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Abstract

Extending the A-calculus with either explicit substitution or generalised reduction has
been the subject of extensive research recently which still has many open problems. Due to
this reason, the properties of a calculus combining both generalised reduction and explicit
substitutions have never been studied. This paper presents such a calculus Asg and shows
that it 1s a desirable extension of the A-calculus. In particular, we show that Asg preserves
strong normalisation, is sound and it simulates classical S-reduction. Furthermore, we
study the simply typed A-calculus extended with both generalised reduction and explicit
substitution and show that well-typed terms are strongly normalising and that other
properties such as subtyping and subject reduction hold.

1 Introduction

1.1 The A-calculus with generalised reduction

In ((Az.A,.N)P)Q, the function starting with A, and the argument P result in the redex
(Az.Ay.N)P which when contracted will turn the function starting with A, and @ into a
redex. This fact has been exploited by many researchers and reduction has been extended so
that the future redex based on the matching A, and ) is given the same priority as the other
redex. Attempts at generalising reduction can be summarized by three axioms:

@) (Ae.N)P)Q — (A NQ)P, (7)) (AeAy.N)P = Ay (A;.N)P,

(ve) (Mg Ay.N)P)Q — (Ay.(A:.N)P)Q.

These (related) rules attempt to make more redexes visible. ~¢ for example, makes sure
that A, and @) form a redex even before the redex based on A, and P is contracted. Due to
compatibility, v implies yo. Moreover, ((A;.Ay.N)P)Q —¢ (Az.(Ay.N)@Q) P and hence both 6
and o put A adjacently next to its matching argument. & moves the argument next to its
matching A whereas 7o moves the A next to its matching argument. 8 can be equally applied
to explicitly and implicitly typed systems. The transfer of v or y¢ to explicitly typed systems
is not straightforward however, since in these systems, the type of y may be affected by the
reducible pair A;, P. For example, it is fine to write (A Ayiz.¥)2) 2 =g (Mg (Ayip.y)u) 2 but
not to write ((Apw.Ayiz-¥)2)8 —~e (Ayiz.(Api.y)2)u. For this reason, we study #-like rules in
this paper. Now, we discuss where generalised reduction has been used (cf. [25]).

[31] introduces the notion of a premier redex which is similar to the redex based on A,
and @) above (which we call generalised redex). [32] uses 6 and v (and calls the combination
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o) to show that the perpetual reduction strategy finds the longest reduction path when the
term is Strongly Normalising (SN). [35] also introduces reductions similar to those of [32].
Furthermore, [23] uses 6 (and other reductions) to show that typability in ML is equivalent
to acyclic semi-unification. [34] uses a reduction which has some common themes with 6. [29]
and [11] use 6 whereas [26] uses ¥ to reduce the problem of -strong normalisation to the
problem of weak normalisation for related reductions. [24] uses € and v to reduce typability in
the rank-2 restriction of the 2nd order A-calculus to the problem of acyclic semi-unification.
[2] uses O (called “let-C”) as a part of an analysis of how to implement sharing in a real
language interpreter in a way that directly corresponds to a formal calculus. [19] uses a
more extended version of # where () and N are not only separated by the redex (A;.N)P
but by many redexes (ordinary and generalised). [19] shows that generalised reduction makes
more redexes visible allowing flexibility in reducing a term. [6] shows that with generalised
reduction one may indeed avoid size explosion without the cost of a longer reduction path
and that A-calculus can be elegantly extended with definitions which result in shorter type
derivations. Generalised reduction is strongly normalising (cf. [6]) for all systems of the cube
(cf. [3]) and preserves strong normalisation of classical reduction (cf. [16]).

1.2 The A-calculus with explicit substitution

Functional programming and in particular partial evaluation may benefit from explicit subs-
titution. For example, given xza[x := y|, we may not be interested in having yy as the result
of zx[x := y] but rather only ya[z := y]. In other words, we only substitute one occurrence
of & by y and continue the substitution later. This issue of being able to follow substitution
and decide how much to do and how much to postpone, has become a major one in func-
tional language implementation (cf. [30]). Another wish is to execute substitutions only when
necessary. For this purpose one may decide to postpone substitutions as long as possible
(“lazy evaluations”). This can yield profits, since substitution is an inefficient, maybe even
exploding, process by the many repetitions it causes. This is the ground for the so-called
graph reduction (cf. [30]). Most theorem provers (Nuprl [7], Coq [12], HOL [13]) use explicit
substitutions in their implementation in order to replace locally (rather than globally) some
abbreviated term. This avoids explosion when it is necessary that a variable be replaced by
a huge term only in specific places so that a certain theorem can be proved.

