
A reduction relation for which postponement of K-contractions,Conservation and Preservation of Strong Normalisation hold�Fairouz KamareddineyMarch 13, 1996AbstractPostponement of �K -contractions and the conservation theorem do not hold for ordi-nary � but have been established by de Groote for a mixture of � with another reductionrelation. In this paper, de Groote's results are generalised for a single reduction relation�e which generalises �. This then is used to solve an open problem of �e: the Preservationof Strong Normalisation1.Keywords: Generalised �-reduction, Postponement of K-contractions, Generalised Conser-vation, Preservation of Strong Normalisation.1 Introduction1.1 Background and MotivationIn the term ((�x:�y:N)P )Q, the function starting with �x and the argument P result in theredex (�x:�y:N)P . It is also the case that the function starting with �y and the argument Qwill result in another redex when the �rst redex is contracted. This idea has been exploitedby many researchers and reduction has been extended so that the generalised redex based onthe matching �y and Q is given the same priority as the other redex. Reasons for generalisingredexes and �-reduction are numerous and have ranged between theoretical and practical.Here are a few attempts at generalising reduction and at the reasons of such an extension:(�) ((�x:N)P )Q! (�x:NQ)P() (�x:�y:N)P ! �y:(�x:N)P(C) ((�x:�y:N)P )Q! (�y:(�x:N)P )Q�Preservation of Strong Normalisation for generalised reduction proved to be a di�cult problem to establish.Joe Wells told me of the result of de Groote on conservation and that it might help me solve the problem.Without Joe's observation, PSN would probably have remained a di�cult problem to solve. I am gratefulfor him for the discussions we had and for his patience when I needed help on latex. I am also grateful forAlejandro Rios for his comments on the paper. This work is partially supported by EPSRC grant numberGR/K25014 and was carried out at Boston University to whom and especially to Assaf Kfoury, I am grateful.yDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, email: fairouz@dcs.glasgow.ac.uk, fax + 44 41 -3304913.1I was told by Rob Nederpelt that in [Nederpelt 73], he assumed that the preservation of Strong Normali-sation for �e is easy to establish yet when editing [NGV 94], he retracted his assumption.1



All these (related) rules attempt to make more redexes visible. C for example, makessure that �y and Q form a redex even before the redex based on �x and P is contracted.Due to compatibility,  implies C . Moreover, ((�x:�y:N)P )Q!� (�x:(�y:N)Q)P and henceboth � and C put � adjacently next to its matching argument. One can say that � movesthe argument next to its matching � whereas C moves the � next to its matching argu-ment. Hence, � can be equally applied to explicitly and implicitly typed systems. Thetransfer of  or C to explicitly typed systems is not straightforward however, since in ex-plicitly typed systems, the type of y may be a�ected by the reducible pair �x; P . For ex-ample, it is �ne to write ((�x:�:�y:x:y)z)u !� (�x:�:(�y:x:y)u)z but it is not �ne to write((�x:�:�y:x:y)z)u !C (�y:x:(�x:�:y)z)u. For this reason, we study �-like rules for generalisedreduction in this paper. Now, we discuss where generalised reduction has been used ([KW 95b]provides a more detailed comparison).[Reg 92] introduces the notion of a premier redex which is similar to the redex based on �yand Q above (and which is called extended redex in the paper). [Reg 94] uses � and  (and callsthe combination �) to show that the perpetual reduction strategy �nds the longest reductionpath when the term is Strongly Normalising (SN). [Vid 89] also introduces reductions similarto those of [Reg 94]. Furthermore, [KTU 94] uses � (and other reductions) to show thattypability in ML is equivalent to acyclic semi-uni�cation. [SF 92] uses a reduction whichhas some common themes to �. [Nederpelt 73] and [dG 93] use � whereas [KW 95a] uses to reduce the problem of strong normalisation for �-reduction to the problem of weaknormalisation for related reductions. [KW 94] uses amongst other things, � and  to reducetypability in the rank-2 restriction of system F to the problem of acyclic semi-uni�cation.[AFM 95] uses � (which they call \let-C") as a part of an analysis of how to implementsharing in a real language interpreter in a way that directly corresponds to a formal calculus.[KN 95] uses a more extended version of � where Q and N are not only separated by theredex (�x:N)P but by many redexes (ordinary and generalised).There are other reasons for using generalised reduction than those mentioned above.