
The con
uence of the �se-calculus via a generalizedinterpretation method �Fairouz Kamareddine and Alejandro R��os yJuly 5, 1996AbstractThe last �fteen years have seen an explosion in work on explicit substitution, mostof which is done in the style of the ��-calculus. In [KR95a], we extended the �-calculuswith explicit substitutions by turning de Bruijn's meta-operators into object-operatorso�ering a style of explicit substitution that di�ers from that of ��. The resulting calcu-lus, �s, remains as close as possible to the �-calculus from an intuitive point of view and,while preserving strong normalisation ([KR95a]), is extended in this paper to a con
uentcalculus on open terms: the �se-caculus. Since the establishment of the results of thispaper1, another calculus, ��, came into being in [MH95] which preserves strong normal-isation and is itself con
uent on open terms. However, we believe that �se still deservesattention because, while o�ering a new style to work with explicit substitutions, it is ableto simulate one step of classical �-reduction, whereas �� is not.To prove con
uence we introduce a generalization of the interpretation method (cf.[Har89] and [CHL92]) to a technique which uses weak normal forms (instead of strongones). This technique is general enough to apply to many reduction systems and weconsider it as a powerful tool to obtain con
uence.Strong normalisation of the corresponding calculus of substitutions se, is left as achallenging problem to the rewrite community but its weak normalisation is establishedvia an e�ective strategy.IntroductionMost literature on the �-calculus considers substitution as an implicit operation. It means thatthe computations to perform substitution are usually described with operators which do notbelong to the language of the �-calculus. There has however been an interest in formalisingsubstitution explicitly; various calculi including new operators to denote substitution havebeen proposed. Amongst these calculi we mention C��� (cf. [dB78]); the calculi of categoricalcombinators (cf. [Cur86]); ��, ��*, ��SP (cf. [ACCL91], [CHL92], [R��o93]) referred to as the��-family; '�BLT (cf. [KN93]); �� (cf. [BBLRD95]), a descendant of the ��-family; �s (cf.[KR95a]); �exp (cf. [Blo95]) and �� (cf. [MH95]).These calculi (except �exp) are described in a de Bruijn setting where natural numbersplay the role of the classical variables. Classical terms are coded as closed terms in these�This work was carried out under EPSRC grant GR/K25014.yDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk1The proof of con
uence of the �se-calculus presented here was achieved in July 19951



calculi and called pure terms. A natural question concerning these calculi is the preservationof strong normalisation: are strongly normalising terms in the classical �-calculus still stronglynormalising when considered as pure terms of these new calculi? This question is obviouslyimportant. However, various calculi of explicit substitutions do not possess this property.It is possible to consider, besides the classical variables (now numbers), real variables(which correspond to meta-variables in the classical setting). The terms obtained with thisextended syntax are called open terms and they can be considered as contexts, the newvariables corresponding to holes. Hence the interest in studying the calculi on open terms,since they allow contexts as �rst class citizens.The main interest in introducing the �s-calculus (cf. [KR95a]) was to provide a calculusof explicit substitutions which would both preserve strong normalisation and have a con
uentextension on open terms. There are calculi of explicit substitutions which are con
uent onopen terms: the ��*-calculus (cf. [HL89] and [CHL92]), but the non-preservation of strongnormalisation for ��*, as well as for the rest of the ��-family and for the categorical com-binators, has recently been proved (cf. [Mel95]). There are also calculi which satisfy thepreservation property: the ��-calculus (cf. [BBLRD95]), but this calculus is not con
uent onopen terms. Moreover, in order to get a con
uent extension, the introduction of a compositionoperator for substitutions seems unavoidable, but precisely this operator is the cause of thenon-preservation of strong normalisation as shown in [Mel95].We proved in [KR95a] that �s preserves strong normalisation and proposed the extension�se in [KR95b], where we proved its local con
uence on open terms and the weak normalisa-tion (every term has at least one normal form) of the corresponding calculus of substitutionsse (the calculus obtained from �se by removing the rule that starts �-reduction). Con
uenceof �se and strong normalisation (all derivations terminate) of se were left open.This paper establishes the con
uence of �se making �s a calculus which preserves strongnormalisation and admits a con
uent extension on open terms. Preservation of strong nor-malisation of �se and strong normalisation of se remain open. As far as we know, at thetime of writing this paper, no other calculus which had these two properties existed. Sincethen, the ��-calculus (cf. [MH95]) came into being which preserves strong normalisation andis itself strongly normalising and con
uent on open terms. The ��-calculus is obtained by aclever introduction of two new applications that allows the passage of substitutions withinthe classical application only if the latter has a head variable. This is done to cut the branchof the critical pair which is responsible of the non-con
uence of �� on open terms. Unfor-tunately, �� is not able to simulate one step of clasical �-reduction as shown in [MH95], itsimulates only a \big step" beta reduction. Furthermore, this lack of the simulation propertyis an uncommon feature among calculi of explicit substitutions.As the strong normalisation of se remains open, the interpretation method (cf. [Har89],[CHL92]), which is usually used to prove the con
uence of a �-calculus with explicit substi-tutions is not applicable to �se. In section 1 we propose a generalization of the interpretationmethod which enables us to prove the con
uence of �se with just weak normal forms. Themethod is general enough to be applied to any reduction systems satisfying the hypothesesand therefore we consider it a new tool to prove con
uence.Section 2 is devoted to the syntax and rules of the calculi we are going to deal with: the�-calculus �a la de Bruijn, the �s-calculus and its extension the �se-calculus together with asummary of the results obtained so far (cf. [KR95a] and [KR95b]) for these calculi. At theend of the section we provide motivation for the new rules of �se and �nally we compare �sewith ��, �� and ��. 2



In section 3 we recall the description of the se-normal forms, de�ne a strategy for com-puting them and establish the weak normalisation of se. We also prove that se-normal formsare preserved by se-reductions and that the se-calculus is con
uent on open terms.In section 4 we introduce the calculus of the interpretation, whose only rule we call �0,and prove that the �-generation rule (the rule that starts �-reduction) can be simulated onthe corresponding weak normal forms by �0.In section 5 we prove the con
uence of �0 �a la Tait-Martin-L�of in order to apply thegeneralised interpretation method to show the con
uence of the �se-calculus.In section 6 we show that the �se-calculus is correct/sound with respect to the �-calculusin that, all �se-derivations beginning and ending with pure terms can also be obtained in the�-calculus.We conclude by stating the problems which remain still open and we include a result byHans Zantema showing the termination of the rule of �se which enables the transition of asubstitution operator over another one.1 The Generalized Interpretation MethodWe begin by introducing the notation we shall use throughout this paper concerning rewritingand we recall the de�nitions of the essential properties of the reduction systems.De�nition 1 Let A be a set and R a binary relation on A , i.e. a subset of A � A . Wedenote the fact (a; b) 2 R by a !R b or a ! b when the context is clear enough. We callreduction this relation and reduction system, the pair (A;R) . We denote R� or !!R orjust !! or !� the re
exive and transitive closure of R . We denote R+ or just !+ thetransitive closure of R . When a!! b we say there exists a derivation from a to b .De�nition 2 Let R be a reduction on A .1. R is locally con
uent or WCR (weakly Church-Rosser) when8a; b; c 2 A 9d 2 A ((a ! b ^ a ! c)) (b !! d ^ c !! d)) :2. R is con
uent or CR (Church-Rosser) when8a; b; c 2 A 9d 2 A ((a !! b ^ a !! c)) (b !! d ^ c !! d)) :3. R is strongly con
uent or SCR when8a; b; c 2 A 9d 2 A ((a ! b ^ a ! c)) (b ! d ^ c ! d)) :De�nition 3 Let R be a reduction on A .We say that a 2 A is an R-normal form (R-nf for short) if there exists no b 2 A suchthat a ! b and we say that b has a normal form if there exists a normal form a such thatb!! a .R is weakly normalising or WN if every a 2 A has an R-normal form.R is strongly normalising or SN if there is no in�nite sequence (ai)i�0 in A such thatai ! ai+1 for all i � 0 . 3



