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or � (with or without a subscript)). When the operators get increased to include substitution(�), updating (') and decreasing (�) operators, the respresentation of terms remains simpleto describe and enables one to de�ne reduction and substitution in a step-wise fashion whereat every step it is clear which item moves inside (or over) which one. This step-wise fashiongives explicit substitution and enables local and global reduction as shown in [KN 93].We provide a method which takes any term of the �-calculus with named variables andimplicit substitution, �, into B such that all �-equivalent terms in � are mapped into aunique element of B. The other direction however, of mapping elements of B into elementsof � is more di�cult. This is because in B, the �'s do not have variable names as subscriptsand so we have to look for such subscripts in a way that no free variables in the term getbound. Moreover, a term in B represents a whole class of terms in � (�-equivalent terms).In translating B to �, we avoid �-conversion in � and associate to each term of B a uniqueterm of � rather than an arbitrary element of the �-equivalence class. Now, having such atranslation [j�]j from B to �, we show that the variable updating, the substitution and thereduction rules in B are sound by showing that if t ! t0 where ! is either �-, or '- or�-reduction (excluding �- or �-generation and �-transition, see below), then [jt]j � [jt0]j. Hencethe rules which accommodate variable updating and substitution result in syntactically equalterms. We shall moreover, show that if t! t0 where the reduction includes �- or �-generation,then [jt]j =�� [jt0]j. That is, the rules which actually reduce �-redexes in B are nothing morethan the � rule in �. Finally if ! is �-transition then [jt]j =� [jt0]j. Like this, we provide a
at semantics where most reduction steps are mapped to syntactical equality and not to acorresponding reduction. This semantics shows that our reduction and substitution rules area re�nement of those of the classical calculus.We believe that our approach is the �rst to be so precise about variable manipulation,substitution and reduction. There is never a confusion of which variable is the one manip-ulated and hence a machine can easily carry out our reduction strategies and translate theterms using variables in a straightforward manner. This approach should be considered in im-plementations of the �-calculus. Our work here might look too involved, but we have actuallycarried out the hard part of manipulating variables once and for all.2 Basic NotationWe take IN to be the set of natural numbers, i.e. � 0, IP to be the set of positive naturalnumbers, i.e. > 0, ZZ to be the set of integers and take i; j;m; n; : : : to range over numbers. Welet F = fx1; x2; : : :g be an ordered set whose elements are all distinct and call the left in�nitelist of �s as drawn in Figure 1, the free variable list F . We let V , the set of variables of �, bes s s s s�x4 �x3 �x2 �x1Figure 1: The free variable list Ff"g [F where " can be looked at as a special variable or as a constant and is never used as asubscript for �.1 We take � = f"g[IP to be the set of variables of B and let v; v0; v00; v1; v2; : : :range over F [ �.2 We take 
� = f�g [ f�v; v 2 Fg and 
B = f�; �; �; '; �g to be the sets1" is added because it enables us to generalise the calculus. By taking all types of variables after � to be ",we obtain the type free �-calculus ([KN 93]). " has further uses such as the 2 in [Bar 92].2Note that " 2 � because no variable in B is a subscript of a �.2



of operators of � and B respectively. We let !; !0; !1; : : : range over 
� [ 
B and use 
 torange over subsets of 
B. We let t; t1; : : : range over terms of � and B. We take FV (t) andBV (t) to be de�ned as usual and to represent the free and bound variables of t in � and B;we assume that " is neither free nor bound. For r 2 f�; �; �; '; �; �00; �0g, we assume that!ris compatible (see [Bar 84]), call the re
exive transitive closure of !r , !!r and let =r theleast equivalence relation closed under !!r . = is the least equivalence relation closed under!!� and !!� . We use � to be syntactic identity and when t = t0 in �, we write `� t = t0. Weassume familiarity with de Bruijn indices. For example, for i 6= 3; i 2 IP , (�xi:x2 :(xix3))x1 or(x1�)(x2�xi)(x3�)xi is written (�1:14)1 or (1�)(2�)(4�)1 (see Figure 2) where the free variablelist is used to account for the free variables x1, x2 and x3. To translate (x1�)(x2�xi)(x3�)xiwhen i = 1 or i = 2 (i.e., xi occurs bound and free), we rename xi to xj for j > 3.s s s s s s ss s s� � � � � � 11 2 4(�x4:x2 :x4x3)x1(x1�)(x2�x4)(x3�)x4(1�)(2�)(4�)1 �� �� Figure 2: A tree with de Bruijn's indicesTerms of � and B are given by the following syntax:� ::= V j I�� where I� ::= (�
�)B ::= � j IBB where IB ::= (B
)We may write B�� when 
 = f�; �g, and call those terms 
��-terms. Later on we increase 
by adding �, ' and �. �-terms will only be used with 
��-terms. Example 2.1 shows termsboth in � and B. The translation between � and B will be given in Sections 3 and 5.Ex 2.1 (The de Bruijn trees of these lambda terms are given in Figure 3.)1. In B, both (x1�)(x2�x5)x5 and (x1�)(x2�x3)x3 are denoted as (1�)(2�)1. Note however,that (x1�)(x2�x5)x5 6� (x1�)(x2�x3)x3 for example, unless (�) is assumed in �.2. The term ((x2�x5)x5�)x1 in � is written as ((2�)1�)1 in B.s s s s ss s21 1� �� � s s s sss s2 11��� �(1�)(2�)1(x1�)(x2�x5)x5(�x5:x2 : x5)x1 ((2�)1 �)1((x2�x5)x5 �)x1x1(�x5:x2 : x5)�� � � ��Figure 3: de Bruijn trees with explicit free variable lists and reference numbersNow, we de�ne a number of concepts of � and B that will be used in the rest of the paper.Def 2.2 ((main) items, (main) segments, !-items, ��-segments, body, weight, nl)� If ! is an operator and t is a term then (t!) is an item called !-item. We uses; s1; si; : : : to range over items. 3



� A concatenation of zero or more items is a segment. We use s, s1, si : : : to range oversegments and write ; for the empty segment. A reducible or ��-segment, is a �-itemnext to a �-item. If s � s1s2 : : : sn, we call s1; s2; : : : ; sn the main items of s.� Each term t is the concatenation of zero or more items and a variable: t � s1s2 : : :snv.s1; s2; : : : ; sn are called the main items and s1s2 : : :sn is the body of t; a concatenationof adjacent main items, sm : : : sm+k, is called a main segment.� The weight of a segment or a term is the number of its main items.� We de�ne nl(v) = ; if v is a variable, nl((t1!)t2) = nl(t1) + nl(t2) if ! 6= � andnl((t1�)t2) = nl(t1) + 1 + nl(t2).Ex 2.3 Let t � ("�)((1�)("�)1�)(2�)1 and s � ("�)((1�)("�)1�)(2�). The main items of tand s are ("�), ((1�)("�)1�) and (2�), being a �-, a �-, and a �-item. ((1�)("�)1�)(2�) is amain (��-) segment of t and s. Also, s is a ���-segment, which is a main segment of t. Notethat weight(t) is not necessarily the same as nl(t) (which counts the number of �s in t). Forexample, weight(((1�)2�)3) = 1 whereas nl(((1�)2�)3) = 2.Def 2.4 (Substitution in �) If t; t0 are terms in � and v is a variable in F , we de�ne theresult of substituting t0 for all the free occurrences of v in t as follows:t[v := t0] =df 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: t0 if t � vt if t � v0 6� v or t � "(t2[v := t0]�)t1[v := t0] if t � (t2�)t1(t2[v := t0]�v)t1 if t � (t2�v)t1(t2[v := t0]�v0)t1[v := t0] if t � (t2�v0)t1; v 6� v0;(v 62 FV (t1) or v0 62 FV (t0))(t2[v := t0]�v00)t1[v0 := v00][v := t0] if t � (t2�v0)t1; v 6� v0; v 2 FV (t1);v0 2 FV (t0); v00is the �rst variablein F which does not occur in (t�)t0The (�) and (�) axioms in � are de�ned as follows:(�) (t�v)t0 !� (t�v0)t0[v := v0] where v0 62 FV (t0)(�) (t00�)(t�v)t0 !� t0[v := t00]3 Translating � in BWe enumerate F via y, so that: yx1 = 1; yx2 = 2; yx3 = 3; : : : and de�ne, for v 2 F , y�v to be�, y� to be � and y" to be ". We need the following notions:Def 3.1 (termi) We de�ne termi to be a partial function which takes non empty segmentsof � and returns terms of � as follows:term1((t1!1)s) =df t1, and termi((t1!1)s) =df termi�1(s), for i � 2; s 6= ;.Def 3.2 (lami) lami takes s of � and returns (�v1)(�v2) : : :(�vk) obtained by removing allthe main �-items from the �rst (i� 1) main-items of s and by removing all the t's from themain �-items (t�v) of these (i� 1) main-items. lami is de�ned as follows:lami(s) =df ;lami((t�v)s) =df (�v)lami�1(s) for i � 2 and weight(s) � i� 2lam((t�)s) =df lam(s) for i � 2 and weight(s) � i� 24



