The confluence of the As.-calculus via a generalized
interpretation method *

Fairouz Kamareddine and Alejandro Rios

July 5, 1996

Abstract

The last fifteen years have seen an explosion in work on explicit substitution, most
of which is done in the style of the Ao-calculus. In [KR95a], we extended the A-calculus
with explicit substitutions by turning de Bruijn’s meta-operators into object-operators
offering a style of explicit substitution that differs from that of Aog. The resulting calcu-
lus, As, remains as close as possible to the A-calculus from an intuitive point of view and,
while preserving strong normalisation ([KR95al), is extended in this paper to a confluent
calculus on open terms: the As.-caculus. Since the establishment of the results of this
paper!, another calculus, A, came into being in [MH95] which preserves strong normal-
isation and is itself confluent on open terms. However, we believe that As. still deserves
attention because, while offering a new style to work with explicit substitutions, it is able
to simulate one step of classical S-reduction, whereas A is not.

To prove confluence we introduce a generalization of the interpretation method (cf.
[Har89] and [CHL92]) to a technique which uses weak normal forms (instead of strong
ones). This technique is general enough to apply to many reduction systems and we
consider it as a powerful tool to obtain confluence.

Strong normalisation of the corresponding calculus of substitutions s., is left as a
challenging problem to the rewrite community but its weak normalisation is established
via an effective strategy.

Introduction

Most literature on the A-calculus considers substitution as an implicit operation. It means that
the computations to perform substitution are usually described with operators which do not
belong to the language of the A-calculus. There has however been an interest in formalising
substitution explicitly; various calculi including new operators to denote substitution have
been proposed. Amongst these calculi we mention CA¢ (cf. [dB78]); the calculi of categorical
combinators (cf. [Cur86]); Ao, Aoy, Aosp (cf. [ACCLI1], [CHL92], [Ri093]) referred to as the
Ao-family; oo BLT (cf. [KN93]); Av (cf. [BBLRDY95]), a descendant of the Ao-family; As (cf.
[KR95a]); Aexp (cf. [Blo95]) and A¢ (cf. [MH95]).

These calculi (except \exp) are described in a de Bruijn setting where natural numbers
play the role of the classical variables. Classical terms are coded as closed terms in these

*This work was carried out under EPSRC grant GR/K25014.

TDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, fax: 444 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk

!The proof of confluence of the As.-calculus presented here was achieved in July 1995

calculi and called pure terms. A natural question concerning these calculi is the preservation
of strong normalisation: are strongly normalising terms in the classical A-calculus still strongly
normalising when considered as pure terms of these new calculi? This question is obviously
important. However, various calculi of explicit substitutions do not possess this property.

It is possible to consider, besides the classical variables (now numbers), real variables
(which correspond to meta-variables in the classical setting). The terms obtained with this
extended syntax are called open terms and they can be considered as conterts, the new
variables corresponding to holes. Hence the interest in studying the calculi on open terms,
since they allow contexts as first class citizens.

The main interest in introducing the As-calculus (cf. [KR95a]) was to provide a calculus
of explicit substitutions which would both preserve strong normalisation and have a confluent
extension on open terms. There are calculi of explicit substitutions which are confluent on
open terms: the Aoy-calculus (cf. [HL89] and [CHL92]), but the non-preservation of strong
normalisation for Aoy, as well as for the rest of the Ao-family and for the categorical com-
binators, has recently been proved (cf. [Mel95]). There are also calculi which satisfy the
preservation property: the Av-calculus (cf. [BBLRD95]), but this calculus is not confluent on
open terms. Moreover, in order to get a confluent extension, the introduction of a composition
operator for substitutions seems unavoidable, but precisely this operator is the cause of the
non-preservation of strong normalisation as shown in [Mel95].

We proved in [KR95a] that As preserves strong normalisation and proposed the extension
As. in [KR95b], where we proved its local confluence on open terms and the weak normalisa-
tion (every term has at least one normal form) of the corresponding calculus of substitutions
s (the calculus obtained from As, by removing the rule that starts S-reduction). Confluence
of As. and strong normalisation (all derivations terminate) of s, were left open.

This paper establishes the confluence of As. making As a calculus which preserves strong
normalisation and admits a confluent extension on open terms. Preservation of strong nor-
malisation of As. and strong normalisation of s, remain open. As far as we know, at the
time of writing this paper, no other calculus which had these two properties existed. Since
then, the A(-calculus (cf. [MH95]) came into being which preserves strong normalisation and
is itself strongly normalising and confluent on open terms. The A(-calculus is obtained by a
clever introduction of two new applications that allows the passage of substitutions within
the classical application only if the latter has a head variable. This is done to cut the branch
of the critical pair which is responsible of the non-confluence of A\v on open terms. Unfor-
tunately, AC is not able to simulate one step of clasical -reduction as shown in [MH95], it
simulates only a “big step” beta reduction. Furthermore, this lack of the simulation property
is an uncommon feature among calculi of explicit substitutions.

As the strong normalisation of s, remains open, the interpretation method (cf. [Har89],
[CHL92]), which is usually used to prove the confluence of a A-calculus with explicit substi-
tutions is not applicable to As.. In section 1 we propose a generalization of the interpretation
method which enables us to prove the confluence of As, with just weak normal forms. The
method is general enough to be applied to any reduction systems satisfying the hypotheses
and therefore we consider it a new tool to prove confluence.

Section 2 is devoted to the syntax and rules of the calculi we are going to deal with: the
A-calculus & la de Bruijn, the As-calculus and its extension the As.-calculus together with a
summary of the results obtained so far (cf. [KR95a] and [KR95b]) for these calculi. At the
end of the section we provide motivation for the new rules of As, and finally we compare s,
with Ao, Av and A(.

In section 3 we recall the description of the s.-normal forms, define a strategy for com-
puting them and establish the weak normalisation of s,. We also prove that s.-normal forms
are preserved by s.-reductions and that the s.-calculus is confluent on open terms.

In section 4 we introduce the calculus of the interpretation, whose only rule we call &',
and prove that the o-generation rule (the rule that starts S-reduction) can be simulated on
the corresponding weak normal forms by 3'.

In section 5 we prove the confluence of ' & la Tait-Martin-Lof in order to apply the
generalised interpretation method to show the confluence of the As.-calculus.

In section 6 we show that the As.-calculus is correct/sound with respect to the A-calculus
in that, all As.-derivations beginning and ending with pure terms can also be obtained in the
A-calculus.

We conclude by stating the problems which remain still open and we include a result by
Hans Zantema showing the termination of the rule of As, which enables the transition of a
substitution operator over another one.

1 The Generalized Interpretation Method

We begin by introducing the notation we shall use throughout this paper concerning rewriting
and we recall the definitions of the essential properties of the reduction systems.

Definition 1 Let A be a set and R a binary relation on A, i.e. a subset of Ax A. We
denote the fact (a,b) € R by a =g b or a — b when the context is clear enough. We call
reduction this relation and reduction system, the pair (A, R). We denote R* or —»g or
Just —» or —* the reflexive and transitive closure of R. We denote R or just —% the
transitive closure of R. When a —» b we say there exists a derivation from a to b.

Definition 2 Let R be a reduction on A.

1. R islocally confluent or WCR (weakly Church-Rosser) when

Va,b,ce A ddeA((la b ANa—c)=(b—>»dANc—d)).
2. R is confluent or CR (Church-Rosser) when

Va,bce A dde€A((a » b ANa—»c)=((b—>»dAc—>»d).
3. R s strongly confluent or SCR when

Va,b,ce A ddeA((la b ANa—c)=(b—>dAc—d).

Definition 3 Let R be a reduction on A.

We say that a € A is an R-normal form (R-nf for short) if there exists no b € A such
that a — b and we say that b has a normal form if there exists a normal form a such that
b—a.

R is weakly normalising or WN if every a € A has an R-normal form.

R is strongly normalising or SN if there is no infinite sequence (a;),~, in A such that
a; = a;r1 forall 1>0. -

Remark 1 Confluence of R guarantees unicity of R-normal forms. In that case, the R-
normal form of a, if it exists, is denoted by R(a) .

Strong normalisation implies weak normalisation and therefore the existence of normal
forms.

At some point we shall need the following lemmas.
Lemma 1 Let R be a reduction, if R is SCR then R* is also SCR.
Proof: See [Bar84], lemma 3.3.2. O

Lemma 2 (Newman) FEvery strongly normalising and locally confluent reduction is con-
fluent.

Proof: See [Bar84|, proposition 3.1.25.
G. Huet gives another proof using the Principle of noetherian induction (cf. [Hue80]). O

We state now the interpretation method we wish to generalize. This method was first
identified in [Har89], where it was used for the categorical combinators. In [CHL92], it is used
to prove the confluence of the weak Ao-calculus, of the Ao-calculus on closed terms and the
non-confluence of the Aogp-calculus on open terms. In [Ri093], it was used to the prove the
confluence of the Aogp-calculus on semi-closed terms. Finally, in [BBLRD95] it was used to
prove the confluence of Av and we shall use it in this article to prove the confluence of the
As-calculus.

Lemma 3 (Interpretation method)

Let R = R, UR, where R, is a confluent and SN reduction on A and Ry an arbitrary
reduction. If there exists a reduction R' on the set of Ri-normal forms satisfying R' C R*
and (@ =g, b = Ry(a) =r Ri(D)), then R' is confluent iff R is confluent.

Proof: It is easy (cf. [CHL92], lemma 1.1) and similar to the proof of the generalized
interpretation method given below. |

Lemma 4 (Generalized interpretation method (GIM))

Let R = Ry U R, where R, and R, are arbitrary reductions on A. Let B be the set of
R;-normal forms and let f: A — B be a function (strategy) such that f(a) is an R;-normal
form of a. If there exists a reduction R' on the set of Ry-normal forms satisfying

1. R CR*
2. a—=p b = f(a) = f(b) (syntactic identity)
3. a—p, b = f(a) »r f(b)

then R' is confluent iff R is confluent.

Proof:

Ry

1) ..
) / -
R;

RI
a T [(a)
R

R1

¢ f(e)

Figure 1: Generalized interpretation method

(=) This is the implication which is usually useful. The proof is depicted in Figure 1. Let
us suppose a —»r b and a —»g c. It is easy to show by induction on the length of the
derivation and using hypotheses 2 and 3 that a' —» g b" implies f(a') —» g f(b'). Hence,
fla) =g f(b) and f(a) =g f(c). Now we use the confluence of R’ to obtain d such
that f(b) —»g d and f(c) =g d. Finally the first hypothesis ensures f(b) —»r d and
f(c) =g d. Therefore, b —» g d and ¢ —» g d.

(<) Let a, b, ¢c € B and let us assume a —» g b and a —» g c. The first hypothesis guarantees
a —»gr band a = ¢ and confluence of R provides d such that b — d and b —»x d. As
before, hypotheses 2 and 3 give f(b) = f(d) and f(c¢) —=r f(d). And the lemma is
settled because a, b, ¢ being normal forms, we have a = f(a), b= f(b) and ¢ = f(c). O

In the context of the GIM lemma the function f is called the interpretation function; B,
the set of the interpretation and (B, — g), the calculus of the interpretation.

