The As-calculus: its typed and its extended versions

Fairouz Kamareddine and Alejandro Rios *

June 26, 1995

Abstract

We present in this paper the simply typed version of the As-calculus (cf. [KR95]) and
prove the strong normalisation of the well typed terms. We also present an extension of the
As-calculus: the As.-calculus and prove its local confluence on open terms and the weak
normalisation of its corresponding calculus of substitutions s.. The strong normalisation
of s¢ is still an open problem to challenge the rewriting community.

Introduction

In [KR95] we presented a new A-calculus in de Bruijn notation with explicit substitutions: the
As-calculus, offering thus a different perspective on the problem of closing the gap between
the classical A-calculus and concrete implementations. We showed in [KR95] that the As-
calculus works pretty well with closed terms (the set of these terms is large enough to contain
all the A-terms). That is, we proved the confluence of the As-calculus on closed terms and
the preservation of strong normalisation with respect to classical A-terms (this property is
seldom present in calculi with explicit substitutions and states that every A-term strongly
normalising in the A-calculus is also strongly normalising in the As-calculus).

In the conclusion of [KR95] we presented two open problems:

Open Problem 1: Are well typed terms strongly normalising in the simply typed As-calculus?

In section 2 we introduce the simply typed As-calculus, show subject reduction and give
an affirmative answer to the question of strong normalisation.

Open Problem 2: Can the As-calculus be extended to a confluent calculus on open terms?

Let us explain briefly this question. The As-calculus is not confluent (not even locally
confluent) when working on open terms. In order to get local confluence one must add
several rules which correspond to properties of the updating and substitution meta-operators
(see lemmas 1-6 in [KR95]).

In section 3 we introduce the As.-calculus as the As-calculus extended by the addition
of these rules and prove its local confluence by studying the critical pairs. In order to prove
(global) confluence using the interpretation technique (cf. [Har89] and [CHLI1]) we are led
to study the corresponding calculus of substitutions s, (the calculus obtained by deleting
the rule which starts §-reduction). We prove the weak normalisation of s. by showing that
innermost strategies always terminate. The strong normalisation is, as far as we know, still
an open problem and a challenge to the rewriting specialists.

*Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, fax: 4+44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk

The main interest in studying such an extension is to provide a calculus of explicit substi-
tutions which would have both the property of preserving strong normalisation and a confluent
extension on open terms. As far as we know no such calculus has yet been proposed. There
are calculi of explicit substitutions which are confluent on open terms: the Aoy- calculus (cf.
[HL89] and [CHLI1]), but the non-preservation of strong normalisation for Aoy has recently
been proved (cf. [Mel95]). There are also calculi which satisfy the preservation property: the
Av-calculus (cf. [BBLRD95]), but this calculus is not confluent on open terms. Moreover, in
order to get a confluent extension, the introduction of a composition operator for substitu-
tions seems unavoidable, but precisely this operator is the cause of the non-preservation of
strong normalisation as shown in [Mel95].

1 The s- and As-calculi

We recall in this section the syntax of the As-terms, the rules of the As-calculus and the
results obtained in [KR95].

Definition 1 The set of terms, noted As, of the As-calculus is given as follows:
As:=IN | AsAs | AAs | AsoiAs | piAs where i>1, k>0.

IN denotes the set of positive natural numbers. We take a, b, ¢ to range over As. A term
of the form ac'b is called a closure. Furthermore, a term containing neither o’s nor ¢’s is
called a pure term. The set of pure terms is denoted by A.

We assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijn
indices (or numbers) are used to explicit the bindings: to find the A which binds a variable
represented by the number n you must travel upwards in the tree associated with the term
and choose the n-th A you find. For instance, Az.Ay.zy is written using de Bruijn indices
as AA(21) and Az Ay.(x(Az.zz))y is written as A(A(2(A(13))1)). Finally, to translate free
variables, you must assume a fixed ordered list of binders and prefix the term to be translated
with this list. For instance, if the list (written from left to right) is ---, Az, Ay, Az then the
term Az.yz translates as A34 whereas Az.zy translates as A43.

Besides the de Bruijn indices, application and abstraction we have the explicit substituions
operators o' and the updating operators ¢i. The term a ¢'b should be intuitively understood
as the term a where the substitution of the variable corresponding to the de Bruijn number
i by the term b must be performed. The update operators ¢} are intended to update the
de Bruijn numbers in such a way that when substitutions take place, the bindings remain
correct. We refer to [KR95] for an introduction of these operators.

