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Abstract
In [KN 95b], the Barendregt Cube was extended with IT-conversion. The resulting
system had only a Weak form of Subject Reduction. In this paper, the Cube is extended
with explicit definitions. We show that the Cube extended with either explicit definitions
alone or with both explicit definitions and II-conversion satisfies all its original properties
including Subject Reduction.

1 Introduction

Type theory has almost always been studied without II-conversion (which is the analogue of
B-conversion on product type level). That is, —=g: (Az:4.0)C —3 b[z := (] is always assumed
but not —: (Il;.4.8B)C —1 B[z := C]. The exception for this are some Automath languages
in [NGV 95] and the current work of [KN 94] and [KN 95b]. We claim that —y is desirable
for the following reasons:

1. IT is a kind of A. In various higher order type theories, arrow-types of the form A — B are
replaced by dependent products I1;. 4.8, where B may contain z as a free variable, and thus
may depend on x. This means that abstraction can be over types, similarly to the abstraction
over terms: Aj;.4.b. But, once we allow abstraction over types, it would be nice to discuss the
reduction rules which govern these types. In fact, 11 is indeed a kind of A and hence is eligible
for an application.

2. Compatibility. Here are two important rules in the Cube:

(abstraction rule) L Azia '_19 l:—liI;A.b : HI;::.%x:A-B )
Fl_FHCIJAB 'Fa: A

(application rule) TF Fa:Blz = d|
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The abstraction rule may be regarded as the compatibility property for the typing of
abstraction. That is,

b:B= )\I;A.b :1,.4.B

The compatibility property for the typing of application is lost however. In fact, from the
application rule, we do not have

F :11;.4.B = Fa: (II;.4.B)a
but instead
F:1y4.B= Fa: Blx :=a|

To get compatibility for the typing of application, we need to add — and to change the
application rule to:

I'EF :11;.4.B F'Fa:A
'k Fa: (Il;:a.B)a

(new application rule)

3. The Automath experience. One might argue that implicit [I-reduction (as is the case of
the ordinary Cube with the old application rule above) is closer to intuition in the most usual
applications. However, experiences with the Automath-languages ([INGV 95]), containing
explicit II-reduction, demonstrated that there exists no formal or informal objection against
the use of this explicit II-reduction in natural applications of type systems.

4. Preference types, higher order, conversion. In [KN 95b], II-reduction was shown to
have various advantages which include calculating the preference type of a term, the ability
of incorporating different degrees (rather than just the two, A and II, as in the cube), the
splitting of ' = A : B into I' = A (A is typable in I') and 7(I', A) = B (B is convertible to the
preference type of A), and the getting rid of the following rule of the cube:

''HA:B r-B:S B=DpB
r-A:B
All the above are reasons why it is interesting to study II-conversion in the cube. Alas however,
II-conversion added to the cube is not a straightforward adding of (Il;.4.8)C — Bz := C]
and of the new application rule (see [KN 95b]). First, Subject Reduction (SR) fails. That is,
with II-reduction and the new application, I' - A : B and A — A’ may not imply I' - A" : B.
Church-Rosser (CR) and Strong Normalisation (SN) do hold however. Furthermore, if T' -
A : B then neither I nor A contain II-redexes and if B contained a Il-redex, then B is itself
that II-redex. This means that the presence of Il-redexes is restricted.

The problem really lies in a fundamental shortcoming of the usual formulations of type
theory. That is, most type theories avoid explicit definitions even though actual implementa-
tions of these type theories do use such explicit definitions.

In many type theories and lambda calculi, there is no possibility to introduce definitions
which are abbreviations for large expressions and which can be used several times in a program
or a proof. This possibility is essential for practical use, and indeed implementations of Pure
Type Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide this
possibility. But what are definitions and why are they attractive? Definitions are name
abbreviating expressions and occur in contexts where we reason about terms.

(conversion rule)



Example 1.1 Let id : A — A be (Ap.a.7) in (Ay.a-a.1d)id defines id to be (A\z4.2) in a
more complex expression in which id occurs two times.

The intended meaning of a definition Let = : A be ¢ in b is that the definiendum z can be
substituted by the definiens ¢ in the expression b. In a sense, the expression let x : A be a
in b is similar to (A;.4.b)a. It is not intended however to substitute all the occurrences of x in
b by a. Nor is it intended that such a definition is a part of our term. Rather, the definition
will live in the environment (or context) in which we evaluate or reason about the expression.

One of the advantages of the definition let = : A be a in b over the redex (A;.4.b)a is
that it is convenient to have the freedom of substituting only some of the occurrences of an
expression in a given formula. Another advantage is efficiency; one evaluates a in let =z : A
be a in b only once, even in lazy languages. A further advantage is that defining = to be a
in b can be used to type b efficiently, since the type A of a has to be calculated only once. A
disadvantage is that the definition may hide information, as is shown in the following example.

Example 1.2 Without definitions, it is not possible to type Ay.;.Af.q—q.fy even when we
somehow know that x is an abbreviation for . This is because f expects an argument of type
a, and y is of type . Once we make use of the fact that x is defined to be a in our context,
then y will have type a and the term will be typable (see Example 1.3).

Practical experiences with type systems show that definitions are absolutely indispensable for
any realistic application. Without definitions, terms soon become forbiddingly complicated.
By using definitions one can avoid such an explosion in complexity. This is, by the way, a
very natural thing to do: the apparatus of mathematics, for instance, is unimaginable without
definitions.

Introducing definitions in Pure Type Systems is an interesting subject of research at the
moment (see [SP 93] and [BKN 9y]). Furthermore, [BKN 9y] has shown that the generated
type derivations for terms in the Cube with definitions become much shorter than those in the
absence of definitions. Our approach in this paper is to introduce definitions as redexes where
the body is not written. For example, (A;.4.—)a defines z to be a. Furthermore, we include
definitions in contexts with the condition that if a definition occurs in a context then it can
be used anywhere in the term we are reasoning about in that context. This explains why we
did not write the body of the definition. In other words, it is redundant to write the body.
Now, if we look at Example 1.2, then we can type the term now that we allow definitions to
occur in contexts and we extend F slightly so that it can see what is in its context.

Example 1.3 We use as context (A;.4.—)a, establishing that x of type A is defined as a.
Now,

(Az:a-—)@AyzAfasa - fra = a

()\ —)aAy A fasdFY T =0

(Az:a-—)aAyzAfiasa E fy:a

E ;a Ayiz - Afasa-fy i (a—=a) = a

at Apz-Afasa-fy:z—=(a—=a)—wa=a—(a—a)—a
In this paper, we shall show that the cube extended with explicit definitions satisfies all its
original properties and is a conservative extension of the cube without definitions. We shall
show furthermore, that the cube extended with both explicit definitions and II-reduction (—
and the new application rule), also preserves all its original properties (including SR). This



means that explicit definitions (being important on their own) have repaired the problem of
SR in the cube with II-reduction as was left in [KN 95b].

