Bridging de Bruijn indices and variable names in explicit
substitutions calculi*

Fairouz Kamareddine and Alejandro Rios T

May 7, 1996

Abstract

Calculi of explicit substitutions have almost always been presented using de Bruijn
indices with the aim of avoiding a-conversion and being as close to machines as possible.
De Bruijn indices however, though very suitable for the machine, are difficult to human
users. This 1s the reason for a renewed interest in systems of explicit substitutions using
variable names. Formal systems of explicit substitutions using variable names is a new
area however and we believe, it should not develop without being well-tied to existing
work on explicit substitutions. The aim of this paper is to establish a bridge between
explicit substitutions using de Bruijn indices and using variable names. In our aim to do
so, we provide the At-calculus: a A-calculus a la de Bruijn which can be translated into a
A-calculus with explicit substitutions written with variables names. We present explicitly
this translation and use it to obtain preservation of strong normalisation for At. Moreover,
we show several properties of A¢, including confluence on closed terms and efficiency to
simulate G-reduction.

1 Introduction

The classical A-calculus deals with substitution in an implicit way. This means that the
computations to perform substitution are usually described with operators which do not
belong to the language of the A-calculus. There has however been an interest in formalising
substitution explicitly; several calculi including new operators to denote substitution and
new rules to handle these operators have been proposed. Amongst these calculi we mention
CXEo (cf. [dBT8b]); the calculi of categorical combinators (cf. [Cur86]); Ao, Aoy, Aosp (cf.
[ACCLI1], [CHL92], [Ri093]) referred to as the Ao-family; o BLT (cf. [KN93]); Av (cf.
[BBLRD95]) and A¢ (cf. [MH95]) which are descendants of the Ao-family; As (cf. [KR95a])
and As. (cf. [KR96]).

All the calculi above mentioned are described in de Bruijn notation (cf. [dB72] and
[dB78a]). This formalism consists in replacing the usual variable names with natural numbers
which account for the bindings of the variables they stand for. This notation is useful because,
while avoiding the problem of clashes of name variables, and therefore the use of Barendregt’s
convention and a-congruence, it provides term rewriting systems instead of just abstract
rewriting systems and therefore more rewriting tools are available to study them. The only

*This work was carried out under EPSRC grant GR/K25014.
"Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, fax: 4+44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk

inconvenience is that the terms written in de Bruijn notation are more suitable to be read by
a computing device than by humans.

Recently, a simple calculus with explicit substitutions, Aexp, has been introduced (cf.
[Blo95]). This calculus is written in the standard notation with variable names and enjoys
the property of Preservation of Strong Normalisation (PSN). This property states that every
term that is strongly normalising (i.e. does not admit an infinite reduction path) in the
classical A-calculus is also strongly normalising in the Aexp-calculus. The interest in studying
such a property relies on its connection with the strong normalisation of typed calculi and
the fact that several calculi of explicit substitutions do not enjoy it, as shown in [Mel95]. As
a matter of fact, of the above mentioned calculi only Av, As and A{ have PSN.

The following question poses itself :is the Aexp-calculus equivalent to one of the already
known calculi in de Bruijn notation, and, if not, can we describe Aexp in de Bruijn notation in
a satisfactory manner? Trying to answer this question we realized that As, which intuitively!
was the best candidate for a de Bruijn version of Aexp, was not the answer. Thus we were led
to a new calculus, which we call At, whose formulation is slighty different from the formulation
of As and whose relationship with Aexp can be, partly, explained.

Although the rules of At and As are similar, both calculi work quite differently: while As
makes global updatings just before performing a substitution, the At-calculus makes partial
updatings so that the computation of the updating is already finished before substitution.
These partial updatings are started every time a substitution must be applied to an abstrac-
tion. Since the calculi of the Ao-family, Av and A also introduce an updating operator when
evaluating substitutions within abstractions, the At-caculus can be considered as a calcu-
lus written in the As-style which works with the updating mechanism of the Ao-calculi and
therefore as a calculus that links both As and Ao styles.

In this paper we introduce At, we prove its confluence using the “interpretation method”
([Har89], [CHL92]), we make explicit the relationship between At and Aexp, which happens
to be a sort of inmersion, and we use this inmersion to prove the PSN for At using the PSN
of Aexp. We compare At with Ac by providing an inmersion of the former into the latter and
argue about the impossibility of such an inmersion into Av. We also prove that At is more
efficient (the reductions paths are shorter) to simulate f-reduction than Av, which seems to be
the most efficient of the calculi in the Ao-style. Finally, we discuss the problem of extending
At to a confluent calculus on open terms (terms which may contain term variables) and show
that the existence of such an extension seems impossible. We conclude by explaining the
problems found when trying to establish an inmersion of Aexp into At.

2 Preliminaries

We begin by presenting the notation and recalling the main notions concerning rewriting.
Then we give a quick presentation of the A-calculus & la de Bruijn. We recall afterwards
the Aexp-calculus and its PSN property. We explicit the isomorphism between the classical
A-calculus and its de Bruijn version. Finally, we recall the As-calculus so that the reader
could compare it to the At-caculus to be introduced in section 4.

YOur intuition relied on the fact that both dexp and As possess an infinity of substitutions operators and
that Aexp is a “minimal” extension of the classical A-calculus “as” As is of the A-caculus a la de Bruijn

2.1 Rewriting

We begin by introducing the notation we shall use throughout this paper concerning rewriting
and we recall the definitions of the essential properties of the reduction systems.

Definition 1 lLet A be a set and R a binary relation on A, i.e. a subset of A x A. We
denote the fact (a,b) € R by a —r b or a — b when the context is clear enough. We call
reduction this relation and reduction system, the pair (A, R). We denote =g the reflexive
closure of R. We denote —»p or just —» the reflexive and transitive closure of R. When
a —» b we say there exists a derivation from a to b. By a —" b, we mean that the derivation
consists of n steps of reduction and call n the length of the derivation.

Definition 2 Let R be a reduction on A.

1. R islocally confluent or WCR (weakly Church-Rosser) when
Va,bce AddeA((a b ANa—c)=(b—>»dANc—»d).
2. R is confluent or CR (Church-Rosser) when
Va,bce AddeA((a »bANa—»c)=(b—>»dANc—d).

Definition 3 Let R be a reduction on A.

We say that a € A is an R-normal form (R-nf for short) if there exists no b € A such
that a — b and we say that b has a normal form if there exists a normal form a such that
b—»a.

R is strongly normalising or SN if there is no infinite sequence (a;),~o in A such that
a; = ;41 forall 0> 0. B

Remark 1 Confluence of R guarantees unicily of R-normal forms and SN ensures their
existence. When there exists a unique R-normal form of a term a, it is denoted by R(a).

2.2 The classical A-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation. Let us just say here that de Bruijn
indices (or numbers) are used to make the bindings explicit: to find the A which binds a
variable represented by the number n you must travel upwards in the tree associated with
the term and choose the n-th A you find. For instance, Az.Ay.zy is written using de Bruijn
indices as AA(21) and Az.Ay.(z(Az.zx))y is written as AA(2(A(13))1). Finally, to translate
free variables, you must assume a fixed ordered list of binders and prefix the term to be
translated with this list. For instance, if the list (written from left to right) is - - -, Az, Ay, Az
then the term Az.yz translates as A34 whereas Az.zy translates as A43. The translations
between both notations will be given explicitly in Section 2.4.

The interest in introducing de Bruijn indices is that they avoid clashes of variable names
and therefore neither a-conversion nor Barendregt’s convention are needed. Here is the A-
calculus a la de Bruijn.

Definition 4 We define A, the set of terms with de Bruijn indices, as follows:

Az=IN| (AA) | (AA)

We use a,b, ... to range over A and m,n,... to range over N (positive natural numbers).
Throughout the whole article, a = b is used to mean that a and b are syntactically identical.

We say that a reduction — is compatible on A when for all a, b, ¢ € A, we have a — b
mplies ac — be, ca — cb and Aa — Ab.

We assume the usual conventions about parentheses and avoid them when no confusion
occurs. Furthermore, they shall be omitted in the grammars to be defined later.

