
The �s-calculus: its typed and its extended versionsFairouz Kamareddine and Alejandro R��os �June 26, 1995AbstractWe present in this paper the simply typed version of the �s-calculus (cf. [KR95]) andprove the strong normalisation of the well typed terms. We also present an extension of the�s-calculus: the �se-calculus and prove its local conuence on open terms and the weaknormalisation of its corresponding calculus of substitutions se. The strong normalisationof se is still an open problem to challenge the rewriting community.IntroductionIn [KR95] we presented a new �-calculus in de Bruijn notation with explicit substitutions: the�s-calculus, o�ering thus a di�erent perspective on the problem of closing the gap betweenthe classical �-calculus and concrete implementations. We showed in [KR95] that the �s-calculus works pretty well with closed terms (the set of these terms is large enough to containall the �-terms). That is, we proved the conuence of the �s-calculus on closed terms andthe preservation of strong normalisation with respect to classical �-terms (this property isseldom present in calculi with explicit substitutions and states that every �-term stronglynormalising in the �-calculus is also strongly normalising in the �s-calculus).In the conclusion of [KR95] we presented two open problems:Open Problem 1: Are well typed terms strongly normalising in the simply typed �s-calculus?In section 2 we introduce the simply typed �s-calculus, show subject reduction and givean a�rmative answer to the question of strong normalisation.Open Problem 2: Can the �s-calculus be extended to a conuent calculus on open terms?Let us explain briey this question. The �s-calculus is not conuent (not even locallyconuent) when working on open terms. In order to get local conuence one must addseveral rules which correspond to properties of the updating and substitution meta-operators(see lemmas 1-6 in [KR95]).In section 3 we introduce the �se-calculus as the �s-calculus extended by the additionof these rules and prove its local conuence by studying the critical pairs. In order to prove(global) conuence using the interpretation technique (cf. [Har89] and [CHL91]) we are ledto study the corresponding calculus of substitutions se (the calculus obtained by deletingthe rule which starts �-reduction). We prove the weak normalisation of se by showing thatinnermost strategies always terminate. The strong normalisation is, as far as we know, stillan open problem and a challenge to the rewriting specialists.�Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk1



The main interest in studying such an extension is to provide a calculus of explicit substi-tutions which would have both the property of preserving strong normalisation and a conuentextension on open terms. As far as we know no such calculus has yet been proposed. Thereare calculi of explicit substitutions which are conuent on open terms: the ��*- calculus (cf.[HL89] and [CHL91]), but the non-preservation of strong normalisation for ��* has recentlybeen proved (cf. [Mel95]). There are also calculi which satisfy the preservation property: the��-calculus (cf. [BBLRD95]), but this calculus is not conuent on open terms. Moreover, inorder to get a conuent extension, the introduction of a composition operator for substitu-tions seems unavoidable, but precisely this operator is the cause of the non-preservation ofstrong normalisation as shown in [Mel95].1 The s- and �s-calculiWe recall in this section the syntax of the �s-terms, the rules of the �s-calculus and theresults obtained in [KR95].De�nition 1 The set of terms, noted �s , of the �s-calculus is given as follows:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :IN denotes the set of positive natural numbers. We take a; b; c to range over �s. A termof the form a �ib is called a closure. Furthermore, a term containing neither �'s nor ''s iscalled a pure term. The set of pure terms is denoted by �.We assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijnindices (or numbers) are used to explicit the bindings: to �nd the � which binds a variablerepresented by the number n you