Let Seqi=ni=1 (ti!i) be (t1!1)(t2!2) : : :(tn!n), n � 0. The translation from � into B is as follows:Def 3.3 (b) For t; t1; t2 2 �; v; v0 2 F ; s segment of �, we de�ne b as follows:b(t) =df b0(t; ;) b0(v; s(�v)) =df 1b(s) =df body(b(s")) b0(v; s(�v0)) =df 1 + b0(v; s) if v0 6� vb0("; s) =df " b0((t1�v)t2; s) =df (b0(t1; s)�)b0(t2; s(�v))b0(v; ;) =df yv (note v 6� ") b0((t1�)t2; s) =df (b0(t1; s)�)b0(t2; s)Here b0(v; s) �nds the de Bruijn number corresponding to v whithin context s (see Ex 3.5).b0((t1�v)t2; s) translates t1 with respect to s and t2 with respect to s(�v).Lem 3.4 If s1; s2 are segments of �; v 2 F [ f"g, thenb0(s1v; s2) = Seqi=ni=1 (b0(termi(s1); s2lami(s1))yopi(s1))b0(v; s2lamn+1(s1)); for n = weight(s1).Proof: By induction on the length of s1. 2So, if t � (t1!1)(t2!2) : : :(tn!n)v � s1v 2 �, then b0(t; s2) = (t01 y !1)(t02 y !2) : : :(t0n y !n)v0where t0i � b0(ti; s2lami(s1)) and v0 � b0(v; s2lamn+1(body(t))). Hence, t and b0(t; s2) have thesame trees, except that �'s lose their subscripts and variables are replaced by correct indicesfound by tracing the �'s. That is why, in t0i, we had to attach all the �s preceding t0i.Ex 3.51. b((x1�x4)(x2�x3)x4) � (b0(x1; ;)�)(b0(x2; (�x4))�)b0(x4; (�x4)(�x3)) � (yx1�)(3�)2 � (1�)(3�)2.2. b((x1�)(x2�x4)(x3�)x4) � (1�)(2�)(4�)1.3. b(((x3�x4)x4�)x1) � b0((x3�x4)x4; ;)�)b0(x1; ;) � ((b0(x3; ;)�)b0(x4; (�x4))�)1 � ((3�)1�)1Lem 3.6 For any t in �, b(t) is well de�ned.Proof: By induction on t 2 �. 2b is not injective: b((x1�x2)x2) � b((x1�x3)x3) but (x1�x2)x2 6� (x1�x3)x3. b however issurjective (see Lem 5.16). The following lemma is informative about b.Lem 3.7 If t; t0 are terms in � such that t =� t0 then b(t) � b(t0).Proof: By induction on t =� t0. 24 Axioms of B(x1�)(x2�x4)(x3�)x4 �-reduces to (x3�)x1. Using de Bruijn's indices, this is (1�)(2�)(4�)1reduces to (3�)1. In fact, if you look at Figure 4, you see that what is happening is thatthe ��-segment (1�)(2�) has been cut o� the tree, and the 4 has been decreased to 3 as wehave lost one �. The 1 in (4�)1 is replaced by the 1 of (1�) giving (3�)1. We could say thatwhen contracting (t1�)(t2�) in (t1�)(t2�)t, all free variables in t must be decreased by 1 andall variables in t that are bound by the � of (t2�) must be replaced by t1. This can be trickyhowever, for assume we take t � ("�)t0 and write the rule as:(t1�)(t2�)t!� t[1 := t1; 2 := 1; 3 := 2; : : :] (where substitution is simultaneous)then replacing (("�)t0)[1 := t1; 2 := 1; 3 := 2; : : :] by ("�)t0[1 := t1; 2 := 1; 3 := 2; : : :] wouldnot work. It should be: ("�)t0[1 := 1; 2 := t1[1 := 2; 2 := 3; : : :]; 3 := 2; : : :].Based on this observation, we need to increment variables (via ') correctly in a term.Rem 4.1 (Compatibility) Let r 2 f�; '; �g. We introduce!r as a relation between segments,although it is meant to be a relation between terms. Rule s!r s0 states that t!r t0 when asegment s occurs in t, where t0 is the result of the replacement of s by s0 in t.5



s s s s s s ss s s� � � � � � 11 2 4 s s s s ss� � � �3 1(�xi:x2 :xix3)x1(x1�)(x2�xi)(x3�)xi(1�)(2�)(4�)1 x1x3(x3�)x1(3�)1�� �� � �Figure 4: �-reduction in our notation4.1 '-reductionWe index ' with two parameters k � 0 and i � 1. 8i � 1, let '(i) denote '(0;i) and ' denote'(1). The intention of the superscripts when ('(k;i)) travels through t1 is the following:� i preserves the increment for FV (t1) and does not increase when passing other �'s.� k counts the �'s that are internally passed by in t1 (k = `threshold') and increaseswhen passing another �. Only variables > k are increased, as the rest are bound.Updating means all free variables in t1 increase with an amount of i; k identi�es the freevariables in t1. Updating variables by looking at the tree is easy: count the �'s you have gonethrough before a free variable and increase the free variable by that number.Ex 4.2 Replacing in ("�)(2�)3, the 2 and the 3 by ("�)2 results in ("�)(("�)3�)("�)4. I.e.the 2 has been replaced by ("�)3 and the 3 by ("�)4. Figure 5 is self explanatory.s s s s ss s� � � � 3" 2 s s s ss ss s ss s� � � ��"" 3 "� 4�x2:":�x3:x1 :x1("�x2)(x1�x3)x1("�)(2�)3 �x2:":�x3:(�x4:":x1):�x4:":x1("�x2)(("�x4)x1�x3)("�x4)x1("�)(("�)3�)("�)4�� ��Figure 5: Substitution in our notationThe de�nition below formalises the updating process.Def 4.3 ('-reduction) Let k 2 IN; i 2 IP; v 2 � and t an 
��-term.('-transition rules:) ('(k;i))(t�) !' (('(k;i))t�)('(k+1;i))('(k;i))(t�) !' (('(k;i))t�)('(k;i))('-destruction rules:) ('(k;i))v !' v + i if v > k('(k;i))v !' v if v � k or v � "Ex 4.4 In substituting ("�)2 for 2 in ("�)(2�)3, we compensate for the preceding � in("�)(2�)3. We substitute ('(0;1))("�)2 for this 2:("�)(('(0;1))("�)2�)3!' ("�)((('(0;1))"�)('(1;1))2�)3!!' ("�)(("�)3�)3Similarly, in the substitution of ("�)2 for 3 in ("�)(2�)3, we compensate for two extra �s:("�)(2�)('(0;2))("�)2!!' ("�)(2�)("�)4. 6



4.2 �-reduction�-items can move through the branches of the term, step-wise, from one node to an adjacentone, until they reach a leaf of the tree. At the leaf, if appropriate, a �-item (or a substitutionitem) can cause the desired substitution e�ect. We use � as an indexed operator: �(1); �(2); : : :.The intended meaning of a �-item (t0�(i)) is: t0 is a candidate to be substituted for one ormore occurrences of a certain variable; i selects the appropriate occurrences.Def 4.5 (one-step �-reduction) Let i 2 IP; v 2 �; t1; t2 
��-terms.(�-generation rule:) (t1�)(t2�)!� (t1�)(t2�)((')t1�(1))(�-transition rules:) (t1�(i))(t2�) !� ((t1�(i))t2�)((')t1�(i+1))(t1�(i))(t2�) !� ((t1�(i))t2�)(t1�(i))(�-destruction rules:) (t1�(i))i !� t1(t1�(i))v !� v if v 6� iNote that our �-transition rules do not allow for �-items to \pass" other �-items. Thefollowing shows that �-reduction reaches all occurrences to be substituted.Lem 4.6 In (t1�)(t2�)t3, �-reduction substitutes t1 for all occurrences of the variables boundby the � of (t2�) in t3. I.e., there is a path for global �-reduction.Proof: The proof is by an easy induction on t3 in (t1�)(t2�)((')t1�(1))t3. 2Lem 4.7 In (t1�(i))t2, �-reduction substitutes t1 for all occurrences of variables in t2 whichare bound by the same � being the i-th entry (from the right) in the free variable list of t2.Moreover, the (')s look after the updating of t2.Proof: By induction on t2, noting that during propagation, when the �-item passes a �,the superscript of � is incremented, keeping track of the variable to be substituted for. 2Ex 4.81. (2�(1))(4�)1!� ((2�(1))4�)(2�(1))1!!� (4�)2.2. ((3�)2�(1))(1�)1!� (((3�)2�(1))1�)((')(3�)2�(2))1!!�' ((3�)2�)((4�)3�(2))1!� ((3�)2�)1.3. ((3�)2�(4))(1�)1!� (((3�)2�(4))1�)((')(3�)2�(5))1!!�' (1�)((4�)3�(5))1!� (1�)1.4. (1�)(2�)(3�)2!� (1�)(2�)((')1 �(1))(3�)2!�(1�)(2�)(((')1 �(1))3�)((')(')1 �(2))2!!�;'(1�)(2�)(((')1 �(1))3�)3!� (1�)(2�)(3�)3The following shows that the bond between variables and their binding �'s is maintained.Lem 4.9 If s(t1�)(t2�)t !� s(t1�)(t2�)((')t1�(1))t then in s(t1�)(t2�)((')t1�(1))t, all vari-able occurrences are bound by the same �'s which bound them in s(t1�)(t2�)t.Proof: left to the reader. 2To get local substitution, one adds to Def 4.5 the �-destruction rule: (t1�(i))t!� t ([KN 93]).7



