
A useful �-notation�Fairouz Kamareddine yDepartment of Computing Science17 Lilybank GardensUniversity of GlasgowGlasgow G12 8QQ, Scotlandemail: fairouz@dcs.glasgow.ac.ukandRob NederpeltDepartment of Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB Eindhoven, the Netherlandsemail: wsinrpn@win.tue.nlSeptember 16, 1996AbstractIn this article, we introduce a �-notation that is useful for many concepts of the �-calculus. The new notation is a simple translation of the classical one. Yet, it providesmany nice advantages.First, we show that de�nitions such as compatibility, the heart of a term and �-redexesbecome simpler in item notation.Second, we show that with this item notation, reduction can be generalised in a niceway. We �nd a relation ;� which extends !�, which is Church Rosser and StronglyNormalising. This reduction relation may be the way to new reduction strategies. Inclassical notation, it is much harder to present this generalised reduction in a convincingmanner.Third, we show that the item notation enables one to represent in a very simple waythe canonical type � (�; A) of a term A in context �. This canonical type plays the roleof a preference type and can be used to split � ` A : B in the two parts: � ` A and� (�; A) = B. This means that the question is A typable with a type B is divided in twoquestions: is A typable and is B in the class of types of A. It turns out that calculating�Theoretical Computer Science 155, 1996. We are grateful for the comments of the editor and the anonymousreferee on an earlier version of the article.yKamareddine is grateful to the Department of Mathematics and Computing Science, Eindhoven Universityof Technology, for their �nancial support and hospitality from October 1991 to September 1992, and duringvarious short visits since 1993. Furthermore, Kamareddine is grateful to the Department of Mathematics andComputer Science, University of Amsterdam, and in particular to Jan Bergstra and Inge Bethke for theirhospitality during the preparation of this article, and to the Dutch organisation of research (NWO) for its�nancial support. Last but not least, Kamareddine is grateful to the ESPRIT Basic Action for Researchproject \Types for Proofs and Programming" for its �nancial support.1

this preference type of A in item notation is a straightforward operation. One just goesthrough A from left to right performing very trivial steps on the items til the end variable(or heart) of A is reached.Fourth, we can with this item notation, �nd the parts of a term t relevant for a variableoccurrence x� in terms of binding, typing and substitution. Again, this part of t, t j��x�, isvery easy to �nd in item notation. Just take the part of t to the left of x� and remove allunmatched parentheses.Fifth, we reect on the status of variables and show that indeed it is easy to studythis status in item notation.Finally, we show that for a substitution calculus �a la de Bruijn with open terms, it issimpler to describe normal forms using item notation.There are further advantages of item notation that are studied elsewhere. For example,in [9], we show that explicit substitution is easily built in item notation and that globaland local strategies of substitution can be accommodated. In [10], we show that withitem notation, one can give a uni�ed approach to type theory.An implementation of this item notation with most of the concepts discussed in thispaper can be found in [15].Keywords: Item notation, Reduction, Canonical Typing, Term restriction.1 The formal machinery of the Cube in classical notationIn this section we introduce the Cube (see [2]) and the usual necessary notions to manipulateterms and types.The systems of the Cube, are based on a set of pseudo-expressions or terms T de�ned bythe following abstract syntax (let � range over both � and �):T = � j2 j V j T T j �V :T :Twhere V is an in�nite collection of variables over which x; y; z; : : : range. � and 2 are calledsorts over which S; S1; S2; : : : are used to range. We take A;B;C; a; b : : : to range over T .Bound and free variables and substitution are de�ned as usual. We write BV (A) andFV (A) to represent the bound and free variables of A respectively. We write A[x := B] todenote the term where all the free occurrences of x in A have been replaced byB. Furthermore,we take terms to be equivalent up to variable renaming. For example, we take �x:A:x � �y:A:ywhere � is used to denote syntactical equality of terms. We assume moreover, the Barendregtvariable convention which is formally stated as follows:Convention 1.1 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent �'s have di�erent variables as subscript. Hence, we will not have(�x:A:x)x, but (�y:A:y)x instead.The following notions play an important role in the typing of terms:De�nition 1.2 (Type of Bound Variables, ~)1. If x occurs free in B, then all its occurrences are bound with type A in �x:A:B.2. If an occurrence of x is bound with type A in B, then it is also bound with type A in�y:C :B for y 6� x, in BD, and in DB. 2

3. De�ne ~(�) = �, ~(2) = 2, ~(x) = x, ~(�x:A:B) = ~(B) and ~(AB) = ~(A).Terms can be related via a reduction relation. An example is �-reduction (see De�nition 1.4).A reduction relation satis�es compatibility:De�nition 1.3 (Compatibility of a reduction relation in classical notation)We say that a reduction relation ! on terms is compatible i� the following holds:A1 ! A2A1B ! A2B B1 ! B2AB1 ! AB2A1 ! A2�x:A1 :B ! �x:A2 :B B1 ! B2�x:A:B1 ! �x:A:B2De�nition 1.4 (�-redexes, �-reduction !� for the Cube)A �-redex is of the form (�x:B:A)C. �-reduction!�, is the least compatible relation generatedout of the following axiom:(�) (�x:B:A)C !� A[x := C]We take !!� to be the reexive transitive closure of !� and we take =� to be the leastequivalence relation generated by !!�.A statement is of the form A : B with A;B 2 T . A is the subject and B is the predicateof A : B. Moreover, A declaration is of the form �x:A with A 2 T and x 2 V . A pseudo-context is a �nite ordered sequence of declarations, all with distinct subjects. The emptycontext is denoted by <>. If � = �x1:A1 : : : : :�xn:An then �:�x:B = �x1:A1 : : : : :�xn:An :�x:B anddom(�) = fx1; : : : ; xng. We use �;�;�0;�1;�2; : : : to range over pseudo-contexts.A typability relation ` is a relation between pseudo-contexts and pseudo-expressions writ-ten as � ` A. The rules of typability establish which judgements � ` A can be derived. Ajudgement � ` A states that A is typable in the pseudo-context �. When � ` A then A iscalled a (legal) expression and � is a (legal) context.A type assignment relation is a relation between a pseudo-context and two pseudo-expressionswritten as � ` A : B. The rules of type assignment establish which judgements � ` A : B canbe derived. A judgement � ` A : B states that A : B can be derived from the pseudo-context�. When � ` A : B then A and B are called (legal) expressions and � is a (legal) context.We write � ` A : B : C for � ` A : B ^ � ` B : C. If � � �x1:A1 : : : : :�xn:An with n � 0is a pseudo-context, then � ` �, for � a type assignment, means � ` xi : Ai for 1 � i � n.If A! B then we also say �1:�x:A:�2 ! �1:�x:B:�2 and de�ne !! on pseudo-contexts to bethe reexive transitive closure of !.Remark 1.5 Note that we di�er from [2] in that we take a declaration to be �x:A ratherthan x : A. The reason for this is that we want pseudo-contexts to be as close as possibleto terms. In fact the context � can be mapped to the term �:� for example, and de�nitionsof boundness/freeness of variables in a term and the Barendregt convention are thus easilyextended to pseudo-contexts.The systems of the cube, as established by the type assignment in De�nition 1.6 below, aredistinguished by the set of sort-rules (S1; S2) allowed in the formation rule. Since (�; �) isalways taken to be a sort-rule, there are 8 di�erent choices for this set, which correspond tothe vertices of a cube. 3