We end this section by remarking that the GIM lemma really generalizes the interpretation
method. In fact, in the particular case when R; is confluent and SN, R;-normal forms exist
and are unique. Hence there is only one f such that f(a) is a normal form of a, namely
f(a) = Ry(a). Moreover, in this case the second hypothesis of the GIM lemma is superfluous.

2 The calculi

The results contained in this sections have already been proved in [KR95a] and [KR95b].
Nevertheless, since we wish to make this article self-contained we shall include here abridged
proofs of the results concerning confluence. However, we offer here an independent proof of
SN of s, whereas in [KR95a] we derived it from the SN of the o-calculus.

We divide this section in three parts. In the first subsection we recall the classical A-
calculus a la de Bruijn and some of its properties, in particular the ones that give origin
to the rules of the As.-calculus. In the second subsection we recall the As-calculus and its
properties. In the third one we introduce the As.-calculus, give some motivation for its rules
and compare s, with Ao and Av by showing that the translations given in [KR95a] for
As, when extended to As, preserve equivalences. Finally, we discuss briefly the amount of
reductions needed to simulate some (-contractions in the three calculi.

2.1 The classical A-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijn
indices (or numbers) are used to make the bindings explicit: to find the A\ which binds a
variable represented by the number n you must travel upwards in the tree associated with
the term and choose the n-th A you find. For instance, Az.A\y.zy is written using de Bruijn
indices as AA(21) and Az.\y.(z(Az.zz))y is written as A(A(2(A(13))1)). Finally, to translate
free variables, you must assume a fixed ordered list of binders and prefix the term to be
translated with this list. For instance, if the list (written from left to right) is ---, Az, Ay, Az
then the term Az.yz translates as A34 whereas Ax.zy translates as \43.

The interest in introducing de Bruijn indices is that they avoid clashes of variable names
and therefore neither a-conversion nor Barendregt’s convention are needed. Here is the syntax
of the A-calculus a la de Bruijn.

Definition 4 We define A, the set of terms with de Bruijn indices, as follows:
A== N | (AA) | (AA)

We use a,b,... to range over A and m,n,... to range over N (positive natural numbers).
Furthermore, we assume the usual conventions about parentheses and avoid them when no
confusion occurs. Throughout the whole article, a = b is used to mean that a and b are
syntactically identical.

We say that a reduction — is compatible on A when for all a, b, c € A, we have a — b
implies ac — be, ca — c¢b and Aa — \b.

In order to define B-reduction & la de Bruijn, we must define the substitution of a variable
n for a term b in a term a. Therefore, we must identify amongst the numbers of the term a
those that correspond to the variable n. Furthermore, we need to update the term b (rename
its variables) in order to preserve the correct bindings after the replacement of the variable
by b.

For example, translating (AzAy.zzy)(Az.yr) =5 Au.z(Az.yz)u to de Bruijn notation we
get (AA521)(A31) —5 A4(A41)1. But if we simply replace 2 in A521 by A31 we get A5(A31)1,
which is not correct. We needed to decrease 5 as one A disappeared and to increment the free
variables of A31 as they occur within the scope of one more .

For incrementing the free variables we need a family of updating functions:

Definition 5 The updating functions U} : A — A for k > 0 and i > 1 are defined inductively
as follows:

Ui(ab) = Ui(a) U(b)
Ui(Aa) = A(Ugy, (a))

iryn) nt+i—1 4f n>k
Uk(n)_{ n if n<k.

The intuition behind Uj is the following: k tests for free variables and i — 1 is the value
by which a variable, if free, must be incremented.
Now we define the family of meta-substitution functions:

Definition 6 The meta-substitutions at level j, for j > 1, of a term b € A in a term
a € A, denoted a{j < b}, is defined inductively on a as follows:

(a102)f3 b} = (ar{j < b}) (a2{3 < 0})
(Aa){j < b} = Aafj+ 10}

n—1 if n>j
nfj b} =1{ UIb) if n=j

n if n<j.

Ultimately, the intention is to define (Aa)b —5 a{{1 < b} (see definition 7 below). The
first two equalities propagate the substitution through applications and abstractions and the
last one carries out the substitution of the intended variable (when n = ¢) by the updated
term. If the variable is not the intended one it must be decreased by 1 if it is free (case n > 1)
beacuse one X has disappeared, whereas if it is bound (case n < i) it must remain unaltered.

It is easy to check that (A521){{1 < (A31)} = A4(A41)1. This will mean (AA521)(A31) —4
A4(A41)1.

The following lemmas establish the properties of the meta-substitutions and updating
functions. The Meta-substitution and Distribution lemmas are crucial to prove the confluence
of As. The proofs of lemmas 5 - 10 are obtained by induction on a. Furthermore, the proof of

lemma 7 requires lemma 6 with [= 0; the proof of lemma 8 uses lemmas 5 and 7 both with
k = 0; finally, lemma 9 with [= 0 is needed to prove lemma 10.

Lemma 5 For k <n <k +i we have: U *(a) = Uj(a){n + b} .

Lemma 6 For | <k <[+ j we have: Ui (U} (a)) = Uit *(a).

Lemma 7 For k+i<n we have: Ui(a){n + b} =Uj(afn— i+ 1+ b}).

Lemma 8 (Meta-substitution lemma) For i <n we have:
ai+b{ncp=afn+1—c{ibfn—i+1c}}

Lemma 9 For |+ j <k+1 we have: UL(Uj(a)) = Ui (Ui ,,_;(a)).

Lemma 10 (Distribution lemma) For n <k +1 we have:
Ui(afn < b}) = Uiy (@)fn < Ui (D)} -

Definition 7 [-reduction is the least compatible reduction on A generated by:
(B-rule) (Aa)b —5 af1 < b}

The A-calculus a la de Bruijn, abbreviated A-calculus is the reduction system whose only

rewriting rule is 3.

Theorem 1 The A-calculus a la de Bruign is confluent.

Proof: Because it is isomorphic to the classical A-calculus with variable names, the confluence
of the latter (cf. [Bar84] thm. 3.2.8) is transportable to the A-calculus & la de Bruijn.
A proof which does not use the mentioned isomorphism is given in [Ri093] (corol. 3.6). O

Finally, the following lemma ensures the good passage of the (-rule through the meta-
substitutions and the Uj. It is crucial for the proof of the confluence of As.

Lemma 11 Leta, b, ¢, d € A.
1. If ¢ =5 d then Uj(c) =5 Ui(d) .
2. If ¢ »5d then afn < c} —5 afn < d}.
3. If a—5b then afn + c} =5 bfn < c}.
Proof:
1. Induction on c. Lemma 10 is needed to treat the case ¢ = (Aa)b — af{1 < b}.
2. Induction on a using 1 above.

3. Induction on a. Now lemma 8 is useful to treat the case a = (Ad)e — df{{1 < e}. O

2.2 The)\s-calculus

We begin this subsection by recalling the syntax of the As-terms. The idea is to handle
explicitly the meta-operators defined in definitions 5 and 6. Therefore, the syntax of the
As-calculus is obtained by adding to the syntax of the A-calculus a la de Bruijn two families
of operators :

e {07};>1 This family is meant to denote the explicit substitution operators. Each o7
is an infix operator of arity 2 and ao’b has as intuitive meaning the term a where
all free occurrences of the variable corresponding to the de Bruijn number j are to be
substituted by the term b.

o {©} k>0 i>1 This family is meant to denote the updating functions necessary when
working with de Bruijn numbers to fix the variables of the term to be substituted.

Definition 8 The set of terms, noted As, of the As-calculus is given as follows:
As:=IN | AsAs | AMs | Aso?As | piAs where j,i>1, k>0.

We take a, b, ¢ to range over As. A term of the form a o’b is called a closure. Furthermore,
a term containing neither o’s nor p’s is called a pure term. A denotes the set of pure terms.

A compatible reduction on As is a reduction — such that for all a, b, ¢ € As, ifa — b
then ac — be, ca — ¢b, Aa — A\b, ac’c = boic, cola — calb and pia — @ib.

The As-calculus should carry out, besides 3-reduction, the computations of updating and
substitution explicitly. For that reason we include, besides the rule mimicking the B-rule
(o-generation), a set of rules which are the equations in definitions 5 and 6 oriented from left
to right.

Definition 9 The As-calculus is the reduction system (As, —»,), where —y, is the least com-
patible reduction on As generated by the rules given in Figure 2. We use As to denote this set
of rules. The calculus of substitutions associated with the As-calculus is the reduction system
generated by the set of rules s = As — {o-generation} and we call it the s-calculus.

o-generation (Aa)b — ac'd
o-\-transition (Aa)o’b — A(aoc?T'b)
o-app-transition (a; ay) o?’b — (ay 07b) (ay 07b)

n—1 if n>j
o-destruction no’b —» b if n=j

n if n<j
p-A-transition i (Aa) — Aghya)
p-app-transition i (ayay) — (¢ha1) (v as)
p-destruction pin { E_l_ -1 Z Z z Z

Figure 2: The As-calculus

The o-generation rule starts (-reduction by generating a substitution operator at the
first level (0'). The o-app and o-) rules allow this operator to travel throughout the term
until its arrival to the variables. If a variable should be affected by the substitution, the
o-destruction rules (case j = n) carry out the substitution of the variable by the updated
term, thus introducing the updating operators. Finally the p-rules compute the updating.

We state now the main properties of the As-calculus.

Theorem 2 (SN and confluence of s) The s-calculus is strongly normalising and con-
fluent on As. Hence, every term a has a unique s-normal form denoted s(a).

Proof: Let us define recursively a weight function W:
W(n)=1 Wi(ab) = W(a)+ W (b) +1 W(Xa) =W(a)+1
W(pia) =2W(a) W(ao’b) =2W (a)(W(b) + 1)
It is easy to show by induction on a that a —, b implies W (a) > W (b), hence the s-calculus
is strongly normalising.
Since there are no critical pairs, the theorem of Knuth-Bendix (cf. [KB70] or [Hue80])
applies trivially to yield the local confluence of the s-calculus.
Finally, Newman’s lemma (cf. lemma 2), provides the confluence of the s-calculus. O

Lemma 12 The set of s-normal forms is exactly A.

Proof: Check first by induction on a that ao’/b and pja are not normal forms. Then check
by induction on a that if ¢ is an s-nf then a € A. Conclude by observing that every term in
A is an s-nf. a

Lemma 13 For all a, b € As we have:

s(ab) =s(a)s(b), s(Aa) = A(s(a)), s(ppa) =Ui(s(a)), s(ao’b) =s(a)fj < s(O)} .

Proof: The first and second equalities are immediate since there are no s-rules whose left-
hand side is an application or an abstraction.

Prove the third equality for terms in s-nf, i.e. use an inductive argument on ¢ € A to
show s(pjc) = Ui(s(c)). Let now a € As, s(ppa) = s(¢is(a)) = Ui(s(s(a))) = Ui(s(a)).
Prove the fourth claim similarly using the third one. O

We give now the key result that allows us to use the Interpretation Method in order to get
the confluence of the As-calculus: the good passage of the o-generation rule to the s-normal
forms.

