A Semantics for step-wise substitution and reduction™

) -
Fairouz Kamareddine*

December 5, 1995

Abstract

We show the soundness of a A-calculus B where de Bruijn indices are used, substitution
is explicit, and reduction is step-wise. This is done by interpreting B in the classical
calculus where the explicit substitution becomes implicit and de Bruijn indices become
named variables. This is the first flat semantics of explicit substitution and step-wise
reduction and the first clear account of exactly when a-reduction is needed.

Keywords: De Bruijn’s indices, variable updating, substitution, reduction, soundness.

1 Introduction

Variables play a very demanding role in the reduction and substitution of the A-calculus. This
has lead in many cases to using implicit rather than explicit substitution. Implementations
of the A-calculus provide their own explicit substitution procedures as in HOL [GM 93],
Nuprl [Con 86] and Authomath [NGdV 94]. Furthermore, research on theories of explicit
substitution has been striving lately ([HL 89], [ACCL 91], [KN 93], [Mel 95], [BBLR 95] and
[KR 95]). In this paper, we extend the calculus of [KN 93] (which is influenced by Authomath)
giving B, a calculus which uses de Bruijn indices and where reduction and substitution are
step-wise and explicit. The species of variable names is cultivated and ordered so that a
fine inter-marriage between de Bruijn’s indices and variable names takes place. We show
the consistency of the fine reduction and explicit substitution of B in terms of the classical
A-calculus and reflect on the use and necessity of a-conversion.

Basic to our work is the item notation (see [KN 96a] for advantages). To write classical
terms into item notation, we use Z where Z(t) =t if t € V, T(A.r.t') = (Z(H)A)Z(¢') and
Z(tt') = (Z(¥')6)Z(t) (note the order). Hence, a term ¢t is of the form s,55...5,t where t' is a
variable and s; for 1 <¢ < n is an item (of the form (#;w) where w is an operator such as §

*T am grateful for the discussions with Jos Baeten, Henk Barendregt, Erik Barendsen, Inge Bethke, Tijn
Borghuis, Herman Geuvers, Jeroen Krabbendam, Rob Nederpelt, Erik Poll and Peter Rodenburgh and for the
helpful remarks received from them.

'T am grateful to the Department of Mathematics and Computing Science, Eindhoven University of Tech-
nology, for their financial support and hospitality from October 1991 to September 1992, and during various
short visits since 1993. Furthermore, | am grateful to the Department of Mathematics and Computer Science,
University of Amsterdam, and in particluar to Jan Bergstra and Inge Bethke for their hospitality during the
preparation of this article. Finally, this work is supported by the EPSRC grant GR/K 25014 and by the
ESPRIT Basic Research Action project “Types for Proofs and Programs”.

{Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, email: fairouz@dcs.glasgow.ac.uk

or A (with or without a subscript)). When the operators get increased to include substitution
(), updating (¢) and decreasing (i) operators, the respresentation of terms remains simple
to describe and enables one to define reduction and substitution in a step-wise fashion where
at every step it is clear which item moves inside (or over) which one. This step-wise fashion
gives explicit substitution and enables local and global reduction as shown in [KN 93].

We provide a method which takes any term of the A-calculus with named variables and
implicit substitution, A, into B such that all a-equivalent terms in A are mapped into a
unique element of B. The other direction however, of mapping elements of B into elements
of A is more difficult. This is because in B, the A’s do not have variable names as subscripts
and so we have to look for such subscripts in a way that no free variables in the term get
bound. Moreover, a term in B represents a whole class of terms in A (a-equivalent terms).
In translating B to A, we avoid a-conversion in A and associate to each term of B a unique
term of A rather than an arbitrary element of the a-equivalence class. Now, having such a
translation [-] from B to A, we show that the variable updating, the substitution and the
reduction rules in B are sound by showing that if ¢ — ¢ where — is either o-, or ¢- or
p-reduction (excluding o- or p-generation and o-transition, see below), then [¢] = [¢]. Hence
the rules which accommodate variable updating and substitution result in syntactically equal
terms. We shall moreover, show that if £ — ¢’ where the reduction includes o- or u-generation,
then [t] =57 [¢']. That is, the rules which actually reduce f-redexes in B are nothing more
than the 5 rule in A. Finally if — is o-transition then [{] =z [¢']. Like this, we provide a
flat semantics where most reduction steps are mapped to syntactical equality and not to a
corresponding reduction. This semantics shows that our reduction and substitution rules are
a refinement of those of the classical calculus.

We believe that our approach is the first to be so precise about variable manipulation,
substitution and reduction. There is never a confusion of which variable is the one manip-
ulated and hence a machine can easily carry out our reduction strategies and translate the
terms using variables in a straightforward manner. This approach should be considered in im-
plementations of the A-calculus. Our work here might look too involved, but we have actually
carried out the hard part of manipulating variables once and for all.

2 Basic Notation

We take IV to be the set of natural numbers, i.e. > 0, IP to be the set of positive natural
numbers, i.e. > 0, Z to be the set of integers and take 7, j, m, n, ... to range over numbers. We
let 7 = {z,2,,...} be an ordered set whose elements are all distinct and call the left infinite
list of As as drawn in Figure 1, the free variable list F. We let V', the set of variables of A, be

D VD V. V. Vi
— ¢ & o o

Figure 1: The free variable list F

{e} UF where ¢ can be looked at as a special variable or as a constant and is never used as a
subscript for A.! We take = = {¢} UIP to be the set of variables of B and let v, v, v" vy, v, . ..
range over F UZE.? We take Q, = {0} U{A,;;v € F} and Q5 = {4, A, 0, ¢, it} to be the sets

1

¢ is added because it enables us to generalise the calculus. By taking all types of variables after A to be e,
we obtain the type free A-calculus ([KN 93]). € has further uses such as the O in [Bar 92].
2Note that e € = because no variable in B is a subscript of a A.

of operators of A and B respectively. We let w,w’,wy,... range over {24 U 25 and use €2 to
range over subsets of Q5. We let ¢,¢;,... range over terms of A and B. We take F'V () and
BV (t) to be defined as usual and to represent the free and bound variables of ¢ in A and B;
we assume that ¢ is neither free nor bound. For r € {«, 3,0, ¢, 1, 3", 5}, we assume that —,
is compatible (see [Bar 84]), call the reflexive transitive closure of —,, —, and let =, the
least equivalence relation closed under —»,.. = is the least equivalence relation closed under
—», and —»5. We use = to be syntactic identity and when t =t in A, we write -5 t =¢'. We
assume familiarity with de Bruijn indices. For example, for ¢ # 3,7 € IP, (A,.,.(z;23))x; or
(210)(22Ay,) (230)2; is written (A;.14)1 or (18)(2A)(49)1 (see Figure 2) where the free variable
list is used to account for the free variables x;, 25 and z3. To translate (2,0)(z2A;,)(230)2;

when ¢ =1 or ¢ = 2 (i.e., 2; occurs bound and free), we rename z; to z; for j > 3.
1 2 4

‘0 ® ‘
=]5 1

(/\x4:x2-$4$3)$1
(210)(29As,) (230) 24
(16)(2A)(46)1
Figure 2: A tree with de Bruijn’s indices

Terms of A and B are given by the following syntax:
A=V | LA where I, 1= (AQ,)
B:u=Z|1sB where I ::= (BQ)
We may write 8> when Q = {\, §}, and call those terms ,s-terms. Later on we increase {2
by adding o, ¢ and p. p-terms will only be used with €,s-terms. Example 2.1 shows terms
both in A and B. The translation between A and B will be given in Sections 3 and 5.

Ex 2.1 (The de Bruijn trees of these lambda terms are given in Figure 3.)
1. In B, both (218)(z2A;,)25 and (2,0)(z2A,,)2s are denoted as (16)(2A)1. Note however,
that (2,0) (29X,)25 Z (210)(22A,,)23 for example, unless («) is assumed in A.
2. The term ((25A;,)250)2z; in A is written as ((2A)16)1in B.
2

‘1' 2 /\‘_= 1
— —oi‘——oig—cigl/_‘_vl — —oi<——oi— o °]
(16)(2A)1 ((2A)16)1
(210)(22As,)5 ((z2Ae,) s 0)ay
(Aess - T5)T1 1 (Apyy - T5)

Figure 3: de Bruijn trees with explicit free variable lists and reference numbers
Now, we define a number of concepts of A and B that will be used in the rest of the paper.

Def 2.2 ((main) items, (main) segments, w-items, dA-segments, body, weight, nl)

o If w is an operator and t is a term then (tw) is an item called w-item. We use
S, 81, S;, - .. tO Tange over items.

A concatenation of zero or more items is a segment. We use 5, 57, §; ... lo range over
segments and write O for the empty segment. A reducible or é\-segment, is a §-item
next to a A-item. If = s185...8,, we call s1,85,...,58, the main items of 3.

e Fach term t is the concatenation of zero or more items and a variable: t = s185...5,v.
81,89, ...,8, are called the main items and s,55 ..., is the body of t; a concatenation
of adjacent main items, Sy, .. .Smyk, 15 called ¢ main segment.

o The weight of a segment or a term is the number of its main items.

o We define nl(v) = 0 if v is a variable, nl((t,w)ty) = nl(ty) + nl(ts) if w # X and

Ex 2.3 Let t = (eA)((16)(eA)16)(2A)1 and 5 = (eA)((16)(eA)16)(2A). The main items of ¢
and 5 are (gA), ((16)(¢A)16) and (2A), being a A-, a d-, and a A-item. ((16)(sA)16)(2A) is a
main (0A-) segment of £ and 5. Also, 5is a AdA-segment, which is a main segment of ¢. Note

that weight(t) is not necessarily the same as nl/(¢) (which counts the number of As in t). For
example, weight(((1A)2A)3) = 1 whereas nl(((1A)2X)3) = 2.

