
Bridging de Bruijn indices and variable names in explicitsubstitutions calculi�Fairouz Kamareddine and Alejandro R��os yMay 7, 1996AbstractCalculi of explicit substitutions have almost always been presented using de Bruijnindices with the aim of avoiding �-conversion and being as close to machines as possible.De Bruijn indices however, though very suitable for the machine, are di�cult to humanusers. This is the reason for a renewed interest in systems of explicit substitutions usingvariable names. Formal systems of explicit substitutions using variable names is a newarea however and we believe, it should not develop without being well-tied to existingwork on explicit substitutions. The aim of this paper is to establish a bridge betweenexplicit substitutions using de Bruijn indices and using variable names. In our aim to doso, we provide the �t-calculus: a �-calculus �a la de Bruijn which can be translated into a�-calculus with explicit substitutions written with variables names. We present explicitlythis translation and use it to obtain preservation of strong normalisation for �t. Moreover,we show several properties of �t, including con
uence on closed terms and e�ciency tosimulate �-reduction.1 IntroductionThe classical �-calculus deals with substitution in an implicit way. This means that thecomputations to perform substitution are usually described with operators which do notbelong to the language of the �-calculus. There has however been an interest in formalisingsubstitution explicitly; several calculi including new operators to denote substitution andnew rules to handle these operators have been proposed. Amongst these calculi we mentionC��� (cf. [dB78b]); the calculi of categorical combinators (cf. [Cur86]); ��, ��*, ��SP (cf.[ACCL91], [CHL92], [R��o93]) referred to as the ��-family; '�BLT (cf. [KN93]); �� (cf.[BBLRD95]) and �� (cf. [MH95]) which are descendants of the ��-family; �s (cf. [KR95a])and �se (cf. [KR96]).All the calculi above mentioned are described in de Bruijn notation (cf. [dB72] and[dB78a]). This formalism consists in replacing the usual variable names with natural numberswhich account for the bindings of the variables they stand for. This notation is useful because,while avoiding the problem of clashes of name variables, and therefore the use of Barendregt'sconvention and �-congruence, it provides term rewriting systems instead of just abstractrewriting systems and therefore more rewriting tools are available to study them. The only�This work was carried out under EPSRC grant GR/K25014.yDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk1



inconvenience is that the terms written in de Bruijn notation are more suitable to be read bya computing device than by humans.Recently, a simple calculus with explicit substitutions, �exp, has been introduced (cf.[Blo95]). This calculus is written in the standard notation with variable names and enjoysthe property of Preservation of Strong Normalisation (PSN). This property states that everyterm that is strongly normalising (i.e. does not admit an in�nite reduction path) in theclassical �-calculus is also strongly normalising in the �exp-calculus. The interest in studyingsuch a property relies on its connection with the strong normalisation of typed calculi andthe fact that several calculi of explicit substitutions do not enjoy it, as shown in [Mel95]. Asa matter of fact, of the above mentioned calculi only ��, �s and �� have PSN.The following question poses itself :is the �exp-calculus equivalent to one of the alreadyknown calculi in de Bruijn notation, and, if not, can we describe �exp in de Bruijn notation ina satisfactory manner? Trying to answer this question we realized that �s, which intuitively1was the best candidate for a de Bruijn version of �exp, was not the answer. Thus we were ledto a new calculus, which we call �t, whose formulation is slighty di�erent from the formulationof �s and whose relationship with �exp can be, partly, explained.Although the rules of �t and �s are similar, both calculi work quite di�erently: while �smakes global updatings just before performing a substitution, the �t-calculus makes partialupdatings so that the computation of the updating is already �nished before substitution.These partial updatings are started every time a substitution must be applied to an abstrac-tion. Since the calculi of the ��-family, �� and �� also introduce an updating operator whenevaluating substitutions within abstractions, the �t-caculus can be considered as a calcu-lus written in the �s-style which works with the updating mechanism of the ��-calculi andtherefore as a calculus that links both �s and �� styles.In this paper we introduce �t, we prove its con
uence using the \interpretation method"([Har89], [CHL92]), we make explicit the relationship between �t and �exp, which happensto be a sort of inmersion, and we use this inmersion to prove the PSN for �t using the PSNof �exp. We compare �t with �� by providing an inmersion of the former into the latter andargue about the impossibility of such an inmersion into ��. We also prove that �t is moree�cient (the reductions paths are shorter) to simulate �-reduction than ��, which seems to bethe most e�cient of the calculi in the ��-style. Finally, we discuss the problem of extending�t to a con
uent calculus on open terms (terms which may contain term variables) and showthat the existence of such an extension seems impossible. We conclude by explaining theproblems found when trying to establish an inmersion of �exp into �t.2 PreliminariesWe begin by presenting the notation and recalling the main notions concerning rewriting.Then we give a quick presentation of the �-calculus �a la de Bruijn. We recall afterwardsthe �exp-calculus and its PSN property. We explicit the isomorphism between the classical�-calculus and its de Bruijn version. Finally, we recall the �s-calculus so that the readercould compare it to the �t-caculus to be introduced in section 4.1Our intuition relied on the fact that both �exp and �s possess an in�nity of substitutions operators andthat �exp is a \minimal" extension of the classical �-calculus \as" �s is of the �-caculus �a la de Bruijn2



2.1 RewritingWe begin by introducing the notation we shall use throughout this paper concerning rewritingand we recall the de�nitions of the essential properties of the reduction systems.De�nition 1 Let A be a set and R a binary relation on A , i.e. a subset of A � A . Wedenote the fact (a; b) 2 R by a !R b or a ! b when the context is clear enough. We callreduction this relation and reduction system, the pair (A;R) . We denote =!R the re
exiveclosure of R . We denote !!R or just !! the re
exive and transitive closure of R . Whena!! b we say there exists a derivation from a to b . By a!!n b, we mean that the derivationconsists of n steps of reduction and call n the length of the derivation.De�nition 2 Let R be a reduction on A .1. R is locally con
uent or WCR (weakly Church-Rosser) when8a; b; c 2 A 9d 2 A ((a ! b ^ a ! c)) (b !! d ^ c !! d)) :2. R is con
uent or CR (Church-Rosser) when8a; b; c 2 A 9d 2 A ((a !! b ^ a !! c)) (b !! d ^ c !! d)) :De�nition 3 Let R be a reduction on A .We say that a 2 A is an R-normal form (R-nf for short) if there exists no b 2 A suchthat a! b and we say that b has a normal form if there exists a normal form a such thatb!! a .R is strongly normalising or SN if there is no in�nite sequence (ai)i�0 in A such thatai ! ai+1 for all i � 0 .Remark 1 Con
uence of R guarantees unicity of R-normal forms and SN ensures theirexistence. When there exists a unique R-normal form of a term a , it is denoted by R(a) .2.2 The classical �-calculus in de Bruijn notationWe assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijnindices (or numbers) are used to make the bindings explicit: to �nd the � which binds avariable represented by the number n you must travel upwards in the tree associated withthe term and choose the n-th � you �nd. For instance, �x:�y:xy is written using de Bruijnindices as ��(21) and �x:�y:(x(�z:zx))y is written as ��(2(�(13))1). Finally, to translatefree variables, you must assume a �xed ordered list of binders and pre�x the term to betranslated with this list. For instance, if the list (written from left to right) is � � � ; �z; �y; �xthen the term �x:yz translates as �34 whereas �x:zy translates as �43. The translationsbetween both notations will be given explicitly in Section 2.4.The interest in introducing de Bruijn indices is that they avoid clashes of variable namesand therefore neither �-conversion nor Barendregt's convention are needed. Here is the �-calculus �a la de Bruijn.De�nition 4 We de�ne �, the set of terms with de Bruijn indices, as follows:3