Remark 1 Con
uence of R guarantees unicity of R-normal forms. In that case, the R-normal form of a , if it exists, is denoted by R(a) .Strong normalisation implies weak normalisation and therefore the existence of normalforms.At some point we shall need the following lemmas.Lemma 1 Let R be a reduction, if R is SCR then R� is also SCR.Proof: See [Bar84], lemma 3.3.2. 2Lemma 2 (Newman) Every strongly normalising and locally con
uent reduction is con-
uent.Proof: See [Bar84], proposition 3.1.25.G. Huet gives another proof using the Principle of noetherian induction (cf. [Hue80]). 2We state now the interpretation method we wish to generalize. This method was �rstidenti�ed in [Har89], where it was used for the categorical combinators. In [CHL92], it is usedto prove the con
uence of the weak ��-calculus, of the ��-calculus on closed terms and thenon-con
uence of the ��SP -calculus on open terms. In [R��o93], it was used to the prove thecon
uence of the ��SP -calculus on semi-closed terms. Finally, in [BBLRD95] it was used toprove the con
uence of �� and we shall use it in this article to prove the con
uence of the�s-calculus.Lemma 3 (Interpretation method)Let R = R1 [ R2 where R1 is a con
uent and SN reduction on A and R2 an arbitraryreduction. If there exists a reduction R0 on the set of R1-normal forms satisfying R0 � R�and (a!R2 b ) R1(a)!!R0 R1(b)) , then R0 is con
uent i� R is con
uent.Proof: It is easy (cf. [CHL92], lemma 1.1) and similar to the proof of the generalizedinterpretation method given below. 2Lemma 4 (Generalized interpretation method (GIM))Let R = R1 [ R2 where R1 and R2 are arbitrary reductions on A . Let B be the set ofR1-normal forms and let f : A! B be a function (strategy) such that f(a) is an R1-normalform of a . If there exists a reduction R0 on the set of R1-normal forms satisfying1. R0 � R�2. a!R1 b ) f(a) = f(b) (syntactic identity)3. a!R2 b ) f(a)!!R0 f(b)then R0 is con
uent i� R is con
uent.Proof: 4
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Figure 1: Generalized interpretation method()) This is the implication which is usually useful. The proof is depicted in Figure 1. Letus suppose a !!R b and a !!R c. It is easy to show by induction on the length of thederivation and using hypotheses 2 and 3 that a0 !!R b0 implies f(a0)!!R0 f(b0). Hence,f(a) !!R0 f(b) and f(a) !!R0 f(c). Now we use the con
uence of R0 to obtain d suchthat f(b) !!R0 d and f(c) !!R0 d. Finally the �rst hypothesis ensures f(b) !!R d andf(c)!!R d. Therefore, b!!R d and c!!R d.(() Let a; b; c 2 B and let us assume a!!R0 b and a!!R0 c. The �rst hypothesis guaranteesa!!R b and a!!R c and con
uence of R provides d such that b!!R d and b!!R d. Asbefore, hypotheses 2 and 3 give f(b) !!R0 f(d) and f(c) !!R0 f(d). And the lemma issettled because a; b; c being normal forms, we have a = f(a), b = f(b) and c = f(c). 2In the context of the GIM lemma the function f is called the interpretation function; B,the set of the interpretation and (B;!R0), the calculus of the interpretation.We end this section by remarking that the GIM lemma really generalizes the interpretationmethod. In fact, in the particular case when R1 is con
uent and SN, R1-normal forms existand are unique. Hence there is only one f such that f(a) is a normal form of a, namelyf(a) = R1(a). Moreover, in this case the second hypothesis of the GIM lemma is super
uous.2 The calculiThe results contained in this sections have already been proved in [KR95a] and [KR95b].Nevertheless, since we wish to make this article self-contained we shall include here abridgedproofs of the results concerning con
uence. However, we o�er here an independent proof ofSN of s, whereas in [KR95a] we derived it from the SN of the �-calculus.We divide this section in three parts. In the �rst subsection we recall the classical �-calculus �a la de Bruijn and some of its properties, in particular the ones that give originto the rules of the �se-calculus. In the second subsection we recall the �s-calculus and itsproperties. In the third one we introduce the �se-calculus, give some motivation for its rulesand compare �se with �� and �� by showing that the translations given in [KR95a] for�s, when extended to �se preserve equivalences. Finally, we discuss brie
y the amount ofreductions needed to simulate some �-contractions in the three calculi.
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2.1 The classical �-calculus in de Bruijn notationWe assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijnindices (or numbers) are used to make the bindings explicit: to �nd the � which binds avariable represented by the number n you must travel upwards in the tree associated withthe term and choose the n-th � you �nd. For instance, �x:�y:xy is written using de Bruijnindices as ��(21) and �x:�y:(x(�z:zx))y is written as �(�(2(�(13))1)). Finally, to translatefree variables, you must assume a �xed ordered list of binders and pre�x the term to betranslated with this list. For instance, if the list (written from left to right) is � � � ; �z; �y; �xthen the term �x:yz translates as �34 whereas �x:zy translates as �43.The interest in introducing de Bruijn indices is that they avoid clashes of variable namesand therefore neither �-conversion nor Barendregt's convention are needed. Here is the syntaxof the �-calculus �a la de Bruijn.De�nition 4 We de�ne �, the set of terms with de Bruijn indices, as follows:� ::= IN j (��) j (��)We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural numbers).Furthermore, we assume the usual conventions about parentheses and avoid them when noconfusion occurs. Throughout the whole article, a = b is used to mean that a and b aresyntactically identical.We say that a reduction ! is compatible on � when for all a; b; c 2 �, we have a ! bimplies a c! b c, c a! c b and �a! �b.In order to de�ne �-reduction �a la de Bruijn, we must de�ne the substitution of a variablen for a term b in a term a. Therefore, we must identify amongst the numbers of the term athose that correspond to the variable n. Furthermore, we need to update the term b (renameits variables) in order to preserve the correct bindings after the replacement of the variableby b.For example, translating (�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u to de Bruijn notation weget (��521)(�31)!� �4(�41)1. But if we simply replace 2 in �521 by �31 we get �5(�31)1,which is not correct. We needed to decrease 5 as one � disappeared and to increment the freevariables of �31 as they occur within the scope of one more �.For incrementing the free variables we need a family of updating functions:De�nition 5 The updating functions U ik : �! � for k � 0 and i � 1 are de�ned inductivelyas follows:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a))U ik(n) = ( n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i � 1 is the valueby which a variable, if free, must be incremented.Now we de�ne the family of meta-substitution functions:6



De�nition 6 The meta-substitutions at level j , for j � 1 , of a term b 2 � in a terma 2 � , denoted affj bgg , is de�ned inductively on a as follows:(a1a2)ffj bgg = (a1ffj bgg) (a2ffj bgg)(�a)ffj bgg = �(affj+ 1 bgg)nffj bgg = 8><>: n� 1 if n > jU j0 (b) if n = jn if n < j :Ultimately, the intention is to de�ne (�a)b !� aff1  bgg (see de�nition 7 below). The�rst two equalities propagate the substitution through applications and abstractions and thelast one carries out the substitution of the intended variable (when n = i) by the updatedterm. If the variable is not the intended one it must be decreased by 1 if it is free (case n > i)beacuse one � has disappeared, whereas if it is bound (case n < i) it must remain unaltered.It is easy to check that (�521)ff1 (�31)gg = �4(�41)1. This will mean (��521)(�31)!��4(�41)1.The following lemmas establish the properties of the meta-substitutions and updatingfunctions. The Meta-substitution and Distribution lemmas are crucial to prove the con
uenceof �s. The proofs of lemmas 5 - 10 are obtained by induction on a. Furthermore, the proof oflemma 7 requires lemma 6 with l = 0; the proof of lemma 8 uses lemmas 5 and 7 both withk = 0; �nally, lemma 9 with l = 0 is needed to prove lemma 10.Lemma 5 For k < n < k + i we have: U i�1k (a) = U ik(a)ffn bgg .Lemma 6 For l � k < l + j we have: U ik(U jl (a)) = U j+i�1l (a) :Lemma 7 For k + i � n we have: U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :Lemma 8 (Meta-substitution lemma) For i � n we have:affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cggggLemma 9 For l + j � k + 1 we have: U ik(U jl (a)) = U jl (U ik+1�j(a)) .Lemma 10 (Distribution lemma) For n � k + 1 we have:U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :De�nition 7 �-reduction is the least compatible reduction on � generated by:(�-rule) (�a) b!� aff1 bggThe �-calculus �a la de Bruijn, abbreviated �-calculus is the reduction system whose onlyrewriting rule is �.Theorem 1 The �-calculus �a la de Bruijn is con
uent.Proof: Because it is isomorphic to the classical �-calculus with variable names, the con
uenceof the latter (cf. [Bar84] thm. 3.2.8) is transportable to the �-calculus �a la de Bruijn.A proof which does not use the mentioned isomorphism is given in [R��o93] (corol. 3.6). 2Finally, the following lemma ensures the good passage of the �-rule through the meta-substitutions and the U ik. It is crucial for the proof of the con
uence of �s.7



Lemma 11 Let a; b; c; d 2 �.1. If c!� d then U ik(c)!� U ik(d) .2. If c!� d then affn cgg !!� affn dgg .3. If a!� b then affn cgg !� bffn cgg .Proof:1. Induction on c. Lemma 10 is needed to treat the case c = (�a)b! aff1 bgg.2. Induction on a using 1 above.3. Induction on a. Now lemma 8 is useful to treat the case a = (�d)e! dff1 egg. 22.2 The �s-calculusWe begin this subsection by recalling the syntax of the �s-terms. The idea is to handleexplicitly the meta-operators de�ned in de�nitions 5 and 6. Therefore, the syntax of the�s-calculus is obtained by adding to the syntax of the �-calculus �a la de Bruijn two familiesof operators :� f�jgj�1 This family is meant to denote the explicit substitution operators. Each �jis an in�x operator of arity 2 and a �jb has as intuitive meaning the term a whereall free occurrences of the variable corresponding to the de Bruijn number j are to besubstituted by the term b.� f'ikgk�0 i�1 This family is meant to denote the updating functions necessary whenworking with de Bruijn numbers to �x the variables of the term to be substituted.De�nition 8 The set of terms, noted �s , of the �s-calculus is given as follows:�s ::= IN j �s�s j ��s j �s �j�s j 'ik�s where j; i � 1 ; k � 0 :We take a; b; c to range over �s. A term of the form a �jb is called a closure. Furthermore,a term containing neither �'s nor ''s is called a pure term. � denotes the set of pure terms.A compatible reduction on �s is a reduction ! such that for all a; b; c 2 �s, if a ! bthen a c! b c, c a! c b, �a! �b, a �jc! b �jc, c �ja! c �jb and 'ika! 'ikb.The �s-calculus should carry out, besides �-reduction, the computations of updating andsubstitution explicitly. For that reason we include, besides the rule mimicking the �-rule(�-generation), a set of rules which are the equations in de�nitions 5 and 6 oriented from leftto right.De�nition 9 The �s-calculus is the reduction system (�s;!�s), where !�s is the least com-patible reduction on �s generated by the rules given in Figure 2. We use �s to denote this setof rules. The calculus of substitutions associated with the �s-calculus is the reduction systemgenerated by the set of rules s = �s� f�-generationg and we call it the s-calculus.8



�-generation (�a) b �! a �1 b�-�-transition (�a)�jb �! �(a�j+1b)�-app-transition (a1 a2)�jb �! (a1 �jb) (a2 �jb)�-destruction n�jb �! 8><>: n� 1 if n > j'j0 b if n = jn if n < j'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! ( n+ i� 1 if n > kn if n � kFigure 2: The �s-calculusThe �-generation rule starts �-reduction by generating a substitution operator at the�rst level (�1). The �-app and �-� rules allow this operator to travel throughout the termuntil its arrival to the variables. If a variable should be a�ected by the substitution, the�-destruction rules (case j = n) carry out the substitution of the variable by the updatedterm, thus introducing the updating operators. Finally the '-rules compute the updating.We state now the main properties of the �s-calculus.Theorem 2 (SN and con
uence of s) The s-calculus is strongly normalising and con-
uent on �s. Hence, every term a has a unique s-normal form denoted s(a).Proof: Let us de�ne recursively a weight function W :W (n) = 1 W (a b) =W (a) +W (b) + 1 W (�a) =W (a) + 1W ('ika) = 2W (a) W (a �jb) = 2W (a)(W (b) + 1)It is easy to show by induction on a that a!s b impliesW (a) > W (b), hence the s-calculusis strongly normalising.Since there are no critical pairs, the theorem of Knuth-Bendix (cf. [KB70] or [Hue80])applies trivially to yield the local con
uence of the s-calculus.Finally, Newman's lemma (cf. lemma 2), provides the con
uence of the s-calculus. 2Lemma 12 The set of s-normal forms is exactly �.Proof: Check �rst by induction on a that a �jb and 'ika are not normal forms. Then checkby induction on a that if a is an s-nf then a 2 �. Conclude by observing that every term in� is an s-nf. 2Lemma 13 For all a; b 2 �s we have:s(a b) = s(a)s(b) , s(�a) = �(s(a)) , s('ika) = U ik(s(a)) , s(a �jb) = s(a)ffj s(b)gg .9