Definition 2 The As-calculus is given by the rewriting rules in Figure 1. We use As to
denote this set of rules. The calculus of substitutions associated with the As-calculus is the
rewriting system whose rules are As — {o-generation} and we call it the s-calculus.

The o-generation rule starts F-reduction by generating a substitution operator at the
first level (o'). The o-app and o-A rules allow this operator to travel throughout the term
until its arrival to the variables. If a variable should be affected by the substituion, the o-
destruction rules (case i = n) carry out the substitution of the variable by the updated term,
thus introducing the updating operators. Finally the -rules compute the updating.

We state now the main results obtained in [KR95]:

o-generation (Aa)b — ac'd
o-A-transition (Aa)o'b — Aao'tth)
o-app-transition (a1 as) o' — (ay 0'b) (ay0'b)

n—1 if n>1
o-destruction no'b — wob if n=1

n if n<u
p-A-transition ei(Aa) — Mgy a)
p-app-transition @i (a;as) — (¢hay) (phas)
p-destruction ©in E—I_ i-1 Z Z 2 IZ

Figure 1: The As-calculus

Theorem 1 The s-calculus is confluent and strongly normalising on As. Hence, every term
a has a unique s-normal form denoted s(a).

Theorem 2 (Confluence) The As-calculus is confluent on As.

Theorem 3 (Preservation of strong normalisation) Pure terms which are strongly nor-
malising in the A-calculus are also strongly normalising in the As-calculus.

The As-calculus is powerful enough to simulate f-reduction on pure terms:
Theorem 4 (Simulation of j-reduction) Let a, b€ A, if a =5 b then a —»,; b.

The As-calculus is correct with respect to the classical A-calculus, i.e. derivations of pure
terms ending with pure terms can also be derived in the classical A-calculus:

Theorem 5 (Soundness) Let a, b€ A, if a —»,, b then a =4 b.

2 The typed As-calculus

The proof of strong normalisation of well typed terms that we give in this section follows an
original idea of Mellies (personal communication), which is based on the technique developped
in [BBLRD95] to prove the preservation of strong normalisation in the Av-calculus.

We shall recall first the syntax and typing rules for the simply typed A-calculus in de
Bruijn notation. The types are generated from a set of basic types K with the binary type
operator —. Environments are lists of types. Typed terms differ from the untyped ones only
in the abstractions which are now marked with the type of the abstracted variable.

Definition 3 The syntax for the simply typed A-terms is given as follows:

Types A = K|A—=A
Environments F == nil | A F
Terms A == n| AA| AAA

The typing rules are given by the typing system L1 as follows:

A FFbL: B
(L1 — var) AFE1:A (L1 -A) EFMAb: A B
Etn:B Erb:A—-B Fra:A
(L1 — varn) ALrnt1: B (L1 — app) Etba:B

Before presenting the simply typed As-calculus we must introduce the following notation
concerning environments. If F is the environment Fy, Fs, ..., F,, we shall use the notation
E5; for the environment F;, F; 44, ..., I, analogously F<; stands for I, ..., I, etc.

The typing rules for the ¢ and ¢ operators that we introduce below may be derived from
the typing rules of the simply typed Ao-calculus (cf. [ACCL91]) and the translation we gave
for the As-calculus into the Ao-calculus (cf. [KR95]).

Definition 4 The syntax for the simply typed As-terms is given as follows (types and envi-
ronments are defined as for A-terms):

Terms As, == IN | As,As; | AM.As; | As,0'As, | piAs, t>1, k>0

The typing rules are given by the typing system Lsl as follows:
The rules Lsl-var, Lsl-varn, Ls1-A and Lsl-app are exactly the same as L1-var, L1-
varn, L1-A and L1-app, respectively. The new rules are:

Ezll_bB E<i7B7E2i|_a:A
ErFacih: A

E§k7E2k+i Fa:A
Etgia: A

(Lsl — o) (Ls1 — ¢)

Definition 5 We say that a € As, is a well typed term if there exvists an environment F and
a type A such that F F1g a: A. We note As,, the set of well typed terms.

The aim of this section is to prove that every well typed As-term «a is strongly normalising
in the As-calculus (denoted a € As-SN). We proceed by showing As,; C 5 C As-SN, where S
is defined by:

Definition 6 S = {a € As, : for every subterm b of a, s(b) € A-SN} where A\-SN is the set
of strongly normalising terms in the A-calculus.