Lemma 14 Let a, b€ As, if a =5 _4en b then s(a) —»5 s(b).

Proof: Induction on a. Use lemmas 13 and 11. O
Now, the following corollaries are immediate.

Corollary 1 Let a, b€ As, if a —»xs b then s(a) —»5 s(b) .

Corollary 2 (Soundness) Let a,be A, if a —»,s b then a =5 b.

This last corollary says that the As-calculus is correct with respect to the classical A-
calculus, i.e. derivations of pure terms ending with pure terms can also be derived in the
classical A-calculus.

Finally, before proving confluence, we verify that the As-calculus is powerful enough to
simulate [-reduction.

Lemma 15 (Simulation of S-reduction) Let a, b€ A, if a =5 b then a —»,,b.

Proof: Induction on a. o

Theorem 3 (Confluence of \s) The As-calculus is confluent on As.

Proof: Use the interpretation method (lemma 3) with Ry =—, Ry =—,_,., and R’ =—3.

Lemmas 14 and 15 and theorem 1 ensure that the hypotheses of the interpretation method

hold. O
Finally, for the sake of completeness, we state two other important results concerning the

As-calculus. The proofs are too long to be included here. The proof of the following theorem

can be found in [KR95a].

Theorem 4 (Preservation of SN) Pure terms which are strongly normalising in the A-
calculus are also strongly normalising in the As-calculus.

In [KR95b] we introduced the simply typed As-calculus and proved:

Theorem 5 (SN of typed terms) Every well typed term is strongly normalising in the
simply typed As-calculus.

10

o-o-transition (ac'b)oic — (ac?™c) ot (bo? le) if i<y
o-p-transition 1 (gL a)o’b — @i 'a if k<j<k+i
o-p-transition 2 (pia)o’b — pi(ac?™T D) if k+i<j
p-o-transition eilad’b) — (P a) 07 (Pryi_; D) if j<k+1
p-p-transition 1 ¢} (gl a) — @] (Piy_;a) if 1+j<k
@-p-transition 2 ¢l (pla) — T 'a if [<k<l+j

Figure 3: The new rules of the As.-calculus

2.3 The As.-calculus

We end this section by introducing the set of open terms and the rules that should be added
to As to obtain the As.-calculus.

Definition 10 The set of open terms, noted As,, is given as follows:
Asop i=V | N | AsypAs,, | AAs,, | Asop0?As,, | piAs,, where j,i>1, k>0

and where V stands for o set of variables, over which X, Y, ... range. We take a, b, ¢ to
range over As,,. Furthermore, closures, pure terms and compatibility are defined as for As.

Working with open terms one loses confluence as shown by the following counterexample:
(AX)Y)o'l = (Xo'Y)o'1 (AX)Y)o'l = (AX)o'1)(Yo'1)

and (Xo'Y)o'1 and ((AX)o'1)(Yo'1) have no common reduct. Moreover, the above example
shows that even local confluence is lost. But since ((AX)o'1)(Yo'1l) = (Xo?1)o!(Yo'1), the
solution to the problem seems at hand if one has in mind the properties of meta-substitutions
and updating functions of the A-calculus in the Bruijn notation (cf. lemmas 5 - 10). These
properties are equalities which can be given a suitable orientation and the new rules, thus
obtained, added to As give origin to a rewriting system which happens to be locally confluent
(cf. [KR95b]). For instance, the rule corresponding to the Meta-substitution lemma (lemma
8) is the o-o-transition rule given below. The addition of this rule solves the critical pair in
our counterexample, since now we have (Xo'Y)o'l — (Xo?1)o!(Yo'1).

Definition 11 The set of rules As. is obtained by adding the rules in Figure 8 to the rules
of the As-calculus given in Figure 2. The As.-calculus is the reduction system (As,,, —»s.)
where — ;. is the least compatible reduction on As,, generated by the set of rules As..

The calculus of substitutions associated with the As.-calculus is the rewriting system
generated by the set of rules s, = \s, — {o-generation} and we call it s.-calculus.

Notice that when transcribing lemmas 5 - 10 as rewriting rules, instead of keeping the
condition [+ 5 < k 4 1 for rule p-p-transition 1, we restricted it to [+ j < k. The reason for

11

this alteration is the following: for the extreme case i =1, j =1 and [+ j = k + 1 we would
have:

ei (¢l (@) = @ (Phyi_; (@) = iy (el i(a) = pi(p](a),

and we would get an infinite loop which would destroy strong normalisation. Furthermore,
for | + j = k + 1 we have the @-p-transition 2 that allow us to reduce @i (¢ (a)).

Finally, we recall that only local confluence has been established so far for the As.-calculus.
The proof was obtained by analysis of critical pairs (cf. [KR95b]):

Theorem 6 (Local confluence) The s.- and \s.-calculi are locally confluent on As,,.

We give now further motivation for the rules of As.. Motivation behind the rules of Figure
2 was given in [KR95a] and motivation for explicit substitution rules that belong to the same
family can be found in [KN93]. Hence, we concentrate on the rules of Figure 3.

We gave already some motivation for the o-o-transition rule where we said that such a
rule helps to re-establish confluence. The other rules were also introduced as a necessity to
close critical pairs. Notice now the following symetries: there are two “simplification” rules:
o-p-tr.1 and @-p-tr.2; two “distribution” rules: o-o-tr. and p-o-tr.; two “commutation”
rules: o-p-tr.2 and p-p-tr.1.

The intuitive interpretation of i, as for U}, is the updating of the free variables greater
than k with an increment of 1 — 1. In this informal context one must be careful: if a de Bruijn
number corresponds to a free variable, the “real” number of such a variable may not be its
value. For instance, in 1 A2, the index 2 corresponds to the “real” free variable 1. One may
check this fact by translating 1 A2 to classical notation: the result is © A\y.z where x is the first
variable in the free variable list. Notice that ¢! (1 A2) =, 1 A2 whereas pj(1 A2) —», 4 \5.

The intuitive interpretation of a o7b, like a{j < b}, is the substitution of the free variables
(whose “real” number is j) by the updating (£)) of b in a. In the same way that the occurences
of the “real” variable j in Aa are the occurrences of the “real” variable j+1 in a, it is easy to
check (for the meta-substitutions) that the occurrences of the “real” variable j in a o®b (1 < j
and i free in a) are the occurrences of j+1 in a and the occurrences of j-i+1 in b.

This explains the distribution rules: the o/ operator in the LHS of o-o-tr. must become,
on the RHS, ¢/t when acting on a and ¢~ when acting on b. Furthermore, in the rule
@-o-tr. the transition of o} into ¢}, and ¢}, ; is explained in the same way.

The simplification rules are also easy to grasp:

To understand the rule p-p-transition 2, let us consider n > k. Sincen >l and [l +j > k
implies n+5 —1 > k, we get i (¢/n) =, pi(n+j —1) =, n+j +i— 2, and we see here the
condition at work. Now this double process of updating can be achieved by a single updating:
ot 'n =, n+ j + 1 — 2, hence our p-p-transition 2 rule.

The rule o-p-tr.1 may be explained as a void substitution (the variable to be replaced does
not occur free). In fact, it is also easy to check (for the meta-updatings) that the occurrences
of the “real” variable j in ¢}a are the occurrences of j-i+1 in @ when j — i + 1 > k. Hence,
if j < k +1, the variable j cannot occur free in ¢} a and therefore the substitution in the LHS
of the rule is void. Furthermore the dissapearance of the o/ operator is the reason why the
upper index of the ¢ operator is decreased by 1.

Finally, both commutation rules postpone an updating: o-p-tr.2 postpones the updating
@i, whereas @-p-tr.1 postpones the updating ;. The transition of ¢/ into ¢7~*' can be

12

explained by the fact that the occurrences of j in @ja are the occurrences of j-i+1 in a.
Analogously, the transition of ¢ into ¢, ; can be understood.

We believe that further intuition, from the point of view of normalisation, can be gained
in the next section where we describe the s.-normal forms. We define there the skeletons
as certain structures of ¢ and o operators. The rules can be viewed as acting on skeletons
to “order” them (what we call normal skeletons should be seen as completely “ordered”
structures). This point of view helps to understand the interaction between the indices of the
o operators and the lower indices of the ¢ operators.

JFrom a computational point of view these new rules offer the possibility of interaction
between o- and -operators, whereas in As the interaction of these operators was restricted
to de Bruijn numbers, applications and abstractions. This restriction is also present in \v
and enables the preservation of strong normalisation, whereas this property does not hold
in Ao, where interaction of substitutions is available through the composition operator. We
believe that the interaction we propose in As, is more controlled than the interaction allowed
in Ao, because of the restriction on indices and therefore this stratified interaction would
not be harmful from the point of view of preservation. However, the preservation of strong
normalisation of As, is still an open problem.

We remark that lemmas 5 - 10 were all the knowledge required about meta-substitutions
and meta-updatings to prove confluence of As (cf. [KR95a]). This knowledge must become
available within the calculus if we expect to obtain nice confluence properties. Therefore the
new rules about o- and @-operators internalize the knowledge in the meta-level about the
meta-operators they represent.

We end this section by comparing As and As, with Ao, Av and A(. The interpretations?
T and S (cf. [KR95a]) of As into Ao and Av, respectively, verify: a —, b = T'(a) =} T(b)
and a —y, b = S(a) -7, S(b). Moreover, they translate the new rules of s, into equalities:

Theorem 7 If a —,,. b then T'(a) =, T(b) and S(a) =, S(b).

Proof: By induction on a, using the classical equalities of Ao and Av. O

Notice that, since A\(only differs from Av in the treatment of applications, the “nat-
ural” translation of As, into A is also S. But, as expected, a —,,, b does not imply
S(a) = S(b). The reason for this is that A is unable to prove (ab)[s] = a[s]b[s], in
fact (A.11)(A.11)[s] #xc (A.11)[s](A.11)[s] because substitutions may be introduced into ap-
plications only if the application has a head variable. Therefore, no translation of As, into A(
preserving equalities seems possible.

Finally, we compare the amount of reductions needed to perform some [-reductions of
pure terms in the different calculi. We just give two examples to show that for ceratin terms
Ao and Av are more efficient than As whereas there are terms for which As is the most efficient.
For instance, the term (A.1)a reduces in two steps to a in Ao and Av but 2+n steps are needed

2T and S were defined in [KR95a)] as follows:

T(n) =n=1[t""" S(n)=n

T(ab) =T(a)T(b) S(ab) = S(a)S(b)

T(Aa) = X(T(a)) o S(Aa) = A(S(a))

T(ao™'b) =T(@)t-2-...-i-TOI]- 1] Slac™™d) = S@" (Sb)/)]
T(pia) =T(a)[1 2 ... & 15771 S(pka) = S(@)* (NI

13

in As, where n is the length of ¢ja — a. On the other hand, terms of the form (A---A.n)a,
with m X’s and n > m > 1, can be reduced more efficiently in As beacuse the single step
noc™a —, n— 1 requires 2m — 1 steps in Av and much more in Ao. Notice that A(is less
efficient than A\v every time the new mechanism of application is started.