Most literature on the A-calculus considers substitution as an implicit operation. It means
that the computations to perform substitution are usually described with operators which do
not belong to the language of the A-calculus. The last fifteen years however, have seen
an interest in formalising substitution explicitly; various calculi including new operators to
denote substitution have been proposed. Amongst these calculi we mention C'A{¢ (cf. [10]);
the calculi of categorical combinators (cf. [8]); Ao, Aoy, Aosp (cf. [1], [9], [33]) referred to as
the Ao-family; Av (cf. [4]), a descendant of the Ao-family; o BLT (cf. [18]), Aexp (cf. [5]),
As (cf. [20]), Ase (cf. [22]) and AC (cf. [28]). All these calculi (except Aexp) are described in
a de Bruijn setting where natural numbers play the role of the classical variables.

In [20], we extended the A-calculus with explicit substitutions by turning de Bruijn’s meta-
operators into object-operators offering a style of explicit substitution that differs from that of
Ao. The resulting calculus, As, remains as close as possible to the A-calculus from an intuitive
point of view. The main interest in introducing the As-calculus (cf. [20]) was to provide a
calculus of explicit substitutions which would both preserve strong normalisation and have a
confluent extension on open terms (cf. [22]). There are calculi of explicit substitutions which



are confluent on open terms: the Aoy-calculus (cf. [15] and [9]), but the non-preservation of
strong normalisation for Aoy, as well as for the rest of the Ao-family and for the categorical
combinators, has recently been proved (cf. [27]). There are also calculi which satisfy the
preservation property: the Av-calculus (cf. [4]), but this calculus is not confluent on open
terms. Moreover, in order to get a confluent extension, the introduction of a composition
operator for substitutions seemed unavoidable, but precisely this operator was the cause of
the non-preservation of strong normalisation as shown in [27]. The A{-calculus (cf. [28]) solved
the problem by introducing two new applications that allow the passage of substitutions within
classical applications only if these applications have a head variable. This is done to cut the
branch of the critical pair which is responsible for the non-confluence of Av on open terms.
Hence, A preserves strong normalisation and is itself confluent on open terms. Unfortunately,
AC is not able to simulate one step of clasical F-reduction as shown in [28], it simulates only a
“big step” F-reduction. This lack of the simulation property is an uncommon feature among
calculi of explicit substitutions. On the other hand, the As-calculus has been extended to
As. which is confluent on open terms (cf. [22]) and simulates one step f-reduction but the
preservation of strong normalisation is still an open problem.

1.3 The A-calculus with generalised reduction and explicit substitution

All the research mentioned above is a living proof for the importance and usefulness of gener-
alised reduction and explicit substitutions. Moreover, a system where reduction is generalised
and substitution is explicit, gives a more flexible way of evaluating programs where step-wise
substitution and the ability of reducing more redexes, may help in interleaving redexes in a
way that might play a great role in lazy evaluation and parallel reduction.

Before such a combination can be used as a powerful basis for programming, we need to
check that this combination is sound and safe exactly like we checked that each of explicit
substitutions and generalised reductions are sound and safe to use. We need to check that
extending the A-calculus with both concepts results in theories that are confluent, preserve
termination, and simulate G-reduction. This is what this paper does.

Generalised reduction g3, has never been introduced in a de Bruijn setting. Explicit
substitution, has almost always been presented in a de Bruijn setting. For this reason, we
combine gf-reduction and explicit substitution in a de Bruijn setting giving the first calculus
of generalised reduction a la de Bruijn. As we need to describe generalised redexes in an
elegant way, we use a notation suitable for this purpose the item notation (cf. [17]).

In Section 2 we introduce the calculus of generalised reduction, the Ag-calculus, in item
notation with de Bruijn indices and prove its confluence.

In Section 3 we recall the As-calculus and extend it with gg-reduction, into the Asg-
calculus. We show that Asg is sound with respect to Ag, simulates g3 and is confluent.

In Section 4 we prove that the Asg-calculus preserves As-strong normalisation (i.e. @ is
As-SN = @ is Asg-SN) and conclude that a is A-SN < a is As-SN < a is Ag-SN < a is Asg-SN.