Def 2.4 (Substitution in A) If t,t" are terms in A and v is a variable in F, we define the
result of substituting t' for all the free occurrences of v int as follows:

t ift=wv

t ift=v£vort=e

(ta[v :=t]6)ti[v :=t'] if t = (t20)ty

(ta]v = ')A\t if t = (taA)t
tlo:=t=4 < (tafv =Nt [v = 1] if t = (taAy)t, v £ 0,

(vg FV(ty) orv' ¢ FV (1))

(to[v =N)t [V = 0" v =] ift = (A0, v E U, v € FV (1),
v € FV(U'),v"is the first variable
in F which does not occur in (t6)t'

The («) and (f) axioms in A are defined as follows:

(a) (tA) =4 (tA)U[v := 0] where v ¢ FV (V)
(8) (L"8)(tA) —p t'[v :=t"]

3 Translating A in B

We enumerate F via T, so that: jaz; = 1,7z, = 2, f23 = 3, ... and define, for v € F, 1A, to be
A, 10 to be § and fe to be . We need the following notions:

Def 3.1 (term;) We define term; to be a partial function which takes non empty segments
of A and returns terms of A as follows:
termy ((tyw1)3) =4 t1, and term; ((tiw,)3) =4 term;_(3), for i > 2,5 # (.

Def 3.2 (lam;) lam; takes 5 of A and returns (A,,)(A.,) ... (A,) obtained by removing all
the main é-items from the first (i — 1) main-items of 3 and by removing all the t’s from the
main A-items (t\,) of these (i — 1) main-items. lam; is defined as follows:

laml(§) =df @
lam;((tA,)s) =4 (A)lam;_1(3) for i > 2 and weight(s) > ¢ — 2
lam((t6)s) =4 lam(3) for i > 2 and weight(s) > i — 2

Let Seqi=r (t;w;) be (twy)(taws) ... (t,w,), n > 0. The translation from A into B is as follows:
Def 3.3 (b) Fort,t;,t5 € A,v,v' € F,5 segment of A, we define b as follows:

bty =q V(0) b(v,3(\)) =4 1

b(3) =4 body(b(5e)) b'(v,5(A)) =g 14+(v,5) ifv' #v
b'(e,5) =4 ¢ O ((t1A)t2,5) =4 (U (t1,5)N) (t2,5(N,))
b (v,0) =4 Tv(notev#e) b'((t10)t2,5) =4 (V(t1,5)0)0(2,3)

Here b'(v,3) finds the de Bruijn number corresponding to v whithin context 5 (see Ex 3.5).
b'((t1 A\,)t2,S) translates ¢, with respect to 5§ and ¢, with respect to 5(A,).

Lem 3.4 If 57,35 are segments of A,v € FU{c}, then

b (51v,52) = Seqizr (b (term; (57), Salam; (57)) top: (51)) (v, Salam, 11 (7)), for n = weight(s7).
Proof: By induction on the length of 57. a

So, if t = (tywy)(tawa) ... (tawn)v = STv € A, then V' (£,53) = (¢ Twi) (8 Twa) ... (&, Twa)V'

where t} = 0'(t;,53lam; (57)) and v = b (v, Salam,, 11 (body(t))). Hence, ¢t and ¥'(¢,53) have the

same trees, except that A’s lose their subscripts and variables are replaced by correct indices

found by tracing the A’s. That is why, in ¢}, we had to attach all the As preceding ..

Ex 3.5

Lob((21Ae,) (22Ae,)@a) = (U (21, D)X (V' (22, (Ae,)) M)V (24, (Aey) (Aey)) = (T21A) (BA)2 = (1N) (3N)2.
2. b((216)(x2As,) (230)2s) = (10)(2X)(40)1.

3. b(((w3As,)zad)zy) =V ((x3he,) 2, D))V (21, 0) = (' (23, D)) (24, (As,))8)1 = ((BN)10)1

Lem 3.6 For anyt in A, b(t) is well defined.
Proof: By induction ont € A. a

b is not injective: b((z1Az,)z2) = b((x1A,)23) but (z1A.)2s Z (x1A.,)zs. b however is
surjective (see Lem 5.16). The following lemma is informative about b.

Lem 3.7 Ift,t' are terms in A such that t =, t' then b(t) = b(t').
Proof: By induction ont =, 1. a

4 Axioms of B

(210)(22A4,)(250)24 B-reduces to (230)z;. Using de Bruijn’s indices, this is (15)(2A)(46)1
reduces to (30)1. In fact, if you look at Figure 4, you see that what is happening is that
the dA-segment (16)(2A) has been cut off the tree, and the 4 has been decreased to 3 as we
have lost one A. The 1 in (46)1 is replaced by the 1 of (15) giving (36)1. We could say that
when contracting (¢,8)(¢2A) in (£,0)(¢2A)t, all free variables in ¢ must be decreased by 1 and
all variables in ¢ that are bound by the X of (£2A) must be replaced by ¢;. This can be tricky
however, for assume we take t = (¢A)t’ and write the rule as:

(t18) (t2A)t =5 t[1:=1t1,2:=1,3:=2,..] (where substitution is simultaneous)
then replacing ((e\))[1 :=¢,2:= 1,3 :=2,..] by (e[l :=¢,,2:= 1,3 := 2,...] would
not work. It should be: (eA)t'[1:=1,2:=4[1:=2,2:=3,..],3:=2,..].
Based on this observation, we need to increment variables (via ¢) correctly in a term.
Rem 4.1 (Compatibility) Let r € {0, ¢, u}. We introduce —, as a relation between segments,

although it is meant to be a relation between terms. Rule 5 —, s’ states that ¢ —, ¢ when a
segment 3 occurs in ¢, where ¢’ is the result of the replacement of 5 by s in t.

(/\x,:xz-wwa)wl T1T3
(210)(22As,) (250)2; (38) 2,
(16)(20) (49)1 o)1

Figure 4: B-reduction in our notation

4.1 -reduction

We index ¢ with two parameters k > 0 and ¢ > 1. Vi > 1, let ¢ denote »(®") and ¢ denote

. The intention of the superscripts when (%)) travels through ¢, is the following:
e i preserves the increment for F'V (¢;) and does not increase when passing other A’s.

e [counts the X’s that are internally passed by in ¢; (k = ‘threshold’) and increases
when passing another A. Only variables > k are increased, as the rest are bound.

Updating means all free variables in ¢; increase with an amount of ¢; k£ identifies the free
variables in ¢;. Updating variables by looking at the tree is easy: count the A’s you have gone
through before a free variable and increase the free variable by that number.

Ex 4.2 Replacing in (¢A)(2A)3, the 2 and the 3 by (¢A)2 results in (gA)((eA)3A)(eA)4. Le.
the 2 has been replaced by (¢A)3 and the 3 by (¢A)4. Figure 5 is sglf explanatory.

£ 2 £ -'9\— 3 ¢
® ® ® ® ®
A A A A 3 A A A A A 4
— —e— —eé— ® — —e— —e— ®
AI/'QIE‘AI‘3ZI'1‘$1 AI'QZF_"AI/'3I(>\I4;E.I‘1)‘AI‘4ZE‘xl
(€Ax2)($1Ax3)$1 (€Ax2)((€Ax4)$1Ax3)(€Ax4)$1
(EA)(20)3 (EA)((EN)3A) (N4

Figure 5: Substitution in our notation

The definition below formalises the updating process.
Def 4.3 (p-reduction) Let k € IN,i € IP,v € = and t an Q,;s-term.

(o-transition rules:) (EFN(EX) =, (T NEN) (L)
PN e (()08) ()

(o-destruction rules:) (c,o(’“:))v —, v+i ifv>k
(e®No =, v ifv<korv=e

Ex 4.4 In substituting (¢A)2 for 2 in (¢A)(2A)3, we compensate for the preceding A in
(£A)(22)3. We substitute (1) (eA)2 for this 2:
(EN (PO (EN)2X)3 = (2N (P)eA) (911)20)3 =, (2A)((4)3N)3
Similarly, in the substitution of (¢A)2 for 3 in (¢A)(2X)3, we compensate for two extra As:
(eX) 20 (9OD) (eN)2 =, (2A)(2A) (eN)4.

4.2 o-reduction

o-items can move through the branches of the term, step-wise, from one node to an adjacent
one, until they reach a leaf of the tree. At the leaf, if appropriate, a o-item (or a substitution
item) can cause the desired substitution effect. We use o as an indezed operator:), ¢(®
The intended meaning of a o-item (') is: ¢’ is a candidate to be substituted for one or

more occurrences of a certain variable; ¢ selects the appropriate occurrences.

Def 4.5 (one-step o-reduction) Let i € IP,v € Z, 1,15 Qys-terms.