� ::= IN j (��) j (��)We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural numbers).Throughout the whole article, a = b is used to mean that a and b are syntactically identical.We say that a reduction ! is compatible on � when for all a; b; c 2 �, we have a ! bimplies a c! b c, c a! c b and �a! �b.We assume the usual conventions about parentheses and avoid them when no confusionoccurs. Furthermore, they shall be omitted in the grammars to be de�ned later.In order to de�ne �-reduction �a la de Bruijn, we must de�ne the substitution of a variablen for a term b in a term a. Therefore, we must identify amongst the numbers of the term athose that correspond to the variable n. Furthermore, we need to update the term b (renameits variables) in order to preserve the correct bindings after the replacement of the variableby b.For example, translating (�x�y:zxy)(�x:yx)!� �u:z(�x:yx)u to de Bruijn notation weget (��521)(�31)!� �4(�41)1. But if we simply replace 2 in �521 by �31 we get �5(�31)1,which is not correct. We needed to decrease 5 as one � disappeared and to increment the freevariables of �31 as they occur within the scope of one more �.For incrementing the free variables we need a family of updating functions:De�nition 5 The updating functions U ik : �! � for k � 0 and i � 1 are de�ned inductivelyas follows:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a)) U ik(n) = ( n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i� 1 is the valueby which a variable, if free, must be incremented.Now we de�ne the family of meta-substitution functions:De�nition 6 The meta-substitutions at level i , for i � 1 , of a term b 2 � in a terma 2 � , denoted affi bgg , is de�ned inductively on a as follows:(a1a2)ffi bgg = (a1ffi bgg) (a2ffi bgg)(�a)ffi bgg = �(affi+ 1 bgg) nffi bgg = 8><>: n� 1 if n > iU i0(b) if n = in if n < i :Ultimately, the intention is to de�ne (�a)b !� aff1  bgg (see de�nition 7 below). The�rst two equalities propagate the substitution through applications and abstractions and thelast one carries out the substitution of the intended variable (when n = i) by the updatedterm. If the variable is not the intended one it must be decreased by 1 if it is free (case n > i)beacuse one � has disappeared, whereas if it is bound (case n < i) it must remain unaltered.It is easy to check that (�521)ff1 (�31)gg = �4(�41)1. This will mean (��521)(�31)!��4(�41)1, as expected.The following lemmas establish the properties of the meta-substitutions and updatingfunctions. The Meta-substitution and Distribution lemmas are crucial to prove the con
uenceof �s. The proofs of lemmas 1 - 6 are obtained by induction on a. Furthermore, the proof oflemma 3 requires lemma 2 with p = 0; the proof of lemma 4 uses lemmas 1 and 3 both withk = 0; �nally, lemma 5 with p = 0 is needed to prove lemma 6.4



Lemma 1 For k < n � k + i we have: U ik(a) = U i+1k (a)ffn bgg .Lemma 2 For p � k < j + p we have: U ik(U jp(a)) = U j+i�1p (a) :Lemma 3 For k + i � n we have: U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :Lemma 4 (Meta-substitution lemma) For 1 � i � n we have:affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cggggLemma 5 For p+ j � k + 1 we have: U ik(U jp(a)) = U jp(U ik+1�j(a)) .Lemma 6 (Distribution lemma) For n � k + 1 we have:U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :De�nition 7 The �-calculus �a la de Bruijn is the reduction system (�;!�) where !� is theleast compatible reduction on � generated by the single rule:(�-rule) (�a) b!� aff1 bggFinally, the following lemma ensures the good passage of the �-rule through the meta-substitutions and the U ik.Lemma 7 Let a; b; c; d 2 �.1. If c!� d then U ik(c)!� U ik(d) .2. If c!� d then affi cgg !!� affi dgg .3. If a!� b then affi cgg !� bffi cgg .Proof: The �rst item is proved by induction on c. We just check the interesting case whicharises when c = c1c2 and the reduction takes place at the root, i.e. c1 = (�a), c2 = b andd = aff1 bgg:U ik((�a)b) = (�(U ik+1(a)))U ik(b)!� U ik+1(a)ff1 U ik(b)gg L 6= U ik(aff1 bgg)The second item is proved by induction on a using 1 above.The third item is also proved by induction on a. For the case a = (�d)e and b = dff1 egg,Lemma 4 is required. 2This lemma was used in [KR95a] to prove the con
uence of �s. We shall only use in thispaper the �rst item. Nevertheless we have included here the complete version in order that thereader could compare these results with the analogous results for the new meta-substitutionsand updatings which shall be introduced in section 3.In order to de�ne the set of free variables of a term in de Bruijn notation we need �rst tode�ne the following operations on sets of natural numbers.De�nition 8 Let N � IN and k � 0. We de�ne1. N n k = fn� k : n 2 N; n > kg , N + k = fn+ k : n 2 Ng2. N>k = fn 2 N : n > kg , N<k = fn 2 N : n < kg5



3. N�k = fn 2 N : n � kg , N�k = fn 2 N : n � kg .The following properties of the operations de�ned above will be needed later and theirproofs are easy.Remark 2 Let N; M � IN and k; k0 � 0. We have1. (N [M) n k = (N n k) [ (M n k) , (N [M) + k = (N + k) [ (M + k).2. (N n k) n k0 = N n (k + k0).3. N n 1 = N>1 n 1 , (N>k+1 n 1) + 1 = (N>k+1 + 1) n 1.4. (N + k) n 1 = N + (k � 1) if k � 1.5. (N n 1)<k = (N<k+1) n 1 , (N n 1)�k = (N�k+1) n 1.6. (N n 1)>k = (N>k+1) n 1 , (N n 1)�k = (N�k+1) n 1We can de�ne now the free variables of a term in �.De�nition 9 The set of free variables of a term in � is de�ned by induction as follows:FV (n) = fngFV (a b) = FV (a) [ FV (b)FV (�a) = FV (a) n 1Lemma 8 For a 2 � we have FV (U ik(a)) n k = (FV (a) n k) + (i� 1).Proof: Induction on a. Use Remark 2.1 for the case a = b c and Remark 2.2 for the casea = �b. 2Lemma 9 For a; b 2 � and j � 1, the following hold:1. FV (affj bgg) = (FV (a))<j [ ((FV (a))>j n 1) if j 62 FV (a).2. FV (affj bgg) = (FV (a))<j [ ((FV (a))>j n 1) [ (FV (b) + (i� 1)) if j 2 FV (a).Proof: By simultaneous induction on a. Use the previous lemma for the case a = j andRemark 2.4, 5, 6 for the case a = �b. 2Lemma 10 If a!� b then FV (b) � FV (a).Proof: By induction on a. The interesting case is when a is an application and the contractiontakes place at the root. The previous lemma settles this case. 26



2.3 The �-calculus and the �exp-calculusWe assume the reader familiar with the �-calculus (cf. [Bar84]) in classical notation. We justrecall the syntax of its terms and the de�nition of �-reduction.De�nition 10 Given a set of variables V = fvn : n 2 INg we de�ne recursively the set ofterms �V as follows: �V ::= V j �V �V j �V:�VWe use x; y; : : : to range over V and A; B; : : : to range over �V . We assume that di�erentvariable names stand for di�erent variables.We say that a reduction ! is compatible on �V when for all A; B; C 2 �V and x 2 V ,we have A! B implies AC ! BC, C A! C B and �x:A! �x:B.Barendregt's variable convention (see [Bar84]), abbreviated VC, is used and �-congruentterms (terms which only di�er on the name of bound variables) are identi�ed.The classical notions of meta-substitution and �-congruence are de�ned as usual (cf.[Bar84]). The meta-substitution of x by B in A is denoted by A[x := B] and A � B meansthat A and B are �-congruent.De�nition 11 The �-calculus is the reduction system (�V ;!�), where !� is the least com-patible reduction on �V generated by:(�-rule) (�x:A)B! A[x := B]The �exp-calculus of [Blo95] is a calculus of explicit substitutions where variable namesare used instead of de Bruijn numbers. Its set of rules is minimal and the rule of substitution-abstraction-transition mimicks the de�nition of the meta-substitution acting with an abstrac-tion. The �exp-calculus is de�ned in [Blo95] in item notation (cf. [KN96]), but, since we arenot going to exploit here the advantages of this notation, we present its standard form.We begin by giving the syntax of the terms:De�nition 12 Given a set of variables V = fvn : n 2 INg we de�ne recursively the set ofterms �exp as follows:�exp ::= V j �exp�exp j �V:�exp j �exp�V �expWe use x; y; : : : to range over V and A; B; : : : to range over �exp. We assume that di�erentvariable names stand for di�erent variables. We call the terms which do not contain �'s, pureterms and identify them with the terms of the classical �-calculus.We say that a reduction ! is compatible on �exp when for all A; B; C 2 �exp andx 2 V , we have A! B implies AC ! B C, C A! C B, �x:A! �x:B, A�xC ! B�xC andC�xA! C�xB.A trivially extended Barendregt's variable convention is used and �-congruent terms (seebelow) are identi�ed.De�nition 13 The set of free variables of a term A, denoted FV (A), the meta-substitutionof x by B in a term A, denoted A[x := B], and the notion of �-congruence between terms Aand B, denoted A � B are de�ned as usual, with the respective extra clauses:7