De�nition 1.6 (`�) The type assignement relation `� is de�ned by the following rules:(axiom) <> `� � : 2(start rule) � `� A : S�:�x:A `� x : A x 62 �(weakening rule) � `� A : S � `� D : E�:�x:A `� D : E x 62 �(application rule) � `� F : �x:A:B � `� a : A� `� Fa : B[x := a](abstraction rule) �:�x:A `� b : B � `� �x:A:B : S� `� �x:A:b : �x:A:B(conversion rule) � `� A : B � `� B0 : S B =� B0� `� A : B0(formation rule) � `� A : S1 �:�x:A `� B : S2� `� �x:A:B : S2 if (S1; S2) is a rule2 The item notationOur new notation (the item notation) is not that di�erent from the classical one. Nonetheless,it has some attractive features. In this section, we introduce the notation and point out someof the notions of Section 1 (compatibility, ~, the visibility of a �-redex) that become simplerin item notation. The item notation is really an improvement over the classical one as can beseen from the following section. For this section however, let us start by giving the translationfrom classical to item notation.De�nition 2.1 (Item notation)De�ne I which translates terms from classical notation to item notation such that:I(A) = A if A 2 f�;2g [VI(�x:A:B) = (I(A)�x)I(B)I(AB) = (I(B)�)I(A)The reason for using this format is, that both abstraction and application can be seen as theprocess of �xing a certain part (an \item") to a term:� the abstraction �v:t0:t is obtained by pre�xing the abstraction-item �v:t0 to the term t.Hence, (t0�v)t is obtained by pre�xing (t0�v) to t.� the application tt0 (in \classical" notation) is obtained by post�xing the argument-itemt0 to the term t. Now (t0�)t is obtained by pre�xing (t0�) to t.(It should be noted that in the Automath-tradition, in which also the `argument' t0 precedesthe `function' t in an application (see [16]), an abstraction-item �v:t0 (or (t0�v) in our newnotation) is called an abstractor and denoted as [v : t0]. An argument-item t0 (or (t0�) in ournotation) is called an applicator and denoted either as ft0g or as < t0 >.)4

Example 2.2I((�x:y:x)u) � (u�)(y�x)xI(u(�x:y:x)) � ((y�x)x�)uI((�y:z:�x:z:y)u) � (u�)(z�y)(z�x)yIt may be helpful to see the item notation in terms of trees. Take (�x:z:xy)u and its graphicalrepresentation as in Figure 1.t tt tt tt�����������@@@@ @@@@ @@@@��x� ux zyFigure 1: binary tree of (�x:z:xy)uNow, instead of drawing trees as in Figure 1, we will rotate them anticlockwise by 135degree hence obtaining for Figure 1, the picture given in Figure 2.t t t tt t t� �x � xu z yFigure 2: layered tree of (�x:z:xy)uWe call such trees layered trees. This representation of trees is very important for ourpurposes. It will turn out to have essential advantages in developing a term, theoretically aswell as in practical applications of typed lambda calculi. (This observation is due to de Bruijn,see [4] or [5].) Those layered trees furthermore, correspond to the item notation. In fact, lookat the tree in Figure 2 and write every vertical line as an item starting from left and fromtop. What you get is nothing but the item notation of the term. That is: (u�)(z�x)(y�)x.Even though I is simple, I(A) (or A in item notation) will have many attractive char-acteristics that A in classical notation does not have. Notice �rst that the de�nition ofcompatibility of a reduction relation (De�nition 1.3) becomes simpler in item notation:De�nition 2.3 (Compatibility of a reduction relation in item notation)Let ! 2 f�g [f�x j x 2 V g. A reduction relation ! is compatible i� the following holds:A1 ! A2(A1!)B ! (A2!)B B1 ! B2(A!)B1 ! (A!)B2Remark 2.4 De�nition 2.3 may not be seen as a great improvement over De�nition 1.3. Butjust imagine that in the �-calculus you had not only � and � as internal operators but also� for substitution, � for typing and so on. In fact, internalising substitution (i.e. making itexplicit) has been a topic of research in the last decade (see [1], [8], [7], [9]). Now, internalisingextra operators means that in classical notation, in De�nition 1.3, two extra rules are addedfor each new operator. In item notation on the other hand, De�nition 2.3 does not dependon the number of operators. Simply, the set of operators to which ! belongs will increase.5

As item notation is a translation of classical notation, all de�nitions of Section 1 (written initem notation) hold. Let us however de�ne some characteristic notions of item notation:De�nition 2.5 ((main) items, (main, ��-)segments, heart, weight)� If x is a variable and A is a pseudo-expression then (A�x); (A�x) and (A�) are items(called �-item, �-item and �-item respectively). We use s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.� Each pseudo-expression A is the concatenation of zero or more items and a variableor sort: A � s1s2 � � �snx or A � s1s2 � � �snS. These items s1; s2; : : : ; sn are called themain items of A, x (or S) is called the heart of A, notation ~(A).� Analogously, a segment s is a concatenation of zero or more items: s � s1s2 � � �sn;again, these items s1; s2; : : : ; sn (if any) are called the main items, this time of s.� A concatenation of adjacent main items sm � � �sm+k, is called a main segment.� A ��-segment is a �-item immediately followed by a �-item.� The weight of a segment s, weight(s), is the number of main items that compose thesegment. Moreover, we de�ne weight(sx) = weight(s).Remark 2.6 Note that the heart of a variable is immediately visible in item notation. Therewas no need to follow De�nition 1.2. For example, Let A = �z:�:(�y:�:(�x:�:x)y)(�w:�:(�x:�:x)y).Then I(A) � (��z)((��w)(y�)(��x)x�)(��y)(y�)(��x)x. Now, ~(A) = x is much easier to�nd in item notation as it is the last variable in the term.Now we come to �-reduction. Let us write De�nition 1.4 in item notation:De�nition 2.7 (�-redexes, reducible segment, �-reduction !� in item notation)A �-redex is of the form (C�)(B�x)A. We call (C�)(B�x)A a reducible segment. �-reduction!�, is the least compatible relation generated out of the following axiom:(�) (C�)(B�x)A!� A[x := C]We take !!� to be the reexive transitive closure of !� and we take =� to be the leastequivalence relation generated by !!�.Note here that in item notation, a �-redex always starts with a �-item immediately followedby a �-item (��-segment). Hence, in item notation it is easy to see a redex. That is, thebody of a term (A above) does not separate the �x:B from its potential argument C.In item notation, we can do even better than making redexes more visible. We can �ndnew redexes that are not visible in classical notation. This is done in Section 3.6