Proof: The �rst and second equalities are immediate since there are no s-rules whose left-hand side is an application or an abstraction.Prove the third equality for terms in s-nf, i.e. use an inductive argument on c 2 � toshow s('ikc) = U ik(s(c)). Let now a 2 �s, s('ika) = s('iks(a)) = U ik(s(s(a))) = U ik(s(a)).Prove the fourth claim similarly using the third one. 2We give now the key result that allows us to use the Interpretation Method in order to getthe con
uence of the �s-calculus: the good passage of the �-generation rule to the s-normalforms.Lemma 14 Let a; b 2 �s , if a!��gen b then s(a)!!� s(b) .Proof: Induction on a. Use lemmas 13 and 11. 2Now, the following corollaries are immediate.Corollary 1 Let a; b 2 �s , if a!!�s b then s(a)!!� s(b) .Corollary 2 (Soundness) Let a; b 2 � , if a!!�s b then a!!� b .This last corollary says that the �s-calculus is correct with respect to the classical �-calculus, i.e. derivations of pure terms ending with pure terms can also be derived in theclassical �-calculus.Finally, before proving con
uence, we verify that the �s-calculus is powerful enough tosimulate �-reduction.Lemma 15 (Simulation of �-reduction) Let a; b 2 �, if a!� b then a!!�s b .Proof: Induction on a. 2Theorem 3 (Con
uence of �s) The �s-calculus is con
uent on �s.Proof: Use the interpretation method (lemma 3) with R1 =!s, R2 =!��gen and R0 =!�.Lemmas 14 and 15 and theorem 1 ensure that the hypotheses of the interpretation methodhold. 2Finally, for the sake of completeness, we state two other important results concerning the�s-calculus. The proofs are too long to be included here. The proof of the following theoremcan be found in [KR95a].Theorem 4 (Preservation of SN) Pure terms which are strongly normalising in the �-calculus are also strongly normalising in the �s-calculus.In [KR95b] we introduced the simply typed �s-calculus and proved:Theorem 5 (SN of typed terms) Every well typed term is strongly normalising in thesimply typed �s-calculus. 10



�-�-transition (a �ib)�j c �! (a �j+1 c) �i (b �j�i+1 c) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a �j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jFigure 3: The new rules of the �se-calculus2.3 The �se-calculusWe end this section by introducing the set of open terms and the rules that should be addedto �s to obtain the �se-calculus.De�nition 10 The set of open terms, noted �sop is given as follows:�sop ::= V j IN j �sop�sop j ��sop j �sop �j�sop j 'ik�sop where j; i � 1 ; k � 0and where V stands for a set of variables, over which X, Y , ... range. We take a; b; c torange over �sop. Furthermore, closures, pure terms and compatibility are de�ned as for �s.Working with open terms one loses con
uence as shown by the following counterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no common reduct. Moreover, the above exampleshows that even local con
uence is lost. But since ((�X)�11)(Y �11)!! (X�21)�1(Y �11), thesolution to the problem seems at hand if one has in mind the properties of meta-substitutionsand updating functions of the �-calculus in the Bruijn notation (cf. lemmas 5 - 10). Theseproperties are equalities which can be given a suitable orientation and the new rules, thusobtained, added to �s give origin to a rewriting system which happens to be locally con
uent(cf. [KR95b]). For instance, the rule corresponding to the Meta-substitution lemma (lemma8) is the �-�-transition rule given below. The addition of this rule solves the critical pair inour counterexample, since now we have (X�1Y )�11! (X�21)�1(Y �11).De�nition 11 The set of rules �se is obtained by adding the rules in Figure 3 to the rulesof the �s-calculus given in Figure 2. The �se-calculus is the reduction system (�sop;!�se)where !�se is the least compatible reduction on �sop generated by the set of rules �se.The calculus of substitutions associated with the �se-calculus is the rewriting systemgenerated by the set of rules se = �se � f�-generationg and we call it se-calculus.Notice that when transcribing lemmas 5 - 10 as rewriting rules, instead of keeping thecondition l+ j � k+ 1 for rule '-'-transition 1, we restricted it to l+ j � k. The reason for11



this alteration is the following: for the extreme case i = 1, j = 1 and l + j = k + 1 we wouldhave: 'ik('jl (a))! 'jl ('ik+1�j(a))! 'ik+1�j('jl+1�i(a) = 'ik('jl (a)) ;and we would get an in�nite loop which would destroy strong normalisation. Furthermore,for l + j = k + 1 we have the '-'-transition 2 that allow us to reduce 'ik('jl (a)).Finally, we recall that only local con
uence has been established so far for the �se-calculus.The proof was obtained by analysis of critical pairs (cf. [KR95b]):Theorem 6 (Local con
uence) The se- and �se-calculi are locally con
uent on �sop.We give now further motivation for the rules of �se. Motivation behind the rules of Figure2 was given in [KR95a] and motivation for explicit substitution rules that belong to the samefamily can be found in [KN93]. Hence, we concentrate on the rules of Figure 3.We gave already some motivation for the �-�-transition rule where we said that such arule helps to re-establish con
uence. The other rules were also introduced as a necessity toclose critical pairs. Notice now the following symetries: there are two \simpli�cation" rules:�-'-tr.1 and '-'-tr.2; two \distribution" rules: �-�-tr. and '-�-tr.; two \commutation"rules: �-'-tr.2 and '-'-tr.1.The intuitive interpretation of 'ik, as for U ik, is the updating of the free variables greaterthan k with an increment of i�1. In this informal context one must be careful: if a de Bruijnnumber corresponds to a free variable, the \real" number of such a variable may not be itsvalue. For instance, in 1�2, the index 2 corresponds to the \real" free variable 1. One maycheck this fact by translating 1�2 to classical notation: the result is x�y:x where x is the �rstvariable in the free variable list. Notice that 'i1(1�2)!!s 1�2 whereas '40(1�2)!!s 4�5.The intuitive interpretation of a �jb, like affj bgg, is the substitution of the free variables(whose \real" number is j) by the updating ('j0) of b in a. In the same way that the occurencesof the \real" variable j in �a are the occurrences of the \real" variable j+1 in a, it is easy tocheck (for the meta-substitutions) that the occurrences of the \real" variable j in a �ib (i � jand i free in a) are the occurrences of j+1 in a and the occurrences of j-i+1 in b.This explains the distribution rules: the �j operator in the LHS of �-�-tr. must become,on the RHS, �j+1 when acting on a and �j�i+1 when acting on b. Furthermore, in the rule'-�-tr. the transition of 'ik into 'ik+1 and 'ik+1�j is explained in the same way.The simpli�cation rules are also easy to grasp:To understand the rule '-'-transition 2, let us consider n > k. Since n > l and l+ j > kimplies n+j�1 > k, we get 'ik('jl n)!s 'ik(n+ j� 1)!s n+ j+ i� 2, and we see here thecondition at work. Now this double process of updating can be achieved by a single updating:'i+j�1k n!s n+ j+ i� 2, hence our '-'-transition 2 rule.The rule �-'-tr.1 may be explained as a void substitution (the variable to be replaced doesnot occur free). In fact, it is also easy to check (for the meta-updatings) that the occurrencesof the \real" variable j in 'ika are the occurrences of j-i+1 in a when j � i+ 1 > k. Hence,if j < k+ i, the variable j cannot occur free in 'ika and therefore the substitution in the LHSof the rule is void. Furthermore the dissapearance of the �j operator is the reason why theupper index of the ' operator is decreased by 1.Finally, both commutation rules postpone an updating: �-'-tr.2 postpones the updating'ik, whereas '-'-tr.1 postpones the updating 'jl . The transition of �j into �j�i+1 can be12



explained by the fact that the occurrences of j in 'ika are the occurrences of j-i+1 in a.Analogously, the transition of 'ik into 'ik+1�j can be understood.We believe that further intuition, from the point of view of normalisation, can be gainedin the next section where we describe the se-normal forms. We de�ne there the skeletonsas certain structures of ' and � operators. The rules can be viewed as acting on skeletonsto \order" them (what we call normal skeletons should be seen as completely \ordered"structures). This point of view helps to understand the interaction between the indices of the� operators and the lower indices of the ' operators.>From a computational point of view these new rules o�er the possibility of interactionbetween �- and '-operators, whereas in �s the interaction of these operators was restrictedto de Bruijn numbers, applications and abstractions. This restriction is also present in ��and enables the preservation of strong normalisation, whereas this property does not holdin ��, where interaction of substitutions is available through the composition operator. Webelieve that the interaction we propose in �se is more controlled than the interaction allowedin ��, because of the restriction on indices and therefore this strati�ed interaction wouldnot be harmful from the point of view of preservation. However, the preservation of strongnormalisation of �se is still an open problem.We remark that lemmas 5 - 10 were all the knowledge required about meta-substitutionsand meta-updatings to prove con
uence of �s (cf. [KR95a]). This knowledge must becomeavailable within the calculus if we expect to obtain nice con
uence properties. Therefore thenew rules about �- and '-operators internalize the knowledge in the meta-level about themeta-operators they represent.We end this section by comparing �s and �se with ��, �� and ��. The interpretations2T and S (cf. [KR95a]) of �s into �� and ��, respectively, verify: a !s b ) T (a) !+� T (b)and a!�s b) S(a)!!+�� S(b). Moreover, they translate the new rules of �se into equalities:Theorem 7 If a!�se b then T (a) =�� T (b) and S(a) =�� S(b).Proof: By induction on a, using the classical equalities of �� and ��. 2Notice that, since �� only di�ers from �� in the treatment of applications, the \nat-ural" translation of �se into �� is also S. But, as expected, a !�se b does not implyS(a) =�� S(b). The reason for this is that �� is unable to prove (a b)[s] = a[s]b[s], infact (�:11)(�:11)[s] 6=�� (�:11)[s](�:11)[s] because substitutions may be introduced into ap-plications only if the application has a head variable. Therefore, no translation of �se into ��preserving equalities seems possible.Finally, we compare the amount of reductions needed to perform some �-reductions ofpure terms in the di�erent calculi. We just give two examples to show that for ceratin terms�� and �� are more e�cient than �s whereas there are terms for which �s is the most e�cient.For instance, the term (�:1)a reduces in two steps to a in �� and �� but 2+n steps are needed2T and S were de�ned in [KR95a] as follows:T (n) = n = 1["n�1] S(n) = nT (a b) = T (a)T (b) S(a b) = S(a)S(b)T (�a) = �(T (a)) S(�a) = �(S(a))T (a�i+1b) = T (a)[1 � 2 � : : : � i � T (b)["i] � "i] S(a �i+1b) = S(a)[*i (S(b)=)]T ('ika) = T (a)[1 � 2 � : : : � k� "k+i�1] S('ika) = S(a)[*k (")]i�1where "0= id, "n+1= " � "n ; *0 (s) = s, *n+1 (s) =* (*n (s)) and a[s]0 = a, a[s]n+1 = (a[s])[s]n.13



in �s, where n is the length of '10a !! a. On the other hand, terms of the form (� � � � �:n)a,with m �'s and n > m > 1, can be reduced more e�ciently in �s beacuse the single stepn�ma !s n� 1 requires 2m � 1 steps in �� and much more in ��. Notice that �� is lesse�cient than �� every time the new mechanism of application is started.3 The weak normal formsIn [KR95b] we proved the weak normalisation of the se-calculus. We are going to give here adi�erent presentation of that proof, since we shall need explicitly the inductive de�nitions ofthe weak normal forms.First of all we state the following remark which shall be used frequently and withoutexplicit mention. A glimpse at the rules in Figure 3 is enough to check it.Remark 2 Let a; b 2 �sop then1. ('ika)�jb has a redex at the root i� j > k. In this case we say that �j creates a redexwith 'ik.2. 'ik('jla) has a redex at the root i� k � l. Now it is 'ik that creates a redex with 'jl .Next we recall the description of se-normal forms given in [KR95b]. The proof is byanalysis of the structure of a and the restrictions for the cases a = b �jc and a = 'ikb arenecessary to avoid redexes at the root.Theorem 8 A term a 2 �sop is an se-normal form i� one of the following holds:� a 2 V [ IN, i.e. a is a variable or a de Bruijn number.� a = b c, where b and c are se-normal forms.� a = �b, where b is an se-normal form.� a = b �jc, where c is an se-nf and b is an se-nf of the form X, or d �ie with j < i, or'ikd with j � k.� a = 'ikb, where b is an se-nf of the form X, or c �jd with j > k + 1, or 'jl c with k < l.There is a simple way to describe the se-nf's using item notation [KN95]. Let us just sayhere that in this notation we write a b = (b �)a, �a = (�)a, a �ib = (b �i)a and 'ika = ('ik)a.The following nomenclature is used: (b �), (�), (c �i), ('ik) are called items (�-, �-, �- and'-items, respectively) and b and c the bodies of the respective items. A sequence of items iscalled a segment. Notice that every term in �sop can be written as s n or sX with a convenientsegment s.A normal �'-segment s is a sequence of �- and '-items such that every pair of adjacentitems in s has one of the following forms:('ik)('jl ) and k < l ('ik)(b �j) and k < j � 1 (b �i)(c �j) and i < j (b �j)('ik) and j � k.
14