1. FV (C�xD) = (FV (C)� fxg) [ FV (D)2. (C�xD)[x := E] = C�x(D[x := E])(C�xD)[y := E] = (C[y := E])�x(D[y := E]) with x 62 FV (E) or y 62 FV (C)3. C�xD � C[x := y]�yDDe�nition 14 The �exp-calculus is the reduction system (�exp;!�exp), where !�exp is theleast compatible reduction on �exp generated by the rules given below:�-generation (�x:A)B �! A�xB�-�-transition (�y:A) �xB �! �y:(A�xB) (*)�-app-transition (AB) �xC �! (A�xC) (B�xC)�-var1 x �xA �! A�-var2 y �xA �! yIn (*) we have the condition y 62 FV (B), which can be assumed to hold always due to VC.We use �exp to denote this set of rules. The calculus of substitutions associated with the�exp-calculus is the rewriting system whose rules are �exp � f�-generationg and we call itexp-calculus (in [Blo95] it is called ��).The main result in [Blo95] is the preservation of strong normalisation of the �exp-calculuswith respect to classical �-calculus:Theorem 1 (PSN of �exp) Every term which is strongly normalising in the classical �-calculus is also strongly normalising in the �exp-calculus.2.4 Isomorphism between (�V ;!�) and (�;!�)It is well known that the classical �-calculus and its de Bruijn version are isomorphic rewritingsystems. Nevertheless we explicit here the isomorphism, since we are going to extend it later.De�nition 15 For every term A 2 �V such that FV (A) � fx1; : : : ; xng we de�ne, by induc-tion on A, w[x1;:::;xn](A) as follows:w[x1;:::;xn](vi) = minfj : vi = xjgw[x1;:::;xn](BC) = w[x1;:::;xn](B)w[x1;:::;xn](C)w[x1;:::;xn](�x:B) = �w[x;x1;:::;xn](B)The notation [x1; : : : ; xn] stands for the ordered list whose elements are x1; : : : ; xn.Remark that the previous de�nition is correct, i.e. that �-congruent terms have the sameimage. This is a consequence of the following lemma.Lemma 11 Let A 2 �V such that FV (A) � fx1; : : : ; xng and let y 62 fx1; : : : ; xng. Thenw[x1;:::;xn](A) = w[x1;:::;xi�1;y;xi+1 ;:::;xn](A[xi := y]).8



Proof: Easy induction on A. 2We de�ne now a uniform w, i.e. not depending on the free variables of the term.De�nition 16 Let fv1; : : : ; vn; : : :g be an enumeration of V . We de�ne w : �V ! � as thefunction given by w(A) = w[v1;:::;vn](A) where n is such that FV (A) � fv1; : : : ; vng.The de�nition is correct in the following sense.Lemma 12 Let A 2 �V such that FV (A) � fx1; : : : ; xng and let y1; : : : ; ym be arbitraryvariables. Then w[x1;:::;xn;y1;:::;ym](A) = w[x1;:::;xn](A).Proof: Easy induction on A. 2We need to establish some lemmas before proving that w preserves reduction. Theselemmas state how the functions w[x1;:::;xn] behave with the updating functions and the meta-substitutions.Lemma 13 Let A 2 �V , k � 0, i � 1 and n � k + i such that xk+1; : : : ; xk+i�1 62 FV (A).Then w[x1;:::;xn](A) = U ik(w[x1;:::;xk ;xk+i;:::;xn](A)).Proof: By induction on A. The case A = a b only needs the inductive hypothesis (IH).Therefore, we just study:A = vm : Let j = minfi : vm = xig. Then w[x1;:::;xn](vm) = j.If j � k we have w[x1;:::;xn](A) = j = U ik(j) = U ik(w[x1;:::;xk;xk+i;:::;xn](A)).If j � k + i we have w[x1;:::;xn](A) = j = U ik(j� i+ 1) = U ik(w[x1;:::;xk;xk+i;:::;xn](A)).A = �x:B : We have w[x1;:::;xn](A) = �w[x;x1;:::;xn](B) IH= �U ik+1(w[x;x1;:::;xk ;xk+i;:::;xn](B)) =U ik(�(w[x;x1;:::;xk;xk+i;:::;xn](B)) = U ik(w[x1;:::;xk;xk+i ;:::;xn](A)). 2Lemma 14 Let A; B 2 �V such that the bound variables of B are not free in A and leti � 1, y = y1; : : : ; yi�1 and x = x1; : : : ; xn such that x is not bound in B, x is distinct fromy1; : : : ; yi�1 and y1; : : : ; yi�1 62 FV (A). Then w[y;x](B[x := A]) = (w[y;x;x](B))ffi w[x](A)gg.Proof: By induction on B. We just study the interesting cases:B = z 2 V : If z = x, thenw[y;x](B[x := A]) = w[y;x](A) L 13= U i0(w[x](A)) = (w[y;x;x](B))ffi w[x](A)ggIf fj : z = yjg 6= �, let k = minfj : z = yjg. Thenw[y;x](B[x := A]) = k = (w[y;x;x](B))ffi w[x](A)ggIf fj : z = xjg 6= �, let k = minfj : z = xjg. We can assume xk 6= x since the casez = x has already been considered. We havew[y;x](B[x := A]) = k+ i� 1 = k+ iffi w[x](A)gg = (w[y;x;x](B))ffi w[x](A)gg9



B = �z:D : Remark that, since x is not bound in B, x 6= z. We havew[y;x](B[x := A]) = �w[z;y;x](D[x := A]) IH= �(w[z;y;x;x](D))ffi+ 1 w[x](A)gg =(�w[z;y;x;x](D))ffi w[x](A)gg = (w[y;x;x](B))ffi w[x](A)ggRemark that we were able to apply the IH because, by VC, z 62 FV (A). 2Theorem 2 Let A; B 2 �V , if A!� B then w(A)!� w(B).Proof: It is enough to show that if FV (A) � fx1; : : : ; xng then w[x1;:::;xn](A)!� w[x1;:::;xn](B).Remark that since FV (B) � FV (A) (cf. [Bar84]), w[x1;:::;xn](B) is well de�ned.The proof is by induction on A. The interesting case is when A is an application and thereduction takes place at the root.Therefore, let A = (�x:D)E and B = D[x := E]. We havew[x1;:::;xn](A) = (�w[x;x1;:::;xn](D))w[x1;:::;xn](E)!�(w[x;x1;:::;xn](D))ff1 w[x1;:::;xn](E)gg L 14= w[x1;:::;xn](D[x := E]) = w[x1;:::;xn](B)Remark that the conditions on the variables of Lemma 14 hold thanks to VC. 2We give now the inverse of w:De�nition 17 Let a 2 �t such that FV (a) � f1; : : : ; ng and let x1; : : : ; xn 2 V . We de�neu[x1;:::;xn](d) by induction on d as follows:u[x1;:::;xn](i) = xiu[x1;:::;xn](a b) = u[x1;:::;xn](a)u[x1;:::;xn](b)u[x1;:::;xn](�b) = �x:u[x;x1;:::;xn](b) with x 62 fx1; : : : ; xngIn order to check that De�nition 17 is correct, we must verify that FV (a) � f1; : : : ; n+1gwhenever FV (�:a) � f1; : : : ; ng, which is obvious, and also that the de�nition of u[x1;:::;xn] onabstractions does not depend on the choice of the variable x. This proof is analogous to theproof of Lemma 29 and Lemma 30, which state the results we need for an extension of u.We remark that we have de�ned for each a 2 � a translation into �V which depends on nwhere n is such that FV (a) � f1; : : : ; ng. We remove now this condition and de�ne a uniformtranslation on �.De�nition 18 Let fv1; : : : ; vn; : : :g be the same enumeration of V as in De�nition 16, wede�ne u : �! �V as the function given by u(a) = u[v1;:::;vn](a) where n is such that FV (a) �f1; : : : ; ng.The de�nition is correct thanks to Lemma 31 below, which generalizes the result we needto an extension of u.As we did for w we can also check that u preserves classical reduction and to achievethis we must establish some lemmas which make the interaction of u with the updating andmeta-substitutions functions precise. Since these lemmas will not be used later, we includethem here for the sake of completeness and we just state them without giving detailed proofs.10