In Section 5 the simply typed versions of the As- and Asg-calculi are presented and subject
reduction, subtyping, and strong normalisation of well typed terms are proved.

2 The Ag-calculus

We assume familiarity with de Bruijn notation. For instance, Az.Ay.zy is written as AA(21)
and Az Ay.(z(Az.zz))y as A(A(2(A(13))1)). To translate free variables, we assume a fixed



ordered list of binders (written from left to right) ---, Az, Ay, Az and prefix it to the term
to be translated. Hence, Az.yz translates as A34 whereas Az.zy translates as A43. Since
generalized (-reduction is easily described in item notation, we adopt the item syntax (cf.

[19, 17]) and write ab as (bd)a and A.a as (A)a.

Definition 1 The set of terms A, is defined as follows: A :=IN | (AJ)A | (M)A
We let a,b,... range over A and m,n,... over IN (positive natural numbers). Throughout,
a = b means that a and b are syntactically identical. A reduction — is compatible on A when

for alla, b, c € A, a — b implies (a §)c — (bd)c, (cd)a— (c6)b and (X)a — (A)b.

(AzAy.zzy)(Az.yz) =5 Au.z(Az.yz)u translates to (AA521)(A31) —5 A4(A41)1. Note that
we did not simply replace 2 in A521 by A31. Instead, we decreased 5 as one A disappeared,
and incremented the free variables of A31 as they occur within the scope of one more A. For
incrementing the free variables we need updating functions U}, where k tests for free variables
and ¢ — 1 is the value by which a variable, if free, must be incremented:

Definition 2 The updating functions U,i A= A fork > 0andi > 1 are defined inductively:

Ui(ad)b) = (Ug(a) 5)UL(b) Ui(a) = { ndi-1 if n>k
Ui(Na) = (A) Uiy (a)) * n if n<k.

Now we define meta-substitution. The last equality substitutes the intended variable (when
n = j) by the updated term. If n is not the intended variable, it is decreased by 1 if it is free
(case n > j) as one A has disappeared and if it is bound (case n < j) it remains unaltered.

Definition 3 The meta-substitutions at level j, for j > 1, of a term b € A in a term
a € A, denoted afj < b}, is defined inductively on a as follows:

a15 ao j bt = ay j b6 ao j b n4_1 Zf n>j
(0005 ) = ok Do ) o Rl )
(N5 = bf = (M(efi+1 b)) n if n<j.

The following lemma establishes the properties of meta-substitution and updating (cf. [20]):

Lemma 1 Let a, b, c € A.
1. For k < n < k+i we have: U (a) = Uj(a){n + b} .
For | <k <1+ j we have: U,i(Ulj(a)) = U;‘H_l(a) .
For k+i<mn we have: Ul(a){n+ b} = Uj(afn—1i+ 1 b}).
For i <n we have: af{i —b}{ncp=afn+1—cff{ibfn-i+1c}}.
For 1+ j <k+1 we have: UL(U](a)) = U} (Ui, _;(a)) .
For n < k+1 we have: Ui(afn+ b}) = Ui (a)fn< Ui_, 1 (0)} .

SOEINATR N

In order to introduce generalized S-reduction we need some defintions.

Definition 4 Items, segments and well-balanced segments (w.b.) are defined respectively by:
ITu=A8) | (A) Su=0¢|IS Wu=¢| (AW | WW

where ¢ is the empty segment. Hence, a segment is a sequence of items. (ad) and (X) are

called 6- and M-item respectively. We let I, J, ... range overZ; S, S', ... over S and W, U, ...

over W. For a segment S, 1g S, is given by: lg¢ =0, 1g(1.S) = 1+1gS. The number of main

A-items in S, N(S), is given by: N(¢) =0, N((ad)S)= N(S) and N((A\)S) =14+ N(S).



Definition 5 The A-calculus (a la de Bruijn) is the reduction system (A, —g), where —g3 is
the least compatible reduction on A generated by the B-rule: (ad)(A)b— af{1 < b}.

Definition 6 Generalized 3, noted —,3, is the least compatible reduction on A generated by:

(g8-rule) (a®)W(A)b — W (b{1 + UéV(W)H(a)}}) where W is well-balanced.
The Ag-calculus is the reduction system (A, —43).

Remark 1 The (3-rule is an instance of the g3-rule.(Take W = ¢ and check Ug (a) = a.)

We shall define updating and meta-substitution for segments and prove some useful properties.