3 The weak normal forms

In [KR95b] we proved the weak normalisation of the s.-calculus. We are going to give here a
different presentation of that proof, since we shall need explicitly the inductive definitions of
the weak normal forms.

First of all we state the following remark which shall be used frequently and without
explicit mention. A glimpse at the rules in Figure 3 is enough to check it.

Remark 2 Let a, b € As,, then

1. (pia)cib has a redex at the root iff j > k. In this case we say that o creates a redex
with .

2. pi(gla) has a redex at the root iff k > 1. Now it is i, that creates a redex with .

Next we recall the description of s.-normal forms given in [KR95b]. The proof is by
analysis of the structure of a and the restrictions for the cases a = bo’c and a = @b are
necessary to avoid redexes at the root.

Theorem 8 A term a € As,, is an s.-normal form iff one of the following holds:
e a € VUN, i.e. a is a variable or a de Bruijn number.
e a =bc, where b and ¢ are s.-normal forms.
e a = \b, where b is an s.-normal form.
e a =bao’c, where c is an s.-nf and b is an s.-nf of the form X, or do'e with j < i, or
pid with j < k.
o a=ib, where b is an s.-nf of the form X, or cold with j > k+ 1, or plc with k < 1.

There is a simple way to describe the s.-nf’s using item notation [KN95]. Let us just say
here that in this notation we write ab = (bd)a, Aa = (M)a, ao'd = (bo')a and pia = (pi)a.
The following nomenclature is used: (b4), (\), (co?), (pi) are called items (J-, A-, o- and
p-items, respectively) and b and ¢ the bodies of the respective items. A sequence of items is
called a segment. Notice that every term in As,, can be written as 5n or X with a convenient
segment s.

A normal op-segment 5 is a sequence of o- and ¢-items such that every pair of adjacent
items in § has one of the following forms:

(i)(l)and k <1 (gi)(bo/)and k <j—1 (bo')(co/)andi<j (bo?)(yl) and j < k.

14

For example, (©2) (21 () (b0*) (co™) (193,) () and (bo")(co®)(do*)(¢2) (}) (98) (ao™)
are normal op-segments.

Finally, in order to explicit the dependence of a normal op-segment on the bodies of the
o-items we define the skeleton of a op-segment as the pseudo-segment obtained by removing
the bodies of the o-items. We call it pseudo-segment because it is not a segment as defined
above. We write 5p(ay,...,a,) to mean the normal op-segment 5 (whose skeleton is 79)
which has n o-items such that the body of the i-th (begining from the left) of them is a;. We
call such a skeleton a normal skeleton of arity n.

For example, the following segments:

"= (£3) (1) (97) (b0) (co™) (71) (b ™) (¢1) 8" = (bo')(co®)(do™) (103) (5) (¢7) (ac™®)
have the respective skeletons
o' = (23) (1) (¢7) (@) (@) (1) (@) (pls) 09" = (07)(0°)(0")(93) (5) (¥7)(0™7) ,

and using the above mentioned convention, they should be written: s’ = o¢'(b,c,b) and
" =" (b,c,d,a).

We can now give another description of the s.-nf’s, as presented in [KR95b]. This different
point of view of the structure of the s.-normal forms will be exploited later.

Theorem 9 The s.-normal forms can be described by the following syntax:
NF :=V | N | (NF0)NF | (\)NF | 3p(NF,...,NF)V

where 3@ are normal skeletons. Terms of the form a@(ay,...,a,)X are called op-normal
forms (even if they are not written in item notation).

We define now our strategy to calculate normal forms. We do it in three steps:
1. We define a function s/ to evaluate a normal form of ¢id for d € NF.
2. We use s’ to define a function s” to evaluate a normal form of do’e for d, e € NF.

3. We use s/ and s! to define s?, a function which evaluates an s.-normal form of every
a € As,y,.

Notice that we use the notation s*(a) instead of s.(a) to bear in mind that s*(a) is one
normal form and, in order to be coherent with remark 1, the notation s.(a) could be used
only after having established the confluence of the s.-calculus which ensures unicity of nf’s.

Definition 12 Let d € NF, we define s.(p,d) by induction on d as follows:

st X) = ¢ X

Lo _ n+i—1 if n>k
st (¢in) = { N if <k
st(gip(ab)) = si(pia)st(epb)
st(gp(Aa)) = Asl(piy,a)

15

¢ilyla) if k<l
si(ei(pla) = (¢ @it a if 1<k<l+j
@1 (s (Phyiya)) if 1+j<k
i (aaib) if >k+1
Se(Pr1@) 075 (Pha;0) if J<k+1

Remark the analogy of these equalities with the ¢-rules (the rules whose name begin with
the symbol ¢).

s.(i(ac’d)) = {

Definition 13 Let d, e € NF, we define s”(do’e) by induction on d as follows:
s"(X aib) = Xoib

n—1 if n>jg

sy (no’b) = sL(ggb) if n=j
n if n<j
S((ac)o’t) = s'(ao’b)s(cold)
s"((Aa) o7b) = Xs"(ao’*'b)
(pra)a’b if j<k
i1 . . .
e , Y, a if k<j<k+1
Seaon = Qe T
Se (wk-&-la) o Se(gpob) Zf J]= k +1
o (sl (a ™ 70h)) if j>k+i
o acic)olb if 0>
dlaoigony — {790 i
Slel(a O-JJrlb) Uzslel(ca_]+lfzb) Zf i S]

Remark again the analogy of these rules with the o-rules (the rules whose name begin with
o). Only one equality seems to be out of the pattern: s!((¢}a)07b) = s.(p}_a)o* s (phb)
when j = k +14. The reason for treating this case separately is due to the fact that only when
j =k + 1 an application of o-¢ tr.2 creates a new -0 tr.-redex:

(pra)o’ b —o-p-tr.2 o (ac* " b) —p-o-tr (‘PZHG) ot (¢ob)
Now we are ready to define our strategy:

Definition 14 Let d € As,,, we define s*(d) by induction on d as follows:

si(X) =X si(ab) =si(a) si(b) si(ppa) = si(ppsi(a))
s;(m)=n s7(Aa) = Asi(a) s:(a0’b) = s/(s7(a) 07 s;(b))

€

We must prove now that in definitions 12, 13 and 14 we have really defined normal forms.
We proceed by induction, but we need a powerful inductive hypothesis. For this reason we
need the following definition.

Definition 15 The set of sorts is defined as S = {V,B,d,\,0,0}. The sort of a term a,
denoted S(a), is defined as: S(X) =V, S(n) = B, S(ab) = 4§, S(Aa) = A\, S(ac’d) = o,
S(pia) = ¢. The number of a term ¢ of sort o or ¢ or V, denoted N(c), is defined as
N(pia) =k, N(ao’b) =j and N(X) = 0.

16

The idea in defining such numbers is that those are the indices that really matter to decide
the existence of redexes (see the definition of normal op-segment above). The following remark
precises this intuitive idea.

Remark 3 Let b € NF.
1. If pia € NF, S(a) = S(b) and N(a) = N(b), then ©lb € NF for every j > 1.
2. If ac’c € NF, S(a) = S(b) and N(a) = N(b), then bo’c € NF.
3. If ta € NF, S(a) = S(b) and N(a) = N(b), then bo**'c € NF for every ¢ € NF.

Proof: The first and second items are proved analogously. Let us prove the first one.

Since b € NF we only must check that ¢, does not create a redex with the principal
operator (the one at the root) of b.

Now, since pia € NF, a is a variable or a op-normal form, hence, by hypothesis, b is a
variable or a ow-normal form of the same sort and number. Therefore,] creates a redex
with the principal operator of b iff ¢ creates a redex with the principal operator of a. Since
pira € NF, we conclude that there is no redex at the root in)b, hence pib € NF.

To check the third item, let us suppose that o**! creates a redex with the principal
operator of b, hence this operator must be o” with h < k 4 1 (see rule o-o-transition) or]
with & + 1 > [(see remark 2.1). But the principal operator of a has same sort and number
as the principal operator of b and in both cases the hypothesis ¢ia € NF is contradicted. O

We can begin now our proof of weak normalisation.

Lemma 16 If a € NF then s’ (pia) is an s.-normal form of yia.
Moreover, if s'(¢ha) # pia then S(a) = S(s.(¢ia)) and when S(a) = o or S(a) = ¢ we have
furthermore N(a) = N(s'(¢ha)).

Proof: The cases a = X and a = n are evident. The cases a = bc and a = A\b are immediate
since there are no rules whose left members are applications or abstractions, and therefore if
d, e € NF then de € NF and M\d € NF'.

If a = <p{b and k£ < [the lemma is evident. When [< k < [+ 7, apply remark 3.1 to

conclude <p{+i_1a € NF from go{ a € NF. Let us check now the interesting case I + 5 < k.

Now, s.(pha) = sL(ph(#{h) = @l sl(@ii_b) 1 sL(ph1_;b) = Phyi_,bs then sl(pla) =
¢l (gl yy;b) wich is in normal form, beacuse | < k + 1 — j. If sl(pf , ;b) # ¥l b,
then our strong inductive hypothesis ensures S (b) = S(s.(Pky1-;0)). Remark that, since
a = p]b € NF, b is neither an application nor an abstraction, furthermore b is not a variable
(otherwise s (@} ,_;0) = @j,1_;0). Therefore b is a op-normal form, and we also have
N(b) = N(s'(pib)). We conclude by remark 3.1 that /s’ (¢ib) € NF.

Finally, if a = bo’c and j > k + 1 the lemma is evident. If j < k + 1, we reason as in the
last subcase of the previous case, using now remark 3.2. O

Lemma 17 If a, b € NF then s”(ao’b) is an s.-normal form of a o7b.
Moreover, if s!(ac?b) # ac’b and a # j then:

1. If a # pic with i + k = j then S(a) = S(s”(ac’b)) and when S(a) = o or S(a) = ¢ we
have furthermore N(a) = N(s”(ao’b)).

17

2. If a = gjc with i + k = j then S(s!(a0’b)) =0 and N(s!(ao’b)) =k + 1.

Proof: By induction on a. The proof is similar to the proof of the previous lemma. The
only differences are:
The previous lemma is needed to settle the case a = j.

When a = ¢ic and k +i = j, use lemma 16 and remark 3.3.

When a = gic and k +i < j, then s”((gic) 07b) "2° i s (coi™1=b). If s (coiT=ib) =

co?t1=1p then s! ((phc) 07b) = @i (co?7%b), which is a normal form because j+1—i > k+1.
If s"(co?™17ib) # co?T1 77D, then in order to apply the TH, we consider:

o If ¢ # ¢" d with h + m = j + 1 — i, then the sort and number of s”(co?T17%) are the
same as those of ¢, and, since @}c € NF we conclude ¢} s”(co’™'~'b) € NF.

o If ¢ = p" d with h +m = j + 1 — i, then the principal operator of s”(co?™!1='b) is o™*1.
But a = pjc = ¢iph d € NF, hence k < m. Therefore ¢} does not create a redex with

o™t and again @i s (coit17b) € NF.

