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Abstract

Postponement of Gx-contractions and the conservation theorem do not hold for ordi-
nary 3 but have been established by de Groote for a mixture of § with another reduction
relation. In this paper, de Groote’s results are generalised for a single reduction relation
B¢ which generalises 3. This then is used to solve an open problem of F.: the Preservation
of Strong Normalisation?.
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1 Introduction

1.1 Background and Motivation

In the term ((A;.A,.N)P)Q, the function starting with A, and the argument P result in the
redex (A;.A,.N)P. It is also the case that the function starting with A, and the argument @)
will result in another redex when the first redex is contracted. This idea has been exploited
by many researchers and reduction has been extended so that the generalised redex based on
the matching A, and () is given the same priority as the other redex. Reasons for generalising
redexes and f-reduction are numerous and have ranged between theoretical and practical.
Here are a few attempts at generalising reduction and at the reasons of such an extension:

6) (M. N)P)Q — (A.NQ)P
) (Mo Ay -N)P = Ayo(Ap.N) P
(v¢) (Mo Ay-N)P)Q = (Ay-(Ae.N) P)Q

*Preservation of Strong Normalisation for generalised reduction proved to be a difficult problem to establish.
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Alejandro Rios for his comments on the paper. This work is partially supported by EPSRC grant number
GR/K25014 and was carried out at Boston University to whom and especially to Assaf Kfoury, I am grateful.
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All these (related) rules attempt to make more redexes visible. v for example, makes
sure that A, and () form a redex even before the redex based on A, and P is contracted.
Due to compatibility, v implies yo. Moreover, ((A;.A,.N)P)Q —¢ (Az.(Ay.N)Q)P and hence
both # and v. put A adjacently next to its matching argument. One can say that § moves
the argument next to its matching A whereas v moves the A next to its matching argu-
ment. Hence, # can be equally applied to explicitly and implicitly typed systems. The
transfer of v or v¢ to explicitly typed systems is not straightforward however, since in ex-
plicitly typed systems, the type of y may be affected by the reducible pair A, P. For ex-
ample, it is fine to write ((Ayu.Ays.y)2)u —p (Aps.(Ayw.y)u)z but it is not fine to write
((ApeAyz-y)2) =0 (Ayir-(Apw.y)z)u. For this reason, we study #-like rules for generalised
reduction in this paper. Now, we discuss where generalised reduction has been used ([KW 95b]
provides a more detailed comparison).

[Reg 92] introduces the notion of a premier redex which is similar to the redex based on A,
and ) above (and which is called extended redexin the paper). [Reg 94] uses 6 and v (and calls
the combination o) to show that the perpetual reduction strategy finds the longest reduction
path when the term is Strongly Normalising (SN). [Vid 89] also introduces reductions similar
to those of [Reg 94]. Furthermore, [KTU 94] uses 6 (and other reductions) to show that
typability in ML is equivalent to acyclic semi-unification. [SF 92] uses a reduction which
has some common themes to §. [Nederpelt 73] and [dG 93] use # whereas [KW 95a] uses
~ to reduce the problem of strong normalisation for f-reduction to the problem of weak
normalisation for related reductions. [KW 94] uses amongst other things, 8 and v to reduce
typability in the rank-2 restriction of system F to the problem of acyclic semi-unification.
[AFM 95] uses 6 (which they call “let-C”) as a part of an analysis of how to implement
sharing in a real language interpreter in a way that directly corresponds to a formal calculus.
[KN 95] uses a more extended version of 6 where ) and N are not only separated by the
redex (A;.N)P but by many redexes (ordinary and generalised).

There are other reasons for using generalised reduction than those mentioned above.
[KN 95] showed that generalised reduction makes more redexes visible and hence allows for
more flexibility in reducing a term. [BKN 9y] showed that with generalised reduction one may
indeed avoid size explosion without the cost of a longer reduction path and that A-calculus
can be elegantly extended with definitions which result in shorter type derivation.

All the research mentioned above is a living proof for the importance and usefulness of
generalised reduction (from now on, §3.). For this reason, properties of this reduction must
be studied. Confluence of j, is a direct consequence of the fact that M =3 N & M =5 N.
Subject reduction for 3. has been established in [BKN 9y] (with the condition that explicit
definitions must be added for some systems of the cube). Strong Normalisation of 3, has been
established for the whole Cube (with or without definitions) in [BKN 9y]. One important
property however, the Preservation of Strong Normalisation (PSN) of 3. has remained open.
This property is: if M is strongly normalising for ordinary -reduction (written M is §-SN),
then M remains strongly normalising for generalised reduction 3, (i.e. M is also 5.-SN). PSN
makes [, a useful extension of 3. This parallels the work on extending A-calculi with explicit
substitutions which satisfy the PSN property.



1.2 Contributions of this paper and related work

Let us recall the three basic reduction rules of the A-calculus (F'V (M) stands for the free
variables of M):

(8) (Ae. M)N — Mz := N]
(Br) (Ae-M)N — Mz := N] ifx € FV(M)
(Bk) (Ae. M)N — M if o ¢ FV (M)

Redexes based on the §; rule are called ;- or I-redexes. Similarly, those based on the Gk
rule are called (g~ or K-redexes. For any relation r, we write rx and r; for the corresponding
K- and [-reductions.

In this paper, we show that the generalised reduction j, satisfies PSN. We do this by show-
ing the postponement of K-contractions and conservation for .. These two latter properties
are important on their own since the first says that when reducing a term to a normal form,
we can first reduce all the I-redexes and then we can reduce all the K-redexes; the second
says that if a term is /-normalising, then it is strongly normalising. Of course both properties
fail for ordinary §. For example, (A,.(A;.2))MN —4, (A;.2)N —5, N and it is impossible
to frreduce (A,.(A;.2))MN. Moreover, ((A;.A,.y(A,.22))u)A,.2z is fr-normalising but not
strongly S-normalising.