Definition 7 Let S € S, a, b€ A, k>0 and n,i > 1. We define U:(S) and S{n + a} by:
Ui(¢) = ¢ ' ' Hna}=0o
Ui((66)S) = (U (0) 0)Ui(S)  ((b0)S)fn = a}} = (bfn = a} 6)(S{n«a})
Up((N)S) = N WU (5)) (NS fna} = (M)(5{n+1 - a}})
Lemma 2 Let S, T be segments and a,b € A. The following hold:
1 UL(ST) = U(S)UL sy (1) and UL (S ) = UL(S)UL sy (a)
2. 1g(S) =1g(UL(S)), N(S)=NUL(S)) and if S is w.b. then U.(S) is w.b.
3. (S)fn—ay=5fn— a} &{n+ N(S) < a} for £ a segment or a term
4. 1g(S) =lg(S{n«a}), N(S)=N(S{n<+a}), if S is w.b. then S{n + a} is w.b.

Proof: 1. and 3. Induction on S. 2. and 4. Induction on .S using 1. and 3. respectively. O

Lemma 3 Leta,be A. If a =43 b then a =p b.

Proof: We prove a —,3 b = a =g b by induction on a. We just prove by induction on Ig W,
the case (cO)W (AN)d —,5 W(d{1 + UéV(W)H(C)}}). Remark that W = (ed)W;(A) Wy, where
Wy and Wy are well balanced. Let w; = N(W;) and wy = N(Ws).

(cO)W (A)d = (e8) (ed) Wi (\)Wa(N)d Z5 ()W (Wa(N)d) {1 U5 ()}

2 (W W1 e U e (V) @2+ w + U (e)))

TEG2 W (Waft « U P (@)D (24w + U ({1« U T4 (0)))

LLY (W f1 U2 () })

(df2 4w, — U ()1« U T2 (0 {1 4+ wa = U T ()} ))

LIy (W f1 UL (o)) dd1 U T 2 () WL+ wy U (e) )

PRI (W (a1« U (0D e U T e D)

25 ()W) Waldf1 « U TP () = w(df1 « 0 " o) o

Theorem 1 (Confluence of \g) The Ag-calculus is confluent.

Proof: This proof is the de Bruijn version of the proof given in [19].

Let a =43 b and @ —#,45 c¢. By lemma 3, a =5 b and @ =g ¢, hence b =5 c. By confluence of

B, dd € A where b =3 d and ¢ =3 d. By Remark 1, b —#,3 d and ¢ =45 d. a
Finally, the following ensures the good passage of gf-reduction through { «+ } and U,i:

Lemma 4 lLeta, b, c,d € A. The following hold:
1L If ¢ —=y5d then Ul(e) —,5 UL(d) .
2. If ¢ 545 d then afn < c} —,5 afn « d}}.
3. 1f a =45 b then afn< c} —,5 bf{n < c}}.

5



Proof: 1. By induction on ¢. We just check case ¢ = (¢10)W (A)es, W well balanced, and
d=W(eaft = 103" e

Ui(e) = Ui ()W (N)es) "2 (U(e1)9) Z<W><A>U;+N ) (es) g

ULV U gy )1 = 0T e ) 27

=
UL (U} o )+1<c3>{{1eU;+N<W)< AR (CY)) SR
U Uy <c3{{1er e h) 2 UL (el Uy D e ) = Ua).

2. By induction on a using 1.
3. Induction on a. We prove case a = (a18)W (A)az and b= W (ax{1 « UéV(W)H(al)}}):

afi — c} = ()W (N ag){i « c} "Z°

(015 = WL e ) (aafft + N (W) - i ' Hss

Wi cPlasfit N(W)+1 e {1« UV 0 41 e 27

Wi« cPlaafi+ N(W)+1 {1 U)W ) (a) i+ N(W) P 2!

Wi« cJlaoft — UMM a) B i+ N(W) e}y "2
(W(asft « U a3 i e = bfi « ¢} 0

3 The \s- and \sg-calculi

The idea is to handle explicitly the meta-operators of definitions 2 and 3. Therefore, the
syntax of the As-calculus is obtained by adding to A two families of operators:

1. Explicit substitution operators { 0/} ;51 where (b o/)a stands for « where all free occurrences
of the variable representing the index j_are to be substituted by b.