4.3 �-reductionIn the �-generation rule, the reducible segment may be \without customers" and so �-generation is undesirable since it leads to useless e�orts. Hence we restrict �-generationto those cases where the main � of the reducible segment binds at least one variable. Whenthis is not the case, we speak of a void ��-segment (which may be removed by replacing itby (�(1))). This can be compared to the application of a constant function to some argument;the result is always the (unchanged) body of the function. The meaning of (�(i))t is: decreaseby 1 all variables in t > i. Variables � i in t are bound by some �s in t and hence should notbe decreased. Now the � rules are de�ned as follows:Def 4.10 (�-reduction) Let t1; t2; t 2 
��-terms, v 2 � and i 2 IP .(�-generation rule:) (t1�)(t2�)t!� (�(1))t if (t1�)(t2�) is void in t(�-transition rules:) (�(i))(t�) !� ((�(i))t�)(�(i+1))(�(i))(t�) !� ((�(i))t�)(�(i))(�-destruction rules:) (�(i))v !� v if v � " or v < i(�(i))v !� v � 1 if i < vNote in the second �-destruction rule that v > 1 as i � 1. Note moreover that we never reachthe case where we get (�(i))i (see Lem 4.13).Def 4.11 (One-step �-reduction !�0) One-step �-reduction of an 
��-term is the combina-tion of one �-generation from a ��-segment s, the transition of the generated �-item throughthe appropriate subterm in a global manner, followed by a number of �-destructions, andupdated by '-items until again an 
��-term is obtained. Finally, we replace the now voidsegment s by (�(1))t and we use the �-reduction rules to dispose completely of � in (�(1))t.Ex 4.12 (4�)(�)(1�)(1�)3!�0 (4�)(1�)6:(4�)(�)(1�)(1�)3 !� (4�)(�)((')4�(1))(1�)(1�)3!!�;' (4�)(�)(5�)(1�)7!� (�(1))(5�)(1�)7!� ((�(1))5�)(�(2))(1�)7!� (4�)(�(2))(1�)7!!� (4�)(1�)(�(3))7!� (4�)(1�)6The following Lemma is needed when discussing the semantics of �-reduction:Lem 4.13 If t is an 
��-term and t !!� t0 then for all (�(i))t00 subterm of t0 with t00 an
��-term, we have that i does not refer to any free variable of t00. In particular, if t !!� t0then we never �nd in t0, (�(i))i as a subterm.Proof: By induction on !!�. 28



5 Translating B in �Here, we have to be careful. For example, we can translate (�)2 as any of (�xi)x1 for i 6= 1but not as (�x1)x1. The following example gives another case where we have to be careful:Ex 5.1 t � ((1�)2�)(1�)3 has for any i; j 6= 1, ((x1�)x2�xi)(xi�xj)x1 as a corresponding �-term. Now the subterm (1�)3 of t should be considered relative to a free variable list extendedwith �xi : : : : ; �x4; �x3; �x2; �x1; �xi, and hence corresponds with (xi�xj)x1 for j 6= 1.To avoid choosing wrong subscripts of �'s, we work at a mid-level �, between B and �. In �,subscripts of �'s will be in a list l = x0; x00; : : : such that F \ l = ;. We assume all elementsof l are distinct. We take � = l [ F , let �; �1; �2; �0; � � � range over �, and X;X 0; X1; X2; : : :range over l. We call elements of F free variables and elements of l bound variables.Def 5.2 (�) Terms of � are de�ned similarly to those of � except that all bound variablesare indexed by elements from l (all free variables are in F [ l).Examples of terms of � are "; (x1�x0)x0 and (x1�x0)(x0�)x00. Bound and free variables, �, �,and � de�ned for � can be easily extended to �. We use FV (t) and BV (t) for the free andbound variables of t in �. We use �, � for � and � in �.Def 5.3 (Substitution in �) If t; t0 are terms in � and if v 2 F [ l, then t[v := t0]0 is exactlyde�ned as in Def 2.4 except that, [v := t0] is replaced everywhere by [v := t0]0, [v0 := v00] isreplaced by [v0 := v00]0 and in the last clause, F is replaced by l.If t 2 � translates t0 2 B, then FV (t) � F and BV (t) � l by Lem 5.42. In this case, t canbe mapped to � by replacing its I-variables by variables in F which do not occur in t:Def 5.4 (Translating � in � via �) If t is a term in � such that FV (t) � F and BV (t) � lthen we translate t to t0 by �rst looking for the biggest free variable in t, xi for i 2 IP , andfor the smallest bound variable in t. We replace all the occurrences of this bound variable byxi+1. Then we replace the second smallest bound variable by xi+2 and so on until no variablesfrom l appear in t. We call the translation of the �-term t in �, �(t).Ex 5.5 (�)2 and ((1�)2�)(1�)3 translate in � as (�x0)x1 and ((x1�)x2�x0)(x0�x00)x1 as weshall see. Now, these terms in � are transformed into terms of � in a unique way as follows:The greatest variable of F in (�x0)x1 is x1, hence x0 gets replaced by x2, giving (�x2)x1.The greatest variable of F in ((x1�)x2�x0)(x0�x00)x1 is x2, hence all occurrences of x0; x00 getreplaced by x3; x4 respectively giving ((x1�)x2�x3)(x3�x4)x1.As � and � are similar, we avoid the trivial step of translating between � and � and showthe soundness in �. This simpli�cation does not a�ect the results of this paper.5.1 Variables and listsWe assume the usual basic list operations such as concatenation ++ and head and tail, hdand tl. For i 2 IP , we take hd1 =df hd and hdi+1 =df hd � hdi, and we de�ne tli similarly.Moreover, the set of operators n;�;� and 2 are also applicable for lists and we will mix setsand lists at will. We take v; v0; v1; v2; : : : to range over (�nite and in�nite) lists.9



Def 5.6 Every list is written as the sum of its ordered elements from right to left. If v =: : :++�2 ++�1 and m � 1, we de�ne v�m = : : :++�m+1 ++�m to be the left part of v starting atm, and v<m = �m�1 ++�m�2 ++ : : :++�1 to be the right part of v ending before m. Note thatv�m = tlm�1(v), v<1 is the empty list and v<2 = hd(v).Ex 5.7 F = : : :++x2++x1, l = : : :++x00++x0, F�m = : : :xm+1++xm and F<m = xm�1++ : : :++x1.Def 5.8 We take  62 � to be a special symbol whose meaning will be clear below. We write 1 as  and  0 as the empty string ;.  n will be  ++ � � �++ | {z }n .� For a set A, L(A) = fB;B is a �nite list of distinct elements of Ag.� L1(v) = fv�i; i 2 IPg, Lsp = fF�m ++v;m 2 IP; v 2 L(� [ f g)g,L�1(�) = fv; v 2 Lsp ^ v is  -freeg, and L = Lsp [ L(� [ f g)� 8v 2 L(� [ f g); � 2 �, let jj;jj = 0; jjv++ jj = jjvjj � 1 and jjv ++�jj = jjvjj+ 1.� For a segment s, let sl(;) = ;, sl((t1�)s0) = sl(s0) and sl((t��)s0) = � ++sl(s0).Note that l 62 L(l) and that ; 2 L(A) for every set A. We write jvj for the length of v.Lem 5.9 For all v 2 L(� [ f g), jjvjj � jvj. Moreover, if v 2 L(�) then jjvjj = jvj.Def 5.10 (comp) For all v 2 L ; � 2 �; n 2 IP :comp1(v ++�) =df �compn+1(v ++�) =df compn(v)compn(v ++� ++ i+1) =df compn(v ++ i); i 2 INThe idea of comp is to select the appropriate named variable, given a list of (di�erent) namedvariables. We write compn(v) #, when compn(v) is de�ned.Lem 5.11 For all v 2 L(� [ f g); n 2 IP , if n � jjvjj then compn(v) # ^compn(v) 2 v.Proof: By induction on jvj noting that if jjvjj � 1 then 9� 2 � such that � 2 v. 2Cor 5.12 For all v 2 L(�); n 2 IP , if n � jvj then compn(v) # ^compn(v) 2 v.Proof: Obvious, using lemmas 5.9 and 5.11. 2Lem 5.13 For all v 2 Lsp; n 2 IP; i 2 IN , we have compn(v) # ^compn(v) 2 v. Moreover,compn(v ++ i) = compn+i(v).Proof: The �rst is by induction on n. The second is easy. 2Note that the only case where compn(v) is unde�ned is when n > jjvjj.Lem 5.14 For all v0 2 Lsp; v 2 L(� [ f g); � 2 �; n 2 IP , and i 2 IN , we have:1. If n > jjvjj � 0 then compn(v0 ++v) � compn�jjvjj(v0).2. If n > jjvjj � 0 then compn(v0 ++ i ++v) � compn+i(v0 ++v).3. If n � jjvjj then compn(v0 ++v) � compn(v).4. compn(v0 ++� ++ ++v) � compn(v0 ++v).Proof: 1 and 3, by induction on jvj using Lem 5.13. 2, using Lem 5.13 and 1. For 4:Case n � jjvjj or n > jjvjj � 0, use the de�nition of comp and cases 1+3 above.Case n > jjvjj and jjvjj < 0 then by induction on jvj. 210



