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The abstraction rule may be regarded as the compatibility property for the typing ofabstraction. That is,b : B ) �x:A:b : �x:A:BThe compatibility property for the typing of application is lost however. In fact, from theapplication rule, we do not haveF : �x:A:B ) Fa : (�x:A:B)abut insteadF : �x:A:B ) Fa : B[x := a]To get compatibility for the typing of application, we need to add !� and to change theapplication rule to:(new application rule) � ` F : �x:A:B � ` a : A� ` Fa : (�x:A:B)a3. The Automath experience. One might argue that implicit �-reduction (as is the case ofthe ordinary Cube with the old application rule above) is closer to intuition in the most usualapplications. However, experiences with the Automath-languages ([NGV 95]), containingexplicit �-reduction, demonstrated that there exists no formal or informal objection againstthe use of this explicit �-reduction in natural applications of type systems.4. Preference types, higher order, conversion. In [KN 95b], �-reduction was shown tohave various advantages which include calculating the preference type of a term, the abilityof incorporating di�erent degrees (rather than just the two, � and �, as in the cube), thesplitting of � ` A : B into � ` A (A is typable in �) and �(�; A) = B (B is convertible to thepreference type of A), and the getting rid of the following rule of the cube:(conversion rule) � ` A : B � ` B0 : S B = B0� ` A : B0All the above are reasons why it is interesting to study �-conversion in the cube. Alas however,�-conversion added to the cube is not a straightforward adding of (�x:A:B)C !� B[x := C]and of the new application rule (see [KN 95b]). First, Subject Reduction (SR) fails. That is,with �-reduction and the new application, � ` A : B and A!! A0 may not imply � ` A0 : B.Church-Rosser (CR) and Strong Normalisation (SN) do hold however. Furthermore, if � `A : B then neither � nor A contain �-redexes and if B contained a �-redex, then B is itselfthat �-redex. This means that the presence of �-redexes is restricted.The problem really lies in a fundamental shortcoming of the usual formulations of typetheory. That is, most type theories avoid explicit de�nitions even though actual implementa-tions of these type theories do use such explicit de�nitions.In many type theories and lambda calculi, there is no possibility to introduce de�nitionswhich are abbreviations for large expressions and which can be used several times in a programor a proof. This possibility is essential for practical use, and indeed implementations of PureType Systems such as Coq ([Dow 91]), Lego ([LP 92]) and HOL ([GM 93]) do provide thispossibility. But what are de�nitions and why are they attractive? De�nitions are nameabbreviating expressions and occur in contexts where we reason about terms.2



Example 1.1 Let id : A ! A be (�x:A:x) in (�y:A!A:id)id de�nes id to be (�x:A:x) in amore complex expression in which id occurs two times.The intended meaning of a de�nition Let x : A be a in b is that the de�niendum x can besubstituted by the de�niens a in the expression b. In a sense, the expression let x : A be ain b is similar to (�x:A:b)a. It is not intended however to substitute all the occurrences of x inb by a. Nor is it intended that such a de�nition is a part of our term. Rather, the de�nitionwill live in the environment (or context) in which we evaluate or reason about the expression.One of the advantages of the de�nition let x : A be a in b over the redex (�x:A:b)a isthat it is convenient to have the freedom of substituting only some of the occurrences of anexpression in a given formula. Another advantage is e�ciency; one evaluates a in let x : Abe a in b only once, even in lazy languages. A further advantage is that de�ning x to be ain b can be used to type b e�ciently, since the type A of a has to be calculated only once. Adisadvantage is that the de�nition may hide information, as is shown in the following example.Example 1.2 Without de�nitions, it is not possible to type �y:x:�f :a!a:fy even when wesomehow know that x is an abbreviation for a. This is because f expects an argument of typea, and y is of type x. Once we make use of the fact that x is de�ned to be a in our context,then y will have type a and the term will be typable (see Example 1.3).Practical experiences with type systems show that de�nitions are absolutely indispensable forany realistic application. Without de�nitions, terms soon become forbiddingly complicated.By using de�nitions one can avoid such an explosion in complexity. This is, by the way, avery natural thing to do: the apparatus of mathematics, for instance, is unimaginable withoutde�nitions.Introducing de�nitions in Pure Type Systems is an interesting subject of research at themoment (see [SP 93] and [BKN 9y]). Furthermore, [BKN 9y] has shown that the generatedtype derivations for terms in the Cube with de�nitions become much shorter than those in theabsence of de�nitions. Our approach in this paper is to introduce de�nitions as redexes wherethe body is not written. For example, (�x:A:�)a de�nes x to be a. Furthermore, we includede�nitions in contexts with the condition that if a de�nition occurs in a context then it canbe used anywhere in the term we are reasoning about in that context. This explains why wedid not write the body of the de�nition. In other words, it is redundant to write the body.Now, if we look at Example 1.2, then we can type the term now that we allow de�nitions tooccur in contexts and we extend ` slightly so that it can see what is in its context.Example 1.3 We use as context (�x:A:�)a, establishing that x of type A is de�ned as a.Now,(�x:A:�)a:�y:x:�f :a!a ` f : a! a(�x:A:�)a:�y:x:�f :a!a ` y : x = a(�x:A:�)a:�y:x:�f :a!a ` fy : a(�x:A:�)a:�y:x ` �f :a!a:fy : (a! a)! a(�x:A:�)a ` �y:x:�f :a!a:fy : x! (a! a)! a = a! (a! a)! aIn this paper, we shall show that the cube extended with explicit de�nitions satis�es all itsoriginal properties and is a conservative extension of the cube without de�nitions. We shallshow furthermore, that the cube extended with both explicit de�nitions and �-reduction (!�and the new application rule), also preserves all its original properties (including SR). This3