In order to define G-reduction a la de Bruijn, we must define the substitution of a variable
n for a term b in a term a. Therefore, we must identify amongst the numbers of the term a
those that correspond to the variable n. Furthermore, we need to update the term b (rename
its variables) in order to preserve the correct bindings after the replacement of the variable
by b.

For example, translating (AzAy.zzy)(Az.yz) =5 Au.z(Az.yz)u to de Bruijn notation we
get (AA521)(A31) —3 A4(A41)1. But if we simply replace 2 in A521 by A31 we get AB(A31)1,
which is not correct. We needed to decrease 5 as one A disappeared and to increment the free
variables of A31 as they occur within the scope of one more A.

For incrementing the free variables we need a family of updating functions:

Definition 5 The updating functions U,i A= A fork >0 andi > 1 are defined inductively
as follows:

Ui (ab) = Uj(a) Uy () . nti—1 if n>k
, . U’(n)Z{n if n<k
Up(Aa) = MU (a)) ="

The intuition behind U,i is the following: k tests for free variables and ¢ — 1 is the value
by which a variable, if free, must be incremented.
Now we define the family of meta-substitution functions:

Definition 6 The meta-substitutions at level ¢, for ¢ > 1, of a term b € A in a term
a € A, denoted afi+ b}, is defined inductively on a as follows:

(ara) i« b} = (a1 i« b)) (axfi « b)) n—1 z:f n> Z
nf{i< b} = ¢ Uib) if n=1
(Aa){i 0} = Aafi+ 1+ b}) n if n<i.

Ultimately, the intention is to define (Aa)b —3 af{1 <— b} (see definition 7 below). The
first two equalities propagate the substitution through applications and abstractions and the
last one carries out the substitution of the intended variable (when n = ¢) by the updated
term. If the variable is not the intended one it must be decreased by 1 if it is free (case n > i)
beacuse one A has disappeared, whereas if it is bound (case n < i) it must remain unaltered.

It is easy to check that (A521){{1 <— (A31)} = A4(A41)1. This will mean (AA521)(A31) —p
A4(A41)1, as expected.

The following lemmas establish the properties of the meta-substitutions and updating
functions. The Meta-substitution and Distribution lemmas are crucial to prove the confluence
of As. The proofs of lemmas 1 - 6 are obtained by induction on a. Furthermore, the proof of
lemma 3 requires lemma 2 with p = 0; the proof of lemma 4 uses lemmas 1 and 3 both with
k = 0; finally, lemma 5 with p = 0 is needed to prove lemma 6.

Lemma 1 For k < n < k+i we have: Uj(a) = Ui (a)fn < b} .
Lemma 2 For p <k < j+p we have: UL(U}(a)) = Ui 771 (a).
Lemma 3 For k+i<n we have: Ul(a){n b} = Uj(afn—i+ 1+ b}).
Lemma 4 (Meta-substitution lemma) For 1 < i <n we have:
afi—bf{n—cl=afn+tcP{ibfn—-i+1c}}
Lemma 5 For p+ j <k+1 we have: UL (Uj(a)) = Ug(Ué+1_j(a)) .
Lemma 6 (Distribution lemma) For n < k41 we have:
U,i(a{{n —b}) = U,i+1(a){{n — Uli—n-|—1(b)}} .

Definition 7 The A-calculus a la de Bruijn is the reduction system (A, —g) where — g is the
least compatible reduction on A generated by the single rule:

(3-rule) (Aa)b—p aft « b}

Finally, the following lemma ensures the good passage of the f-rule through the meta-
substitutions and the Uj}.

Lemma 7 Leta, b, c,d e A.
1. If c =5 d then Ui(c) —p Ul(d) .
2. If c—pd then af{i« c}} —»paf{i+ d}.
3. If a—pb then af{i « c} —p5 b1+ c}.

Proof: The first item is proved by induction on ¢. We just check the interesting case which
arises when ¢ = c¢ycy and the reduction takes place at the root, i.e. ¢ = (Aa), ¢ = b and

d=af{1 < b}:
Ui ((a)b) = AU (@)U (6) =5 Uiy ()t = UL(0)} = Uf(afft < b})

The second item is proved by induction on a using 1 above.

The third item is also proved by induction on a. For the case a = (Ad)e and b = d{1 « e}},
Lemma 4 is required. a

This lemma was used in [KR95a] to prove the confluence of As. We shall only use in this
paper the first item. Nevertheless we have included here the complete version in order that the
reader could compare these results with the analogous results for the new meta-substitutions
and updatings which shall be introduced in section 3.

In order to define the set of free variables of a term in de Bruijn notation we need first to
define the following operations on sets of natural numbers.

Definition 8 Let N C IN and k > 0. We define
1. N\k={n—-k:neN,n>k}, N+k={n+k:neN}

2. Nsp={neN:n>k}, Nep={neN:n<k}

3. Nsp={neN:n>k}, Nep={neN:n<kj}.

The following properties of the operations defined above will be needed later and their
proofs are easy.

Remark 2 Let N, M C N and k, k¥ > 0. We have

b~

C(NUM)\ k= (N\E)UM\E), (NUM)+k=(N+kU(M+k).

to

(N\E)\K = N\ (k+).

8 N\L=No\ 1, (Nogpr \ 1)+ 1= (Nogr + D)\ 1.
4. (IN+E)\1=N+(k-1)ifk>1.

5 (N\Dek = (Nepr) \ 1, (NN D<r = (Napgr) \ 1.
6. (N\Dsk = (Nop) \ 1, (N\D)zp = (Nzppr) \ 1
We can define now the free variables of a term in A.

Definition 9 The set of free variables of a term in A is defined by induction as follows:

FV(n) = {n}
FV{ab)=FV(a) UFV(b)
FV(Aa)=FV(a)\1

Lemma 8 For a € A we have FV (Uj(a))\ k= (FV(a)\ k) + (i — 1).

Proof: Induction on a. Use Remark 2.1 for the case ¢ = bc and Remark 2.2 for the case
a = Ab. O

Lemma 9 Fora,b e A and j > 1, the following hold:
Lo FV(a{j < b)) = (FV(a))<; U((FV(a)>;\ 1) if j & F'V(a).
2. FV(afi = b}) = (FV(a)<; U ((FV(a))s; \ U (FV (D) + (i = 1)) if j € FV(a).

Proof: By simultaneous induction on a. Use the previous lemma for the case ¢ = j and
Remark 2.4, 5, 6 for the case a = Ab. a

Lemma 10 Ifa —p b then FV (b) C FV (a).

Proof: By induction on a. The interesting case is when a is an application and the contraction
takes place at the root. The previous lemma settles this case. a

2.3 The)-calculus and the Mlexp-calculus

We assume the reader familiar with the A-calculus (cf. [Bar84]) in classical notation. We just
recall the syntax of its terms and the definition of G-reduction.

Definition 10 Given a set of variables V. = {v, : n € IN} we define recursively the set of
terms Ay as follows:

Ay o=V | Av Ay | AV Ay

We use z, y,... to range over V and A, B, ... to range over A\y. We assume that different
variable names stand for different variables.

We say that a reduction — is compatible on Ay when for all A, B, C' € Ay and x € V,
we have A — B implies AC — BC, CA—CB and Az.A — Az.B.

Barendregt’s variable convention (see [Bar84]), abbreviated VC, is used and a-congruent
terms (terms which only differ on the name of bound variables) are identified.

The classical notions of meta-substitution and a-congruence are defined as usual (cf.
[Bar84]). The meta-substitution of # by B in A is denoted by Az := B] and A = B means
that A and B are a-congruent.

Definition 11 The A-calculus is the reduction system (Av,—), where — is the least com-
patible reduction on Ay generated by:

(B-rule) (Az.A) B — Alz := B]

The Aexp-calculus of [Blo95] is a calculus of explicit substitutions where variable names
are used instead of de Bruijn numbers. Its set of rules is minimal and the rule of substitution-
abstraction-transition mimicks the definition of the meta-substitution acting with an abstrac-
tion. The Aexp-calculus is defined in [Blo95] in item notation (cf. [KN96]), but, since we are
not going to exploit here the advantages of this notation, we present its standard form.