Lemma 15 Let a 2 �, i � 1, k � 0 and n � k + i such that FV (a) � f1; : : : ; n � i + 1g.Then u[x1;:::;xn](U ik(a)) � u[x1;:::;xk ;xk+i;:::;xn](a).Lemma 16 Let a; b 2 � and x1; : : : ; xn, y1; : : : ; yi�1, x distinct variables.Then u[y1;:::;yi�1;x1;:::;xn](affi bgg) � (u[y1;:::;yi�1;x;x1;:::;xn](a))[x := u[x1;:::;xn](b)].Theorem 3 Let a; b 2 �, if a!� b then u(a)!� u(b).We must only check now that in some sense w � u = Id and u � w = Id. We begin bystudying w � u, which as expected is exactly the identity.Lemma 17 For every a 2 � we have w(u(a)) = a.Proof: It is enouh to show that if FV (a) � f1; : : : ; ng then w[x1;:::;xn](u[x1;:::;xn](a)) = a.This is done by induction on a. The usual two interesting cases are:a = i : Since x1; : : : ; xn are distinct variables, we have: w[x1;:::;xn](u[x1;:::;xn](a)) =w[x1;:::;xn](u[x1;:::;xn](i)) = w[x1;:::;xn](xi) = i = a.a = �b : We have: w[x1;:::;xn](u[x1;:::;xn](a)) = w[x1;:::;xn](�x:u[x;x1;:::;xn](b) =�w[x;x1;:::;xn](u[x;x1;:::;xn](b)) IH= �b. 2As expected, we will not be able to obtain u[x1;:::;xn](w[x1;:::;xn](A)) = A, but we have�-equivalence: u[x1;:::;xn](w[x1;:::;xn](A)) � A.Lemma 18 For every A 2 �V we have u(w(A)) � A.Proof: By induction on A. 2The following corollary is an immediate consequence of the two previous lemmas.Corollary 1 The classical �-calculus (�V ;!�) and the �-calculus �a la de Bruijn (�;!�)are isomorphic.Theorem 4 The �-calculus �a la de Bruijn is con
uent.Proof: The con
uence of the classical �-calculus (cf. [Bar84] thm. 3.2.8) is transportable,via the isomorphism, to the �-calculus �a la de Bruijn.A proof which does not use the mentioned isomorphism is given in [R��o93] (Corollary 3.6)as a corollary of a more general result concerning the ��-calculus. 22.5 The �s-calculusWe end this section by recalling the �s-calculus and reminding the origin of its rules. Weshall follow the same intuition to formulate the rules of the �t-calculus.The idea is to handle explicitly the meta-operators de�ned in de�nitions 5 and 6. There-fore, the syntax of the �s-calculus is obtained by adding to the syntax of the �-calculus �a lade Bruijn two families of operators : 11



� f �igi�1 : this family is meant to denote the explicit substitution operators. Each �iis an in�x operator of arity 2 and a �ib has as intuitive meaning the term a whereall free occurrences of the variable corresponding to the de Bruijn number i are to besubstituted by the term b.� f'ikgk�0 i�1 : this family is meant to denote the updating functions necessary whenworking with de Bruijn numbers to �x the variables of the term to be substituted.De�nition 19 The set of terms of the �s-calculus, denoted �s , is given as follows:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :We take a; b; c to range over �s. A term of the form a �ib is called a closure. Furthermore,a term containing neither �'s nor ''s is called a pure term.The �s-calculus should carry out, besides �-reduction, the computations of updating andsubstitution explicitly. For that reason it contains, besides the rule mimicking the �-rule(�-generation), a set of rules which are the equations in de�nitions 5 and 6 oriented from leftto right.De�nition 20 The �s-calculus is the reduction system (�s;!�s), where !�s is the leastcompatible reduction on �s generated by the rules given below:�-generation (�a) b �! a �1 b�-�-transition (�a) �ib �! �(a �i+1 b)�-app-transition (a1 a2) �ib �! (a1 �ib) (a2 �ib)�-destruction n �ib �! 8><>: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! ( n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The calculus of substitutions associated with the �s-calculus is the rewriting system whose rules are �s�f�-generationg and we call it s-calculus.The main results concerning the �s-calculus are (see [KR95a] for proofs):Theorem 5 The �s-calculus is con
uent on �s.Theorem 6 (PSN of �s) Every �-term which is strongly normalising in the classical �-calculus is also strongly normalising in the �s-calculus.12



3 Another presentation of the �-calculus �a la de BruijnIn De�nition 6 we have de�ned iffi  bgg = U i0(b), but there is another choice: instead ofupdating b just before performing the substitution we can make partial updatings of b, eachtime the substitution operator traverses a � in order to have a term already updated andsimplify the equality by introducing a new meta-substitution [[  ]] such that i[[i  b]] = b.Of course this simpli�cation is only apparent since the de�nition of the substitution applied toan abstraction will become more involved. With these ideas in mind we propose the followingde�nitions:De�nition 21 The new updating functions Vk : �! � for k � 0 are de�ned inductively asfollows (compare with De�nition 5):Vk(ab) = Vk(a)Vk(b)Vk(�a) = �(Vk+1(a)) Vk(n) = ( n+ 1 if n > kn if n � k :De�nition 22 The new meta-substitutions at level i , for i � 1 , of a term b 2 � in a terma 2 � , denoted a[[i b]], are de�ned inductively on a by (compare with De�nition 6):a1a2[[i b]] = (a1[[i b]])(a2[[i b]])(�a)[[i b]] = �(a[[i+ 1 V0(b)]]) n[[i b]] = 8><>: n� 1 if n > ib if n = in if n < i :Before studying the properties of these new functions let us establish the relationshipbetween them and the old ones.Notation 1 We denote the ith iteration of Vk with itself by V ik , i.e. V ik(a) = Vk(: : :(Vka) : : :)(i times). By convention, V 0k (a) = a.Lemma 19 For a; b 2 �, i � 1 and k � 0 we have:1. U ik(a) = V i�1k (a).2. affi bgg = a[[i V i�10 (b)]].Proof: Easy induction on the structure of a. 2Remark 3 As a particular case of Lemma 19.2 we have aff1  bgg = a[[1  b]] and hencewe can describe �-reduction using the new meta-substitution functions as:(�-rule) (�a) b!� a[[1 b]]Unfortunately Lemma 19 cannot be used to prove all the properties we need to establishfor the new updating and meta-substitutions functions by exploiting the properties we alreadyknow for the old functions. Nevertheless, it will work for some of them.Lemma 20 For k � 0 we have Vk(V k0 (c)) = V k+10 (c).Proof: By Lemma 2, U2k (Uk+10 (c)) = Uk+20 (c). Now, use Lemma 19.1. 2The following lemma, though related to Lemma 1, cannot be deduced directly from it, aswe did for the previous lemma. 13



Lemma 21 For i; k � 0, we have V ik(a) = V i+1k (a)[[i+ k+ 1 V k0 (b)]].Proof: By indcution on the structure of a. 2Again, the next lemma, though related to Lemma 3, cannot be deduced from it.Lemma 22 For n > k, we have Vk(a[[n V k0 (c)]]) = Vk(a)[[n+ 1 V k+10 (c)]].Proof: By induction on the structure of a and using Lemma 20 for the case a = n. 2We are ready to prove now the Meta-substitution Lemma for this new meta-substitution.Lemma 23 (New Meta-substitution Lemma) If 1 � i � n, we havea[[i b]][[n V i�10 (c)]] = a[[n+ 1 V i0(c)]][[i b[[n V i�10 (c)]]]]Proof: By induction on a. Lemma 22 is necessary for the case a = �d and Lemma 21 settlesthe case a = n+ 1. 2Finally, the following lemma ensures the good passage of the �-rule through the newmeta-substitutions and updatings. It is crucial for the proof of the con
uence of �t.Lemma 24 Let a; b; c; d 2 �.1. If c!� d then Vk(c)!� Vk(d) .2. If c!� d then a[[i c]]!!� a[[i d]] .3. If a!� b then a[[i c]]!� b[[i c]] .Proof:1. It is a consequence of Lemma 19.1 and Lemma 7.12. Induction on a using 1 above.3. Induction on a. The interesting case is a = (�d)e and b = d[[1 e]]:((�d)e)[[i c]] = (�(d[[i+ 1 V0(c)]]))(e[[i c]])!�(d[[i+ 1 V0(c)]])[[1 e[[i c]]]] L 23= (d[[1 e]])[[i c]] 24 The �t-calculusNow, we shall handle explicitly the new meta-operators de�ned in de�nitions 21 and 22.Therefore, the syntax of the �t-calculus is obtained by adding to the syntax of the �-calculus�a la de Bruijn two families of operators :� f & igi�1 : this family is meant to denote the explicit substitution operators. Each & iis an in�x operator of arity 2 and a & ib has as intuitive meaning the term a whereall free occurrences of the variable corresponding to the de Bruijn number i are to besubstituted by the already updated term b.14