5.2 The inverse function eDef 5.15 (e) Let t; t1; t2 2 B��; s be a segment of � consisting of items of the form (�X) forX 2 l; l 2 L1(l); j 2 IP; v 2 �; X 2 l. e takes 
��-terms into terms in � as follows:e(t) =df c(t; ;; l)c(v; s; l) =df d(v; s)c((t1�)t2; s; l) =df (c(t1; s; l)�)c(t2; s; tlnl(t1)(l))c((t1�)t2; s; l) =df (c(t1; s; l)�hd1+nl(t1)(l))c(t2; s(�hd1+nl(t1)(l)); tl1+nl(t1)(l))d(j; ;) =df xjd("; s) =df "d(1; s(�X)) =df Xd(n; s(�X)) =df d(n� 1; s) if n > 1d associates with each de Bruijn's index, the right variable in F [ l which should replace it.Lem 5.16 e is well de�ned and b � � � e(t) � t for any t 2 B��Ex 5.17e(((2�)2�)1) � c(((2�)2�)1; ;; l)� (c((2�)2; ;; l)�x00)c(1; (�x00); fx000; xiv; : : :g)� ((c(2; ;; l)�x0)c(2; (�x0); fx00; x000; : : :g)�x00)d(1; (�x00))� ((d(2; ;)�x0)d(2; (�x0))�x00)x00� ((x2�x0)d(1; ;)�x00)x00� ((x2�x0)x1�x00)x00(The �rst � becomes �x00 and not �x0 , as there is one � in (2�)2; i.e. nl((2�)2) = 1, so�hd1+nl((2�)2) (l) = �hd2(l) = �x00 .) This �-term is replaced by ((x2�x3)x1�x4)x4 in �.Ex 5.18e((�)(1�)(1�)3) � c((�)(1�)(1�)3; ;; l)� (c("; ;; l)�x0)c((1�)(1�)3; (�x0); fx00; x000; : : :g)� (d("; ;)�x0)(c(1; (�x0); fx00; x000; : : :g)�x00)c((1�)3; (�x0)(�x00); fx000; : : :g)� ("�x0)(d(1; (�x0))�x00)(c(1; (�x0)(�x00); fx000; : : :g)�)c(3; (�x0)(�x00); fx000; : : :g)� ("�x0)(x0�x00)(d(1; (�x0)(�x00))�)d(3; (�x0)(�x00))� (�x0)(x0�x00)(x00�)d(2; (�x0))� (�x0)(x0�x00)(x00�)d(1; ;)� (�x0)(x0�x00)(x00�)x1Finally, we replace x0 and x00 of l by x2 and x3 respectively obtaining (�x2)(x2�x3)(x3�)x1.e does not take into account '-, �- and �-items. It is di�cult to provide the translation of'-items without watching what happens in the lists F and l. For example:Ex 5.19 ('(1;2))(1�)(2�)3 of B should be: (x1�)(x4�x0)x4 in � and (x1�)(x4�x5)x4 in �. Dueto ('(1;2)), we use F 0 rather than F where F 0 = : : : x5++x4++x1. I.e. the x2 and x3 disappear.11



5.3 The semantics of B-terms: an initial accountWe provide the semantics using lists of variables v and v0 so that [jv; v0; t]j �nds the meaning oft 2 B using v and v0 to give names to the free and bound variables in t respectively. Moreover,v\ v0 is taken to be ; in order to avoid binding any free variable. If we were to determine thesemantics of B�� only, then it is enough to take v 2 L(l). With ' however, we need v 2 Lsp.We start �rst with only �nite lists in L(l) and give the semantics of B�� as follows:Def 5.20 (�-, �-semantics) 8t1; t2 2 B��; v 2 L(l); v0 2 L1(l); v \ v0 = ;; n 2 �,[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�X)[jv ++X ; v0�i+1; t2]j for i = nl(t1) + 1; X = hdi(v0)[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�)[jv; v0�i; t2]j for i = nl(t1) + 1[jv; v0;n]j =df 8><>: compn(v) if n � jvjxn�jvj n > jvj" if n = "Ex 5.21 (see Example 5.17)[j;; l; ((2�)2�)1]j �([j;; l; (2�)2]j�x00)[jx00; l�3; 1]j �(([j;; l; 2]j�x0)[jx0; l�2; 2]j�x00)comp1(x00) �((x2�j;j�x0)x2�jx0j�x00)x00 �((x2�x0)x1�x00)x00 �Lem 5.22 For any v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2 B��; FV ([jv; v0; t]j) � v [ F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lem 5.23 8v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2 B��, [jv; v0; t]j is well-de�ned + unique in �.Proof: By induction on t 2 B�� using Cor 5.12. 2Lem 5.24 For all t 2 B�� ; e(t) � [j;; l; t]j.Proof: Show by induction on t 8t 2 B��; s 2 � and v 2 L1(l); c(t; s; v) � [jsl(s); v; t]j. 2Ex 5.25 Let t � ("�)((1�)((1�)(2�)3�)(2�)2�)3. Now, the reader can check that:e(t) � [j;; l; t]j � ("�x0)((x0�x00)((x00�)(x0�x000)x0�x000)(x00�x0000)x000�x00)x1:Furthermore, �(e(t)) � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x4)(x3�x5)x4�x3)x1 (see Figure 6).
s s ss s s s ss ss s ss s" x2 x3 x2x3x1 x4x2�x2 �x3�x3 �x4 �x5� �x4t � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x4)(x3�x5)x4�x3)x1 � ("�)((1�)((1�)(2�)3�)(2�)2�)3Figure 6: The tree of �(e(t))12



5.4 Extending the initial account('(k;i))tmeans: add i to all free variables > k, occurring in t. When we look for [jv; v0; ('(k;i))t]j,all the variables in t � k take the same value as in [jv; v0; t]j. Those variables > k must nottake the values they would have taken in [jv; v0; t]j. Rather, looking for their correspondingvariables in v, we have to shift still i positions to the left. I.e. if the index is n, where n > kthen the variable corresponding to n is not the nth variable from right to left in v. Rather, itis the (n + i)th variable from the right. For example:[jx0000x000x00x0; l�5; ('(1;2))(1�)2]j � (x0�)x0000For this, we allow a special symbol  to become an element of v. The operational meaning of is: on going left, delete the �rst named variable. Such a  , will not only be used to erasevariables but will also say which free variable in F correponds to the variable in hand.Ex 5.26 The idea is that:1. If jvj � k + i; v = v1 ++v2 and jv2j = k, then [jv; v0; ('(k;i))t]j = [jv1 ++ i ++v2; v0; t]j. Hencefor [jx0000x000x00x0; l�5; ('(1;2))2]j, we need [jx0000x000x00 ++ 2 ++x0; l�5; 2]j. This evaluates to[jx0000x000x00 ++ 2; l�5; 1]j. The presence of  2 means ignore x000x00. Therefore the resultreduces to [jx0000; l�5; 1]j which is x0000.2. For every n 2 IN;m 2 IP; [jv++ n; v0;m]j = [jv; v0;n+m]j and [j n; v0;m]j = xn+m.Looking at the �rst part of Example 5.26, we see that we need to have v = v1 ++v2 wherejv2j = k. In other words, we have to go through the list v from right to left until we pass thekth element. In order to accommodate this, we introduce an extra argument in the semanticmeaning of '-terms. We will give an example which explains the point even though it isahead of its time in the section. We believe however, that the reader can still follow it, oncepoint 2 of Example 5.26 is remembered.Ex 5.27 Notice how we save x0 to use it later on:[jx00x0; l�3; ('(1;2))(1�)2]j �[jx00; x0; l�3; ('(1;2))(1�)2]j �[jx00++ 2 ++x0; l�3; (1�)2]j �([jx00++ 2 ++x0; l�3; 1]j�)[jx00++ 2 ++x0; l�3; 2]j �(x0�)[jx00++ 2; l�3; 1]j �(x0�)[jx00; l�3; 3]j � (x0�)x2We extend lists from elements of L(l) (as in Def 5.20) to elements of Lsp. Now our listsinclude  's, bound and free variables, and are denumerably in�nite. Now, here is [j�; �; �]je, theextended de�nition of the semantics of �- and �-items.Def 5.28 (Extended �- and �-semantics) [j�; �; �]je : Lsp � L1(l)� B���' 7! �:8t1; t2 2 B��; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; n 2 IP ,[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�X)[jv ++X ; v0�i+1; t2]je for i = nl(t1) + 1; X = hdi(v0)[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�)[jv; v0�i; t2]je for i = nl(t1) + 1[jv; v0;n]je =df compn(v)[jv; v0; "]je =df " 13