We begin by giving the syntax of the terms:

Definition 12 Given a set of variables V. = {v, : n € IN} we define recursively the set of
terms Aexp as follows:

Aexp :=V | Aexp Aexp | AV.Aexp | Aexpoy Aexp

We use x, y, ... to range over V and A, B, ... to range over Aexp. We assume that different
variable names stand for different variables. We call the terms which do not contain o’s, pure
terms and identify them with the terms of the classical A-calculus.

We say that a reduction — is compatible on Aexp when for all A, B, C' € Aexp and
x €V, we have A — B implies AC - BC,CA— CB, \e. A— \x.B, Ac,C — Bo,C and
Co,A— Co,B.

A trivially extended Barendregt’s variable convention is used and o-congruent terms (see
below) are identified.

Definition 13 The set of free variables of a term A, denoted F'V (A), the meta-substitution
of © by B in a term A, denoted Az := B], and the notion of a-congruence between terms A
and B, denoted A = B are defined as usual, with the respective extra clauses:

1. FV(Co,D) = (FV(C) — {2}) U FV (D)

2. (CoyD)[z = F]=Coy(D[z = E))
(CozD)ly == E)= (Cly .= E))o,(D]y := L)) withax g FV(E) ory ¢ FV(C)

3. Co,D = Clx :=yloyD

Definition 14 The Aexp-calculus is the reduction system (Aexp, —rexp), Where —\exp is the
least compatible reduction on Aexp generated by the rules given below:

o-generation (A2.A)B — Ao, B

o-A-transition (Ay.A)o,B — Ay.(Ao,B) (*)
o-app-transition (AB)o,C — (Ao,C)(Bo,C)
o-varl ro,A — A

o-var? yo,A — y

In (*) we have the condition y ¢ F'V(B), which can be assumed to hold always due to VC.

We use Aexp to denote this set of rules. The calculus of substitutions associated with the
Aexp-calculus is the rewriting system whose rules are Aexp — {o-generation} and we call it
exp-calculus (in [Blo95] it is called 7).

The main result in [Blo95] is the preservation of strong normalisation of the Aexp-calculus
with respect to classical A-calculus:

Theorem 1 (PSN of lexp) FEvery term which is strongly normalising in the classical \-
calculus is also strongly normalising in the Aexp-calculus.

2.4 Isomorphism between (Ay,—)) and (A, —p)

It is well known that the classical A-calculus and its de Bruijn version are isomorphic rewriting
systems. Nevertheless we explicit here the isomorphism, since we are going to extend it later.

Definition 15 For every term A € Ay such that FV (A) C {x1,...,2,} we define, by induc-
tion on A, wy, . ».1(A) as follows:

w[wl,...,wn](vi) = mln{] LU= $]}
w[xl,,xn](BC) = w[acl,...,acn](B)w[acl,...,xn] (C)
w[wl,,xn](AxB) = Aw[x,acl,...,acn](B)

The notation [xy, ..., x,] stands for the ordered list whose elements are xq,. .., x,.

Remark that the previous definition is correct, i.e. that a-congruent terms have the same
image. This is a consequence of the following lemma.

Lemma 11 Let A € Ay such that FV(A) C {21,...,2,} and let y & {x1,...,2,}. Then
w[l’l,...,l’n] (A) = w[l’l,...,l’,‘_l,y7l’,‘+1,...,l’n] (A[xl = y])

8

Proof: Easy induction on A. a

We define now a uniform w, i.e. not depending on the free variables of the term.

Definition 16 Let {vy,...,v,,...} be an enumeration of V. We define w : Ay — A as the
function given by w(A) = wyy, .. .,(A) where n is such that FV(A) C {vy,...,v,}.

The definition is correct in the following sense.

Lemma 12 Let A € Ay such that FV(A) C {a1,...,2,} and let y1, ...,y be arbitrary
variables. Then Wiy, . 5. v ym](A) = Wy 2] (A)-

Proof: Easy induction on A. a

We need to establish some lemmas before proving that w preserves reduction. These
lemmas state how the functions wy,, . ., behave with the updating functions and the meta-
substitutions.

Lemma 13 Let A € Ay, k>0,i>1andn > k+1 such that xp11,...,254i—1 & FV(A).
Then w[l’l,...,l’n] (A) = U]ZC(w[l’l7~~~773k773k+i7"'7xn] (A))

Proof: By induction on A. The case A = ab only needs the inductive hypothesis (IH).
Therefore, we just study:

A=v, : Let j=min{i:v, =2} Then wy, _ ,.1(vm) = 7.
If j <k we have wy, 2,1(A) = § = UL(§) = U@y .oy opgimirn (A))-
If § > k4 ¢ we have w[m’...’xn](A) =j= U,i(j —i+41)= U]i(w[l’17~~~71’k71’k+i7~~~773n](A))'

1H :
A= /\x.'B : We have w,, . ,.1(A) = w[x,xl,...,xn](B) = AU (W, op agirnan] (B)) =
U]Zg(A([l’ Ty sy T hotises ,l’n (B)) (w[l’l7~~~773k773k+i7"'7xn] (A)) -
Lemma 14 Let A, B € Ay such that the bound variables of B are not free in A and let
1> 1L, y=wy1y.. . Yic1 and T = x4, ...,x, such that x is not bound in B, x is distinct from

Yy Yic1 and yy, ... yi1 & FV(A). Then wigz(Blz = A]) = (wyez/(B) {1 ¢ wz(A4)}-
Proof: By induction on B. We just study the interesting cases:
B=z¢e¢V :If z=uz, then

gz (Ble = A)) = wgz(4) = Us(wg(4) = (wgem (B + vg(A))
f{j:z2=y;}# ¢, let k=min{j:z=y;}. Then

wgz (Ble = A]) = k= (wgez(B){i < wz(4)}

f{j:2=2a;} # ¢ let k = min{j : z = z;}. We can assume z} # = since the case
z = x has already been considered. We have

wyz(Ble = A) =k+1-1=k+ifi < wE(A)}) = (vgem(B){L < wg(4)}

B =Az.D : Remark that, since z is not bound in B, z # z. We have
IH .
wizz(Blz := A]) = Aw, 5 7(D[z := A]) = Mupg.7(D){i+1 « wgn(d)} =

(A gezm (DL & wz(A)} = (0.5 (B){i « wg(A)}
Remark that we were able to apply the IH because, by VC, z ¢ F'V(A). a
Theorem 2 Let A, B € Ay, if A —) B then w(A) =3 w(B).

Proof: It is enough toshow thatif FV(A) C {z1,..., 2.} thenwy, . 1(A) =5 w0, 0(
Remark that since F'V(B) C FV (A) (cf. [Bar84]), wiy, . 5,1(B) is well defined.
The proof is by induction on A. The interesting case is when A is an application and the
reduction takes place at the root.

Therefore, let A = (Az.D)E and B = D[z := E]. We have

B).

w[wl,,xn](A) = (Aw[x,xl,,xn](D))w[xl,,xn](E) — B

L
(W ey] (DN 0y] () 2 w0y (Dl = E]) = w2y (B)

Remark that the conditions on the variables of Lemma 14 hold thanks to VC. a

We give now the inverse of w:

Definition 17 Let a € At such that FV (a) C {1,...,n} and let z1,...,z, € V. We define
Ulp,,....z,](d) by induction on d as follows:

u[wl,,xn](l) = T;
u[wl,...,xn](a b) = u[xl,...,acn](a)u[xl,...,xn](b)
u[xl,...,xn](/\b) = /\x-u[x,xl,...,xn](b) with @ & {xq,...,2,}

In order to check that Definition 17 is correct, we must verify that F'V (a) C {1,...,n+1}
whenever F'V(A.a) C {1,...,n}, which is obvious, and also that the definition of u,, _ ,.jon
abstractions does not depend on the choice of the variable . This proof is analogous to the
proof of Lemma 29 and Lemma 30, which state the results we need for an extension of .

We remark that we have defined for each a € A a translation into Ay which depends on n
where n is such that F'V(a) C {1,...,n}. We remove now this condition and define a uniform
translation on A.

Definition 18 Let {vy,...,v,,...} be the same enumeration of V as in Definition 16, we
define u: A — Ay as the function given by u(a) = uy,, . ,,1(a) where n is such that F'V (a) C

{1,...,n}.