means that explicit de�nitions (being important on their own) have repaired the problem ofSR in the cube with �-reduction as was left in [KN 95b].It may be puzzling as to why would de�nitions solve the problem of Subject reduction.Let us explain why.Subject Reduction in the Cube extended with �-reduction was lost because type correct-ness itself was lost. That is, one can have � ` A : B without having B � 2 or � ` B : S forsome sort S 2 f�;2g. More precisely, the new terms that one can get of the form (�x:A:B)Care neither equivalent to 2 nor of type S form some S. I.e.(") For every S, � 6` (�x:A:B)C : SThis implies that, for example, even though �z:�:�x:z ` (�y:z:y)x : (�y:z:z)x and (�y:z:y)x! x,we can't show �z:�:�x:z ` x : (�y:z:z)x.In fact, to show this last formula, the only option is to use the conversion rule (above) andfor this we need that �z:�:�x:z ` (�y:z:z)x : S for some S. But this is not possible accordingto (") above.Well, some re
ection leads us to the following: look at (�y:z:z)x. It can be seen asexpressing that the variable y must be read as x. This is not too far away from saying thaty is de�ned to be x. So if we include de�nitions in our contexts we solve the problem. Firstlet us give the extra typing rule which deals with de�nitions (here � ranges over � and �):(def rule) �:(�x:A�)B ` C : D� ` (�x:A:C)B : D[x := B]The intuition behind this de�nition is obvious. It says that if C : D can be typed usingthe de�nition that x of type A is B, then (�x:A:C)B : D[x := B] can be typed without thisde�nition (� ranges over both � and �). Furthermore, with explicit de�nitions, there is norestriction on �-redexes in terms, types or contexts.Now, using this def rule, we can solve the problem of correctness of types (and henceretrieve Subject Reduction). This can be seen in our above example as follows:�z:�:�x:z ` z : � and hence �z:�:�x:z:(�y:z :�)x ` z : �. Now, we use the def rule to get:�z:�:�x:z ` (�y:z:z)x : �[y := x] = � which is what we wanted.Now, use conversion on � ` x : z, � ` (�y:z:z)x : � and (�y:z :z)x = x for � � �z:�:�x:z, toget � ` x : (�y:z:z)x.(Note that in the def rule, we took (�x:A:C)B : D[x := B] instead of (�x:A:C)B :(�x:A:D)B. This is in order to avoid terms like (�x:A:2)B which are not acceptable in theCube.)Some readers might complain now that adding de�nitions in order to repair SR in thepresence of �-reduction is too strong. They might prefer the following rule:(appfor rule) � ` �x:A:C : S � ` B : A� ` (�x:A:C)B : SHowever, with this rule, we lose the compatibility of the typing of application. Moreover, asimple yet powerful system of de�nitions (as we propose in this paper) is worth studying.Following the above observations, we divide the paper as follows:1. In section 2, we set up the machinery for both explicit de�nitions and �-reduction.4



2. In section 3, we introduce the original relation of the cube `� and the extended relation`�� as in [KN 95b]. We list the properties of both `� and `��.3. In section 4, we introduce `re which is `r (for r = � or ��) extended with de�nitions.We show that all the properties of the cube remain valid for `re.4. In section 5, we compare our system of de�nitions in this paper to other typing systems.2 The Formal MachineryThe systems of the Cube (see [Barendregt 92]), are based on a set of pseudo-expressions orterms T de�ned by the following abstract syntax:T = � j2 j V j T T j �V :T :Twhere � ranges over the abstraction operators � and �, V is an in�nite collection of variablesover which �; �; x; y; z; : : : range. � and 2 are called sorts over which S; S1; S2; : : : are used torange. We take A;B; a; b : : : to range over T .Bound and free variables and substitution are de�ned as usual where the binding powerof � is similar to that of �. We write BV (A) and FV (A) to represent the bound andfree variables of A respectively. We write A[x := B] to denote the term where all the freeoccurrences of x in A have been replaced by B. Furthermore, we take terms to be equivalentup to variable renaming. For example, we take �x:A:x � �y:A:y where � is used to denotesyntactical equality of terms. We assume moreover, the Barendregt variable convention whichis formally stated as follows:Convention 2.1 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent abstraction operators have di�erent variables as subscript. Hence,we will not have (�x:A:x)x, but (�y:A:y)x instead.Terms can be related via a reduction relation !r. We assume the usual de�nition of thecompatibility of a reduction relation, and de�ne !!r to be its re
exive transitive closure and=r to be its equivalence closure. We use in this paper two reduction relations: !� generatedby the axiom (�x:A:B)C !� B[x := C] and !�� generated by the axiom (�x:A:B)C !��B[x := C]. Throughout, we let r range over f�; ��g.In the following de�nition, declarations are familiar from the Cube. We write them how-ever as �x:A instead of x : A because we think it clearer and because in the case of a de�nition,we need a kind of redex, hence the � must be present. �0 moreover is familiar in the case ofdeclarations. In the case of a de�nition however, it says that changing a declaration into ade�nition which preserves that declaration, does not a�ect the information in the context.De�nition 2.2 (declarations, de�nitions, pseudocontexts, �0)1. A declaration d is of the form �x:A. We de�ne subj(d) and pred(d) to be x and Arespectively.2. A de�nition d is of the form (�x:A:�)B and de�nes x of type A to be B. We de�nesubj(d), pred(d) and def(d) to be x, A, and B respectively.5



3. We use d; d1; d2; : : : to range over declarations and de�nitions.4. A pseudocontext � is a (possibly empty) concatenation of declarations and de�nitionsd1:d2: � � � :dn such that if i 6= j, then subj(di) 6� subj(dj). We use �;�;�0;�1;�2; : : : torange over pseudocontexts.5. We de�ne dom(�) = fsubj(d) j d 2 �g, �-decl = fd 2 � j d is a declaration g and�-def = fd 2 � j d is a de�nition g for any pseudocontext �. Note that dom(�) =fsubj(d) j d 2 �-decl[ �-defg.6. De�ne �0 between pseudocontexts as the least re
exive transitive relation satisfying:� �:� �0 �:d:� for d a declaration or a de�nition.� �:�x:A:� �0 �:(�x:A:�)B:�Again the following de�nition is familiar from the Cube. The only mysterious concept mightbe �. It is here however in order to group some preconditions of some typing rules. Forexample, instead of postulating for the start rule (in the case of a declaration) that � `pred(d) : S and subj(d) 62 �, we say � � d. This becomes particularly useful in the case ofde�nitions.In the rest of this section, we assume ` to be a notion of derivability.De�nition 2.3 Let � be a pseudocontext and r a reduction relation.1. A statement is of the form A : B, A and B are called the subject and the predicate ofthe statement respectively.2. When A : B is a statement, we call � `r A : B a judgement, and write � `r A : B : Cto mean � `r A : B ^ � `r B : C.3. For d 2 �-def [ �-decl, we say � invites d, notation � � d, i�� �:d is a pseudocontext� � `r pred(d) : S for some sort S.� if d is a de�nition then � `r def(d) : pred(d)4. � is called legal if 9P;Q 2 T such that � `r P : Q.5. A 2 T is called a �-term if 9B 2 T [� `r A : B _ � `r B : A].We take �-terms = fA 2 T j 9B 2 T [� `r A : B _ � `r B : A]g.A 2 T is called legal if 9�[A 2 �-terms].Remark 2.4 The de�nition of � � d and the de�nition of � `r A : B depend mutuallyrecursively on each other. This isn't a problem however since in the de�nition of � `r A : Bonly �0 � d are needed for �0 smaller than �.Let r be either � or ��. The following de�nition is needed in the conversion rule (in thepresence of explicit de�nitions) where we replace A =r B by � `r A =def B.De�nition 2.5 (De�nitional r-equality) For all pseudocontexts � we de�ne the binary rela-tion � `r � =def � to be the equivalence relation generated by6