(o-generation rule:) (t18) (L)) =0 (t10) (t2N) ((@)tio™M)
(o-transition rules:) (tio (. A) =5 (L)) (@) toTD)

(tla'(l))(tz(s) — ((tla'(l))tz(s) (tlg(l))
(o-destruction rules:) (tio®)i —, &

(ticNo —, vifv#i

Note that our o-transition rules do not allow for c-items to “pass” other o-items. The
following shows that o-reduction reaches all occurrences to be substituted.

Lem 4.6 In (t16)(t2\)ts, o-reduction substitutes t, for all occurrences of the variables bound
by the X of (t2A) ints. Le., there is a path for global 5-reduction.
Proof: The proof is by an easy induction on ts in (t,8)(t2)) ((@)ti0M) 5. 0

Lem 4.7 In (tla(i))tz, o-reduction substitutes t, for all occurrences of variables in t, which
are bound by the same X being the i-th entry (from the right) in the free variable list of t,.
Moreover, the (y)s look after the updating of ts.

Proof: By induction on t., noting that during propagation, when the o-item passes a A,

the superscript of o is incremented, keeping track of the variable to be substituted for. a
Ex 4.8
1. (20W)(48)1 =, ((201)48)(20M)1 —», (46)2
2. ((38)20M) (1M1 =, (((36)20MW)1IA) (()(38)20)1 =,y ((38)20)((48)30)1 —, ((36)2M)1
3. ((30)20™M)(IN)1 = (((36)20™)1IN) (()(36)20CN) 1 =, (1A)((46)300CN 1 —, (1A)1.
4. (18)(2A) (3N)2 = (18) 2N ((¢)1 aW)(3N)2 =,

(18) (20 (((9)1)30 () (9)1 0)2 =,

(18)(2A) (((9)1 M)3N)3 =, (18)(2X)(3A)3

The following shows that the bond between variables and their binding A’s is maintained.

Lem 4.9 If 5(t10)(t2A)t =5 5(£18) (t22) ((@)ti0M)t then in 3(t10) (t20) ((¢)tioM)t, all vari-
able occurrences are bound by the same X’s which bound them in 5(t,0)(ta\)t.
Proof: left to the reader. a

To get local substitution, one adds to Def 4.5 the o-destruction rule: (¢,0@)t —, ¢ ([KN 93]).

4.3 (-reduction

In the o-generation rule, the reducible segment may be “without customers” and so o-
generation is undesirable since it leads to useless efforts. Hence we restrict o-generation
to those cases where the main A of the reducible segment binds at least one variable. When
this is not the case, we speak of a void dA-segment (which may be removed by replacing it
by (u™)). This can be compared to the application of a constant function to some argument;
the result is always the (unchanged) body of the function. The meaning of (u()t is: decrease
by 1 all variables in ¢ > ¢. Variables < ¢ in ¢ are bound by some As in ¢ and hence should not
be decreased. Now the p rules are defined as follows:

Def 4.10 (p-reduction) Let ty,t5,t € Qys-terms, v € Z and i € IP.

(p-generation rule:) (t18) (t2 M)t =, (W) if (110) (t2N) is void in t
(p-transition rules:) (YN =, ()X (plith)

() (0) =y ((H)18) (p1)
(p-destruction rules:) (N —, v ifv=corv<

(N —, v—1 ifi<v

Note in the second p-destruction rule that v > 1 as ¢ > 1. Note moreover that we never reach
the case where we get (u()i (see Lem 4.13).

Def 4.11 (One-step 3-reduction —5) One-step B-reduction of an Q,s-term is the combina-
tion of one o-generation from a §A-segment 3, the transition of the generated o-item through
the appropriate subterm in a global manner, followed by a number of o-destructions, and
updated by @-items until again an Qys-term is obtained. Finally, we replace the now void
segment 3 by (u")t and we use the p-reduction rules to dispose completely of p in (V).

Ex 4.12 (46)(\) (1N (103 =5 (4X)(1))6:
)N ANAN3 =, (40N (9)4e™) (1N (1N)3

o (40)(A)(BA)(IA)T
—u (W) BA(1)
—u (E)5N) () (IN)T
= (4A)(u(z))(A7
= (AN AN ()7
= (AA)(1A)6

The following Lemma is needed when discussing the semantics of p-reduction:

Lem 4.13 If t is an Qus-term and t —, t' then for all (uV)t" subterm of t' with t" an
Qys-term, we have that 1 dqes not refer to any free variable of t". In particular, if t —», t/
then we never find in t', (V)i as a subterm.

Proof: By induction on —»,. a

5 Translating B in A

Here, we have to be careful. For example, we can translate (A)2 as any of (A,,)x; for i # 1
but not as (A;,)x;. The following example gives another case where we have to be careful:

Ex 5.1 t = ((16)2A)(1A)3 has for any 4,5 # 1, ((#16)22),,)(2iAs,)21 as a corresponding A-
term. Now the subterm (1A)3 of ¢ should be considered relative to a free variable list extended
with Azt .oy Any, Asys Arss Aeyy Asy, and hence corresponds with (2;),,)2, for j # 1.

To avoid choosing wrong subscripts of A’s, we work at a mid-level A, between B and A. In A,
subscripts of A’s will be in a list § = 2/,2”, ... such that Z N] = (. We assume all elements
of 1 are distinct. We take © = JU F, let 6,6,,05,0' --- range over O, and X, X', X1, X», ...
range over . We call elements of F free variables and elements of { bound variables.

Def 5.2 (A) Terms of A are defined similarly to those of A except that all bound variables
are indexed by elements from J (all free variables are in F U J).

Examples of terms of A are e, (z,A,/)2" and (z,),/)(2'8)z”. Bound and free variables, a, 3,
and = defined for A can be easily extended to A. We use F'V(¢) and BV (¢) for the free and
bound variables of ¢ in A. We use @, 3 for o and 3 in A.

Def 5.3 (Substitution in A) If t,t' are terms in A and if v € FUT, then tfv:=t']" is exactly
defined as in Def 2./ except that, [v := t'] is replaced everywhere by [v := t'], [v/ = v"] is
replaced by [v' :=v"]" and in the last clause, F is replaced by 7.

If ¢ € A translates ¢’ € B, then FV(t) C F and BV (t) C] by Lem 5.42. In this case, ¢ can
be mapped to A by replacing its Z-variables by variables in F which do not occur in ¢:

Def 5.4 (Translating A in A via 7) Ift is a term in A such that FV (t) C F and BV (t) C 1
then we translate t to t' by first looking for the biggest free variable in t, x; for i € IP, and
for the smallest bound variable in t. We replace all the occurrences of this bound variable by
x;y1. Then we replace the second smallest bound variable by x; 5 and so on until no variables
from T appear int. We call the translation of the A-term t in A, 7(t).

Ex 5.5 (A)2 and ((18)2X)(1A)3 translate in A as (A/)z; and ((210)@a),) (2 Apn)2, as we
shall see. Now, these terms in A are transformed into terms of A in a unique way as follows:
The greatest variable of F in (A,/)z, is @y, hence 2’ gets replaced by z,, giving (A;,);.
The greatest variable of F in ((218)22A,0)(2'Apn)2; is 2o, hence all occurrences of 2/, 2" get
replaced by a3, x4 respectively giving ((216)z2A.,) (23A:,) 2.

As A and A are similar, we avoid the trivial step of translating between A and A and show
the soundness in A. This simplification does not affect the results of this paper.

5.1 Variables and lists

We assume the usual basic list operations such as concatenation 4+ and head and tail, hd
and tl. For i € IP, we take hd' =4 hd and hd'™' =4 hd o hd’', and we define ¢* similarly.
Moreover, the set of operators \, C, C and € are also applicable for lists and we will mix sets
and lists at will. We take T, v’, o7, 73, . . . to range over (finite and infinite) lists.

Def 5.6 FEvery list is written as the sum of its ordered elements from right to left. If 7 =
A0 -0, and m > 1, we define Vs, = ... 40,41 0, Lo be the left part of T starting at
m, and Ty, = 01 H0,_o H ... 401 to be the right part of T ending before m. Note that
Ty = HM™H(T), Dy is the empty list and T, = hd(7).

Ex 5.7 F=... 4azs4z, L =.. 42" +2', Foro = . @1 2 and Feppy = T + .- 42

Def 5.8 We take 1 € O to be a special symbol whose meaning will be clear below. We write
Pt oas v and P as the empty string 0. ™ will be) 4 - - -).
N— ——

o Fora set A, L(A) ={B; B is a finite list of distinct elements of A}.
o Loo(T) ={Tsi5t € P}, Loy = {Fom #0:m € IPT € LIOU{})},
L7HO) ={1;T € Ly, AT is -free}, and Ly = Ly, UL(O U{})

o Vo € LIOU{P}), 0 €0, let[|0]] =0, ([t = |[o]] - 1 and [[v46]] = [[v]] + 1.

o For a segment s, let sl(0) = 0, sl((t,0)s') = sl(s') and sl((t\)s') = 0 4sl(s).
Note that § ¢ £(]) and that) € L(A) for every set . A. We write || for the length of T.
Lem 5.9 For allT € L(OU{Y}), ||7|| < [T]. Moreover, if T € L(O) then |[7]| = |7].
Def 5.10 (comp) For allT € Ly,0 € O,n € IP:

comp, (T 4-6) =4 0
comp 1 (0 +-6) =g comp,(V)
comp, (DA 49'™*) =4 comp,(THY), i€V

The idea of comp is to select the appropriate named variable, given a list of (different) named
variables. We write comp, (7) |, when comp, (7) is defined.