must travel upwards in the tree associated with the termand choose the n-th � you �nd. For instance, �x:�y:xy is written using de Bruijn indicesas ��(21) and �x:�y:(x(�z:zx))y is written as �(�(2(�(13))1)). Finally, to translate freevariables, you must assume a �xed ordered list of binders and pre�x the term to be translatedwith this list. For instance, if the list (written from left to right) is � � � ; �z; �y; �x then theterm �x:yz translates as �34 whereas �x:zy translates as �43.Besides the de Bruijn indices, application and abstraction we have the explicit substituionsoperators �i and the updating operators 'ik. The term a �ib should be intuitively understoodas the term a where the substitution of the variable corresponding to the de Bruijn numberi by the term b must be performed. The update operators 'ik are intended to update thede Bruijn numbers in such a way that when substitutions take place, the bindings remaincorrect. We refer to [KR95] for an introduction of these operators.De�nition 2 The �s-calculus is given by the rewriting rules in Figure 1. We use �s todenote this set of rules. The calculus of substitutions associated with the �s-calculus is therewriting system whose rules are �s� f�-generationg and we call it the s-calculus.The �-generation rule starts �-reduction by generating a substitution operator at the�rst level (�1). The �-app and �-� rules allow this operator to travel throughout the termuntil its arrival to the variables. If a variable should be a�ected by the substituion, the �-destruction rules (case i = n) carry out the substitution of the variable by the updated term,thus introducing the updating operators. Finally the '-rules compute the updating.We state now the main results obtained in [KR95]:2



�-generation (�a) b �! a �1 b�-�-transition (�a) �ib �! �(a �i+1 b)�-app-transition (a1 a2) �ib �! (a1 �ib) (a2 �ib)�-destruction n �ib �! 8><>: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! ( n+ i� 1 if n > kn if n � kFigure 1: The �s-calculusTheorem 1 The s-calculus is conuent and strongly normalising on �s. Hence, every terma has a unique s-normal form denoted s(a).Theorem 2 (Conuence) The �s-calculus is conuent on �s.Theorem 3 (Preservation of strong normalisation) Pure terms which are strongly nor-malising in the �-calculus are also strongly normalising in the �s-calculus.The �s-calculus is powerful enough to simulate �-reduction on pure terms:Theorem 4 (Simulation of �-reduction) Let a; b 2 �, if a!� b then a!!�s b.The �s-calculus is correct with respect to the classical �-calculus, i.e. derivations of pureterms ending with pure terms can also be derived in the classical �-calculus:Theorem 5 (Soundness) Let a; b 2 �, if a!!�s b then a!!� b.2 The typed �s-calculusThe proof of strong normalisation of well typed terms that we give in this section follows anoriginal idea of Melli�es (personal communication), which is based on the technique developpedin [BBLRD95] to prove the preservation of strong normalisation in the ��-calculus.We shall recall �rst the syntax and typing rules for the simply typed �-calculus in deBruijn notation. The types are generated from a set of basic types K with the binary typeoperator !. Environments are lists of types. Typed terms di�er from the untyped ones onlyin the abstractions which are now marked with the type of the abstracted variable.3



De�nition 3 The syntax for the simply typed �-terms is given as follows:Types A ::= K j A! AEnvironments E ::= nil j A;ETerms � ::= n j �� j �A:�The typing rules are given by the typing system L1 as follows:(L1� var) A;E ` 1 : A (L1� �) A;E ` b : BE ` �A:b : A! B(L1� varn) E ` n : BA;E ` n+ 1 : B (L1� app) E ` b : A! B E ` a : AE ` b a : BBefore presenting the simply typed �s-calculus we must introduce the following notationconcerning environments. If E is the environment E1; E2; : : : ; En, we shall use the notationE�i for the environment Ei; Ei+1; : : : ; En, analogously E�i stands for E1; : : : ; Ei, etc.The typing rules for the � and ' operators that we introduce below may be derived fromthe typing rules of the simply typed ��-calculus (cf. [ACCL91]) and