For example, ('23)('14)('67)(b�9)(c�11)('211)('516) and (b�1)(c�3)(d�4)('25)('16)('47)(a�10)are normal �'-segments.Finally, in order to explicit the dependence of a normal �'-segment on the bodies of the�-items we de�ne the skeleton of a �'-segment as the pseudo-segment obtained by removingthe bodies of the �-items. We call it pseudo-segment because it is not a segment as de�nedabove. We write �'(a1; : : : ; an) to mean the normal �'-segment s (whose skeleton is �')which has n �-items such that the body of the i-th (begining from the left) of them is ai. Wecall such a skeleton a normal skeleton of arity n.For example, the following segments:s0 = ('23)('14)('67)(b�9)(c�11)('211)(b�14)('516) s00 = (b�1)(c�3)(d�4)('25)('16)('47)(a�10)have the respective skeletons�'0 = ('23)('14)('67)(�9)(�11)('211)(�14)('516) �'00 = (�1)(�3)(�4)('25)('16)('47)(�10) ;and using the above mentioned convention, they should be written: s0 = �'0(b; c; b) ands00 = �'00(b; c; d; a).We can now give another description of the se-nf's, as presented in [KR95b]. This di�erentpoint of view of the structure of the se-normal forms will be exploited later.Theorem 9 The se-normal forms can be described by the following syntax:NF ::= V j IN j (NF �)NF j (�)NF j �'(NF; : : : ; NF )Vwhere �' are normal skeletons. Terms of the form �'(a1; : : : ; an)X are called �'-normalforms (even if they are not written in item notation).We de�ne now our strategy to calculate normal forms. We do it in three steps:1. We de�ne a function s0e to evaluate a normal form of 'ikd for d 2 NF .2. We use s0e to de�ne a function s00e to evaluate a normal form of d �je for d; e 2 NF .3. We use s0e and s00e to de�ne s�e, a function which evaluates an se-normal form of everya 2 �sop.Notice that we use the notation s�e(a) instead of se(a) to bear in mind that s�e(a) is onenormal form and, in order to be coherent with remark 1, the notation se(a) could be usedonly after having established the con
uence of the se-calculus which ensures unicity of nf's.De�nition 12 Let d 2 NF , we de�ne s0e('ikd) by induction on d as follows:s0e('ikX) = 'ikXs0e('ikn) = ( n+ i� 1 if n > kn if n � ks0e('ik(a b)) = s0e('ika) s0e('ikb)s0e('ik(�a)) = �s0e('ik+1a) 15



s0e('ik('jl a)) = 8>><>>: 'ik('jl a) if k < l'j+i�1l a if l � k < l + j'jl (s0e('ik+1�ja)) if l + j � ks0e('ik(a �jb)) = ( 'ik(a �jb) if j > k + 1s0e('ik+1a)�js0e('ik+1�jb) if j � k + 1Remark the analogy of these equalities with the '-rules (the rules whose name begin withthe symbol ').De�nition 13 Let d; e 2 NF , we de�ne s00e (d �je) by induction on d as follows:s00e (X �jb) = X �jbs00e (n�jb) = 8><>: n� 1 if n > js0e('j0 b) if n = jn if n < js00e ((a c)�jb) = s00e (a �jb) s00e (c �jb)s00e ((�a)�jb) = �s00e (a �j+1b)s00e (('ika)�jb) = 8>>>>><>>>>>: ('ika)�jb if j � k'i�1k a if k < j < k + is0e('ik+1a)�k+1s0e('i0b) if j = k + i'ik(s00e (a �j+1�ib)) if j > k + is00e ((a �ic)�jb) = ( (a �ic)�jb if i > js00e (a �j+1b)�is00e (c �j+1�ib) if i � jRemark again the analogy of these rules with the �-rules (the rules whose name begin with�). Only one equality seems to be out of the pattern: s00e (('ika)�jb) = s0e('ik+1a)�k+1s0e('i0b)when j = k+ i. The reason for treating this case separately is due to the fact that only whenj = k + i an application of �-' tr.2 creates a new '-� tr.-redex:('ik a)�j b �!�-'-tr.2 'ik(a �k+1 b) �!'-�-tr ('ik+1a)�k+1('i0b)Now we are ready to de�ne our strategy:De�nition 14 Let d 2 �sop, we de�ne s�e(d) by induction on d as follows:s�e(X) = X s�e(a b) = s�e(a) s�e(b) s�e('ika) = s0e('iks�e(a))s�e(n) = n s�e(�a) = �s�e(a) s�e(a �jb) = s00e (s�e(a)�js�e(b))We must prove now that in de�nitions 12, 13 and 14 we have really de�ned normal forms.We proceed by induction, but we need a powerful inductive hypothesis. For this reason weneed the following de�nition.De�nition 15 The set of sorts is de�ned as S = fV;B; �; �; �; 'g. The sort of a term a,denoted S(a), is de�ned as: S(X) = V , S(n) = B, S(a b) = �, S(�a) = �, S(a �ib) = �,S('ika) = '. The number of a term c of sort � or ' or V , denoted N(c), is de�ned asN('ika) = k, N(a �jb) = j and N(X) = 0. 16



The idea in de�ning such numbers is that those are the indices that really matter to decidethe existence of redexes (see the de�nition of normal �'-segment above). The following remarkprecises this intuitive idea.Remark 3 Let b 2 NF .1. If 'ika 2 NF , S(a) = S(b) and N(a) = N(b), then 'jkb 2 NF for every j � 1.2. If a �jc 2 NF , S(a) = S(b) and N(a) = N(b), then b �jc 2 NF .3. If 'ika 2 NF , S(a) = S(b) and N(a) = N(b), then b �k+1c 2 NF for every c 2 NF .Proof: The �rst and second items are proved analogously. Let us prove the �rst one.Since b 2 NF we only must check that 'ik does not create a redex with the principaloperator (the one at the root) of b.Now, since 'ika 2 NF , a is a variable or a �'-normal form, hence, by hypothesis, b is avariable or a �'-normal form of the same sort and number. Therefore, 'jk creates a redexwith the principal operator of b i� 'ik creates a redex with the principal operator of a. Since'ika 2 NF , we conclude that there is no redex at the root in 'ikb, hence 'ikb 2 NF .To check the third item, let us suppose that �k+1 creates a redex with the principaloperator of b, hence this operator must be �h with h � k + 1 (see rule �-�-transition) or 'jlwith k + 1 > l (see remark 2.1). But the principal operator of a has same sort and numberas the principal operator of b and in both cases the hypothesis 'ika 2 NF is contradicted. 2We can begin now our proof of weak normalisation.Lemma 16 If a 2 NF then s0e('ika) is an se-normal form of 'ika.Moreover, if s0e('ika) 6= 'ika then S(a) = S(s0e('ika)) and when S(a) = � or S(a) = ' we havefurthermore N(a) = N(s0e('ika)).Proof: The cases a = X and a = n are evident. The cases a = b c and a = �b are immediatesince there are no rules whose left members are applications or abstractions, and therefore ifd; e 2 NF then d e 2 NF and �d 2 NF .If a = 'jl b and k < l the lemma is evident. When l � k < l + j, apply remark 3.1 toconclude 'j+i�1l a 2 NF from 'jl a 2 NF . Let us check now the interesting case l + j � k.Now, s0e('ika) = s0e('ik('jl b)) D 12= 'jl s0e('ik+1�jb). If s0e('ik+1�jb) = 'ik+1�jb, then s0e('ika) ='jl ('ik+1�jb) wich is in normal form, beacuse l < k + 1 � j. If s0e('ik+1�jb) 6= 'ik+1�jb,then our strong inductive hypothesis ensures S(b) = S(s0e('ik+1�jb)). Remark that, sincea = 'jl b 2 NF , b is neither an application nor an abstraction, furthermore b is not a variable(otherwise s0e('ik+1�jb) = 'ik+1�jb). Therefore b is a �'-normal form, and we also haveN(b) = N(s0e('ikb)). We conclude by remark 3.1 that 'jl s0e('ikb) 2 NF .Finally, if a = b �jc and j > k + 1 the lemma is evident. If j � k + 1, we reason as in thelast subcase of the previous case, using now remark 3.2. 2Lemma 17 If a; b 2 NF then s00e (a �jb) is an se-normal form of a �jb.Moreover, if s00e (a �jb) 6= a �jb and a 6= j then:1. If a 6= 'ikc with i+ k = j then S(a) = S(s00e (a �jb)) and when S(a) = � or S(a) = ' wehave furthermore N(a) = N(s00e (a �jb)).17