2. Updating operators {@i}kzo i>1 necessary for working with de Bruijn numbers.

Definition 8 The set of terms, noted As, of the As-calculus is given as follows:

As =N | (As&)As | (\As | (Asa?)As | (pL)As  where j,i>1, k>0.
We let a, b, c range over As. A term (a O'j)b is called a closure. Furthermore, a term containing
neither o’s nor ¢©’s is called a pure term. A denotes the set of pure terms. dA-segments are
those whose main items are either 6- or A-items, i.e. DL = ¢ | (As6)DL | (A\)DL.

A reduction — on As is compatible if for all a, b, ¢ € As, if a — b then (ad)c — (bd)c,
(cd)a — (c8)b, (N)a — (M\)b, (aa?)e — (bai)e, (col)a — (ca?)b and (¢L)a — (p4)b.

Definition 9 Items, segments and well-balanced segments for As are defined as follows:

= (As&)| (M) |(Asa?)| (¢L) Ss = ¢|ZsSs Ws = ¢|(AsS)Ws(A)|Ws Ws
We let I, J, ... range over Is; S, S', ... over Ss and W, U, ... over Ws. We call (a 07) and
(¢L), o- and g-item respectively. 1g(S) is trivially extended to S € Ss and N(S) is extended
by: N((ao?)S) = N(S) and N((¢})S) = N(S).

As As-calculus should carry out updating and substitution explicitly, we include a set of rules
which are the equations in definitions 2 and 3 oriented from left to right.

Definition 10 The As-calculus is the reduction system (As,—.s), where —, is the least
compatible reduction on As generated by the rules given in Figure 1. We use As to denote
this set of rules. The calculus of substitutions associated with the As-calculus is the reduction
system generated by the set of rules s = As — {o-generation} and we call it the s-calculus.
The Asg-calculus is the calculus whose set of rules is A\sg = As 4+ {go-generation} where:



(o-generation) b8 (Na — (boha
o-A-transition (ba)(Na — (M) (bo'ThHa
o-app-transition  (ba?)(ard)ay — ((ba?)a1d) (bao)ay

o-destruction (bol)n — (cpé)b if n=j
n if n<j
p-A-transition (PLy(Na — (N (9924_1)(1
p-app-transition  (¢t)(a1d)ay  —  ((¢})a1d)(¢l)az
. i n+i-1 if n>k
p-destruction (pi)n — 0 i n<k

Figure 1: The As-calculus

go-generation (bYW (N)a — W((c,oév(w)ﬂ)b oa W well balanced, W # ¢

o-generation starts B-reduction by generating a substitution operator (¢l). o-app and -\
allow this operator to travel throughout the term until its arrival to the variables. If a variable
should be affected by the substitution, o-destruction (case j = n) carries out the substitution
by the updated term, thus introducing the updating operators. Finally the -rules compute
the updating. We state now the following theorem of the As-calculus (cf. [22]).

Theorem 2 The s-calculus is strongly normalising and confluent on As, hence s-normal
forms are unique. The set of s-normal forms is exactly A. Furthermore, if s(a) denotes the
s-normal form of a, then for every a, b € As: s((ad)b) = (s(a) 6)s(b), s((A)a) = (A)(s(a)),
s((gr)a) = Ui(s(a)) and s((bo’)a) = s(a){] « s(b)}} .

Lemma 5 Let a, b€ As, a —,_yen b= s(a) =5 5(b) and a —45_gen b= s(a) =43 s(b).

Proof: Induction on a using Lemma 4 and Thm. 2. For the second item note that if W is
well balanced then s(W a) = s(W)s(a), where the s-nf of a §A-segment is given by: s(¢) = ¢,
5((a0)S) = (s(a) 8)s(S) and s((A)S) = (A)s(S5). a

Corollary 1 Let a, b€ As, if a —»)s5 b then s(a) —»45 s(b).
Corollary 2 (Soundness) Let a, b€ A, if a —»\5, b then a —»45b.

This last corollary says that the Asg-calculus is correct with respect to the Ag-calculus, i.e.
Asg-derivations of pure terms ending with pure terms can also be derived in the Ag-calculus.
Moreover, the Asg-calculus is powerful enough to simulate gg-reduction.

Lemma 6 (Simulation of gf-reduction) Let a, b€ A, if a —,3b then a —»\s, b.

Proof: Induction on a using Lemma 4. a



Theorem 3 (Confluence of Asg) The Asg-calculus is confluent on As.