the translation we gavefor the �s-calculus into the ��-calculus (cf. [KR95]).De�nition 4 The syntax for the simply typed �s-terms is given as follows (types and envi-ronments are de�ned as for �-terms):Terms �st ::= IN j �st�st j �A:�st j �st �i�st j 'ik�st i � 1 ; k � 0The typing rules are given by the typing system Ls1 as follows:The rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app are exactly the same as L1-var, L1-varn, L1-� and L1-app, respectively. The new rules are:(Ls1� �) E�i ` b : B E<i; B; E�i ` a : AE ` a �ib : A (Ls1� ') E�k; E�k+i ` a : AE ` 'ika : ADe�nition 5 We say that a 2 �st is a well typed term if there exists an environment E anda type A such that E `Ls1 a : A. We note �swt the set of well typed terms.The aim of this section is to prove that every well typed �s-term a is strongly normalisingin the �s-calculus (denoted a 2 �s-SN). We proceed by showing �swt � S � �s-SN, where Sis de�ned by:De�nition 6 S = fa 2 �st : for every subterm b of a; s(b) 2 �-SNg where �-SN is the setof strongly normalising terms in the �-calculus.To prove �swt � S we need to establish some results:Lemma 1 (Subject reduction) If E `Ls1 a : A and a!�s b then E `Ls1 b : A.Proof: By induction on a. If the reduction is not at the root, use the inductive hypothesis.If it is, check that for each rule a! b we have E `Ls1 a : A implies E `Ls1 b : A. 2Corollary 1 Let E `Ls1 a : A, if a!!�s b then E `Ls1 b : A.4



Proof: By induction on the length of the derivation. 2Lemma 2 (Typing of subterms) If a 2 �swt and b is a subterm of a then b 2 �swt.Proof: By induction on a. If b is not an immediate subterm of a, use the induction hypothesis.Otherwise, the last rule used to type a must contain a premise in which b is typed. 2Lemma 3 (Soundness of typing) If a 2 � and E `Ls1 a : A then E `L1 a : A.Proof: Easy induction on a. 2Proposition 1 �swt � SProof: Let a 2 �swt and let b a subterm of a. By lemma 2, b 2 �swt and by corollary 1,s(b) 2 �swt. Since s(b) 2 � (cf. lemma 8 in [KR95]) lemma 3 yields that s(b) is L1-typable,and it is well known that classical typable �-terms are strongly normalising in the �-calculus.Hence, s(b) 2 �-SN and therefore a 2 S. 2We shall prove now S � �s-SN. This proof is very close to the proof of preservation ofnormalisation we gave in [KR95], theorem 6. We remind here some de�nitions and results in[KR95]. In the remainder of this section a! b will mean a !�s b. We use the notation C[:]to mean a context, (a term with a hole), and C[d] to mean the term obtained by �lling thehole with the term d.Lemma 4 Let a1 ! : : : ! an ! an+1 = C[d�ie] then a1 = C0[d0�je0] or there exists k � nsuch that ak = C 0[(�d0)e0] and ak+1 = C 0[d0�1e0]. In both cases e0 !! e.Proof: This is lemma 14 in [KR95]. 2De�nition 7 A reduction is internal if the redex is a subterm of the right operand of a �-operator.Lemma 5 If a 2 S then for every in�nite �s-derivation a !�s b1 !�s � � � !�s bn !�s � � �,there exists N such that for i � N all the reductions bi !�s bi+1 are internal.Proof: The proof is almost the same as the proof of lemma 16 in [KR95]. 2Notation 1 We write a!p b in order to denote that p is the occurrence of the redex whichis contracted. We denote by � the pre�x order between occurrences of a term. Therefore if ais a term and p; q are occurrences of a such that p � q, and we write ap (resp. aq) for thesubterm of a at occurrence p (resp. q), then aq is a subterm of ap.For example, if a = 2�3((�1)4), we have a1 = 2, a2 = (�1)4, a21 = �1, a211 = 1, a22 = 4.De�nition 8 An in�nite �s-derivation a1 ! � � � ! an ! � � � is minimal if for every step ofreduction ai!p �sai+1, every other derivation beginning with ai!q �sa0i+1 where p � q, is �nite.The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps ata lower occurrence (i.e. within a proper subterm of the actual redex), an in�nite derivationis then impossible. 5