� if A =r B then � `r A =def B� if d 2 �-def and A;B 2 T such that B arises from A by substituting one particularoccurrence of subj(d) in A by def(d), then � `r A =def B.Remark 2.6 If no de�nitions are present in � then � `r A =def B is the same as A =r B.Finally, the following de�nition is again familiar from the cube, but we extend it to deal withde�nitions. That is, � `r (�x:A:�)B i� � `r x : A, � `r B : A and � `r x =def B.De�nition 2.7 Let � be a pseudocontext. Let d; d1; : : : ; dn be declarations and de�nitions.We de�ne � `r d and � `r d1 � � � dn as follows:� If d is a declaration: � `r d i� � `r subj(d) : pred(d).� If d is a de�nition: � `r d i� � `r subj(d) : pred(d) ^ � `r def(d) : pred(d) ^ � `rsubj(d) =def def(d).� � `r d1 � � � dn i� �:d1: � � � :di�1 `r di for all 1 � i � n.3 Extending the Cube with �-reductionIn the Cube as presented in [Barendregt 92], the only declarations allowed are of the form �x:A.Hence there are no de�nitions in the contexts, nor declarations of the form �x:A. Therefore,� � d is of the form � � �x:A and means that � ` A : S for some S and that x is fresh in�; A. Moreover, for any d � �x:A, remember that subj(d) � x and pred(d) � A. Moreover,�-reduction is not allowed. Hence, in the following de�nition, d is a meta-variablefor declarations only and =def is the same as =� (which is independent of `�).De�nition 3.1 (Axioms and rules of the Cube: d is a declaration, =def is =�)(axiom) <> `� � : 2(start rule) � � d�:d `� subj(d) : pred(d)(weakening rule) � � d � `� D : E�:d `� D : E(application rule) � `� F : �x:A:B � `� a : A� `� Fa : B[x := a](abstraction rule) �:�x:A `� b : B � `� �x:A:B : S� `� �x:A:b : �x:A:B(conversion rule) � `� A : B � `� B0 : S � `� B =def B0� `� A : B0(formation rule) � `� A : S1 �:�x:A `� B : S2� `� �x:A:B : S2 if (S1; S2) is a rule7



Each of the eight systems of the Cube is obtained by taking the (S1; S2) rules allowed from asubset of f(�; �); (�;2); (2; �); (2;2)g. The basic system is the one where (S1; S2) = (�; �) isthe only possible choice. All other systems have this version of the formation rules, plus oneor more other combinations of (�;2), (2; �) and (2;2) for (S1; S2). Here is the table whichpresents the eight systems of the Cube:System Set of speci�c rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)[KN 95b] extended the above Cube by changing!!� to !!�� and by changing `� to `��:De�nition 3.2 (`��) We de�ne `�� as `� with the di�erence that the application and con-version rules change as follows:(new application rule) � `�� F : �x:A:B � `�� a : A� `�� Fa : (�x:A:B)a(new conversion rule) � `�� A : B � `�� B0 : S � `�� B =def B0� `�� A : B0Note that � `�� B =def B0 is the same as B =�� B0, as no de�nitions are allowed in thecontext.Now we list some properties of `� and `�� without proofs (see [KN 95b]). These properties(except of course the loss of type correctness and SR) will be established for the cube extendedwith either de�nitions alone, or with both de�nitions and �-reduction in Section 4.Theorem 3.3 (The Church Rosser Theorem CR, for !!r, r = � or ��)If A!!r B and A!!r C then there exists D such that B !!r D and C !!r D 2Lemma 3.4 (Start Lemma for `r)Let � be a `r-legal context. Then � `r � : 2 and 8d 2 �[� `r d]. 2Lemma 3.5 (Correctness of types for `�)If � `� A : B then (B � 2 or � `� B : S for some sort S). 2Remark 3.6 (Correctness of types does not hold for `��)The new legal terms of the form (�x:B :C)A imply the failure of type correctness for `��.That is, even in �!, � `�� A : B 6) (B � 2 or � `�� B : S for some sort S). For example,if � � �z:�:�x:z then � `�� (�y:z:y)x : (�y:z:z)x, but � 6`�� (�y:z:z)x : S from Lemma 3.8.Failure of correctness of types for `�� implies failure of Subject Reduction even in �!:Example 3.7 In �!, �z:�:�x:z 6`�� x : (�y:z:z)x. Otherwise, by generation: �z:�:�x:z `��(�y:z:z)x : S, which is absurd by Lemma 3.8. Yet in �!, �z:�:�x:z `�� (�y:z:y)x : (�y:z:z)x.8



Lemma 3.8 For any A;B;C; S;�: � 6`�� (�x:A:B)C : S. 2Lemma 3.9 (Legal terms and contexts for `� and !!�)`�-legal terms and contexts contain no �-redexes. 2Lemma 3.10 (Legal terms and contexts for `�� and !!��)1. If � `�� A : B then A and � are free of �-redexes, and either B contains no �-redexesor B is the only �-redex in B.2. If (�x:D:E)B is `��-legal, then E[x := B] contains no �-redexes. 2Theorem 3.11 (Subject Reduction SR, for `� and !!�)� `� A : B ^A!!� A0 ) � `� A0 : B 2As explained in Example 3.7, SR fails for `��. A weak form of SR holds however. First weneed the following de�nition which removes all �-redexes of a `��-legal term (see Lemma 3.10):De�nition 3.12 For A `��-legal, let Â be C[x := D] if A � (�x:B:C)D and A otherwise.Lemma 3.13 (Weak Subject Reduction for `�� and !!��)� `�� A : B ^A!!�� A0 ) � `�� A0 : B̂ 2Lemma 3.14 (Unicity of Types for `r and !!r)� `r A : B1 ^ � `r A : B2 ) B1 =r B2 2Theorem 3.15 (Strong Normalisation with respect to `r and !r)If A is `r-legal then SN!!r(A); i.e. A is strongly normalising with respect to !r. 24 Extending the Cube with de�nitionsWe shall extend the derivation rules of `r so that we can use de�nitions in the context. Therules remain unchanged except for the following points:� One rule, the (def rule), is added.� The use of � ` B =def B0 in the conversion rule really has an e�ect now, rather thansimply postulating B =r B0.� Not only declarations but also de�nitions are allowed in contexts. Note that in the caser = �, de�nitions do not contain �-redexes and declarations are only �x:A and not �x:A.Note that the intended scope of �x:A in �:(�x:A:�)B:� `r C : D is �; C and D. This iswhat should be expected since the scope in �:�x:A:� `r C : D is the same.De�nition 4.1 (Axioms and rules of the Cube extended with de�nitions: d ranges over dec-larations and de�nitions)We extend the relation `r to `re by adding the following de�nition rule:(def rule) �:(�x:A:�)B `re C : D� `re (�x:A:C)B : D[x := B]9