It may be puzzling as to why would definitions solve the problem of Subject reduction.
Let us explain why.

Subject Reduction in the Cube extended with II-reduction was lost because type correct-
ness itself was lost. That is, one can have I' - A : B without having B=0Oor I'+ B : S for
some sort S € {*,0}. More precisely, the new terms that one can get of the form (II;.4.B)C
are neither equivalent to O nor of type S form some S. lL.e.

1) For every S, I' t/ (Il;.4.B)C : S

This implies that, for example, even though A;... Mgz B (Ayiz.y)x : (Ily.;.2)z and (Ay.;.9)z — «,
we can’t show .. Ap, @0 (ILy,.2)2.

In fact, to show this last formula, the only option is to use the conversion rule (above) and
for this we need that X,...\s., = (IL,.;.2)2 : S for some S. But this is not possible according
to (1) above.

Well, some reflection leads us to the following: look at (Il,...z)x. It can be seen as
expressing that the variable y must be read as x. This is not too far away from saying that
y is defined to be x. So if we include definitions in our contexts we solve the problem. First
let us give the extra typing rule which deals with definitions (here 7 ranges over A and II):

L.(7mga—)BFC:D
I'F (73:4.C)B : D[z := B]

(def rule)

The intuition behind this definition is obvious. It says that if C' : D can be typed using
the definition that = of type A is B, then (m,;.4.C)B : D[x := B] can be typed without this
definition (7 ranges over both A and IT). Furthermore, with explicit definitions, there is no
restriction on Il-redexes in terms, types or contexts.

Now, using this def rule, we can solve the problem of correctness of types (and hence
retrieve Subject Reduction). This can be seen in our above example as follows:

Ao Agiz 2 0% and hence A, Agop.(Ily;.—)2 F 2 @ x. Now, we use the def rule to get:
Az Agiz - (Iy:z.2)2 : #[y := ] = * which is what we wanted.

Now, use conversion on I' =z : 2z, I' = (Il,.;.2)x : * and (Iy.;.2)x = x for I' = A, Apz, toO
get I'F o (IIy,.2)x.

(Note that in the def rule, we took (7mz.4.C)B : D[z := B] instead of (m44.C)B :
(mg.a.D)B. This is in order to avoid terms like (7;.4.0)B which are not acceptable in the
Cube.)

Some readers might complain now that adding definitions in order to repair SR in the
presence of II-reduction is too strong. They might prefer the following rule:

' 7mpq.C: S '-B:A
I'F (m:4.C)B: S

(appfor rule)

However, with this rule, we lose the compatibility of the typing of application. Moreover, a
simple yet powerful system of definitions (as we propose in this paper) is worth studying.

Following the above observations, we divide the paper as follows:

1. In section 2, we set up the machinery for both explicit definitions and II-reduction.



2. In section 3, we introduce the original relation of the cube -5 and the extended relation
Fgm as in [KN 95b]. We list the properties of both g and Fg.

3. In section 4, we introduce F,, which is -, (for r = 3 or SII) extended with definitions.
We show that all the properties of the cube remain valid for .

4. In section 5, we compare our system of definitions in this paper to other typing systems.

2 The Formal Machinery

The systems of the Cube (see [Barendregt 92]), are based on a set of pseudo-ezpressions or
terms T defined by the following abstract syntax:

7-:*||:||V|7-7-|7TV:T'7-

where 7 ranges over the abstraction operators II and A, V' is an infinite collection of variables
over which «, 3, x,¥, z, ... range. * and O are called sorts over which S, 57,55, ... are used to
range. We take A, B,a,b... to range over 7.

Bound and free variables and substitution are defined as usual where the binding power
of II is similar to that of \. We write BV (A) and FV(A) to represent the bound and
free variables of A respectively. We write A[z := B] to denote the term where all the free
occurrences of z in A have been replaced by B. Furthermore, we take terms to be equivalent
up to variable renaming. For example, we take A;.4.x = Ay 4.y where = is used to denote
syntactical equality of terms. We assume moreover, the Barendregt variable convention which
is formally stated as follows:

Convention 2.1 (BC': Barendregt’s Convention)

Names of bound variables will always be chosen such that they differ from the free ones in a
term. Moreover, different abstraction operators have different variables as subscript. Hence,
we will not have (my.a.2)x, but (my.4.y)x instead.

Terms can be related via a reduction relation —,.. We assume the usual definition of the
compatibility of a reduction relation, and define —», to be its reflexive transitive closure and
=, to be its equivalence closure. We use in this paper two reduction relations: — 4 generated
by the axiom (Ag:4.B)C —g Bz := C] and — gy generated by the axiom (7,:4.B)C — a1
B[z := C]. Throughout, we let r range over {3, 511}

In the following definition, declarations are familiar from the Cube. We write them how-
ever as 7.4 instead of z : A because we think it clearer and because in the case of a definition,
we need a kind of redex, hence the m must be present. C' moreover is familiar in the case of
declarations. In the case of a definition however, it says that changing a declaration into a
definition which preserves that declaration, does not affect the information in the context.

Definition 2.2 (declarations, definitions, pseudocontexts, C')

1. A declaration d is of the form mg.4. We define subj(d) and pred(d) to be x and A
respectively.

2. A definition d is of the form (wg.4.—)B and defines x of type A to be B. We define
subj(d), pred(d) and def(d) to be x, A, and B respectively.



3. We use d,dy,da, ... to range over declarations and definitions.

4. A pseudocontext T is a (possibly empty) concatenation of declarations and definitions
di.dy. - .dy such that if i # j, then subj(d;) # subj(d;). We use I', A, IV, T'1,T'o,... to
range over pseudoconterts.

5. We define dom(I') = {subj(d) | d € T'}, I'-decl = {d € ' | d is a declaration } and
I'-def = {d € ' | d is a definition } for any pseudocontext I'. Note that dom(I') =
{subj(d) | d € I'-declUTI'-def}.

6. Define C' between pseudocontexts as the least reflexive transitive relation satisfying:

e A C'TI".d.A for d a declaration or a definition.

o I'mpn.AC'I(7pn.—)B.A
Again the following definition is familiar from the Cube. The only mysterious concept might
be <. It is here however in order to group some preconditions of some typing rules. For
example, instead of postulating for the start rule (in the case of a declaration) that I"
pred(d) : S and subj(d) ¢ I', we say I' < d. This becomes particularly useful in the case of

definitions.
In the rest of this section, we assume I to be a notion of derivability.

Definition 2.3 Let I' be a pseudocontext and r a reduction relation.

1. A statement is of the form A : B, A and B are called the subject and the predicate of
the statement respectively.

2. When A : B is a statement, we call ' -, A: B a judgement, and write ' . A: B :C
to mean ' A: BAT . B: C.

3. For d € T'-def UT'-decl, we say I invites d, notation I' < d, iff

e I'.d is a pseudocontext
e ', pred(d) : S for some sort S.
e if d is a definition then I -, def(d) : pred(d)

4. U is called legal if AP, Q) € T such that ', P : Q.

5. AeT is called a T-term if 3B € T[I'H A: BVI'F, B: A].
We take T'-terms ={A €T |3Be T+ A: BVI F, B: A]}.
A €T is called legal if AT[A € T-terms].