De�nition 9 Skeletons are de�ned by the following syntax:Skeletons K ::= IN j K K j �K j K �i[:] j 'ikKThe skeleton of a term a is de�ned by induction as follows:Sk(n) = n Sk(a b) = Sk(a)Sk(b) Sk(a �ib) = Sk(a) �i[:]Sk(�a) = �Sk(a) Sk('ika) = 'ikSk(a)Remark 1 If a int�!�s b then Sk(a) = Sk(b).Proposition 2 For every a 2 �st, if a 2 S then a 2 �s-SN.Proof: Suppose there exists a0 2 S and a0 62 �s-SN, then there must exist a term a of minimallength such that a 2 S and a 62 �s-SN.Let us consider a minimal in�nite �s-derivation D : a ! a1 ! � � � ! an ! � � � .By lemma 5, there exists N , such that for i � N , ai ! ai+1 is internal. Therefore, bythe previous remark, Sk(ai) = Sk(ai+1) for i � N . As there are only a �nite number ofclosures in Sk(aN) and as the reductions within these closures are independent, an in�nitesubderivation of D must take place within the same and unique closure in Sk(aN) and,evidently, this subderivation is also minimal. Let us call it D0 and let C be the context suchthat aN = C[c �id] and c �id is the closure where D0 takes place. Therefore we have:D0 : aN = C[c �id] int�!�s C[c �id1] int�!�s � � � int�!�s C[c �idn] int�!�s � � �Now two possibilities arise from lemma 4:� There exists I � N such that aI = C0[(�c0)d0] ! aI+1 = C0[c0�1d0] and d0 !! d . Butlet us consider the following derivation:D00 : a!! aI = C 0[(�c0)d0]!! C0[(�c0)d]! C 0[(�c0)d1]! � � � ! C 0[(�c0)dn]! � � �In this in�nite derivation the redex in aI is within d0 which is a proper subterm of (�c0)d0,whereas in D the redex in aI is (�c0)d0 and hence it is placed at an upper position. Thiscontradicts the minimality of D.� a = C 0[c0 �id0] where d0 !! d. But now we have d0 !! d! d1 ! � � � ! dn ! � � � . Sinced0 is a subterm of a, d0 2 S, contradicting our choice of a with minimal length. 2Therefore we conclude, using propositions 1 and 2:Theorem 6 Every well typed �s-term is strongly normalising in the �s-calculus.3 The se- and �se-calculiWe want now to extend the syntax by admitting variables. This will lead us to a new problemof conuence. Let us begin by giving explicitly the new syntax:De�nition 10 The set of open terms, noted �sop is given as follows:�sop ::=V j IN j �sop�sop j ��sop j �sop �i�sop j 'ik�sop where i � 1 ; k � 0and where V stands for a set of variables, over which X, Y , ... range. We take a; b; c torange over �sop. Furthermore, closures and pure terms are de�ned as for �s.6



Working with open terms one loses conuence as shown by the following counterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)In fact one loses more: local conuence. But since ((�X)�11)(Y �11) !! (X�21)�1(Y �11),the solution to the problem seems straightforward: add to �s the rules obtained by orientingthe equalities given by the lemmas 1 - 6 in [KR95]. For instance, the rule corresponding to theMeta-substitution lemma (lemma 4) is the �-�-transition rule given below. The addition ofthis rule would solve the critical pair in our counterexample, since now we have (X�1Y )�11!(X�21)�1(Y �11).De�nition 11 The �se-calculus is obtained by adding the rules in Figure 2 to the rules ofthe �s-calculus given in Figure 1.�-�-transition (a �ib) �j c �! (a �j+1 c) �i (b �j�i+1 c) if i � j�-'-transition 1 ('ik a) �j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a) �j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a �j b) �! ('ik+1 a) �j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jFigure 2: The new rules of the �se-calculusWe use �se to denote this set of rules. The calculus of substitutions associated with the�se-calculus is the rewriting system whose rules are �se � f�-generationg and we call it se-calculus.We prove the local conuence of the se and �se calculi by analysis of critical pairs.Theorem 7 The se-calculus is locally conuent.Proof: Local conuence can be obtained by the Knuth-Bendix Theorem (cf. [KB70],[Hue80]). Therefore we must check that every critical pair is convergent.We shall only enumerate the superpositions generating the critical pairs, check the con-vergence of the �rst one and write the departing term for the other ones.We remark that when the destruction rules must be handled, several subcases should beconsidered according to the relationship between the indexes of the operators and the deBruijn numbers.1. �-�-tr. and �-�-tr.:((�a) �ib) �j c �! ((�a) �j+1 c) �i (b �j�i+1 c) �! (�(a �j+2 c)) �i (b �j�i+1 c)�! �((a �j+2 c) �i+1 (b �j�i+1 c))((�a) �ib) �j c �! (�(a �i+1 b)) �j c �! �((a �i+1 b) �j+1 c)�! �((a �j+2 c) �i+1 (b �j�i+1 c))7