Attempts have been made at establishing some reduction relations for which postponement
of K-contractions and conservation hold ([Bar 84] and [dG 93]). The picture is as follows (-N
stands for normalising and r € {5, 0k }):

(Bx-postponement for r)  If M —5, N —, O then 3P such that M —} , P —»5, O
(Conservation for f3;) If M is §;-N then M is 5;-SN
(Conservation for [ + 6) If M is $r0x-N then M is 3-SN

Conservation for §; is found in [Bar 84]. Conservation for 5 + 6 and fGx-postponement for
r € {f;,0k} are established in [dG 93]. However, de Groote does not produce these results
for a single reduction relation, but for § in which another relation () is used. This paper
establishes fr-postponement and conservation for a single relation . and is hence the first
to do so. These properties for 3. are as follows:

(Bex-postponement for B.) If M —5 . N =5, O then 3P such that M =5, P —} O
(Conservation for ) If M is 8.;-N then M is 5.-SN

To show PSN, we show that if M —»p N (using the perpetual strategy) and if N is §.,-N
then M is §3.;-N. Now, we take M which is 8-SN, and its perpetual path to its normal form
N. As N is f.-N, then M is 3.;-N and hence by conservation, M is 3.-SN.

Both our postponement and generalised conservation are important because here we have
the first reduction relation which generalises 3 (yet M =5 N & M =5 N) and which satisfies
them. The most important result of this paper however, is PSN: M is §-SN < M is §.-SN.
This does not only mean that 8. does not change the set of 5-SN terms, but also that we
can actually use 3, with explicit substitution. In fact, explicit substitution, is an important
topic of research and PSN is an important property for any A-calculus extended with explicit
substitution. In fact, lately, much research has been carried out ([BLR 95] and [KR 95]) in
order to find systems of explicit substitution which are both confluent and have the PSN
property (if M is 5-SN then M is A,-SN where A, is the lambda calculus extended with



explicit substitution). This is the reason for our interest in PSN of 8. (which is confluent
by the way). After all, generalised reductions a la 3. have been extensively used as we saw
in Section 1.1 for both theoretical and practical reasons. Furthermore, systems of explicit
substitution have been the subject of much recent research. Both generalised reduction and
explicit substitution are of practical importance and combining them both in one system may
turn out to be very usef ul. Now, with PSN established we can study extending the A-calculus
with both explicit substitution and generalised reduction. This means that we can combine
the advantages of the two different extensions in one system and we are investigating this
line at the moment. Until the result of PSN of this paper, we were not sure which direction
to take in combining both explicit substitution and generalised reduction in one system. We
had established the following (Mg ; stands for the lambda calculus extended with explicit
substitution and generalised reduction and for reasons of uniformity, we write A-SN for 5-SN

and Ag -SN for .-SN):
(1) M is A-SN < M is A\,-SN see [KR 95]
(2) M is A;-SN < M is Ag_s-SN see [KR 96]
The proofs for (1) and (2) are similar. We had no idea however how to show either (3) or (4):
(3) M is A-SN < M is Ag -SN
(4) M is Mg -SN & M is Ag_,-SN

With this paper, we establish (3) and hence we get (4) for free (because of the equiva-
lences). Hence, one gets: M is A-SN < M is A -SN < M is A5 ;-SN < M is A-SN.

2 The formal machinery

We assume the reader familiar with the A-calculus (whose terms are A ::= V[(AA)|(Ap.A)),
take terms modulo a-conversion and use the variable convention VC (as in [Bar 92]) which
avoids any clash of variables. We use z,y, 2,21, 2,,... and M, N, P,Q, A, B, A, ... to range
over V and A respectively. We assume the usual definition of substitution and use F'V (M) for
the set of free variables of M. Because we need to see redexes (ordinary and generalised) we
shall write terms in item notation (see [KN 96b] or [KN 95]). In this notation, A, is written
as [¢] and (M N) is written (N )M (note that following de Bruijn, we put the argument before
the function). [z] and (N) are called items. A sequence of items is called a segment. We
use I, [,... to range over items and 5,5, 5s,... to range over segments. A well-balanced
segment (w.b for short) is defined as the empty segment or (P)5;[z]S; where S; and S, are
w.b. Note that the concatenation of w.b segments is a well-balanced segment.

One particular advantage of this notation is that redexes are more clear than in the usual
notation. For example, v of Subsection 1.1 becomes: (Q)(P)[z][y]N — (Q)[y](P)[z]N where
it is clear that (P) matches [z] and (@) matches [y]. So, an ordinary redex starts with a ()
adjacent to []. A generalised redex starts with ( )S[] where S is w.b. When S = §, a
generalised redex is an ordinary redex. In (Q)(P)[z][y]N, we say that (P), [z], (@) and [y]
are partnered, (P) is the partner of [z] (or [z] is the partner of (P)) and (@) is the partner
of [y]. (P) and [z] are also said to be 3-partnered whereas (@) and [y] are f.-partnered. In
general, we say that (P) (or [z]) is partnered in M if:



o M = (P)S[z]N where S is w.b (in this case (P) and [z] are partners), or
e M =[y]N and (P) (or [z] ) is partnered in N, or
e M = (N;)N; and (P) is either partnered in N; or in Nj.

We may also talk of 3;-, 8.;-, Bi-, Bex-partnered items with the obvious meaning. Note that
if S1(A)S5[z]S5 is w.b where (A) and [z] are partnered then S, and 5,55 are w.b.