The definition is correct thanks to Lemma 31 below, which generalizes the result we need
to an extension of u.

As we did for w we can also check that u preserves classical reduction and to achieve
this we must establish some lemmas which make the interaction of « with the updating and
meta-substitutions functions precise. Since these lemmas will not be used later, we include
them here for the sake of completeness and we just state them without giving detailed proofs.

10

Lemma 15 Leta € A, i > 1, k > 0 and n > k + 1 such that FVia) C{l,....n—1i+1}.
Then upg, . v,)(Ug(a)) =

1 7~~~7l’k71’k+i7~~~773n] (a) °

Lemma 16 Leta,be A and zq,...,2p, y1,...,yi—1, ¢ distinct variables.

Then u[yl,...,y,‘_l,wl,...,xn](a{i — b}) = (u[yl,...,y,‘_l,x,acl,...,acn](a))[x = u[xl,,xn](b)]
Theorem 3 Let a, b€ A, if a =5 b then u(a) — u(b).

We must only check now that in some sense w o u = Id and wo w = Id. We begin by
studying w o u, which as expected is exactly the identity.

Lemma 17 For every a € A we have w(u(a)) = a.

Proof: It is enouh to show that if F'V(a) C {1,...,n} then wy,, .. 1(Us,,. . . (@) = a.
This is done by induction on a. The usual two interesting cases are:

a=1i: Since y,...,z, are distinct variables, we have: wi, . 1(U, . 2.1(@)) =

w[xl,,wn](u[xl,,xn](l)) = w[xl,...,xn](xi) —i=ua.

a=Ab: We have: w[xl,...,acn](u[wl,...,xn](a)) = w[l’l,...,xn](Ax'u[x,xl,...,xn](b) =

IH
Aw[x,acl,...,acn](u[x,xl,...,xn](b)) = Ab. a
As expected, we will not be able to obtain u[,, . (W, 2.](A)) = A, but we have
a-equivalence: up, o (W, . ..1(4)) = A.
Lemma 18 For every A € Ay we have u(w(A)) = A.
Proof: By induction on A. a

The following corollary is an immediate consequence of the two previous lemmas.

Corollary 1 The classical A-calculus (Ay,—)) and the A-calculus a la de Bruijn (A, —p)
are isomorphic.

Theorem 4 The A-calculus a la de Bruijn is confluent.

Proof: The confluence of the classical A-calculus (cf. [Bar84] thm. 3.2.8) is transportable,
via the isomorphism, to the A-calculus a la de Bruijn.

A proof which does not use the mentioned isomorphism is given in [Ri093] (Corollary 3.6)
as a corollary of a more general result concerning the Ao-calculus. a

2.5 The Ms-calculus

We end this section by recalling the As-calculus and reminding the origin of its rules. We
shall follow the same intuition to formulate the rules of the At-calculus.

The idea is to handle explicitly the meta-operators defined in definitions 5 and 6. There-
fore, the syntax of the As-calculus is obtained by adding to the syntax of the A-calculus a la
de Bruijn two families of operators :

11

° {O‘i}i21 : this family is meant to denote the explicit substitution operators. Each o°
is an infix operator of arity 2 and ao¢’b has as intuitive meaning the term a where
all free occurrences of the variable corresponding to the de Bruijn number ¢ are to be
substituted by the term b.

° {@2}k20 i>1 : this family is meant to denote the updating functions necessary when
working with de Bruijn numbers to fix the variables of the term to be substituted.

Definition 19 The set of terms of the As-calculus, denoted As, is given as follows:
As:=IN | AsAs | Ms | Asco'As | ¢tAs where i>1, k>0.

We take a, b, ¢ to range over As. A term of the form ac'b is called a closure. Furthermore,
a term containing neither o’s nor ¢’s is called a pure term.

The As-calculus should carry out, besides 3-reduction, the computations of updating and
substitution explicitly. For that reason it contains, besides the rule mimicking the g-rule
(c-generation), a set of rules which are the equations in definitions 5 and 6 oriented from left
to right.

Definition 20 The As-calculus is the reduction system (As,—.s), where —, is the least
compatible reduction on As generated by the rules given below:

o-generation (Aa)b — ac'b
o-A-transition (M) o' — Maotlb)
o-app-transition (ayaz) a'b — (ay o'b) (aya'd)

n—1 if n>1
o-destruction no'b — wob if n=1

n if n<u
p-A-transition ep(ha) — Mgl a)
p-app-transition @i (araz) — (gl a1) (¢)az)
p-destruction c,o};n { E—I_ -1 Z Z z IZ

We use As to denote this set of rules. The calculus of substitutions associated with the As-
calculus is the rewriting system whose rules are \s — {o-generation} and we call it s-calculus.

The main results concerning the As-calculus are (see [KR95a] for proofs):
Theorem 5 The As-calculus is confluent on As.

Theorem 6 (PSN of \s) FEvery A-term which is strongly normalising in the classical \-
calculus is also strongly normalising in the As-calculus.

12

3 Another presentation of the A-calculus a la de Bruijn

In Definition 6 we have defined i{i < b} = US(b), but there is another choice: instead of
updating b just before performing the substitution we can make partial updatings of b, each
time the substitution operator traverses a A in order to have a term already updated and
simplify the equality by introducing a new meta-substitution [+—] such that i[i < b] = b.
Of course this simplification is only apparent since the definition of the substitution applied to
an abstraction will become more involved. With these ideas in mind we propose the following
definitions:

Definition 21 The new updating functions Vi : A — A for k > 0 are defined inductively as
follows (compare with Definition 5):

Vi(ab) = Vi(a) Vi(b) n+1 if n>k

Vk(n):{n if n<k.

Definition 22 The new meta-substitutions at level i, for ¢ > 1, of a term b€ A in a term
a € A, denoted a[i < b], are defined inductively on a by (compare with Definition 6):

Vi(Aa) = A(Viy1(a))

ajazi < 0] = (a1[i « b])(azi « b]) n—1 Zf n > Z
nfi«< b =< b if n=1
(Aa)[i 0] = Ala[i+1 < Vo(0)]) n if n<i.

Before studying the properties of these new functions let us establish the relationship
between them and the old ones.

Notation 1 We denote the ith iteration of Vi with itself by V}i, i.e. Vi(a) = Vi(...(Vxa)...)
(i times). By convention, V?(a) = a.

Lemma 19 Fora,be A, i > 1 and k > 0 we have:
1. Ui(a) = Vi~ Y(a).
2. afi+ b} =afi+ Voi_l(b)]].
Proof: Easy induction on the structure of a. a

Remark 3 As a particular case of Lemma 19.2 we have a{{1 < b} = a[1 < b] and hence
we can describe B-reduction using the new meta-substitution functions as:

(3-rule) (Aa)b—p a1l < b]

Unfortunately Lemma 19 cannot be used to prove all the properties we need to establish
for the new updating and meta-substitutions functions by exploiting the properties we already
know for the old functions. Nevertheless, it will work for some of them.

Lemma 20 For k > 0 we have Vy(VE(c)) = V().

Proof: By Lemma 2, UZ(Us*!(¢)) = Ust%(c). Now, use Lemma 19.1. o

The following lemma, though related to Lemma 1, cannot be deduced directly from it, as
we did for the previous lemma.

13

Lemma 21 For i, k > 0, we have Vi(a) = VT (a)[1 +k+ 1 « VF(D)].

Proof: By indcution on the structure of a. a
Again, the next lemma, though related to Lemma 3, cannot be deduced from it.

Lemma 22 For n > k, we have Vi(a[n < VF()]) = Vi(a)[n+ 1 < VI (o)].

Proof: By induction on the structure of a and using Lemma 20 for the case ¢ = n. O
We are ready to prove now the Meta-substitution Lemma for this new meta-substitution.

Lemma 23 (New Meta-substitution Lemma) If 1 < ¢ < n, we have
a[i b][n+ Vil (@)] =a[n+ 1« Vi()][i < b[n « Vi~ ()]

Proof: By induction on a. Lemma 22 is necessary for the case « = Ad and Lemma 21 settles
the case a = n+ 1. a

Finally, the following lemma ensures the good passage of the g-rule through the new
meta-substitutions and updatings. It is crucial for the proof of the confluence of At.