�-�-tr. and:2. �-app-tr. (((a1a2) �ib) �j c); 3. �-dest. ((n �ib) �j c); 4. �-�-tr. (((a1 �h a2) �ib) �j c);5. �-'-tr.1 ((('hka) �ib) �j c); 6. �-'-tr.2 ((('hka) �ib) �j c); 7. '-�-tr. ('hk((a �ib) �j c)).'-�-tr. and:8. �-�-tr. ('ik((�a) �j b)); 9. �-app-tr. ('ik((a b) �j c)); 10. �-dest. ('ik(n �j b));11. �-'-tr.1 ('ik(('hl a) �j b)); 12. �-'-tr.2 ('ik(('hl a) �j b)).'-'-tr.1 and:13. '-�-tr. ('ik'hl (�a)); 14. '-app-tr. ('ik'hl (a b)); 15. '-dest. ('ik('hl n));16. '-'-tr.1 ('ik('hl ('jpa))); 17. '-'-tr.2 ('ik('hl ('jpa))).'-'-tr.2 and:18. '-�-tr. ('ik'hl (�a)); 19. '-app-tr. ('ik'hl (a b)); 20. '-dest. ('ik('hl n));21. '-'-tr.1 ('ik('hl ('jpa))); 22. '-'-tr.2 ('ik('hl ('jpa))). 2Theorem 8 The �se-calculus is locally conuent.Proof: There are only two critical pairs arising from the introduction of the �-generationrule which are also convergent:1. �-gen. and �-app-tr. (((�a)b) �ic); 2. �-gen. and '-app-tr. ('ik((�a)b)). 2We have shown in [KR95] that the s-normal forms of the �s-terms are exactly the pureterms in �. We shall describe now the se-normal forms (se-nf) of the open terms. and usethis description to establish the weak normalisation of the se-calculus.Theorem 9 A term a 2 �sop is an se-normal form i� one of the following holds:� a 2 V [ IN, i.e. a is a variable or a de Bruijn number.� a = b c, where b and c are se-normal forms.� a = �b, where b is an se-normal form.� a = b �jc, where c is an se-nf and b is an se-nf of the form X, or d �ie with j < i, or'ikd with j � k.� a = 'ikb, where b is an se-nf of the form X, or c �jd with j > k + 1, or 'jl c with k < l.Proof: Proceed by analising the structure of a. When a is an application or an abstractionthere are no restrictions since there are no se-rules with applications or abstractions at theroot. When a = b �jc or a = 'ikb, the restrictions on b are necessary to avoid �-redexes (ruleswhose name begin with �) or '-redexes (rules whose name begin with '), respectively. 2There is a simple way to describe the se-nf's using item notation [KN95]. Let us just sayhere that with this notation we have a b = (b�)a, �a = (�)a, a �ib = (b �i)a and 'ika = ('ik)a.the following nomenclature is used: (b�), (�), (c �i), ('ik) are called items (�-, �-, �- and'-items, respectively) and b and c the bodies of the respective items. A sequence of items iscalled a segment.A normal �'-segment s is a sequence of �- and '-items such that every pair of adjacentitems in s are of the form:('ik)('jl ) and k < l ('ik)(b �j) and k < j � 1 (b �i)(c �j) and i < j (b �j)('ik) and j � k.8



For example, ('23)('14)('67)(b�9)(c�11)('211)('516) and (b�1)(c�3)(d�4)('25)('16)('47)(a�10)are normal �'-segments.We can now describe the se-nf's in a syntactical simple way.Theorem 10 The se-nf 's can be described by the following syntax:NF ::=V j IN j (NF �)NF j (�)NF j sVwhere s is a normal �'-segment whose bodies belong to NF .Proof: It is easy to see that these are in fact normal forms since the conditions on the inidicesof a normal �'-segment prevent the existence of redexes. To check that if a term is an se-nfthen it is generated by this grammar, use Theorem 9. 2The set of sorts is de�ned as S = fV;B; �; �; �;'g. The sort of a term a, denoted S(a),is de�ned inductively on a: S(X) = V , S(n) = B, S(a b) = �, S(�a) = �, S(a �ib) = �,S('ika) = '. The number of a term c of sort � or ', denoted N(c) is de�ned as N('ika) = kand N(a �ib) = i.Lemma 6 If a 2 NF then 'ika has a normal form denoted s0e('ika).Moreover, if 'ika 62 NF then S(a) = S(s0e('ika)) and when S(a) = � or S(a) = ' we havefurthermore N(a) = N(s0e('ika)).Proof: Induction on a.The delicate point is when a = 'jl b, l + j � k and 'ik+1�jb 62 NF . In this case takes0e('ika) = 'jl s0e('ik+1�jb). To check that it really is a normal form, our additional hypothesisis useful. By inductive hypothesis, we know N(b) = N(s0e('ik+1�jb)), and since 'jl b 2 NF weconclude that also 'jl s0e('ik+1�j)b 2 NF .An analogous argument should apply when a = b �jc, k � j � 1 and ('ik+1b) 62 NF . 