The (def rule) says that if C : D can be deduced using a de�nition d � (�x:A:�)B, then(�x:A:C)B will be of type D where d has been unfolded in D. Recall that in the case r = �,� is only � everywhere.Remark 4.2 A natural alternative for the (def rule) would be(alternative def rule) �:(�x:A:�)B `re C : D� `re (�x:A:C)B : (�x:A:D)BWe didn't choose the alternative def rule because of the problem that correctness of types(cf. 4.11) will no longer hold: using (alternative def rule) we can derive � : � `re (��:�:�)� :(��:�:2)�, but (��:�:2)� is of course not typable.The only way to prevent this problem is by unfolding all de�nitions in the type of thejudgement as is done in the (def rule).Note that the alternative def rule is a derived rule whenever D 6� 2 because then if�:(�x:A:�)B `re C : D then by correctness of types, �:(�x:A:�)B `re D : S hence by the defrule � `re (�x:A:D)B : S. But D[x := B] =�� (�x:A:D)B. Hence by conversion and the defrule, we get � `re (�x:A:C)B : (�x:A:D)B.When considering a de�nition in a term to be syntactically equal to a redex, the (def rule)is quite natural: for instance, deriving a type for (�x:�:x)y via de�ning y to be x gives thesame type as the derivation via abstraction followed by application (let � � ��:�:�y:�):(def rule) �:(�x:�:�)y `re x : �� `re (�x:�:x)y : �[x := y](appl) (abstr) �:�x:� `re x : � � `re (�x:�:�) : �� `re �x:�:x : �x:�:� � `re y : �� `re (�x:�:x)y : �[x := y]Let us now give an example which shows why de�nitions are useful:Example 4.3 ��:�:�y:� 6`r (��:�:(�x:�:x)y)� : �. The reason for this is that we need y : � tobe able to give (�x:�:x)y a type. Looking carefully however, we �nd that (��:�:(�x:�:x)y)� isde�ning � to be �. So here is how the above derivation can be obtained using de�nitions (wepresent a short-cut and do not mention all the steps, nor the names of the rules):��:�:�y:�:(��:�:�)� `re �x:�:x : �x:�:���:�:�y:�:(��:�:�)� `re y : ���:�:�y:�:(��:�:�)� `re � =def ���:�:�y:�:(��:�:�)� `re y : ���:�:�y:�:(��:�:�)� `re (�x:�:x)y : ���:�:�y:� `re (��:�:(�x:�:x)y)� : �[� := �]��:�:�y:� `re (��:�:(�x:�:x)y)� : �Now, we go through the usual properties of the cube showing that they hold for `re.Lemma 4.4 (Free variable lemma for `re)Let � be a legal context such that � `re B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl[ �-def, then subj(d) 6� subj(d0).2. FV (B); FV (C) � dom(�). 10



3. If � � �1:d:�2 then FV (d) � dom(�1).Proof: All by induction on the derivation of � `re B : C. 2Lemma 4.5 (Start Lemma for `re)Let � be a legal context. Then � `re � : 2 and 8d 2 �[� `re d].Proof: � legal ) 9B;C[� `re B : C]; now use induction on � `re B : C. 2Lemma 4.6 (Transitivity Lemma for `re)Let � and � be legal contexts. Then: [� `re � ^� `re A : B]) � `re A : B.Proof: Induction on the derivation � `re A : B. 2Note in the following lemmas how de�nitions behave well in the cases of thinning and substi-tution.Lemma 4.7 (Thinning for `re)1. If �1:�2 `re A =def B, �1:�:�2 is a legal context, then �1:�:�2 `re A =def B.2. If � and � are legal contexts such that � �0 � and if � `re A : B, then � `re A : B.Proof: 1. is by induction on the derivation �1:�2 `re A =def B. 2. is as follows:� If �:� `re A : B, � `re C : S, x is fresh, then also �:�x:C :� `re A : B. We show thisby induction on the derivation �:� `re A : B using 1. for conversion.� If �:� `re A : B, � `re C : D : S, x is fresh, then also �:(�x:D:�)C:� `re A : B. Weshow this by induction on the derivation �:� `re A : B.� If �:�x:A:� `re B : C, � `re D : A, then �:(�x:A:�)D:� `re B : C is shown byinduction on the derivation �:�x:A:� `re B : C (for conversion, use 1.; note that�:�x:A:� `re B1 =def B2 is equivalent to �:� `re B1 =def B2). 2Lemma 4.8 (Substitution lemma for `re)1. If �:(�x:C :�)D:� `re A =def B, A and B are �:(�x:C :�)D:�-legal, then�:�[x := D] `re A[x := D] =def B[x := D].2. If B is a �:(�x:C :�)D-legal term, then �:(�x:C :�)D `re B =def B[x := D].3. If �:(�x:A:�)B:� `re C : D, then �:�[x := B] `re C[x := B] : D[x := B].4. If �:�x:A:� `re C : D and � `re B : A, then �:�[x := B] `re C[x := B] : D[x := B].Proof:1. Induction on the derivation rules of =def.2. Induction on the structure of B.3. Induction on the derivation rules, using 1., 2. and thinning.4. Idem. 211