[KN 95] showed that generalised reduction makes more redexes visible and hence allows formore exibility in reducing a term. [BKN 9y] showed that with generalised reduction one mayindeed avoid size explosion without the cost of a longer reduction path and that �-calculuscan be elegantly extended with de�nitions which result in shorter type derivation.All the research mentioned above is a living proof for the importance and usefulness ofgeneralised reduction (from now on, �e). For this reason, properties of this reduction mustbe studied. Conuence of �e is a direct consequence of the fact that M =� N , M =�e N .Subject reduction for �e has been established in [BKN 9y] (with the condition that explicitde�nitionsmust be added for some systems of the cube). Strong Normalisation of �e has beenestablished for the whole Cube (with or without de�nitions) in [BKN 9y]. One importantproperty however, the Preservation of Strong Normalisation (PSN) of �e has remained open.This property is: if M is strongly normalising for ordinary �-reduction (written M is �-SN),then M remains strongly normalising for generalised reduction �e (i.e.M is also �e-SN). PSNmakes �e a useful extension of �. This parallels the work on extending �-calculi with explicitsubstitutions which satisfy the PSN property.2



1.2 Contributions of this paper and related workLet us recall the three basic reduction rules of the �-calculus (FV (M) stands for the freevariables of M):(�) (�x:M)N !M [x := N ](�I) (�x:M)N !M [x := N ] if x 2 FV (M)(�K) (�x:M)N !M if x 62 FV (M)Redexes based on the �I rule are called �I- or I-redexes. Similarly, those based on the �Krule are called �K- or K-redexes. For any relation r, we write rK and rI for the correspondingK- and I-reductions.In this paper, we show that the generalised reduction �e satis�es PSN. We do this by show-ing the postponement of K-contractions and conservation for �e. These two latter propertiesare important on their own since the �rst says that when reducing a term to a normal form,we can �rst reduce all the I-redexes and then we can reduce all the K-redexes; the secondsays that if a term is I-normalising, then it is strongly normalising. Of course both propertiesfail for ordinary �. For example, (�y:(�x:x))MN !�K (�x:x)N !�I N and it is impossibleto �I-reduce (�y:(�x:x))MN . Moreover, ((�x:�y:y(�z:zz))u)�z:zz is �I-normalising but notstrongly �-normalising.Attempts have been made at establishing some reduction relations for which postponementof K-contractions and conservation hold ([Bar 84] and [dG 93]). The picture is as follows (-Nstands for normalising and r 2 f�I ; �Kg):(�K-postponement for r) If M !�K N !r O then 9P such that M !!+�I�K P !!�K O(Conservation for �I) If M is �I-N then M is �I-SN(Conservation for � + �) If M is �I�K-N then M is �-SNConservation for �I is found in [Bar 84]. Conservation for � + � and �K-postponement forr 2 f�I ; �Kg are established in [dG 93]. However, de Groote does not produce these resultsfor a single reduction relation, but for � in which another relation (�) is used. This paperestablishes �K-postponement and conservation for a single relation �e and is hence the �rstto do so. These properties for �e are as follows:(�eK-postponement for �e) If M !�eK N !�eI O then 9P such that M !�eI P !!+�eK O(Conservation for �e) If M is �eI-N then M is �e-SNTo show PSN, we show that if M !!F N (using the perpetual strategy) and if N is �eI-Nthen M is �eI-N. Now, we take M which is �-SN, and its perpetual path to its normal formN . As N is �eI-N, then M is �eI-N and hence by conservation, M is �e-SN.Both our postponement and generalised conservation are important because here we havethe �rst reduction relation which generalises � (yetM =� N ,M =�e N) and which satis�esthem. The most important result of this paper however, is PSN: M is �-SN , M is �e-SN.This does not only mean that �e does not change the set of �-SN terms, but also that wecan actually use �e with explicit substitution. In fact, explicit substitution, is an importanttopic of research and PSN is an important property for any �-calculus extended with explicitsubstitution. In fact, lately, much research has been carried out ([BLR 95] and [KR 95]) inorder to �nd systems of explicit substitution which are both conuent and have the PSNproperty (if M is �-SN then M is �s-SN where �s is the lambda calculus extended with3