To prove As,; € .5 we need to establish some results:
Lemma 1 (Subject reduction) If F'byg a: A and a —,, b then F bpg b: A.

Proof: By induction on a. If the reduction is not at the root, use the inductive hypothesis.
If it is, check that for each rule ¢« — b we have F 141 @ : A implies F by b1 A. a

Corollary 1 Let E by a: A, ifa—»,, b then EFlypg1 b: A.

Proof: By induction on the length of the derivation. a
Lemma 2 (Typing of subterms) Ifa € As,, and b is a subterm of a then b € As,,.

Proof: By induction on a. If bis not an immediate subterm of a, use the induction hypothesis.
Otherwise, the last rule used to type @ must contain a premise in which b is typed. O

Lemma 3 (Soundness of typing) Ifa € A and F tpg a: A then Flbypy a: A.
Proof: Easy induction on a. a
Proposition 1 As,, C S

Proof: Let a € As,; and let b a subterm of a. By lemma 2, b € As,; and by corollary 1,
s(b) € Asy. Since s(b) € A (cf. lemma 8 in [KR95]) lemma 3 yields that s(b) is L1-typable,
and it is well known that classical typable A-terms are strongly normalising in the A-calculus.
Hence, s(b) € A-SN and therefore a € S. 0

We shall prove now S C As-SN. This proof is very close to the proof of preservation of
normalisation we gave in [KR95], theorem 6. We remind here some definitions and results in
[KR95]. In the remainder of this section ¢ — b will mean a —,, b. We use the notation C[.]
to mean a context, (a term with a hole), and C[d] to mean the term obtained by filling the
hole with the term d.

Lemma 4 Let ay — ... = a, — a,q1 = Cldo'e] then ay = C'[d'ad?€'] or there exists k < n
such that a;, = C'[(Ad)e'] and a1, = C'[d'c'€’]. In both cases € —» e.

Proof: This is lemma 14 in [KR95]. 0

Definition 7 A reduction is internal if the redex is a subterm of the right operand of a o-
operator.

Lemma 5 If a € S then for every infinite As-derivation a —y; b1 —x, <=+ —as bp —as = o,
there exists N such that for i > N all the reductions b; —»s b; 11 are internal.

Proof: The proof is almost the same as the proof of lemma 16 in [KR95]. O

Notation 1 We write a = b in order to denote that p is the occurrence of the redex which
is contracted. We denote by < the prefiz order between occurrences of a term. Therefore if a
is a term and p, q are occurrences of a such that p < q, and we write a, (resp. a,) for the
subterm of a at occurrence p (resp. q), then a, is a subterm of a,,.

For example, if a = 20°((A1)4), we have a; = 2, ay = (A1)4, as; = AL, agyy = 1, agy = 4.

Definition 8 An infinite As-derivation a; — --- — a,, — - -+ s minimal if for every step of
reduction a; —As iy, €VEry other derivation beginning with a; Y a;,, where p < q, is finite.

The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps at
a lower occurrence (i.e. within a proper subterm of the actual redex), an infinite derivation
is then impossible.

Definition 9 Skeletons are defined by the following syntax:
Skeletons K =:=IN | K K | AK | Ko'[] | pi K
The skeleton of a term a is defined by induction as follows:

Sk(n)=n Sk(ab) = Sk(a)Sk(b) Sk(ao'b) = Sk(a) o[]
Sk(Aa) = ASk(a) Sk(pia) = ¢i.Sk(a)

Remark 1 If a 25, b then Sk(a) = Sk(b).
Proposition 2 For every a € Asy, if a € S then a € As-SN.

Proof: Suppose there exists @’ € S and @’ € As-SN, then there must exist a term a of minimal
length such that @ € S and a ¢ As-SN.