3 ReductionAs types do not play a big role in the illustartion of our point, we shall in this section, ignorethem. I.e., we write �-items as (�x). The following example illustrates the need for generalisedreduction.Example 3.1 In the classical term t � ((�x:(�y:�z:zd)c)b)a, we have the following redexes(the fact that neither y nor x appear as free variables in their respective scopes does notmatter here; this is just to keep the example simple and clear):1. (�y:�z:zd)c2. (�x:(�y:�z:zd)c)bWritten in item notation, t becomes (a�)(b�)(�x)(c�)(�y)(�z)(d�)z. Here, the two classicalredexes correspond to ��-pairs as follows:1. (�y:�z:zd)c corresponds to (c�)(�y). We ignore (�z)(d�)z as it is easily retrievable initem notation. It is the maximal subterm of t to the right of (�y).2. (�x:(�y:�z:zd)c)b corresponds to (b�)(�x). Again (c�)(�y)(�z)(d�)z is ignored for thesame reason as above.There is however a third redex which is not visible in the classical term. Namely, (�z:zd)a.Such a redex will only be visible after we have contracted the above two redexes (we will notdiscuss the order here). In fact, assume we contract the second redex in the �rst step, andthe �rst redex in the second step. I.e.Classical Notation ItemNotation((�x:(�y:�z:zd)c)b)a !� (a�)(b�)(�x)(c�)(�y)(�z)(d�)z !�((�y:�z:zd)c)a !� (a�)(c�)(�y)(�z)(d�)z !�(�z:zd)a !� ad (a�)(�z)(d�)z !� (d�)aNow, even though all these redexes (i.e. the �rst, second and third) are needed in order to getthe normal form of t, only the �rst two were visible in the classical term at �rst sight. Thethird could only be seen once we have contracted the �rst two reductions. In item notation,the third redex (�z:zd)a corresponds to (a�)(�z) but the �-item and the �-item are separatedby the segment (b�)(�x)(c�)(�y). By extending the notion of a redex and of �-reduction, wecan make this redex visible and we can contract it before the other redexes. Figure 3 showsthe possible redexes.The idea is simple; we generalise the notion of a reducible segment (b�)(�v) to a reduciblecouple being an item (b�) and an item (�v) separated by a segment s which is a well-balanced segment. Here is the de�nition of well-balanced segments:De�nition 3.2 (well-balanced segments)� The empty segment ; is a well-balanced segment.� If s is well-balanced, then (A�)s(B�x) is well-balanced.7

� The concatenation of well-balanced segments is a well-balanced segment.A well-balanced segment has the same structure as a matching composite of opening andclosing brackets, each �- (or �-)item corresponding with an opening (resp. closing) bracket.That is, we see immediately that the redexes in t originate from the couples (b�)(�x), (c�)(�y)(a�) (b�) (�x) (c�) (�y) (�z) (d�) zFigure 3: Redexes in item notationand (a�)(�z). This natural matching was not present in the classical notation of t.Having argued above that �-reduction should not be restricted to the reducible segmentsbut may take into account other candidates, we can extend our notion of �-reduction in thisvein. That is to say, we may allow reducible couples to have the same \reduction rights" asreducible segments. That is, the �-reduction of De�nition 2.7 changes to the following:De�nition 3.3 (Extended redexes and general �-reduction ;�)An extended redex is of the form (b�)s(�v)a, where s is well-balanced. We call (b�)(�v)a areducible couple. Moreover, one-step general �-reduction ;�, is the least compatible relationgenerated out of the following axiom:(general �) (b�)s(�v)a;� sfa[v := b]g if s is well-balancedMany step general �-reduction ;;� is the reexive transitive closure of ;�.Example 3.4 Take Example 3.1. As (b�)(�x)(c�)(�y) is a well-balanced segment, then(a�)(�z) is a reducible couple andt � (a�)(b�)(�x)(c�)(�y)(�z)(d�)z ;�(b�)(�x)(c�)(�y)f((d�)z)[z := a]g �(b�)(�x)(c�)(�y)(d�)aThe reducible couple (a�)(�z) also has a corresponding (\generalized") redex in the traditionalnotation, which will appear after two one-step �-reductions, leading to (�z:zd)a. With ourgeneralised one-step �-reduction we could reduce ((�x:(�y:�z:zd)c)b)a to (�x:(�y:ad)c)b. Thisreduction is di�cult to carry out in the classical �-calculus. We believe that this generalisedreduction can only be obtained tidily in a system formulated using our item notation: it isthe item notation which enables us to extend reduction smoothly beyond !!� . Because awell-balanced segment may be empty, the general �-reduction rule presented above is reallyan extension of the classical �-reduction rule. In [11], we show that:1. If a!� b then a;� b.2. If a;;� then a =� b.3. ;� is Church Rosser. 8

An alternative to the generalised notion of �-reduction can be obtained by keeping theold �-reduction and by reshu�ing the term in hand. This reshu�ing transports �-items of��-couples through the term until they immediately precede their corresponding �-items. So(a�)(b�)(�x)(c�)(�y)(�z)(d�)z can be reshu�ed to (b�)(�x)(c�)(�y)(a�)(�z)(d�)z by moving(a�) to the right, in order to transform the bracketing structure ff gf gg into f gf gf g,where all the redexes correspond to adjacent `f' and `g'. In other words, Figure 3 can beredrawn using term reshu�ing in Figure 4. Such a reshu�ing is more di�cult to describe in(b�) (�x) (c�) (�y) (a�) (�z) (d�) zFigure 4: Term reshu�ing in item notationclassical notation. I.e. it is hard to say what exactly happened when ((�x:(�y:�z:zd)c)b)a, isreshu�ed to (�x:(�y:(�z:zd)a)c)b. This is another attractive feature of our item notation. In[11], we de�ne a reshu�ed form TS(a) of a such that all the application items occur next totheir matching abstraction items. We show moreover, that if a ;� b then (9c)[(TS(a) !�c) ^ TS(c) � TS(b)].We illustrated in this section that reduction can take new dimensions in item notation.We have used however only the type free calculus in this section and said that our resultingreduction is Church Rosser (CR). One might ask what will happen if we use this extendedreduction in type systems. In other words, if we extend the cube of Section 1 with thisreduction, do we get all the original properties of the cube? In [3], we studied the cube withthis general reduction and we obtained that all the properties of the cube including StrongNormalisation SN, except Subject Reduction SR, still hold with this general reduction. Wedid �nd however that if de�nitions are also added to the cube, then SR holds. The additionof de�nitions should not be looked at as a negative result. In fact, most implementations ofimportant type systems do use de�nitions. Picture 5 illustrates our results about the cube.We call the cube of Section 1, C, the cube extended with general reduction, C;;� , the cubeextended with de�nitions, Cdef and the cube extended with both de�nitions and generalreduction, C;;� ;def . Picture 5 shows that C, Cdef and C;;� ;def all satisfy CR, SN and CR. Thecube C extended with general reduction, C;;� , satis�es all the properties except SR.C;;� (CR, SN) Cdef(CR, SN, SR)C(CR, SN, SR)@@@@R ����	C;;�def (CR, SN, SR)@@@@R����	Figure 5: Properties of the Cube with various extensions9