Lem 5.11 For allv € LOU{Y}),n € IP, if n < ||7|| then comp,(T) | Acomp, (V) € T.
Proof: By induction on |0| noting that if ||]| > 1 then 30 € O such that 6 € T. 0

Cor 5.12 For allT € L(O),n € IP, if n < |7 then comp, (V) | Acomp, (T) € T.
Proof: Obvious, using lemmas 5.9 and 5.11. a

Lem 5.13 For allT € L;,,n € IP,i € IN, we have comp, (0) | Acomp, (V) € ©. Moreover,
CoOmpn (5 —H_QW) = COMPpyi (5) :
Proof: The first is by induction on n. The second is easy. a

Note that the only case where comp,(v) is undefined is when n > |[7]|.
Lem 5.14 Forallv' € L,,,T7€ LOU{¢Y}),0 € 0O,n € IP, and i € IN, we have:
1. If n > |[v]| > 0 then comp, (v 47) = compy_) (V).
2. If n > |[7]] > 0 then comp, (v 44" 4-7) = comp, (v #7).
3. If n < |[0]| then comp,, (v 47T) = comp, (7).
4. comp, (V' 40 41 47) = comp, (v 47).

Proof: 1 and 3, by induction on |v| using Lem 5.13. 2, using Lem 5.13 and 1. For j:
Case n < ||7]|| or n > ||7]| > 0, use the definition of comp and cases 143 above.
Case n > ||0]| and ||v]| < 0 then by induction on |v|. |

10

5.2 The inverse function ¢

Def 5.15 (e) Let t,t,,ty € B* 3 be a segment of A consisting of items of the form (Ax) for
Xecl,leLy,(),jePveE, X cl. e takes Qys-terms into terms in A as follows:

e(t) =df C(tv ®7 i)

C(U7§7 l) =df (§)

(102, 5,0) =g (c(t1,5,1)0)c(ty, 5, 11" (1))

c((tiA)t2,5,1) =g ((t1,§ DA parnicen 1)) €(ta, SAparsnicn), 1 (1))
d(j, 0) =g T

d(€,§) =dqf €

d(1,5(Ax)) =4 X

d associates with each de Bruijn’s index, the right variable in F U which should replace it.

Lem 5.16 e is well defined and boToe(t) =t for any t € B*

Ex 5.17
e(((20)20)1) = ¢(((20)20)1,0,7)
= (¢((20)2,0,) Apr)e(1, (Apn), {2 2™, . ..})
= ((0(27 (bvi) x’)c 2, (/\x’)v {xuv xmv '})/\x”)d(lv (/\x”))
= ((d(2.0)A)d(2, (A1) A"
= (($2Ax/)d(17®)Axu)$”
= ((zaAe) i Apr)a”

(The first A becomes A, and not A,, as there is one A in (2X)2; i.e. nl((2X)2) = 1, so
Aparnt(@n2) () = Apaz(g) = Ag.) This A-term is replaced by ((z2),,)21 A,)24 in A.

Ex 5.18

e((M) (1A (16)3) = (M) (1A)(16)3,0,7)
= (c(2,0, PA)e((IN)(18)3, (Ap), {2", 2", .. . })
= (d(=,0) o) (e(1, (Aar) {2 2, . }) A) ((18)3, ()), {2, .)
= (Ao) (d(L, (Aer)) Aer) (e[, (A /)(A D, 42", 1) (3, (Aar) (Aan), {2, ..
= (EAe) (@A) (d(L, (Ar) (Ar))0)d (3, (Aor) (Asr))
= (Aa) (&' Agn) (2"6)d(2, (Aar))
= (Ae) (&' Agn) (2"6)d(1, D)
= (Ap) (@' Apn) (270) 2y

Finally, we replace 2’ and 2" of { by 2, and a3 respectively obtaining (A.,)(22A.,) (230)24

e does not take into account ¢-, o- and p-items. It is difficult to provide the translation of
@-items without watching what happens in the lists 7 and J. For example:

Ex 5.19 (p12)(16)(2))3 of B should be: (2,8)(z4A.)24 in A and (2,8)(24);,)24 in A. Due
to (99(1’2)), we use F' rather than F where 7/ = ... xs54a442,. Le. the 25 and x5 disappear.

11

3)

5.3 The semantics of B-terms: an initial account

We provide the semantics using lists of variables T and v’ so that [; v’; ¢] finds the meaning of
t € B using ¥ and v’ to give names to the free and bound variables in ¢ respectively. Moreover,
TN’ is taken to be @) in order to avoid binding any free variable. If we were to determine the
semantics of B*® only, then it is enough to take v € £(}). With ¢ however, we need ¥ € L,,.
We start first with only finite lists in £(]) and give the semantics of B*® as follows:

Def 5.20 (A-, §-semantics) Vt,,t, € BN v € L(1),v' € Loo(]),oNv =0,n € E,

[v; Z; (tLA)t] =4 ([7; Z; tl]I/\X)ﬂﬁ_—H—X;?ZiH; to] for i = nl(t)) + 1, X = hd' (v')
[7; 05 (t10)t] =g ([T 05 1)) [T v/ 545 to] for ¢« = nl(ty) + 1

compa(T) if n < [o
[; v; n] =4 {3 Tno|7 n > |7

€ ifn=c¢

Ex 5.21 (see Ezample 5.17)

(MJ(QA)QA) 1]

0: 1 () o)l $>37 1]

[0: 35 207 [2'5 3595 20Aem) comp, (")
T |®|A)962 ja| Agrr) 2

[
(
(
(
((maApr)@y Apr)"

[[
(
(
(

Lem 5.22 Forany v € L(1),v' € Lo, (]),vNv =0,t € B FV([o;v;¢]) CvUF.
Proof: By induction on t, recalling that ¢ is neither free nor bound. a

Lem 5.23 Vo € L(]),v € Lo.(]), N0 =0,t € B, [5;0;1] is well-defined + unique in A.
Proof: By induction ont € B* using Cor 5.12. a

Lem 5.24 Forallt € B e(t) =[0;1;1].
Proof: Show by induction on t ¥t € B*,5€ A and v € L(}),c(t,5,0) = [sl(5);7;t]. O

Ex 5.25 Let t = (eA)((1A)((18)(2X)3X)(2A)2))3. Now, the reader can check that:

(t) = 105511 = (Xor) (2" A)((2"8) (2 A)2 Ao (& D))21,
Furthermore, 7(e(t)) = (eAs,) ((22A5,) ((236) (22 Ay,)22 As,) (2325,) 2aA,,)21 (see Figure 6).

T3 To

L3
®
£ x I/\
3 T4 L5
L 2 ol 4

t = (exp) ((@aAs,) ((230) (2ads,) oAy,) (@ahs) aXs,)@ = (X)) ((IA)((10)(2A)3X)(2X)2X)3
Figure 6: The tree of 7(e(t))

12

5.4 Extending the initial account

(")t means: add ¢ to all free variables > k, occurring in t. When we look for [; v7; (¢*9))],
all the variables in ¢ < k take the same value as in [7;v;#]. Those variables > k must not
take the values they would have taken in [v;v’;t]. Rather, looking for their corresponding
variables in T, we have to shift still ¢ positions to the left. L.e. if the index is n, where n > &
then the variable corresponding to n is not the n'® variable from right to left in ©. Rather, it
is the (n 4 ¢)"" variable from the right. For example:

[[$////$///$//$/; $25; (99(1,2)) (15)2]| = ($/5)$////

For this, we allow a special symbol 4 to become an element of T. The operational meaning of
1 is: on going left, delete the first named variable. Such a v, will not only be used to erase
variables but will also say which free variable in F correponds to the variable in hand.

Ex 5.26 The idea is that:

L If [0] > k+4,7 =17 475 and |53] = k, then [7;0"; (0"D)t] = [07 4-1° 473; v'; t]. Hence
for [a""a"a"2"; Tss; (12)2], we need [2""a"2" 444 4+a';155;2]. This evaluates to
[2" " 41h?; $>5, 1]. The presence of ©* means ignore 2"’z"”. Therefore the result

reduces to [z"";$55; 1] which is 2.

2. For every n € IN,m € IP,[v4¢";v'; m] = [7;v'; n 4+ m] and [¢";0; m] = @y 1.

Looking at the first part of Example 5.26, we see that we need to have © = oy 7, where
|Uz| = k. In other words, we have to go through the list © from right to left until we pass the
k" element. In order to accommodate this, we introduce an extra argument in the semantic
meaning of p-terms. We will give an example which explains the point even though it is
ahead of its time in the section. We believe however, that the reader can still follow it, once
point 2 of Example 5.26 is remembered.

Ex 5.27 Notice how we save 2’ to use it later on:

[2"2"; T55; (¢ (1’2))(15)2]|

[2% 3553 (112)) (16)2]

[z ‘H‘¢2 Ha’; P53 (15) 2]

([e" 4% 42’ 353 100) [4007 42’ T35 2]
(x ’5)[[96” 1% $>37

(2'6)[2"; T3; 3] (a'6)ay

We extend lists from elements of £({) (as in Def 5.20) to elements of £,,. Now our lists
include v’s, bound and free variables, and are denumerably infinite. Now, here is [-;-;], the
extended definition of the semantics of A- and -items.