Let us consider a minimal infinite As-derivation D : a — a3 — -+ — a, — ---.
By lemma 5, there exists N, such that for ¢+ > N, a; — a;y, is internal. Therefore, b
the previous remark, Sk(a;) = Sk(a;1) for ¢ > N. As there are only a finite number of
closures in Sk(ay) and as the reductions within these closures are independent, an infinite
subderivation of D must take place within the same and unique closure in Sk(ay) and,
evidently, this subderivation is also minimal. Let us call it D’ and let C' be the context such
that ay = Clco'd] and co'd is the closure where D’ takes place. Therefore we have:

D ay = Cleo'd] LN Cleo'd,] A e 25 Cleo'd,] LN
Now two possibilities arise from lemma 4:

e There exists I < N such that a; = C'[(A)d'] = aryy = C'[do'd’] and d' — d. But
let us consider the following derivation:

D" 1 a—» ar = C'[(A)d] — C'[(A)d] = C'[(A)dy] = -+ - —= C'[(A)d,] — - -

In this infinite derivation the redex in a; is within d’ which is a proper subterm of (A¢)d’,

whereas in D the redex in a; is (A¢’)d’ and hence it is placed at an upper position. This
contradicts the minimality of D.

e o = C'[d ¢'d'] where d’ —» d. But now we have d —% d — d; — -+ — d, — ---. Since
d' is a subterm of a, d’ € 9, contradicting our choice of @ with minimal length. a

Therefore we conclude, using propositions 1 and 2:

Theorem 6 Fuvery well typed As-term is strongly normalising in the As-calculus.

3 The s.- and \s.-calculi

We want now to extend the syntax by admitting variables. This will lead us to a new problem
of confluence. Let us begin by giving explicitly the new syntax:

Definition 10 The set of open terms, noted As,, is given as follows:
Asy, :=V | IN | Asy,As,, | Asy, | As,, 0'As,, | wilAs,, where i>1, k>0

and where 'V stands for a set of variables, over which X, Y, ... range. We take a, b, ¢ to
range over As,,. Furthermore, closures and pure terms are defined as for As.

Working with open terms one loses confluence as shown by the following counterexample:
(AX)Y)o!'lt = (Xo'Y)o'1 (AX)Y)olt = (AX)o'1)(Yo'1)

In fact one loses more: local confluence. But since ((AX)o'1)(Yo'l) = (Xo?1)o'(Yo'l),
the solution to the problem seems straightforward: add to As the rules obtained by orienting
the equalities given by the lemmas 1 - 6 in [IKR95]. For instance, the rule corresponding to the
Meta-substitution lemma (lemma 4) is the g-o-transition rule given below. The addition of
this rule would solve the critical pair in our counterexample, since now we have (Xo'Y)ol1 —
(Xo*1)o!(Yo'1).

Definition 11 The As.-calculus is obtained by adding the rules in Figure 2 to the rules of
the As-calculus given in Figure 1.

o-o-transition (aob)yoic — (acitre)oi(boi=Fe) if 1<
o-p-transition 1 (pLa)o’b — ¢ ta if k<j<k+:
o-p-transition 2 (¢, a)olb — @i(aoiiTLh) if k+i<j
p-o-transition Pplad?d) — (Phyr @) 07 (Phyr_; b) if j<k+1
p-p-transition 1 o (pla) — @l (Phy1_; @) if 1+7<k
p-p-transition 2 ¢ (pla) — @It a if [<k<l+yj

Figure 2: The new rules of the As.-calculus

We use As. to denote this set of rules. The calculus of substitutions associated with the
Asc-calculus is the rewriting system whose rules are As, — {o-generation} and we call it s.-
calculus.

We prove the local confluence of the s, and As, calculi by analysis of critical pairs.
Theorem 7 The s.-calculus is locally confluent.

Proof: Local confluence can be obtained by the Knuth-Bendix Theorem (cf. [KB70],
[Hue80]). Therefore we must check that every critical pair is convergent.

We shall only enumerate the superpositions generating the critical pairs, check the con-
vergence of the first one and write the departing term for the other ones.

We remark that when the destruction rules must be handled, several subcases should be
considered according to the relationship between the indexes of the operators and the de
Bruijn numbers.