explicit substitution). This is the reason for our interest in PSN of �e (which is conuentby the way). After all, generalised reductions �a la �e have been extensively used as we sawin Section 1.1 for both theoretical and practical reasons. Furthermore, systems of explicitsubstitution have been the subject of much recent research. Both generalised reduction andexplicit substitution are of practical importance and combining them both in one system mayturn out to be very usef ul. Now, with PSN established we can study extending the �-calculuswith both explicit substitution and generalised reduction. This means that we can combinethe advantages of the two di�erent extensions in one system and we are investigating thisline at the moment. Until the result of PSN of this paper, we were not sure which directionto take in combining both explicit substitution and generalised reduction in one system. Wehad established the following (��es stands for the lambda calculus extended with explicitsubstitution and generalised reduction and for reasons of uniformity, we write �-SN for �-SNand ��e-SN for �e-SN):(1) M is �-SN , M is �s-SN see [KR 95](2) M is �s-SN , M is ��es-SN see [KR 96]The proofs for (1) and (2) are similar. We had no idea however how to show either (3) or (4):(3) M is �-SN , M is ��e-SN(4) M is ��e-SN , M is ��es-SNWith this paper, we establish (3) and hence we get (4) for free (because of the equiva-lences). Hence, one gets: M is �-SN , M is ��e-SN , M is ��es-SN , M is �s-SN.2 The formal machineryWe assume the reader familiar with the �-calculus (whose terms are � ::= Vj(��)j(�V:�)),take terms modulo �-conversion and use the variable convention VC (as in [Bar 92]) whichavoids any clash of variables. We use x; y; z; x1; x2; : : : and M;N; P;Q;A;B;A1; : : : to rangeover V and � respectively. We assume the usual de�nition of substitution and use FV (M) forthe set of free variables of M . Because we need to see redexes (ordinary and generalised) weshall write terms in item notation (see [KN 96b] or [KN 95]). In this notation, �x is writtenas [x] and (MN) is written (N)M (note that following de Bruijn, we put the argument beforethe function). [x] and (N) are called items. A sequence of items is called a segment. Weuse I; I1; : : : to range over items and S; S1; S2; : : : to range over segments. A well-balancedsegment (w.b for short) is de�ned as the empty segment or (P )S1[x]S2 where S1 and S2 arew.b. Note that the concatenation of w.b segments is a well-balanced segment.One particular advantage of this notation is that redexes are more clear than in the usualnotation. For example, C of Subsection 1.1 becomes: (Q)(P )[x][y]N ! (Q)[y](P )[x]N whereit is clear that (P ) matches [x] and (Q) matches [y]. So, an ordinary redex starts with a ( )adjacent to [ ]. A generalised redex starts with ( )S[ ] where S is w.b. When S = ;, ageneralised redex is an ordinary redex. In (Q)(P )[x][y]N , we say that (P ), [x], (Q) and [y]are partnered, (P ) is the partner of [x] (or [x] is the partner of (P )) and (Q) is the partnerof [y]. (P ) and [x] are also said to be �-partnered whereas (Q) and [y] are �e-partnered. Ingeneral, we say that (P ) (or [x]) is partnered in M if:4



� M � (P )S[x]N where S is w.b (in this case (P ) and [x] are partners), or� M � [y]N and (P ) (or [x] ) is partnered in N , or� M � (N1)N2 and (P ) is either partnered in N1 or in N2.We may also talk of �I-, �eI-, �K-, �eK-partnered items with the obvious meaning. Note thatif S1(A)S2[x]S3 is w.b where (A) and [x] are partnered then S2 and S1S3 are w.b.If an item is not partnered in a term we say that it is bachelor (and may talk of �-, �eI-,�K-, �eK-, �I- and �e-bachelor items). A segment consisting of bachelor items only is calledbachelor. Note that a term will always be written as I1I2 : : : Inx. Each Ii is said to be amain-item in M . A main item can of course have items inside it but these will not be main inM . For example, ((y)[x]x)[z]z has the main items ((y)[x]x) and [z]. The redex ((y)[x]x)[z]zis said to be a main-redex. The other redex (y)[x]x is not main. The weight of a segment isde�ned to be the number of its main items. We write [x := N ]M instead ofM [x := N ] whichstands for substituting N for the free occurrences of x in M .We assume the reader familiar with the basic machinery of reduction ([Bar 84], p. 50-59).In particular, if R is a binary relation � � � �, and (M;N) 2 R, we call M the R-redexand N the contractum of M . Given R � � � �, we de�ne !R to be the least compatiblerelation containing R, !!R to be its reexive transitive closure and =R to be its reexive,symmetric and transitive closure. A term M is said to be in R-nf i� there is no N such thatM !R N . M is said to have a R-nf, i� there is N in R-nf such that M !!R N . We sayM is R-normalising or is R-N i� M has a R-nf. We say that M is strongly R-normalisingand write M is R-SN i� there is no in�nite R-reduction path starting at M . We may useM !!