Lemma 24 Leta, b, c,d € A.
1. If ¢ =g d then Vi(c) =5 Vi(d) .
2. If c =g d then a[i+ c] —»p ai <+ d].
3. If a—pb then ali < c] =g b[i+ (].
Proof:
1. It is a consequence of Lemma 19.1 and Lemma 7.1
2. Induction on «a using 1 above.

3. Induction on a. The interesting case is a = (Ad)e and b = d[1 + e]:
(AD)e)[i & o] = (A(d[1 + 1 = Vo(e)]))(e[i = ¢]) =5
(dli+ 1 Vo(e)DIt ¢ e[« o] 2° (d[1 « e])[i «] =

4 The Mt-calculus

Now, we shall handle explicitly the new meta-operators defined in definitions 21 and 22.
Therefore, the syntax of the At-calculus is obtained by adding to the syntax of the A-calculus
a la de Bruijn two families of operators :

° {gi}izl : this family is meant to denote the explicit substitution operators. Each ¢
is an infix operator of arity 2 and a¢' has as intuitive meaning the term a where
all free occurrences of the variable corresponding to the de Bruijn number ¢ are to be
substituted by the already updated term b.

14

° {ek}kzo : this family is meant to denote the new updating functions.

Definition 23 The set of terms of the At-calculus, denoted At, is given as follows:
At == IN | AtAt | AAt | At*At | O,At where i>1, k>0,

We take a, b, ¢ to range over At. A term of the form a<'b is called a closure. Furthermore,
a term containing neither ¢’s nor 8’s is called a pure term. By 0.a for i > 1, we mean
05 (0x (... (0ra))) (i O-operators) and 83a means a.

The At-calculus should carry out, as the As-calculus, besides #-reduction, the computa-
tions of updating and substitution explicitly. For that reason we include, besides the rule
mimicking the S-rule (s-generation), a set of rules which are the equations in the definitions
21 and 22 oriented from left to right.

Definition 24 The At-calculus is the reduction system (At,—»;), where —y, is the least
compatible reduction on At generated by the rules given below:

s-generation (Aa)b — acth
§-A-transition (Aa)s'h — A(asit 8y(b))
S-app-transition (a1 az) s’ — (a15'b) (az2s'h)

' n—1 if n>1
s-destruction n¢'b —» b if n=1

n if n<u

0-A-transition Or(Aa) — A(Opy10a)
f-app-transition Op(araz) — (Ora1) (0kaz)
0-destruction 0L n { E—I_ 1 Z Z z z

We use At to denote this set of rules. The calculus of substitutions associated with the At-
calculus is the rewriting system whose rules are A\t — {¢-generation} and we call it t-calculus.

The main difference between At and As can be summarized as follows: the At-calculus gen-
erates a partial updating when a substitution is evaluated on an abstraction (i.e. introduces
an operator fy in the ¢-A-transition rule) whereas the As-calculus produces a global updating
when performing substitutions (i.e. introduces a ¢}, operator in the o-destruction rule, case
n=1).

The At-calculus shares this mechanism of partial updatings with the Ao-caculi and their
descendants Av and A since all of them introduce an updating operator in their substitution-
abstraction-transition rule.

We shall prove now the confluence of the At-calculus. First we must establish some results
concerning the associated calculus of substitutions ¢.

Theorem 7 (SN and confluence of t) The t-calculus is SN and confluent on At. Hence,
every term a has a unique t-normal form denoted t(a).

15

Proof: Let us define recursively two weight functions Wy and Ws:

W1 (n) =2 WQ()

Wi(ab) = Wi(a) + Wy (b) Wg(ab) Wa(a) + Wy (b) + 1
Wi(Aa) = Wi(a) + 2 Wa(Xa) = Wa(a) + 1

Wi(0ra) = Wi(a) Wa(b0ka) = 2W3(a)

Wilesh) = (@) Walasib) = Wla) (Wa(b) + 1)

It is easy to check that for every rule ¢ — b in ¢ we have Wy (a) > W;(b) and, furthermore,
if the rule is ¢-A-transition then Wy (a) > Wy (b).

On the other hand, for every rule a — b in ¢t — {¢-A-transition} we have Wy(a) > Wy (b).

Therefore, one can show by induction on a that whenever a — b, (Wy(a), Wa(a)) >|ox
(W1(b), W5(b)), where >, is the lexicographical order in IN x IN.

Since there are no critical pairs, the theorem of Knuth-Bendix (cf. [KB70] or [Hue80])
applies trivially to yield the local confluence of the t-calculus.

Finally, Newman’s lemma, which states that every strong normalising and locally confluent
relation is confluent (cf. [Bar84], Proposition 3.1.25), provides the confluence of the ¢-calculus.

a

Lemma 25 The set of t-normal forms is exactly A.

Proof: Check first by induction on a that a<'b and ra are not normal forms. Then check
by induction on e that if @ is a ¢-nf then a € A. Conclude by observing that every term in A
is a t-nf. a

Lemma 26 For all a, b € At we have:
tab) =t(a)t(b), t(Aa) = At(a)), t(0ra)=Vi(t(a)), tlas'h)=t(a)[i+ t(b)].

Proof: The first and second equalities are immediate since there are no t-rules whose left-
hand side is an application or an abstraction.
Prove the third equality for terms in ¢-nf, i.e. use an inductive argument on ¢ € A to show

t(0xc) = Vi(t(c)). Let now a € At, t(8ra) = t(0xt(a)) = Vi(t(t(a))) = Vi(t(a)).

Prove the fourth claim similarly using the third one. a

We give now the key result that allows us to use the Interpretation Method in order to get
the confluence of the At-calculus: the good passage of the ¢-generation rule to the t-normal
forms.

Lemma 27 Let a, b€ At, if a —_y4en, b then t(a) —»5 t(b).
Proof: Induction on a. We just study the interesting cases.

a=cd: 1If the reduction takes place within ¢ or d just use the IH. The interesting case is
when ¢ = Xe and hence b = ecld:

H(Ae)d) = () (1(d) =5 t(e)[L & H(d)] "= 1(es!d)
a=cs'd : If the reduction takes place within ¢, i.e. ¢ —¢—gen € and b = e<'d, then
tlesid) 20 1(o)[i t(d)] T EES 1)1 — t(d)] E0 e sid)
If the reduction takes place within d, lemma 24.2 applies.

16

a = f0rc : The reduction must take place within ¢. Use lemma 26 and lemma 24.1. a
Now, the following corollaries are immediate.

Corollary 2 Let a, b€ At, if a —»x\¢ b then t(a) —p t(b).

Corollary 3 (Soundness) Let a, b€ A, if a —»x: b then a —»gb.

This last corollary says that the At-calculus is correct with respect to the classical A-
calculus, i.e. derivations of pure terms ending with pure terms can also be derived in the
classical A-calculus.

Finally, before proving confluence, we verify that the At-calculus is powerful enough to
simulate f-reduction.

Lemma 28 (Simulation of S-reduction) Leta, b€ A, if a =g b then a —»\ b.

Proof: Induction on a. As usual the interesting case is when ¢ = (Ac)d and b = ¢[1 + d]:

(A —re—gen es'd —¢ tes'd) 2 t()[1 t(d)] " o[t + d] O
Theorem 8 (Confluence of \s) The At-calculus is confluent on At.

Proof: We interpret the At-calculus into the A-calculus via t-normalisation. We have:

At

ANV
RN

The existence of the arrows t(a) —»3 t(b) and t(a) —»5 t(c) is guaranteed by Corollary 2. We
can close the diagram thanks to the confluence of the A-calculus and finally lemma 28 ensures
t(b) —» ¢ d and t(c) —» ¢ d proving thus CR for the At-calculus. o

5 Interpretation of At into Aexp

The function that interprets At into Aexp is an extension of the function w : A — Ay (cf.
Definition 18). Before introducing it, we must extend the notion of free variable.