4 The structure of termsWe may categorize the main items of a term t into di�erent classes:1. The \partnered" items (i.e. the application and abstraction items which are partners,hence \coupled" to a matching one).2. The \bachelors" (i.e. the abstraction and application items which have no matchingcounterpart).Let us �rst give this de�nition:De�nition 4.1 (match, ��- (reducible) couple, partner, partnered, bachelor)Let A 2 T . Let s � s1 � � �sn be a segment occurring in A.� We say that si and sj match, when 1 � i < j � n, si is a �-item, sj is an �-item, andsi+1 � � �sj�1 is a well-balanced segment.� If si and sj match, we call sisj a ��-couple. A ��-couple is called a reducible couple.� If si and sj match, we call si and sj the partners or partnered items.� All non-partnered �- (or �-)items sk in A, are called bachelor �- (resp. �-)items.� A segment consisting of bachelor items only, is called a bachelor segment.Lemma 4.2 Let s be the body of a term a. Then the following holds in s:1. Each bachelor main abstraction item precedes each bachelor main application item.2. The removal from s of all bachelor main items, leaves behind a well-balanced segment.3. The removal from s of all main reducible couples, leaves behind (�v1) : : :(�vn)(a1�) : : :(am�),the segment consisting of all bachelor main abstraction and application items.Proof: 1 is by induction on weight(s0) for s � s0(�v)s00 and (�v) bachelor in s. 2 and 3are by induction on weight(s). 2Note that we have assumed ; well-balanced. We assume it moreover non-bachelor.Corollary 4.3 For each non-empty segment s, there is a unique partitioning in segmentss0; s1; � � � ; sn, such that1. s � s0 s1 � � �sn,2. For all 0 � i � n, si is well-balanced in s for even i and si is bachelor in s for odd i.3. If si and sj for 0 � i; j � n are bachelor abstraction resp. application segments, then siprecedes sj in s.4. If i � 1 then s2i 6� ;.5. sn 6� ;. 2This is actually a very nice corollary. It tells us a lot about the structure of our terms.10

Example 4.4 s � (�x)(�y)(a�)(�z)(�x0)(b�)(c�)(d�)(�y0)(�z0)(e�), has the partitioning:� well-balanced segment s0 � ;� bachelor segment s1 � (�x)(�y),� well-balanced segment s2 � (a�)(�z),� bachelor segment s3 � (�x0)(b�),� well-balanced segment s4 � (c�)(d�)(�y0)(�z0),� bachelor segment s5 � (e�).5 The canonical typing operator �In this section, we introduce a notion that will play an important role in the question oftypability of terms. This notion enables one to separate the judgement � ` A : B in two(� ` A and �(�; A) = B). This division of � ` A : B has been studied in detail for theclassical notation in [12]. Here, we introduce canonical typing and show that calculating thecanonical type of a term in item notation is a lot simpler than in classical notation.De�nition 5.1 (Canonical Type Operator) For any pseudo-context � and pseudo-expressionA, we de�ne the canonical type of A in �, �(�; A) as follows:�(�; �) � 2�(�; x) � A if (A�x) 2 ��(�; (a�)F) � (a�)�(�; F)�(�; (A�x)B) � (A�x)�(�(A�x); B) if x 62 dom(�)�(�; (A�x)B) � �(�(A�x); B) if x 62 dom(�)When �(�; A) is de�ned, we write # �(�; A).Note that �(�; A) might contain a ��-segment and hence we may need to talk about !� aswell as !��. We will not discuss �-reduction here (see [12]), except in Example 5.8.Here are some of the properties of � :Lemma 5.2 (� -weakening)Let �;�0 be pseudo-contexts. � � �0^ # �(�; A)) [# �(�0; A) and �(�; A) � �(�0; A)].Proof: By induction on A, noting that bound variables in A can always be renamed sothat they don't occur in dom(�0). 2Lemma 5.3 (Context-reduction for �)For �;�0 be pseudo-contexts, �!!� �0^ # �(�; A)) [# �(�0; A) ^ �(�; A)!!� �(�0; A)].Proof: By induction on �(�; A). 2Lemma 5.4 (� -restriction)If # �(�; A) then �(� j�FV (A); A) � �(�; A).Proof: By induction on A. 211

Lemma 5.5 (� -Substitution Lemma) Let � be !!��;=�� or �.If �(�(A�x)�; B) � C and �(�; D) � A then �(�(�[x := D]); B[x := D]) � C[x := D].Proof: By induction on the structure of A. 2Example 5.6 In usual type theory, the type of (��x)(x�y)y is (��x)(x�y)x and the type of(��x)(x�y)x is �. Now, with our � , we get the same result:�(<>; (��x)(x�y)y) � (��x)�((��x); (x�y)y) � (��x)(x�y)�((��x)(x�y); y) � (��x)(x�y)x�(<>; (��x)(x�y)x) � �((��x); (x�y)x) � �((��x)(x�y); x) � �Now, here is an example written in both item and classical notation.Example 5.7�(<>;�z:�: (�y:2: (�x:2: y)�)(�w:�:(�x:�:x)w)) �(�y:2: (�x:2: 2)�)(�w:�:(�x:�:x)w)I(A) � (��z) ((��w)(w�)(��x)x�) (2�y) (��) (2�x) y�(<>; I(A)) � ((��w)(w�)(��x)x�) (2�y) (��) (2�x) �((��z)(2�y)(2�x); x)� ((��w)(w�)(��x)x�) (2�y) (��) (2�x) 2Example 5.8 With ��-reduction, (�x:D:B)C reduces to B[x := C], hence for A of Exam-ple 5.7, �(<>;A) reduces to 2 and so does �(<>; I(A)).It is easier to calculate the canonical type in item notation than in classical notation. In fact,in item notation, we go through A from left to right and for every main item si we reach, wekeep it unchanged if it is a �-item, we remove it if it is a �-item and we change the � to �if it is a �-item. Finally, we replace ~(A) (let us say x) by �(�0; x) where �0 � �s0i1 : : : s0ikand s0ij are all the main �-items of A where � is changed to �. In item notation, every termis of the form sx or sS where s is a segment, i.e. a sequence of items and S 2 f�;2g. Fora segment s, we de�ne s� as s where all the main �-items are written as �-items and whereall the main �-items are removed. We de�ne s� as s where all the main �-items are replacedby �-items, all the main �-items remain unchanged and all the main �-items are removed.For example, if s � (x�)(y�z)(z�r) then s� � (y�z)(z�r) and s� � (x�)(y�z). With thesenotations, �(�; sx) � s��(�s�; x).Hence, �(�; A) is easy to construct out of A in item notation: just drop all the main �-items, change the main �-items into �-items and make sure you alter your context accordingly.Finally make sure you replace the heart variable (which is very obvious in item notation) byits canonical type in your updated context.As there has been many arguments in the literature for making substitutions explicit, onemay also �nd arguments for making typing explicit. Hence, we can imagine that our itemsare not only � and �-items but may also be � -items which �nd the type of a term. Thatis, for any term A, we have that (A�) is an item. According to Remark 1.5 we may treata context as a term and hence (��) is also an item. Now, look at how we can rede�ne � ofDe�nition 5.1 in a step-wise fashion: 12