Remark 2.4 The definition of I' < d and the definition of I' . A : B depend mutually
recursively on each other. This isn’t a problem however since in the definition of ', A: B
only ' < d are needed for I smaller than T.

Let r be either 5 or SII. The following definition is needed in the conversion rule (in the
presence of explicit definitions) where we replace A =, B by I' b, A =4e¢ B.

Definition 2.5 (Definitional r-equality) For all pseudocontexts I' we define the binary rela-
tion I' - - =4et * to be the equivalence relation generated by



e ifA=, Bthenl't. A=4es B

o ifd € I'-def and A,B € T such that B arises from A by substituting one particular
occurrence of subj(d) in A by def(d), then ', A =4 B.

Remark 2.6 If no definitions are present in I' then I' . A =4.¢ B is the same as A =, B.

Finally, the following definition is again familiar from the cube, but we extend it to deal with
definitions. That is, I' -, (mpa.—)B iff ' 2t A, T, B: Aand I' b, @ =4e¢ B.

Definition 2.7 Let I' be a pseudocontext. Let d,dy,...,d, be declarations and definitions.
We define 'l d and U & dy - - - dy, as follows:

e Ifd is a declaration: T, d iff I F, subj(d) : pred(d).

e Ifd is a definition: ' -, d iff I' I, subj(d) : pred(d) AL' i, def(d) : pred(d) AT F,
subj(d) =4et def(d).

o Uty dy-vdy iff Tody. -+ diy by d; for all 1 < i <mn.

3 Extending the Cube with II-reduction

In the Cube as presented in [Barendregt 92], the only declarations allowed are of the form A,. 4.
Hence there are no definitions in the contexts, nor declarations of the form II,.4. Therefore,
I' < dis of the form I' < A\;.4 and means that I' - A : S for some S and that x is fresh in
I', A. Moreover, for any d = A\;. 4, remember that subj(d) = z and pred(d) = A. Moreover,
[T-reduction is not allowed. Hence, in the following definition, d is a meta-variable
for declarations only and =4 is the same as =3 (which is independent of 3).

Definition 3.1 (Azioms and rules of the Cube: d is a declaration, =qes is =3)

(aziom) o bgeiD
(start rule) T sugj?dgi: —

(weakening rule) L= dF.d = 11; F%D B

(application rule) L5 FF E;:%-GB: e ::Fal]_ﬁ a:A

(conversion rule) s A:B L ;ﬂl-flf:l ‘:S’B’ I'tp3 B =gt B'
(ormation rue) - TPl e TR IR (51,3 i a e



Each of the eight systems of the Cube is obtained by taking the (S, 52) rules allowed from a
subset of {(x, x), (x,0), (0, %), (0,0)}. The basic system is the one where (S7,52) = (x,*) is
the only possible choice. All other systems have this version of the formation rules, plus one
or more other combinations of (x,0), (O,%) and (d,0) for (S;,S52). Here is the table which
presents the eight systems of the Cube:

System Set of specific rules

Al (%, %)

A2 (x,%) | (O, %)

AP (*,*) (*7 D)

AP2 (,%) | (d,%) | (%,0)

Aw (, ) (0,0)
Aw (%, %) | (O,x%) (O,0)
APw (%, ) (x,0) | (O,0)
APw=MXC | (x,%) | (O,%) | (x,0) | (3,0)

[KN 95b] extended the above Cube by changing —#3 to — 3 and by changing 3 to Fpp:
Definition 3.2 (Fgi) We define Fgi as -3 with the difference that the application and con-
version rules change as follows:

I'bFpn F:1ga.B I'Fgna: A
I'Fgn Fa: (11;:4.8B)a

(new application rule)

F"/[;HA:B F"/[;HB’MS’ Fl_/BHB:defB,
F"/[;HAtBI

(new conversion rule)

Note that I' Fgrp B =ges B’ is the same as B =31 B’, as no definitions are allowed in the
context.

Now we list some properties of g and F-gp; without proofs (see [KN 95b]). These properties
(except of course the loss of type correctness and SR) will be established for the cube extended
with either definitions alone, or with both definitions and II-reduction in Section 4.

Theorem 3.3 (The Church Rosser Theorem CR, for —»,, r = (3 or (I1)
If A—», B and A —, C then there exists D such that B —, D and C' —», D O

Lemma 3.4 (Start Lemma for t-,)
Let T be a t-r-legal context. Then 't x: O and Yd € T'[" -, d]. O

Lemma 3.5 (Correctness of types for 3)
IfT'Fg A: B then (B=0 orI'tg B : S for some sort S). O

Remark 3.6 (Correctness of types does not hold for +pr1)

The new legal terms of the form (II;.5.C)A imply the failure of type correctness for tg.
That is, even in A,, 'Fgp A: B # (B=0or I' by B : S for some sort S). For example,
if I' = Ao Agee then I g (Ayzoy)a - (ILy:..2)x, but I' g (Iy:..2)x S from Lemma 3.8.

Failure of correctness of types for gy implies failure of Subject Reduction even in A_,:

Example 3.7 In A, A Ap, Vg @ @ (Iy:.2)z. Otherwise, by generation: A,...X\z.; Fan
(ILy:..2z)x : S, which is absurd by Lemma 3.8. Yet in A, Ao Apie B (Ayiz-y)x : (Hy.z.2).



Lemma 3.8 For any A,B,C,S,I': I' Vg (114.B)C 2 S. O

Lemma 3.9 (Legal terms and contexts for -z and —»3)
Fg-legal terms and contexts contain no Il-redexes. O

Lemma 3.10 (Legal terms and contexts for Fgn and =)

1. If I'tgn A: B then A and I are free of ll-redexes, and either B contains no ll-redezes
or B is the only Il-redex in B.

2. If (Il.p.E)B is Fan-legal, then Elx := B] contains no Il-redezes. O

Theorem 3.11 (Subject Reduction SR, for g and —»g)
Fl‘ﬂAZB/\A%)ﬂA’iF"[}A,:B O

As explained in Example 3.7, SR fails for gp. A weak form of SR holds however. First we
need the following definition which removes all II-redexes of a F-gii-legal term (see Lemma 3.10):

Definition 3.12 For A Fgy-legal, let A be Clz := D] if A= (I1.5.C)D and A otherwise.