+R N to indicate the existence of one or more steps from M to N and M !!nR N tomean that there are n reduction steps. Ordinary �-, �I- and �K-reduction are de�ned as thereduction relations generated by the corresponding rules below:(�) (N)[x]M ! [x := N ]M(�I) (N)[x]M ! [x := N ]M if x 2 FV (M)(�K) (N)[x]M !M if x 62 FV (M)[dG 93] also uses(�K) (O)(N)[x]M ! (N)[x](O)M if x 62 FV (M)Note that by VC, in �K , x 62 FV (O). Moreover, de Groote moves (O) to the right of (N)[x]so that it can eventually occur adjacent to its partner in M if it exists. De Groote establishesthe following two results (r 2 f�I ; �Kg):(�K-postponement for r) If M !�K N !r O then 9P such that M !!+�I�K P !!�K O(Conservation for � + �) If M is �I�K-N then M is �-SN:In this paper, we will improve both results. We will de�ne a �e-reduction relation (seeDe�nition 2.1) whose �eI and �eK stand for its I and K-reductions. We shall show that:(�eK-postponement for �e) If M !�eK N !�eI O then 9P such that M !�eI P !!+�eK O(Conservation for �e) If M is �eI-N then M is �e-SN:5



De�nition 2.1 (Generalised �-reduction �e) We generalise �, �I and �K to the reductionrelations generated by the corresponding rules of what follows:(�e) (N)S[x]M ! S[x := N ]M if S is w.b(�eI) (N)S[x]M ! S[x := N ]M if S is w.b and x 2 FV (M)(�eK) (N)S[x]M ! SM if S is w.b and x 62 FV (M)Note that �e is more generalised than the reduction relation introduced by combining deGroote's �+�K . In fact, �e is not restricted toK-redexes and one unique step can do the workof many in Groote's sense. For example, if S � (A1)[x1](A2)[x2] : : :(An)[xn] and all the redexesstarting with (A1); (A2); : : :(An) are K-redexes in S[x]M , then (N)S[x]M !�e S[x := N ]Mi� (N)S[x]M !!n�K S(N)[x]M !� S[x := N ]M .Now, here is a basic lemma about terms:Lemma 2.21. Let r 2 f�e; �eI; �eKg. If (A) is r-bachelor in (A)M then (B) is also r-bachelor in(B)(A)M .2. If M is in �-nf, then M � [x1][x2] : : : [xn](A1)(A2) : : :(Am)z where n � 0, m � 0 and8i, 1 � i � m) Ai is in �-nf.3. If A !r A0 then SA !r SA0 for any segment S and any reduction relation r 2f�; �I; �K; �e; �eI; �eKg.Proof: 1. If (B) was r-partnered, then (B)(A)M � (B)(A)S[x]N where (A)S is w.b (andhence (A)S � (A)S1[y]S2 where S1; S2 are w.b) contradicting the fact that (A) is r-bachelor.2. By induction on the structure of M . 3. By induction on the weight of S. 2In order to show the Preservation of Strong Normalisation for �e, we need a reduction strategywhere a �K-redex (M)[x]N is contracted only if M is in �-nf. This strategy is actually theperpetual strategy (see [Bar 84] and [Reg 94]):De�nition 2.3 We de�ne the perpetual strategy F as follows:F ([x]M) = F (M)F ((M)N) = F (N) if N 6� [x]P and N is not in �-nfF ((M)N) = F (M) if N 6� [x]P and N is in �-nfF ((M)[x]N) = (M)[x]N if x 2 FV (N) or M is in �-nfF ((M)[x]N) = F (M) if x 62 FV (N) and M is not in �-nfWe call perpetual reduction, the reduction associated with this strategy. When M �-reducesto N by contracting F (M), we write, M !F N . This strategy has been shown in [Reg 94]to give the longest path for a SN term. It was moreover, shown in [Bar 84] that M is �-SNi� its perpetual reduction terminates. With the result of this paper, it will also be the casethat M is �e-SN i� its perpetual path terminates. The following lemma is informative aboutwhere F -reduction takes place in a term in the case of K-redexes:Lemma 2.4 If M !F N where F (M) is a �K-redex, then one of the following holds:6



1. M � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)[x]P andN � [x1][x2] : : : [xm](A1)(A2) : : :(An)Pwhere x 62 FV (P ), A is in �-nf, n � 0 and m � 0.2. M � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)[x]P andN � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A0)[x]Pwhere x 62 FV (P ), A is not in �-nf, A!F A0, n � 0 and m � 0.3. M � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)(B1)(B2) : : :(Br)z andN � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A0)(B1)(B2) : : :(Br)z andA is not in �-nf, A!F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in �-nf.Proof: By induction on M !F N where F (M) is a �K-redex.� Case (A)[x]P !F P where A is in �-nf and x 62 FV (P ): this is form 1.� Case (A)[x]P !F (A0)[x]P where A is not in �-nf and x 62 FV (P ): this is form 2.� Case [x]M !F [x]M 0, where M !F M 0, use IH on M !F M 0.� Case (N)M !F (N)M 0, M is not in �-nf and is not [y]Q, use IH on M !F M 0.� Case (A)B !F (A0)B, B 6� [y]Q and B is in �-nf, by Lemma 2.2, B � (B1) : : :(Br)zwhere all Bis are in �-nf and we are done because this is form 3. 23 Postponement of �eK-reductionThe proof of postponement is similar to that of de Groote. For us, however, we can get awaywith only one step �eI reduction in the postponement lemma (Lemma 3.3). De Groote, hadto have many steps in order to accommodate the slow process of moving an item ( ) next toits matching [ ] (see for example his proof of Lemma 11, (c) ii). We could also in Lemma 3.3below, replace �eK with ordinary �K in P !!+�eK O but we won't bother doing this for thispaper as it is not needed. Finally, note that in Lemma 3.3, P !!+�eK O and not P !!�eK Onor P !�eK O. This is due to Lemma 3.1.Lemma 3.1 If M !�eK N then1. [x :=M ]P !!�eK [x := N ]P .2. if x 2 FV (P ) then [x :=M ]P !!+�eK [x := N ]P .Proof: Both 1 and 2 are by induction on the structure of P . 2Lemma 3.2 If M !�eK N then [x := P ]M !�eK [x := P ]N .Proof: By induction on the derivation of M !�eK N . 2Lemma 3.3 If M !�eK N !�eI O then 9P such that M !�eI P !!+�eK O.Proof: By induction on the derivation of M !�eK N .� Case (A)S[x]B!�eK SB, S w.b, x 62 FV (B), check where in SB the �eI-redex appears:7