� f�kgk�0 : this family is meant to denote the new updating functions.De�nition 23 The set of terms of the �t-calculus, denoted �t , is given as follows:�t ::= IN j �t�t j ��t j �t & i�t j �k�t where i � 1 ; k � 0 :We take a; b; c to range over �t. A term of the form a & ib is called a closure. Furthermore,a term containing neither &'s nor �'s is called a pure term. By �ika for i � 1, we mean�k(�k(: : :(�ka))) (i �k-operators) and �0ka means a.The �t-calculus should carry out, as the �s-calculus, besides �-reduction, the computa-tions of updating and substitution explicitly. For that reason we include, besides the rulemimicking the �-rule (&-generation), a set of rules which are the equations in the de�nitions21 and 22 oriented from left to right.De�nition 24 The �t-calculus is the reduction system (�t;!�t), where !�t is the leastcompatible reduction on �t generated by the rules given below:&-generation (�a) b �! a &1 b&-�-transition (�a) & ib �! �(a & i+1 �0(b))&-app-transition (a1 a2) & ib �! (a1 & ib) (a2 & ib)&-destruction n & ib �! 8><>: n� 1 if n > ib if n = in if n < i�-�-transition �k(�a) �! �(�k+1 a)�-app-transition �k(a1 a2) �! (�k a1) (�k a2)�-destruction �k n �! ( n+ 1 if n > kn if n � kWe use �t to denote this set of rules. The calculus of substitutions associated with the �t-calculus is the rewriting system whose rules are �t� f&-generationg and we call it t-calculus.The main di�erence between �t and �s can be summarized as follows: the �t-calculus gen-erates a partial updating when a substitution is evaluated on an abstraction (i.e. introducesan operator �0 in the &-�-transition rule) whereas the �s-calculus produces a global updatingwhen performing substitutions (i.e. introduces a 'i0 operator in the �-destruction rule, casen = i).The �t-calculus shares this mechanism of partial updatings with the ��-caculi and theirdescendants �� and �� since all of them introduce an updating operator in their substitution-abstraction-transition rule.We shall prove now the con
uence of the �t-calculus. First we must establish some resultsconcerning the associated calculus of substitutions t.Theorem 7 (SN and con
uence of t) The t-calculus is SN and con
uent on �t. Hence,every term a has a unique t-normal form denoted t(a).15



Proof: Let us de�ne recursively two weight functions W1 and W2:W1(n) = 2 W2(n) = 1W1(a b) = W1(a) +W1(b) W2(a b) = W2(a) +W2(b) + 1W1(�a) = W1(a) + 2 W2(�a) = W2(a) + 1W1(�ka) = W1(a) W2(�ka) = 2W2(a)W1(a & ib) = W1(a)(W1(b)) W2(a & ib) = W2(a)(W2(b) + 1)It is easy to check that for every rule a! b in t we have W1(a) � W1(b) and, furthermore,if the rule is &-�-transition then W1(a) > W1(b).On the other hand, for every rule a! b in t � f&-�-transitiong we have W2(a) > W2(b).Therefore, one can show by induction on a that whenever a ! b, (W1(a);W2(a)) >lex(W1(b);W2(b)), where >lex is the lexicographical order in IN� IN.Since there are no critical pairs, the theorem of Knuth-Bendix (cf. [KB70] or [Hue80])applies trivially to yield the local con
uence of the t-calculus.Finally, Newman's lemma, which states that every strong normalising and locally con
uentrelation is con
uent (cf. [Bar84], Proposition 3.1.25), provides the con
uence of the t-calculus.2Lemma 25 The set of t-normal forms is exactly �.Proof: Check �rst by induction on a that a & ib and �ka are not normal forms. Then checkby induction on a that if a is a t-nf then a 2 �. Conclude by observing that every term in �is a t-nf. 2Lemma 26 For all a; b 2 �t we have:t(a b) = t(a)t(b) , t(�a) = �(t(a)) , t(�ka) = Vk(t(a)) , t(a & ib) = t(a)[[i t(b)]] .Proof: The �rst and second equalities are immediate since there are no t-rules whose left-hand side is an application or an abstraction.Prove the third equality for terms in t-nf, i.e. use an inductive argument on c 2 � to showt(�kc) = Vk(t(c)). Let now a 2 �t, t(�ka) = t(�kt(a)) = Vk(t(t(a))) = Vk(t(a)).Prove the fourth claim similarly using the third one. 2We give now the key result that allows us to use the Interpretation Method in order to getthe con
uence of the �t-calculus: the good passage of the &-generation rule to the t-normalforms.Lemma 27 Let a; b 2 �t , if a!&�gen b then t(a)!!� t(b) .Proof: Induction on a. We just study the interesting cases.a = c d : If the reduction takes place within c or d just use the IH. The interesting case iswhen c = �e and hence b = e &1d:t((�e)d) = (�t(e))(t(d))!� t(e)[[1 t(d)]] L 26= t(e &1d)a = c & id : If the reduction takes place within c, i.e. c!&�gen e and b = e & id, thent(c & id) L 26= t(c)[[i t(d)]] IH & L 24:3!!� t(e)[[i t(d)]] L 26= t(e & id)If the reduction takes place within d, lemma 24.2 applies.16



a = �kc : The reduction must take place within c. Use lemma 26 and lemma 24.1. 2Now, the following corollaries are immediate.Corollary 2 Let a; b 2 �t , if a!!�t b then t(a)!!� t(b) .Corollary 3 (Soundness) Let a; b 2 � , if a!!�t b then a!!� b .This last corollary says that the �t-calculus is correct with respect to the classical �-calculus, i.e. derivations of pure terms ending with pure terms can also be derived in theclassical �-calculus.Finally, before proving con
uence, we verify that the �t-calculus is powerful enough tosimulate �-reduction.Lemma 28 (Simulation of �-reduction) Let a; b 2 �, if a!� b then a!!�t b .Proof: Induction on a. As usual the interesting case is when a = (�c)d and b = c[[1 d]]:(�c)d!&�gen c&1d!!t t(c&1d) L26= t(c)[[1 t(d)]] c;d2�= c[[1 d]] 2Theorem 8 (Con
uence of �s) The �t-calculus is con
uent on �t.Proof: We interpret the �t-calculus into the �-calculus via t-normalisation. We have:a �����������t@@@@R@@@@R�t bc --t --t--t t(a) t(b)t(c)�����������@@@@R@@@@R� @@@@R@@@@R������������ dThm. 4The existence of the arrows t(a)!!� t(b) and t(a)!!� t(c) is guaranteed by Corollary 2. Wecan close the diagram thanks to the con
uence of the �-calculus and �nally lemma 28 ensurest(b)!!�t d and t(c)!!�t d proving thus CR for the �t-calculus. 25 Interpretation of �t into �expThe function that interprets �t into �exp is an extension of the function u : � ! �V (cf.De�nition 18). Before introducing it, we must extend the notion of free variable.De�nition 25 The set of free variables of a term in �t is de�ned by extending De�nition 9as follows:FV (�ka) = FV (a)�k [ (FV (a)>k + 1)FV (a & ib) = FV (a)<i [ (FV (a)>i n 1)[ FV (b)17