Proof: We use the interpretation method (cf. [14, 9]). We interpret the Asg-calculus into
the Ag-calculus via s-normalisation:

b 2 s(b)

Asg % y
a —F - s(a) Thm. 1 d
Asg \gN %

c 5 s(e)

The existence of the arrows s(a) —»45 s(b) and s(a) —»,5 s(c) is guaranteed by Corollary 1.
We can close the diagram thanks to the confluence of the Ag-calculus and finally Lemma 6
ensures s(b) —»\5y d and s(b) —» sy d proving thus the confluence for the Asg-calculus. 0

4 The \sg-calculus preserves As-SN

The technique used in this section to prove preservation of strong normalisation (PSN) is the
same used in [4] to prove PSN for Av and in [20] to prove PSN for As.

Notation 1 We write a € A-SN resp. a € Ar-SN when a is strongly normalising in the
A-calculus resp. in the Ar-calculus for r € {g,sg,s}. We write a ry b to denote that p is
the occurrence of the redex which is contracted. Therefore a — b means that the reduction
takes place at the root. If no specification is made the reduction must be understood as a
Asg-reduction. We denote by < the prefix order between occurrences of a term. Hence if p, g
are occurrences of the term a such that p < ¢, and we write a, (resp. a,) for the subterm of
a at occurrence p (resp. q), then a, is a subterm of a,.

For example, if @ = 203((A1)4), we have a1 = 2, ay = (A1)4, a1 = AL, az;; = 1, azp = 4.
Since, for instance, 2 < 21, agy is a subterm of as.

The following three lemmas assert that all the ¢’s in the last term of a derivation beginning
with a A-term must have been created at some previous step by a (generalized) o-generation
and trace the history of these closures. The first lemma deals with one-step derivation where
the redex is at the root; the second generalises the first; the third treats arbitrary derivations.

Lemma 7 Ifa— C[(e a¥)d] then one of the following must hold:
l.a=(ed)(N)d,C=0andi=1.
— (! _ — ()L _
2.a= ()W), W#¢, C=W0O, e = (¢, )¢ and i =1.

3. a = C'[(e a?)d'] for some context C', some term d' and some natural j.

Proof: Since the reduction is at the root, we must check for every rule @ — ' in Asg that if
(ec*)d occurs in a’ then either 1. or 2. or 3. follows. We just check the interesting rules:

(0-gen) : a = (c&)(MN)band a’ = (ca')b. If (e o?)d matches (co')d then 1. Else (eo')d must
occur within b or ¢ and hence 3. with j =7 and d' = d.

(go-gen) : a = (cHW(A)b, W # ¢ and o = W((cpév(w)“)cal)b. If (ec')d matches
((c,oév(W)H)c ol)d then 2. Else (e o')d occurs in b, ¢ or W, hence 3. with j = i, d’ = d.



(o-M-trans) : a = (co”)(N)band o' = (A)(co?T1)b. If (e 0')d matches (c " +1)b then 3. with
j=1i—1,d = (\d. Else (e0')d occurs in b or ¢, hence 3. with j =4, d’ = d. ]

Lemma 8 Ifa — C[(ea')d] then one of the following must hold:
1.a=Cl(ed)(N)d] and i = 1.

2 a=C[(OWN], C =V, e = (N and i = 1.
3. a=C'[(e'c*)d'] where ¢’ = e or e’ — e.

Proof: Induction on a, using lemma 7 for the reductions at the root. O

Lemma 9 Let a; — ... — a, — a,q1 = C[(ea)d]. There exists e’ d' € As such that ¢’ — e
and, either ay = C'[(e' a?)d'] or for some k < n and w.b. segment W, aj, = C'[(e' )W (\)d']
and a1 = C’[W((c,oév(w)ﬂ)e’al)d’] or, if W = ¢, ary1 = C'[(¢' o1)d'].

Proof: Induction on n and use the previous lemma. a
We define now internal and external reductions. An internal reduction takes place some-

where at the left of a ¢° operator. An external reduction is a non-internal one. Our definition

is inductive rather than starting from the notion of internal and external position as in [4].