Lemma 4.9 (Generation Lemma for `re)1. � `re S : C ) S � �;� `re C =def 2; and if C 6� 2 then � `re C : S0 for some sort S0.2. If � `re x : A then for some d 2 �, x � subj(d), � `re A =def pred(d) and � `re A : Sfor some sort S.3. If � `re �x:A:B : C then for some D and sort S: �:�x:A `re B : D, � `re �x:A:D : S,� `re �x:A:D =def C and if �x:A:D 6� C then � `re C : S0 for some sort S0.4. If � `re �x:A:B : C then for some sorts S1; S2: � `re A : S1, �:�x:A `re B : S2, (S1; S2)is a rule, � `re C =def S2 and if S2 6� C then � `re C : S for some sort S.5. If � `re Fa : C, F 6� �x:A:B, then for some D;E: � `re a : D, � `re F : �x:D:E,� `re T =def C and if T 6� C then � `re C : S for some S, where T � (�x:D:E)a ifr = �� and T � E[x := a] if r = �.6. If � `re (�x:A:D)B : C, then �:(�x:A:�)B `re D : CProof: 1., 2., 3., 4. and 5. follow by a tedious but straightforward induction on the deriva-tions (use the thinning lemma). As to 6., an easy induction on the derivation rules showsthat one of the following two cases is applicable:� �:(�x:A:�)B `re D : C 0, � `re C 0[x := B] =def C and if C 0[x := B] 6� C then� `re C : S for some sort S.� � `re B : F , � `re �x:A:D : �y:F :G, � `re C =def T and if T 6� C where T � (�y:F :G)Bif r = �� and T � G[y := B] if r = �, then � `re C : S for some sort S.In the �rst case use thinning and conversion; in the second case use thinning, conversion and3. 2Now, recall again that correctness of types fails for `�� but holds for `�. Here we show thatit holds for `re for r = � or ��. First, we need the following exchange lemma for `��e.Lemma 4.10 (��-exchanging)�:�x:A:� `��e C : D () �:�x:A:� `��e C : Dand �:(�x:A:�)B:� `��e C : D () �:(�x:A:�)B:� `��e C : DProof: induction on the derivation rules. We treat one case of the start rule:�:(�x:A:�)B `��e x : A as a consequence of � � (�x:A:�)B. Then also � � (�x:A:�)B,so �:(�x:A:�)B `��e x : A. 2In what follows, we show the correctness of types for both `�e and `��e.Corollary 4.11 (Correctness of Types)If � `re A : B then B � 2 or � `re B : S for some sort S.Proof: By induction on the derivation rules. The interesting cases are the de�nition andapplication rules.� In case � `re (�x:A:D)B : C[x := B] as a consequence of �:(�x:A:�)B `re D : C, thenby IH C � 2 or �:(�x:A:�)B `re C : S for some sort S. In the �rst case also C[x :=B] � 2, in the second case by the Substitution Lemma � `re C[x := B] : S[x := B] � S.12



� In case � `��e Fa : (�x:A:B)a as a consequence of � `��e F : �x:A:B, � `��e a : A,then by the induction hypothesis � `��e �x:A:B : S for some sort S and hence byGeneration �:�x:A `��e B : S. Then by Thinning �:(�x:A:�)a `��e B : S, so by��-exchanging �:(�x:A:�)a `��e B : S and by the de�nition rule � `��e (�x:A:B)a :S[x := a] � S. 2>From correctness of types for `��e, we can establish its Subject Reduction.Theorem 4.12 (Subject Reduction for `��e and !!��)If � `��e A : B and A!!�� A0 then � `��e A0 : B.Proof: We prove by simultaneous induction on the derivation rules:1. If � `��e A : B and �0 results from contracting one of the terms in the declarations andde�nitions of � by a one step ��-reduction, then �0 `��e A : B2. If � `��e A : B and A!�� A0 then � `��e A0 : B� (axiom): nothing to prove� (start rule): We consider the case d � (�x:A:�)B, A !�� A0. The other cases aresimilar or easy.We have: �:(�x:A:�)B `��e x : A as a consequence of � � (�x:A:�)B, i.e. � `��e B :A : S. By the induction hypothesis � `��e A0 : S and by the induction hypothesis andconversion � `��e B : A0. Hence �:(�x:A0 :�)B `��e x : A0 and again by conversion�:(�x:A0 :�)B `��e x : A.� (weak), (formation), (conversion): use the induction hypothesis.� (abstraction): use the induction hypothesis and conversion.� (de�nition): � `��e (�x:A:D)B : C[x := B] as a consequence of �:(�x:A:�)B `��eD : C. Now �0 `��e (�x:A:D)B : C[x := B], � `��e (�x:A:D0)B : C[x := B] and� `��e (�x:A0 :D)B : C[x := B] by the induction hypothesis.Furthermore, if B !�� B0 then � `��e C[x := B] =def C[x := B0] and by the inductionhypothesis and de�nition rule we get � `��e (�x:A:D)B0 : C[x := B0]. Now by Lemma4.11, C � 2 or �:(�x:A:�)B `��e C : S for some sort S. In the �rst case, C[x :=B] � C � C[x := B0] and we are done, in the second case by the Substitution Lemma� `��e C[x := B] : S[x := B] � S, so by conversion � `��e (�x:A:D)B0 : C[x := B].For the last possibility, (�x:A:D)B !�� D[x := B], we remark that by the SubstitutionLemma we get out of �:(�x:A:�)B `��e D : C that � `��e D[x := B] : C[x := B].� (application): � `��e Fa : (�x:A:B)a as a consequence of � `��e F : �x:A:B and� `��e a : A. Then �0 `��e Fa : (�x:A:B)a and � `��e F 0a : (�x:A:B)a by theinduction hypothesis, and � `��e Fa0 : (�x:A:B)a because by the induction hypothesis� `��e Fa0 : (�x:A:B)a0, by Corollary 4.11 ( Correctness of Types) � `��e (�x:A:B)a : Sfor some sort S, so by conversion � `��e Fa0 : (�x:A:B)a.Now the crucial case: F � (�y:C :D), Fa !�� D[y := a]. Then � `��e (�y:C :D)a :(�x:A:B)a so by the Generation Lemma �:(�y:C :�)a `��e D : (�x:A:B)a, now by theSubstitution Lemma � `��e D[y := a] : ((�x:A:B)a)[y := a], but by the Barendregtconvention ((�x:A:B)a)[y := a] � (�x:A:B)a so we are done. 213



Subject Reduction for `�e is easier:Theorem 4.13 (Subject Reduction for `�e and !!�)� `�e A : B and A!! A0 then � `�e A0 : B.Proof: We only need to consider A !� A0. Suppose � `�e (�x:B:C)A : D. Then bygeneration, �:(�x:B:�)A `�e C : D, and by substitution we get � `�e C[x := A] : D[x := A],but as x =2 FV (D), D[x := A] � D. The compatibility cases are easy. 2The proof of Strong Normalisation is based on Strong Normalisation of the �-cube ex-tended with de�nitions as in [BKN 9y].Theorem 4.14 (Strong Normalisation for the Cube with respect to `�e and !�)If A is a `�e-legal term then A is strongly normalising with respect to !!�.Proof: `�e in this paper is a subset of `e of [BKN 9y] in that if � `�e A : B then� `e A : B (see subsection 5.5). Now, Strong normalisation for `�e follows from that of `e(again see [BKN 9y] for the lengthy but standard (similar to the proof of Geuvers for �C in[Geuvers 94]) proof of SN for `e which can be adapted to `�e). 2Now, Strong Normalisation of `��e is a consequence of that of `�e. First we change �-redexesinto �-redexes.De�nition 4.15� For all pseudo-expressions A we de�ne eA to be the term A where in all �-redexes the�-symbol has been changed into a �-symbol, creating a lambda-redex instead.� For a context � � d1: � � � :dn we de�ne e� to be fd1: � � � :fdn, where g�x:A � �x:eA andg(�x:A:�)B � (�x:eA:�) eB.Lemma 4.16 If � `��e A : B then e� `�e eA : eB.Proof: Induction on the derivation rules of `��e. All rules except the (application rule)are trivial since they are also rules in `�e.Now suppose � `��e Fa : (�x:A:B)a as a consequence of � `��e F : �x:A:B and � `��ea : A. Then by the induction hypothesis e� `�e eF : �x:eA: eB and e� `�e ea : eA, so by theapplication rule of `�e, e� `�e eF ea : eB[x := ea].As a consequence of e� `�e eF : �x:eA: eB we also get e�:�x:eA `�e eB : S and hence by thinningand the de�nition rule for `�e, e� `�e (�x:eA: eB)ea : S, so by conversion e� `�e eF ea : (�x:eA: eB)ea.But F cannot contain a �-symbol which will mix with a in Fa to form a �-redex. Oth-erwise, one can show by the generation lemma that �x:A:B =def S for some S. But this isimpossible, hence fFa � eF ea. 2Theorem 4.17 (Strong Normalisation for the Cube with respect to `��e and !��)If A is a `��e-legal term then A is strongly normalising with respect to !!��.Proof: If A is `��e-legal then eA is `�e-legal by Lemma 4.16 and hence eA is stronglynormalising with respect to !!� (Theorem 4.14). But then also A is strongly normalisingwith respect to !!��. 214