Def 5.28 (Euxtended - and §-semantics) [+]. : Loy X Lo () X B¢ 5 A:
Vi, ty € B € L,,, v € Lo(3), 7NV =0,n € IP,

Ntale =g ([T 0 6l Ax) [T X Vs g5 ta)e for i = nl(t) + 1, X = hdi (V')
) oo =q ([0 05 01)0) [T 07543 ta]e for i = nl(t) + 1
=g comp,, (T)
=g €

A,_\

i.
(0]

TITT
SRR

2,
(0]

13

Lem 5.29 Letv € Ly, 0" € Loo(1), THO) N =0,6 €O, n,m € IP and k € IN.

1. [o46;v;1]. = 6
2. [Bofn+ k] = [vH¢Fvhnl
3. [v4#6;vin+1]. = [7; v';).
N N AU = Ttk tm—1
5. [o;vsn]. € il
6. Ifn#m then [v;v’;n). # [v;v); m).
Proof: Fasy, using Lem 5.13 and the definition of comp. a

Lem 5.30 Vv’ € £,,,T€ LOU{¢}),v" € Lo(3), 0 H#T) 0" =0,0 € O n,i€ IP:

1o Ifn > |[0]] > 0 then [o" 47507 n). = [v/; 070 — [|7]]].

2. If n > |[0]| > 0 then [V 4" 40; 0" n]. = [v/ #7; 0”750 + ..

3. If n < |[v]| then [v/ 47;v"; n]. = comp, (V)

4. [v" 40 44 40507 0], = [V 475075 1),

Proof: This follows from Lem 5.14. a
Cor 5.31 Yv' € L,,, v" € Lo(]), 0 4D)Nv" =0, n,i € IP, T € L(O):

1. If n > || then [v" #0;v"; n]. = [v/; 0" n — U],

2. If n > [0] then [v" ¢ 40; 0" n]. = [v/ 4705070 + ..

3. If n < [0] then [v" 4T;v"; n]. = comp, (V)

Proof: Obvious by lemmas 5.9 and 5.30. a

Rem 5.32 Note thatif v € £,,0" € L(OU{}),v" € L (3), (v4T)nv" =0, n,1 € IP, |[V']] <
0, then even though n > ||v’||, it is not necessarily the case that:

L [o4v 07 nl = o070 — | [V

2. [v 4t #0507 0] = [T 40070 + 4,
For example, [F 442 {50:1]c = & whereas [F;$50:1 — |[¢%2/[[]e = [F 352 5] = 5.
Lem 5.33 For allv € L(]),V € Lo (1), N0V =0,t € B, [v;0;t] = [F +0;V; 1.

Proof: Show Vn € IPU{c}: [v;v';n] = |F 47;v'; n]. and then use induction on t. 0

5.5 The semantics of o- and p-terms

Def 5.34 (o-semantics) Vt,,t, € BM°%. 0 € L0 € Loo(]), 7NV = 0,1 € IP:
/

[0;07; (t10 D) to)e =g [0 075 L) [[T5 075 i) = [0 075 1pmgen) s il

14

Def 5.35 (p-semantics)
Vt € BN B € Lo, 0" € LO), 0" € L), TH0) NV =0,0€0,icIPkecIN:

F N, =g [0 ()

[; v'; v (i(o’l))t]] =4 [0 —H—W_—H—v_’7 v e

[T +46;v; v (c,o_(kil)t]] o —H—v’;_v’i(cp(k’i))t]]
[T40 +" 0507] =g [T 4080507]

Note here that v does not play a role because we do not have bound variables that we are
trying to replace by variable names. What the v’ does however is to save the first & variables
of ¥ which are actually the variables in ¢t which should not be updated because they are < k.
Once the first k variables of ¥ have been saved in v/, we remove the first ¢ variables from the
resulting ©. Hence in the end, we get the correct list from which we find the meaning of ¢.

Ex 5.36

L7 a5 3o (0223l = 17 42’505 350 (02)3]

[F; 2 3505 (01%)3]

[[]:>27 i A $>27 (’3))3]|

[[f>2 W3 g Aol $>27 = x5

2 [F 40 (SO, =
3. 17t (PO (O] = o

Now the following lemma is basic about ¢-items.

Lem 5.37 Lett € B7?, v € L,,,v" € L(0),v" € Lo(]), (T4V) NV =0, i€ IP.

[7 407 07 (1)t = [0 447 407 07 ..

Proof: Lasy. First prove by induction on |[v'| that if T € Ly,,v',T7 € L(O) such that
(T 40 407) N7 = 0 then [T 4-0; T7; 07; (1)] = [0, 0 4015 07 ()] O

The following lemma opens the road to working with lists which do not contain 2.

Lem 5.38 Vv’ € L,,,T7€ LOU{¢}),71 € Lo(]), ' #04T)NT7 =0,0 € O, n € IP:
[v" 46 41 47; 775 t]e = [V 475 713 1.
Proof: By nested induction. We prove by induction on t that 1H,(t) holds where IH,(t)
is: [V 40 4 40; 013 t). = [V 475 013 8],
o Ift =n, use case 4 of Lem 5 30.
o If (t,0)ty or (\)ty or (t,a)ty where TH,(t1) and TH,(ts) hold, easy.
o If ("Nt and TH,(t). Prove IH,(k) by induction on k where I Hy(k), Yo" € L(O) is
[67 46 41 453 07 553 (9B), = [45 07 7 (),
— If k=0, use I H(t).
— Assume [Hy (k). Prove by induction on |v| that I H3(T) holds where I H5(7)
is [440 4+ 473 07 053 (P01, = [7 43 07 o7 (0 H D),
« If [0] = 0, use Def 5.35.
« If U 40 where § € © and 1 H3(T) holds, use Def 5.35 and 1 H,(k).
x I[f 4047, 0 € ©,5 € IP and TH3(T47~1), use Def 5.35 and [H3(T+4771).
x Case Y/ where j € IP, use Def 5.35. g

The following lemma is very important. It says that all the 1’s can be removed from lists.

15

Lem 5.39 Forallv € L,,, 3 € L, which is free for 1 such that for allt € B¢ v" € L., (])
such that vN v’ = 0, [0;0";] = [v';0";]..

Proof: We can write T as o7 46 4705 such that § € ©,77 € L,,, T3 € LIOU {¢}), 77 is
free of ¥ and T3 has 1 as its leftmost element. Now, the proof is by induction on |Us| using
Lem 5.38. Note moreover, that v’ is independent of t. Hence, we may assume from now on
that our start lists do not contain . a

Finally, we give the translation of any term ¢ of B7¢:

Def 5.40 (The semantic function) Define []: B¢ — A such that [t] =4 [F; ;1.

Lem 5.41 [is well defined. That is, for all t € B*?¢, [t] is a unique term in A.
Proof: By induction on t € B¢, a

Now here is our first lemma towards the correctness of our semantics:
Lem 5.42 For all t € B*°%, we have:

1. BV ([p;v/5t]e) C v for every T € L, and v' € L,(J) such that tNv = (.

2. FV([v;v';t]e) C O for every v € Ly, and v' € L,(]) such that vNv’ = 0.

3. BV([t]) C § and FV([t]) C F.

Proof: 1 and 2 are by induction on t. 3 follows from 1 and 2. a
Hence, a term [{] in A can be translated using Def 5.4 to a term in A.

Ex 5.43 (Note that we sometimes combine many steps in one.)

[(®)(16)(20)3] VR (99(2’1))(15)(2A)3]Ie

Fos 07 4oy 400 4213353
210) ([F x5 407 400 15 110 [Fos 4007 440 15 20
T)(.7:>77$ 1) .7:277$ 26 = ($15)($75)$8

= |
= [F0:5 (")(5)(22)3]
= [Foniai (¢)(5)(22)3]
= [Fosies Han; s (¢ 01) (18) (23]
= [Fos ¢ e #1375 (10)(2X)3] = (w16) (22240)
) OMNANE = IFd: (09 (09)(10) (20)3)
= [Fooiz; i (9 (1) (18)(26)3]
= [Foas vt 35 (010) (912))(16) (20)3]
= [Fos 407 Hras Ao §5 (0) (16) (26)3]
= [Fos 0% Hrasi i 35 (0199) (16)(26)3]
= [Fos #0° Hras 4% 421335 (16)(20)3]).
= Ewl(s)([[]:>3‘|'|‘¢ A2 ‘H'¢ ‘H'$17$72]I65)
(
(

16

6 The soundness of o- and ¢-reduction

Here, we show that if ¢ — ¢’ where — is @-transition or destruction, or o-destruction, then
[t] = [¥]. That is, ¢ and o are sound with respect to variable updating and substitution. We
show moreover, that if ¢ —, ¢’ where — is o-generation, then [t] = [¢/]. That is, o-generation
is a form of B-conversion. Furthermore, o-transition has a-conversion. That is, if t —, ¢/

where —, is o-transition, then [t] =z [¢/]. For this, let us repeat the semantic function:

Def 6.1 (Semantics of B9)Vt t;,t, € BM9? v € L,, v € L(O),v" € L (1), (0+8) Nv" =
0,0 € ©,0,n € IP and k € IN, we define:

M1 [t] =4 [F3te

M2. [o;0v7¢]. =y €

M3. [v;v”;n). =4 comp, (D)

M4. v 27 (N =4 ([0 0] A)[THX 0750405 6] for i = nl(t) + 1, X = hd'(
M5, [o;0"; (8,0)t]. =4 ([T v”,t 1.0)[7; 07543 to)e for 1= nl() +1

M6. [5;07; (o)t =4 [0 07 Gl[l[T; 075 il := [05 0754 61)e) for i = nl(ta) + 1

MT. [(B =y [0 07 ()]

M8 [o; v 0% (900)0] =g [0 4007

M. [T 40507507 (M) =g [0 407 07 ()]
M10. [o40 4055 0h 0] =y [D40R 0]

Now, the following lemmas inform us about the place of («) in our system.
Lem 6.2 Vn € IP,v € L,,,v,v" € L (}), vNnv =vNnv” =0 = [v;0; 0] = [7;v";n]..