De�nition 5.9 (Step-wise canonical typing)Propagation rules: (��)(A�) !� (A�) (��)(��)(A�x) !� (A�x) (�(A�x)�)(��)(A�x) !� (�(A�x)�)Destruction rules: (��)� !� 2(��)x !� A if (A�x) 2 �Example 5.10Let �0 �<>, �1 � (��z), �2 � (��z)(��y), �3 � �2(��x). We want to �nd the canonical typeof (��z)(B�)(��y)(y�)(��x)x in the empty context <>.(�0�) (��z) (B�) (��y) (y�) (��x) x !�(�1�) (B�) (��y) (y�) (��x) x !�(B�) (�1�) (��y) (y�) (��x) x !�(B�) (��y) (�2�) (y�) (��x) x !�(B�) (��y) (y�) (�2�) (��x) x !�(B�) (��y) (y�) (��x) (�3�) x !�(B�) (��y) (y�) (��x) �Like this, we have made the � -items �rst class citizens as we did with � and �-items and aswe can do with any other notions of the lambda calculus (such as substitution, searching forthe binding � and so on). This illustrates the modularity of our notation. Furthermore, thestep-wise de�nition of � has a pattern that can be adapted by all the other concepts that wecan de�ne as �rst class citizens. We will always have propagation and destruction rules. Oftenwe will also have generation rules which say how a certain item is generated. For example, asubstitution item is generated by a ��-segment as follows (see [9]):(A�)(B�x)!� (A�x)Now that we have elaborated that �nding the canonical type in item notation is clearer thanin classical notation, let us reect a bit on why canonical typing is useful. Basically the ideais that a judgement � ` A : B says that A is typable and that B is one of its types. We �ndthat this question could better be divided in two:1. Is A typable?2. Given B, is B one of the types of A?It turns out that this division provides some simpli�cation in the typing rules of De�nition 1.6and that �(�; A) plays the role of a preference type of A. In fact, the conversion rule is nolonger needed in De�nition 1.6. In our opinion, the approach of the traditional framework is,in a sense, ambiguous in that for a variable x and a context �, there is a preference type forx; namely, the A where (B�x) 2 �. For terms in general however, no such preference type isgiven, but a whole collection of types, which are typable themselves and linked by means of�-reduction.Here are now the rules which replace `� (note how conversion is removed):13

De�nition 5.11 (`) The Typability relation ` is de�ned by the following rules:(`-axiom) <> ` �(`-start rule) � ` A�(A�x) ` x if vc(`-weakening rule) � ` A � ` D�(A�x) ` D if vc(`-application rule) � ` F � ` a� ` (a�)F if ap(`-abstraction rule) �(A�x) ` b � ` (A�x)B� ` (A�x)b if ab(`-formation) � ` A �(A�x) ` B� ` (A�x)B if fcvc (variable condition): x 62 � and �(�; A)!!�� S for some Sap (application condition): �(�; F) =�� (A�x)B and �(�; a) =�� A for some A;B.ab (abstraction condition): �(�(A�x); b) =�� B and �(�; (A�x)B)!!�� S for some S.fc (formation condition): �(�; A)!!�� S1 and �(�(A�x); B)!!�� S2 for some rule (S1; S2).When � ` A, we say that A is typable in �.Now, `�, ` and � are related by the following lemma:Lemma 5.12 � `� A : B () � ` A ^ �(�; A) =�� B ^ B is `�-legal type. 2The condition B is `�-legal type is necessary because if �(�; A) =�� B and B has a �-redex,then we can't derive � `� A : B. In fact, if � `� A : B then neither A nor B have �-redexes.For a study of the cube resulting from ` and � (but in classical notation) see [12].6 The restriction of a termIn the present section we explain how to derive the restriction t j��x� of a term t to a variableoccurrence x� in t. This restriction is itself a term, consisting of precisely those \parts" of tthat may be relevant for this x�, especially as regards binding, typing and substitution.The restriction of a term t to a particular occurrence of a variable x� (denoted t j��x�) isde�ned to be the part of t which contains all the information relevant for x� in t. In particular,� the type of x� in t is the type of x� in t j��x�,� the �'s relevant to x� in t appear also in t j��x� and have the same binding relation to x�,� If in t, any substitution for x� is possible, then it is also possible in t j��x�.In other words, t j��x� is everything relevant to x� in t in terms of binding, typing and substi-tution. We show how easy it is to calculate t j��x� in our calculus. Moreover, t j��x� is calculatedusing a step-wise approach.When a variable x occurs in term t, then it is not the case that all the \information"contained in t is necessarily relevant for a speci�c occurrence x� of x in t. The followingexample illustrates the point: 14