1. g-o-tr. and o-A-tr.:
((Aa) 0b) 09 ¢ — ((Aa) 0@t e) ot (boi=iFl) — (A(a0iT?¢)) o (boi =it e)
— A(ad?*t%c) o't (bai="t ()
((Aa) 0b) 09 ¢ — (Ma ot b)) 09 ¢ — A((a o't b) 07t ¢)

— M(aoit2e) ot (boi=*1)

o-o-tr. and:

2. o-app-tr. (((a1az) a'b) a? c); 3. o-dest. ((na'b) o’ c); 4. o-o-tr. (((ay 0" az) a'b) o7 ¢);
5. o-p-tr.1 (((pra) o'b) o9 ¢); 6. o-p-tr.2 (((pha) o'b) o9 ¢); T. -o-tr. (¢} ((ao'b)oic)).
p-o-tr. and:

8. a-A-tr. (¢, ((Aa) 67 b)); 9. o-app-tr. (¢i.((ad)o?c)); 10. o-dest. (pi(no?b));

11. o-p-tr.1 (¢, ((¢fa) @ b)); 12. o-p-tr.2 (oL ((¢la) ol b)).

w-p-tr.1 and:

13. o-A-tr. (g1 (Aa)); 14, g-app-tr. (i (ab)); 15. p-dest. (i (oin));

16. o-p-tr.1 (g3, (@r' (¢)a)); 17. -o-1r.2 (¢ (¢] (¢a))).

p-p-tr.2 and:
18. @-A-tr. (P (Aa)); 19. p-app-tr. (pior(ad)); 20. p-dest. (@} (¢n));
21. p-p-tr.d (g.(ef (pha))); 22. @-p-tr.2 (¢ (o (pha)))- o

Theorem 8 The As.-calculus is locally confluent.

Proof: There are only two critical pairs arising from the introduction of the o-generation
rule which are also convergent:
1. o-gen. and c-app-tr. (((Aa)b) o'c); 2. o-gen. and w-app-tr. (¢, ((Aa)b)). 0

We have shown in [KR95] that the s-normal forms of the As-terms are exactly the pure
terms in A. We shall describe now the s.-normal forms (s.-nf) of the open terms. and use
this description to establish the weak normalisation of the s.-calculus.

Theorem 9 A term a € As,, is an s.-normal form iff one of the following holds:
e a € VUN, i.e. a is a variable or a de Bruijn number.
e o =bc, where b and ¢ are s.-normal forms.
e o = \b, where b is an s.-normal form.

e a = balc, where c is an s.-nf and b is an s.-nf of the form X, or dco'e with j < 1, or
o d with j < k.

o a = b, where b is an s.-nf of the form X, or co’d with j > k+1, or c,o‘ljc with k < 1.

Proof: Proceed by analising the structure of a. When « is an application or an abstraction
there are no restrictions since there are no s.-rules with applications or abstractions at the
root. When a = boic or a = ¢},b, the restrictions on b are necessary to avoid o-redexes (rules
whose name begin with o) or ¢-redexes (rules whose name begin with ¢), respectively. a

There is a simple way to describe the s.-nf’s using item notation [KN95]. Let us just say
here that with this notation we have ab = (b8)a, Aa = (A)a, ac’b = (bo')a and ¢a = (¢})a.
the following nomenclature is used: (b8), (A), (co?), (L) are called items (é-, A-, o- and
p-items, respectively) and b and ¢ the bodies of the respective items. A sequence of items is
called a segment.

A normal op-segment 5 is a sequence of o- and ¢-items such that every pair of adjacent
items in § are of the form:

(i) (@) and k <1 (¢i)(bod)and k< j—1 (bo')(col)andi<j (ba’)(¢h) and j < k.

For example, (£5)(3)(¢7) (b07)(cat')(¢1,)(¢16) and (ba)(ca®)(da®)(£5) (we) (7) (ao™)
are normal op-segments.

We can now describe the s.-nf’s in a syntactical simple way.

Theorem 10 The s.-nf’s can be described by the following syntax:
NF ==V | N | (NF§NF | (MANF |5V
where S is a normal op-segment whose bodies belong to NF.

Proof: It is easy to see that these are in fact normal forms since the conditions on the inidices
of a normal op-segment prevent the existence of redexes. To check that if a term is an s.-nf
then it is generated by this grammar, use Theorem 9. O

The set of sorts is defined as § = {V, B, 4§, A, 0,¢}. The sort of a term a, denoted S(a),
is defined inductively on a: S(X) =V, S(n) = B, S(ab) = 4, S(Aa) = A, S(ac'd) = o,
S(g,a) = ¢. The number of a term ¢ of sort o or ¢, denoted N(c) is defined as N (pia) = k
and N (ao'b) = i.

Lemma 6 Ifa € NF then ¢ia has a normal form denoted s’ (¢}a).
Moreover, if ¢ia ¢ NF then S(a) = S(s.(p,a)) and when S(a) = ¢ or S(a) = ¢ we have
furthermore N (a) = N(s.(pLa)).