5 Comparing our system of de�nitions with other systemsIn this section we will compare the type systems generated by `�e with the one generatedby `� and with the type systems with de�nitions of Severi and Poll [SP 93]. First we provea conservativity result saying that in a certain sense, de�nitions are harmless. That is, eventhough we can type more terms using `�e than using `�, whenever a judgement is derivablein a theory L using de�nitions and `�e, it is also derivable in the theory L without de�nitions,using only `� and where all the de�nitions are unfolded. Second, we say something aboutthe e�ectiveness of derivations and type-checking of the extended systems. More work has tobe done yet but we believe that there is a gain in using de�nitions.5.1 ConservativityIn the following we shall write Ldef for any system L of the Cube, to denote the system Lextended with de�nitions. We shall furthermore write ` for `�.Let us start by noting that all derivable judgements in a type system of the �-cube arederivable in the same type system extended with de�nitions as we only extended, not changed,the derivation rules. In other words, if � `L� A : B then � `L�e A : B.The converse however is not true even if � contains no de�nitions. Look again at Ex-ample 4.3 where � `�e A : B, � contains no de�nitions yet � 6` A : B. Hence, in the typesystems with de�nitions there are more legal terms. Therefore, it has to be investigated towhat extent the set of legal terms has changed.The �rst noticeable change with de�nitions is the bypassing of the formation rule by usingthe weakening and de�nition rule instead. The following example shows that in �!def wehave more legal judgements than in �!:Example 5.1 In �2 without de�nitions we can derive the following by using the formationrules (�; �) and (2; �) (take � � ��:�:�y:�):� `�2 y : � : � : 2�:��:� `�2 � : � : 2 (start)�:��:�:�x:� `�2 x : � : � (start resp weakening)�:��:� `�2 �x:�:� : � (formation rule (�; �) )�:��:� `�2 �x:�:x : �x:�:� (abstraction)� `�2 ��:�:�x:�:� : � (formation rule (2; �) )� `�2 ��:�:�x:�:x : ��:�:�x:�:� (abstraction)� `�2 (��:�:�x:�:x)� : �x:�:� (application)� `�2 ((��:�:�x:�:x)�)y : � (application)It is not possible to derive this judgement in �! as the formation rule (2; �) is needed.Now we observe that the term (��:�:�)� is a de�nition. Using this observation we can derivethe judgement in a type system with de�nitions without having to use the formation rule(2; �):
15



� `�!�e y : � : � : 2�:(��:�:�)� `�!�e � : � (start)�:(��:�:�)�:�x:� `�!�e x : � : � (start resp weakening)�:(��:�:�)� `�!�e �x:�:� : � (formation rule (�; �) )�:(��:�:�)� `�!�e �x:�:x : �x:�:� (abstraction)� `�!�e (��:�:�x:�:x)� : (�x:�:�)[� := �] � �x:�:� (de�nition)� `�!�e ((��:�:�x:�:x)�)y : � (application)The following example shows an even stronger statement. It shows that some terms whichwere only typable in the highest system of the Cube �C, become typable even in the lowestsystem �! in the presence of de�nitions:Example 5.2 Take a look at the judgement � ` (��:�:�x:M :x)� : �x:M :M where M �(�z:�:(�
:�:
)�)y and � � ��:�:�y:�. This judgement can be derived in �C using the for-mation rules (2;2), (2; �), (�;2) and (�; �) (here for simplicity, ` stands for `� rather than`��): � `�C � : � : 2�:��:� `�C � : � : 2 (weakening)�:��:�:�z:� `�C z : � : � : 2 (start resp. weakening)�:��:�:�z:�:�
:� `�C 
 : � : 2 (start resp. weakening)�:��:�:�z:� `�C �
:�:� : 2 (formation rule (2;2) )�:��:�:�z:� `�C �
:�:
 : �
:�:� (abstraction)�:��:�:�z:� `�C (�
:�:
)� : � (application)�:��:� `�C �z:�:� : 2 (formation rule (�;2) )�:��:� `�C �z:�:(�
:�:
)� : �z:�:� (abstraction)�:��:� `�C M : � (application, M � (�z:�:(�
:�:
)�)y�:��:�:�x:M `�C x : M : � (start resp. weakening)�:��:� `�C �x:M :M : � (formation rule (�; �) )�:��:� `�C �x:M :x : �x:M :M (abstraction)� `�C ��:�:�x:M :M : � (formation rule (2; �) )� `�C ��:�:�x:M :x : ��:�:�x:M :M (abstraction)� `�C (��:�:�x:M :x)� : �x:M :M (application)It is impossible to derive this judgement in any other system of the cube than �C since all
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four formation rules are needed. We can however derive this judgement in �!def:� `�!�e � : � : 2�:(��:�:�)� `�!�e � : � : 2 (weakening)�(��:�:�)�:(�z:� :�)y `�!�e � : � : 2 (weakening)�:(��:�:�)�:(�z:�:�)y:(�
:�:�)� `�!�e 
 : � (weakening)�:(��:�:�)�:(�z:�:�)y `�!�e (�
:�:
)� : � (de�nition rule)�:(��:�:�)� `�!�e (�z:�:(�
:�:
)�)y : � (de�nition rule)�:(��:�:�)�:�x:M `�!�e x : M : � (start resp. weakening)�:(��:�:�)� `�!�e �x:M :M : � (formation rule (�; �) )�:(��:�:�)� `�!�e �x:M :x : �x:M :M (abstraction)� `�!�e (��:�:�x:M :x)� : (�x:M :M)[� := �] � �x:M :M (de�nition rule)This example shows that in every system of the �-cube (except �C), adding de�nitions givesmore derivable judgements. As was shown in Example 4.3, ��:�:�y:� `�!�e (��:�:(�x:�:x)y)� : �is derivable in �!def and hence is also derivable in �Cdef, but this judgement cannot be derivedin �C as y is of type � and not of type �. At �rst sight this might cause the reader to suspecttype systems with de�nitions of having too much derivable judgements. However, we have aconservativity result stating that a judgement that can be derived in Ldef can be derived inL when all de�nitions in the whole judgement have been unfolded.De�nition 5.3 For � `�e A : B a judgement we de�ne the unfolding of � `�e A : B,[� `�e A : B]u to be the judgement obtained from � `�e A : B in the following way:� �rst, mark all visible redexes in �, A and B,� second, contract in �, A and B all these marked redexes.When � � � � � (�x:D:�)C � � �, contracting (�x:D:�)C amounts to substituting all free occur-rences of x in the scope of �x by C; these free occurrences may also be in one of the termsA and B. The result is independent of the order in which the redexes are contracted, as onecan see this unfolding as a complete development (see [Barendregt 84]) in a certain sense.Example 5.4 [��:�:�y:�:(��:�:�)�:(�x:�:�)y:�z:� `�e (�v:�u:�:�:vx)�u:�:u : �]u is��:�:�y:�:(�z:�[x := y][� := �]) `�e ((vx)[v := �u:�:u])[x := y][� := �] : �[x := y][� := �], whichis ��:�:�y:�:�z:� `�e (�u:�:u)y : �. Note that the resulting context contains only declarationsof the form �x:A and that the resulting subject and predicate need not be in normal form.Theorem 5.5 Let L be one of the systems of the Cube, � a context with de�nitions and A;Bpseudoterms. If � `L�e A : B then:1. [� `L�e A : B]u2. �0 `L� A0 : B0, where [� `L�e A : B]u � �0 `L�e A0 : B0.Proof: use induction on the derivation of � `L�e A : B. Axiom, abstraction and formationrules are easy, we treat the other cases. 17