Lem 5.29 Let v 2 Lsp; v0 2 L1(l); (v++�) \ v0 = ;; � 2 �; n;m 2 IP and k 2 IN .1: [jv ++�; v0; 1]je � �2: [jv; v0;n+ k]je � [jv ++ k; v0;n]je3: [jv ++�; v0;n+ 1]je � [jv; v0;n]je4: [jF�m ++ k; v0;n]je � xn+k+m�15: [jv; v0;n]je 2 v6: If n 6= m then [jv; v0;n]je 6� [jv; v0;m]jeProof: Easy, using Lem 5.13 and the de�nition of comp. 2Lem 5.30 8v0 2 Lsp; v 2 L(� [ f g); v00 2 L1(l); (v0++v) \ v00 = ;; � 2 � n; i 2 IP :1. If n > jjvjj � 0 then [jv0 ++v; v00;n]je � [jv0; v00;n� jjvjj]je2. If n > jjvjj � 0 then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.3. If n � jjvjj then [jv0 ++v; v00;n]je � compn(v)4. [jv0 ++� ++ ++v; v00;n]je � [jv0 ++v; v00;n]jeProof: This follows from Lem 5.14. 2Cor 5.31 8v0 2 Lsp, v00 2 L1(l); (v0++v) \ v00 = ;, n; i 2 IP , v 2 L(�):1. If n > jvj then [jv0 ++v; v00;n]je � [jv0; v00;n� jvj]je2. If n > jvj then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.3. If n � jvj then [jv0 ++v; v00;n]je � compn(v)Proof: Obvious by lemmas 5.9 and 5.30. 2Rem 5.32 Note that if v 2 Lsp; v0 2 L(�[f g); v00 2 L1(l); (v0++v)\v00 = ;; n; i 2 IP; jjv0jj <0, then even though n > jjv0jj, it is not necessarily the case that:1. [jv ++v0; v00;n]je � [jv; v00;n� jjv0jj]je2. [jv ++ i ++v0; v00;n]je � [jv ++v0; v00;n+ i]jeFor example, [jF ++ 5x0; l�2; 1]je � x0 whereas [jF ; l�2; 1� jj 5x0jj]je � [jF ; l�2; 5]je � x5.Lem 5.33 For all v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2 B��, [jv; v0; t]j � [jF ++v; v0; t]je.Proof: Show 8n 2 IP [ f"g: [jv; v0;n]j � [jF ++v; v0;n]je and then use induction on t. 25.5 The semantics of �- and '-termsDef 5.34 (�-semantics) 8t1; t2 2 B���'; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; i 2 IP :[jv; v0; (t1�(i))t2]je =df [jv; v0; t2]je[[jv; v0; i]je := [jv; v0�1+nl(t2); t1]je]014



Def 5.35 ('-semantics)8t 2 B���'; v 2 Lsp; v0 2 L(�); v00 2 L1(l); (v++�) \ v00 = ;; � 2 �; i 2 IP; k 2 IN :[jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]j[jv; v0; v00; ('(0;i))t]j =df [jv ++ i ++v0; v00; t]je[jv ++�; v0; v00; ('(k+1;i)t]j =df [jv; � ++v0; v00; ('(k;i))t]j[jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jNote here that v00 does not play a role because we do not have bound variables that we aretrying to replace by variable names. What the v0 does however is to save the �rst k variablesof v which are actually the variables in t which should not be updated because they are � k.Once the �rst k variables of v have been saved in v0, we remove the �rst i variables from theresulting v. Hence in the end, we get the correct list from which we �nd the meaning of t.Ex 5.361: [jF ++x0; l�2; ('(2;3))3]je = [jF ++x0; ;; l�2; ('(2;3))3]j= [jF ; x0; l�2; ('(1;3))3]j= [jF�2; x1 ++x0; l�2; ('(0;3))3]j= [jF�2++ 3 ++x1 ++x0; l�2; 3]je = x52: [jF ++x0; l�2; ('(2;3))1]je = x03: [jF ; l�2; ('(1;2))('(0;1))1]j = x4Now the following lemma is basic about '-items.Lem 5.37 Let t 2 B���', v 2 Lsp; v0 2 L(�); v00 2 L1(l); (v++v0) \ v00 = ;, i 2 IP .[jv ++v0; v00; ('(jv0j;i))t]je � [jv ++ i ++v0; v00; t]je.Proof: Easy. First prove by induction on jv0j that if v 2 Lsp; v0; v1 2 L(�) such that(v ++v0 ++v1) \ v00 = ; then [jv ++v0; v1; v00; ('(jv0j;i))t]j � [jv; v0++v1; v00; ('(0;i))t]j 2The following lemma opens the road to working with lists which do not contain  .Lem 5.38 8v0 2 Lsp; v 2 L(� [ f g); v1 2 L1(l); (v0++� ++v) \ v1 = ;; � 2 �, n 2 IP :[jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]jeProof: By nested induction. We prove by induction on t that IH1(t) holds where IH1(t)is: [jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]je� If t = n, use case 4 of Lem 5.30.� If (t1�)t2 or (t1�)t2 or (t1�(i))t2 where IH1(t1) and IH1(t2) hold, easy.� If ('(k;i))t and IH1(t). Prove IH2(k) by induction on k where IH2(k), 8v00 2 L(�) is:[jv0 ++� ++ ++v; v00; v1; ('(k;i))t]je � [jv0++v; v00; v1; ('(k;i))t]je� If k = 0, use IH1(t).� Assume IH2(k). Prove by induction on jvj that IH3(v) holds where IH3(v)is [jv0 ++� ++ ++v; v00; v1; ('(k+1;i))t]je � [jv0 ++v; v00; v1; ('(k+1;i))t]je:� If jvj = 0, use Def 5.35.� If v ++� where � 2 � and IH3(v) holds, use Def 5.35 and IH2(k).� If v++�++ j, � 2 �; j 2 IP and IH3(v++ j�1), use Def 5.35 and IH3(v++ j�1).� Case  j where j 2 IP , use Def 5.35. 2The following lemma is very important. It says that all the  's can be removed from lists.15



Lem 5.39 For all v 2 Lsp; 9v0 2 Lsp which is free for  such that for all t 2 B���'; v00 2 L1(l)such that v \ v00 = ;; [jv; v00; t]je � [jv0; v00; t]je.Proof: We can write v as v1 ++� ++v2 such that � 2 �; v1 2 Lsp; v2 2 L(� [ f g), v1 isfree of  and v2 has  as its leftmost element. Now, the proof is by induction on jv2j usingLem 5.38. Note moreover, that v0 is independent of t. Hence, we may assume from now onthat our start lists do not contain  . 2Finally, we give the translation of any term t of B���':Def 5.40 (The semantic function) De�ne [j�]j : B���' 7! � such that [jt]j =df [jF ; l; t]jeLem 5.41 [j�]j is well de�ned. That is, for all t 2 B���', [jt]j is a unique term in �.Proof: By induction on t 2 B���'. 2Now here is our �rst lemma towards the correctness of our semantics:Lem 5.42 For all t 2 B���', we have:1. BV ([jv; v0; t]je) � v0 for every v 2 Lsp and v0 2 L1(l) such that v \ v0 = ;.2. FV ([jv; v0; t]je) � v for every v 2 Lsp and v0 2 L1(l) such that v \ v0 = ;.3. BV ([jt]j)� l and FV ([jt]j) � F .Proof: 1 and 2 are by induction on t. 3 follows from 1 and 2. 2Hence, a term [jt]j in � can be translated using Def 5.4 to a term in �.Ex 5.43 (Note that we sometimes combine many steps in one.)[j('(2;1))(1�)(2�)3]j � [jF ; l; ('(2;1))(1�)(2�)3]je� [jF ; ;; l; ('(2;1))(1�)(2�)3]j� [jF�2; x1; l; ('(1;1))(1�)(2�)3]j� [jF�3; x2 ++x1; l; ('(0;1))(1�)(2�)3]j� [jF�3++ ++x2 ++x1; l; (1�)(2�)3]je � (x1�)(x2�x0)x4[j('(2;3))('(1;2))(1�)(2�)3]j � [jF ; l; ('(2;3))('(1;2))(1�)(2�)3]je� [jF�2; x1; l; ('(1;3))('(1;2))(1�)(2�)3]j� [jF�3; x2 ++x1; l; ('(0;3))('(1;2))(1�)(2�)3]j� [jF�3++ 3 ++x2 ++x1; l; ('(1;2))(1�)(2�)3]je� [jF�3++ 3 ++x2; x1; l; ('(0;2))(1�)(2�)3]j� [jF�3++ 3 ++x2 ++ 2 ++x1; l; (1�)(2�)3]je� (x1�)([jF�3++ 3 ++x2 ++ 2 ++x1; l; 2]je�)[jF�3++ 3 ++x2 ++ 2 ++x1; l; 3]je� (x1�)([jF�3++ 3 ++ ; l; 1]je�)[jF�3++ 3 ++ ; l; 2]je� (x1�)([jF�7; l; 1]je�)[jF�7; l; 2]je � (x1�)(x7�)x816