Lemma 3.13 (Weak Subject Reduction for Fgn and —» 1)
Thpn A:BAA =g A = Thsn A : B O

Lemma 3.14 (Unicity of Types for -, and —»,)
' A:BiAT'FH. A: By = By =, By |

Theorem 3.15 (Strong Normalisation with respect to b, and —,)
If A is Fy-legal then SN-,, (A); i.e. A is strongly normalising with respect to —,. O

4 Extending the Cube with definitions

We shall extend the derivation rules of -, so that we can use definitions in the context. The
rules remain unchanged except for the following points:

e One rule, the (def rule), is added.

e The use of I' F B =4.¢ B’ in the conversion rule really has an effect now, rather than
simply postulating B =, B'.

e Not only declarations but also definitions are allowed in contexts. Note that in the case
r = (3, definitions do not contain II-redexes and declarations are only A,.4 and not Il,.4.

Note that the intended scope of A\;.4 in I'.(Ag.a.—)B.AF. C: D is A,C and D. This is
what should be expected since the scope in I'"\;.4.A k. C : D is the same.

Definition 4.1 (Azioms and rules of the Cube extended with definitions: d ranges over dec-
larations and definitions)
We extend the relation b, to Fre by adding the following definition rule:

D.(7mpa.—)B e C: D

(def rule)  TF " (r i O)B: Dl = B




The (def rule) says that if C' : D can be deduced using a definition d = (73.4.—)B, then
(m4:4.C)B will be of type D where d has been unfolded in D. Recall that in the case r = 3,
7 is only A everywhere.

Remark 4.2 A natural alternative for the (def rule) would be

[.(7mg.a.—)Btpe C: D
Ihre (m3:4.C)B 2 (m4:4.D)B

(alternative def rule)

We didn’t choose the alternative def rule because of the problem that correctness of types
(cf. 4.11) will no longer hold: using (alternative def rule) we can derive a: * e (Agu.¥)av
(Ag:-O)a, but (Ag...0)cx is of course not typable.

The only way to prevent this problem is by unfolding all definitions in the type of the
judgement as is done in the (def rule).

Note that the alternative def rule is a derived rule whenever D # O because then if
L.(7mg:a.—)B e C i D then by correctness of types, I'.(m.4.—)B e D : S hence by the def
rule I' by (m4:4.D)B : S. But D[z := B] =g1 (73:4.D)B. Hence by conversion and the def
rule, we get I' ¢ (74.4.C)B : (74.4.D)B.

When considering a definition in a term to be syntactically equal to a redex, the (def rule)
is quite natural: for instance, deriving a type for (Ag..x)y via defining y to be x gives the
same type as the derivation via abstraction followed by application (let I' = Aq.x.Ay:a):

L. Mpa-—)y Fre x:

(def rule) T Fre Qpa-)y : oz i= 4]
F.)\z:a l_re Tr . r l_re (sza,a) T %k )
(a 1) (abStr) I l_re Az:a-l' N P r l_re Yo
pPp r l_re (Aw;a.l‘)y : a[g; = y]

Let us now give an example which shows why definitions are useful:

Example 4.3 A\g... Ay 7 (Aase-(Azia-2)y) B : 8. The reason for this is that we need y : v to
be able to give (A;.q-2)y a type. Looking carefully however, we find that (Ag.s.(Agia-2)y)0 is
defining « to be 3. So here is how the above derivation can be obtained using definitions (we
present a short-cut and do not mention all the steps, nor the names of the rules):

Agix Ay Pare—)B Fre Mgt : Mgsg.x
)\B *.Ay;ﬂ (/\a * _)ﬁ Frey : B

)\g;*)\y;/g (>\a *e )ﬂ Fre @ =qet 8
>\B:*-)\y:ﬂ (Aa * _)ﬁ Frey

>\ﬂ *-Ay:ﬂ (Aa* _)ﬂ |_7‘8 (AIO& :c)y a

Aﬂ:*)\y:ﬂ l_re (>\a ke ( Tioee :c)y
>\B:*->\y:ﬂ |_re (A ( T x)y

Now, we go through the usual properties of the cube showing that they hold for t..

F”
i
=

Lemma 4.4 (Free variable lemma for Fpe)
Let I be a legal context such that I' -, B : C. Then the following holds:

1. If d and d' are two different elements of I'-decl U'-def, then subj(d) # subj(d').

2. FV(B),FV(C) C dom(D).

10



3. If ' =T1'1.d.I'y then FV(d) C dom(L'y).

Proof: All by induction on the derivation of I' .. B : C. O

Lemma 4.5 (Start Lemma for Fpe)
Let T be a legal context. Then I' Fpe x: O and Vd € T'[[" ¢ d].
Proof: T legal = 3B, C[I" e B : C|; now use induction on ' o B: C. O

Lemma 4.6 (Transitivity Lemma for F,.)
Let T and A be legal contexts. Then: [['tre ANAF, A:B]=TtF,A:B.
Proof: Induction on the derivation A+, A: B. O

Note in the following lemmas how definitions behave well in the cases of thinning and substi-
tution.

Lemma 4.7 (Thinning for )
1. If I\ Io e A =4es B, I'1.A.I'y is a legal context, then I'1.A.I's Fre A =gqez B.
2. If T and A are legal contexts such that T' C' A and if T' e A: B, then A .. A: B.
Proof: 1. is by induction on the derivation I'1.T's Fre A =gor B. 2. is as follows:

o IfT A, A:B, ' C: S, x is fresh, then also I'.wp.c.A Fre A B. We show this
by induction on the derivation U.A .. A: B using 1. for conversion.

o [fT A e A: B, 't e C:D: S, xis fresh, then also I'.(my.p.—)C.A ke A: B. We
show this by induction on the derivation U.A .. A: B.

o I[f PmppnA bpe B:C, ' Fpe D A then U(mgp.—)D.A e B 2 C is shown by
induction on the derivation T.mp.a.A Fre B : C (for conversion, use 1.; note that
D.mpa- A bFre By =ges B2 is equivalent to I'.A b B) =qe¢ B2). O

Lemma 4.8 (Substitution lemma for Fye)

1. If T(mg.0.—)D.A Fre A =4z B, A and B are I'.(my.c.—)D.A-legal, then
FA[x = D] |_7‘8 A[x = D] —def B[x = D]

2. If B is a U'.(mg.c.—)D-legal term, then I'.(7y.c.—)D bre B =4z Blz := D].

3. If T (mg:a.—)B.A e C: D, then I'.Alz := B] F. C[z := B] : D[z := B].

4. If Tompn.Abpe C:D and U by B2 A, then U.Alz := B] ¢ Clz := B] : D[z := B].
Proof:

1. Induction on the derivation rules of =gez.

2. Induction on the structure of B.

3. Induction on the derivation rules, using 1., 2. and thinning.

4. Idem. O

11



Lemma 4.9 (Generation Lemma for b,.)

1.THeS:C=S=%TtpC =g 0, and if C £ 0 then T b, C: S" for some sort S'.

2. If U bpe z : A then for some d € T, x = subj(d), I' e A =ger pred(d) and T' e A: S
for some sort S.

3. If ' Fpe Apoa.B 2 C then for some D and sort S: U'\Xga Fre B: D, T Fpe lpa.D 2 S,
[ bpe pa.D =ge¢ C and if I.0.D # C then I' .. C : S’ for some sort S'.