{ If SB !�eI SB0 � O, then by compatibility, (A)S[x]B !�eI (A)S[x]B0 !�eK SB0as x 62 FV (B0).{ If S � S1(A1)S2[y]S3 where S2 and S1S3 are w.b (note that S = ; is coveredby the above case), and if S1(A1)S2[y]S3B !�eI S1S2f[y := A1]S3g[y := A1]Bthen (A)S1(A1)S2[y]S3[x]B !�eI (A)S1S2f[y := A1]S3g[x]f[y := A1]Bg !�eKS1S2f[y := A1]S3gf[y := A1]Bg as x 62 FV ([y := A1]B) due to VC.{ If S � S1(A1)S2[y]S3, S2; S1S3 are w.b and S1(A1)S2[y]S3B !�eI S1(A01)S2[y]S3Bthen (A)S1(A1)S2[y]S3[x]B !�eI (A)S1(A01)S2[y]S3[x]B !�eK S1(A01)S2[y]S3B.� Case [x]M !�eK [x]N !�eI O, then O � [x]Q use IH on M !�eK N !�eI Q.� Case (A)B !�eK (A0)B !�eI O, we investigate how (A0)B !�eI O.{ If O � (A0)B0 where B !�eI B0, then (A)B !�eI (A)B0 !�eK (A0)B0.{ If O � (A00)B where A0 !�eI A00, Use IH on A!�eK A0 !�eI A00 and compatibility{ If (A0)B � (A0)S[x]B1 !�eI S[x := A0]B1, then(A)B � (A)S[x]B1 !�eI S[x := A]B1 !!+�eK S[x := A0]B1 by Lemma 3.1.� Case (A)B !�eK (A)B0 !�eI O then{ If O � (A)B00 where B0 !�eI B00 then use IH on B !�eK B0 !�eI B00 and derive(A)B !�eI (A)P !!+�eK (A)B00.{ If O � (A0)B0 where A!�eI A0 then (A)B !�eI (A0)B !�eK (A0)B0.{ If B0 � S[x]C, S is w.b, and O � S[x := A]C. I.e. (A)B !�eK (A)S[x]C !�eIS[x := A]C.Case B � S[x]C1 and C1 !�eK C, (A)S[x]C1 !�eI S[x := A]C1 !�eK S[x := A]Cby Lemma 3.2.Case B � S1[x]C and the �eK-redex is in S1, i.e. (A)S1[x]C !�eK (A)S[x]C !�eIS[x := A]C. Now, (A)S1[x]C !�eI S1[x := A]C !�eK S[x := A]C by VC. 24 The generalised conservation for �eThe set IN� of labelled �-terms is inductively de�ned as follows:1. n 2 IN; x 2 V ) nx 2 IN�.2. n 2 IN; x 2 V ;M 2 IN�) n[x]M 2 IN�.3. n 2 IN;M;N 2 IN�) n(M)N 2 IN�We take M;N;O;A;B; : : : to range over labelled �-terms. We use nM to stress that theoutermost label of a �-term M is n. Hence, M and nM stand for the same labelled �-term.We write +mM for the labelled �-term obtained by adding m to the outermost label of alabelled �-term M . Hence if the outermost label of M is n then +mM denotes n+mM .ForM 2 IN�, we write jM j for the (unlabelled) �-term in � obtained by erasing all labelsin M . Moreover, if M 2 �, we identify M with M 0 in IN� such that jM 0j �M and all labelsin M 0 are 0. Hence, � � IN�. 8



Labels are used as counters to record the number of contracted redexes when reducing aterm. We use in this section, the notations and techniques of de Groote adapted however toour generalised reduction. Basically the idea is as follows: we introduce a labelled reductionrelation !�+eI which we prove Church Rosser. !�+eI is shown CR by showing that a relatedreduction relation !1 is CR. Hence, if a labelled term M has a �+eI-nf, it must be unique.We then introduce the notion of weight of a term M , �[M ], which is used to limit the lengthof �+eI-reductions starting at normalising terms. That is, the length of any sequence of �+eI-reductions starting at a normalising term M is bounded by �[M 0]� �[M ] where M 0 is the(unique) �+eI-nf of M . This implies that any �+eI-N term is �+eI-SN. This will be extended to�eI by showing that any �eI-N term is �eI-SN. Next we show that if M is �eI-N then it is�e-SN by using the fact that M is �eI-SN, postponement and that there can only be a �nite�eK-redexes.Here is the de�nition of substitution on labelled terms and a basic lemma about substitution:De�nition 4.1 Let M;N 2 IN�. [x := N ]M is de�ned as follows:[x := nN ]mx � n+mN[x := nN ]my � my if x 6� y[x := nN ]m(P )Q � m([x := nN ]P )[x := nN ]Q[x := nN ]m[y]M � m[y][x := nN ]MLemma 4.2 Let P;C;D 2 IN�, x 6� y and y 62 FV (P ). The following holds:[x := nP ][y := mC]oD � [y := [x := nP ]mC][x := nP ]oD. Moreover, both sides have thelabel n+m+ o if D � y ^ C � x, m+ o if D � y ^ C 6� x, n+ o if D � x, and o otherwise.Furthermore, +i[y := mC]oD � [y := mC]+iD.Proof: By induction on the structure of D leaving to the reader the easy+i[y := mC]oD � [y := mC]+iD (which is proven by cases on the structure of D).� D � oy then lhs � [x := nP ]m+oC, rhs � [y := [x := nP ]mC]oy. If C � x then bothsides are n+m+oP . If C 6� x then both sides have m+ o as labels and are m+o[x := P ]C.� D � ox then both sides are o+nP as y 62 FV (P ).� D � oz, z 6� x and z 6� y, then both sides are oz.� D � o[z]A then use IH.� D � o(A)B then[x := nP ][y := mC]o(A)B �o([x := nP ][y := mC]A)[x := nP ][y := mC]B � IHo([y := [x := nP ]mC][x := nP ]A)[y := [x := nP ]mC][x := nP ]B �[y := [x := nP ]mC][x := nP ]o(A)B. 2Now we de�ne !�+eI which will be used to show conservation.De�nition 4.3 M !�+eI N is de�ned inductively as follows:1. n(iN)So[x]jM !�+eI +n+o+1S[x := iN ]jM if x 2 FV (M); S, w.b.2. If M !�+eI N then n[x]M !�+eI n[x]N 9