6 The soundness of �- and '-reductionHere, we show that if t ! t0 where ! is '-transition or destruction, or �-destruction, then[jt]j � [jt0]j. That is, ' and � are sound with respect to variable updating and substitution. Weshow moreover, that if t!� t0 where ! is �-generation, then [jt]j = [jt0]j. That is, �-generationis a form of �-conversion. Furthermore, �-transition has �-conversion. That is, if t !� t0where !� is �-transition, then [jt]j =� [jt0]j. For this, let us repeat the semantic function:Def 6.1 (Semantics of B���') 8t; t1; t2 2 B���'; v 2 Lsp; v0 2 L(�); v00 2 L1(l); (v++�)\v00 =;; � 2 �; i; n 2 IP and k 2 IN , we de�ne:M1: [jt]j =df [jF ; l; t]jeM2: [jv; v00; "]je =df "M3: [jv; v00;n]je =df compn(v)M4: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�X)[jv ++X ; v00�i+1; t2]je for i = nl(t1) + 1; X = hdi(v00)M5: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�)[jv; v00�i; t2]je for i = nl(t1) + 1M6: [jv; v00; (t1�(i))t2]je =df [jv; v00; t2]je[[j[v; v00; i]je := [jv; v00�i; t1]je]0 for i = nl(t2) + 1M7: [jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]jM8: [jv; v0; v00; ('(0;i))t1]j =df [jv ++ i ++v0; v00; t]jeM9: [jv ++�; v0; v00; ('(k+1;i))t1]j =df [jv; � ++v0; v00; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jNow, the following lemmas inform us about the place of (�) in our system.Lem 6.2 8n 2 IP; v 2 Lsp; v0; v00 2 L1(l), v \ v0 = v \ v00 = ; ) [jv; v0;n]je = [jv; v00;n]je.Lem 6.3 8t 2 B���'; v 2 Lsp; v0 2 L1(l), v \ v0 = ; ) 8v00 2 L1(v0), [jv; v0; t]je =� [jv; v00; t]je.Proof: By induction on t. 2Now we de�ne the notions of (�-, �-) soundness:Def 6.4 Let ! be a reduction rule. We say:� ! is sound if: (8t; t0; v; v0)[t! t0 ) [jv; v0; t]je � [jv; v0; t0]je].� ! is �-sound if: (8t; t0; v; v0)[t! t0 ) [jv; v0; t]je =� [jv; v0; t0]je].� ! is �-sound if: (8t; t0; v; v0)[t! t0 ) [jv; v0; t]je =� [jv; v0; t0]je].� ! is ��-sound if: (8t; t0; v; v0)[t! t0 ) [jv; v0; t]je = [jv; v0; t0]je].Lem 6.5 '-transition through a �-item is sound. I.e., 8t1; t2 2 B���'; v1 2 Lsp; v00 2 L1(l); v1\v00 = ;; i 2 IP , k 2 IN : [jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k;i))t2]jeProof: Assume v1  -free (Lem 5.39). Assume also v1 = v ++v0 for jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k;i))t2]je �j=1+nl(t1)([jv ++v0; v00; ('(k;i))t1]je�)[jv ++v0; v00�j; ('(k;i))t2]je �Lem 5:37([jv ++ i ++v0; v00; t1]je�)[jv ++ i ++v0; v00�j; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lem 5:37[jv ++v0; v00; ('(k;i))(t1�)t2]je 217



Lem 6.6 '-transition through a �-item is sound. I.e., 8t1; t2 2 B���'; v1 2 Lsp; v00 2 L1(l); v1\v00 = ;; i 2 IP , k 2 IN : [jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k+1;i))t2]jeProof: Similar to Lem 6.5, asume v1 is  -free and v1 = v ++v0 for jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k+1;i))t2]je �j=1+nl(t1);X=hdj (v00)([jv ++v0; v00; ('(k;i))t1]je�X)[jv ++v0 ++X ; v00�j+1; ('(k+1;i))t2]je �Lem 5:37([jv ++ i ++v0; v00; t1]je�X)[jv ++ i ++v0 ++x; v00�j+1; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lem 5:37[jv ++v0; v00; ('(k;i))(t1�)t2]je 2Lem 6.7 '-destruction is sound: 8v1 2 Lsp; v2 2 L1(l); v1 \ v2 = ;; n; i 2 IP; k 2 IN :1. If n > k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n+ i]je.2. If n � k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n]je.Proof: Assume v1 is  -free and v1 = v++v0 such that jv0j = k and use Lem 5.37 and Cor 5.31:1:[jv ++v0; v2; ('(k;i))n]je � [jv ++ i ++v0; v2;n]je � [jv ++v0; v2;n+ i]je2:[jv ++v0; v2; ('(k;i))n]je � [jv ++ i ++v0; v2;n]je � compn(v0) � [jv ++v0; v2;n]je 2Lem 6.8 �-destruction is sound: 8t 2 B���'; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; i; j 2 IP :1. [jv; v0; (t�(i))i]je � [jv; v0; t]je.2. [jv; v0; (t�(i))j]je � [jv; v0; j]je if j 6= i.3. [jv; v0; (t�(i))"]je � ".Proof: Note that if i 6= j then [jv; v0; j]je 6� [jv; v0; i]je by Lem 5.29:[jv; v0; (t�(i))i]je � [jv; v0; i]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; t]je.[jv; v0; (t�(i))j]je � [jv; v0; j]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; j]je.[jv; v0; (t�(i))"]je � [jv; v0; "]je[[jv; v0; i]je := [jv; v0; t]je]0 � ", as " 62 v, for every v. 2Lem 6.9 �-transition is �-sound: 8v 2 Lsp; v0 2 L1(l); v \ v0 = ;; i 2 IP; t1; t2; t 2 B���':1. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)((')t1�(i+1))t]je2. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)(t1�(i))t]jeThe 6.10 Let r be r0-transition or r0-destruction rule for r0 2 f�; 'g. t!r t0 ) [jt]j � [jt0]j.Proof: Use lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 above. (Note t; t0 2 B���'.) 2Transition and destruction rules of � and ' work like substitution and variable updating andso return equivalent terms. �-generation on the other hand, accommodates �-reduction.Ex 6.11 [jF ; l; (2�)(3�)1]je � ([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF ++x0; l�2; 1]je � (x2�)(x3�x0)x0. Also[jF ; l; (2�)(3�)((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF ++x0; l�2; ((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)([jF ++x0; l�2; 1]je[[jF ++x0; l�2; 1]je := [jF ++x0; l�2; (')2]je]0 �([jF ; l; 2]je�)([jF ; l; 3]je�x0)(x0[x0 := x2]0) �([jF ; l; 2]je�)([jF ; l; 3]je�x0)x2 �(x2�)(x3�x0)x2Of course (x2�)(x3�x0)x0 and (x2�)(x3�x0)x2 are not �-equivalent but are �-equivalent:(x2�)(x3�x0)x0 !� x2 and (x2�)(x3�x0)x2 !� x2:18



Lem 6.12 �-generation is ��-sound. That is, for all t; t1; t2 2 B���', for all v 2 Lsp; v0 2L1(l), such that v \ v0 = ;, [jv; v0; (t1�)(t2�)t]je = [jv; v0; (t1�)(t2�)((')t1�(1))t]je.Proof: Let i = 1 + nl(t1); j = 1 + nl(t2); X = hdj(v�i); k = 1 + nl(t). Note that[jv; v0; (t1�)(t2�)t]je � ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv ++X ; v0�i+j ; t]je =�[jv ++X ; v0�i+j ; t]je[X := [jv; v0; t1]je]0. Moreover,[jv; v0; (t1�)(t2�)((')t1�(1))t]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X ; v0�i+j ; ((')t1�(1))t]je) �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X ; v0�i+j ; t]je[X := [jv ++x; v0�i+j+k; (')t1]je]0) = 5:37; 5:38�([jv ++X ; v0�i+j; t]je[X := [jv; v0�i+j+k; t1]je]0[X := [jv; v0; t1]je]0) =Lem 6:3�([jv ++X ; v0�i+j; t]je[X := [jv; v0; t1]je]0[X := [jv; v0; t1]je]0) �Lem 5:42[jv ++X ; v0�i+j ; t]je[X := [jv; v0; t1]je]0 27 The meaning and soundness of �-reductionRecall from Def 4.11 that �-reduction was de�ned as a combination of �-, '- and �-reduction.Hence, as �- and '-reduction are sound, all we have left to show here is that �-reduction issound. More precisely, we will show that �-generation is ��-sound and that �-destructionand transition are sound. Let us �rst de�ne the meaning of terms with �-leading items.Def 7.1 (�-semantics) If t is an 
��-term, v 2 L�1(�); v0 2 L(�); � 2 �; v00 2 L1(l),v \ v00 = ;; i 2 IP and i does not refer to any free variable of t, we de�ne:[jv; v00; (�(i))t]je � [jv; ;; v00; (�(i))t]j[jv; v0; v00; (�(1))t]j � [jv ++hd(v00) ++v0; v00�2; t]je[jv ++�; v0; v00; (�(i+1))t]j � [jv; � ++v0; v00; (�(i))t]jThe provision \i does not refer to a free variable of t" can be assumed due to Lem 4.13; thisis the only case we need to de�ne the semantics for. Moreover, it su�ce to take v 2 L�1(�),because t is an 
��-term, so we never generate  's in the list v.Ex 7.21: [j(�(1))(2�)1]j �[jF ; l; (�(1))(2�)1]je �[jF ; ;; l; (�(1))(2�)1]j �[jF ++x0; l�2; (2�)1]je �([jF ++x0; l�2; 2]je�x00)[jF ++x0; l�3; 1]je � (x1�x00)x002: [j(�(2))(1�)1]j �[jF ; l; (�(2))(1�)1]je �[jF ; ;; l; (�(2))(1�)1]j �[jF�2; x1; l; (�(1))(1�)1]j �[jF�2++x0 ++x1; l�2; (1�)1]je �([jF�2++x0 ++x1; l�2; 1]je)�x00)[jF�2++x0 ++x1 ++x00; l�3; 1]je � (x1�x00)x00Note that [j(�(1))(1�)1]j is not allowed, since 1 refers to the free variable 1 in (1�)1.Lem 7.3 Let t be an 
��-term. If �� does not bind any variable in (��)(�1)(�2) : : :(�k)t,then 8v 2 L�1(�); v00 2 L(�); v0 2 L1(l); �; �0 2 �, such that (v0 ++v00) \ v0 = ;; �; �0 62v [ v0 [ v00; jv00j = k, we have: [jv ++� ++v00; v0; t]je � [jv ++�0 ++v00; v0; t]jeProof: By induction on t using lemmas 5.29 and 6.2. 219



