] to (t1�)s(��v)t2 ;� s(t2[v := t1]) if(t1�) and (��v) match.2. By reshu�ing terms so that matching �'s and �'s occur adjacently. Hence Figure 1 willbe redrawn as in Figure 2.Kamareddine April 7, 1997
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(c�) (P�x) (b�) (Q�y) (d�) (R�z) (a�) zFigure 2: Term reshu�ing in item notation[BKN 9x] shows that ;;� (the reexive transitive closure of ;�) is a generalisation of !!� .We then show that �! with ;;� satis�es all the desirable typing properties.[BKN 9y] extends the Barendregt cube with this generalised reduction and shows that all theabove properties hold for this extension. Moreover, [BKN 9x] shows that term reshu�ing iscorrect. In particular, we show that �! accommodated with term reshu�ing TS, satis�esthe following:1. Reshu�ing a term, moves all �'s next to their matching �'s.2. Reshu�ing terms preserves !�. That is, if t ;� t0 then there exists t00 such thatTS(t)!� t00 and TS(t0) � TS(t00).3. Reshu�ing terms preserves types. That is, if � ` t : � then � ` TS(t) : �.6.3 Extending theories with de�nitionsIn many type theories and lambda calculi, there is no possibility to introduce de�nitions whichare abbreviations for large expressions and which can be used several times in a program ora proof. This possibility is essential for practical use, and indeed implementations of PureType Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide thispossibility. But what are de�nitions and why are they attractive? De�nitions are nameabbreviating expressions and occur in contexts where we reason about terms.Example 6.2 Let id = (�x:A:x) : A ! A in (�y:A!A:id)id de�nes id to be (�x:A:x) in acomplex expression in which id occurs two times.The intended meaning of a de�nition is that the de�niendum x can be substituted by thede�niens a in the expression b. In a sense, an expression let x : A be a in b is similar to(�x:A:b)a. It is not intended however to substitute all the occurrences of x in b by a. Nor isit intended that the de�nition be a part of our term. Rather, the de�nition will live in theenvironment (or context) in which we evaluate or reason about the expression.One of the advantages of the de�nition let x : A be a in b over (�x:A:b)a is that it is convenientto have the freedom of substituting only some of the occurrences of an expression in a givenKamareddine April 7, 1997
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