De�nition 26 Let a 2 �t such that FV (a) � f1; : : : ; ng and let x1; : : : ; xn 2 V . We de�neu[x1;:::;xn](d) by extending De�nition 17 as follows:u[x1;:::;xn](a & ib) = ( u[x1;:::;xi�1;x;xi;:::;xn](a)�xu[x1;:::;xn](b) if n � i , x 62 fx1; : : : ; xngu[x1;:::;xn](a)�xu[x1;:::;xn](b) if n < i , x 62 fx1; : : : ; xngu[x1;:::;xn](�ka) = 8>><>>: u[x1;:::;xk;xk+2;:::;xn](a) if n > k + 1u[x1;:::;xk](a) if n = k + 1u[x1;:::;xn](a) if n < k + 1In order to check that De�nition 26 is correct, the following remark, whose proof is easy,is needed.Remark 4 Let a; b 2 �t.1. If FV (�a) � f1; : : : ; ng then FV (a) � f1; : : : ; n+ 1g.2. If FV (a & ib) � f1; : : : ; ng then FV (b) � f1; : : : ; ng andif n � i then FV (a) � f1; : : : ; n+ 1g else FV (a) � f1; : : : ; ng.3. If FV (�ka) � f1; : : : ; ng thenif n � k + 1 then FV (a) � f1; : : : ; n� 1g else FV (a) � f1; : : : ; ng.Furthermore, the de�nition of u for abstractions and substitutions does not depend onthe choice of the variable x thanks to the following lemma.Lemma 29 Let a; b 2 �t such that FV (a) � f1; : : : ; n+ 1g and let x1; : : : ; xn distinct vari-ables and x; y variables such that x; y 62 fx1; : : : ; xng.Then �x:u[x;x1;:::;xn](a) � �y:u[y;x1;:::;xn](a) andu[x1;:::;xi�1;x;xi;:::;xn](a)�xb � u[x1;:::;xi�1;y;xi;:::;xn](a)�yb.Proof: It is an immediate consequence of the following lemma. 2Lemma 30 Let b 2 � such that FV (b) � f1; : : : ; n+m+1g, and let the variables x1; : : : ; xn,z1; : : : ; zm, x and y be all distinct . Then (u[z1;:::;zm;x;x1;:::;xn](b))[x := y] � u[z1;:::;zm;y;x1;:::;xn](b).Proof: By induction on b. The two interesting cases are b = �a and b = a & ic. Since thetreatment of the second is analogous to the �rst one, we just study b = �a.Let us denote x = x1; : : : ; xn and z = z1; : : : ; zm.Let u[z;x;x](b) = �w:u[w;z;x;x](a). Let u[z;y;x](b) = �v:u[v;z;y;x](a).Remark that we can assume that w 6= y. In fact, if w = y we can choose z such that z 6= yand also distinct from x1; : : : ; xn, z1; : : : ; zm, x, and we haveu[z;x;x](b) � �z:u[w;z;x;x](a)[w := z] IH� �z:u[z;z;x;x](a)Therefore, since w 6= y, we have(u[z;x;x](b))[x := y] = (�w:u[w;z;x;x](a))[x := y] = �w:u[w;z;x;x](a)[x := y] IH��w:u[w;z;y;x](a) � �v:u[w;z;y;x](a)[w := v] IH� �v:u[v;z;y;x](a) = u[z;y;x](b) 218



De�nition 27 Let fv1; : : : ; vn; : : :g be the same enumeration of V as in De�nitions 16 and18, we de�ne u : �t! �exp as the function given by u(a) = u[v1;:::;vn](a) where n is such thatFV (a) � f1; : : : ; ng.The de�nition is correct thanks to the following lemma.Lemma 31 If a 2 �t, FV (a) � f1; : : : ; ng and m > n then u[v1;:::;vn](a) = u[v1;:::;vm](a).Proof: Easy induction on a. 2Remark that u is not one-to-one. Indeed, u cannot tell the di�erence between terms andtheir updatings, when they are t-equivalent. For instance, u(�01) = v1 = u(1).Lemma 32 Let a; b 2 �t, if a!�t b then FV (b) � FV (a).Proof: By induction on a. If the reduction is internal the conclusion follows immediatelyfrom the IH. If the reduction is at the root, we must check that for every rule a! b we haveFV (b) � FV (a). This is easily done using Remark 2. 2Theorem 9 Let a; b 2 �t.1. If a!t b then u(a) =!exp u(b).2. If a!!t b then u(a)!!exp u(b).3. If a!&�gen b then u(a)!�exp u(b).Proof: To prove the �rst item we prove that if a !t b and FV (a) � f1; : : : ; ng thenu[x1;:::;xn](a) =!exp u[x1;:::;xn](b).Remark �rst that Lemma 32 guarantees the correct de�nition of u[x1;:::;xn](b).The proof is by induction on a. If the reduction is internal, the IH is enough to settle thelemma. We must check now that for every rule a !t b the lemma holds. As an example westudy the rule &-�-transition:If, for instance, n � i we have:u[x1;:::;xn]((�a) & ib) = u[x1;:::;xi�1;x;xi;:::;xn](�a)�xu[x1;:::;xn](b) =(�y:u[y;x1;:::;xi�1;x;xi;:::;xn](a))�xu[x1;:::;xn](b) =(�y:u[y;x1;:::;xi�1;x;xi;:::;xn](a))�xu[y;x1;:::;xn](�0b)!�y:(u[y;x1;:::;xi�1;x;xi;:::;xn](a)�xu[y;x1;:::;xn](�0b)) =�y:u[y;x1;:::;xn](a& i+1(�0b)) = u[x1;:::;xn](�(a& i+1(�0b)))It is this case that shows why the rule �-�-transition of the �s-calculus had to be changedinto the rule &-�-transition of the �t-calculus.Remark also that the �-rules are the ones that leave the translations unchanged, i.e. ifa!��rule b then u[x1;:::;xn](a) = u[x1;:::;xn](b). 19



The second item is easily obtained by proving that if a !!t b then u[x1;:::;xn](a) !!expu[x1;:::;xn](b) by induction on the length of the derivation using the �rst item.For the third item, we prove that if a !&�gen b then u[x1;:::;xn](a) !�exp u[x1;:::;xn](b) byinduction on a. The interesting case arises when the reduction takes place at the root:If n > 0 we have:u[x1;:::;xn]((�a)b) = (�x:u[x;x1;:::;xn](a))u[x1;:::;xn](b)!u[x;x1;:::;xn](a)�xu[x1;:::;xn](b) = u[x1;:::;xn](a&1b)If n = 0 we have:u[ ]((�a)b) = (�x:u[x](a))u[ ](b)! u[x](a)�xu[ ](b) (1)= u[ ](a)�xu[ ](b) = u[ ](a&1b)where equality (1) holds because of Lemma 31 (with n = 0 and m = 1) and the fact thatFV (a) = � (since FV (a&1b) = �, Remark 4 yields FV (a) = �). 26 �t preserves strong normalisationUsing Theorem 9 and the PSN of �exp, we can show the PSN of �t. In order to do that wemust use the fact that u, when restricted to pure terms, is an isomorphism. As a matterof fact, a weaker hypothesis than the existence of an isomorphism is enough, namely thatu, when restricted to pure terms, admits a left inverse which preserves reduction. This wasproved in subsection 2.4.Theorem 10 (PSN of �t) Every �-term which is strongly normalising in the �-calculus �ala de Bruijn is also strongly normalising in the �t-calculus.Proof: Since a 2 �-SN, Theorem 2 and Lemma 17 guarantee that u(a) is strongly normalisingin the classical sense. The Preservation Theorem for �exp (see Theorem 1) ensures u(a) 2�exp-SN.If we assume a 62 �t-SN, leta!�t a1 !�t : : :!�t an !�t : : :be an in�nite derivation. Since the t-calculus is SN (see Theorem 7), this derivation mustcontain an in�nity of &-generations:a!!t a01 !&�gen a02 !!t : : :!!t a02n+1 !&�gen a02n+2 !!t : : :Now, by Theorem 9.2 and 9.3, we have:u(a)!!exp u(a01)!�exp u(a02)!!exp : : :!!exp u(a02n+1)!�exp u(a02n+2)!!exp : : :and this contradicts the fact that u(a) 2 �exp-SN. Therefore, a 2 �t-SN. 220