3. If M !�+eI N then n(M)P !�+eI n(N)P and n(P )M !�+eI n(P )N!!�+eI is de�ned as the transitive reexive closure of !�+eI .We de�ne !1 for which CR is easier to show than for !�+eI .De�nition 4.4 M !1 N is de�ned inductively as follows:1. M !1 M2. If M !1 N then n[x]M !1 n[x]N3. If M !1 O and N !1 P then n(M)N !1 n(O)P4. If Sp[x]M !1 S 0q [x]O, N !1 P , S; S0 w.b, and x 2 FV (M) thenn(N)Sp[x]M !1 +n+q+1S0[x := P ]O.!!1 is de�ned as the transitive reexive closure of !1.The following lemma shows that labels can be increased for both !1 and !�+eI .Lemma 4.5 Let M;N 2 IN�.1. M !1 N then +nM !1 +nN .2. M !�+eI N then +nM !�+eI +nN .Proof: We only show 1 by induction on the derivation M !1 N . 2 is similar and is byinduction on the derivation M !�+eI N .1. +nM !1 +nM by def. of !1.2. If m[x]M !1 m[x]N where M !1 N then by def. of !1, m+n[x]M !1 m+n[x]N .3. If m(M)N !1 m(O)P , M !1 O, N !1 P then by def. of !1, m+n(M)N !1 m+n(O)P .4. If m(N)Sp[x]M !1 +m+q+1S 0[x := P ]O, N !1 P , Sp[x]M !1 S0q[x]O, S; S 0, w.b,x 2 FV (M) then by def. of !1, n+m(N)Sp[x]M !1 +n+m+q+1S0[x := P ]O. 2The following lemma shows that !1 and !�+eI close under substitution.Lemma 4.6 Let M;N;O 2 IN�.1. If M !1 N , then [x :=M ]mO !1 [x := N ]mO.2. If M !�+eI N , then [x :=M ]mO !!�+eI [x := N ]mO.Proof: 1 and 2 are similar and are by induction on the structure of O. We only show 1.� [x :=M ]mx � +mM !1 +mN � [x := N ]mx using Lemma 4.5.� [x :=M ]my � my !1 my � [x := N ]my for y 6� x� [x :=M ]m[y]O � m[y][x :=M ]O !1 IH m[y][x := N ]O � [x := N ]m[y]O10



� [x :=M ]m(P )Q � m([x :=M ]P )[x :=M ]Q!1 IHm([x := N ]P )[x := N ]Q � [x := N ]m(P )Q 2Lemma 4.7 Let M;N; P;O 2 IN�.1. If M !1 N and O !1 P then [x := O]M !1 [x := P ]N .2. If M !�+eI N and O !�+eI P then [x := O]M !!�+eI [x := P ]N .Proof: We only prove 1 by induction on the derivation M !1 N . 2 is similar and is byinduction on the derivation M !�+eI N .� Case M !1 M then by Lemma 4.6, [x := O]M !1 [x := P ]M .� Case m[y]M !1 m[y]N where M !1 N , then by IH, [x := O]M !1 [x := P ]N andhence [x := O]m[y]M � m[y][x := O]M !1 m[y][x := P ]N � [x := P ]m[y]N .� Case m(A)B !1 m(C)D where A !1 C and B !1 D then by IH, [x := O]A !1 [x :=P ]C and [x := O]B !1 [x := P ]D. So, [x := O]m(A)B � m([x := O]A)[x := O]B!1 m([x := P ]C)[x := P ]D � [x := P ]m(C)D.� Case n(A)Sp[y]B !1 +n+q+1S0[y := C]D where A !1 C; Sp[y]B !1 S0q [y]D, S; S0 w.b,and y 2 FV (B), then by IH, [x := O]A!1 [x := P ]C andf[x := O]Sgp[y][x := O]B � [x := O]Sp[y]B !1[x := P ]S 0q [y]D � f[x := P ]S 0gq[y][x := P ]D. Now,[x := O]n(A)Sp[y]B � n([x := O]A)[x := O]Sp[y]B !y2FV ([x:=O]B)1+n+q+1f[x := P ]S 0g[y := [x := P ]C][x := P ]D �y 62FV (P );Lemma 4:2+n+q+1f[x := P ]S 0g[x := P ][y := C]D �Lemma 4:2 [x := P ]+n+q+1S0[y := C]D 2Here is the relationship between !1 and !�+eI :Lemma 4.8 M !!1 N i� M !!�+eI N .Proof: )) By induction on the derivation ofM !1 N show thatM !1 N )M !!�+eI N .� If M !1 M then obvious. If n[x]M !1 n[x]N or n(M)P !1 n(N)Q where M !1 Nand P !1 Q use IH.� If n(N)Sp[x]M !1 +n+q+1S0[x := P ]O where S; S 0 w.b, x 2 FV (M), Sp[x]M !1S 0q [x]O and N !1 P then by IH, Sp[x]M !!�+eI S 0q [x]O and N !!�+eI P .Hence, n(N)Sp[x]M !!�+eI n(P )S0q[x]O!�+eI +n+q+1S 0[x := P ]O.() By induction on the derivation M !�+eI N , show that M !�+eI N )M !1 N .� If n(N)Sp[x]M !�+eI +n+p+1S[x := N ]M where S w.b, x 2 FV (M), then as N !1 Nand Sp[x]M !1 Sp[x]M , we are done.� If n[x]M !�+eI n[x]N or n(M)P !�+eI n(N)P or n(P )M !�+eI n(P )N where M !�+eI Nuse IH and P !1 P . 2The following two lemmas enable us to establish that !1 is CR.11



Lemma 4.9 If S; S 0 w.b, none of the binding variables of S[x] occurs free in N , none of thebinding variables of S0[x] occurs free in P , none of the binding variables of N are free in Mand none of the binding variables of P are free in O, Sp[x]M !1 S 0q[x]O and N !1 P then+pS[x := N ]M !1 +qS 0[x := P ]O.Proof: Note that if weight(S) = weight(S0) then p = q, M !1 O and if (Ai) and (A0i)are the ith main application items of S and S0 respectively, then Ai !1 A0i. Hence the resultis shown by Lemmas 4.5 and 4.7 and the def. of !1.If weight(S) > weight(S 0), then we prove the lemma by induction on weight(S).