Lem 7.4 Let (t1�)(t2�) be void in (t1�)(t2�)t, i = 1 + nl(t1) and j = 1 + nl(t2). 8v 2L�1(�), v0 2 L1(l), v \ v0 = ; ^ X = hdi+j�1(v0) ) ([jv; v0; t1]je�)([jv; v0�i; t2]je�X) is void in[jv; v0; (t1�)(t2�)t]je.Proof: By induction on 
��-terms t. 2Lem 7.5 �-generation is ��-sound. I.e., 8t1; t2; t 
��-terms, 8v 2 L�1(�); v0 2 L1(l) suchthat v \ v0 = ;, if (t1�)(t2�) is void in t then: [jv; v0; (t1�)(t2�)t]je = [jv; v0; (�(1))t]jeProof: By induction on t. Let i = 1+nl(t1); j = 1+nl(t2); X = hdi(v0�j) = hdi+j�1(v0).� If t � " then obvious.� If t � m then m > 1. Moreover, ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv ++x; v0�i+j;m]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv; v0�i+j;m� 1]je =Lem 7:4�[jv; v0�i+j ;m� 1]je �lemmas 5:29 and 6:2 [jv ++hd(v0); v0�2;m]je � [jv; v0; (�(1))m]je.� If t � (t01�)t02 then: [jv; v0; (t1�)(t2�)(t01�)t02]je �k=1+nl(t01);X0=hdk(v0�i+j )([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++x; v0�i+j ; t01]je�X0)[jv ++x ++x0; (v0�i+j)�k+1; t02]je =Lem 7:4�[jv ++X ; v0�i+j ; (t01�)t02]je =Lem 6:3� [jv ++X ; v0�2; (t01�)t02]je �Lem 7:3[jv ++hd(v0); v0�2; (t01�)t02]je � [jv; v0; (�(1))(t01�)t02]je� If t � (t01�)t02 then similar. 2Rem 7.6 Note that �-generation is not sound. In particular, [jF ; l; (4�)(�)2]je � (x4�)(�x0)x1and [jF ; l; (�(1))2]je � [jF ++x0; l�2; 2]je � x1. Now (x4�)(�x0)x1 =� x1 and (x4�)(�x0)x1 6� x1.Lem 7.7 �-transition is sound: 8
��-terms t1; t2, v 2 L�1(�), v000 2 L1(l) such that v\v000 =;, 8i 2 IP , if i 62 FV ((t1�)t2), k = 1 + nl(t1); X = hdk(v000) then:1: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]je�X)[jv ++x; v000�k+1(�(i+1))t2]je2: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]je�)[jv; v000�k; (�(i+1))t2]jeProof: We show 1 only as 2 is similar. Let v = v0 ++v00 such that jv00j = i� 1:([jv; v000; (�(i))t1]je�X)[jv ++x; v000�k+1; (�(i+1))t2]je �([jv0 ++hd(v000) ++v00; v000�2; t1]je�X)[jv0++hd(v000�k+1) ++v00 ++x; v000�k+2; t2]je �Lem 7:3[jv0 ++hd(v000) ++v00; v000�2; (t1�)t2]je �[jv; v000; (�(i))(t1�)t2]je 2Lem 7.8 �-destruction is sound: 8v 2 L�1(�), v000 2 L1(l) such that v\v000 = ;, 8i;m 2 IP :� [jv; v000; (�(i))"]je � ".� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m]je if m < i.� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m� 1]je if m > i.Proof: [jv; v000; (�(i))"]je � ", easy. [jv; v000; (�(i))m]je � [jv0++hd(v000)++v00; v000�2;m]je � t wherev = v0++v00 and jv00j = i� 1. If m < i then m � i� 1 and t � [jv0++v00; v000;m]je. If m > i thenm � i+ 1 and t � [jv0++v00; v000;m� 1]je. 220



8 Conclusions and comparisonIn order to show the soundness of our calculus we provided a translation from B into �, avariant of � where bound variables are taken from a particular ordered list. Our translationfunctions are important on their own. First, it is nice to have a mechanical procedure whichtakes terms written with variable names and returns terms with de Bruijn's indices. Second,it is equally important and interesting to go the other way. For instance, when translating aterm (with de Bruijn indices) that represents some mathematical theory/proof to a term withnamed variables, we want particular names to be used. In fact, one of the advantages of deBruijn's indices is that �-conversion is no longer needed. Now, terms written with de Bruijn'sindices are di�cult to understand even for those who are familiar with them. Variable nameson the other hand, clarify the term in hand but cause a lot of complications when applyingreduction and substitution. If however, we order our lists of free and bound variables, then wecan avoid the di�culty caused by variable names. In fact, this is what we do in this paper. Wetake our lists of variables to be ordered and we translate B into � (i.e. using variable names)in a unique way via [j�]j. When in �, it is up to us to equate terms modulo �-conversion ratherthan being forced to do it in the translation (see Appendix B).In order to make substitution explicit and to discuss �-reduction, we had to add threekinds of reduction rules: the '-, �- and �-reductions. ' updates variables, � substitutes termsfor variables and � decreases the indices as a result of a �-conversion which removes a � froma term. Each kind of reduction has three rules: generation, transition and destruction. Now,substitution and reduction in � are given similarly to that of the classical calculus; i.e. implicitand global. Therefore, we show that our reduction rules actually do represent reduction andsubstitution in � and are hence sound. In particular, we show that �-, �- '-destruction and '-,�-transition are sound in that if t!r t0 where r is one of these rules, then [jt]j � [jt0]j. This is verynice because the corresponding reductions in � also return equivalent rather than �-equivalentterms. Furthermore, we show that �-transition is �-sound in that if t !��transition t0 then[jt]j =� [jt0]j. We also show that �- and �-generation are ��-sound in that if t !r t0 where ris one of these two rules, then [jt]j =�� [jt0]j. Now, we are satis�ed with the result concerning�-conversion. In fact, �- and �-generation do actually represent �-conversion in B. Notemoreover that in the soundness proof of �-transition and �- and �-generation, �-conversionappears despite the fact that we avoided it in our translation function. Look for example atthe proof of Lem 7.5. When t � (t01�)t02, we had to apply Lem 6.3 to obtain an �-equivalentterm. We have hence singled out the steps in which � must be used: �- and �-generationand in �-transition. Finally, note that we did not discuss completeness because this becomeshere a trivial matter. In fact, everything that can be shown in the classical �-calculus canbe shown in our own. Even better, our calculus is more expressive in that it accommodatesexplicit substitution whereas the classical one does not.Work on explicit substitution with de Bruijn indices has been �rst done in depth by Curien(in his PhD thesis, 1983) and was based on categorical combinators. Curien's original workwas pursued by applications such as the categorical abstract machine of [CCM 87]. [ACCL 91]provides an algebraic syntax and semantics for explicit substitution where de Bruijn's indicesare used. The connection with the classical �-calculus is not investigated. [HL 89] proposescon
uent systems of substitution based on the study of categorical combinators and [Field 90]provides an account of explicit substitution similar to that of [ACCL 91]. Our approach inthis paper follows de Bruijn rather than Curien in using concepts which belong to the �-21