If an item is not partnered in a term we say that it is bachelor (and may talk of 8-, §.;-,
B~y Berc-, Br- and fB.-bachelor items). A segment consisting of bachelor items only is called
bachelor. Note that a term will always be written as I1/5...I,xz. Each I; is said to be a
main-item in M. A main item can of course have items inside it but these will not be main in
M. For example, ((y)[z]z)[z]z has the main items ((y)[z]z) and [z]. The redex ((y)[z]z)[z]z
is said to be a main-redex. The other redex (y)[z]x is not main. The weight of a segment is
defined to be the number of its main items. We write [2 := N]M instead of M[z := N] which
stands for substituting N for the free occurrences of x in M.

We assume the reader familiar with the basic machinery of reduction ([Bar 84], p. 50-59).
In particular, if R is a binary relation C A x A, and (M, N) € R, we call M the R-redex
and N the contractum of M. Given R C A X A, we define — to be the least compatible
relation containing R, —»g to be its reflexive transitive closure and =g to be its reflexive,
symmetric and transitive closure. A term M is said to be in R-nf iff there is no NV such that
M —gr N. M is said to have a R-nf, iff there is N in R-nf such that M —r N. We say
M is R-normalising or is R-N iff M has a R-nf. We say that M is strongly R-normalising
and write M is R-SN iff there is no infinite R-reduction path starting at M. We may use
M —% N to indicate the existence of one or more steps from M to N and M —»% N to
mean that there are n reduction steps. Ordinary -, 3;- and fx-reduction are defined as the
reduction relations generated by the corresponding rules below:

(8) (N)[z]M — [z := N]M
(8r) (N)[2]M — [z == N]M if € FV (M)
(Bx) (N)[2]M — M it v ¢ FV(M)

[dG 93] also uses
(O) (O)(N)[2]M = (N)[z](O)M it @ g FV(M)
Note that by VC, in 0k, 2 ¢ FV(O). Moreover, de Groote moves (O) to the right of (NV)[z]

so that it can eventually occur adjacent to its partner in M if it exists. De Groote establishes
the following two results (r € {3, 0x}):

(Bx-postponement for r)  If M —5, N —, O then 3P such that M —} , P —»5, O
(Conservation for [ + 6) If M is fr0x-N then M is §-SN.

In this paper, we will improve both results. We will define a f.-reduction relation (see
Definition 2.1) whose §8.; and .k stand for its [ and K-reductions. We shall show that:

(Bex-postponement for B.) If M —5 . N =5, O then 3P such that M =5, P —} O
(Conservation for ) If M is 5.;-N then M is §.-SN.



Definition 2.1 (Generalised [3-reduction 5.) We generalise 3, B; and Bk to the reduction
relations generated by the corresponding rules of what follows:

(Be) (N)S[z]M — S[z := N]M if S is w.b
(Ber) (N)S[z]M — S[z:= NIM if S is w.b and @ € FV (M)
(Bek) (N)S[z]M — SM if S is w.b and @ ¢ FV (M)

Note that . is more generalised than the reduction relation introduced by combining de
Groote’s 8+0g. In fact, 3. is not restricted to K-redexes and one unique step can do the work
of many in Groote’s sense. For example, if S = (A;)[z1](A2)[22] ... (A4,)[z,] and all the redexes
starting with (A4;), (A4,),...(A,) are K-redexes in S[z]M, then (N)S[z]M —5_ Sz := N]M
iff (N)S[z]M =5 S(N)[z]M —5 Slz:= N]M.

Now, here is a basic lemma about terms:

Lemma 2.2

1. Let r € {B.,Per, Ber }. If (A) is r-bachelor in (A)M then (B) is also r-bachelor in
(B)(A)M.

2. If M is in B-nf, then M = [z][z2] .. .[20](A1)(As) .. .(An)z where n > 0, m > 0 and
Vi, 1 <e<m= A; isin B-nf.

3 If A =, A then SA —,. SA' for any segment S and any reduction relation r €
{ﬁ7ﬁl7ﬁK7ﬁevﬁeI7ﬁeK}-

Proof: 1. If (B) was r-partnered, then (B)(A)M = (B)(A)S[z]N where (A)S is w.b (and
hence (A)S = (A)S1[y]Ss where S1, S5 are w.b) contradicting the fact that (A) is r-bachelor.
2. By induction on the structure of M. 3. By induction on the weight of S. a

In order to show the Preservation of Strong Normalisation for ., we need a reduction strategy
where a fg-redex (M)[z]N is contracted only if M is in f-nf. This strategy is actually the
perpetual strategy (see [Bar 84] and [Reg 94]):

Definition 2.3 We define the perpetual strategy F as follows:

F([]M) = F(M)

F((M)N) = F(N) if N # [z]P and N is not in 3-nf
F((M)N) = F(M) if N # [z]P and N is in 5-nf
F((M)[z]N) = (M)[z]N ifz e FV(N) or M is in B-nf
F((M)[z]N) = FM if e ¢ FV(N) and M is not in B-nf

We call perpetual reduction, the reduction associated with this strategy. When M S-reduces
to N by contracting F'(M), we write, M —p N. This strategy has been shown in [Reg 94]
to give the longest path for a SN term. It was moreover, shown in [Bar 84] that M is S-SN
iff its perpetual reduction terminates. With the result of this paper, it will also be the case
that M is B.-SN iff its perpetual path terminates. The following lemma is informative about
where F-reduction takes place in a term in the case of K-redexes:

Lemma 2.4 If M —r N where F'(M) is a fx-redex, then one of the following holds:



1. M = [a][za] .. [2m] (A1) (As) ... (A,) (A)[z] P and
N = [z][@s] - . [2m] (A1) (A2) ... (Ap) P
where x ¢ FV(P), A is in f-nf, n >0 and m > 0.
2. M = [x][za] .. [2m] (A1) (A2) ... (An) (A)[z] P and
N = [z][xa] - . [2m] (A1) (A2) ... (An) (A)[z] P
where x ¢ F'V(P), A is not in f-nf, A —p A, n >0 and m > 0.
3. M = [z][za] .. [2m] (A1) (A2) .. . (An) (A)(By)(B2) ... (B,)z and
N = [z][@a] .. [2m] (A1) (A2) ... (An) (A)(By)(B2) ... (B,)z and
Aidsnotin f-nf, A—=p A, n>0, m>0andr >0 andVi,1 < i <r, B; is in 3-nf.
Proof: By induction on M —p N where F(M) is a fg-redex.
Jz]P —p P where A is in $-nf and x ¢ FV (P): this is form 1.

o Case (A
o Case (A)[z]P —p (A')[z]P where A is not in B-nf and x ¢ FV (P): this is form 2.
o Case [z]M —p [z]M', where M —p M’, use IH on M —p M’'.

o Case (N)M —p (N)M’, M is not in 3-nf and is not [y]Q, use IH on M —p M'.

o Case (A)B —p (A')B, B # [y]Q and B is in p-nf, by Lemma 2.2, B = (B;)...(B,)z

where all B;s are in B-nf and we are done because this is form 3. a

3 Postponement of j.-reduction

The proof of postponement is similar to that of de Groote. For us, however, we can get away
with only one step f.; reduction in the postponement lemma (Lemma 3.3). De Groote, had
to have many steps in order to accommodate the slow process of moving an item () next to
its matching [] (see for example his proof of Lemma 11, (c) ii). We could also in Lemma 3.3
below, replace 8.k with ordinary fg in P ﬁg’d{ O but we won’t bother doing this for this
paper as it is not needed. Finally, note that in Lemma 3.3, P %’?B;K O and not P =5, O
nor P —4_, O. This is due to Lemma 3.1.

Lemma 3.1 If M —4_, N then
1. [z :=M]P —»4_, [z := N]P.
2. ifx € FV(P) then [z := M]P —7 [z := N]P.
Proof: Both 1 and 2 are by induction on the structure of P. a

Lemma 3.2 If M —5_, N then [z := PIM —4_, [z := P]N.
Proof: By induction on the derivation of M —5_, N. O

Lemma 3.3 If M —4,, N —5., O then AP such that M —5_, P —»g’eK 0.
Proof: By induction on the derivation of M —5_, N.

o Case (A)S[z]B =4, SB, S w.b, x ¢ FV(B), check where in SB the .;-redex appears:



— If SB =4, SB' = O, then by compatibility, (A)S[z]B —4_, (A)S[z]B" —4., SB’

as x ¢ FV(B').
— If S = S1(A1)Ss[y])Ss where Sy and 5153 are w.b (note that S = 0 is covered
by the above case), and if S1(A;)S:[y]SsB —>@eI 5154y = A1]Ss}ty = A4)B

}
then (A)S1(A1)S:[ylSs[z]B —p,, (A)S15:{ly = Ai]Ss}[z{ly == Ai]B} —p.,
5194y := A1]SsH{[y := Ai|B} asa ¢ FV ([y:= Al]B) due to VC.

- IfS = Sl(Al)Sz[y]Sg,, 5275153 are w.b and Sl(Al)Sz[y]SgB —>@eI Sl(All)Sz[y]SgB
then (A)S51(A1)S[y]Ss[x]B =5, (A)S1(A})Sa[ylSs[2]B =5, S1(A7)S:[y]SsB
o Case [x]M —4_, [2]N —p_, O, then O = [2]Q use IH on M —5_,. N —5_, Q.
o Case (A)B —p_,. (A)B —4_, O, we investigate how (A')B —4_, O.

— If O = (A')B' where B —5_, B', then (A)B —5_, (A)B' —4_, (A')B'.

— IfO = (A")B where A" —5_, A", Use IH on A —4_,, A" —5_, A" and compatibility

— If (A)B = (A)S[z]B) =, S[x = A’ By, then
(A)B = (A)S[z]By —p,, Slz:= A]By —} _ Slz:= A'|B; by Lemma 3.1.

o Case (A)B —p_ . (A)B' —4_, O then

— If O = (A)B"” where B' —5_, B" then use Il on B —4_,. B' —5_, B"” and derive
(A)B =5, (A)P =4 (A)B".

— IfO = (A)B" where A —5_, A’ then (A)B —5_, (A')B =4, (A)B

— If B = S[z]C, S is w.b, and O = S[z := A]C. Le. (A)B —4_, (A)S[z]C =5,

Slz = A]C.

Case B = S[z]Cy and Cy —4_,, C, (A)S[z]Cy —4., S|z := A]C) —4_, Sz = A|C
by Lemma 3.2.

Case B = S[z]C and the B x-redex is in Sy, i.e. (A)S[z]C —5., (A)S[z]C =5,
Slz == A]JC. Now, (A)5[z]C =4, Si[z := A]JC =4, S|z := A]C by VC. 0

4 The generalised conservation for [,

The set A of labelled A-terms is inductively defined as follows:
l.ne€ N,z €V ="z e NA.
2.neN;,a e VM e NA = "[a]M € NMA.
3.neINM,Ne NA="(M)N e NA

We take M, N,O, A, B,... to range over labelled A-terms. We use "M to stress that the
outermost label of a A-term M is n. Hence, M and "M stand for the same labelled A-term.
We write T™M for the labelled A-term obtained by adding m to the outermost label of a
labelled A-term M. Hence if the outermost label of M is n then ™ M denotes "T™ M.

For M € ™A, we write |M] for the (unlabelled) A-term in A obtained by erasing all labels
in M. Moreover, if M € A, we identify M with M’ in ™A such that |M'| = M and all labels
in M’ are 0. Hence, A C VA.