Example 6.1 In the term t � (��x)(x�v)(x�)(��y)((x�z)y��)(y�u)u, only the items (��x),(x�v), (x�), (��y) and (x�z) are of importance for the variable occurrence y�. y� is in thescope of (��x); (x�v); (��y) and (x�z). Moreover, the x is a candidate for substitution fory�, due to the presence of the ��-segment (x�)(��y) meaning that the x will substitute y in((x�z)y��)(y�u)u. Hence (x�) is also relevant for y�. Nothing else in t is relevant to y�. Theterm t in classical notation is written as: �x:�:�v:x:(�y:�:(�u:y:u)�z:x:y�)x.Now the restriction of a term t to a variable x is very easily found in our notation as we shallsee below. In fact, look back at Example 6.1 and notice that all the relevant items to t, canbe found to the left of y� in t. In fact, the term restriction will be: (��x)(x�v)(x�)(��y)(x�z).That is: everything to the right of y� is cut out leaving (��x)(x�v)(x�)(��y)((x�z). Then allextra parentheses are removed.Example 6.2 In classical notation, t of Example 6.1 is: �x:�:�v:x:(�y:�:(�u:y:u)�z:x:y�)x, therestriction of t to y� is less obvious. Compare how easily it could be calculated in our notation.Now as we are interested in formalisation and implementation, we need to write a formalprocedure to �nd t j��x�. This is relatively easy:De�nition 6.3x� j��x� � x(t1!)t2 j��x� � (t1 j��x� if x� occurs in t1(t1!)(t2 j��x�) if x� occurs in t2Example 6.4 Let t be the following term:(��x)((x�u)((u�)(x�t)x��y)(u�z)y�v)u: (1)Then t j��x� � ((��x)((x�u)((u�)(x�t)x��y)(u�z)y�v)u) j��x�� (��x)(((x�u)((u�)(x�t)x��y)(u�z)y�v)u j��x�)� (��x)((x�u)((u�)(x�t)x��y)(u�z)y j��x�)� (��x)(x�u)(((u�)(x�t)x��y)(u�z)y j��x�)� (��x)(x�u)((u�)(x�t)x� j��x�)� (��x)(x�u)(u�)((x�t)x� j��x�)� (��x)(x�u)(u�)(x�t)(x� j��x�)� (��x)(x�u)(u�)(x�t)xNow as said earlier, it is very easy to obtain the full restriction t j��x� using our item-notation: just take the substring of string t from the beginning of t until x� and delete allunmatched opening parentheses. This is an advantage of our new notation.It is illustrative to draw the tree of t (see Figure 6) and to see what happens when therestriction process is executed with this tree. In Figure 6, the intended occurrence of x� inthe trees is the rightmost one. One could describe the procedure as follows: Firstly, the partof the tree below the root path of x� is completely erased; secondly, all vertical branches inthe same root path are contracted into single nodes. (Note of course that t j��x� � sx�.)Intuitively, the body sx of t j��x� is the only thing that matters for x� in t; the rest of (thetree of) the term t may be neglected, as far as the x� is concerned. As said before, this is15

s s ss s s s ss ss s cs s� x u xuu yx�x �v�u �y �z� �tt � (��x)((x�u)((u�)(x�t)x��y)(u�z)y�v)u � (��)((1�)((1�)(2�)3��)(2�)4�)3s s s s cs s s s� x u x x�x �u � �tt j��x� � (��x)(x�u)(u�)(x�t)x� � (��)(1�)(1�)(2�)3�Figure 6: A term and its restriction to a variableessentially the importance of the restriction: t j��x is a term with x as its heart, that containsall \information" relevant for x. For example, when x is bound, then the bond between xand the � binding this x does not change in the process of restriction. So the � binding thisx can be found in t j��x; the same holds for the type of this x. Moreover, when x is a candidatefor a substitution caused by a reduction, then the ��-segment connected with this reductioncan be found, again, in t j��x.Full restriction is, of course, idempotent; more generally, the following holds:Lemma 6.5 If y occurs in t, and x occurs in t j��y, then (t j��y) j��x � t j��x.Proof: By induction on t. 2The described notion `restriction of a term to a variable' has an obvious generalisation:`restriction of a term to a subterm':De�nition 6.6 (restriction of a term to a subterm)Let t0 be an occurrence of subterm t0 in term t. Let x� � ~(t0). Then t j��t0 is de�ned as t j��x�.Note that a term t j��t0 contains all \information" necessary for t0.Now, to summarize this section, we introduced the notion of restriction of a term t to avariable occurrence x�, t j��x�. t j��x� contains all the information relevant for x� in t. No otherinformation in t is relevant for x�. In fact, the �'s relevant to x� in t, the type of x� in tand what terms might be substituted for x� in t, are all present in t j��x�. We showed thatcalculating t j��x� is very simple in our formulation. Once we introduce the bound and freevariables in the next section, we will get back to t j��x�, to prove that� x� is free (resp. bound) in t i� x� is free (resp. bound) in t j��x� and� the type of x� in t is the type of x� in t j��x�.16

7 Bound and free variablesAn important notion in lambda calculus is that of bound and free variables; for a boundvariable the \binding place" is relevant. Variables and their status are the subject of thissection. Of course, for this study of variables to make sense, we shall (in this section only)not assume the Barendregt convention.Calculating bound and free variables in a term, calculating the � binding a particularvariable occurrence and the variables bound by a particular � are very important conceptsin the �-calculus. We show how easy it is to calculate the bound and free variables in ournotation and how the variables bound by a � and the � binding a variable can be found bystep-wise procedures. These step-wise procedures closely follow the usual implementation ofthese concepts. We just scan branches and nodes one by one.Let us start by de�ning sieveseg�(t) to be the main �-items of t, written in the order inwhich they appear in t. For example, sieveseg�((a�x)(b�)(c�y)) = (a�x)(c�y). Let us alsofor an item (A!), de�ne A to be body((A!)) and ! to be endop((A!)).De�nition 7.1 (IB(v; t), the item binding a variable)Let t be a term and let x� be a variable occurrence in t and assume that sieveseg�(t j��x�) �sm : : : s1 (for convenience numbered downwards). IB(x�; t) = si for i being the smallest k inf1; 2; : : : ; mg such that endop(sk) = �x.We write IB(x�; t) # when IB(x�; t) is de�ned.Example 7.2 In t � (x5�x4)(x1�x4)((x2�x6)(x4�)x�4�x5)x�1, IB(x�4; t) = (x1�x4) whereas IB(x�1; t)is unde�ned.De�nition 7.3 (bound and free variables, type, open and closed terms)Let x� be a variable occurrence in a term t.� x� is bound in t if IB(x�; t) #. In such a case,{ The binding item of x� in t is IB(x�; t).{ The operator that binds x� in t is endop(IB(x�; t)).{ The type of x� in t is body(IB(x�; t)).� x� is free in t if IB(x�; t) is not de�ned. In this case, the type of x� in t is unde�ned.� Term t is closed when all occurrences of variables of V in t are bound in t. Otherwiset is open or has free variables.Examples 7.4 and 7.5 below show that it is easier to account for free and bound variablesand for the � that binds a particular occurrence of a variable than in the classical notation.Example 7.4 Let t � (��x1)(x1�x2)(x1�)(��x3)((x1�x4)x�3�)(x3�x5)x5.t written in classical notation is �x1:�:�x2:x1 :(�x3:�:(�x5:x3 :x5)(�x4:x1 :x�3))x1.Now it is straightforward to �nd t j��x�3 in item notation. Just take the substring to the left ofx�3 and remove all unmatched parenthesis. This results in (��x1)(x1�x2)(x1�)(��x3)(x1�x4)x�3.Now if we follow De�nition 7.3, we �nd that x�3 is bound in t, its binding item is (��x3) andits type is �. 17