4. If T bpe Uyon. B : C then for some sorts S1,52: T'Fpe A S1, T hgoa Fre B 1 S2, (S1,52)
is a rule, I' Fre C =gqes So and if So £ C then ', C : S for some sort S.

5 If ' bpe Fa : C, F # m,.4.B, then for some D,E: ' e a : D, ' b F : 1l.p.E,
Chre T =4qet C and if T # C then T e C = S for some S, where T = (I,.p.E)a if
r=pIl and T = E[z :=a] if r = (.

6. If T bpe (7g.a.D)B : C, then T'.(7p.4a.—)B Fpe D : C

Proof: 1., 2., 3., 4. and 5. follow by a tedious but straightforward induction on the deriva-
tions (use the thinning lemma). As to 6., an easy induction on the derivation rules shows
that one of the following two cases is applicable:

o ' (mpa.—)B bpe D : C', T o C'lz := B] =4es C and if C'lx := B] £ C then
' C: S for some sort S.

¢ Thpe B F,Thpe Apua.D : .G, T Fpe C =gee T and if T % C where T = (..G) B
ifr=pll and T =Gy := B] ifr =0, then ' k. C : S for some sort S.

In the first case use thinning and conversion; in the second case use thinning, conversion and
3. O

Now, recall again that correctness of types fails for g but holds for 5. Here we show that
it holds for t,.. for » = 3 or BIL. First, we need the following exchange lemma for gre.

Lemma 4.10 (MI-ezchanging)
| NP VRVAN FﬂHe C:D <= T1Il;.s.A FﬂHe C:D
and I'.(Ap:a.—)B. A pre C: D <= I'.(Il;:a.—)B.A g, C : D
Proof: induction on the derivation rules. We treat one case of the start rule:
I'.(Az:a.—)B Fpre © : A as a consequence of I' < (Ap.a.—)B. Then also I' < (Ilz:4.—)B,
50 I'.(Ilz:a.—) B Fape @ - A. O

In what follows, we show the correctness of types for both 5, and Fg.

Corollary 4.11 (Correctness of Types)

IfT'F.cA:Bthen B=0O or ' B: S for some sort S.

Proof: By induction on the derivation rules. The interesting cases are the definition and
application rules.

o In case I' Fpe (mp:4.D)B : Clx := B] as a consequence of I'.(m3.4.—)B e D : C, then
by IHC =0 or I'.(mg.a.—)B Fre C 2 S for some sort S. In the first case also Clz :=
B] = 0, in the second case by the Substitution Lemma I’ & Cz := B]: S[z := B] = S.

12



o In case I' Fgre Fa: (g.a.B)a as a consequence of I' Fgie F 2 Hyn.B, I Fgrie a @ A,
then by the induction hypothesis I' Fgpe lypa.B @ S for some sort S and hence by
Generation I'\g.a bFgrne B : S. Then by Thinning T'.(Ap.a.—)a Fpne B S, so by
MI-ezchanging I'.(z.4.—)a Fgne B : S and by the definition rule I' Fgie (Ilz:a.B)a :
Slx:=a|=S. O

(From correctness of types for g, we can establish its Subject Reduction.

Theorem 4.12 (Subject Reduction for Fgr. and —»gm)
IfT e A: B and A —»pn A’ then T Fgpe A’ @ B.
Proof: We prove by simultaneous induction on the derivation rules:

1. IfT Fpme A B and IV results from contracting one of the terms in the declarations and
definitions of I' by a one step Bll-reduction, then I' Fgn, A: B

2. If T'Fgne A: B and A =g A then T Fgne A’ : B
e (axiom): nothing to prove

o (start rule): We consider the case d = (Ay:a.—)B, A =g A'. The other cases are
similar or easy.
We have: I'.(Ag:a.—)B Fgie © : A as a consequence of I' < (Ap.a.—)B, i.e. I Fgie B :
A : S. By the induction hypothesis ' Fgre A’ : S and by the induction hypothesis and

conversion I' g B : A'. Hence T'.(Ag.a.—)B Fame @ - A’ and again by conversion
I'.(Ag:ar.—)B Fgre x 1 A.

e (weak), (formation), (conversion): use the induction hypothesis.
e (abstraction): use the induction hypothesis and conversion.

o (definition): T' Fgue (mpa.D)B : Clz := B] as a consequence of I'.(mp.4.—)B Faiie
D : C. NowT' Fpne (7p:4.D)B : Clz := B|, T Fane (m3:4.D")B : Clz := B] and
I' Fgrie (mg:ar.D)B : Clx := B] by the induction hypothesis.

Furthermore, if B =g B' then I' g, Clx := B] =4e¢ C[x := B'] and by the induction
hypothesis and definition rule we get I' Fgipe (m4:4.D)B' : Clz := B']. Now by Lemma
4.11, C = 0O or I'.(mp.a.—)B Fpue C = S for some sort S. In the first case, Clx =
B] = C = C[z := B'] and we are done, in the second case by the Substitution Lemma
I' Fpre Clo := B] : S[x:= B] = S, so by conversion I' Fgiie (74:4.D)B' : Clx := B].
For the last possibility, (7y.4.D)B —an D[z := B], we remark that by the Substitution
Lemma we get out of I'.(mp.a.—)B Faue D : C that I Fgye D[z := B] : Clx := B].

o (application): T' Fgie Fa @ (lg:a.B)a as a consequence of I' Fgne F @ 1lp.a.B and
I Fgne a : A. Then I Fgpe Fa @ (Iya.B)a and T Fgre F'a : (II;.4.B)a by the
induction hypothesis, and ' Fgne Fa' @ (Il;.4.B)a because by the induction hypothesis
I e Fa' : (Iz.a.B)d’, by Corollary 4.11 ( Correctness of Types) I' Fgre (y:a.B)a : S
for some sort S, so by conversion I' g Fa' : (Il.4.B)a.

Now the crucial case: F = (my.c.D), Fa —an D[y := a]. Then ' Fgpe (my.c.D)a :
(IIz:a.B)a so by the Generation Lemma I'.(my.c.—)a Fgie D : (Ily.4.B)a, now by the
Substitution Lemma I' Fgre Dy := a] : ((Ig:a.B)a)ly := al, but by the Barendregt
convention ((Il;.4.B)a)y := a] = (Iz.4.B)a so we are done. O
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Subject Reduction for -4, is easier:

Theorem 4.13 (Subject Reduction for g, and —»3)
I'rFge A: B and A —» A’ then T 3, A" : B.

Proof: We only need to consider A —5 A'. Suppose I' Fge (Ap:.C)A : D. Then by
generation, I'.(Ay.p.—)A Fge C : D, and by substitution we get I' g, Clx := A] : D[z := A],
but as © ¢ FV (D), D[z := Al = D. The compatibility cases are easy. O

The proof of Strong Normalisation is based on Strong Normalisation of the A-cube ex-
tended with definitions as in [BKN 9y].