Labels are used as counters to record the number of contracted redexes when reducing a
term. We use in this section, the notations and techniques of de Groote adapted however to
our generalised reduction. Basically the idea is as follows: we introduce a labelled reduction
relation —pt which we prove Church Rosser. —pt is shown CR by showing that a related
reduction relation —; is CR. Hence, if a labelled term M has a 8%-nf, it must be unique.
We then introduce the notion of weight of a term M, O[M], which is used to limit the length
of Bt-reductions starting at normalising terms. That is, the length of any sequence of 37;-
reductions starting at a normalising term M is bounded by O[M'] — ©[M] where M’ is the
(unique) BY-nf of M. This implies that any 85-N term is 37;-SN. This will be extended to
[Ber by showing that any S.;-N term is 8.;-SN. Next we show that if M is 3.;-N then it is
[3.-SN by using the fact that M is [.,-SN, postponement and that there can only be a finite
B.r-redexes.

Here is the definition of substitution on labelled terms and a basic lemma about substitution:

Definition 4.1 Let M, N € MA. [v := N|M is defined as follows:

[ :="N]"x = "N

[v :=="N]"y = "y ife#y

[0 ="N"(P)Q = "z ="N]P)fx = "N]Q
[2:="N]"[y]M = "[yllz:="N]M

Lemma 4.2 Let P,C,D e NA, v £y and y ¢ FV(P). The following holds:

[z :="Plly :="C°D = [y := [z :="P]"C][z := "P]°’D. Moreover, both sides have the
labeln+m+oif D=ynC =z, m+oif D=yANC#z, n+oif D==x, and o otherwise.
Furthermore, *'[y .= ™C]°D = [y := "C]*'D

Proof: By induction on the structure of D leaving to the reader the easy

iy :=mC]°D = [y := ™C|*' D (which is proven by cases on the structure of D).

e D = %y then lhs = [x := "P]™*t°C, rhs = [y := [a := "P|"C]°y. If C = x then both
sides are "t P [fC' £ x then both sides have m + o as labels and are ™[z := P]C.

e D ="°x then both sides are “t1"P as y ¢ FV (P).

D =°z, 2% 2 and z £ y, then both sides are °z.

e D ="°[z]A then use IH.

D =°(A)B then

=" Plly ="CP(A)8 =
Y[z :="Plly:="C [ ="Plly = mC] =
ly:=[z:="P"C ] ="P"Clle:="P]B

y = [0 i= "PI"C[a := " P]"(4) B. 0

—

— <

Now we define — gt which will be used to show conservation.

Definition 4.3 M —pt N is defined inductively as follows:
L (N)S [P M —e P00t S[e = INPM if @ € FV (M), S, w.b.

2. Af M — 4+ N then "[x]M — g4+ "[z]N



3 IfM 5t N then "(M)P 5t "(N)P and "(P)M 5t "(P)N
—H gt s defined as the transitive reflexive closure of gt
We define —; for which CR is easier to show than for —gt
Definition 4.4 M —, N is defined inductively as follows:

1. M — M

2. If M =1 N then "[z]M —, "[z]N

3. If M =, 0 and N —, P then "(M)N —, "(O)P

4. If SP[x]M —, S [z]O, N —, P, S, 8" w.b, and x € FV (M) then
"(N)SP[2]M —, Tt S .= PlO.

—»1 s defined as the transitive reflexive closure of —.

The following lemma shows that labels can be increased for both —; and gt

Lemma 4.5 Let M, N € VA.
1. M — N then -I—nM — -I—nN.
2. M —rgt N then T M —rgt MmN,

Proof: We only show 1 by induction on the derivation M —y N. 2 is similar and is by
induction on the derivation M —r N.

1. ¥"M — ™" M by def. of —.
2. If "[x]M —; ™ [z]N where M —; N then by def. of —, ™™™ [x]M —; ™" [2]N.
3. Ifm(M)N —1 m(O)P, M —1 O, N —1 P then by def Of—>1, m-I—n(M)N —1 m-l—n(O)P

4. If ™(N)SPlaIM —, tmtetlS [y .= PO, N =, P, S*[a]M —; S"[z]O, S,S’, w.b,
x € FV (M) then by def. of —;, "*"(N)SP[z]M —, T+t §' [ .= PJO. 0

The following lemma shows that —; and —a close under substitution.
Lemma 4.6 Let M,N,O € VA,
1. If M =, N, then [z := M]™O —, [z := N]™O.
2. If M =5+ N, then [z := M]"O — g+ [z := N]"O.
Proof: 1 and 2 are similar and are by induction on the structure of O. We only show 1.
o [z: =Mz =%"M —, *™ N = [z := N|™z using Lemma 4.5.
o [x:=M]"y="y— "y=lx:=N]"y foryZta

o [z := M|™[y]O = "[y][x := M]O —; ™ "[y][z := N]O = [z := N]™[y]O

10



o [z:= M|™(P)Q ="([x := M]P)[z := M]|Q —, ¥
"([x := N]P)[z := N]Q = [z := N]"(P)Q O

Lemma 4.7 Let M,N,P,0 € VA.
1. If M —; N and O —, P then [ := O]M —, [z := P]N.
2. If M =5+ N and O =5+ P then [v:= OJM =4+ [v := PIN.