Finally, when a = co"d and h < j reason as in the case we have just considered. O

Since, as mentioned above, no left member of any s.-rule is an application or an abstrac-
tion, the following theorem follows immediately from lemmas 16 and 17.

Theorem 10 (Weak normalisation of s,) For every term a € As,,, st(a) is an s.-normal
form of a. Hence, the s.-calculus is weakly normalising.

We have therefore a strategy to find s.-normal forms. By looking carefully at the defini-
tions of s, s, and s! the strategy appears as an innermost one, i.e. before reducing a redex
all its subterms must have been already normalised.

Notice that for the out-of-the-pattern case we pointed out after definition 13 the strategy

is also innermost. In fact, for 7 = k + ¢, we had:
(802 a) a’b P o-p-tr.2 ‘Pi— (a ottt b) —po-tr (@2““) ottt (‘Péb))

and if pia € NF and b € NF then, by remark 3.3, ac*™ b € NF. Therefore, the only redex
in i (ac*t1b) is the p-o-transition-redex at the root.

The remainder of this section is the prize we have to pay because we don’t know if s, is
strongly normalising. In fact, if we knew that s, is SN, since we proved the local confluence
of s, (cf. theorem 6), we could apply Newman’s lemma to obtain the confluence of s.. In
that case, all the lemmas which follow are trivial. The aim of these lemmas is proposition 1
which will translate into one of the conditions of the GIM lemma.

Lemma 18 The following hold:
1. s3(si(a)) = s;(a)

2. si(pha) = si(pisi(a))

3. s*(acib) = s*(s:(a)o?s*(b))

18

Proof: The first item is immediate: since s3(s3(a)) is an s.-nf of s*(a), s(a) —»,. s%(s (a))
But, since s*(a) is an s.-nf, this derivation must have null length. Therefore, s*(s*(a)) = s(a).

The second item follows from the first, since by definition of s! we have s (gp,c) =
s (pisi(a)) and s*(pist(a)) = s.(phst(s*(a))) The third item is proved analogously. O

Lemma 19 For every rule L — R of the s.-calculus, s3(L) = s3(R).

Proof: We divide the proof in two parts:

I. We prove the lemma with the extra hypothesis that all a, b, ¢ involved in the rules
are s.-normal forms.

I1. We use part I to prove the lemma for arbitrary a, b, c.

Part I is almost immediate for the six s-rules: only definitions 12, 13 and 14 are needed.
We prove the lemma, for instance, for o-A-tr when a, b € NF'.

st((Aa) o7b) =" s(s1(ha) o7 s (b) =" st ((Asi(a) o7 s2(B) =

E

)\SII(SZ(CL) o'j+13: (b)) D.14)\s’e‘(aO'j+1b) D.14 s’e‘()\(aO'H_lb))

€

Part I, for the other six rules, involves an enormous amount of elementary calculations.
Moreover, the rules must be chosen in a good order, since the proof of the lemma for one of
them may require the validity of the lemma for another one. All the proofs are obtained by
structural induction.

@-p-tr.1: We prove s*(¢i (pla)) = s:(np{(gofcﬂ_ja)) for a € NF and [+j < k by induction on
a. By definition 14, our thesis is equivalent to s. (¢ (sL(¢7a))) = sL((sL(¢hsy;a)))-

The cases ¢ = X and a = n can be checked almost immediately using just definition
12. The cases a = de and a = Ad require the inductive hypothesis (IH). Let us check,
for instance the case a = \d:

sL(Ph(sL(pl (M) "2 s (AL (el D) B AL (Pl (sl) =
ASL (@l (5 (Phyayd) 27 S AL (Phiamsd)) = 5] (51 (Phsrs (A))))

The cases a = 'd and a = do"e are the ones which involve the long calcula-
tions. To give an idea of these calculations we check a = do’e. We introduce cap-
itals A, B, C'... as local definitions in order to save space and gain in clarity. Let
A = ’(wi(L(¢l(do"e)))) and B = s.(¢] (sL(¢hs1_;(d0"e)))). We want to prove

L(eh(s ‘Pl+1 d)o" (901+1 ne))) =D if h<Ii+1
sol sok+1]do*e)) E if h>k+2—3j
90k+2 _]d)U Se((pl;:+27j7he)) =F if h<k+2—j

m{ (il (dame))) "2 pist (ol (dohe)) =C if h>1+1

D.12

19

i (st (ol d)a" st (o], pe)) if h>Fk+1
‘Pk+1 901+1d)))Uhsle(902+17h(51e(90?+17h@))) =G if h<k+1

5 D2 5.1 (Vi (doe))) = H if h>k+2—j
T S (P D (P pe)) =1 i A<k +2—
D.12 90?(I(QPZH jd)ah I(QPZH j— ne)) =J if h>I1l+1
T) sLehasi(Ghs)OS P 5 (Pha s ne)) =K if h<I+1

Let us study our results recalling [+ j < k:

e h>l+1landh>k+2—7: Sincel <k+1—j, we have H = E, hence A = B.
e h>l+land h<k+2—j: F=J, hence A= B.
e h<l+1and h>k+2—j: Impossible since | +1 <k —j+ 1.

e h<l+land h<k+2—j5:Sincej>1,k+2—35<k+1, hence h <k+1 and
by TH we have G = K. Therefore, A = B.

p-p-tr.2: 52 (i (pla)) = st(pl T a) for a € NF and | < k < 1+ j. By induction on a.
o-p-tr.1: s*((pia) o7b) = s*(pk 'a) for a, b € NF and k < j < k +i. By induction on a.

o-p-tr.2: s*((¢ha) o7b) = s* (i (ac?~+1b)) for a, b € NF, k +1i < j. By induction on a.

When considering the cases a = j —i+ 1 and a = p}'d with | < k <[+ h (namely in
the subcase [+h = j —i+ 1), use the fact that the lemma has already been established
for the rule p-p-tr.2.

p-o-tr.: s3((ppa) 07b) = 55 ((Piy10) 07 (g ;b)) for a, b € NF and j < k + 1. By induction
on a.

Cases a = k+ 1 and a = ¢'d with j = [+ h = k + 1, require the lemma for the rule
p--tr.2, whereas the cases a = j with j < k and a = ¢)'d with j =1+ h < k + 1,
require the lemma for the rule p-p-tr.1.

o-o-tr.: s:((ao'd)oic) = st ((aciTc) ot (bo?~) for a, b, ¢ € NF and i < j. By induction
on a.

Now the lemma is required for the rules o-@-tr.1 and o-p-tr.2. We encourage the reader
to find out in what cases.

We state here some general remarks concerning the proof of part I for the rules which are
not s-rules.

e All the proofs are by induction on a for a convenient a, as stated above.
e The case a = X is always easy and proved using just the definitions 12 and 13.
e The cases a = de and a = Ad are always treated using definitions 12 and 13 and the IH.

e The cases a = n, a = ¢ d and a = d o"e always involve case analyses, in particular the
last two cases require rather long ones (the only example we gave for p-p-tr. 1 is one
of the simplest). The proofs may use, besides definitions 12 and 13 and the IH the fact
that the lemma is true for another rule.

20

Part 11 is easy. We just check only two rules. The proof for the other rules is analogous.

o-A-tr: In part one we have proved s*((Aa)o?b) = s*(A(ao?*1b)) for every a, b € NF. Let
now a, b € As,,,.

st((Aa) 07b) L s (51 (Aa) o 2(0) P2 sz (s (@) o s (0) "

s @) 27152 (1) P2 A (52 (0) P 0) P A (a0 1) P 2@)
o-p-tr 2: In part one we have proved s?((pia)o’b) = s*(pi(ac?~"1b)) for every a, b € NF
and k +¢ < j. Let now a, b € As,,.

st ((via) o7b) "= si(si(gha) o751 (0) V27 si(si(pisi(@) o7 s1(b) T

s (st (pist(a) o7 st (s:(0)) "B st (st (@) o7 s (0) "E T sk (ol (s7(a) o7 L (D))

R (i (s2(@) s () P s (et @t) PR s (gl a0t) O

We show now that our s.-normal forms are preserved by s.-reduction.
Proposition 1 Let a, b € As,,, if a =, b then si(a) = si(b).

Proof: By induction on a. If the reduction is at the root the proposition coincides with
lemma 19. Otherwise use the IH and either definition 14 (for the cases a = de and a = Ad)
or lemma 18 (for the cases a = do’e and a = @}d). O

As a corollary of this proposition we obtain the confluence of the s.-calculus:
Theorem 11 (Confluence of s.) The s.-calculus is confluent both on As,, and on As.

Proof: Since all the s.-rules preserve closed terms, we just prove the theorem for As,,

It is easy to show by induction on the length of the derivation and using proposition 1
that for a, b € As,,, a —»,_ b implies s¥(a) = s%(b).

Let us suppose a —»,_ b and a —»,_ ¢, hence s(a) = s¥(b) and s*(a) = s(c). The theorem
is therefore settled since b —»,_ s*(b) and ¢ —»,_ s*(c). O

e

Therefore, for every term a € As,, there exists (theorem 10) a unique s.-normal form that
we denote s,(a). Hence, s.(a) = s*(a) for every a € As,,, s.(p;b) = s.(p;b) for every b € NF
and every ¢ > 1, k > 0 and s.(co?d) = s”(co’d) for every ¢, d € NF and j > 1.

4 The calculus of the interpretation

We recall that our aim is to apply the generalized interpretation method (lemma 4) to obtain
the confluence of the As.-calculus. Our interpretation function will be s.. Coming back to
the notation of lemma 4, we intend to apply the GIM with: f =s.,, R = As,, R =—,_ and
Ry =—,_gen-

In the previous section we proved (proposition 1) that condition 2 of lemma 4 is satisfied.
In this section we are going to introduce the calculus of the interpretation. The set of the
interpretation is, of course, NF'. Therefore, we shall define R’ on VF' and prove that conditions
1 and 3 are also satisfied. We postpone the confluence of R’ until the next section.

21

Definition 16 (The interpretation reduction ') Fora, b € NF we define a =5 b when
there exists d € As,, such that a =, _4en d and b = s.(d).

We take —4 as R'. Condition 1 in lemma 4 is immediate:
Proposition 2 Let a, b € NF, if a =3 b then a —%,,_b.

Proof: Because a —,_ye, d =, s.(d) = b. O

The remainder of this section is a series of lemmas aiming to proposition 3 which states
that condition 3 of lemma 4 holds. If the reader wishes, she/he can read now the proof of
proposition 3 and backtrack the necessity of the lemmas.

We begin by showing that ' is compatible with applications and abstractions.

Lemma 20 Let a, b, c € NF.
1. If a =3 b, then ac =4 bc.
2. If a =4 b, then ca —4 cb.
3. If a =45 b, then Aa =5 Ab.
4. 8t a—»z b et c—gd, alors ac =g bd.
5. Si a—»p b, alors Aa —»z Ab.