Definition 11 The reduction Ehsg s defined by the following rules:

int int

a—>/\5gb a—>/\5gb a—>/\5gb
(a0i)c 2%, (ba)e (a6)e 25y, (b)c (c8)a 225y, (c8)b

aﬁmsgb aﬂmsgb aﬂmsgb
(Na s (M) (col)a —Ssy (coi)b (Ph)a —Srsy (£1)D

a4 —\sg b

Therefore, Ehsg is the least compatible relation closed under — .
(act)c =54 (bo?)c

Definition 12 The reduction =5, is defined by induction. The axioms are the rules of the
s-calculus and the inference rules are the following:

ext ext ext ext ext

a—55;b a—55;b a—55;b a—55;b a—55;b
(a8)e 25, (b0)e (cd)a 5, (cd)b (Va5 (Nb (cai)a =5, (cal)b (py)a =5, (p})b

An external (generalized) o-generation is defined by the rule (g)o-generation taken as an ax-

iom and the five inference rules stated above where K is replaced by e—Xt>(g)g_gen .

Remark 2 By inspecting the inference rules one can check that a Emsgn s impossible and:
int

o If a —\s5 (A)b then a = (X)c and cﬂmsgb.
o If aitmsg (cd6)b then a = (ed)d and ((dﬂmsgb and e = c¢) or (eﬁmsgc and d=1)).

ext ext
b ag—gen b
Note that a4 — and 'a pvors (9)o=g — are excluded from the defini-
(a O'Z)C XK (bo')e (act)c —(g)o—gen (bo')e

tions of external s-reduction and external (generalized) o-generation, respectively. Thus, as
expected, external reductions will not occur at the left of a ¢® operator. This enables us to

write i>ﬁ instead of —»g in the following proposition (compare with Lemma 5).



Proposition 1 Leta, b e As. a=5,_,..b = s(a)Dps(b) and a=5,,_4enb = s(a) 5, 55(b) .
Proof: Induction on a, similar to the proof of Lemma 5. The point is that in the case
a = co'd, the reduction cannot take place within d because it is external, and this is the only
case that forced us to consider the reflexive-transitive closure because of lemma 4.2. a
The following lemma is needed in Lemma 11 and hence in the Preservation Theorem.

Lemma 10 (Commutation Lemma) Leta, b € As such that s(a) € A\-SN and s(a) = s(b).

_I_ .
If al—ntmsg —>5b then a—t> %Asgb.
Proof: By a careful induction on a while analysing the positions of the redexes. The proof
is exactly the same as the proof of the Commutation Lemma in [20] O

Lemma 11 Let a € A\g-SNNA. For every infinite Asg-derivation a —xsq b1 —rsg =+ —2sg
by, —xsg =+, there exists N such that for i > N all the reductions b; — sy bi41 are internal.

Proof: An infinite Asg-derivation must contain infinite (g)o-generations, since the s-calculus
is SN, and the first rule must be a (g)o-generation beacuse a is a pure term. Hence it looks
like: @ = a1 —=(g)o—gen @) —Fs A2 —H(glo—gen Ay —Hs t —Hs Un —H(g)o—gen A —Fs ccc. By
Proposition 1, there must be only a finite number of external (g)o-generations (otherwise
we construct an infinite Ag-derivation contradicting the hypothesis @ € Ag-SN). Therefore
there exists P such that for + > P we have q; ﬂ(
s(a;) —»(g)p s(a;) for all i, and therefore
@ = 5(a) = s(a1) —(g)s 5(a}) = s(az) (p)5 5(ah) = - = s(a,) »(y)5 5(a) =

Since a € Ag-SN, we conclude that s(a;) € Ag-SN for all 7 and therefore there exists M > P
such that for ¢ > M we have s(a;) = s(a}). We claim that there exists N > M such that for
¢ > N all the s-rewrites are also internal. Otherwise, there would be an infinity of external
s-rewrites and at least one copy of each of these external rewrites can be brought, by the
Commutation Lemma, in front of aps, and so generate an infinite s-derivation beginning at
apr, which is a contradiction. This intuitive idea can be formally stated as:

g)o—gen ai. Furthermore, by Lemma 5,

ext

Fact: If there exists an infinite derivation aps %Z b —»™ ¢ —;d — --- where all
the rewrites in b —» ¢ are either e—Xt>5 or l—ntmsg , then there exists an infinite derivation
ext . n+1 b
M — —»d— -
Proof of Fact: By an easy induction on m, using the Commutation Lemma. We remark
that M has been so chosen in order to satisfy the hypothesis of this lemma. a
In order to prove the Preservation Theorem we need two definitions.

Definition 13 An infinite Asg-derivation ay — -++ — a, — --- is minimal if for every step
a; ? Asg i1, every other derivation beginning with a; ? A\sg @iy where p < q, is finite.

The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps within
a subterm of the actual redex, then an infinite derivation is impossible.