The item notation moreover, enables one to clearly see the connection between variables andtheir binding �'s whereas in the classical notation the relation between a variable and itsbinding � may not be obvious to the eye. The following example demonstrates the point:Example 7.5 Consider the following term, which we have written in classical notation:�x4:�:�x2:x4 :(�x2:�:(�x3:x2 :x3)�x2:x4 :x�3)x�2. Now, the x�3 is free in the term, but the presenceof �x3 might confuse us to this fact. Moreover, �x2 occurs three times so which is the onebinding x�2? In item notation this is: (�x4)(x4�x2)(x2��)(�x2)((x4�x2)x�3�)(x2�x3)x3. Thisterm shows clearly the �x2 binding x�2, the type of x�2 and that x�3 is free.Note that (one-step or more-step) restriction does not a�ect whether a variable occurrence isfree or bound, as the following lemma shows:Lemma 7.6The following holds for a particular occurrence x� of a variable v in t:� x� is bound (resp. free) in t i� x� is bound (resp. free) in t j��x�.� The type of x� in t is the type of x� in t j��x�.� IB(x�; t) = IB(x�; t j��x�).Proof: By induction on t. 2Hence, we can look in t j��x� rather than in t for all the information relevant to x�.There is a simple procedure for �nding the variable occurrences bound by a certain � ina term t. In the following de�nition, this procedure is given as a step-by-step search.For this purpose, we temporarily extend the language with a special search item or�-item and with a new relation, !� , between (extended) terms.The search begins with the generation of a �-item, just behind the �-item in question.Thereupon this �-item is pushed through all subterms of the term \in the scope of" the �-item. The �-generation works as follows: a (�(v)) is generated out of (t�v), Furthermore,(�(v))(t�v) �-reduces to ((�(v))t�v) and not to ((�(v))t�v)(�(v)) because all the variables to theright of (t�v) are bound by the �v of (t�v) and not by the original �v which generated the(�(v)). When ending at a variable v0, the superscript v of the �-item decides whether v0 isbound by the � of the above-mentioned �-item, or not. If this is the case, then the variableis capped with the symbol ^.De�nition 7.7 (�-reduction)The �-reduction relation !� is the reduction relation generated out of the following ruleswhich relate segments and terms to other segments and terms.(�-generation rules:)(t�v)!� (t�v)(�(v))(�-transition rules:)(�(v))(t�v) !� ((�(v))t�v)(�(v))(t�v0) !� ((�(v))t�v0)(�(v)) if v 6� v0(�(v))(t�) !� ((�(v))t�)(�(v))(�-destruction rules:)(�(v))v !� v̂(�(v))v0 !� v0 if v0 6� v. 18

In order to prevent undesired e�ects, we only allow an application of the �-generation rule ina term t when there is no other �-item present in t. The undesired e�ects come from the factthat if we allow � to pass other �, then the cap that we obtain as a result of a �-destructionwill not be clearly associated with the right �.Example 7.8 Let t � (�x1)(x1�x2)(x1�)(�x3)((x1�x4)x3�)(x3�x3)x3. If we want to �nd allvariables bound by the �x3 of (�x3) in t, we can apply the following sequence of �-reductions:(�x1)(x1�x2)(x1�)(�x3)((x1�x4)x3�)(x3�x3)x3 !�(�x1)(x1�x2)(x1�)(�x3)(�(x3))((x1�x4)x3�)(x3�x3)x3 !�(�x1)(x1�x2)(x1�)(�x3)((�(x3))(x1�x4)x3�)(�(x3))(x3�x3)x3 !�(�x1)(x1�x2)(x1�)(�x3)(((�(x3))x1�x4)(�(x3))x3�)(�(x3))(x3�x3)x3 !!�(�x1)(x1�x2)(x1�)(�x3)((x1�x4)x̂3�)((�(x3))x3�x3)x3 !�(�x1)(x1�x2)(x1�)(�x3)((x1�x4)x̂3�)(x̂3�x3)x3Note that the last x3 is not capped. The reason for this is that it is bound by the last �x3 ofthe term, instead of the �x3 we are interested in. Note furthermore, that if the BarendregtConvention is assumed then it is trivial to look for all the variables v bound by �v becauseevery v in the term is bound by the �v. In other words, �v does not occur more than once ina term.A similar procedure can be given for searching for the � binding a certain occurrence v� of avariable v in a term t. For this purpose we introduce an inverse search item or �?-item.The inverse search item has to move in the opposite direction. A special provision has tobe made for the case that the variable in question happens to be free; in that case the reversesearch item becomes the initial item of the term, and must be destructed. This case is notprovided for in the following de�nition:De�nition 7.9 (�?-reduction)The �?-reduction relation !�? is the reduction relation generated out of the following ruleswhich relate segments and terms to other segments and terms.(�?-generation rule:)v� !�? (�(v)?)v�(�?-transition rules:)(t�v0)(�(v)?)!�? (�(v)?)(t�v0) if v 6� v0(t�)(�(v)?)!�? (�(v)?)(t�)((�(v)?)t!)!�? (�(v)?)(t!)(�?-destruction rules:)(t�v)(�(v)?)!�? (t�̂v)Example 7.10 If t � (�x1)(x1�x2)(x1�)(�x3)((x1�x4)x�3�)(x3�x3)x3 then the search for the �binding x�3 can be given by the following sequence of �?-reductions:(�x1)(x1�x2)(x1�)(�x3)((x1�x4)x�3�)(x3�x3)x3 !�?(�x1)(x1�x2)(x1�)(�x3)((x1�x4)(�(x�3)?)x�3�)(x3�x3)x3 !�?(�x1)(x1�x2)(x1�)(�x3)((�(x�3)?)(x1�x4)x�3�)(x3�x3)x3 !�?(�x1)(x1�x2)(x1�)(�x3)(�(x�3)?)((x1�x4)x�3�)(x3�x3)x3 !�?(�x1)(x1�x2)(x1�)(�̂x3)((x1�x4)x�3�)(x3�x3)x319