Proof: We check the first item. If a —4 b, there exists d € As,, such that a —,_,., d and
b=s.(d), hence ac —,_4, dc and, since s.(dc) = s.(d)s.(c) = be, we conclude ac —4 be.

The second and third ones are shown analogously.

The fourth one is proved by induction on the length of the derivation ¢ =4 d. If it is null,
we must show ac —#4 be. This is done by induction on the length of the derivation a —#4 b
using the first item. For the inductive step of the main induction use the second item.

The fifth one is shown by induction on the length of the derivation using the third item.
d

Lemma 21 If a is a op-normal form and a —,_4., d then S(a) = S(s.(d)) and N(a) =
N(sc(d)) (cf. def. 15).

Proof: By induction on a. Since a is a op-normal form we have to consider only two cases:

a=pib: Hence d = pic with b —, .., ¢. By IH we have S(b) = S(s.(c)) and N(b) =
N(s.(c)) and, since pib is a normal form, we conclude, by remark 3.1, that ¢}s.(c)

is also a normal form. Therefore, ¢;s.(c) = s.(pis.(c)) = s.(pic) and we conclude
S(a) = ¢ = S(s.(d)) and N(a) =k = N(s.(d)).

a=>bolc: Two cases according to the position of the redex:

o If b —, .., b' then the proof is analogous to the previous case. Use remark 3.2.

o If ¢ &, ., ¢ then d = bo’c. Now, since bo’c is a nf, bo’s. () is also a nf (a
glimpse at the rules is enough to verify that o operators can only create redexes
with the left operand). Therefore, bo?s.(¢') = s.(bais.(c')) = s.(bo’c’) and we
conclude S(a) = o = S(s.(d)) and N(a) =j = N(s.(d)). O

22

Lemma 22 For a, b, ¢, e € NF the following hold:

1.

v e e

If a =5 b and pia € NF then ¢ib € NF and @ia —45 pLb.
If a =5 b and ac’c € NF then boic € NF and ao’c =5 bolc.
If a =4 b and co’a € NF then co’b € NF and cola =5 calb.
If a =5 b and ¢,a € NF then ¢i,b € NF and @ia —»p @ib.

If a =3 b, c = e and ao’c € NF then bole € NF and ac’c —»5 boe.

Proof: Let d € As,, such that a =, ., d and b = s.(d).

1.

Since pia € NF, a is neither an abstraction nor an application. Furthermore, since a
has a redex, a is not a variable, hence a is a ogp-normal form. By lemma 21, we have
S(a) = S(s.(d)) and N(a) = N(s.(d)). By remark 3.1, ¢} s.(d) € NF, hence ¢ib € NF.
Now, pia —_gen Pid and s.(pid) = s.(@hs.(d)) = s.(pLb) = pib, hence pia —45 ib.

Analogous to the previous item. Use now remark 3.2.

. Since co’a € NF, co's.(d) € NF (as we remarked above, a glimpse at the rules

is enough to verify that o operators can only create redexes with the left operand).
Therefore, s.(co’d) = co’s,.(d) and since cola —, 4., cold, we conclude co’a — 4
calb.

By induction on the length of the derivation using item 1.

. By induction on the length of the derivation ¢ =4 e.

When the length is null, check a 07¢ =5 bo’c by induction on the length of the deriva-
tion @ —% 4 b using item 2.

For the inductive step use item 3. O

Lemma 23 Let a € NF and d € As,p, if a =, _gen d then s (pha) =5 s.(¢d).

Proof: By induction on a. If a = X or a = n there are no o-generation redexes and therefore
the lemma is trivial.

a = bc : Three cases according to the position of the redex:

o Ifb—, 4, b thend ="b'c.

IH & L 20.1

se(pi(be)) = sc(pib)se(pie) =5 se(@pb)se(ic) = se(pi(b'c))
o Ifc —,_,., €, it is analogous to the previous case. Instead of lemma 20.1, use now
lemma 20.2.

e If b= AV’ and the redex is at the root, then d = v’ olc.
se(k (AV)e)) = (Ase(@ig1 b)) se(pic) —=pr se(Se(hsr) o' se(p)c)) =

Se((Phyrb) 0 (910)) = se(3, (b o))

23

We remark once and for all that the last equality holds because
PV 0'0) > gty (hsb) 0 (ko)
and proposition 1 (or lemma 19) applies.

a = Ab : The redex must be internal, and it is anologous to the first subcase above.

a = jb: Necessarily b —,_,0, b' and d = ¢]b'. Remember that s.(¢ia) = s*(pia) and,
since a € NF, s7(pha) 2" s' (i (¢ib)). Three subcases must be considered:

€

D1

o If k <1 then s(¢} (/b)) =" @L(lb) =5 s.(0}(1V))-
o If1 <k <I+j then s.(} (/b)) =° @70 —u s.(]7'W) = s (i (1)),
. i(D12 i D ¥ (i j i
o Ifi+j < kthen s, (p} (¢7b)) = 01 5e(Prr1-5b) = 0152 (Phr1-;0) = @1 5e(Phy1_;b)-
But by IH we know s.(@},;_;b) =g sc(phy1;b') and therefore, by lemma 22.1:
80{36(9024-1—]'(7) —p @gse(¢2+1—jbl)
Furthermore, lemma 22.1 ensures ¢} s. (i 41 ;b)) € NF. Hence
@i 5e(Ph1 V) = 5:(0] (Phga_;8)) = s (i (] D))

a=bo’c: There are two cases according to the position of the redex, namely, b —,_,., V'
and ¢ —,_ e, €. Since the treatment of the second is analogous to that of the first one,
we just consider b —,_,.,, ' and therefore d = b ole.

We consider two subcases:
o If j > k+ 1 then s.(p}(bo’c)) = pi(boic) —p s.(ph (b oic)).
e If j <k + 1 then, recalling that s.(pk(boic)) = s* (¢ (boic)), we have:

i ; D14 & D12 i i i D14 i j i
se(pp(ba’c)) = 5;(@k+1b) U]SIe((pk+lij) = 3e(90k+1b) UJSe(‘PkajC)-

But by IH we know s.(¢},10) =g sc(¢j ') and therefore, by lemma 22.2:

Se(¢2+1b) o’s. (<,02+1,j6) — g Se (‘P?le’) Ujse(goi+17jc)

Furthermore, lemma, 22.2 ensures se(cpfcﬂb’) UjSe(tp};H_jc) € NF. Hence
Se(goi_Hb’) UjSE(wichjc) = Se(se(‘/’iﬂb’) ajse(goi_ﬂ,jC)) =
5e((902+1bl) o’ (@2+1_j6)) = s.(p} (' dic))

We remark that when considering ¢ —,_,., ¢’ lemma 22.3, instead of lemma 22.2, must
be applied. O

Lemma 24 Let a, b € NF and d € As,,, if @ —5_gen d then s.(ac?b) =5 s.(do’b).
Proof: The proof, by induction on a, is similar to that of the previous lemma. O

Lemma 25 Let a, b € NF and d € As,p, if b —,_4en d then s.(ac?b) =4 s.(ao’d).

24

Proof: The proof is also similar to that of lemma 23. We remark that the induction is on a
and the cases ¢ = X and a = n must now be considered. In particular, when a = j, lemma
23 is required.

Lemma 20.4 is used in the case a = ce and lemma 20.5 is useful to treat a = Ac.

For the subcases k + i = j and k + 1 < j of the case a = ¢}.c use lemma 22.3 and 22.4,
respectively.

Finally, lemma 22.5 is needed when a = co'e and i > j. O

Lemma 26 For a, b, c € NF the following hold:
1. If a =4 b then s.(pia) =5 s.(p4b).

If a =5 b then s.(pha) =5 s.(p}b).

If a =5 b then s.(ao’c) —p s.(baic).

If a =5 b then s.(ac’c) —»p s.(boic).

If b =4 ¢ then s.(ac?b) =45 s.(aoic).

S

If b =5 c then s.(ao’b) —»p s.(acic).
Proof: Let d € As,, such that a —,_,., d and b = s.(d).
L s.(pha) B s.(gid) = so(i(5.(d))) = s (ib).
2. By induction on the length of the derivation using item 1.
3. As in item 1 using lemma 24.
4. By induction on the length of the derivation using item 3.
5. As in item 1 using lemma 25.
6. By induction on the length of the derivation using item 5. O

The following proposition states that condition 3 of the GIM is satisfied.
Proposition 3 Let a, b € As,p, if @ —,_gen b then s.(a) —»5 s.(b).

Proof: By induction on a.

a =cd: If the reduction is internal (¢ =, 4en ¢ Or d =, 4 d'), use the IH and lemma
20.4. If the reduction is at the root (¢ = A¢’ and b = ¢’ o*d) we have:

Se((A)d) = (As.(c))se(d) =5 sc(s.() otsc(d)) = s.(c o'd)
a = Ac: Use the ITH and lemma 20.5.

a = pjc: Use the IH and lemma 26.2.

a = co’d: Use the IH and either lemma 26.4, if the reduction is within ¢, or lemma 26.6, if
the reduction is within d. O

25

5 Confluence results

In this section we prove the confluence of the calculus of the interpretation (NF, —4/) in order
to obtain the confluence of the As.-calculus via the GIM.

The confluence of (NF, — /) is obtained via a parallelisation a la Tait-Martin-Lof (cf. the
proof of the confluence of the classical A-calculus in [Bar84]).

We define the parallelisation as follows:

Definition 17 Let a, b, ¢, d, a1, ..., a, € NF The reduction = is defined on NF by the
following rules:

ap = by, 1<h<n

EFL PHI
(REFL) a=a (SPHD) e e X S oo, b)X
a=0b a=c b=d
(ABST) Aa = b (BETA) (Aa) b = s.(cotld)

a=>c b=d

APPL
() ab= cd

We remark that SPHI is a rule scheme where @ range over normal skeletons.

We begin by proving that the transitive closures of —4 and = coincide. We must first
establish two lemmas.

Lemma 27 Let a, b€ NF, if a = b then a =3 b.

Proof: By induction on the lenght of the deduction a = b. Therefore we analise the last
rule used in this deduction:

REFL: Obvious.
ABST: Hence a = Aa', b= A" and o' = b'. By IH, a’ =4 V', and conclude by lemma 20.5.
APPL: Use the IH and lemma, 20.4.

SPHI: Now a =gap(a,...,a,)X, b=cp(b,...,0,)X and a, = b, for 1 < h < n. By IH,
ap, —»g by, and we conclude using the following:

Fact: For every normal skeleton o of arity n and for every ay, b, € NF (1 < h < n),
if a, —»p by, for 1 < h <mn, then 5p(ay,...,a,)X =g 7p(b1,...,0,)X .

wich is proved by induction on the length oof the segment o using lemma 22.4 and
22.5.

BETA: Now a = (Aa)V, b=s.(co'd),d = and b = d'. By IH, ¢’ =4 ¢ and ¥/ —p d'
and therefore (Aa')b' =g s.(a'c*b) 5% s.(co'd) By s (o' d). 0

Remark 4 For ay,...,a, € As,, and 5@ the skeleton of a normal op-segment, we have
se(@P(ar,...,a,)X) =70(sc(a1),...,5.(a,))X.