2. If a = 'ikc with i+ k = j then S(s00e (a �jb)) = � and N(s00e (a �jb)) = k + 1.Proof: By induction on a. The proof is similar to the proof of the previous lemma. Theonly di�erences are:The previous lemma is needed to settle the case a = j.When a = 'ikc and k + i = j, use lemma 16 and remark 3.3.When a = 'ikc and k + i < j, then s00e (('ikc)�jb) D 13= 'iks00e (c �j+1�ib). If s00e (c �j+1�ib) =c �j+1�ib, then s00e (('ikc)�jb) = 'ik(c �j+1�ib), which is a normal form because j+1�i > k+1.If s00e (c �j+1�ib) 6= c �j+1�ib, then in order to apply the IH, we consider:� If c 6= 'hmd with h +m = j + 1 � i, then the sort and number of s00e (c �j+1�ib) are thesame as those of c, and, since 'ikc 2 NF we conclude 'iks00e (c �j+1�ib) 2 NF .� If c = 'hmd with h+m = j +1� i, then the principal operator of s00e (c �j+1�ib) is �m+1.But a = 'ikc = 'ik'hmd 2 NF , hence k < m. Therefore 'ik does not create a redex with�m+1, and again 'iks00e (c �j+1�ib) 2 NF .Finally, when a = c �hd and h � j reason as in the case we have just considered. 2Since, as mentioned above, no left member of any se-rule is an application or an abstrac-tion, the following theorem follows immediately from lemmas 16 and 17.Theorem 10 (Weak normalisation of se) For every term a 2 �sop, s�e(a) is an se-normalform of a. Hence, the se-calculus is weakly normalising.We have therefore a strategy to �nd se-normal forms. By looking carefully at the de�ni-tions of s�e, s0e and s00e the strategy appears as an innermost one, i.e. before reducing a redexall its subterms must have been already normalised.Notice that for the out-of-the-pattern case we pointed out after de�nition 13 the strategyis also innermost. In fact, for j = k + i, we had:('ik a)�j b �!�-'-tr.2 'ik(a �k+1 b) �!'-�-tr ('ik+1a)�k+1('i0b) ;and if 'ika 2 NF and b 2 NF then, by remark 3.3, a �k+1 b 2 NF . Therefore, the only redexin 'ik(a �k+1 b) is the '-�-transition-redex at the root.The remainder of this section is the prize we have to pay because we don't know if se isstrongly normalising. In fact, if we knew that se is SN, since we proved the local con
uenceof se (cf. theorem 6), we could apply Newman's lemma to obtain the con
uence of se. Inthat case, all the lemmas which follow are trivial. The aim of these lemmas is proposition 1which will translate into one of the conditions of the GIM lemma.Lemma 18 The following hold:1. s�e(s�e(a)) = s�e(a)2. s�e('ika) = s�e('iks�e(a))3. s�e(a �jb) = s�e(s�e(a)�js�e(b)) 18



Proof: The �rst item is immediate: since s�e(s�e(a)) is an se-nf of s�e(a), s�e(a)!!se s�e(s�e(a)).But, since s�e(a) is an se-nf, this derivation must have null length. Therefore, s�e(s�e(a)) = s�e(a).The second item follows from the �rst, since by de�nition of s�e we have s�e('ika) =s0e('iks�e(a)) and s�e('iks�e(a)) = s0e('iks�e(s�e(a))). The third item is proved analogously. 2Lemma 19 For every rule L! R of the se-calculus, s�e(L) = s�e(R).Proof: We divide the proof in two parts:I. We prove the lemma with the extra hypothesis that all a; b; c involved in the rulesare se-normal forms.II. We use part I to prove the lemma for arbitrary a; b; c.Part I is almost immediate for the six s-rules: only de�nitions 12, 13 and 14 are needed.We prove the lemma, for instance, for �-�-tr when a; b 2 NF .s�e((�a)�jb) D:14= s00e (s�e(�a)�js�e(b)) D:14= s00e ((�s�e(a))�js�e(b)) D:13=�s00e (s�e(a)�j+1s�e(b)) D:14= �s�e(a�j+1b) D:14= s�e(�(a�j+1b))Part I, for the other six rules, involves an enormous amount of elementary calculations.Moreover, the rules must be chosen in a good order, since the proof of the lemma for one ofthem may require the validity of the lemma for another one. All the proofs are obtained bystructural induction.'-'-tr.1: We prove s�e('ik('jl a)) = s�e('jl ('ik+1�ja)) for a 2 NF and l+j � k by induction ona. By de�nition 14, our thesis is equivalent to s0e('ik(s0e('jl a))) = s0e('jl (s0e('ik+1�ja))).The cases a = X and a = n can be checked almost immediately using just de�nition12. The cases a = d e and a = �d require the inductive hypothesis (IH). Let us check,for instance the case a = �d:s0e('ik(s0e('jl (�d)))) D:12= s0e('ik�(s0e('jl+1d))) D:12= �s0e('ik+1(s0e('jl+1d))) IH=�s0e('jl+1(s0e('ik+2�jd))) D:12= s0e('jl�(s0e('ik+2�jd))) D:12= s0e('jl (s0e('ik+1�j(�d))))The cases a = 'hmd and a = d �he are the ones which involve the long calcula-tions. To give an idea of these calculations we check a = d �he. We introduce cap-itals A; B; C : : : as local de�nitions in order to save space and gain in clarity. LetA = s0e('ik(s0e('jl (d �he)))) and B = s0e('jl (s0e('ik+1�j(d �he)))). We want to proveA = B.A D:12= 8<: s0e('ik('jl (d �he))) D:12= 'jl s0e('jk+1�j(d �he)) = C if h > l + 1s0e('ik(s0e('jl+1d)�hs0e('jl+1�he))) = D if h � l + 1C D:12= 8<: 'jl ('ik+1�j(d �he)) = E if h > k + 2� j'jl (s0e('ik+2�jd)�hs0e('ik+2�j�he)) = F if h � k + 2� j19



D D:12= 8<: 'ik(s0e('jl+1d)�hs0e('jl+1�he)) if h > k + 1s0e('ik+1(s0e('jl+1d)))�hs0e('ik+1�h(s0e('jl+1�he))) = G if h � k + 1B D:12= 8<: s0e('jl ('ik+1�j(d �he))) = H if h > k + 2� js0e('jl (s0e('ik+2�jd)�hs0e('ik+2�j�he))) = I if h � k + 2� jI D:12= 8<: 'jl (s0e('ik+2�jd)�hs0e('ik+2�j�he)) = J if h > l + 1s0e('jl+1s0e('ik+2�jd))�hs0e('jl+1�hs0e('ik+2�j�he)) = K if h � l + 1Let us study our results recalling l + j � k:� h > l + 1 and h > k + 2� j: Since l < k + 1� j, we have H = E, hence A = B.� h > l + 1 and h � k + 2� j: F = J , hence A = B.� h � l + 1 and h > k + 2� j: Impossible since l + 1 � k � j + 1.� h � l + 1 and h � k + 2� j: Since j � 1, k + 2� j � k + 1, hence h � k + 1 andby IH we have G = K. Therefore, A = B.'-'-tr.2: s�e('ik('jl a)) = s�e('j+i�1l a) for a 2 NF and l � k < l + j. By induction on a.�-'-tr.1: s�e(('ika)�jb) = s�e('i�1k a) for a; b 2 NF and k < j < k + i. By induction on a.�-'-tr.2: s�e(('ika)�jb) = s�e('ik(a�j�i+1b)) for a; b 2 NF , k + i � j. By induction on a.When considering the cases a = j� i+ 1 and a = 'hl d with l < k < l + h (namely inthe subcase l+h = j� i+1), use the fact that the lemma has already been establishedfor the rule '-'-tr.2.'-�-tr.: s�e(('ika)�jb) = s�e(('ik+1a)�j('ik+1�jb)) for a; b 2 NF and j � k+1. By inductionon a.Cases a = k+ 1 and a = 'hl d with j = l + h = k + 1, require the lemma for the rule'-'-tr.2, whereas the cases a = j with j � k and a = 'hl d with j = l + h < k + 1,require the lemma for the rule '-'-tr.1.�-�-tr.: s�e((a �ib)�jc) = s�e((a �j+1c)�i(b �j�i+1c)) for a; b; c 2 NF and i � j. By inductionon a.Now the lemma is required for the rules �-'-tr.1 and �-'-tr.2. We encourage the readerto �nd out in what cases.We state here some general remarks concerning the proof of part I for the rules which arenot s-rules.� All the proofs are by induction on a for a convenient a, as stated above.� The case a = X is always easy and proved using just the de�nitions 12 and 13.� The cases a = d e and a = �d are always treated using de�nitions 12 and 13 and the IH.� The cases a = n, a = 'hmd and a = d �he always involve case analyses, in particular thelast two cases require rather long ones (the only example we gave for '-'-tr. 1 is oneof the simplest). The proofs may use, besides de�nitions 12 and 13 and the IH the factthat the lemma is true for another rule.20



Part II is easy. We just check only two rules. The proof for the other rules is analogous.�-�-tr: In part one we have proved s�e((�a)�jb) = s�e(�(a �j+1b)) for every a; b 2 NF . Letnow a; b 2 �sop.s�e((�a)�jb) L:18:3= s�e(s�e(�a)�js�e(b)) D:14= s�e((�s�e(a))�js�e(b)) Part I=s�e(�(s�e(a)�j+1s�e(b))) D:14= �(s�e(s�e(a)�j+1s�e(b))) L:18:3= �(s�e(a �j+1b)) D:14= s�e(�(a �j+1b))�-'-tr 2: In part one we have proved s�e(('ika)�jb) = s�e('ik(a�j�i+1b)) for every a; b 2 NFand k + i � j. Let now a; b 2 �sop.s�e(('ika)�jb) L:18:3= s�e(s�e('ika)�js�e(b)) L:18:2= s�e(s�e('iks�e(a))�js�e(b)) L:18:1=s�e(s�e('iks�e(a))�js�e(s�e(b))) L:18:3= s�e(('iks�e(a))�js�e(b)) Part I= s�e('ik(s�e(a)�j�i+1s�e(b)))L:18:2= s�e('iks�e(s�e(a)�j�i+1s�e(b))) L:18:3= s�e('iks�e(a �j�i+1b)) L:18:2= s�e('ik(a �j�i+1b)) 2We show now that our se-normal forms are preserved by se-reduction.Proposition 1 Let a; b 2 �sop, if a!se b then s�e(a) = s�e(b).Proof: By induction on a. If the reduction is at the root the proposition coincides withlemma 19. Otherwise use the IH and either de�nition 14 (for the cases a = d e and a = �d)or lemma 18 (for the cases a = d �je and a = 'ikd). 2As a corollary of this proposition we obtain the con
uence of the se-calculus:Theorem 11 (Con
uence of se) The se-calculus is con
uent both on �sop and on �s.Proof: Since all the se-rules preserve closed terms, we just prove the theorem for �sop.It is easy to show by induction on the length of the derivation and using proposition 1that for a; b 2 �sop, a!!se b implies s�e(a) = s�e(b).Let us suppose a!!se b and a!!se c, hence s�e(a) = s�e(b) and s�e(a) = s�e(c). The theoremis therefore settled since b!!se s�e(b) and c!!se s�e(c). 2Therefore, for every term a 2 �sop there exists (theorem 10) a unique se-normal form thatwe denote se(a). Hence, se(a) = s�e(a) for every a 2 �sop, se('ikb) = s0e('ikb) for every b 2 NFand every i � 1, k � 0 and se(c �jd) = s00e (c �jd) for every c; d 2 NF and j � 1.4 The calculus of the interpretationWe recall that our aim is to apply the generalized interpretation method (lemma 4) to obtainthe con
uence of the �se-calculus. Our interpretation function will be se. Coming back tothe notation of lemma 4, we intend to apply the GIM with: f = se, R = �se, R1 =!se andR2 =!��gen.In the previous section we proved (proposition 1) that condition 2 of lemma 4 is satis�ed.In this section we are going to introduce the calculus of the interpretation. The set of theinterpretation is, of course, NF . Therefore, we shall de�ne R0 on NF and prove that conditions1 and 3 are also satis�ed. We postpone the con
uence of R0 until the next section.21