� The last rule applied is the start rule. Then �:d `L�e subj(d) : pred(d) as a consequenceof � � d. Now if d � �x:A then by IH [� `L�e A : S]u and �0 `L� A0 : S (S a sort, x fresh)so by the start rule �0:�x:A0 `L� x : A0 and [� `L�e x : A]u On the other hand, if d is ade�nition, say d � (�x:B:�)A, then by IH �0 `L� A0 : B0 : S (S a sort) and [� `L�e A :B]u, and the unfolding of �:d `L�e subj(d) : pred(d) is �0 `L� def(d)0 : pred(d)0 which is�0 `L� A0 : B0 so we are done.� The last rule applied is the weakening rule, say �:d `L�e D : E as a consequence of � � dand � `L�e D : E. Because subj(d) is fresh we have that (�:d)0 `L� D0 : E0 is the sameas �0 `L� D0 : E0 so by IH we are done.� The last rule applied is the application rule. Then � `L�e Fa : B[x := a] as a consequenceof � `L�e F : �x:A:B and � `L�e a : A. By IH and the application rule we get �0 `L�F 0a0 : B0[x := a0]. Now by subject reduction also �0 `L� (F 0a0)0 : B0[x := a0]. IfB0[x := a0] � (B0[x := a0])0 then we are done, otherwise, by the Generation Corollary�0 `L� B0[x := a0] : S for some sort S, so by subject reduction �0 `L� (B0[x := a0])0 : Sand as B0[x := a0] =� (B0[x := a0])0 by conversion we are done.� The last rule applied is the conversion rule. Then � `L�e A : B2 as a consequence of� `L�e A : B1, � `L�e B2 : S and � `L�e B1 =def B2. Now � `L�e B1 =def B2 impliesB01 =� B02 because if C results from D by locally unfolding a de�nition of � then C 0 � D0,so the result follows by IH.� The last rule applied is the de�nition rule. Then � `L�e (�x:A:C)B : [D]d as a conse-quence of �:d `� C : D where d � (�x:A:�)B. By IH, �0 `L� [C 0]d : [D0]d which is the un-folding of � `L�e (�x:A:C)B : [D]d. Here we wrote [D]d instead of D[subj(d) := def(d)]Remark 5.6 It is not su�cient in theorem 5.5 to unfold all the de�nitions in the contextonly. Look again at Example 5.1 to see that ��:�:�y:� `�!�e ((��:�:�x:�:x)�)y : �, the context� � ��:�:�y:� contains no de�nitions and yet �0 � � 6`�!� ((��:�:�x:�:x)�)y : �. The reasonfor this is that a redex in the subject may have been used to change the type when it was stillin the context. Note that if all the de�nitions are unfolded in context, subject and predicate,then the judgement ��:�:�y:� `��! y : � is derivable.5.2 Length of derivations and type checkingAs can be noted from the examples in Section 5.1, derivations using the de�nition mechanismseem to need considerably less derivation steps to derive a judgement that can also be derivedwithout de�nitions. This is mainly due to the fact that redexes in the term to be derived canbe introduced by the def rule which bypasses the formation rule.Type checking in the extended systems at �rst sight seems to be more di�cult than inthe systems of the �-cube of Barendregt. Consider for instance the type-checking problem� `re (��:�:P�x)� : ? where � � ��:�:�P :��:�:�!�:�x:�.Note that this problem is not solvable in the non-extended systems, since P� : � ! �and x : �, so P�x is not typable. In the extended systems, the only thing a typecheckingalgorithm can do is trying to solve �:(��:�:�)� `re P�x : ?,18