Lem 6.3 Vt € BM7? v e L,,,v' € L,(}),vNv =0 =Y € L,(V'), [t;V;] == [v;07;1]..
Proof: By induction on t. a

Now we define the notions of (a-, 3-) soundness:

Def 6.4 Let — be a reduction rule. We say:
o — is sound if: (Vt, ', 0,0)[t — ' = [v; ;] = [v; 05 ']).].
o — is a-sound if: (Vt,t', T, v)[t = ' = [7;0;t]). =% [7; Vs V']].
o — is B-sound if: (Vt,t', 0,0)[t = ¢ = [7;0; 1] =5 [U;v;].).

o — is af-sound if: (Vt,t', 0,0)[t — ' = [v;0';t]. = [v; 05 ¢']].

Lem 6.5 ¢-transition through a §-item is sound. Ie., Vi, t2 € Broo¢ v_1 € Ly, 0" € Lo(3), 0N

v =0,i € IP, k€ IN: [o7;07; (") (t18)ts]. = [T1;07; (0%)2, 8) (%)ts]e
Proof: Assume U7 t-free (Lem 5.39). Assume also Ty = U v’ for |v/| = k.

(104757 (6)1,6) (0)] =it
(5407507, ()1 8) [47 07y ()], =t 597
([o 40" 4075 075 4]0) [T 40 07507555 to)e
[v
[

Lem 5.37

Aot —H—v’ v’ (t d)ta]e

v
v

17

0 O () (11 8) . 0

)

Lem 6.6 -transition through a A-item is sound. Le., Vi, t, € B*°? o7 € L,,,v" € L,(]), N
V=00 € P, ke IN: [o1;07 (") (N E)e = [B1 07 (9%)1) (9B).

Proof: Similar to Lem 6.5, asume vy is v-free and vy = 40’ for |v'] = k.

([543 75 ()1) (5], i=bilt) X=he! 7
([T 4075 07; (BNt A) [T 40" X5 075 405 (BT] =hem 557

([0 4" #0750] AT A0 0" a3 07545 o]

[T 420" 4075 07 (8 A)ts]e
[T 4075 075 (™) (1 A) 2] o

Lem 6.7 o-destruction is sound: Yoy € L,,T5 € Loo(]),01NT2 =0, n,1€ Pk € IN:

Lem 5.37

L Ifn >k then [o7; 035 (9% D) n]e = [075 0250 + il
2. If n < k then [v7;0s; (c,o(k’i))n]]e = [o1; 023 1)...

Proof: Assume Uy is i-free and vy = v+v’ such that |v'| = k and use Lem 5.37 and Cor 5.31:
L[T 4073 () 0] = [0 40" 407 T35 0 = [0 407 T35+ 1],
2.[0 40" 7%; (¢ D) ne = [0 407 4075 T3 n]e = comp, (V) = [T 407 T35 1)e 0

Lem 6.8 o-destruction is sound: Vt € B*?% v e L,,v € L,(]),vNv =0,4,5 € IP:

1. [0 (taD)i]. = [7;07; ..
2. [o5 v (toD)j)e = [0 e if 5 # 4.
3. [0, (to)e), = =

Proof: Note that if ¢ # j then [v;v'; j]. £ [v;v';] by Lem 5.29:
[; Vs (to D) i]e = [0 075 4. [[5; 07 d]. = [0 0% 1)) = [05 4]
[7; 07; (ta) jle = [0 0 jlellms Vs il = [05 05 1)) = [0]
[0;0; (teDe). = [0 Vs €lo[[7; 0 1] := [0 03 t]) = ¢, as & € D, for every T. O

Lem 6.9 o-transition is a-sound: V0 € L,,,v" € Loo(1),0N0" = 0,4 € IPty,t5,t € B}
1. [0 (D) (L M) = [T;07; (Lie D)t X) ((p) o),
2. [0;0%; (tio D) (t8)]e == [0;07; (L1 D)t N) (10D 1]

The 6.10 Let r be r'-transition or r'-destruction rule for v’ € {o,¢}. t =, t' = [t] = [t'].
Proof: Use lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 above. (Note t,t' € B7%.) a

Transition and destruction rules of ¢ and ¢ work like substitution and variable updating and
so return equivalent terms. o-generation on the other hand, accommodates 3-reduction.

Ex 6.11 [F;3;(26) 3AN)1) = ([F;53:210) ([F;5 35 BleAa) [F 42’3 T3 1 = (220) (z3A) 2. Also

[733; (20) 3\ ()20 W) 1] =
(‘7: i 2 5)([[‘7:7:1:7]]e/\x’) f‘|+$ $>27(()20())1]| =
([[‘7:; $;265)(H‘7_—7$73He/\x’)(f""'w $>27 ‘7:‘H'$ $>27 e = [[‘7:‘H'$/§$22§(99)2]|e]/ =
(1755 2A0) ([75 L 3l Ae) (¢'[2" 1= 25)') =
(‘7: i 265)([[‘7_-7$73]]e/\x’)$2 =
(3525)(3/\x') T2
Of course (220)(z3A,)2" and (220)(25A,/)22 are not a-equivalent but are f-equivalent:
(220) (x3Apr) 2" =7 22 and (226) (23A,0) w9 =7 @2

18

Lem 6.12 o-generation is afS-sound. That is, for all t,t,,t, € B*°?, for allv € L,, v €
Lo (1), such that 5NV =, [0;0 (410) (L2 M)E). = [0;07; (£18) (LX) (@) to M),

Proof: Leti=1+nl(t)),j =1+ nl(ts), X = hd’(Ts;), k = 14 nl(t). Note that

[o; v'; (t1_5) (taM)t]e = ([v; ?ﬁl]]e(S)(ﬂﬁ; Vs bl Ax) [T 4 X5 0 s e =z

[T —H—X'U/>z’+j;t]| (X = [7;v';t4].] . Moreover,

(l[@ U’;tlllefs)(llﬁ; Vzi bl Ax) ([0 42X 050453 ((9) o)) =

(75 0 1) 0) ([T 07543 tale A) ([T X5 0755455 e[X = [T 42305 0 jqns (0)1]e]) 255'37’ oo
([T X5 0503t [X = [0 054 6] [X = [T 075 1)) =Lom 6.3
([0 42X Vo055 e [X o= [0 05)] [X 1= [0 05 04)e]) =hem 54
[0 42X 0750453 4] [X = [T 03 1))’ =

7 The meaning and soundness of S-reduction

Recall from Def 4.11 that S-reduction was defined as a combination of o-; ¢- and p-reduction.
Hence, as o- and ¢-reduction are sound, all we have left to show here is that p-reduction is
sound. More precisely, we will show that p-generation is aff-sound and that p-destruction
and transition are sound. Let us first define the meaning of terms with p-leading items.

Def 7.1 (u-semantics) If t is an Qys-term, v € L71(O),v' € L(O),0 € ©,v" € L, (),
vNv” = 0,1 € IP and i does not refer to any free variable of t, we define:

[7; 07 (n) 1] [7; 05 07 (n9)1]

[7; vs 0 (1)1 [T +-hd(v") 4075 07553 1]

[74-6; 075 073 ()] [6 4075 v7; (M(“)t]l
The provision “¢ does not refer to a free variable of t” can be assumed due to Lem 4.13; this

is the only case we need to define the semantics for. Moreover, it suffice to take T € L71(0),
because t is an £2)s;-term, so we never generate 1’s in the list 7.

Ex 7.2

DN

> =

e

=
HEne e e

[[]:—H—x’,$> 2]]6/\x,,) [F 42’5753 1. (@1 A)"

f Z‘H'w ‘H’17>27(1A)]I
[Foo4ra’ 2153505 o) A) [Foo 4ra’ 4y 42”5355 1L (z1Apn)"

Note that [(¢*)(1A)1] is not allowed, since 1 refers to the free variable 1 in (1A)1.
Lem 7.3 Let t be an Qys-term. If A\° does not bind any variable in (A°)(A')(A?) ... (\%)¢,
then Yo € L71(0),v" € L(O),v € L(1),0,0 € O, such that (v Hv")Nv' = 0,0,0 ¢
TUV U, v =k, we have: [U40 40”0 t], = [0 46" 075075 t].