De�nition 16 (The interpretation reduction �0) For a; b 2 NF we de�ne a!�0 b whenthere exists d 2 �sop such that a!��gen d and b = se(d).We take !�0 as R0. Condition 1 in lemma 4 is immediate:Proposition 2 Let a; b 2 NF , if a!�0 b then a!!�se b.Proof: Because a!��gen d!!se se(d) = b. 2The remainder of this section is a series of lemmas aiming to proposition 3 which statesthat condition 3 of lemma 4 holds. If the reader wishes, she/he can read now the proof ofproposition 3 and backtrack the necessity of the lemmas.We begin by showing that �0 is compatible with applications and abstractions.Lemma 20 Let a; b; c 2 NF .1. If a!�0 b , then a c!�0 b c .2. If a!�0 b , then c a!�0 c b .3. If a!�0 b , then �a!�0 �b .4. Si a!!�0 b et c!!�0 d , alors ac!!�0 bd .5. Si a!!�0 b , alors �a!!�0 �b .Proof: We check the �rst item. If a !�0 b, there exists d 2 �sop such that a !��gen d andb = se(d), hence a c!��gen d c and, since se(d c) = se(d)se(c) = bc, we conclude a c!�0 b c.The second and third ones are shown analogously.The fourth one is proved by induction on the length of the derivation c!!�0 d. If it is null,we must show ac !!�0 bc. This is done by induction on the length of the derivation a!!�0 busing the �rst item. For the inductive step of the main induction use the second item.The �fth one is shown by induction on the length of the derivation using the third item.2Lemma 21 If a is a �'-normal form and a !��gen d then S(a) = S(se(d)) and N(a) =N(se(d)) (cf. def. 15).Proof: By induction on a. Since a is a �'-normal form we have to consider only two cases:a = 'ikb: Hence d = 'ikc with b !��gen c. By IH we have S(b) = S(se(c)) and N(b) =N(se(c)) and, since 'ikb is a normal form, we conclude, by remark 3.1, that 'ikse(c)is also a normal form. Therefore, 'ikse(c) = se('ikse(c)) = se('ikc) and we concludeS(a) = ' = S(se(d)) and N(a) = k = N(se(d)).a = b �jc: Two cases according to the position of the redex:� If b!��gen b0 then the proof is analogous to the previous case. Use remark 3.2.� If c !��gen c0 then d = b �jc0. Now, since b �jc is a nf, b �jse(c0) is also a nf (aglimpse at the rules is enough to verify that � operators can only create redexeswith the left operand). Therefore, b �jse(c0) = se(b �jse(c0)) = se(b �jc0) and weconclude S(a) = � = S(se(d)) and N(a) = j = N(se(d)). 222



Lemma 22 For a; b; c; e 2 NF the following hold:1. If a!�0 b and 'ika 2 NF then 'ikb 2 NF and 'ika!�0 'ikb.2. If a!�0 b and a �jc 2 NF then b �jc 2 NF and a �jc!�0 b �jc.3. If a!�0 b and c �ja 2 NF then c �jb 2 NF and c �ja!�0 c �jb.4. If a!!�0 b and 'ika 2 NF then 'ikb 2 NF and 'ika!!�0 'ikb.5. If a!!�0 b, c!!�0 e and a �jc 2 NF then b �je 2 NF and a �jc!!�0 b �je.Proof: Let d 2 �sop such that a!��gen d and b = se(d).1. Since 'ika 2 NF , a is neither an abstraction nor an application. Furthermore, since ahas a redex, a is not a variable, hence a is a �'-normal form. By lemma 21, we haveS(a) = S(se(d)) and N(a) = N(se(d)). By remark 3.1, 'ikse(d) 2 NF , hence 'ikb 2 NF .Now, 'ika!��gen 'ikd and se('ikd) = se('ikse(d)) = se('ikb) = 'ikb, hence 'ika!�0 'ikb.2. Analogous to the previous item. Use now remark 3.2.3. Since c �ja 2 NF , c �jse(d) 2 NF (as we remarked above, a glimpse at the rulesis enough to verify that � operators can only create redexes with the left operand).Therefore, se(c �jd) = c �jse(d) and since c �ja !��gen c �jd, we conclude c �ja !�0c �jb.4. By induction on the length of the derivation using item 1.5. By induction on the length of the derivation c!!�0 e.When the length is null, check a �jc!!�0 b �jc by induction on the length of the deriva-tion a!!�0 b using item 2.For the inductive step use item 3. 2Lemma 23 Let a 2 NF and d 2 �sop, if a!��gen d then se('ika)!�0 se('ikd).Proof: By induction on a. If a = X or a = n there are no �-generation redexes and thereforethe lemma is trivial.a = b c : Three cases according to the position of the redex:� If b!��gen b0 then d = b0c.se('ik(b c)) = se('ikb)se('ikc) IH &L 20:1!�0 se('ikb0)se('ikc) = se('ik(b0c))� If c!��gen c0, it is analogous to the previous case. Instead of lemma 20.1, use nowlemma 20.2.� If b = �b0 and the redex is at the root, then d = b0 �1c.se('ik((�b0)c)) = (�se('ik+1b0))se('ikc)!�0 se(se('ik+1b0)�1se('ikc)) =se(('ik+1b0)�1('ikc)) = se('ik(b0 �1c))23



We remark once and for all that the last equality holds because'ik(b0 �1c)!'-�-tr ('ik+1b0)�1('ikc)and proposition 1 (or lemma 19) applies.a = �b : The redex must be internal, and it is anologous to the �rst subcase above.a = 'jl b: Necessarily b !��gen b0 and d = 'jl b0. Remember that se('ika) = s�e('ika) and,since a 2 NF , s�e('ika) D 14= s0e('ik('jl b)). Three subcases must be considered:� If k < l then s0e('ik('jl b)) D 12= 'ik('jl b)!�0 se('ik('jl b0)).� If l � k < l + j then s0e('ik('jl b)) D 12= 'i+j�1l b!�0 se('i+j�1l b0) = se('ik('jl b0)).� If l+j � k then s0e('ik('jl b)) D 12= 'jl s0e('ik+1�jb) D 14= 'jl s�e('ik+1�jb) = 'jl se('ik+1�jb).But by IH we know se('ik+1�jb)!�0 se('ik+1�jb0) and therefore, by lemma 22.1:'jl se('ik+1�jb)!�0 'jl se('ik+1�jb0)Furthermore, lemma 22.1 ensures 'jl se('ik+1�jb0) 2 NF . Hence'jl se('ik+1�jb0) = se('jl ('ik+1�jb0)) = se('ik('jl b0))a = b �jc: There are two cases according to the position of the redex, namely, b !��gen b0and c!��gen c0. Since the treatment of the second is analogous to that of the �rst one,we just consider b!��gen b0 and therefore d = b0 �jc.We consider two subcases:� If j > k + 1 then se('ik(b �jc)) = 'ik(b �jc)!�0 se('ik(b0 �jc)).� If j � k + 1 then, recalling that se('ik(b �jc)) = s�e('ik(b �jc)), we have:se('ik(b �jc)) D 14&D 12= s0e('ik+1b)�js0e('ik+1�jc) D 14= se('ik+1b)�jse('ik+1�jc).But by IH we know se('ik+1b)!�0 se('ik+1b0) and therefore, by lemma 22.2:se('ik+1b)�jse('ik+1�jc)!�0 se('ik+1b0)�jse('ik+1�jc)Furthermore, lemma 22.2 ensures se('ik+1b0)�jse('ik+1�jc) 2 NF . Hencese('ik+1b0)�jse('ik+1�jc) = se(se('ik+1b0)�jse('ik+1�jc)) =se(('ik+1b0)�j('ik+1�jc)) = se('ik(b0 �jc))We remark that when considering c!��gen c0 lemma 22.3, instead of lemma 22.2, mustbe applied. 2Lemma 24 Let a; b 2 NF and d 2 �sop, if a!��gen d then se(a �jb)!�0 se(d �jb).Proof: The proof, by induction on a, is similar to that of the previous lemma. 2Lemma 25 Let a; b 2 NF and d 2 �sop, if b!��gen d then se(a �jb)!!�0 se(a �jd).
24



Proof: The proof is also similar to that of lemma 23. We remark that the induction is on aand the cases a = X and a = n must now be considered. In particular, when a = j, lemma23 is required.Lemma 20.4 is used in the case a = c e and lemma 20.5 is useful to treat a = �c.For the subcases k + i = j and k + i < j of the case a = 'ikc use lemma 22.3 and 22.4,respectively.Finally, lemma 22.5 is needed when a = c �ie and i � j. 2Lemma 26 For a; b; c 2 NF the following hold:1. If a!�0 b then se('ika)!�0 se('ikb).2. If a!!�0 b then se('ika)!!�0 se('ikb).3. If a!�0 b then se(a �jc)!�0 se(b �jc).4. If a!!�0 b then se(a �jc)!!�0 se(b �jc).5. If b!�0 c then se(a �jb)!!�0 se(a �jc).6. If b!!�0 c then se(a �jb)!!�0 se(a �jc).Proof: Let d 2 �sop such that a!��gen d and b = se(d).1. se('ika) L 23!�0 se('ikd) = se('ik(se(d))) = se('ikb).2. By induction on the length of the derivation using item 1.3. As in item 1 using lemma 24.4. By induction on the length of the derivation using item 3.5. As in item 1 using lemma 25.6. By induction on the length of the derivation using item 5. 2The following proposition states that condition 3 of the GIM is satis�ed.Proposition 3 Let a; b 2 �sop, if a!��gen b then se(a)!!�0 se(b).Proof: By induction on a.a = c d: If the reduction is internal (c !��gen c0 or d !��gen d0), use the IH and lemma20.4. If the reduction is at the root (c = �c0 and b = c0 �1d) we have:se((�c0)d) = (�se(c0))se(d)!�0 se(se(c0)�1se(d)) = se(c0 �1d)a = �c: Use the IH and lemma 20.5.a = 'ikc: Use the IH and lemma 26.2.a = c �jd: Use the IH and either lemma 26.4, if the reduction is within c, or lemma 26.6, ifthe reduction is within d. 225