� If S � n(A)o[y] then S0 � ;, q = p + n + o + 1, O � [y := A0]M 0 where A !1 A0 andM !1 M 0. Hence by Lemma 4.7 o[y][x := N ]M !1 o[y][x := P ]M 0 and so by def. of!1, n+p(A)o[y][x := N ]M !1 +n+p+o+1 [y := A0][x := P ]M 0 �Lemma 4.2+n+p+o+1 [x := P ][y := A0]M 0 � +n+p+o+1 [x := P ]O and we are done.� The inductive case is long but straightforward. 2Lemma 4.10 Let M;N;O 2 IN� such that M !1 N and M !1 O then 9P 2 IN� such thatN !1 P and O !1 P .Proof: By induction on the derivation of M !1 N .1. M !1 M then P � O.2. n[x]M1 !1 n[x]N1 where M1 !1 N1, then O � n[x]O1 and M1 !1 O1. Now use IH.3. n(M1)M2 !1 n(N1)N2 where M1 !1 N1 and M2 !1 N2, then(a) If O � n(O1)O2, M1 !1 O1 and M2 !1 O2 then by IH, 9P1; P2 such thatN1 !1 P1; O1 !1 P1; N2 !1 P2 and O2 !1 P2. Hence n(N1)N2 !1 n(P1)P2and n(O1)O2 !1 n(P1)P2.(b) If M2 � Sp[x]M3, O � +n+q+1S0[x := O1]O2 where M1 !1 O1, Sp[x]M3 !1S 0q [x]O2, x 2 FV (M3), S; S0 w.b, then as S is w.b, N2 � S 00o[x]N3, S00 w.b (whichmay or may not be empty) and x 2 FV (N3). Now, by IH, 9P1; P2; S 000 w.b, suchthat, N1 !1 P1; O1 !1 P1; S 00o[x]N3 !1 S000r[x]P2 and S0q [x]O2 !1 S000r[x]P2.Hence, by Lemmas 4.5 and 4.9, +n+q+1S0[x := O1]O2 !1 +n+r+1S 000[x := P1]P2.Note that all the preconditions of Lemma 4.9 hold due to the variable conventionVC. Now, as S00o[x]N3 !1 S000r [x]P2, x 2 FV (N3) and N1 !1 P1, we get by def.of !1, n(N1)S00o[x]N3 !1 +n+r+1[x := P1]P2.4. Case n(M1)Sp[x]M2 !1 +n+q+1S 0[x := N1]N2, M1 !1 N1, Sp[x]M2 !1 S 0q [x]N2, S; S0w.b, x 2 FV (M2):(a) Case O � n(O1)O2 similar to case 3, (b).(b) Case O � +n+o+1S00[x := O1]O2 where M1 !1 O1 and Sp[x]M2 !1 S 00o[x]O2, S 00w.b, then by IH, 9P1; P2; S 000 w.b, such that N1 !1 P1; O1 !1 P1; S 0q [x]N2 !1S 000r [x]P2; S 00o[x]O2 !1 S000r [x]P2 and by Lemmas 4.5 and 4.9 (again here, all thepreconditions of Lemma 4.9 hold due to the variable convention VC):+n+q+1S 0[x := N1]N2 !1 +n+r+1S 000[x := P1]P2 and+n+o+1S 00[x := O1]O2 !1 +n+r+1S000[x := P1]P2. 212



Corollary 4.11 (Church Rosser of!1) LetM;N;O 2 IN� such that M !!1 N andM !!1 Othen 9P 2 IN� such that N !!1 P and O!!1 P . 2Now, the �rst part of this section (CR of !�+eI ) is done:Lemma 4.12 (Church Rosser of !�+eI ) Let M;N;O 2 IN� such that M !!�+eI N andM !!�+eI O then 9P 2 IN� such that N !!�+eI P and O!!�+eI P .Proof: By Corollary 4.11 and Lemma 4.8. 2In order to show Lemma 4.16, we introduce the following de�nition:De�nition 4.13 The weight �[M ] of a labelled �-term M is de�ned as follows:�[nx] = n�[n[y]M ] = n +�[M ]�[n(M)N ] = n +�[M ] + �[N ]Lemma 4.14 If x 2 FV (M) then �[[x := N ]M ] � �[M ] + �[N ].Proof: By induction on the structure of M showing �rst that �[+mM ] = m+�[M ]. 2Lemma 4.15 Let M;N 2 IN� and M !!+�+eI N then �[M ] < �[N ].Proof: By induction on the derivation M !!+�+eI N using Lemma 4.14. 2Now, �+eI-N and �+eI-SN are the same:Lemma 4.16 If M is �+eI-N then M is �+eI-SN.Proof: Since M is �+eI-N, and since �+eI is Church Rosser by Lemma 4.12, then M hasa unique �+eI-nf M 0. According to Lemma 4.15, the length of any sequence of �+eI-reductionstarting at M is bounded by �[M 0]��[M ]. 2Here is the relationship between !�eIand !�+eI :Lemma 4.17 Let M;N 2 � such that M !�eI N , then there exist M 0; N 0 2 IN� such thatjM 0j �M; jN 0j � N and M 0 !�+eI N 0. Furthermore, if N is in �eI-nf then N 0 is in �+eI-nf.Proof: This is easy. Just put the right labels on M and N obtaining M 0; N 0 such thatM 0 !�+eI N 0. 2Now, we generalise Lemma 4.16 to !�eI .Theorem 4.18 If M is �eI-N then M is �eI-SN.Proof: M �eI-N )Lemma 4:17 M �+eI-N )Lemma 4:16 M �+eI-SN ) M �eI-SN (otherwisethere exists an in�nite �+eI-path). 2Finally, conservation results from the above theorem and postponement of K-contractions.Theorem 4.19 (Conservation) If M is �eI-N then M is �e-SN.Proof: If M is not �e-SN then there is an in�nite �e-path starting at M . But by post-ponement of �eK redexes, and by the fact that there can only be a �nite �eK-contractions,there must be an in�nite �eI-path. But M is �eI-N and so it is �eI-SN by theorem 4.18.Contradiction. 213



5 Preservation of Strong NormalisationIn this section, following Theorem 4.18, we interchange �eI-SN and �eI-N at liberty. Weshall show PSN of �e. Note that this is not straightforward. Take for example the followingderivation:M �-SN ) M �-N ) M �eI-N ) M �e-SNThis is incorrect because M �-N 6) M �eI-N. For example, (�x:y)
 is �-N but not �eI-Nfor 