Theorem 4.14 (Strong Normalisation for the Cube with respect to Fg. and —g)
If A is a ge-legal term then A is strongly normalising with respect to —g.

Proof: kg, in this paper is a subset of . of [BKN 9y] in that if I' g, A : B then
I'tc A: B (see subsection 5.5). Now, Strong normalisation for tg. follows from that of +.
(again see [BKN 9y] for the lengthy but standard (similar to the proof of Geuvers for A\C' in
[Geuvers 94]) proof of SN for b, which can be adapted to +ge). O

Now, Strong Normalisation of iy, is a consequence of that of .. First we change II-redexes
into A-redexes.

Definition 4.15

e For all pseudo-expressions A we define A to be the term A where in all Il-redezes the
[I-symbol has been changed into a A-symbol, creating a lambda-redex instead.

o For a context I' = dy.---.d, we define L to be Elvlgl;, where Tg.4 = )\I:~ and

A
(ﬂx;A.—)B = (AIZ—)B
Lemma 4.16 If T bgp, A: B then T Fg, A: B,

Proof: Induction on the derivation rules of Faie. All rules except the (application rule)
are trivial since they are also rules in tge.

Now suppose I' Fgiie Fa : (z.4.B)a as a consequence of I' Fgrie F i Ilpa.B and I' Fare
a : A. Then by the induction hypothesis r Fge F : HI:Z.E and T Fge @ : ﬁ, so by the
application rule of Fge, r Fge Fa: E[m = a.

As a consequence off Fge F: HI:Z‘E we also get f.A$:Z Fge B: S and hence by thinning
and the definition rule for g, r Fge (/\x:g.é)'d . S, so by conversion T Fge Fa: (/\x:g.é)'d.

But F' cannot contain a Il-symbol which will miz with a in Fa to form a ll-redex. Oth-
erwise, one can show by the generation lemma that g 2.B =qcr S for some S. But this is

impossible, hence Fa = Fa. O

Theorem 4.17 (Strong Normalisation for the Cube with respect to Fgie and — )
If A is a Fgme-legal term then A is strongly normalising with respect to —» gr.

Proof: If A is Fgme-legal then A s Fge-legal by Lemma 4.16 and hence A s strongly
normalising with respect to —»g (Theorem 4.14). But then also A is strongly normalising
with respect to —» 1. O
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5 Comparing our system of definitions with other systems

In this section we will compare the type systems generated by kg, with the one generated
by kg and with the type systems with definitions of Severi and Poll [SP 93]. First we prove
a conservativity result saying that in a certain sense, definitions are harmless. That is, even
though we can type more terms using kg, than using -3, whenever a judgement is derivable
in a theory £ using definitions and Fg,, it is also derivable in the theory £ without definitions,
using only 3 and where all the definitions are unfolded. Second, we say something about
the effectiveness of derivations and type-checking of the extended systems. More work has to
be done yet but we believe that there is a gain in using definitions.

5.1 Conservativity

In the following we shall write Lgo¢ for any system L of the Cube, to denote the system L
extended with definitions. We shall furthermore write - for 4.

Let us start by noting that all derivable judgements in a type system of the A-cube are
derivable in the same type system extended with definitions as we only extended, not changed,
the derivation rules. In other words, if I' I—é A: B then I I—ﬁe A: B.

The converse however is not true even if I' contains no definitions. Look again at Ex-
ample 4.3 where I b3, A : B, I" contains no definitions yet I' I/ A : B. Hence, in the type
systems with definitions there are more legal terms. Therefore, it has to be investigated to
what extent the set of legal terms has changed.

The first noticeable change with definitions is the bypassing of the formation rule by using
the weakening and definition rule instead. The following example shows that in A, g0 we
have more legal judgements than in A_,:

Example 5.1 In A2 without definitions we can derive the following by using the formation
rules (x,%) and (O,%) (take I' = Xgu.A\y:8):

PFM2y:B:%:0

Do P2 ik : O (start)

I s Agia FM2 @ x (start resp weakening)
T g Y2 Tggeor s (formation rule (,%) )
[ s A2 Azia-T i g0 (abstmction)

T FY2 Mg Mpgeor % (formation rule (O, %) )

r |_)\2 >\a:*->\$:a-1‘ 3 I P 1 PR (abStTGCtion)
I |_/\2 (Aa:*-Ax:a-x)ﬁ : Hz;ﬁ-ﬁ (application)
r '_)\2 ((Aa:*-Aw:a-l')ﬁ)y : ﬁ (application)

It is not possible to derive this judgement in A_, as the formation rule (O, x) is needed.
Now we observe that the term (Ag.«.—)3 is a definition. Using this observation we can derive
the judgement in a type system with definitions without having to use the formation rule
(0, %)
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I—)‘_’y ﬁ % :

I (Aaw-—) (start)
L. Aqe-—) 5. )\I a Z Tk (start resp weakening)
I (Aqix-—) B '_/\_’ Myia.a: ok (formation rule (x,*) )
( ) )\H Azia- T g (abstmction)

r '_?32 ()‘oc:*-/\a::aw)ﬁ t (Hpiq-0)|a := B] = Uyp.8  (definition)

r l_?ﬂ? ((Aazx-Agia-2)B)y = B (application)

The following example shows an even stronger statement. It shows that some terms which
were only typable in the highest system of the Cube AC, become typable even in the lowest
system A_, in the presence of definitions:

Example 5.2 Take a look at the judgement T' + (A Agnr-z)B @ Uppr.M where M =
(Az:8- (A7) B)y and T' = AgwAyig. This judgement can be derived in AC' using the for-
mation rules (3,0), (O,*), (x,0) and (x,*) (here for simplicity, = stands for \-g rather than
l_ﬂH):

A B:x: 0O

[ Ay FAC G:x:0

D g Apep FAC 20 B0 O
L XAz Ay FAC vk O
DX Agep FAC Tk o O

(weakening)

(start resp. weakening)
(start resp. weakening)
(formation rule (3,0) )

It is impossible to derive this judgement in any other system of the cube than AC since all

| D VD WP D VR § B (abstraction)
DAz FAC (M) B 1 % (application)
I A FAC IL.g.x: 0 (formation rule (x,0) )
[ g FAC A2ig-(Ayey) B : g% (abstraction)

D g FAC M : %

D g Agins FAC @0 M s %

D g FAC Tpps. M %

D o P Npongo = yans. M
I FAC e Tpas M ;%

(application, M = (X,.5.(Ay:x.7)B)y
(start resp. weakening}

(formation rule (x,x) )
(abstraction)

(formation rule (O, %) )

I F2 X Apenr @ = g Xpans .M (abstraction)

r |_)‘C (Aa:*-Aa::M-l')ﬂ : H:EMM

(application)
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four formation rules are needed. We can however derive this judgement in A_ ges:

r l—g: G:x:0

C.(Ags-—)0 I—g: B:x:0 (weakening)