Proof: We only prove 1 by induction on the derivation M — N. 2 is similar and is by
induction on the derivation M — gt N.

o Case M —, M then by Lemma 4.6, [x := O]M — [z := P]M.

o Case "[y]M —, ™[y|N where M — N, then by IH, [z := O]M —, [z := P]N and
hence [z := O™ [y]M = "[y][z := O]M —, ™[y|[z := P]N = [« := P]"[y]N.

o Case "(A)B —; " (C)D where A —; C' and B —1 D then by IH, [z := O]A —4 [z :=
P]C and [z := O]B =, [z := P]D. So, [z := O]™(A)B ="([z := O]A)[z :== O]B
—1 ™([x := P]C)[z := P]D = [z := P]"™(C)D.

o Case "(A)SPly|B —; T"+4+1S' [y := C1D where A —, C, SP[y]B —; S"[y]D, S,S" w.b,
and y € FV(B), then by IH, [z := O]A —, [z := P]C and
{[z := O]S}[yl[e == O]B = [z := O]S"[y] B —
[z = P]S’q[ 1D = {[w = P|S"}[y][z := P]D. Nouw, ot
[2 := O]"(A)S"[y]B = "([z := O]A)[w := O]57[y] B -4V ==
tntati{y = P]S"}y := [x := P)C][x := P]D =ve&FV(P)Lemma 4.2
e o= P15 e o= Plly =]

Here is the relationship between —; and —pt

Lemma 4.8 M —»; N iff M —P st N.
Proof: =) By induction on the derivation of M —; N show that M — N = M —H gt N.

o If M — M then obvious. If "[z]M —; "[z]N or "(M)P —; "(N)Q where M —; N
and P — () use IH.

o If "(N)SP[z]M —; t"Hit Gz := P]O where S,S" w.b, x € FV (M), SP[z]M —,
5'z]O and N =, P then by IH, SP[x]M —%5+ S"[2]O and N =g+ P.
Hence, " (N)SP[a]M =5+ " (P)S"[2]O =5+ kot gr [z := P]O.

<) By induction on the derivation M — gt N, show that M — gt N=M —; N.

o IfM(N)SP[a]M —ps TMHHS[2 := NIM where S w.b, v € FV(M), then as N = N
and S*[z]M — Sp[ |M, we are done.

o If"[x]M =5+ "[x]N or "(M)P =g+ "(N)P or "(P)M — 4+ "(P)N where M —5+ N
use IH and P —, P.

The following two lemmas enable us to establish that —; is CR.
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Lemma 4.9 If S, 5" w.b, none of the binding variables of S[x] occurs free in N, none of the
binding variables of S'[x] occurs free in P, none of the binding variables of N are free in M
and none of the binding variables of P are free in O, SP[x]M — S'[x]O and N —, P then
S = NIM —, t95'[z := P]O.

Proof: Note that if weight(S) = weight(S’) then p = ¢, M —; O and if (4;) and (A})
are the ith main application items of S and S’ respectively, then A; —, AL. Hence the result
1s shown by Lemmas 4.5 and /.7 and the def. of —,.

If weight(S) > weight(S’), then we prove the lemma by induction on weight(S).

o IfS="(A)[y] then S"=0, g=p+n+o+1, O =y =AM where A —; A and
M —, M’. Hence by Lemma 4.7 °[y][z := N]IM —, °[y][z := P]M’ and so by def. of
1, (A Y]l = NIM =, Rty = A = Py =hemma .2
trtptorily .= Plly := A'|M' = tntrtotiy .= PlO and we are done.

o The inductive case is long but straightforward. a

Lemma 4.10 Let M, N,O € YA such that M —, N and M —; O then AP € YA such that
N%lpandO—hp.
Proof: By induction on the derivation of M —; N.

1. M —, M then P=0.
2. Ma]M; — "[z]N, where M, —; Ny, then O = "[2]O; and M; —; O,. Now use IH.
3. n(Ml)Mz — n(Nl)Nz where M1 — N1 and M2 — Nz, then

(a) If O = "(01)0y, My —1 Oy and My — O, then by IH, 3P, P» such that
Ny, =, P,0y =1 P.,Ny = Py and Oy —; P5. Hence "(N{)Ny —; "(P) P,
and "(01)04 —1 "(P) P.

(b) If My = SP[z]Mz, O = Tt S8 e = O,]0y where My —; Oy, SP[x]My —
S'z]0s, x € FV (M3), S,S" w.b, then as S is w.b, Ny = 5"°[x]N3, S” w.b (which
may or may not be empty) and x € FV (N3). Now, by IH, AP, P5, 5" w.b, such
that, Ny —1 P,O; —1 P, S"°[2]N3 —1 8" [z]P:; and S"2]0y —1 S"7[z]Ps.
Hence, by Lemmas 4.5 and 4.9, T8z .= 0,10y —; 1S .= PP,
Note that all the preconditions of Lemma 4.9 hold due to the variable convention
VC. Now, as S"°[x|N3 —1 S""[z]Ps, ® € FV(N3) and Ny —, Py, we get by def.
of =1, "(N1)S"°[2]N3 —; Tt [z := P ]P,.

4. Cuase "(Ml)Sp[$]M2 —1 +”+q+1S/[$ = Nl]Nz, M1 —1 Nl; Sp[w]Mz —1 S/q[$:|N2, S, S’
w.b, x € FV(M,):

(a) Case O ="(01)0; similar to case 3, (b).

(b) Case O = T+t 8"z := 0,105 where My —; Oy and SP[x]My —1 S"°[z]O,, S”
w.b, then by IH, AP, P,, 5" w.b, such that Ny —; P,,0; — P, 5"z]Ny —
S ] Py S"[2]05 —1 8" [x] Py and by Lemmas 4.5 and 4.9 (again here, all the
preconditions of Lemma 4.9 hold due to the variable convention VC):
Tt Gy = N[Ny — TS [0 .= PP, and
trtotl G0y i = 01105 — TS = PP, O

12



Corollary 4.11 (Church Rosser of —1) Let M, N,O € M A such that M —»; N and M —», O
then 3P € MA such that N —», P and O —», P. a

Now, the first part of this section (CR of =4+ ) is done:

Lemma 4.12 (Church Rosser of —>ﬁ+) Let M,N,O € VA such that M —#gt N and
M —», - O then 3P € M A such that N —» + PandO—»ﬁ+ P.
Proof By Corollary /.11 and Lemma 4 8. a