26

Proof: Because d¢(ay,...,a,)X —», 0p(s.(a1),...,s.(a,))X and this last term is an s.-nf,
we conclude by unicity of s.-normal forms. O

Lemma 28 Let a € NF and d € As,p, if @ —=5—gen d then a = s.(d).

Proof: By induction on a. As an example, we treat the case a = 7p(a,...,a,)X. The
reduction must occur within some a;, hence d = 5¢(ay,...,a},...,a,) with a; =, 4., a}. By
IH, a; = s.(a}) and, since a;, = a;, applying rule SPHI we obtain

__ R4
a=7ap(ay,...,s(a}),...,a,) = sc(@p(ay,...,al,...,a,)) O
Lemma 29 The transitive closures of =5 and = coincide, i.e. —%z ==".

Proof: If a —4 b then a —,_,., d and b = s.(d) and, by lemma 28, a = b. Therefore,
—z C =
Now, by lemma 27, = C —%4, hence =5 C = C —%45. Therefore, =5 = =". O

Remark 5 If we prove now that = is strongly confluent (SCR), lemma 1 would ensure that
=" is SCR, hence —»3 would be SCR, which is equivalent to the confluence of — 4.

To prove that = is SCR we must first establish some facts. Again, we invite the reader,
if she/he wishes, to read now the proof of theorem 12 and backtrack the necessity of the
following lemmas.

Lemma 30 For every it > 1, k > 0 and normal skeleton 5@ of arity n, there exist a normal
skeleton TPy, My 1y yim, Kiy.onykm such that 0 < m < n, i, > 1 and k, > 0 (for all h
such that 1 < h <m) and such that for every a,,...,a, € NF the following holds:

5e(0kTP(ar, .., 00) X) = TPL(5e (94, 01), -, 5e (P10, Am), Qs - -5 €)X

Proof: By induction on the length of the skeleton 7.

We remark that s.(pi 0@(as,...,a,)X) = s (oL op(a1,...,a,)X), since 5p(a,...,a,)X
is a normal form.

If % has length 1, we consider:

70 = (p)): A glimpse at definition 12 is sufficient to check that 557 = (i) (l), for k < I
o1 = (77, for | <k <1+ j and 57 = ©] Phs1_j» for I+ j < k, are good choices.

Remark that in this case n = 0, and therefore m = 0.

op = (07): Again definition 12 ensures that cp; = (¢})(0?) and m = 0 (for j > k + 1)
and o1 = (07)(¢} 1), m=1,4 =i, ki =k +1—j (for j < k+ 1) are good choices.
Remark that now n = 1.

For the inductive step we consider two cases acording to the first symbol of 5¢:

7@ = (pl)oy': Definition 12 guarantees that 57 = (¢i)(@])o@’ and m = 0 (for k < 1)
and 557 = (o7)o@’ and m = 0 (for | < k < [+ j) are good choices. Now for the
remaining case (I +j < k) the IH is also necessary:

27

D12

) = s (el ¢ (ar, ... a,) X)) =

E
s
s

se(0h oP(as, ...

@{Se(tpzﬂ,j op'(ag,...,a,)X)

Iz

(@{)0—90,1(56(902—11@1)7 tee 756(30;::; am)a Am41y--- aan)X

7% = (0?)oy’s By definition 12 it is sufficient to take @7 = (¢})(0?)op’ and m = 0 for
g >k+1. For 5 <k+1 also the IH is needed:

Se (90;9 W(au e 7an)X) = 88(902 (O'—QD'(GQ, s 7an)X Ujal)) D:12
i j i i
Se(SDk-H o' (as,...,a,)X) Ujse(@kﬁ—jal) =
(Uj)o'cpll (Se(ﬁpiqu,j(ll), 56(902-110’2)7 tee 756(30;:; aerl)u Am+42;5 - - - aan)X O

Lemma 31 For every j > 1 and normal skeleton @ of arity n, there exist a normal skeleton
T2, M, Gy, .. iy such that 0 < m <n and i, > 1 (for all h such that 1 < h < m) and such
that one and only one of the following holds:

o there exist ip > 1, P, tmi1y- -y tp, Kmt1,--.,kp such that m <p <n, i, >1 and k, >0
(for all h such that m +1 < h < p) and such that for every ai,...,a,,c € NF the
following holds:

se(@p(ay,...,a,)X ofc) =
703(sc(a10%¢),. .., 5.(amo™c), s.(0lc), se(@z*::lamﬂ), . ,se(gofj;ap), Apity- -y ln)X
o for every ay,...,an,c € NF the following holds:
5.(@p(as,...,a,)X 07 ¢c) =p5(s.(a10%¢),. .., 8(AmT™C), CyQmity---50n) X
o for every ay,...,a,,c € NF the following holds:
sc(@p(ay,...,a,)X of¢c) =p5(s.(a10%¢), ..., 5(Am0T™C)y ity -, an) X

Proof: By induction on the length of the skeleton . The proof follows the lines of the
proof of the previous lemma. Now, definition 13 is used everywhere. When considering the
case p = (i)op' lemma 30 is needed for the subcase j = k + i, whereas the IH is useful for
the subcase j > k + . Finally, when considering the case 7p = (o')oy’, the IH is needed if
i <j. O

Lemma 32 Let a, b € NF, if a = b then s.(pla) = s.(pib).

Proof: By induction on the length of the deduction @ = b. When the last rule is REFL, it is
obvious and when it is ABST or APPL it is easy: just use the IH. Therefore we just consider
the other two rules.

SPHI: Hence a =5p(ay,...,a,)X,b=5p(by,...,b,)X and a; = b, for all h. By lemma 30
we have .86(902 W(au e 7an)X) = 0——901(88(902-11 al)a s 736(902-7:;am)7 Amt1y--- aan)X' By
IH, s.(py:an) = sc(@yby) for b < m and, since a, = b, for all h, in particular for
m < h <n, we apply rule SPHI to get

28

a—gol(se(goillal), ... ,se(npmam),amﬂ, vy) X =
—_— i1 im L 30 f—
TP1(se (@i 01)s - o5 8 (@K b)y g1y -+, 00) X = 5.(0,, T0(by, - .., b,) X)

BETA: Hence a = (\ay)ay, b = s.(bo'by), a; = b, and ay = bs.

5e (94 ((A01)a2)) = (A5 (h101))5e (Phaz) B se(se(Dhy1br)ot s (9pbe)) =
Se((%ﬂbl)al(%bﬁ) = 5.(p4 (010'D2)) = 5.(ph5e(br10"Dy)) U

The following corollary is immediate:

Corollary 3 Let a, b € NF such that pja, pib € NF, if a = b then pia = ©ib.
Lemma 33 Let a, b, c € NF, if b= c then s.(ac’b) = s.(ac’c).

Proof: By induction on a. The cases a = X, a =de, a = Ad, and a = n # j are easy and
only require eventually the IH. Therefore we just consider the other cases.

a=3: s.(307b) = s.(ppb) B se(he) = se(joc).

a = pid: We consider four cases:

o If j < k then s.((¢id) 07b) = (¢id) oib "2 (pid) oic = s.((¢id) oic).
We precise once and for all how we applied the rule SPHI.
If d = 5p(dy,...,d,)X then (¢id)o’b = (07)(pL)op(b,dy,...,d,) X, hence SPHI
has been applied with premises b = ¢ and d;, = d; for all h to the skeleton
(o7)(¢i)Te.
If d = X, SPHI applies with the single premise b = c.

o If k < j < k+i then s,((p.d) 07b) = i td "7 ,i-'d = s.((pid) o7 c).

e If j = k + 4, remark that for all ¢’ € NF we have:

s.((phd) oe') = sz((ppd) o?e') "B s ((phd) oie’) 2
SL(@hy1d)o* sl (phe’) = sc(phy1d)o* T s (phe’)
Therefore,

; L32&SPHI
=

se((phd) 07b) = se(ph1d)o™ s (ppb)
Se(h1d)o* 1 se(phe) = se((pid) o c)
e If j > k + i, remark (using definitions 14 and 13) that for all ¢’ € NF', we have
se((pid) o'e') = gise(do’™'e!),
hence
se((pid) 07b) = pis.(do? b)) ST pis.(do?) = s.((pid) o)
a=do'e: We consider two cases:

o If i > j then s.((do'e) o7b) = (do'e) oib "B (do'e) oic = s.((do'e) oic).

29

e If i < j, remark (using definitions 14 and 13) that for all ¢’ € NF we have:
sc((do'e)ole') = s.(do’te’) o's.(ea? ™" e) (1)

Now, since a is a normal form, d is a op-normal form or a variable, hence s, (d o7 1b)
is a op-normal form (it cannot be a variable since s.(a’) = X implies o' = X
which can be easily checked using definitions 12, 13 and 14). By IH, s.(d 0?*1b) =
s¢(do’*tc). Therefore, the last rule in this deduction must be SPHI or REFL. Let
us write s.(do?Tb) = 5p(by,...,b,) X, hence s.(do’"ic) = 7p(cy,...,c,) X and
by, = ¢, for 1 < h < n (if the last rule was REFL b, = c;). But the IH also ensures
sc.(ea?*1b) = s.(ec’*lc), and we can apply SPHI to obtain

(ai)w(se(e ajf”lb), bi,...,b,) = (ai)w(se(e ajfi“c), ClyeneyCp)
which can be written as
s.(da?™b) o's. (e’) = s.(do? T e) o's.(e 0! T e)

and we settle the lemma by using equation 1 with ¢/ =b and €' = c. O
Lemma 34 Let a, b, ¢, d € NF, if a = b and ¢ = d then s.(ac’c) = s.(bo’d).

Proof: By induction on the length of the deduction a = b.
We study the last rule applied. If it is REFL our lemma is just lemma 33. If it is APPL
or ABST the lemma follows directly from the IH. Let us study the other two rules:

BETA: Hence a = (Aay)as, b= s.(bio'by), a; = b, and ay = by.
so(((Aay)az) o?c) = (As.(ay 07t ¢))s.(ay oic) BELA Se(8c(by 07 d)ot s, (byoid)) =
= 5.((by 07 d) ot (by07d)) = s.((byotbs) 07d) = s.(s.(biotbs) 07 d)
SPHI: Hence a = 5p(ay,...,a,)X, b =5p(by,...,b,)X and a; = b, for 1 < h < n. Now,

lemma 31 offers three possibilities which can be treated analogously. Let us choose, for
example, the second one:

5.(@p(ar,...,a,)X 0fc) =p5(s.(a10%¢),. .., 8(Am0T™C), CyQmity---s0n)X

by IH, s.(ano™c) = s.(byo™»d) and since ¢ = d and a;, = by, for m+1 < h < n, we can
apply SPHI to obtain

702(8c(a10¢), ..., Se(Ama™C), CAmy1y-- ey a,) X =

U—%(Se(blo—ild)a <y Se (bmaimd)a da bm-i-la R bn)X
Finally, using lemma 31 again, we have:
5.(6P(b1y- -, 0,)X 07 d) =705(s.(biod), ..., 5.(bpoi™d), d,bpi1y.-.,0,)X

Remark that, in order to check the first option of lemma 31, also lemma 32 must be
used. O

30

Theorem 12 The parallelisation = 1is strongly confluent, i.e. if a = b and a = c then there
exists d such that b = d and ¢ = d.