L'(Aas-—)B.(Az:p-—)y I—g: B:x: (weakening)

I'.(Aa-—)B.(Asip.—)y ()\7* -5 I—/\—’ vk (weakening)

C.(Ags-—)B-(Azi5-—)y I— o Ay )[3 * (definition rule)

L. Aqe.—)0 l—)‘* ( N 3- ()\7* Y)B)y : * (definition rule)

C.(Aqe.—) B )\w M l— Jor Mk (start resp. weakening)

C.(Ags-—)0 |—>‘ Iy M : % (formation rule (*,x) )
-)B l—)‘ Mgt O M (abstraction)

I'.(Aa
r I—f‘,e—’ ()\m*./\x:M.x)ﬁ : (Mg M)[ev:= 8] = gy .M (definition rule)

This example shows that in every system of the A-cube (except AC'), adding definitions gives
more derivable judgements. As was shown in Example 4.3, Ag...\y.3 l—g: (Mass-Agea-2)y) B : B
is derivable in A_,40r and hence is also derivable in ACy4e¢, but this judgement cannot be derived
in AC' as y is of type 8 and not of type a. At first sight this might cause the reader to suspect
type systems with definitions of having too much derivable judgements. However, we have a
conservativity result stating that a judgement that can be derived in L4er can be derived in
L when all definitions in the whole judgement have been unfolded.

Definition 5.3 For I' g, A : B a judgement we define the unfolding of I' g, A : B,
' Fge A : B]* to be the judgement obtained from I' =g, A : B in the following way:

e first, mark all visible redexes in I', A and B,
e second, contract in I', A and B all these marked redezes.

When I' = -+ (Ap:p.—)C - -+, contracting (Ag.p.—)C amounts to substituting all free occur-
rences of x in the scope of Ay by C; these free occurrences may also be in one of the terms
A and B. The result is independent of the order in which the redezes are contracted, as one
can see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.

Example 5.4 [Aﬂ:*-Ay:B-(Aa:*-_)ﬁ-(Ax:a-_)y-Az:a ke (Av:Hu;a.B-Ux)Au:a-u : a]u is

AgeAges-Crasal 1= gl = B]) F e ((02)[0 = Mgt := gl = ] : 0z = yl[ov = ], which
18 Agi-Ay:g- Az Fie (Au:p-u)y : B. Note that the resulting context contains only declarations
of the form A;.4 and that the resulting subject and predicate need not be in normal form.

Theorem 5.5 Let L be one of the systems of the Cube, I' a context with definitions and A, B
pseudoterms. If T l—ge A : B then:

1. LH§, A: B
2. "G A" B', where [T 5, A: B" =T"+H§, A": B'.

Proof: use induction on the derivation of T’ l—ge A : B. Axiom, abstraction and formation
rules are easy, we treat the other cases.
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e The last rule applied is the start rule. Then I'.d 5, subj(d) : pred(d) as a consequence
of ' <d. Now if d = \;.4 then by [H [T’ l—ée A:S]" and TV l—g A" S (S a sort, x fresh)
s0 by the start rule I Az 4/ l—g x: A" and [T l—ge x : A]* On the other hand, if d is a
definition, say d = (A\y.p.—)A, then by IH T l—g A" B'":S (S a sort) and [T l—ge A
BJ*, and the unfolding of T'.d l—ge subj(d) : pred(d) is I l—g def(d) : pred(d)’ which is
r l—g A" : B' so we are done.

o The last rule applied is the weakening rule, say I'.d l—ge D : E as a consequence of I' < d
and T l—ge D : E. Because subj(d) is fresh we have that (I'.d)’ l—g D' : E' is the same
as I l—g D' : E' so by IH we are done.

o The last rule applied is the application rule. Then T’ l—ge Fa : B[z := a] as a consequence
of T I—ge F : ;4B and T I—ge a : A. By IH and the application rule we get T l—/g
F'a' : B'lz := d']. Now by subject reduction also T" l—/g (F'a)! : B'lz := d]. If
B'lx := d'] = (B'[z := d'])’ then we are done, otherwise, by the Generation Corollary
r l—é B'lx :=d] : S for some sort S, so by subject reduction T l—/g (B'lz:=4d))' : S
and as B'[x := d'] =4 (B'[x := d'])’ by conversion we are done.

o The last rule applied is the conversion rule. Then T’ l—ﬁe A : Bs as a consequence of
[ FG, A: By, DG, By : S and T F§, Bl =aetr Ba. Now T F§, By =aer Ba implies
B =g Bj because if C results from D by locally unfolding a definition of ' then C' = D',
so the result follows by IH.

e The last rule applied is the definition rule. Then T l—ge (Ag:4.C)B : [D]q as a conse-
quence of U.d -3 C' : D where d = (Ay:a.—)B. By IH, T” I—é [C')q : [D']q which is the un-
folding of T 5, (A\y:a.C)B : [D]y. Here we wrote [D]y instead of D[subj(d) := def(d)]

Remark 5.6 It is not sufficient in theorem 5.5 to unfold all the definitions in the context
only. Look again at Example 5.1 to see that Ag...\y.5 l—)‘e—’ ((Aass-Azia-x)B)y : (B, the context
I' = Mg Ay contains no definitions and yet IV = T’ I7‘[3H ((Aas-Ag:a-x)B)y : B. The reason
for this is that a redex in the subject may have been used to change the type when it was still
in the context. Note that if all the definitions are unfolded in context, subject and predicate,
then the judgement Ag...\y:5 5 v : 0 is derivable.

5.2 Length of derivations and type checking

As can be noted from the examples in Section 5.1, derivations using the definition mechanism
seem to need considerably less derivation steps to derive a judgement that can also be derived
without definitions. This is mainly due to the fact that redexes in the term to be derived can
be introduced by the def rule which bypasses the formation rule.

Type checking in the extended systems at first sight seems to be more difficult than in
the systems of the A-cube of Barendregt. Consider for instance the type-checking problem
e (Aas-Paz)o : 7 where T' = A\j.q ApuL,.. .a—s-Azio-

Note that this problem is not solvable in the non-extended systems, since Pa : @ — *
and z : 0, so Pax is not typable. In the extended systems, the only thing a typechecking
algorithm can do is trying to solve I'.(Aq.s.—)o Fpe Pax @ 7,
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T.(Aawx.—)0 Fre Pov: Typ. B
L. Ags.—)oFrext A

L. Ags.—)o Fre P 11,.0. (11, 4.B)

which again is equivalent to finding z, C' such that ¢ T'.(Agu.—)0o Fpe a: C

L. Ags.—)oFrex: A

Now I'.(Ags.—)o Fre P : Mge.co = « and T.(Agus.—)o Fre « 1 %, hence T'.(Ag.—)0 Fre
Pa:a— xand I'.(A\gw.—)0 Fpe 7 1 0.