Definition 25 The set of free variables of a term in At is defined by extending Definition 9
as follows:
FV(ra) = FV()<k
FV(asb) = FV(a

U (FV(a)>k +1)

>_ U (FV (@) \ 1)U FV (b)

17

Definition 26 Let a € At such that F'V (a) C {1,...,n} and let z1,...,z, € V. We define
Uy, ,...zn](d) by extending Definition 17 as follows:

u[xl,...,xi_l,x,xi,...,xn](a)o-l’u[l’l,...,xn](b) Zf n Z i; x € {xh sy $n}

u[xl,...,xn](a)gavu[xl,...,acn](b) fn<i,w € {$17 SERE) $71}

Ulzy,eyzn] (a glb) = {

u[wlv"'vxkvl’k+27~~~7l’n] (a) Zf n > k —I_ 1
Opa) = § Uy, (@) ifn=k+1
u[wl,...,xn](a) Zf n <k +1

u[wl,...,xn](

In order to check that Definition 26 is correct, the following remark, whose proof is easy,
is needed.

Remark 4 Let a, b € At.
1. If FV(Xa) C{1,...,n} then FV(a) C{l,...,n+ 1}.

2. If FV(as'h) C {1,...,n} then FV(b) C {1,...,n} and
if n > then FV(a) C{l,....,n+ 1} else FV(a) C{1,...,n}.

3. If FV(0ka) C{1,...,n} then
ifn>k+1 then FV(a) C{l,...,n—1} else FV(a) C{1,...,n}.

Furthermore, the definition of u for abstractions and substitutions does not depend on
the choice of the variable & thanks to the following lemma.

Lemma 29 Let a, b € At such that F'V(a) C{1,...,n+ 1} and let xq, ..., z, distinct vari-
ables and x, y variables such that x, y & {xy,...,2,}.
Then Az.ufy 5, 0,1(@) =AYy o 201 (@) and

ULy ,oricy ionan] (W) T20 = Uy gy o1 (@)oyb.

Proof: It is an immediate consequence of the following lemma. a

Lemma 30 Letb € A such that FV (b) C {1,...,n+m+ 1}, and let the variables z1, ..., x,,
ZlyeeoyZm, T and y be all distinct . Then (u[217“.72%%9017.“7%](b))[w =yl = u[th’Zm’y’le’xn](b).

Proof: By induction on b. The two interesting cases are b = Aa and b = ac'c. Since the
treatment of the second is analogous to the first one, we just study b = Aa.

Let us denote T = zy,...,z, and Z= 2z1,..., Z.

Let wuz»7(0) = AMw.upy 20 7)(a). Let ugzy,7(b) = Av.up,z, 7 (a).

Remark that we can assume that w # y. In fact, if w = y we can choose z such that z # y
and also distinct from z4,...,2,, z1,...,2m, ¢, and we have

_ q
u[zlﬁ](b) = /\z.u[wzx’f](a) [w:=z] = /\z.u[zgwj](a)

Therefore, since w # y, we have

(e m(0))[2 =yl = (Mg 70 m(a)]2 = y] = vy z.7(0)[2 = Y]

IH
/\w.u[w@yﬂ(a) = /\v.u[w@yﬂ(a) [w:=v] = /\v.u[v7g7y7§](a) = U[§7y7§](b) a

18

Definition 27 Let {vy,...,v,,...} be the same enumeration of V' as in Definitions 16 and
18, we define u : At — Aexp as the function given by u(a) = uy, . .,)(a) where n is such that
FV(a) C{1,...,n}.

The definition is correct thanks to the following lemma.
Lemma 31 Ifac At, F'V(a) C{l,...,n} and m > n then up, .. (@) = . o.(@).
Proof: Easy induction on a. a

Remark that w is not one-to-one. Indeed, u cannot tell the difference between terms and
their updatings, when they are ¢-equivalent. For instance, u(6p1) = vy = u(1).

Lemma 32 Let a, b € At, if a =y b then FV (b) C FV(a).

Proof: By induction on a. If the reduction is internal the conclusion follows immediately
from the IH. If the reduction is at the root, we must check that for every rule a — b we have
FV(b) C FV(a). This is easily done using Remark 2. a

Theorem 9 Let a, b € At.
1. If a =4 b then u(a) =exp u(b).
2. If a —»¢ b then u(a) —»exp u(b).
3. If a —¢_gen b then u(a) —rexp u(b).

Proof: To prove the first item we prove that if ¢ —; b and FV(a) C {1,...,n} then

u[wl,...,xn](a) ;eXp u[xl,,xn](b)

Remark first that Lemma 32 guarantees the correct definition of uf,, . ..1(8).

The proof is by induction on a. If the reduction is internal, the IH is enough to settle the
lemma. We must check now that for every rule ¢ —; b the lemma holds. As an example we
study the rule ¢-A-transition:

If, for instance, n > ¢ we have:

U] (AQ) D) = Uy oy i) (A Tatify) (B) =
(AY- Uy, eiy i) () Oty 2,1 (D) =

(AY Uy roe 1 sren] (@) Oty oy 1(B0b) —

AY-(Uyyo iy oien] () Ty 2y] (B0D)) =

Ay e (asTH(B00)) = upe, e (A(asT (60))))

It is this case that shows why the rule o-A-transition of the As-calculus had to be changed
into the rule ¢-A-transition of the At-calculus.

Remark also that the #-rules are the ones that leave the translations unchanged, i.e. if
@ —rg_rule b then u[wl,...,xn](a) = u[xl,,xn](b)

19

The second item is easily obtained by proving that if @ —; b then up, . 1(a) —Fexp
Ulg,,....z,](0) Py induction on the length of the derivation using the first item.

For the third item, we prove that if @ —c_ge, b then up, ..1(a) = rexp Uay,... 0, (0) DY
induction on a. The interesting case arises when the reduction takes place at the root:

If n > 0 we have:

u[xl,,xn]((Aa)b) = (Aw'u[w,xl,...,xn](a))u[xl,...,xn](b) —

Uz, 21,y (a) OzU[py,...,z0) (b) = Ulzy,...,w5] (aglb)

If n =0 we have:

upy(Aa)b) = (Augy(a))ug (b) = ugeg(a)opug (b) 2 ugy(a)opug (b) = upy(as'd)

where equality (1) holds because of Lemma 31 (with n = 0 and m = 1) and the fact that
FV (a) = ¢ (since FV (as'b) = ¢, Remark 4 yields FV (a) = ¢). 0

6 At preserves strong normalisation

Using Theorem 9 and the PSN of Aexp, we can show the PSN of At. In order to do that we
must use the fact that u, when restricted to pure terms, is an isomorphism. As a matter
of fact, a weaker hypothesis than the existence of an isomorphism is enough, namely that
u, when restricted to pure terms, admits a left inverse which preserves reduction. This was
proved in subsection 2.4.

Theorem 10 (PSN of At) Fvery A-term which is strongly normalising in the \-calculus a
la de Bruijn is also strongly normalising in the At-calculus.

Proof: Since a € A\-SN, Theorem 2 and Lemma 17 guarantee that u(a) is strongly normalising
in the classical sense. The Preservation Theorem for Aexp (see Theorem 1) ensures u(a) €
/\exp—SN.

If we assume a ¢ At-SN, let

A —xg A1 —P0Nt + o0 PN Qg — 20 -+ - -

be an infinite derivation. Since the t-calculus is SN (see Theorem 7), this derivation must
contain an infinity of ¢-generations:

! ! ! !
a %}t al _>§—gen 612 %}t . e %}t a2n+1 _>§—gen a2n+2 %}t . e
Now, by Theorem 9.2 and 9.3, we have:
! ! ! !
u(a) —pexp w(a)) —rexp w(@3) —Fexp -+ - —Pexp U, 1) = rexp U, 19) —Fexp - - -

and this contradicts the fact that u(a) € Aexp-SN. Therefore, a € At-SN. o

20

7 Comparison with A\c and \v

For the syntax and rules of the Ao and Av calculi see [ACCL91] and [BBLRD95], respectively.
The At calculus can be interpreted into the Ao calculus using a similar translation as the
one presented in [KR95a] to interpret the As-calculus into Ao. However, in the case of the At-
calculus the interpretation works better: now A¢-derivations are preserved (only s-derivations
and not As derivations were preserved by the translation in [KR95a].)
In order to give the translation into the Ao-calculus we give the following two definitions.