Proof: By induction on the length of the deduction a = b.
REFL: Hence a = b, and take d = c.

ABST: Hence a = Aa’, b= \b and o' = b'. Remark that ¢ = A¢’ and a' = ¢, since the last
rule applied to obtain Aa’ = ¢ must be either ABST or REFL. By IH there exists d'
such that ¥ = d’ and ¢/ = d' and it is sufficient to take d = A\d'.

APPL: Hence a = aja, and b = b;by, with a; = b and a, = b,. Now there are two
possibilities for ¢ according to the last rule applied to obtain a = c.

e If the last rule is APPL or REFL then ¢ = ¢,c; with a; = ¢; and ay, = ¢,. By
TH there exist d; and d, such that by = di, ¢; = di, by = dy and ¢y = dy. Take
d = dds.

e If the last rule is BETA then ¢ = s.(c; 0'¢y), ay = Ad', @' = ¢; and ay = ¢,. Since
Aa’ = by, according to the remark we have made when studying the ABST case,
by = Ab and o' = b'. By IH, there exists d; and d, such that b = d;, ¢; = d,
by = dy and ¢y = dy. Take d = s.(d, o'dy). Applying BETA we get b = d and
lemma 34 guarantees ¢ = d.

SPHI: Hence a = 7¢(ay,...,a,)X, b = ap(by,...,0,)X and a, = b, for all h. Re-
mark that ¢ = ap(cy,...,¢,)X and a, = ¢, for all h, since the last rule to obtain
op(ay,...,a,)X = c must be either SPHI or REFL. By IH there exist d;, such that
b, = dj, and ¢, = dj, for all h. Take d =5p(d,,...,d,)X.

BETA: Hence a = (\ay)as, b = s.(byo'by), a; = b, and ay = b,. Reasoning as in the APPL
case, there are two possibilities for c.

e If ¢ = cicy the procedure is symetric to the one used to treat the second subcase
of the APPL case.

o If ¢ = s.(ci0'cy), with a; = ¢; and ay = ¢y, then by IH there exist d;, d, such

that bl = d17 c, = dla b2 = d2 and Cy = dg. Take d = Se (dlo'ldz) and use lemma,

34 to settle the theorem. O
Proposition 4 The calculus of the interpretation (NF, —) is confluent.

Proof: The proof is given by remark 5. O

Theorem 13 The As.-calculus is confluent on As,,.

Proof: All the conditions are satisfied (see the four propositions of this article) and the gen-
eralized interpretation method (cf. lemma 4) can be applied as we proposed at the beginning
of section 4. O

Since all the As.-rules preserve closed terms, we have:

Corollary 4 The As.-calculus is confluent on As.

31

6 Soundness

We end our work by applying some of our results to establish a soundness theorem, namely we
show that the As.-calculus is correct with respect to the A-calculus, i.e. that all As.-derivations
beginning and ending with pure terms can also be obtained in the A-calculus.

Remark 6 For all a € As, we have s.(a) = s(a).

Proof: a —»,_ s(a), since a —, s(a). But, by lemma 12, s(a) € A, and since A C NF, the
confluence of s, (theorem 11) implies s.(a) = s(a). O

Lemma 35 For alla,be A, a =5 b iffa =45 0.

Proof: Both implications can be proved by induction on a. We just check (=) which is the
one we are going to use.
Let d € As, such that a =, e, d and b = s.(d).

a = a,ay: If the reduction takes place within a,, say a1 —,_g4en @}, then d = aja, and
b= s.(ajas) = s.(a})as. Since a; =4 s.(a}), by IH we have a; =4 s.(a}). The lemma
is settled using the compatibility of 3.

If the reduction takes place within a,, the proof is analogous.

If the reduction takes place at the root, i.e. a; = A¢; and b = s.(c¢; o'ay). By remark 6,
b = s(c; 0tay), and since ¢;, ay € A, by lemma 13, b = ¢; {1 + a,}. Therefore, a —4 b.

a = Ac: Analogous to the first part of the previous case. O
Corollary 5 For all a, b€ A, a =5 b iff a =5 b.

Proof: By induction on the length of the derivations. O
Lemma 36 Let a, b € As,,, if a =, b then s.(a) —»p s.(b).

Proof: By induction on the length of the derivation a —%,s;, b. When the last reduction is
a, —s, b, conclude by proposition 1. When it is a,, —,_4.n b, conclude by proposition 3. O

Theorem 14 (Soundness) For a, b€ A, if a —»,. b then a —»45 b.

Proof: If a —»,, b, by lemma 36, we get s.(a) —»5 s.(b), and, since a, b € A C NF, we
conclude using corollary 5. O
Conclusion

We think that As is an interesting alternative to calculi of explicit substitutions in the Ao-
style: it preserves SN (cf. [KR95a]), has a confluent extension on open terms (cf. theorem 13)
and simulates one step [-reduction (cf. lemma 15). Two important questions are still open:

1. Is the s.-calculus strongly normalising?

2. Does the As.-calculus preserve SN?

32

If the second question could be decided positively, As, would be the answer to the two open
problems in [MH95], namely, a confluent (on open terms) calculus of explicit substitutions
that preserves strong normalisation which

1. reduces substitution redexes before (-redexes.
2. admits interaction of substitutions.

We remark that SN of s, would also shorten the proof of confluence that we have given
here: most of the results of section 3 become trivial in the presence of SN.

Finally, from a computational point of view, the lack of SN is not a major problem,
since the s.-calculus has been shown weakly normalising and an effective strategy to evaluate
normal forms has been proposed.

However, from a theoretical point of view, the strong normalisation of the s.-calculus is
an important feature and seems a very difficult problem which remains still a challenge to the
rewriting community. Zantema showed in a private communication, that the o-o-transition
rule terminates. He considered the infinite Term Rewriting Structure TRS (with this rule),
ranging over an infinite signature {o*,7 > 0}. He showed strong normalisation of this TRS
(call it S) by showing weak normalisation and using the following lemma (cf. [Klo91]):

Lemma 37 Any reduction relation — on a set T satisfying 1,2, and 3 is strongly normalising:
1. — 1is weakly normalising.
2. = 1s WCR.
3. — is increasing, i.e., 3 a function f: T — IN where a — b= f(a) < f(b).

For S, 2 follows from a simple critical pair analysis and 3 can be easily established by choosing
f(a) to be the size of a. To show weak normalisation of S, Zantema establishes first two
lemmas:

Lemma 38 Letb = ((--- (ac™a,)02as)0%as) - - - o' a,, where a is either a variable or its root
is not o, and iy > iy > .. > Qp 1, in 1 < in. Then b= ((--- (a0 by)o?2by)092b3) - - - 09 by,
where j1 > Jo > Jz.o > Juo1 > Jn =tn_1, and Vr = 1,---,n either b, = a, for some p <n or
b, = a,o*a, for some p <n and some k.

Proof: By induction on n. At the top level, b — ((....c%" "ta, o (a,_10%a,)). 0

Lemma 39 Let b= ((..(ac™ay)02az)0%a3) . ..o a,, where a is either a variable or its root
is not 04. Then b —* ((--- (ac?*b))072by)073bs) - - - 07 b,,, where j1 > jo > Jzeee > Jno1 > Jn,
and Vr = 1,---,n the term b, can be written as b, = (..(Gc(r1)00c(r,2))00c(r,2))--OCc(rn)y for
1 <ec(r,1) <er,2) <..<c(r,n) <n, where o stands for arbitrary o*.

Proof: Induction on n using lemma 38. O
Lemma 40 (Weak normalisation of S) S is weakly normalising.

Proof: By induction on the size of the term: assume there is a term b not having a normal
form for which every term of size smaller than b admits a normal form. Apply lemma 39
to this term. Note that a¢ and b, b,,...b,, are all smaller than b, hence admit a normal form.

33

Replace a and by, by, - - -, b, by their normal forms in the term ((..(ac?*b,)072by)a73b3) - - - 3" b,,,
yielding a normal form of b, contradiction. O

Zantema correctly comments that weak normalisation of this TRS does not follow from
weak normalisation of the whole s.-calculus (cf. theorem 10). We note moreover that his
proof of weak normalisation differs from ours which provides an effective strategy to calculate
normal forms. Furthermore, Zantema notes that the proof above is the first one he ever
found establishing strong normalisation from weak normalisation. Finally, he remarks that
lemma 37 cannot be used to establish strong normalisation of s, from its weak normalisation
because the full system is easily proved to be non-increasing.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[Bar84] H. Barendregt. The Lambda Calculus : Its Syntaz and Semantics (revised edition). North
Holland, 1984.

[BBLRD95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit
substitutions which preserves strong normalisation. Personal communication, 1995.

[Blo95] R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical Report
95-08, Department of Mathematics and Computing Science, Eindhoven University of
Technology, 1995.

[CHL92) P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi
of explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992. To
appear in the JACM.

[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-
ming. Pitman, 1986. Revised edition : Birkh&user (1993).

[dB78] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of ex-
pressions and segments. Technical Report TH-Report 78-WSK-03, Department of Math-
ematics, Eindhoven University of Technology, 1978.

[Har89] T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL : A-calculi as
Subsystems of CCL. Theoretical Computer Science, 65(2):291-342, 1989.

[HL89] T. Hardin and J.-J. Lévy. A Confluent Calculus of Substitutions. France-Japan Artificial
Intelligence and Computer Science Symposium, December 1989.

[Hue80] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the Association for Computing Machinery, 27:797-821, October 1980.

[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press,
1970.

[Klo91] J.-W. Klop. Term rewriting systems. Handbook of Theortetical Computer Science, 11,
1991.

[KN93] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. International

Journal of Foundations of Computer Science, 4(3):197-240, 1993.

[KN95] F. Kamareddine and R. P. Nederpelt. Refining reduction in the A-calculus. Journal of
Functional Programming, 5(4), 1995.

34

[KR95a]
[KR95b]
[Mel95]
[MHO5]

[Ri093]

F. Kamareddine and A. Rios. A A-calculus a la de Bruijn with explicit substitutions. To
appear in the Proceedings of PLILP’95. Lecture Notes in Computer Science, 1995.

F. Kamareddine and A. Rios. The As-calculus: its typed and its extended versions.
Technical report, Department of Computing Science, University of Glasgow, 1995.

P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate in Proceed-
ings of TLCA’95. Lecture Notes in Computer Science, 902, 1995.

C. A. Mufioz Hurtado. Confluence and preservation of strong normalisation in an explicit
substitutions calculus. Technical report, INRIA, Rocquencourt, December 1995. 2762.

A. Rios. Contribution d ’étude des \-calculs avec substitutions explicites. PhD thesis,
Université de Paris 7, 1993.

35