7 Comparison with �� and ��For the syntax and rules of the �� and �� calculi see [ACCL91] and [BBLRD95], respectively.The �t calculus can be interpreted into the �� calculus using a similar translation as theone presented in [KR95a] to interpret the �s-calculus into ��. However, in the case of the �t-calculus the interpretation works better: now �t-derivations are preserved (only s-derivationsand not �s derivations were preserved by the translation in [KR95a].)In order to give the translation into the ��-calculus we give the following two de�nitions.De�nition 28 For k � 0 we de�ne sk as follows: s0 =" and sk = 1 � 2 � : : : � k� "k+1 .De�nition 29 Let b 2 ��t , we de�ne a family of substitutions (bk)k�1 as follows:b1 = b � id b2 = 1 � b � " : : : bi+1 = 1 � 2 � : : : � i � b � "i : : :Using the rules (Map), (Clos), (Ass) and (IdL) it is easy to verify that:Remark 5 1 � (bi� ")!!� (b["])i+1 and 1 � (sk� ")!!� sk+1.De�nition 30 The translation function T : �s! ��t is de�ned by:T (n) = n T (a b) = T (a)T (b) T (a & ib) = T (a)[T (b)i] T (�a) = �(T (a)) T (�ka) = T (a)[sk]Theorem 11 If a!�t b then T (a) +!�� T (b).Proof: Induction on a. We just check, as an example, the case a = n & ic when the reductiontakes place at the root:T (n & ic) = n[T (c)i] +!� 8><>: n� 1 = T (n� 1) if n > iT (c) if n = in = T (n) if n < i 2Even if �t is interpreted in �� more faithfully than �s (the �-generation rule translates(cf. [KR95a]) into a ��-equivalence rather than a derivation), no reasonable translation of�t into �� seems possible. The reason is that the operators of �� are not able to express,for instance, the ��-substitution 12 = 1 � 1 � ". Remark that in [KR95a] 12 was de�ned as1 � 1["] � ", and this ��-substitution is avilable in the �� syntax as *(1=).The rest of this section will be devoted to compare the length of the derivations whichsimulate �-reduction in �t and ��. We choose now �� instead of �� because derivations areshorter in �� than in ��. We are going to prove that �-simulation in �t (one step &-generationfollowed by t-derivation to normal form) is more e�cient than �-simulation in �� (one stepB followed by �-derivation to normal form).We begin by introducing a set of terms �� on which induction will be used to de�ne afunction that computes the length of certain derivations. We are mainly interested in pureterms, which are contained in ��, but the introduction of �� is necessary since it provides astrong induction hypothesis to prove the auxiliary results needed.De�nition 31 �� ::= IN j ���� j ��� j �k�� , where k � 0. The length of terms in �� isde�ned by:L�(n) = 1 L�(ab) = L�(a) + L�(b) + 1 L�(�a) = L�(�ka) = L�(a) + 1 .By induction on a 2 �� we mean induction on L�(a).21



Remark 6 Let a 2 �� and k � 0, then L�(a) � L�(t(�ka)).Proof: By induction on a. The interesting case is when a = �mb. By IH we have L�(b) �L�(t(�mb)) and since L�(a) > L�(b), we apply again the IH (now to L�(t(�mb))) to obtainL�(t(�mb)) � L�(t(�k(t(�mb)))) = L�(t(�k(�mb))). Hence, L�(a) � L�(t(�ka)). 2The next remark will be used frequently without explicit mention.Remark 7 If a 2 �� and a!t b then b 2 ��.Proof: Easy induction on a. 2De�nition 32 We de�ne M : �� ! IN by induction as follows:M(n) = 1 M(ab) = M(a) +M(b) + 1 M(�a) = M(a) + 1 M(�ka) = M(t(�ka)) +M(a)Remark that the de�nition is correct thanks to remark 6.Lemma 33 For a 2 ��, every t-derivation of �ka to its t-normal form has length M(a).Proof: By induction on the weightW (a) = (W1(a);W2(a)) used to prove SN for the t-calculus(see proof of Theorem 7). The basic case (a = n) is immediate, since all the derivations of�kn to its nf have length 1. We proceed now by a case analysis. We just treat the case a = bcsince the argument is similar for the other cases.Let us consider a derivation D of �k(bc) to its nf.If the �rst step is internal, say b ! b0, we know by IH (P (b0c) < P (bc)) that everyderivation of �k(b0c) to its nf has length M(b0c) = M(b0) +M(c) + 1. But IH (now appliedto b (P (b) < P (bc)) and b0 (P (b0) < P (bc)) and the fact that �kb ! �kb0) also gives M(b0) =M(b)� 1. Hence M(b0c) = M(b) +M(c) = M(bc)� 1. Therefore, the length of D is M(bc).If the �rst step is �k(bc) ! �k(b)�k(c), since there are no rules in t which contract anapplication, every derivation of �k(b)�k(c) to its nf, has length (IH applied to b and c) M(b)+M(c) = M(bc)� 1. Therefore, the length of D is again M(bc). 2Corollary 4 For a 2 ��, all the t-derivations of �ika to its t-normal form have the samelength, namely (i� 1)M(t(a)) +M(a).Proof: Prove �rst by induction on a 2 �� that M(t(a)) = M(t(�ka)), then use Lemma 33to prove the corollary. 2Now we are going to prove the corresponding results for ��. Since the proofs are analogous,we just state the results.De�nition 33 �" ::= IN j �"�" j ��" j �"[*k (")] , where k � 0. The length of terms in�" is given by: L"(n) = 1 L"(ab) = L"(a) + L"(b) + 1 L"(�a) = L"(a[*k (")]) = L"(a) + 1 .Remark 8 Let a 2 �" and k � 0, then L"(a) � L"(�(a[*k (")])).Remark 9 If a 2 �" and a!t b then b 2 �".De�nition 34 For k � 0, we de�ne Mk : �� ! IN as follows:Mk(n) = ( 2k + 1 if n > k Mk(ab) = Mk(a) +Mk(b) + 1 Mk(�a) = Mk(a) + 12n� 1 if n � k Mk(a[*p (")]) = Mk(�(a[*p(")])) +Mp(a)22



Lemma 34 For a 2 �", all the �-derivations of a[*k (")] to its �-nf have length Mk(a).Proof: By induction on the weight used to show SN for the �-calculus (cf. [BBLRD95]) andcase analysis. 2Corollary 5 For a 2 �", all the �-derivations of a[*k (")]i to its �-normal form have thesame length, namely (i� 1)Mk(�(a)) +Mk(a).Lemma 35 Let b 2 �, for every derivation b[*k (")]i !!m� �(b[*k (")]i) there exists n � msuch that �ipb!!nt t(�ipb).Proof: Prove �rst that for every b 2 � and k � 0, Mk(b) � M(b) by induction on b 2 �.Conclude using lemmas 33 and 34. 2De�nition 35 Let a; b 2 � and i � 0, we de�ne Pi(a; b) by induction on a:Pi(n; b) = 8><>: 2i+ 1 if n > i+ 12n� 1 if n < i+ 1i(1 +M0(b)) + 1 if n = i+ 1 Pi(cd; b) = Pi(c; b) + Pi(d; b) + 1Pi(�c; b) = Pi(c; b) + 1Lemma 36 Let a; b 2 � and i � 0, all the �-derivations of a[*i (b=)] to its �-nf have thesame length, namely Pi(a; b).Proof: Easy induction on a 2 �. 2Lemma 37 Let a; b 2 � and i � 0, there exists a derivation of a�i+1(�i0b) to its t-nf whoselength is less than or equal to Pi(a; b).Proof: By induction on a reducing always at the root. For the case a = i+ 1 use the factthat M0(b) �M(b) (see proof of Lemma 35). 2Theorem 12 �-simulation is more e�cient in �t than in ��.Proof: We prove that for every a 2 � and every ��-derivation a!B b!!m� �(b) there existsn � m such that a!��gen c!!nt t(c) by induction on a.The interesting case is a = (�d)e !B d[e=] !!m �(d[e=]). By Lemma 36 we know thatm = P0(d; e) and Lemma 37 gives a derivation d�1e!!nt t(d�1e) such that n � P0(d; e).Remark that there are an in�nity of cases for which the inequality is strict. For instance,let us consider the term (�� : : :�:n)a with m �'s and n > m > 1. It is easy to check, usingthe function Pm�1 de�ned above that 3m� 2 reductions are needed to simulate �-reductionin ��, whereas only m+1 reductions are su�cient in �t. Remark that for m > n the numberof reductions needed in �� is also strictly greater than the number needed in �t. 28 About extensions on open termsWe end our work by pointing out the di�culties that arise when trying to extend �t to acon
uent calculus on open terms.Let us recall that such an extension was successful for �s and gave rise to the con
uentcalculus �se (cf. [KR96]). 23