2Lemma 7 If a; b 2 NF then a �jb has a normal form denoted s00e (a �jb).Moreover, if a �jb 62 NF and a 6= j then:1. If a 6= 'ikc with i+ k = j then S(a) = S(s00e(a �ib)) and when S(a) = � or S(a) = ' wehave furthermore N(a) = N(s00e(a �ib)).2. If a = 'ikc with i+ k = j then S(s00e(a �jb)) = � and N(s00e(a �jb)) = k + 1.Proof: Induction on a.Again the additional hypotheses are useful to treat the cases a = 'jl b and a = b �jc.Lemma 6 must be used when a = j (take s00e (a �jb) = s0e('j0b)) and when a = 'ikc withi+ k = j (take s00e (a �jb) = s0e('ik+1c)�k+1s0e('i0b)). 2Theorem 11 The se-calculus is weakly normalising on open terms, i.e. every open term ahas an se-normal form denoted se(a).Proof: By induction on a. Take se(X) = X , se(n) = n, se(b c) = se(b)se(c) (which is anormal form because the se-rules have no left members of sort �), se(�b) = �se(b) (idem forsort �), se(b �ic) = s00e (se(b) �ise(c)) and se('ikb) = s0e('ikse(b)). 2The proofs of the lemmas and the theorem gives us a choice for a sure strategy to reach thenormal forms: either leftmost-innermost or rightmost-innermost strategies will do the work.9



ConclusionWe sumarize in this section the results obtained so far and state the open problems concerningthe �s-calculus.In [KR95] we have proved its power to simulate �-reductions, its soundness with respectto classical �-calculus, its conuence and the preservation of strong normalisation.In this paper we presented the simply typed �s-calculus and proved the strong normal-isation of the well typed terms. We introduced an extended version, the �se-calculus, andproved its local conuence and its weak normalisation.Two main problems are still open: the conuence of the �se-calculus and the strong nor-malisation of the se-calculus. We believe that an a�rmative answer to the latter would yielda solution to the former using the interpretation technique. However the strong normalisationof the se-calculus seems to be a di�cult problem (at least after a big e�ort from our side).We hope that this paper will challenge the rewrite community to solve it.Work is now in progress to prove the conuence of the �se-calculus on open terms usingthe weak normalisation of the se-calculus. If we succeed, the �s-calculus would be the �rst�-calculus with explicit substitutions in de Bruijn notation, as far as we know, enjoyingpreservation of strong normalisation and having a conuent extension on open terms. Webelieve that this is the case due to the fact that composition of substitutions (in the senseof the ��-calculi) is handleld indirectly in the �se-calculus in a very subtle way via the �-�-transition rule.This work was carried out under EPSRC grant GR/K25014.References[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal ofFunctional Programming, 1(4):375{416, 1991.[BBLRD95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicitsubstitutions which preserves strong normalisation. Personal communication, 1995.[CHL91] P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuence properties of weak and strong calculiof explicit substitutions. Technical report, To appear in the JACM, 1991.[Har89] T. Hardin. Conuence Results for the Pure Strong Categorical Logic CCL : �-calculi asSubsystems of CCL. Theoretical Computer Science, 65(2):291{342, 1989.[HL89] T. Hardin and J.-J. L�evy. A Conuent Calculus of Substitutions. France-Japan Arti�cialIntelligence and Computer Science Symposium, December 1989.[Hue80] G. Huet. Conuent Reductions: Abstract Properties and Applications to Term RewritingSystems. Journal of the Association for Computing Machinery, 27:797{821,October 1980.[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,editor, Computational Problems in Abstract Algebra, pages 263{297. Pergamon Press,1970.[KN95] F. Kamareddine and R. P. Nederpelt. Re�ning reduction in the �-calculus. Journal ofFunctional Programming, 1995. To appear.[KR95] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions. Toappear in the Proceedings of PLILP'95, Lecture Notes in Computer Science, 1995.[Mel95] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate. Submittedto TCLA'95, 1995. 10