calculus rather than to Category Theory. In fact, we believe that as � and � are operatorsof the �-calculus whose behaviour is well-understood, �, ' and � should also be treatedsimilarly. This approach of treating the �-calculus via items has proven advantageous in ourvarious extensions as in [BKN 95], [KN 95] and [KN 96b]. [KN 93] provides an account ofexplicit substitution which is used to discuss local and global substitution and reduction. Nosemantics is provided for that account and the precision of this paper is not assumed there.The reduction rules however of the present paper are based on [KN 93] even though there,there was no �-reduction and �-reduction was assumed. We believe that we have in this paperpresented the most extensive approach of variable manipulation, substitution and reduction.Our approach can be easily and in a straightforward fashion implemented because we havecarried out all the di�cult work related to variables. Furthermore, as [KN 93] has shownthat [ACCL 91] can be interpreted in [KN 93] and as B is an extension of [KN 93], our workhere also applies to [ACCL 91]. [Kra 93] provides a semantics of the explicit substitution ofan extension of [KN 93]. The work of [Kra 93] originated from our function e of this paperbut ignores to order the list of bound variables which we call l imposing �-conversion. InAppendix B, we provide a semantics where all �-equivalent terms are identi�able.In [KR 95], �s, the subsystem of B where �-generation does not preserve the ��-couple,has been studied. �s along with the system of [BBLR 95] are the �rst calculi of explicitsubstitution which enjoy con
uence on closed terms and preserve strong normalisation. In[KR 9x], it was shown that in the simply typed version of �s, well-typed terms are stronglynormalising. In [KR 9y], it was shown that �s extended with open terms is con
uent. At themoment, we are extending the work of [KR 95], [KR 9x] and [KR 9y] to study the properties of�s where �-generation preserves the ��-couple, hence resulting in the system B of this paper.Finally, Daniel Briaud noted our attention that adding intersection types to [BBLR 95] isproblematic as there will be terms that are strongly normalising but not typable. This isnot the case when intersection types are added to �s. This could be seen as an advantageto our framework of remaining close to the �-calculus rather than using combinators as in[ACCL 91] and [BBLR 95].A Making i negative in ('(k;i))Up to now, the i-superscript in ('(k;i)) has been considered an element of IP . If however, weallow in ('(k;i)), i to be negative, we could include the following rule:Def A.1 (��-destruction rule) For all t1; t2 
��-terms, we have: (t1�)(t2�)!; ('(0;�1)) pro-vided that the � in (t2�) does not bind any variable in the term following (t1�)(t2�), i.e.provided that (t1�)(t2�) is void. Sometimes we denote !; by void �-reduction.Unfortunately, negative superscripts identify di�erent variables as in: ('(1;�1))(2�)1 !!'(1�)1. Hence, updating is no longer an injection, which can be highly undesirable. Thisunpleasant e�ect however, does not occur in the setting presented above: a '-item with anegative exponent only occurs after the clean-up of a void ��-segment, hence with a � thatdoes not bind any variable. Therefore, the injective property of updating is not threatened.Now the �-rules together with the ��-destruction rule, enable us to accomplish �-reduction:Def A.2 (one-step �-reduction!�00) One-step �-reduction of an 
��-term is the combinationof one �-generation from a ��-segment s, the transition of the generated �-item through theappropriate subterm in a global manner, followed by a number of �-destructions, and updated22



by '-items until again an 
��-term is obtained. Finally, there follows one void �-reductionfor the disposal of s, and we use the '-rules to dispose completely of the '-items.Ex A.3 (1�)(2�)(4�)1!�00 (3�)1 as follows:(1�)(2�)(4�)1 !� (1�)(2�)((')1�(1))(4�)1!�' (1�)(2�)((2�(1))4�)(2�(1))1!!� (1�)(2�)(4�)2!; ('(0;�1))(4�)2!' (('(0;�1))4�)('(0;�1))2!!' (3�)1:We used in this paper � instead of negative superscripts for ' in order to make a cleardistinction between the harmless positive updating and the potentially dangerous negativeupdating (see our remark after Def A.1). To be precise: (�(i)) is equivalent to ('(i�1;�1)); butin the case of void reductions, ('(i�1;�1)) has the same e�ect as ('(i;�1)).B An alternative semanticsIn the de�nition of the semantic function from B to �, we took F and l which were bothordered (see Def 6.1). This enabled us to translate every term t of B to a unique term t0 of� rather than to t00 where t0 =� t00. In this appendix, we de�ne the semantic function whichreturns any element of the �-equivalence class. This is not the approach we use in the paperbecause implementation cannot rely on �-conversion. Of course we pay a price (which is nothigh compared with the advantages) in that we had to manipulate not only the list of freevariables but also the list of bound ones.Def B.1 (�- and �-semantics) For all t1; t2 2 B��; v 2 L(l); n 2 IP [ f"g,[jv; (t1�)t2]j =df ([jv; t1]j�v)[jv ++v; t2]j where v 2 l n v[jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]j[jv;n]j =df 8><>: compn(v) if n � jvjxn�jvj n > jvj" if n = "Ex B.2[j;; (�)(1�)(1�)3]j �X12l;X1 is arbitrary([j;; "]j�X1)[jX1; (1�)(1�)3]j �("�X1)([jX1; 1]j�X2)[jX1X2; (1�)3]j �X22l;X2 is arbitrary;X2 6�X1("�X1)(comp1(X1)�X2)([jX1X2; 1]j�)[jX1X2; 3]j �("�X1)(X1�X2)(comp1(X1X2)�)x3�jX1X2 j �("�X1)(X1�X2)(X2�)x1We need the following which de�nes variable substitution of lists of variables.Def B.3 (Substitution in lists) If v is a list of variables of �, then we de�ne v[v := v0]0 to bethe list v but where all occurrences of v have been replaced by v0.Now the following lemmas are needed to show that [j�; �]j is well de�ned.23



Lem B.4 For any v; t; FV ([jv; t]j) � v [ F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lem B.5 For X 0 2 l n v;X 2 v; v 2 L(l) and t 2 B��: [jv; t]j[X := X 0]0 =� [jv[X := X 0]0; t]j.Proof: By induction on t 2 B��.1. [jv;n]j[X := X 0]0 � [jv[X := X 0]0;n]j for n 2 IP [ f"g.2. [jv; (t1�)t2]j[X := X 0]0 � (([jv; t1]j�)[jv; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�)[jv; t2]j[X := X 0]0 =IH�([jv[X := X 0]0; t1]j�)[jv[X := X 0]0; t2]j � [jv[X := X 0]0; (t1�)t2]j.3. [jv; (t1�)t2]j[X := X 0]0 �X12lnv;X1 6�X0 (([jv; t1]j�X1)[jv ++x1; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�X1)[jv ++x1; t2]j[X := X 0]0 �IH([jv[X := X 0]0; t1]j�X1)[j(v ++x1)[X := X 0]0; t2]j �([jv[X := X 0]0; t1]j�X1)[jv[X := X 0]0 ++x1; t2]j � [jv[X := X 0]0; (t1�)t2]j.4. [jv; (t1�)t2]j[X := X 0]0 �X02lnv (([jv; t1]j�X0)[jv ++x0; t2]j)[X := X 0]0 �X00 62FV ([jv++x0 ;t2]j)(([jv; t1]j�X00)[jv ++x0; t2]j[X 0 := X 00]0)[X := X 0]0 =Lem B:4;IH�(([jv; t1]j�X00)[jv ++x0[X 0 := X 00]0; t2]j)[X := X 0]0 � (([jv; t1]j�X00)[jv ++x00; t2]j)[X := X 0]0Now, refer to case 3 above. 2Lem B.6 ([jv; t1]j�X1)[jv ++X1; t2]j =� ([jv; t1]j�X2)[jv ++X2; t2]j for X1; X2 2 l n v.Proof: If X1 = X2, then nothing to prove. If X1 6= X2, then:([jv; t1]j�X1)[jv ++X1; t2]j �X2 62FV ([jv++X1 ;t2]j);Lem B:4([jv; t1]j�X2)[jv ++X1; t2]j[X1 := X2]0 =Lem B:5�([jv; t1]j�X2)[j(v ++X1)[X1 := X2]0; t2]j �X1 ;X2 62v([jv; t1]j�X2)[jv ++X2; t2]j � [jv; (t1�)t2]j 2Lem B.7 [j�; �]j as de�ned in Def B.1 is well de�ned: 8v; t, [jv; t]j is unique up to �-conversion,(I.e. does not depend on the choice of v in clause 1 of Def B.1).Proof: By induction on t 2 B�� using Lem B.6 for the interesting case t � (t1�)t2. 2Lem B.8 8t 2 B��; c(t; s; l n sl(s)) =� [jsl(s); t]j. (Hence e(t) =� [j;; t]j.)Proof: By induction on t. 2Now the de�nition which replaces Def 6.1 is the following:Def B.9 (Semantics of B���') 8t; t1; t2 2 B���'; v 2 Lsp; v0 2 L(�); � 2 �; i; n 2 IP; k 2 IN :M1: [jt]j =df [jF ; t]jM2: [jv; "]j =df "M3: [jv;n]j =df compn(v)M4: [jv; (t1�)t2]j =df ([jv; t1]j�X)[jv ++X ; t2]j where X 2 l n vM5: [jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]jM6: [jv; (t1�(i))t2]j =df [jv; t2]j[[j[v; i]j := [jv; t1]j]0M7: [jv; ('(k;i))t]j =df [jv; ;; ('(k;i))t]jM8: [jv; v0; ('(0;i))t1]j =df [jv ++ i ++v0; t]jM9: [jv ++�; v0; ('(k+1;i))t1]j =df [jv; � ++v0; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; t]j =df [jv ++ k; v0; t]jSoundness of the reduction rules with respect to this de�nition is left to the reader.24
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