Note here that this term is written as �x1:":�x2:x1 :(�x3:":(�x3:x3 :x3)(�x4:x1 :x�3))x1 in classicalnotation. In the latter notation it is not clear at �rst sight which one of the two �x3's whichoccur before x�3 is the binding �. Such a confusion does not occur when t is written in itemnotation as there is only one �x3 before x�3.Note that the search for a binding � is easier than the search for all variables bound by acertain �. This is because the latter search follows only one path in the layered tree, in thedirection of the root; the former search disperses a �-item over all branches of the subtreewith this � as its root.8 Describing normal forms in a substitution calculusLambda calculi with explicit substitutions attempt to close the gap between the classical�-calculus and concrete implementations. Recently, there has been various attempts at pro-viding calculi of explicit substitution ([6], [7], [9], [13], [14]).Most of the above mentioned work (except [9]), uses classical notation. [13] provided �s,a calculus of substitution �a la de Bruijn, which remains as close as possible to the classical�-calculus. Here is a descrition of �s (we assume familiarity with de Bruijn indices):De�nition 8.1 The set of terms, noted �s , of the �s-calculus is given as follows:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :IN denotes the set of positive natural numbers. We take a; b; c to range over �s. A termof the form a �ib is called a closure. Furthermore, a term containing neither �'s nor ''s iscalled a pure term. The set of pure terms is denoted by �.De�nition 8.2 The �s-calculus is given by the following rewriting rules:�-generation (�a) b �! a �1 b�-�-transition (�a) �ib �! �(a �i+1 b)�-app-transition (a1 a2) �ib �! (a1 �ib) (a2�ib)�-destruction n �ib �! 8><>: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! (n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The calculus of substitutions associated with the �s-calculus is the rewriting system whose rules are �s � f�-generationg and we call it the s-calculus.[13] has shown that the s-normal forms of the �s-terms are exactly the pure terms in �.Furthermore, [14] studied the extension of �s with open terms (i.e. adding variable terms tothe calculus). Extra rules were needed to guarantee the local conuence (see De�nition 8.4).The syntax of the new terms and the new calculus are given in the following de�nitions:20

De�nition 8.3 The set of open terms, noted �sop is given as follows:�sop ::=V j IN j �sop�sop j ��sop j �sop��sop j 'ik�sop where i � 1 ; k � 0and where V stands for a set of variables, over which X, Y , ... range. We take a; b; c torange over �sop. Furthermore, closures and pure terms are de�ned as for �s.De�nition 8.4 The �se-calculus is obtained by adding the following rules to those of the�s-calculus given in De�nition 8.1:�-�-transition (a�b) �j c �! (a �j+1 c) � (b �j�i+1 c) if i � j�-'-transition 1 ('ik a) �j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a) �j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a �j b) �! ('ik+1 a) �j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jWe use �se to denote this set of rules. The calculus of substitutions associated with the �se-calculus is the rewriting system whose rules are �se�f�-generationg and we call it se-calculus.[14] has shown that it is more cumbersome to describe the se-normal forms of the open terms.This description however is needed to establish the weak normalisation of the se-calculus.Here is how these normal forms are described in classical notation.Theorem 8.5 A term a 2 �sop is an se-normal form i� one of the following holds:� a 2 V [IN, i.e. a is a variable or a de Bruijn number.� a = b c, where b and c are se-normal forms.� a = �b, where b is an se-normal form.� a = b �jc, where c is an se-nf and b is an se-nf of the form X, or d �ie with j < i, or'ikd with j � k.� a = 'ikb, where b is an se-nf of the form X, or c �jd with j > k + 1, or 'jl c with k < l.Proof: Proceed by analising the structure of a. When a is an application or an abstractionthere are no restrictions since there are no se-rules with applications or abstractions at theroot. When a = b �jc or a = 'ikb, the restrictions on b are necessary to avoid �-redexes (ruleswhose name begin with �) or '-redexes (rules whose name begin with '), respectively. 2There is a simple way to describe the se-nf's using item notation. Let us just say here thatwith this notation we have a �ib = (b �i)a and 'ika = ('ik)a. (c �i) and ('ik) are called �- and'-items respectively. b and c are the bodies of these respective items.A normal �'-segment s is a sequence of �- and '-items such that every pair of adjacentitems in s are of the form:('ik)('jl) and k < l ('ik)(b �j) and k < j � 1 (b �i)(c �j) and i < j (b �j)('ik) and j � k.For example, ('23)('14)('67)(b�9)(c�11)('211)('516) and (b�1)(c�3)(d�4)('25)('16)('47)(a�10)are normal �'-segments.Here is the theorem (taken from [14]) which describes the se-nf's in a simple way:21

Theorem 8.6 The se-nf 's can be described by the following syntax:NF ::=V j IN j (NF �)NF j (�)NF j sVwhere s is a normal �'-segment whose bodies belong to NF .Proof: It is easy to see that these are in fact normal forms since the conditions on theinidices of a normal �'-segment prevent the existence of redexes. To check that if a term isan se-nf then it is generated by this grammar, use Theorem 8.5. 2References[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy, \Explicit Substitutions", Functional Pro-gramming 1 (4) (1991) 375-416.[2] H. Barendregt, Lambda calculi with types, Handbook of Logic in Computer Science, volume II,eds. Abramsky S., Gabbay D.M., and Maibaum T.S.E., Oxford University Press, 118-414, 1992.[3] R. Bloo, F. Kamareddine and R. Nederpelt, The Barendregt Cube with De�nitions and Gener-alised Reduction, submitted for publication.[4] N.G. de Bruijn, A survey of the project AUTOMATH, in: J.R. Hindley and J.P. Seldin, ed., ToH.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, (Academic Press,New York/London, 1980) 29-61.[5] N.G. de Bruijn, Generalizing Automath by means of a lambda-typed lambda calculus, in: D.W.Kueker, E.G.K. Lopez-Escobar and C.H. Smith, ed., Mathematical Logic and Theoretical Com-puter Science, Lecture Notes in Pure and Applied Mathematics, 106, (Marcel Dekker, New York,1978) 71-92.[6] N.G. de Bruijn, A namefree lambda calculus with facilities for internal de�nition of expressionsand segments, Technical Research Report, 78-WSK-03, Eindhoven University of Technology, De-partment of Mathematics, 1978.[7] P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Programming, Pit-man, 1986. Revised edition: Birkh�auser, 1993.[8] Th. Hardin, and J.-J. L�evy, \A conuent calculus of substitutions", Lecture notes of the INRIA-ICOT symposium, Izu, Japan, November (1989).[9] F. Kamareddine and R. Nederpelt, On stepwise explicit substitution, International Journal ofFoundations of Computer Science 4 (3), 197-240, 1993.[10] F. Kamareddine and R. Nederpelt, A uni�ed approach to type theory through a re�ned �-calculus,Theoretical Computer Science 136, 183-216, 1994.[11] F. Kamareddine and R. Nederpelt, Generalising reduction in �-calculus, Functional Programming5 (4), 1995.[12] F. Kamareddine and R. Nederpelt, Canonical Typing and �-conversion in the Barendregt Cube,Functional Programming 6, 1996.[13] F. Kamareddine and A. Rios, �-calculus �a la de Bruijn with explicit substitution, to appear inthe proceedings of PLILP '95, LNCS, Springer-Verlag.[14] F. Kamareddine and A. Rios, The �s-calculus: its typed and its extended versions, submitted forpublication.[15] B.-J. de Leuw, Generalisations in the �-calculus and its type theory, Master Thesis, ComputingScience, University of Glasgow, 1995.[16] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, eds., Selected Papers on Automath , North-Holland, 1994. 22