In order to show Lemma 4.16, we introduce the following definition:
Definition 4.13 The weight O[M] of a labelled A-term M is defined as follows:
O z] = n

OFyIM] = n+6[M]
O'(M)N] = n+O[M]+ O[N]

Lemma 4.14 Ifz € FV (M) then O[[z := N|M] > O[M] + O[N].
Proof: By induction on the structure of M showing first that ©[T™M] = m+ O[M]. O

Lemma 4.15 Let M, N € YA and M —*, N then O[M] < O[N].

e
Proof: By induction on the derivation M —F, N using Lemma 4.14. a

ph
Now, 84-N and 3F,-SN are the same:

Lemma 4.16 If M is 8%-N then M is 35,-SN.
Proof: Since M is 33,-N, and since 3%, is Church Rosser by Lemma /.12, then M has

a unique 3% -nf M'. According to Lemma 4.15, the length of any sequence of (3 -reduction
starting at M is bounded by O[M'] — O[M]. ]

Here is the relationship between —4_ , and —rgt

Lemma 4.17 Let M, N € A such that M —5_, N, then there exist M', N’ € N A such that

|M'| = M,|N'| = N and M' — + N'. Furthermore, if N is in O.;-nf then N’ is in % -nf.
Proof: This is easy. Just put the right labels on M and N obtaining M', N’ such that

M’ _>ﬁ:} N, O

Now, we generalise Lemma 4.16 to —4_,.
Theorem 4.18 If M is 8.;-N then M is 3.r-SN.

Proof: M (3.-N =temma 217 N[ gH N = Lemma 416 N g+ _GN = M (.;-SN (otherwise
there ewists an infinite 3} -path). a

Finally, conservation results from the above theorem and postponement of K-contractions.

Theorem 4.19 (Conservation) If M is 3.;-N then M is (3.-SN.

Proof: If M is not 5.-SN then there is an infinite B.-path starting at M. But by post-
ponement of B.x redexes, and by the fact that there can only be a finite B,k -contractions,
there must be an infinite B.;-path. But M is 3.;-N and so it is B.;-SN by theorem J.18.
Contradiction. a
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5 Preservation of Strong Normalisation

In this section, following Theorem 4.18, we interchange (3.;-SN and §.;-N at liberty. We
shall show PSN of g.. Note that this is not straightforward. Take for example the following
derivation:

M B-SN = M 3-N= M 3.;-N = M 3.-SN

This is incorrect because M -N % M §.,-N. For example, (A,.y)Q is 5-N but not §.,-N
for @ = (A,.22)(A,.22). In fact, showing PSN was not easy to establish until it was realised
that a reduction strategy whose inverse preserves f.;-normalisation was needed. It turned
out that this is the perpetual strategy. Once this was established, PSN was in sight. Take M
that is S-SN. Then M —»r N where N is the g-nf of M and —»p is the perpetual strategy.
As N is in fS-nf, then N is 8.;-N. But the inverse of —»p preserves f.,-N. Hence, M is 3.;-N
and by conservation, M is f3.-SN.

In order to establish that the inverse of —»p preserves f.;-normalisation (Theorem 5.5),
we need the following three lemmas which will be combined with the three forms of perpetual
reduction for K-redexes as in Lemma 2.4.

Lemma 5.1 If (Ay)...(A,)(A)[2]P has fer-nf, © & FV(P), then its B.-nf is of the form
(By)...(B;)(A)[z]Q where A" is the Bor-nf of A, 0 < j < n, B; is the B.r-nf of some A; for
1 <i < n. Moreover, (A;)...(A,)P has (By)...(B;)Q as its Be;-nf.

Proof: By induction on n > 0.

o n =0, the B -nf is (A')[z]Q where Q) is the B.;-nf of P.

o Assume the property holds for n > 0. As (Ay)...(An)(Ant1)(A)[2]P has B.r-nf, then
it is Ber-SN and so (As) ... (A,)(Any1)(A)[z]P and Ay have B.-nf. Call the B.r-nf of
Ay, A). Now, by IH, (By)...(B;)(A")[z]Q is the Ber-nf of (As) ... (An)(Angr)(A)[z]P
and (By) ...(B;)Q is the Bor-nf of (As) ... (A,) (A1) P.

— If (AY) is Ber-bachelor in (A})(B1) ... (B;)(A")[2]Q (and soin (A})(B) ... (B;)Q),
then (A})(By) ...(By)(A")[z]Q and (A})(B1) ...(B;)Q are the B.r-nfs required.

— If (AY) is Ber-partnered in (A})(By)...(B;)(A)[2]Q then all (By),...(B;) start
Ber-redexes and Q = [x;] ... [z1][y]R.
Now, (A1) - (4) (Awp ) (A)[eIP =55, (AD(By) ... (B) (AN el[e ] .. [ea][sIR =,
(B1) - (B (AN allas] [ ]ly 2= ALIR =5, (Bu) . (By) () [elfes]. .- [e1]B for
B the B-nf of [y = AR,
Moreover, (Ar) .- (An) (Ansr)P =5y (A3 (B - (B[] [e]WIR =5,
(By)...(Bj)[z;]...[z1]ly == AR —»5., (By)...(B))[z,]...[21]B. Now, we are
done (note that By, ...B; start 8.k -redexes). O

Lemma 5.2 If (A;)...(A,)P and A have B.r-nf, © ¢ FV((Ay)...(A,)(A)P), then:
(A1) ... (A,)(A)[z]P has B.-nf.
Proof: By induction on n > 0.

e Casen =0, P and A have P' and A’ as B.;-nfs, then (A)[z]P has (A")[z]P as Be;-nf.
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o Assume the property holds for n > 0. Let (Ay)...(A,)(Any1) P have B.r-nf, hence
it is Ber-SN and so (As)...(Any1)P has Be-nf and Ay has A as B.-nf. By IH,
(As) .. (A1) (A)[2]P has Ber-nf which is by Lemma 5.1, M = (By)...(B;)(A)[z]Q
and (As) ... (Ay41)P has (By)...(B;)Q as its Ber-nf.