Proof: Induction on a.

The delicate point is when @ = ¢Jb, [+j < k and ©iy1_;b € NF. In this case take
s, (@pa) = ¢ S, (¢r41-;b). To check that it really is a normal form, our additional hypothesis
is useful. By inductive hypothesis, we know N (b) = N (s, (¢} ,_;0)), and since /b € NF we
conclude that also ¢s. (¢} ,_;)b € NF.

An analogous argument should apply when a = boic, k > j — 1 and (@Z+1b) € NF. a

Lemma 7 Ifa, b € NF then ao’b has a normal form denoted s!(a o?b).
Moreover, if ac’b ¢ NF and a # j then:

1. If a# ¢ic withi+k=j then S(a) = S(s”(ac'b)) and when S(a) = o or S(a) = ¢ we
have furthermore N(a) = N(s/(a c'b)).

2. If a=y,c withi+k=j then S(s!(ao’b)) =0 and N(s'(ac’b)) =k + 1.

Proof: Induction on a. '

Again the additional hypotheses are useful to treat the cases a = ¢jb and a = baoic.
Lemma 6 must be used when a = j (take s/(ao’b) = s.(¢)b)) and when a = @jc with
i+ k= j (take 52(a.0ib) = 5, (2L, 0) 5L (41D)). 0
Theorem 11 The s.-calculus is weakly normalising on open terms, i.e. every open term a

has an s.-normal form denoted s.(a).

Proof: By induction on a. Take s.(X) = X, s.(n) = n, s.(bc) = s.(b)s.(c) (which is a
normal form because the s.-rules have no left members of sort d), s.(Ab) = As.(b) (idem for
sort A), s.(ba'c) = s (s.(b) o's.(c)) and s.(pLb) = s (¢} s.()). a

The proofs of the lemmas and the theorem gives us a choice for a sure strategy to reach the
normal forms: either leftmost-innermost or rightmost-innermost strategies will do the work.

Conclusion

We sumarize in this section the results obtained so far and state the open problems concerning
the As-calculus.

In [KR95] we have proved its power to simulate §-reductions, its soundness with respect
to classical A-calculus, its confluence and the preservation of strong normalisation.

In this paper we presented the simply typed As-calculus and proved the strong normal-
isation of the well typed terms. We introduced an extended version, the As.-calculus, and
proved its local confluence and its weak normalisation.

Two main problems are still open: the confluence of the As.-calculus and the strong nor-
malisation of the s.-calculus. We believe that an affirmative answer to the latter would yield
a solution to the former using the interpretation technique. However the strong normalisation
of the s.-calculus seems to be a difficult problem (at least after a big effort from our side).
We hope that this paper will challenge the rewrite community to solve it.

Work is now in progress to prove the confluence of the As.-calculus on open terms using
the weak normalisation of the s.-calculus. If we succeed, the As-calculus would be the first
A-calculus with explicit substitutions in de Bruijn notation, as far as we know, enjoying
preservation of strong normalisation and having a confluent extension on open terms. We
believe that this is the case due to the fact that composition of substitutions (in the sense
of the Ag-calculi) is handleld indirectly in the As.-calculus in a very subtle way via the o-o-
transition rule.

This work was carried out under EPSRC grant GR/K25014.

References

[ACCLI1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[BBLRDY95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit
substitutions which preserves strong normalisation. Personal communication, 1995.

[CHLI1] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi
of explicit substitutions. Technical report, To appear in the JACM, 1991.

[Har89] T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL : A-calculi as
Subsystems of CCL. Theoretical Computer Science, 65(2):291-342, 1989.

[HL89] T. Hardin and J.-J. Lévy. A Confluent Calculus of Substitutions. France-Japan Artificial
Intelligence and Computer Science Symposium, December 1989.

[Hue80] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the Association for Computing Machinery, 27:797-821, October 1980.

[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press,
1970.

[KIN95] F. Kamareddine and R. P. Nederpelt. Refining reduction in the A-calculus. Journal of
Functional Programmang, 1995. To appear.

[KR95] F. Kamareddine and A. Rios. A A-calculus a la de Bruijn with explicit substitutions. To

appear in the Proceedings of PLILP’95, Lecture Notes in Computer Science, 1995.

[Mel95] P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate. Submaitted
to TCLA95, 1995.

10