5 Con
uence resultsIn this section we prove the con
uence of the calculus of the interpretation (NF;!�0) in orderto obtain the con
uence of the �se-calculus via the GIM.The con
uence of (NF;!�0) is obtained via a parallelisation �a la Tait-Martin-L�of (cf. theproof of the con
uence of the classical �-calculus in [Bar84]).We de�ne the parallelisation as follows:De�nition 17 Let a; b; c; d; a1; : : : ; an 2 NF The reduction ) is de�ned on NF by thefollowing rules:(REFL) a) a (SPHI ) ah ) bh 1 � h � n�'(a1; : : : ; an)X ) �'(b1; : : : ; bn)X(ABST ) a) b�a) �b (BETA) a) c b) d(�a) b) se(c �1d)(APPL) a) c b) da b) c dWe remark that SPHI is a rule scheme where �' range over normal skeletons.We begin by proving that the transitive closures of !�0 and ) coincide. We must �rstestablish two lemmas.Lemma 27 Let a; b 2 NF , if a) b then a!!�0 b.Proof: By induction on the lenght of the deduction a ) b. Therefore we analise the lastrule used in this deduction:REFL: Obvious.ABST: Hence a = �a0, b = �b0 and a0 ) b0. By IH, a0 !!�0 b0, and conclude by lemma 20.5.APPL: Use the IH and lemma 20.4.SPHI: Now a = �'(a1; : : : ; an)X, b = �'(b1; : : : ; bn)X and ah ) bh for 1 � h � n. By IH,ah !!�0 bh, and we conclude using the following:Fact: For every normal skeleton �' of arity n and for every ah; bh 2 NF (1 � h � n),if ah !!�0 bh for 1 � h � n, then �'(a1; : : : ; an)X !!�0 �'(b1; : : : ; bn)X .wich is proved by induction on the length oof the segment �' using lemma 22.4 and22.5.BETA: Now a = (�a0)b0, b = se(c0�1d0), a0 ) c0 and b0 ) d0. By IH, a0 !�0 c0 and b0 !�0 d0and therefore (�a0)b0 !�0 se(a0�1b0) L 26:4!!�0 se(c0�1b0) L 26:6!!�0 se(c0�1d0). 2Remark 4 For a1; : : : ; an 2 �sop and �' the skeleton of a normal �'-segment, we havese(�'(a1; : : : ; an)X) = �'(se(a1); : : : ; se(an))X.26



Proof: Because �'(a1; : : : ; an)X !!se �'(se(a1); : : : ; se(an))X and this last term is an se-nf,we conclude by unicity of se-normal forms. 2Lemma 28 Let a 2 NF and d 2 �sop, if a!��gen d then a) se(d).Proof: By induction on a. As an example, we treat the case a = �'(a1; : : : ; an)X. Thereduction must occur within some ai, hence d = �'(a1; : : : ; a0i; : : : ; an) with ai !��gen a0i. ByIH, ai ) se(a0i) and, since ah ) ah, applying rule SPHI we obtaina) �'(a1; : : : ; se(a0i); : : : ; an) R 4= se(�'(a1; : : : ; a0i; : : : ; an)) 2Lemma 29 The transitive closures of !�0 and ) coincide, i.e. !!�0 =)�.Proof: If a !�0 b then a !��gen d and b = se(d) and, by lemma 28, a ) b. Therefore,!�0 �).Now, by lemma 27, )�!!�0 , hence !�0 �)�!!�0 . Therefore, !!�0 =)�. 2Remark 5 If we prove now that ) is strongly con
uent (SCR), lemma 1 would ensure that)� is SCR, hence !!�0 would be SCR, which is equivalent to the con
uence of !�0 .To prove that ) is SCR we must �rst establish some facts. Again, we invite the reader,if she/he wishes, to read now the proof of theorem 12 and backtrack the necessity of thefollowing lemmas.Lemma 30 For every i � 1, k � 0 and normal skeleton �' of arity n, there exist a normalskeleton �'1, m, i1; : : : ; im, k1; : : : ; km such that 0 � m � n, ih � 1 and kh � 0 (for all hsuch that 1 � h � m) and such that for every a1; : : : ; an 2 NF the following holds:se('ik �'(a1; : : : ; an)X) = �'1(se('i1k1a1); : : : ; se('imkmam); am+1; : : : ; an)XProof: By induction on the length of the skeleton �'.We remark that se('ik �'(a1; : : : ; an)X) = s0e('ik �'(a1; : : : ; an)X), since �'(a1; : : : ; an)Xis a normal form.If �' has length 1, we consider:�' = ('jl ): A glimpse at de�nition 12 is su�cient to check that �'1 = ('ik)('jl ), for k < l;�'1 = ('i+j�1l ), for l � k < l + j and �'1 = 'jl'ik+1�j , for l + j � k, are good choices.Remark that in this case n = 0, and therefore m = 0.�' = (�j): Again de�nition 12 ensures that �'1 = ('ik)(�j) and m = 0 (for j > k + 1)and �'1 = (�j)('ik+1), m = 1, i1 = i, k1 = k + 1� j (for j � k + 1) are good choices.Remark that now n = 1.For the inductive step we consider two cases acording to the �rst symbol of �':�' = ('jl )�'0: De�nition 12 guarantees that �'1 = ('ik)('jl )�'0 and m = 0 (for k < l)and �'1 = ('i+j�1l )�'0 and m = 0 (for l � k < l + j) are good choices. Now for theremaining case (l + j � k) the IH is also necessary:27



se('ik �'(a1; : : : ; an)X) = se('ik('jl �'0(a1; : : : ; an)X)) D 12='jl se('ik+1�j �'0(a1; : : : ; an)X) IH= ('jl )�'01(se('i1k1a1); : : : ; se('imkmam); am+1; : : : ; an)X�' = (�j)�'0: By de�nition 12 it is su�cient to take �'1 = ('ik)(�j)�'0 and m = 0 forj > k + 1. For j � k + 1 also the IH is needed:se('ik �'(a1; : : : ; an)X) = se('ik(�'0(a2; : : : ; an)X �ja1)) D 12=se('ik+1 �'0(a2; : : : ; an)X)�jse('ik+1�ja1) IH=(�j)�'01(se('ik+1�ja1); se('i1k1a2); : : : ; se('imkmam+1); am+2; : : : ; an)X 2Lemma 31 For every j � 1 and normal skeleton �' of arity n, there exist a normal skeleton�'2, m, i1; : : : ; im such that 0 � m � n and ih � 1 (for all h such that 1 � h � m) and suchthat one and only one of the following holds:� there exist i0 � 1, p, im+1; : : : ; ip, km+1; : : : ; kp such that m � p � n, ih � 1 and kh � 0(for all h such that m + 1 � h � p) and such that for every a1; : : : ; an; c 2 NF thefollowing holds: se(�'(a1; : : : ; an)X �j c) =�'2(se(a1�i1c); : : : ; se(am�imc); se('i00 c); se('im+1km+1am+1); : : : ; se('ipkpap); ap+1; : : : ; an)X� for every a1; : : : ; an; c 2 NF the following holds:se(�'(a1; : : : ; an)X �j c) = �'2(se(a1�i1c); : : : ; se(am�imc); c; am+1; : : : ; an)X� for every a1; : : : ; an; c 2 NF the following holds:se(�'(a1; : : : ; an)X �j c) = �'2(se(a1�i1c); : : : ; se(am�imc); am+1; : : : ; an)XProof: By induction on the length of the skeleton �'. The proof follows the lines of theproof of the previous lemma. Now, de�nition 13 is used everywhere. When considering thecase �' = ('ik)�'0 lemma 30 is needed for the subcase j = k+ i, whereas the IH is useful forthe subcase j > k + i. Finally, when considering the case �' = (�i)�'0, the IH is needed ifi � j. 2Lemma 32 Let a; b 2 NF , if a) b then se('ika)) se('ikb).Proof: By induction on the length of the deduction a) b. When the last rule is REFL, it isobvious and when it is ABST or APPL it is easy: just use the IH. Therefore we just considerthe other two rules.SPHI: Hence a = �'(a1; : : : ; an)X, b = �'(b1; : : : ; bn)X and ah ) bh for all h. By lemma 30we have se('ik �'(a1; : : : ; an)X) = �'1(se('i1k1a1); : : : ; se('imkmam); am+1; : : : ; an)X. ByIH, se('ihkhah) ) se('ihkhbh) for h � m and, since ah ) bh for all h, in particular form < h � n, we apply rule SPHI to get 28



�'1(se('i1k1a1); : : : ; se('imkmam); am+1; : : : ; an)X )�'1(se('i1k1b1); : : : ; se('imkmbm); bm+1; : : : ; bn)X L 30= se('ik �'(b1; : : : ; bn)X)BETA: Hence a = (�a1)a2, b = se(b1�1b2), a1 ) b1 and a2 ) b2.se('ik((�a1)a2)) = (�se('ik+1a1))se('ika2) IH) se(se('ik+1b1)�1se('ikb2)) =se(('ik+1b1)�1('ikb2)) = se('ik(b1�1b2)) = se('ikse(b1�1b2)) 2The following corollary is immediate:Corollary 3 Let a; b 2 NF such that 'ika; 'ikb 2 NF , if a) b then 'ika) 'ikb.Lemma 33 Let a; b; c 2 NF , if b) c then se(a �jb)) se(a �jc).Proof: By induction on a. The cases a = X, a = d e, a = �d, and a = n 6= j are easy andonly require eventually the IH. Therefore we just consider the other cases.a = j: se(j�jb) = se('j0b) L 32) se('j0c) = se(j�jc).a = 'ikd: We consider four cases:� If j � k then se(('ikd)�jb) = ('ikd)�jb SPHI) ('ikd)�jc = se(('ikd)�jc).We precise once and for all how we applied the rule SPHI.If d = �'(d1; : : : ; dn)X then ('ikd)�jb = (�j)('ik)�'(b; d1; : : : ; dn)X, hence SPHIhas been applied with premises b ) c and dh ) dh for all h to the skeleton(�j)('ik)�'.If d = X, SPHI applies with the single premise b) c.� If k < j < k + i then se(('ikd)�jb) = 'i�1k d REFL) 'i�1k d = se(('ikd)�jc).� If j = k + i, remark that for all e0 2 NF we have:se(('ikd)�je0) = s�e(('ikd)�je0) D 14= s00e (('ikd)�je0) D 13=s0e('ik+1d)�k+1s0e('i0e0) = se('ik+1d)�k+1se('i0e0)Therefore, se(('ikd)�jb) = se('ik+1d)�k+1se('i0b) L 32&SPHI)se('ik+1d)�k+1se('i0c) = se(('ikd)�jc)� If j > k + i, remark (using de�nitions 14 and 13) that for all e0 2 NF , we havese(('ikd)�je0) = 'ikse(d �j+1�ie0),hence se(('ikd)�jb) = 'ikse(d �j+1�ib) IH &C 3) 'ikse(d �j+1�ic) = se(('ikd)�jc)a = d �ie: We consider two cases:� If i > j then se((d �ie)�jb) = (d �ie)�jb SPHI) (d �ie)�jc = se((d �ie)�jc).29