Definition 28 For k > 0 we define s;, as follows: sy =1 and sp =1-2-... k- TF+1,

Definition 29 Let b € Ac', we define a family of substitutions (bp)k>1 as follows:
by ="b-1id bp=1-b-1 ... bipy=1-2-...-i-b-1"

Using the rules (Map), (Clos), (Ass) and (IdL) it is easy to verify that:
Remark 5 1-(b0o1) =, (b[1])ix1 and 1-(sg0 1) =5 Skt1-

Definition 30 The translation funqtion T :As — Aot is defined by:
Tmn)=n T(ab)=T(a)T(b) T(as'd)=T(a)[T(b);] T(ra)=AT(a)) T(0ra)="T(a)[sk]

Theorem 11 If a —y; b then T(a) Foy, T(b).

Proof: Induction on a. We just check, as an example, the case @ = n¢'c when the reduction
takes place at the root:
n—1=Tmn-1) if n>1
T(nsic) = n[T(c)i] B, { T(c) if n=1i O
n="T(n) if n<i

Even if At is interpreted in Ae more faithfully than As (the o-generation rule translates
(cf. [KR95a]) into a Ao-equivalence rather than a derivation), no reasonable translation of
At into Av seems possible. The reason is that the operators of Av are not able to express,
for instance, the Ao-substitution 1, = 1-1- 1. Remark that in [KR95a] 1, was defined as
1-1[1] -1, and this Ao-substitution is avilable in the Av syntax as {1 (1/).

The rest of this section will be devoted to compare the length of the derivations which
simulate f-reduction in At and Av. We choose now Av instead of Ao because derivations are
shorter in Av than in Ao. We are going to prove that f-simulation in At (one step s-generation
followed by ¢-derivation to normal form) is more efficient than §-simulation in Av (one step
B followed by wv-derivation to normal form).

We begin by introducing a set of terms Ag on which induction will be used to define a
function that computes the length of certain derivations. We are mainly interested in pure
terms, which are contained in Ag, but the introduction of Ay is necessary since it provides a
strong induction hypothesis to prove the auxiliary results needed.

Definition 31 Ay := IN | AgAg | Ay | OxAg , where k > 0. The length of terms in Ay is
defined by:
Ly (n) =1 Ly (ab) =1Ly (a) + L@(b) +1 L@(/\a) =1Ly (Oka) =1Ly (a) +1.

By induction on a € Ay we mean induction on Lg(a).

21

Remark 6 Leta € Ag and k > 0, then Lg(a) > Lg(t(0ra)).

Proof: By induction on a. The interesting case is when a = 6,,b. By IH we have Ly(b) >
Lg(t(0,,0)) and since Lg(a) > Lg(b), we apply again the IH (now to Lg(t(6,,0))) to obtain
Lg(t(0,,0)) > Lo(t(0x(t(0:,0)))) = Lo(t(0x(0.,0))). Hence, Lg(a) > Lg(t(0ra)). a

The next remark will be used frequently without explicit mention.
Remark 7 If a € Ay and a —; b then b € Ag.

Proof: Easy induction on a. a

Definition 32 We define M : Ay — N by induction as follows:
M@m)=1 M(ab)=M(a)+ M(Ob)+1 M(Xa)=M(a)+1 M(Oxa) = M(t(0ra))+ M(a)

Remark that the definition is correct thanks to remark 6.
Lemma 33 For a € Ag, every t-derivation of Ora to its t-normal form has length M (a).

Proof: By induction on the weight W (a) = (Wi (a), Wa(a)) used to prove SN for the t-calculus
(see proof of Theorem 7). The basic case (¢ = n) is immediate, since all the derivations of
fxn to its nf have length 1. We proceed now by a case analysis. We just treat the case a = be
since the argument is similar for the other cases.

Let us consider a derivation D of 8 (bc) to its nf.

If the first step is internal, say b — b, we know by IH (P(d'c) < P(bc)) that every
derivation of 0 (b'c) to its nf has length M (b'c) = M(b') + M(c) + 1. But IH (now applied
to b (P(b) < P(bc)) and b’ (P(b') < P(bc)) and the fact that 8,0 — 65b) also gives M (V') =
M(b) — 1. Hence M (b'c) = M (b) + M (c) = M (bc) — 1. Therefore, the length of D is M (be).

If the first step is 0 (bc) — 05 (b)0k(c), since there are no rules in ¢ which contract an
application, every derivation of 8 (b)8x(c) to its nf, has length (IH applied to b and ¢) M (b) +
M (c) = M (be) — 1. Therefore, the length of D is again M (bc). a

Corollary 4 For a € Ay, all the t-derivations of 0};(1 to its t-normal form have the same

length, namely (1 — 1)M (t(a)) + M (a).

Proof: Prove first by induction on a € Ay that M(t(a)) = M(t(6ra)), then use Lemma 33
to prove the corollary. a

Now we are going to prove the corresponding results for Av. Since the proofs are analogous,
we just state the results.

Definition 33 Ay = IN | AtAs | AN+ | A5 (1)] , where k > 0. The length of terms in
A is given by: Li(n) =1 Ly(ab) = Li(a) + L4(b) + 1 L4(Aa) = L(a[t* (1)]) = L(a) + 1 .

Remark 8 Let a € Ay and k > 0, then Lt(a) > Ly(v(a[f* (1)])).
Remark 9 Ifa € Ay and a —; b then b € Ay.

Definition 34 For k > 0, we define My : Ag — N as follows:
({ 2k+1 if n>k Mk(ab):Mk(a)—l—Mk(b)—l—l Mk(/\a):Mk(a)—l—l
n) =
' 2n—1 4f n<k Mg(a[f"(1)]) = Mi(v(a[f” (1)])) + Mp(a)

22

Lemma 34 For a € A+, all the v-derivations of a[}* (1)] to its v-nf have length My(a).

Proof: By induction on the weight used to show SN for the v-calculus (cf. [BBLRD95]) and
case analysis. a

Corollary 5 For a € A4, all the v-derivations of a[f* (1)]* to its v-normal form have the
same length, namely (i — 1) My (v(a)) + My (a).

Lemma 35 Let b € A, for every derivation b[{* (1)]' —7 v(b[N* (1)]P) there exists n < m
such that b —7 t(6.b).

Proof: Prove first that for every b € A and k > 0, My(b) > M(b) by induction on b € A.
Conclude using lemmas 33 and 34. O

Definition 35 Let a, b€ A and i > 0, we define P;(a,b) by induction on a:

2041 fon>itl Pi(ed,b) = Pi(e,b) + Pi(d.b) + 1
Pi(n,b)=<% 2n—-1 if n<i+1
(14 Mo(b) +1 if n=i+1 Pi(Ae,b) = Pi(e,b) +1

Lemma 36 Let a,b € A and i > 0, all the v-derivations of a[* (b/)] to its v-nf have the
same length, namely P;(a,b).

Proof: Easy induction on a € A. a

Lemma 37 Leta, b € A and i > 0, there exists a derivation of ac't'(0b) to its t-nf whose
length is less than or equal to P;(a,b).

Proof: By induction on a reducing always at the root. For the case ¢ = i + 1 use the fact
that Mo(b) > M (b) (see proof of Lemma 35). o

Theorem 12 F-simulation is more efficient in At than in Av.

Proof: We prove that for every a € A and every Av-derivation a —p b —»]" v(b) there exists
n < m such that @ —,_4e, ¢ =7 t(c) by induction on a.

The interesting case is « = (Ad)e —p dle/] =™ v(d[e/]). By Lemma 36 we know that
m = Py(d, e) and Lemma 37 gives a derivation do'e —7 t(do'e) such that n < Py(d,e).

Remark that there are an infinity of cases for which the inequality is strict. For instance,
let us consider the term (AX...A.n)a with m X’s and n > m > 1. It is easy to check, using
the function P,,_q defined above that 3m — 2 reductions are needed to simulate S-reduction
in Av, whereas only m + 1 reductions are sufficient in A¢t. Remark that for m > n the number
of reductions needed in Av is also strictly greater than the number needed in At. a

8 About extensions on open terms

We end our work by pointing out the difficulties that arise when trying to extend At to a
confluent calculus on open terms.
Let us recall that such an extension was successful for As and gave rise to the confluent

calculus As. (cf. [KR96]).