Now we face the problem of converting o — * to ¢ — * or o to « in context I'.(Aq:.—)0
and this is easily done by unfolding the definition (Ag.«.—)o in o — *, giving I'.(Aq.x.—)0 Fre
Pa: o — x and hence I' o (Aqi.Pazx)o : x.

We saw that typechecking gave rise to locally unfolding a definition in the type a — .
This is something new in comparison with typechecking in the A-cube of Barendregt where
only reduction to (weak head-) normal form is needed. Now if we want to typecheck a redex
it appears to be a reasonable strategy to consider it as a definition since it is not easy to see
whether a redex in a term can be typed without the (def rule).

So when typechecking (Az : 0. PozQ)t in our extended system with Ap.11_ .. a—a—ss-Aoi Ao
being the context I', an automated type checker will try to solve

C.(Ag:g-—)t Fpe PoxQ : 7
e Apig-PozxQ - 1.0 . A
'Het:o

which is equivalent to finding A, B,y such that {

instead of

I'.(Ap:o-—)t bre Pox : 11 4.B
L. Ago-—)tbre Q: A

will be derived and now it has to be checked whether T'.(Az.;.—)t Fre A =qer A'. In case
the original redex was not a definition, A =4.s A’ can be established without using the context
definition (Ag.,.—)t. Hence we conjecture that an intelligent typecheck algorithm can avoid
needless extra work by unfolding definitions only as a last resort. Further research has yet to
be done in this direction.

As a result, something like {

5.3 Comparison with the systems of the Barendregt cube

Here we discuss the (dis)advantages of our extended typing systems to the typing systems of
the A-cube.

In the extended typing systems we can reason with definitions in the context (which is
very natural to do): we can add definitions to the context in which we reason (the start rule
and weakening rule), we can eliminate definitions in the context (the def rule) and we can
unfold a definition in the context locally in the type (the conversion rule).

If one considers one of the seven lower systems in the A-cube, some abstractions are
forbidden, for instance in APw the abstraction of a term over a type is not allowed (this
abstraction corresponds to universal quantification in logic). Intuitively such a quantification
need not be forbidden if it is immediately being instantiated by an application, as is the
case in the term (Ag:ix.(Agiq-2))B in context Ag... However, in the system APw this term is
untypable.

Now in our extended typing system APwy.¢ we can type the term (Ag..(Az:q-2))3 by using
the def rule: from Ag...(Aa:i-—)B Fge Azia-% & Lliq.2 we may conclude Ag.y Fge (Aaix-Azia-2) 3 :
II,.5.x. Note that the use of the formation rule (O, *) is avoided.
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By this property, the extended type systems are closer to intuition than the systems of the
A-cube of Barendregt as there are more (intuitively correct) derivable inhabitants of certain

types.

5.4 Comparison with the type systems of Severi and Poll

When we compare the extended type systems to those of Severi and Poll (see [SP 93]), we
observe the following differences.

1. In the systems of [SP 93], the definition of pseudoterms has been adapted, not only
the usual variables, abstractions and applications are pseudoterms, but definitions, i.e.
terms of the form x = a : A in B are added. A new reduction relation has to be
introduced to be able to unfold these definitions (locally in the predicate of a judgement).
This means Church Rosser had to be shown again.

In our approach, we treat definitions not much different from redexes, hence the syntax
of pseudoterms remains the same. We only need to change the syntax of contexts and
extend the notion of [-equality in a natural way to be able to use the definitions in
the context and unfold them in the predicate of a judgement. Church Rosser remains
unchanged.

2. [SP 93] have a rule that takes a definition out of the context and puts it in front of the
term and type. In our extended system however, we only put the definition in front of
the term and unfold it in the type. As we already noted in Remark 4.2, if the type is
not O, it is a derived rule in our system that the definition need not be unfolded in the

type.

3. [SP 93] do not demand the predicate of a definition to have some sort as type. This only
leads to being able to abbreviate kinds, which is impossible in our extended systems.
We consider this to be a minor disadvantage which might very well be easily overcome
by leaving this demand.

5.5 Comparison with the generalised definitions

In [BKN 9y], we introduced a notion of generalised definitions which is similar to the one
introduced here in that definitions are a kind of redexes which only occur in the context
and can be unfolded via a def rule similar to the one presented here. In [BKN 9y] however,
definitions were nested. That is, we could have (Ay.p.(Az:4.—)a)b and hence the def rule had
to be changed to take this nesting into account. Such nesting however, is unnecessary for
the reductions we are using in the present paper. In [BKN 9y], reduction was generalised
due to the use of a useful notation (see [KN 95a]). With that generalisation of reduction
(which may contract some redex r before other redexes upon which this r depends have been
contracted), definitions had to be nested to mirror this generalised reduction. All that work
on generalising reduction and nesting definitions is irrelevant to the present paper. It must
be noted however that with nested definitions one can get yet shorter derivations due to the
fact that many nested definitions may be treated as a single definition and hence the def rule
will only be applied a single time. We should close here by saying that any definition in the
sense of the present paper is also a definition in the sense of [BKN 9y] when the notation
is changed. Furthermore any type derivation with definitions in this paper (not involving
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Figure 1: Properties of the Cube with various extensions

II-reduction) is also a type derivation with definitions in [BKN 9y]. That is, if ' g, A : B
then Z(I') F. Z(A) : Z(B) where I is the type derivation of [BKN 9y] and Z translates terms
to the notation of [KN 95a].

6 Conclusion

In this paper, we studied the addition of explicit definitions and IT-reduction to the Cube. In
particular, we discussed various typing relations in the Cube, mainly the known relation g,
its extension with II-reduction kg, its extension with definition g, and its extension with
both II-reduction and definitions Fgii. Our addition of definitions (which are different in this
paper from the existing notions of definition in the literature), is simple and worth studying.
Furthermore, this addition enabled us to solve a problem we left open in [KN 95b] on Subject
Reduction in the Cube with II-conversion. There are many arguments why II-reduction and
explicit definitions must be considered and a system combining both of them without losing
any of the nice properties of the cube is certainly worth considering. Moreover, we find it
intreaguing that so far in the literature, definitions have been added for reasons of efficiency
of implementation and not because they solve theoretical problems. In this paper, we have
shown that definitions do indeed solve the theoretical problem of Subject Reduction in the
extended version of the cube with II-reduction. In [BKN 9y], we show that definitions solve
the problem of Subject Reduction in the cube extended with a notion of generalised reduction.
In a work in progress, we show that definitions solve the problem of type preservation for a
certain operation on terms.

This is all puzzling as to why definitions really have that power. What definitions do
however to solve these problems is that they keep information in the context on the defined
values of some variables. This information might have been removed when some reductions
in the term take place and so keeping the definition in the context preserves this information.

Hence, our paper contributes to other work on definitions not only in that it offers a simple
and attractive account of definitions which keeps all the original properties of the cube, but
also shows that definitions are theoretically important and should hence be introduced in the
cube. Figure 1 summarizes our results in this paper.
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