� If i � j, remark (using de�nitions 14 and 13) that for all e0 2 NF we have:se((d �ie)�je0) = se(d �j+1e0)�ise(e �j�i+1e0) (1)Now, since a is a normal form, d is a �'-normal form or a variable, hence se(d �j+1b)is a �'-normal form (it cannot be a variable since se(a0) = X implies a0 = Xwhich can be easily checked using de�nitions 12, 13 and 14). By IH, se(d �j+1b))se(d �j+1c). Therefore, the last rule in this deduction must be SPHI or REFL. Letus write se(d �j+1b) = �'(b1; : : : ; bn)X, hence se(d �j+1c) = �'(c1; : : : ; cn)X andbh ) ch for 1 � h � n (if the last rule was REFL bh = ch). But the IH also ensuresse(e �j+1b)) se(e �j+1c), and we can apply SPHI to obtain(�i)�'(se(e �j�i+1b); b1; : : : ; bn)) (�i)�'(se(e �j�i+1c); c1; : : : ; cn)which can be written asse(d �j+1b)�ise(e �j�i+1b)) se(d �j+1c)�ise(e �j�i+1c)and we settle the lemma by using equation 1 with e0 = b and e0 = c. 2Lemma 34 Let a; b; c; d 2 NF , if a) b and c) d then se(a �jc)) se(b �jd).Proof: By induction on the length of the deduction a) b.We study the last rule applied. If it is REFL our lemma is just lemma 33. If it is APPLor ABST the lemma follows directly from the IH. Let us study the other two rules:BETA: Hence a = (�a1)a2, b = se(b1�1b2), a1 ) b1 and a2 ) b2.se(((�a1)a2)�jc) = (�se(a1 �j+1c))se(a2 �jc) BETA) se(se(b1 �j+1d)�1se(b2�jd)) == se((b1 �j+1d)�1(b2�jd)) = se((b1�1b2)�jd) = se(se(b1�1b2)�jd)SPHI: Hence a = �'(a1; : : : ; an)X, b = �'(b1; : : : ; bn)X and ah ) bh for 1 � h � n. Now,lemma 31 o�ers three possibilities which can be treated analogously. Let us choose, forexample, the second one:se(�'(a1; : : : ; an)X �j c) = �'2(se(a1�i1c); : : : ; se(am�imc); c; am+1; : : : ; an)Xby IH, se(ah�ihc)) se(bh�ihd) and since c) d and ah ) bh for m+1 � h � n, we canapply SPHI to obtain�'2(se(a1�i1c); : : : ; se(am�imc); c; am+1; : : : ; an)X )�'2(se(b1�i1d); : : : ; se(bm�imd); d; bm+1; : : : ; bn)XFinally, using lemma 31 again, we have:se(�'(b1; : : : ; bn)X �j d) = �'2(se(b1�i1d); : : : ; se(bm�imd); d; bm+1; : : : ; bn)XRemark that, in order to check the �rst option of lemma 31, also lemma 32 must beused. 230



Theorem 12 The parallelisation ) is strongly con
uent, i.e. if a) b and a) c then thereexists d such that b) d and c) d.Proof: By induction on the length of the deduction a) b.REFL: Hence a = b, and take d = c.ABST: Hence a = �a0, b = �b0 and a0 ) b0. Remark that c = �c0 and a0 ) c0, since the lastrule applied to obtain �a0 ) c must be either ABST or REFL. By IH there exists d0such that b0 ) d0 and c0 ) d0 and it is su�cient to take d = �d0.APPL: Hence a = a1a2 and b = b1b2 with a1 ) b1 and a2 ) b2. Now there are twopossibilities for c according to the last rule applied to obtain a) c.� If the last rule is APPL or REFL then c = c1c2 with a1 ) c1 and a2 ) c2. ByIH there exist d1 and d2 such that b1 ) d1, c1 ) d1, b2 ) d2 and c2 ) d2. Taked = d1d2.� If the last rule is BETA then c = se(c1 �1c2), a1 = �a0, a0 ) c1 and a2 ) c2. Since�a0 ) b1, according to the remark we have made when studying the ABST case,b1 = �b0 and a0 ) b0. By IH, there exists d1 and d2 such that b0 ) d1, c1 ) d1,b2 ) d2 and c2 ) d2. Take d = se(d1 �1d2). Applying BETA we get b ) d andlemma 34 guarantees c) d.SPHI: Hence a = �'(a1; : : : ; an)X, b = �'(b1; : : : ; bn)X and ah ) bh for all h. Re-mark that c = �'(c1; : : : ; cn)X and ah ) ch for all h, since the last rule to obtain�'(a1; : : : ; an)X ) c must be either SPHI or REFL. By IH there exist dh such thatbh ) dh and ch ) dh for all h. Take d = �'(d1; : : : ; dn)X.BETA: Hence a = (�a1)a2, b = se(b1�1b2), a1 ) b1 and a2 ) b2. Reasoning as in the APPLcase, there are two possibilities for c.� If c = c1c2 the procedure is symetric to the one used to treat the second subcaseof the APPL case.� If c = se(c1�1c2), with a1 ) c1 and a2 ) c2, then by IH there exist d1, d2 suchthat b1 ) d1, c1 ) d1, b2 ) d2 and c2 ) d2. Take d = se(d1�1d2) and use lemma34 to settle the theorem. 2Proposition 4 The calculus of the interpretation (NF;!�0) is con
uent.Proof: The proof is given by remark 5. 2Theorem 13 The �se-calculus is con
uent on �sop.Proof: All the conditions are satis�ed (see the four propositions of this article) and the gen-eralized interpretation method (cf. lemma 4) can be applied as we proposed at the beginningof section 4. 2Since all the �se-rules preserve closed terms, we have:Corollary 4 The �se-calculus is con
uent on �s.31



6 SoundnessWe end our work by applying some of our results to establish a soundness theorem, namely weshow that the �se-calculus is correct with respect to the �-calculus, i.e. that all �se-derivationsbeginning and ending with pure terms can also be obtained in the �-calculus.Remark 6 For all a 2 �s, we have se(a) = s(a).Proof: a !!se s(a), since a !!s s(a). But, by lemma 12, s(a) 2 �, and since � � NF , thecon
uence of se (theorem 11) implies se(a) = s(a). 2Lemma 35 For all a; b 2 �, a!�0 b i� a!� b.Proof: Both implications can be proved by induction on a. We just check ()) which is theone we are going to use.Let d 2 �s, such that a!��gen d and b = se(d).a = a1a2: If the reduction takes place within a1, say a1 !��gen a01, then d = a01a2 andb = se(a01a2) = se(a01)a2. Since a1 !�0 se(a01), by IH we have a1 !� se(a01). The lemmais settled using the compatibility of �.If the reduction takes place within a2, the proof is analogous.If the reduction takes place at the root, i.e. a1 = �c1 and b = se(c1 �1a2). By remark 6,b = s(c1 �1a2), and since c1; a2 2 �, by lemma 13, b = c1ff1 a2gg. Therefore, a!� b.a = �c: Analogous to the �rst part of the previous case. 2Corollary 5 For all a; b 2 �, a!!�0 b i� a!!� b.Proof: By induction on the length of the derivations. 2Lemma 36 Let a; b 2 �sop, if a!!�se b then se(a)!!�0 se(b).Proof: By induction on the length of the derivation a !!�se b. When the last reduction isan !se b, conclude by proposition 1. When it is an !��gen b, conclude by proposition 3. 2Theorem 14 (Soundness) For a; b 2 �, if a!!�se b then a!!� b.Proof: If a !!�se b, by lemma 36, we get se(a) !!�0 se(b), and, since a; b 2 � � NF , weconclude using corollary 5. 2ConclusionWe think that �s is an interesting alternative to calculi of explicit substitutions in the ��-style: it preserves SN (cf. [KR95a]), has a con
uent extension on open terms (cf. theorem 13)and simulates one step �-reduction (cf. lemma 15). Two important questions are still open:1. Is the se-calculus strongly normalising?2. Does the �se-calculus preserve SN? 32



If the second question could be decided positively, �se would be the answer to the two openproblems in [MH95], namely, a con
uent (on open terms) calculus of explicit substitutionsthat preserves strong normalisation which1. reduces substitution redexes before �-redexes.2. admits interaction of substitutions.We remark that SN of se would also shorten the proof of con
uence that we have givenhere: most of the results of section 3 become trivial in the presence of SN.Finally, from a computational point of view, the lack of SN is not a major problem,since the se-calculus has been shown weakly normalising and an e�ective strategy to evaluatenormal forms has been proposed.However, from a theoretical point of view, the strong normalisation of the se-calculus isan important feature and seems a very di�cult problem which remains still a challenge to therewriting community. Zantema showed in a private communication, that the �-�-transitionrule terminates. He considered the in�nite Term Rewriting Structure TRS (with this rule),ranging over an in�nite signature f�i; i > 0g. He showed strong normalisation of this TRS(call it S) by showing weak normalisation and using the following lemma (cf. [Klo91]):Lemma 37 Any reduction relation! on a set T satisfying 1,2, and 3 is strongly normalising:1. ! is weakly normalising.2. ! is WCR.3. ! is increasing, i.e., 9 a function f : T �! IN where a! b) f(a) < f(b).For S, 2 follows from a simple critical pair analysis and 3 can be easily established by choosingf(a) to be the size of a. To show weak normalisation of S, Zantema establishes �rst twolemmas:Lemma 38 Let b = ((� � � (a�i1a1)�i2a2)�i3a3) � � � �inan, where a is either a variable or its rootis not �q, and i1 > i2 > ::: > in�1, in�1 � in. Then b !+ ((� � � (a�j1b1)�j2b2)�j3b3) � � � �jnbn,where j1 > j2 > j3::: > jn�1 > jn = in�1, and 8r = 1; � � � ; n either br = ap for some p � n orbr = ap�kan for some p < n and some k.Proof: By induction on n. At the top level, b! ((::::�in+1an)�in�1(an�1�kan)). 2Lemma 39 Let b = ((::(a�i1a1)�i2a2)�i3a3) : : : �inan, where a is either a variable or its rootis not �q. Then b !� ((� � � (a�j1b1)�j2b2)�j3b3) � � � �jnbn, where j1 > j2 > j3::: > jn�1 > jn,and 8r = 1; � � � ; n the term br can be written as br = (::(ac(r;1)�ac(r;2))�ac(r;2)):::�ac(r;n) for1 � c(r; 1) < c(r; 2) < ::: < c(r; n) � n, where � stands for arbitrary �k.Proof: Induction on n using lemma 38. 2Lemma 40 (Weak normalisation of S) S is weakly normalising.Proof: By induction on the size of the term: assume there is a term b not having a normalform for which every term of size smaller than b admits a normal form. Apply lemma 39to this term. Note that a and b1; b2; :::bn are all smaller than b, hence admit a normal form.33



Replace a and b1; b2; � � � ; bn by their normal forms in the term ((::(a�j1b1)�j2b2)�j3b3) � � � �jnbn,yielding a normal form of b, contradiction. 2Zantema correctly comments that weak normalisation of this TRS does not follow fromweak normalisation of the whole se-calculus (cf. theorem 10). We note moreover that hisproof of weak normalisation di�ers from ours which provides an e�ective strategy to calculatenormal forms. Furthermore, Zantema notes that the proof above is the �rst one he everfound establishing strong normalisation from weak normalisation. Finally, he remarks thatlemma 37 cannot be used to establish strong normalisation of se from its weak normalisationbecause the full system is easily proved to be non-increasing.References[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal ofFunctional Programming, 1(4):375{416, 1991.[Bar84] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics (revised edition). NorthHolland, 1984.[BBLRD95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicitsubstitutions which preserves strong normalisation. Personal communication, 1995.[Blo95] R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical Report95-08, Department of Mathematics and Computing Science, Eindhoven University ofTechnology, 1995.[CHL92] P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
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