 � (�z:zz)(�z:zz). In fact, showing PSN was not easy to establish until it was realisedthat a reduction strategy whose inverse preserves �eI-normalisation was needed. It turnedout that this is the perpetual strategy. Once this was established, PSN was in sight. Take Mthat is �-SN. Then M !!F N where N is the �-nf of M and !!F is the perpetual strategy.As N is in �-nf, then N is �eI-N. But the inverse of !!F preserves �eI-N. Hence, M is �eI-Nand by conservation, M is �e-SN.In order to establish that the inverse of !!F preserves �eI-normalisation (Theorem 5.5),we need the following three lemmas which will be combined with the three forms of perpetualreduction for K-redexes as in Lemma 2.4.Lemma 5.1 If (A1) : : :(An)(A)[x]P has �eI-nf, x 62 FV (P ), then its �eI-nf is of the form(B1) : : :(Bj)(A0)[x]Q where A0 is the �eI-nf of A, 0 � j � n, Bj is the �eI-nf of some Ai for1 � i � n. Moreover, (A1) : : :(An)P has (B1) : : :(Bj)Q as its �eI-nf.Proof: By induction on n � 0.� n = 0, the �eI-nf is (A0)[x]Q where Q is the �eI-nf of P .� Assume the property holds for n � 0. As (A1) : : :(An)(An+1)(A)[x]P has �eI-nf, thenit is �eI-SN and so (A2) : : :(An)(An+1)(A)[x]P and A1 have �eI-nf. Call the �eI-nf ofA1, A01. Now, by IH, (B1) : : :(Bj)(A0)[x]Q is the �eI-nf of (A2) : : :(An)(An+1)(A)[x]Pand (B1) : : :(Bj)Q is the �eI-nf of (A2) : : :(An)(An+1)P .{ If (A01) is �eI-bachelor in (A01)(B1) : : :(Bj)(A0)[x]Q (and so in (A01)(B1) : : :(Bj)Q),then (A01)(B1) : : :(Bj)(A0)[x]Q and (A01)(B1) : : :(Bj)Q are the �eI-nfs required.{ If (A01) is �eI-partnered in (A01)(B1) : : :(Bj)(A0)[x]Q then all (B1); : : :(Bj) start�eK-redexes and Q � [xj] : : : [x1][y]R.Now, (A1) : : :(An)(An+1)(A)[x]P !!�eI (A01)(B1) : : :(Bj)(A0)[x][xj] : : : [x1][y]R!�eI(B1) : : :(Bj)(A0)[x][xj] : : : [x1][y := A01]R!!�eI (B1) : : :(Bj)(A0)[x][xj] : : : [x1]B forB the �eI-nf of [y := A01]R.Moreover, (A1) : : :(An)(An+1)P !!�eI (A01)(B1) : : :(Bj)[xj] : : : [x1][y]R!�eI(B1) : : :(Bj)[xj] : : : [x1][y := A01]R !!�eI (B1) : : :(Bj)[xj] : : : [x1]B. Now, we aredone (note that B1; : : :Bj start �eK-redexes). 2Lemma 5.2 If (A1) : : :(An)P and A have �eI-nf, x 62 FV ((A1) : : :(An)(A)P ), then:(A1) : : :(An)(A)[x]P has �eI-nf.Proof: By induction on n � 0.� Case n = 0, P and A have P 0 and A0 as �eI-nfs, then (A)[x]P has (A0)[x]P 0 as �eI-nf.14



� Assume the property holds for n � 0. Let (A1) : : :(An)(An+1)P have �eI-nf, henceit is �eI-SN and so (A2) : : :(An+1)P has �eI-nf and A1 has A01 as �eI-nf. By IH,(A2) : : :(An+1)(A)[x]P has �eI-nf which is by Lemma 5.1, M � (B1) : : :(Bj)(A0)[x]Qand (A2) : : :(An+1)P has (B1) : : :(Bj)Q as its �eI-nf.{ If (A01) is �eI-bachelor in (A01)M then (A01)M is the �eI-nf of (A1) : : :(An+1)(A)[x]P .{ If (A01) is �eI-partnered in (A01)M then Q � [xj] : : : [x1][y]R. Now,(A1) : : :(An)(An+1)P !!�eI (A01)(B1) : : :(Bj)[xj] : : : [x1][y]R!�eI(B1) : : :(Bj)[xj] : : : [x1][y := A01]R. Hence [y := A01]R is �eI-SN as (A1) : : :(An+1)Pis. Let B be the �eI-nf of [y := A01]R. Now,(A1) : : :(An+1)(A)[x]P !!�eI (A01)(B1) : : :(Bj)(A0)[x][xj] : : : [x1][y]R!�eI(B1) : : :(Bj)(A0)[x][xj] : : : [x1][y := A01]R!�eI (B1) : : :(Bj)(A0)[x][xj] : : : [x1]B whichis in �eI-nf. 2Lemma 5.3 If Ai !�K Bi, (A1) : : :(Ai�1)(Bi)(Ai+1) : : :(An)z and Ai have �eI-nf then(A1) : : :(Ai�1)(Ai)(Ai+1) : : :(An)z has �eI-nf.Proof: A1; : : :Ai�1; Ai; Ai+1; : : :An all have �eI-nf, A01; : : :A0i�1; A0i; A0i+1; : : :A0n. Hence,(A1) : : :(Ai�1)(Ai)(Ai+1) : : :(An)z !!�eI (A01) : : :(A0i�1)(A0i)(A0i+1) : : :(A0n)z in �eI-nf. 2Lemma 5.4 If M !F N using a �K-redex, and N has a �eI-nf, then M has �eI-nf.Proof: By induction on the depth of the F -redex (following Lemma 2.4).� IfM � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)[x]P , N � [x1][x2] : : : [xm](A1)(A2) : : :(An)Pwhere x 62 FV (P ), A is in �-nf, n � 0 and m � 0. Use Lemma 5.2 (A in �-nf ) A in�eI-nf).� Let S � [x1][x2] : : : [xm](A1)(A2) : : :(An). If M � S(A)[x]P , N � S(A0)[x]P wherex 62 FV (P ), A is not in �-nf, A !F A0, n � 0 and m � 0. Use IH to deduce thatA has �eI-nf. As N has �eI-nf, then [x1][x2] : : : [xm](A1)(A2) : : :(An)P has �eI-nf byLemma 5.1. Hence, [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)[x]P has �eI-nf by Lemma 5.2.� If M � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A)(B1)(B2) : : :(Br)z,N � [x1][x2] : : : [xm](A1)(A2) : : :(An)(A0)(B1)(B2) : : :(Br)z whereA is not in �-nf, A!F A0, n � 0, m � 0 and r � 0 and 8i; 1 � i � r; Bi is in �-nf. AsN has �eI-nf, so does A0 and by IH, so does A. By Lemma 5.3, M has �eI-nf. 2Theorem 5.5 (The inverse of !!F preserves �eI-N)If M !!F N and N is �eI-N, then M is �eI-N.Proof: We show it for M !F N . Note that if M !F N and F (M) is a �I-redex, thenthe theorem is obvious as a �I-redex is a �eI-redex. Hence, we only need to prove the theoremfor the case when F (M) is a �K-redex. But this is already done in Lemma 5.4. 2Finally, here is the PSN result.Corollary 5.6 (Preservation of Strong Normalisation) If M is �-SN then M is �e-SN.Proof: As M is �-SN, the perpetual strategy of M terminates. Let M !!F N where Nis in �-nf. As N has no �-redexes, N is �eI-N. Hence, by Theorem 5.5, M is �eI-N. So, byTheorem 4.19 M is �e-SN. 215
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