Proof: By induction on t using lemmas 5.29 and 6.2. a

19

Lem 7.4 Let (1,6)(t2)A) be void in (£10)(t2A)t, @ = 1+ nl(ty) and j = 1+ nl(ty). YO €
L7HO), v € Loo(3), NV =0AX = hd™V 1) = ([o;07; 4]).9) ([T v_z o] A
[T; 075 (£10) (£2A) e

Proof: By induction on Q,s-terms t. a

x) is void in

Lem 7.5 p-generation is aff-sound. Le., Vi, ty,t Qys-terms, Vv € L7H(O),
that NV =0, if (£,8)(t2N) is void in t then: [0;07; (616) (taA)t]e = [;07; (1Y)
Proof: By induction ont. Let i =14nl(t)),j = 1+ nl(ty), X = hd’ (v's;) = hd™™71(0).

o Ift =¢e then obvious.

e Ift =m then m > 1. Moreover, ([T;0;t,].0)([7; V543 ta]e Ax) [T 42 05455 m) =
([0s 073 e 8) ([075 t) A) [05 0453 = e =27 7
I[@7 FZZ-I:M m — 1]]6 Elemmas 5.29 and 6.2 I[@ —H—hd(?)

o LS UV then: [T () A, 200X 0 o
(I[U/ t]I (S)(I[U v’ >i3 tz]l AX)(I[U - v’ >z+]7]ISAX’)IIU Hx —H—x ; (U Zi+j)2k+1; tlz]le :gem 7.4
[0 42X 0 5045 (A). =5 O3 [0 4X; 0/s0; (A1), =Hem 73
[T 4-hd(v); Vs05 (M) 8] = [707 () (B M) 1]
o [ft = (t)0)t, then similar.]
Rem 7.6 Note that p-generation is not sound. In particular, [F;J; (46)(A)2). = (246) (Apr) 2y
and]: i () .7:‘H‘$ $>27 e =T, NOW ($4(S)(Ax/)$1 =3 T and ($45)(Ax,)x1 % zq.

Lem 7.7 p-transition is sound: YQys-terms t1,t,, 7 € L7H(O), v € L, (3) such that TNo"" =
0, Vie P, if i ¢ FV((t1\)t2), k =1+ nl(ty), X = hd*(v"") then:

Lo 307 (nO) (M) = (1507 (1)][0 425075 () 12]e
2. ;07 (p) (1 0)t2]e (75 07 (1))e8) [T5 07503 (D))

Proof: We show 1 only as 2 is similar. Let T = v’ 4-v" such that |v"] =i — 1:

(5 07 ()] A) [A3 07 (1))] =
(I[_/_H_ d(W) ‘H’U// U”/>2,]I /\X)I[U —H—hd(?}”/>k+1) o Hx: v’ >k+27t2]| —Lem 7.3
[V H-hd(V7) 4073 07 ; (£, M), =
(0507 (@) (#1 M) o] D

Lem 7.8 p-destruction is sound: Yo € L71(0), v € L, () such that vNv” = (), Vi,m € IP:
o [T;07; (n)e]. = e.
o [T v (WD)m]. = [V 40707 m]e if m <.
o [T 07 (W Dym], = [/ 40750 m — 1], if m > 1.
roof: E;v_; d gle = ¢, easy. E;v_; Nm). = [v'+ v_—l—v_;v_>2;meztw ere
P f: 1" H() 1" H() "L hd(v" 7] ///_ h

T=v4v" and |v"| =i—1. If m < i thenm <i—1 and t = [v' 4v";0";m].. If m > i then
m>1i+1 and t = [/ 407507 m — 1).. m|

20

8 Conclusions and comparison

In order to show the soundness of our calculus we provided a translation from B into A, a
variant of A where bound variables are taken from a particular ordered list. Our translation
functions are important on their own. First, it is nice to have a mechanical procedure which
takes terms written with variable names and returns terms with de Bruijn’s indices. Second,
it is equally important and interesting to go the other way. For instance, when translating a
term (with de Bruijn indices) that represents some mathematical theory/proof to a term with
named variables, we want particular names to be used. In fact, one of the advantages of de
Bruijn’s indices is that a-conversion is no longer needed. Now, terms written with de Bruijn’s
indices are difficult to understand even for those who are familiar with them. Variable names
on the other hand, clarify the term in hand but cause a lot of complications when applying
reduction and substitution. If however, we order our lists of free and bound variables, then we
can avoid the difficulty caused by variable names. In fact, this is what we do in this paper. We
take our lists of variables to be ordered and we translate B into A (i.e. using variable names)
in a unique way via [-]. When in A, it is up to us to equate terms modulo a-conversion rather
than being forced to do it in the translation (see Appendix B).

In order to make substitution explicit and to discuss F-reduction, we had to add three
kinds of reduction rules: the ¢-, - and p-reductions. ¢ updates variables, o substitutes terms
for variables and p decreases the indices as a result of a 8-conversion which removes a A from
a term. Each kind of reduction has three rules: generation, transition and destruction. Now,
substitution and reduction in A are given similarly to that of the classical calculus; i.e. implicit
and global. Therefore, we show that our reduction rules actually do represent reduction and
substitution in A and are hence sound. In particular, we show that o-, u- p-destruction and ¢-,
p-transition are sound in that if £ —, ¢’ where r is one of these rules, then [t] = [¢']. This is very
nice because the corresponding reductions in A also return equivalent rather than a-equivalent
terms. Furthermore, we show that o-transition is a-sound in that if ¢ —,_; qnsivion ¢ then
[t] == [¢]. We also show that o- and p-generation are af-sound in that if ¢ —, ¢’ where r
is one of these two rules, then [t] =27 [¢'l. Now, we are satisfied with the result concerning
[F-conversion. In fact, o- and p-generation do actually represent f(-conversion in 5. Note
moreover that in the soundness proof of o-transition and o- and p-generation, a-conversion
appears despite the fact that we avoided it in our translation function. Look for example at
the proof of Lem 7.5. When t = (¢{\)t,, we had to apply Lem 6.3 to obtain an a-equivalent
term. We have hence singled out the steps in which « must be used: o- and u-generation
and in o-transition. Finally, note that we did not discuss completeness because this becomes
here a trivial matter. In fact, everything that can be shown in the classical A-calculus can
be shown in our own. Even better, our calculus is more expressive in that it accommodates
explicit substitution whereas the classical one does not.

Work on explicit substitution with de Bruijn indices has been first done in depth by Curien
(in his PhD thesis, 1983) and was based on categorical combinators. Curien’s original work
was pursued by applications such as the categorical abstract machine of [CCM 87]. [ACCL 91]
provides an algebraic syntax and semantics for explicit substitution where de Bruijn’s indices
are used. The connection with the classical A-calculus is not investigated. [HL 89] proposes
confluent systems of substitution based on the study of categorical combinators and [Field 90]
provides an account of explicit substitution similar to that of [ACCL 91]. Our approach in
this paper follows de Bruijn rather than Curien in using concepts which belong to the A-

21

calculus rather than to Category Theory. In fact, we believe that as A and § are operators
of the A-calculus whose behaviour is well-understood, o, ¢ and p should also be treated
similarly. This approach of treating the A-calculus via items has proven advantageous in our
various extensions as in [BKN 95], [KN 95] and [KN 96b]. [KN 93] provides an account of
explicit substitution which is used to discuss local and global substitution and reduction. No
semantics is provided for that account and the precision of this paper is not assumed there.
The reduction rules however of the present paper are based on [KN 93] even though there,
there was no p-reduction and a-reduction was assumed. We believe that we have in this paper
presented the most extensive approach of variable manipulation, substitution and reduction.
Our approach can be easily and in a straightforward fashion implemented because we have
carried out all the difficult work related to variables. Furthermore, as [KN 93] has shown
that [ACCL 91] can be interpreted in [KN 93] and as B is an extension of [KN 93], our work
here also applies to [ACCL 91]. [Kra 93] provides a semantics of the explicit substitution of
an extension of [KN 93]. The work of [Kra 93] originated from our function e of this paper
but ignores to order the list of bound variables which we call { imposing a-conversion. In
Appendix B, we provide a semantics where all a-equivalent terms are identifiable.

In [KR 95], As, the subsystem of B where o-generation does not preserve the d\-couple,
has been studied. As along with the system of [BBLR 95] are the first calculi of explicit
substitution which enjoy confluence on closed terms and preserve strong normalisation. In
[KR 9x], it was shown that in the simply typed version of As, well-typed terms are strongly
normalising. In [KR 9y], it was shown that As extended with open terms is confluent. At the
moment, we are extending the work of [KR 95], [KR 9x] and [KR 9y] to study the properties of
As where o-generation preserves the §A-couple, hence resulting in the system B of this paper.
Finally, Daniel Briaud noted our attention that adding intersection types to [BBLR 95] is
problematic as there will be terms that are strongly normalising but not typable. This is
not the case when intersection types are added to As. This could be seen as an advantage
to our framework of remaining close to the A-calculus rather than using combinators as in

[ACCL 91] and [BBLR 95].

A Making i negative in (¢(F?)

Up to now, the i-superscript in (¢*%)) has been considered an element of IP. If however, we
allow in (%), i to be negative, we could include the following rule:

Def A.1 (§)\-destruction rule) For all t,,ty Qys-terms, we have: (1,8)(tsA) = (9O~V) pro-
vided that the X in (t2\) does not bind any variable in the term following (t,6)(t2)), i.e.
provided that (t16)(t2A) is void. Sometimes we denote —¢ by void f-reduction.