23

Definition 36 The set of open terms, denoted At,,, is given as follows:
Atop, =V | N | AtopAt,, | AL, | Aty giAtOp | OpAt,, where ¢>1, k>0

and where V stands for a set of variables, over which X, Y, ... range. We take a, b, ¢ to
range over At,,. Furthermore, closures, pure terms and compatibility are defined as for At.

Working with open terms one loses confluence as shown by the following counterexample:
(AX)Y)slt — (XslY)ele (AX)Y)slt — (AX)sl1)(Yele)

and (X<'Y)c!1 and ((AX)s!'1)(Ys!1) have no common reduct. Moreover, the above example
shows that even local confluence is lost.

When studying the same counterexample for As, we found that, since ((AX)o!'1)(Yo'l1l) —
— (Xo?1)o' (Yo'1), the solution to the problem seemed at hand if one had in mind the prop-
erties of meta-substitutions and updating functions of the A-calculus in the Bruijn notation
(cf. lemmas 1 - 6). These properties are equalities which can be given a suitable orienta-
tion and the new rules, thus obtained, added to As give origin to a rewriting system which
happens to be locally confluent (cf. [KR95b]). For instance, the rule corresponding to the
Meta-substitution lemma (lemma 4) is the o-o-transition rule given below.

o-o-transition (ac'b)olc — (acitlc) ol (bol™Hle) if i<
The addition of this rule solves the critical pair for As, since now we have (Xo'Y)ol1l —
(Xo?1)ol(Yolh).

Following the same method we can try an orientation of the equality given in Lemma 23
to find our ¢-¢-transition rule:

s-s-transition (as'b) /65 e — (asit Bic) ¢ (b B e) i i<

Remark that in the o-o-transition rule no such operator appears. This new situation gives
rise to undesirable critical pairs. For instance:

(as'b) 7 057" (Ad) = (a I G5 (Ad)) ¥ (b7 571 (Ad))
(as'b) ¢’ 06_1 (Ad) = (as'b)¢? /\(021_10)

Since these critical pairs cannot be solved without creating new ones, we can try another
approach to our problem: consider a generalization of the ¢-¢-transition rule that avoids the
occurrence of the 8 operator in the left hand side:

new s-s-transition (as'b)s’c — (ac?T Oe) ¢ (bs/Hle) if i<
But this rule is not correct. Indeed, it is easy to check that with it, it is possible to derive

(3¢%3)c?1 —» 2 while if only s-destruction is used the derivation is (3¢%3)c?1 —» 1.
Therefore, the At-calculus does not seem to possess a reasonable extension on open terms.

24

9 Conclusion

Even if the At-calculus cannot be extended to a confluent extension on open terms (of the
calculi mentioned in the Introduction, only the As-calculus, the Aoy-calculus of the Ao-family
and the A¢-calculus enjoy this property; furthermore, Ao, and A(are themselves confluent
on open terms), it happens to be an interesting calculus for two reasons:

1. It can be related to Aexp, as we have shown in this paper, via an immersion which is an
extension of the classical isomorphism between the classical A-caculus and its de Bruijn
version.

2. While being a calculus a la As, it works with partial updatings and this is a feature that
characterizes the Ao-calculi, the Av-calculus and the A(-calculus. Therefore, it offers a
new perspective between the As and the Ao styles.

3. It simulates S-reduction more efficiently than Av which seems to be the most efficient
of the calculi in the Ao-style.

One of the questions we raised in the Introduction is still unanswered, namely if the
Aexp-calculus is isomorphic to a calculus in de Bruijn notation which could be described in a
satisfactory manner. Qur attempts to show that there is an inmersion in the other direction
have failed and we conclude this paper by pointing out the problems that arise when trying
to define such an immersion, i.e. the inmersion of Aexp into At.

Now the question is how to extend the functions wy,, . .. given in Definition 15. Therefore
we must define w, . 1(ao;b). Since

w[wl,,xn]((Awa)b) = (Aw[l’,xl,,xn](a))(w[xl,,xn](b)) — w[w,wl,...,xn](a)glw[xl,...,xn](b)

and since we want the wp,, . 1’s to preserve reduction we are tempted to define

Wiz ,.ezn] (ao-l’b) = W[z,ey,...,zn] (a)glw[acl yeees®n] (b)

But this definition is not good enough to preserve other rules, for instance
Wiz ,.ezn] ((A$Q)0'yb) = (Aw[l’,y,wl,...,xn] (a))glw[acl,...,xn](b)

= MWy 1,.on] ()00 (W 21(D)))
whereas

Wiz ,.ezn] (A$ (QO'yb)) = A(w[y,w,xl,...,xn] (a)gzw[x,acl,...,xn] (b))

and we see that the variables y and z are now in inverted positions.

We realize that our wy,, . ..’s should “know” how many A’s have been crossed and act
accordingly, i.e. placing the variable of the substitution in the right place. In order to achieve
this we should introduce families of translations wthwxn], with ¢ > 0, and the translation
we are trying to define should be wa o] Therefore we propose to define (we restrict
the definition to abstraction and substitution since the difficulty already appears with these
rules):

wfwl,...,xn](Ax'a) = Awfzi’l,,wn](a))
wfacl,...,acn](ao-l’b) = wEa—L’l—ll,...,ack,ac,xk+1,...,xn](a)gk-l—lwfacl,...,xn](b)

The reader can easily check that with this definition reduction is now preserved for the o-A-
transition rule of the Aexp-calculus (assuming that a lemma analogous to Lemma 13 will hold
for the operators 6;). But unfortunately the o-generation rule is the one that fails now.

Therefore the question of the existence of an extension of w preserving reduction remains
still open. Furthermore, it is not clear what calculus of explicit substitutions a la de Bruijn
could be isomorphic to Aexp. It may be that we have to go the other way round: find a
calculus of explicit substitutions using variable names which could be proved isomorphic to
one in de Bruijn notation. This is under investigation.

References

[ACCLI1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[Barg4] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.

[BBLRDY95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit
substitutions which preserves strong normalisation. Personal communication, 1995.

[Blo95] R. Bloo. Preservation of Strong Normalisation for Explicit Substitution . Technical
Report 95-08, Department of Mathematics and Computing Science, Eindhoven University
of Technology, 1995.

[CHL92] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi
of explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.

[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-
ming. Pitman, 1986. Revised edition : Birkhauser (1993).

[dB72] N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem. Indag. Mat.,

34(5):381-392, 1972.

[dB78a] N. de Bruijn. Lambda-Calculus notation with namefree formulas involving symbols that
represent reference transforming mappings. Indag. Mat., 40:348-356, 1978.

[dB78b] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of ex-
pressions and segments. Technical Report TH-Report 78-WSK-03, Department of Math-
ematics, Eindhoven University of Technology, 1978.

[Har89] T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL : A-calculi as
Subsystems of CCL. Theoretical Computer Science, 65(2):291-342, 1989.

[Hue80] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the Association for Computing Machinery, 27:797-821, October 1980.

[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press,
1970.

[KN93] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. International
Journal of Foundations of Computer Science, 4(3):197-240, 1993.

[KN96] F. Kamareddine and R. P. Nederpelt. A useful A-notation. Theoretical Computer Science,

155:85-109, 1996.

[KR95a] F. Kamareddine and A. Rios. A A-calculus & la de Bruijn with explicit substitutions.
Proceedings of PLILP’95. Lecture Notes in Computer Science, 982:45-62, 1995.

26

[KR95b] F. Kamareddine and A. Rios. The As-calculus: its typed and its extended versions.
Technical report, Department of Computing Science, University of Glasgow, 1995.

[KR96] F. Kamareddine and A. Rios. The confluence of the As.-calculus via a generalized inter-
pretation method. Technical report, Glasgow University, 1996.

[Mel95] P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate in Proceed-
ings of TLCA’95. Lecture Notes in Computer Science, 902, 1995.

[MH95] C. A. Muiioz Hurtado. Confluence and preservation of strong normalisation in an explicit
substitutions calculus. Technical report, INRIA, Rocquencourt, 1995. 2762.

[Ri093] A. Rios. Contribution a Uétude des A-calculs avec substitutions explicites. PhD thesis,
Université de Paris 7, 1993.

27