which is equivalent to �nding A;B; y such that ( �:(��:�:�)� `re P� : �y:A:B�:(��:�:�)� `re x : Awhich again is equivalent to �nding z; C such that 8><>: �:(��:�:�)� `re P : �z:C :(�x:A:B)�:(��:�:�)� `re � : C�:(��:�:�)� `re x : ANow �:(��:�:�)� `re P : ��:�:� ! � and �:(��:�:�)� `re � : �, hence �:(��:�:�)� `reP� : �! � and �:(��:�:�)� `re x : �.Now we face the problem of converting �! � to � ! � or � to � in context �:(��:�:�)�and this is easily done by unfolding the de�nition (��:�:�)� in �! �, giving �:(��:�:�)� `reP� : � ! � and hence � `re (��:�:P�x)� : �.We saw that typechecking gave rise to locally unfolding a de�nition in the type � ! �.This is something new in comparison with typechecking in the �-cube of Barendregt whereonly reduction to (weak head-) normal form is needed. Now if we want to typecheck a redexit appears to be a reasonable strategy to consider it as a de�nition since it is not easy to seewhether a redex in a term can be typed without the (def rule).So when typechecking (�x : �:P�xQ)t in our extended system with �P :��:�:�!�!�:��:�:�t:�being the context �, an automated type checker will try to solve�:(�x:�:�)t `re P�xQ : ?instead of ( � `re �x:�:P�xQ : �x:�:A� `re t : �As a result, something like ( �:(�x:�:�)t `re P�x : �y:A:B�:(�x:�:�)t `re Q : A0will be derived and now it has to be checked whether �:(�x:�:�)t `re A =def A0. In casethe original redex was not a de�nition, A =def A0 can be established without using the contextde�nition (�x:�:�)t. Hence we conjecture that an intelligent typecheck algorithm can avoidneedless extra work by unfolding de�nitions only as a last resort. Further research has yet tobe done in this direction.5.3 Comparison with the systems of the Barendregt cubeHere we discuss the (dis)advantages of our extended typing systems to the typing systems ofthe �-cube.In the extended typing systems we can reason with de�nitions in the context (which isvery natural to do): we can add de�nitions to the context in which we reason (the start ruleand weakening rule), we can eliminate de�nitions in the context (the def rule) and we canunfold a de�nition in the context locally in the type (the conversion rule).If one considers one of the seven lower systems in the �-cube, some abstractions areforbidden, for instance in �P! the abstraction of a term over a type is not allowed (thisabstraction corresponds to universal quanti�cation in logic). Intuitively such a quanti�cationneed not be forbidden if it is immediately being instantiated by an application, as is thecase in the term (��:�:(�x:�:x))� in context ��:�. However, in the system �P! this term isuntypable.Now in our extended typing system �P!def we can type the term (��:�:(�x:�:x))� by usingthe def rule: from ��:�:(��:�:�)� `�e �x:�:x : �x:�:x we may conclude ��:� `�e (��:�:�x:�:x)� :�x:�:x. Note that the use of the formation rule (2; �) is avoided.19



By this property, the extended type systems are closer to intuition than the systems of the�-cube of Barendregt as there are more (intuitively correct) derivable inhabitants of certaintypes.5.4 Comparison with the type systems of Severi and PollWhen we compare the extended type systems to those of Severi and Poll (see [SP 93]), weobserve the following di�erences.1. In the systems of [SP 93], the de�nition of pseudoterms has been adapted, not onlythe usual variables, abstractions and applications are pseudoterms, but de�nitions, i.e.terms of the form x = a : A in B are added. A new reduction relation has to beintroduced to be able to unfold these de�nitions (locally in the predicate of a judgement).This means Church Rosser had to be shown again.In our approach, we treat de�nitions not much di�erent from redexes, hence the syntaxof pseudoterms remains the same. We only need to change the syntax of contexts andextend the notion of �-equality in a natural way to be able to use the de�nitions inthe context and unfold them in the predicate of a judgement. Church Rosser remainsunchanged.2. [SP 93] have a rule that takes a de�nition out of the context and puts it in front of theterm and type. In our extended system however, we only put the de�nition in front ofthe term and unfold it in the type. As we already noted in Remark 4.2, if the type isnot 2, it is a derived rule in our system that the de�nition need not be unfolded in thetype.3. [SP 93] do not demand the predicate of a de�nition to have some sort as type. This onlyleads to being able to abbreviate kinds, which is impossible in our extended systems.We consider this to be a minor disadvantage which might very well be easily overcomeby leaving this demand.5.5 Comparison with the generalised de�nitionsIn [BKN 9y], we introduced a notion of generalised de�nitions which is similar to the oneintroduced here in that de�nitions are a kind of redexes which only occur in the contextand can be unfolded via a def rule similar to the one presented here. In [BKN 9y] however,de�nitions were nested. That is, we could have (�y:B :(�x:A:�)a)b and hence the def rule hadto be changed to take this nesting into account. Such nesting however, is unnecessary forthe reductions we are using in the present paper. In [BKN 9y], reduction was generaliseddue to the use of a useful notation (see [KN 95a]). With that generalisation of reduction(which may contract some redex r before other redexes upon which this r depends have beencontracted), de�nitions had to be nested to mirror this generalised reduction. All that workon generalising reduction and nesting de�nitions is irrelevant to the present paper. It mustbe noted however that with nested de�nitions one can get yet shorter derivations due to thefact that many nested de�nitions may be treated as a single de�nition and hence the def rulewill only be applied a single time. We should close here by saying that any de�nition in thesense of the present paper is also a de�nition in the sense of [BKN 9y] when the notationis changed. Furthermore any type derivation with de�nitions in this paper (not involving20



C�(CR, SN) Cdef (CR, SN, SR)C(CR, SN, SR)
@@@@R ����	C�;def (CR, SN, SR)

@@@@R����	
Figure 1: Properties of the Cube with various extensions�-reduction) is also a type derivation with de�nitions in [BKN 9y]. That is, if � `�e A : Bthen I(�) `e I(A) : I(B) where `e is the type derivation of [BKN 9y] and I translates termsto the notation of [KN 95a].6 ConclusionIn this paper, we studied the addition of explicit de�nitions and �-reduction to the Cube. Inparticular, we discussed various typing relations in the Cube, mainly the known relation `�,its extension with �-reduction `��, its extension with de�nition `�e and its extension withboth �-reduction and de�nitions `��e. Our addition of de�nitions (which are di�erent in thispaper from the existing notions of de�nition in the literature), is simple and worth studying.Furthermore, this addition enabled us to solve a problem we left open in [KN 95b] on SubjectReduction in the Cube with �-conversion. There are many arguments why �-reduction andexplicit de�nitions must be considered and a system combining both of them without losingany of the nice properties of the cube is certainly worth considering. Moreover, we �nd itintreaguing that so far in the literature, de�nitions have been added for reasons of e�ciencyof implementation and not because they solve theoretical problems. In this paper, we haveshown that de�nitions do indeed solve the theoretical problem of Subject Reduction in theextended version of the cube with �-reduction. In [BKN 9y], we show that de�nitions solvethe problem of Subject Reduction in the cube extended with a notion of generalised reduction.In a work in progress, we show that de�nitions solve the problem of type preservation for acertain operation on terms.This is all puzzling as to why de�nitions really have that power. What de�nitions dohowever to solve these problems is that they keep information in the context on the de�nedvalues of some variables. This information might have been removed when some reductionsin the term take place and so keeping the de�nition in the context preserves this information.Hence, our paper contributes to other work on de�nitions not only in that it o�ers a simpleand attractive account of de�nitions which keeps all the original properties of the cube, butalso shows that de�nitions are theoretically important and should hence be introduced in thecube. Figure 1 summarizes our results in this paper.7 AcknowledgementsWe are grateful for discussions with Henk Barendregt, Thierry Coquand, Herman Geuvers,Erik Poll and Randy Pollack. 21
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