De�nition 36 The set of open terms, denoted �top , is given as follows:�top ::= V j IN j �top�top j ��top j �top & i�top j �k�top where i � 1 ; k � 0and where V stands for a set of variables, over which X, Y , ... range. We take a; b; c torange over �top. Furthermore, closures, pure terms and compatibility are de�ned as for �t.Working with open terms one loses con
uence as shown by the following counterexample:((�X)Y )&11! (X&1Y )&11 ((�X)Y )&11! ((�X)&11)(Y &11)and (X&1Y )&11 and ((�X)&11)(Y &11) have no common reduct. Moreover, the above exampleshows that even local con
uence is lost.When studying the same counterexample for �s, we found that, since ((�X)�11)(Y �11)!! (X�21)�1(Y �11), the solution to the problem seemed at hand if one had in mind the prop-erties of meta-substitutions and updating functions of the �-calculus in the Bruijn notation(cf. lemmas 1 - 6). These properties are equalities which can be given a suitable orienta-tion and the new rules, thus obtained, added to �s give origin to a rewriting system whichhappens to be locally con
uent (cf. [KR95b]). For instance, the rule corresponding to theMeta-substitution lemma (lemma 4) is the �-�-transition rule given below.�-�-transition (a �ib) �j c �! (a �j+1 c) �i (b �j�i+1 c) if i � jThe addition of this rule solves the critical pair for �s, since now we have (X�1Y )�11!(X�21)�1(Y �11).Following the same method we can try an orientation of the equality given in Lemma 23to �nd our &-&-transition rule:&-&-transition (a & ib) &j �i�10 c �! (a &j+1 �i0c) & i (b &j �i�10 c) if i � jRemark that in the �-�-transition rule no such operator appears. This new situation givesrise to undesirable critical pairs. For instance:(a & ib) &j �i�10 (�d)! (a &j+1 �i0(�d)) & i (b &j �i�10 (�d))(a & ib) &j �i�10 (�d)! (a & ib) &j �(�i�11 c)Since these critical pairs cannot be solved without creating new ones, we can try anotherapproach to our problem: consider a generalization of the &-&-transition rule that avoids theoccurrence of the � operator in the left hand side:new &-&-transition (a & ib) &j c �! (a &j+1 �0c) & i (b &j�i+1 c) if i � jBut this rule is not correct. Indeed, it is easy to check that with it, it is possible to derive(3&23)&21!! 2 while if only &-destruction is used the derivation is (3&23)&21!! 1.Therefore, the �t-calculus does not seem to possess a reasonable extension on open terms.24



9 ConclusionEven if the �t-calculus cannot be extended to a con
uent extension on open terms (of thecalculi mentioned in the Introduction, only the �s-calculus, the ��*-calculus of the ��-familyand the ��-calculus enjoy this property; furthermore, ��* and �� are themselves con
uenton open terms), it happens to be an interesting calculus for two reasons:1. It can be related to �exp, as we have shown in this paper, via an immersion which is anextension of the classical isomorphism between the classical �-caculus and its de Bruijnversion.2. While being a calculus �a la �s, it works with partial updatings and this is a feature thatcharacterizes the ��-calculi, the ��-calculus and the ��-calculus. Therefore, it o�ers anew perspective between the �s and the �� styles.3. It simulates �-reduction more e�ciently than �� which seems to be the most e�cientof the calculi in the ��-style.One of the questions we raised in the Introduction is still unanswered, namely if the�exp-calculus is isomorphic to a calculus in de Bruijn notation which could be described in asatisfactory manner. Our attempts to show that there is an inmersion in the other directionhave failed and we conclude this paper by pointing out the problems that arise when tryingto de�ne such an immersion, i.e. the inmersion of �exp into �t.Now the question is how to extend the functions w[x1;:::;xn] given in De�nition 15. Thereforewe must de�ne w[x1;:::;xn](a�xb). Sincew[x1;:::;xn]((�x:a)b) = (�w[x;x1;:::;xn](a))(w[x1;:::;xn](b))! w[x;x1;:::;xn](a)&1w[x1;:::;xn](b)and since we want the w[x1;:::;xn]'s to preserve reduction we are tempted to de�new[x1;:::;xn](a�xb) = w[x;x1;:::;xn](a)&1w[x1;:::;xn](b)But this de�nition is not good enough to preserve other rules, for instancew[x1;:::;xn]((�x:a)�yb) = (�w[x;y;x1;:::;xn](a))&1w[x1;:::;xn](b)! �(w[x;y;x1;:::;xn](a)&2�0(w[x1;:::;xn](b)))whereasw[x1;:::;xn](�x:(a�yb)) = �(w[y;x;x1;:::;xn](a)&2w[x;x1;:::;xn](b))and we see that the variables y and x are now in inverted positions.We realize that our w[x1;:::;xn]'s should \know" how many �'s have been crossed and actaccordingly, i.e. placing the variable of the substitution in the right place. In order to achievethis we should introduce families of translations wi[x1;:::;xn], with i � 0, and the translationwe are trying to de�ne should be w0[x1;:::;xn]. Therefore we propose to de�ne (we restrictthe de�nition to abstraction and substitution since the di�culty already appears with theserules): wi[x1;:::;xn](�x:a) = �wi+1[x;x1;:::;xn](a)wi[x1;:::;xn](a�xb) = wi+1[x1;:::;xk;x;xk+1;:::;xn](a)&k+1wi[x1;:::;xn](b)25



The reader can easily check that with this de�nition reduction is now preserved for the �-�-transition rule of the �exp-calculus (assuming that a lemma analogous to Lemma 13 will holdfor the operators �k). But unfortunately the �-generation rule is the one that fails now.Therefore the question of the existence of an extension of w preserving reduction remainsstill open. Furthermore, it is not clear what calculus of explicit substitutions �a la de Bruijncould be isomorphic to �exp. It may be that we have to go the other way round: �nd acalculus of explicit substitutions using variable names which could be proved isomorphic toone in de Bruijn notation. This is under investigation.References[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal ofFunctional Programming, 1(4):375{416, 1991.[Bar84] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.[BBLRD95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicitsubstitutions which preserves strong normalisation. Personal communication, 1995.[Blo95] R. Bloo. Preservation of Strong Normalisation for Explicit Substitution . TechnicalReport 95-08, Department of Mathematics and Computing Science, Eindhoven Universityof Technology, 1995.[CHL92] P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uence properties of weak and strong calculiof explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-ming. Pitman, 1986. Revised edition : Birkh�auser (1993).[dB72] N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automaticformula manipulation, with application to the Church-Rosser Theorem. Indag. Mat.,34(5):381{392, 1972.[dB78a] N. de Bruijn. Lambda-Calculus notation with namefree formulas involving symbols thatrepresent reference transforming mappings. Indag. Mat., 40:348{356, 1978.[dB78b] N. G. de Bruijn. A namefree lambda calculus with facilities for internal de�nition of ex-pressions and segments. Technical Report TH-Report 78-WSK-03, Department of Math-ematics, Eindhoven University of Technology, 1978.[Har89] T. Hardin. Con
uence Results for the Pure Strong Categorical Logic CCL : �-calculi asSubsystems of CCL. Theoretical Computer Science, 65(2):291{342, 1989.[Hue80] G. Huet. Con
uent Reductions: Abstract Properties and Applications to Term RewritingSystems. Journal of the Association for Computing Machinery, 27:797{821,October 1980.[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,editor, Computational Problems in Abstract Algebra, pages 263{297. Pergamon Press,1970.[KN93] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. InternationalJournal of Foundations of Computer Science, 4(3):197{240, 1993.[KN96] F. Kamareddine and R. P. Nederpelt. A useful �-notation. Theoretical Computer Science,155:85{109, 1996.[KR95a] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions.Proceedings of PLILP'95. Lecture Notes in Computer Science, 982:45{62, 1995.26



[KR95b] F. Kamareddine and A. R��os. The �s-calculus: its typed and its extended versions.Technical report, Department of Computing Science, University of Glasgow, 1995.[KR96] F. Kamareddine and A. R��os. The con
uence of the �se-calculus via a generalized inter-pretation method. Technical report, Glasgow University, 1996.[Mel95] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate in Proceed-ings of TLCA'95. Lecture Notes in Computer Science, 902, 1995.[MH95] C. A. Mu~noz Hurtado. Con
uence and preservation of strong normalisation in an explicitsubstitutions calculus. Technical report, INRIA, Rocquencourt, 1995. 2762.[R��o93] A. R��os. Contribution �a l'�etude des �-calculs avec substitutions explicites. PhD thesis,Universit�e de Paris 7, 1993.

27