Unfortunately, negative superscripts identify different variables as in: (p=1)(28)1 —»,
(16)1. Hence, updating is no longer an injection, which can be highly undesirable. This
unpleasant effect however, does not occur in the setting presented above: a @-item with a
negative exponent only occurs after the clean-up of a void dA-segment, hence with a A that
does not bind any variable. Therefore, the injective property of updating is not threatened.
Now the o-rules together with the §A-destruction rule, enable us to accomplish f-reduction:

Def A.2 (one-step B-reduction — g1) One-step 3-reduction of an Q,s-term is the combination
of one o-generation from a SA-segment 3, the transition of the generated o-item through the
appropriate subterm in a global manner, followed by a number of o-destructions, and updated

22

by p-items until again an Qys-term is obtained. Finally, there follows one void (-reduction
for the disposal of 5, and we use the p-rules to dispose completely of the p-items.

Ex A.3 (18)(2A)(40)1 —» (39)1 as follows:

(15)(2A) (40)1 =, (18)(2N) ((p)1aM)(49)1
oo (18)(20)((201)48) (201
—s (10)(2X)(40)2
=g (p(071)(40)2
=y ((p!"71)40) (9l 1)2
—, (30)1.

We used in this paper p instead of negative superscripts for ¢ in order to make a clear
distinction between the harmless positive updating and the potentially dangerous negative
updating (see our remark after Def A.1). To be precise: (u) is equivalent to ((~1=Y); but
in the case of void reductions, (=1~ has the same effect as (¢ ~1).

B An alternative semantics

In the definition of the semantic function from B to A, we took F and { which were both
ordered (see Def 6.1). This enabled us to translate every term ¢ of B to a unique term ¢’ of
A rather than to ¢ where t/ =, t”. In this appendix, we define the semantic function which
returns any element of the a-equivalence class. This is not the approach we use in the paper
because implementation cannot rely on a-conversion. Of course we pay a price (which is not
high compared with the advantages) in that we had to manipulate not only the list of free
variables but also the list of bound ones.

Def B.1 (A- and §-semantics) For all t,,t, € B v € L(]),n € IPU {c},

[7; (1 N)ta] =4 ([7; 1]A) [T 4o ta] where v € T\ T
[7; (t10)ta] - =4 ([T 0110)[75 2]

compa(®) i < [7]
[1] =dr) To-fil n > [o]

€ ifn=c¢

Ex B.2

X1€3,X1 is arbitrary

[0; (A)(1A)(16)3]

(19; elAx) [X35 (1A) (16)3]

(eAx,) (1X5 1A [X1 X5 (16)3]

(eAx,) (compi (X1) Ax,) ([X1X5; 1]0) [X1 X5 3]
(eAx,) (XaAx,) (compi (X1X5)8)xs_ x, x4

(EAx,) (X1Ax,) (X20)2,

X2€3,X2 is arbitrary, XoZ X1

€AX1

We need the following which defines variable substitution of lists of variables.

Def B.3 (Substitution in lists) If T is a list of variables of A, then we define Blv := v']’ to be
the list T but where all occurrences of v have been replaced by v'.

Now the following lemmas are needed to show that [-;-]is well defined.

23

Lem B.4 For any v,t, FV([7;t]) CTUF.
Proof: By induction on t, recalling that ¢ is neither free nor bound. a
Lem B.5 For X' € {\7,X €v,0€ L(}) and t € B*: [0;¢][X := X') =5 [v[X := X]';¢].
Proof: By induction ont € B*.
1. [T;n][X := X' = [[X := XT;n] forn € IPU{c}.

2. [(O)L][X = X = ([5; L]0 1) [X = X7 =
([o; 11X = X]5)|[v7tz]|[X =X =
([PLX == X5 0] [X := X5 to] = [O[X := X5 (116)14].
3. [T (A NI[X = X7 =X XX (54 x,) [T 4y L)) [X = X =
(T ILX = X [0 s Y 2= X7 =2
([o[X = X752]IAXI)II(HHM)[X X5t =
([PLX = X5 04]Ax) [P = X7 s to] = [0 [X = X5 (A).
b [(NI = XY <S8 (I X X = e et

;tl]l/\X”)l[ﬁ ‘H’$/§ tz]l[X/ = X”]/) [X X’] :Lem B4 IH
(5 A [F 4 X 1= X5) [X = X7 = (15 o) [7 42 DX = X7
Now, refer to case 3 above. a
Lem B.6 (|[67 tl]IAXl)IIﬁ -H—X17 tz]l = (|[67 tl]IAXg)IIﬁ -H—X27 tz]l fOT X17 X2 & i\ﬁ
Proof: If X| = X, then nothing to prove. If X| # X5, then:
(I[U t]IAXI)I[U ‘H’letZ]I EXQQFV([?-M—Xl;tQﬂ),Lem B.4

(7 P x) [P X s 0l[X) o= X)) =Lem B5
(Wv H) [T X)X = Xo]t,] =X0X80
(17 1o [0 4] =[5 (1 \)t] o

Lem B.7 [;] as defined in Def B.1 is well defined: VU, t, [U;t] is unique up to a-conversion,
(I.e. does not depend on the choice of v in clause 1 of Def B.1).
Proof: By induction on t € B* using Lem B.6 for the interesting case t = (t,A)ts. O

Lem B.8 Vi € B ¢(t,5,1\ sl(3)) == [sl(35);t]. (Hence e(t) =z [0;1].)
Proof: By induction on t. a

Now the definition which replaces Def 6.1 is the following;:
Def B.9 (Semantics of B?) Vit t,,t, € B*?. v e L,,,v € L(O),0 € O,i,ne IPkeIN:

M2. [v;€] =y €

M3. [v;n] =4 comp, (D)

M4, [o; (0Nt =4 ([Tt Ax) [T X5 6] where X € $\ T
M5, [o; (td)ts] =g ([U50]0)[0;22]

M6, [5; (o)) =g [Bit]ll[D:4] = [B: 4]

M7 o (") =g [1:0; (")t

M8, [z (pO0)] =y [P0 40731

M. [046; 07 ("N H] =4 [0 4075 ()]
M10. [o460 49545051 =y [0 498 0]

Soundness of the reduction rules with respect to this definition is left to the reader.

24

References

[ACCL 91] Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J., (1991) Explicit substitutions, Func-
tional Programming 1 (4), 375-416.

[Bar 84] Barendregt, H., (1984) Lambda Caleulus: its Syntar and Semantics, North-Holland.

[Bar 92] Barendregt, H., (1992) Lambda calculi with types, Handbook of Logic in Computer Science,
volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press.

[BBLR 95] Benaissa Z., Briaud D., Lescanne P. and Rouyer-Degli J., (1995), Av, a calculus of explicit
substitutions which preserves strong normalisation, Personal communication.

[BKN 95] Bloo, R., Kamareddine, F., Nederpelt, R., The Barendregt Cube with Definitions and
Generalised Reduction, to appear in Information and Computation.

[Con 86] Constable, R.L. et al., (1986) Implementing Mathematics with the Nuprl proof development
system, Prentice Hall.

[CCM 87] Cousineau G., Curien P.L. and Mauny M., (1987) The Categorical Abstract Machine,
Science of Computer Programming 8, 173-202.

[Field 90] Field, J., (1990) On laziness and optimality in A-interpreters: tools for specification and
analysis, 17" Annual Symposium on Principles of Programming Languages, San Fransisco, 1-15.

[GM 93] Gordon M.J.C. and Melham, T.F. (eds), (1993) Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic, Cambridge University Press.

[HL 89] Hardin, Th. and Lévy, J.-J., (1989) A confluent calculus of substitutions, Lecture notes of the
INRIA-ICOT symposium, Izu, Japan, November.

[KN 93] Kamareddine, F., and Nederpelt, R.P., (1993) On stepwise explicit substitution, International
Journal of Foundations of Computer Science 4 (3), 197-240, 1993.

[KN 94] Kamareddine, F., and Nederpelt, R.P., (1994) A unified approach to type theory through a
refined A-calculus, Theoretical Computer Science 136, 183-216.

[KN 95] Kamareddine, F., and Nederpelt, R.P., (1995) Refining reduction in the A-calculus, Journal
of Functional Programming 5 (4).

[KN 96a] Kamareddine, F., and Nederpelt, R.P., (1996) A useful A-notation, Theoretical Computer
Science 155.

[KN 96b] Kamareddine, F., and Nederpelt, R.P., (1996) Canonical Typing and IT-conversion in the
Barendregt Cube, Journal of Functional Programming 6 (2).

[KR 95] Kamareddine, F., and Rios A., (1995) A-calculus & la de Bruijn & explicit substitution,
Proceedings of PLILP °95, LNCS, Springer-Verlag.

[KR 9x] Kamareddine, F., and Rios A., The As-calculus: its typed and its extended versions, submit-
ted.

[KR 9y] Kamareddine, F., and Rios A., The confluence of the As.-calculus via a generalised interpre-
tation method, submitted.

[Kra 93] Krabbendam, J., (1993) On the soundness of explicit substitution, Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology.

[Mel 95] Mellies, P.-A., (1995) Typed A-calculi with explicit substitutions may not terminate, Pro-
ceedings of TLCA’ 95, Lecture Notes in Computer Science 902, Springer-Verlag.

[NGdV 94] Nederpelt, R.P., Geuvers, J.H., and de Vrijer, R.C., eds, (1994) Selected papers on Au-
tomath, Studies in Logic and The foundations of Mathematics, 133, North Holland.

25