— If(AY) is Ber-bachelor in (A)) M then (A))M is the B.r-nf of (A1) ... (A1) (A)[z]P.
— If (A)) is Per-partnered in (A))M then QQ = [z;]...[z1][y]R. Now,
(A1) - (A) (A ) P =5y (AD(BY) - (B[] - [0 R 5,
(By)...(Bj)[z;]...[z1]ly := Al]R. Hence |y := AJ|R is Be;-SN as (Ay) ... (A1) P
is. Let B be the B.r-nf of [y := Al]R. Now,
(A1) o (s ) AP 2, (AD(B) . (B (AVlle] . [a][6 R s,
(BBl Loy = A (B0 (B Al [e]  whic
18 wn Ber-nf. O

Lemma 5.3 If A; =4, By, (A1) ... (A1) (Bi)(Aig1) ... (An)z and A; have B.r-nf then
(Al) e (Az—l)(Az)(Az+1) e (An)Z h(lS ﬂeI-nf.

Proof: Ay ... A; 1, A, A, .. Ay all have Bop-nf, AL, . Aj_ |, AL AfL, .. Al Hence,
(A1) o (i) (A (Asgs) - (An)z =, (AD) (AL (AD(ALyy) - (AL)2 in Bugenf. O

Lemma 5.4 If M —r N using a Bg-redex, and N has a B.;-nf, then M has B.r-nf.
Proof: By induction on the depth of the F-redex (following Lemma 2.4).

o IfM = [a1][xa] ... [2m] (A1) (A2) ... (A0) (A)[2]P, N = [21][x2] - . . [2m] (A1) (A2) ... (A,) P
where & ¢ FV(P), A isin f-nf, n > 0 and m > 0. Use Lemma 5.2 (A in f-nf = A in
ﬁe['nf)'

o Let S = [zq][xa] ... [2n](A)(As) .. .(An). If M = S(A)[z]P, N = S(A")[z]P where
x & FV(P), A is not in B-nf, A -p A", n > 0 and m > 0. Use IH to deduce that
A has fer-nf. As N has Bor-nf, then [z(][@s]...[2m](A1)(A2) ... (An) P has Ber-nf by
Lemma 5.1. Hence, [x1][2s] ... [2m](A1)(A2) ... (A,)(A)[2]P has B.r-nf by Lemma 5.2.

o If M =[x][xs].. . [2m](A1)(As) ... (An)(A)(B1)(Bs) ... (B,)z,
N = [z][xa] .. [2m) (A1) (A2) ... (An) (A)(By)(B2) .. .(B,)z where

Aidsnotinf-nf, A—=p A, n>0, m>0andr>0andVi,1 <i<r B;isin §-nf. As
N has B.r-nf, so does A" and by IH, so does A. By Lemma 5.3, M has 3.;-nf. a

Theorem 5.5 (The inverse of —»p preserves .;-N)
If M —»p N and N is 8.1-N, then M is [B.r-N.
Proof: We show it for M —p N. Note that if M —p N and F'(M) is a §;-redex, then
the theorem is obvious as a fr-redex is a B.;-redex. Hence, we only need to prove the theorem
for the case when F'(M) is a Bk-redex. But this is already done in Lemma 5.4. a

Finally, here is the PSN result.

Corollary 5.6 (Preservation of Strong Normalisation) If M is 3-SN then M is (3.-SN.
Proof: As M is 3-SN, the perpetual strateqy of M terminates. Let M —»p N where N

is in B-nf. As N has no B-redexes, N is B.;-N. Hence, by Theorem 5.5, M is B.;-N. So, by

Theorem /.19 M is 3.-SN. a
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6 Conclusion

In this paper, we established that there is indeed a reduction relation which satisfies both
postponement of K-contractions and conservation. This reduction relation is a generalisation
of the ordinary f-reduction and has been extensively used since ’73 for theoretical and prac-
tical reasons (see Section 1.1). We showed moreover that this generalised reduction (called
B.) is indeed a desirable generalisation of f-reduction by showing that 3, preserves strong
normalisation in the sense that if M is §-SN then M is 5.-SN. Preservation of Strong Nor-
malisation (PSN) is a property that has to be established for any extension of a reduction
relation that is strongly normalising. For example, a lot of research has been carried out lately
to establish PSN for g-reduction extended with explicit substitution (see [BLR 95], [KR 95]
and [MN 95]). The results of this paper establish that 3, is indeed a safe extension of j.
Finally, it is worth noting that we used item notation in this paper in order to reach the
results desired. There is a reason for this. In the usual notation, generalised redexes are not
easily visible whereas they are in item notation (see [KN 96b]). For example, in ()()[]()[][]
we can clearly see that the leftmost () matches the rightmost[]. Using item notation enables
us to write the proofs clearly. Compare with [dG 93] who used a more restricted generalised
reduction and still found it hard to discuss where generalised redexes occurs in a term. As a
result, de Groote’s proofs are longer, more cumbersome and many not included in his paper.
In fact, we think that item notation is a good candidate for answering the two questions
posed in the conclusions of [Reg 94] concerning the existence of a syntax of terms realising
generalised reduction (called o-reduction by Regnier). It should be noted moreover, that
using item notation is not restrictive and that the results of this paper would still hold if
we used the classical notation. Only the proofs will be cumbersome to write as the classical
notation cannot easily enable us to express generalised redexes.
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