Definition 14 The syntax of skeletons and the skeleton of a term are defined as follows:

Skeletons K :=IN | (K&K | (MK | ([Jo))K | (¢L)K
Sk(n)=n  Sk((ad)b) = (Sk(a)d)Sk(b)  Sk((bo)a) = ([]o")Sk(a)
Sk((A)a) = (A)Sk(a) Sk((#r)a) = (#3)Sk(a)

10



Remark 3 Leta,bec As. Ifa Ehsg b then Sk(a) = Sk(b).

Theorem 4 (Preservation of A\s-SN) For every a € A, if a is strongly normalising in the
As-calculus then a is strongly normalising in the Asg-calculus.

Proof: Suppose a € As-SN, a € Asg-SN. Let us consider a minimal infinite Asg-derivation
D:a—a — - —a, > ---. Lemma 11 gives N such that for ¢« > N, a; — a;41 is
internal. Hence, by Remark 3, Sk(a;) = Sk(ai+1) for ¢ > N. As there are only a finite
number of closures in Sk(ay) and as the reductions within these closures are independent,
an infinite subderivation of D must take place within the same and unique closure in Sk(ay)
and, evidently, this subderivation is also minimal. Let us call it D’ and let C' be the context
such that ay = C[(dc*)c] and (d o*)c is the closure where D’ takes place. Therefore we have:
D' ay = Cl(d o)) Fhay Cl(drof)e] gy -+ Ty Clldn 0')e] gy -
Since a is a pure term, Lemma 9 ensures the existence of I < N such that either
ar = C'[(d'6)(N) ] = ary1 = C'[(d'aV)'] and d' —» d or
ar = C'[(d W N ] = argr = C TV () " a0l ] and & — d.
Let us consider in the first and second cases respectively, the following infinite derivations:
D" i a—» a;p — C'[(dS)(N) ] = C'[(d1d) (M) ] — -+ = C'[(dnd)(N) ] — - -
D" a—» ap —» C'[(dOYW (N = C'[(d1O)W(N) ] — -+ = C'[(dp )W (A) ] — - - -
In D" and D", the redex in ay is within & which is a proper subterm of (d'8)(A)¢’ (of
(d' )W (A)c in the second case), whereas in D the redex in ay is (d'§)(A)¢’ (in the second
case (d'6)W(A)c’) and this contradicts the minimality of D. a

Corollary 3 For every a € A, the following equivalences hold:
a € Ag-SN& a € Asg-SN< a € A\-SN& a € As-SN

Proof: By Remark 1 and Theorem 4, a € As-SN < a € Asg-SN. Due to [16], « € A-SN <
a € Ag-SN. Due to [20], @ € A\-SN < a € As-SN. Hence the corollary. a

5 The typed \s- and \sg-calculi

We prove Asg-SN of well typed terms using the technique developped in [21] to prove As-
SN and suggested to us by P.-A. Mellies as a successful technique to prove Av-SN (personal
communication).

We recall the syntax and typing rules for the simply typed A-calculus in de Bruijn no-
tation. The types are generated from a set of basic types T with the binary type operator
—. Environments are lists of types. Typed terms differ from the untyped ones only in the
abstractions which are now marked with the type of the abstracted variable.

Definition 15 The syntax for the simply typed A-terms is given as follows:

Types T o= T|T—>T
Environments & == nil | T,&
Terms Ae == n | (AOA | (TAHA

We let A, B, ... range over T; E, Fy, ... over & and a, b, ... over A;.

11



The typing rules are given by the typing system L1 as follows:

A EFbL: B
L1 - A FF1:A L1-AX -
(L1 - var) ’ ( ) Er (ANb: A— B
Ftn:B FrFb:A—-B FFra:A

L1 - L1 -

( varn) A FFn+4+1:B ( app) Et(ad)b: B
Before presenting the simply typed As- and Asg-calculi we introduce the following notation
concerning environments. If I is the environment Fy, Fs, ..., F,, we shall use the notation
FE>; for the environment F;, ;1 y,..., Iy, analogously E<; stands for Fy,..., E;, etc.

Definition 16 The syntax for the simply typed As-terms is given as follows:
As; = IN | (Asi&)Asy | (T A)As; | (Asia')As; | (@};)Ast 1>1,k>0.

Types and environments are as above. The typing rules of the system Lsl are as follows:
The rules Lsl-var, Lsl-varn, Lsl-\ and Lsl-app are exactly the same as L1-var, L1-varn,
L1-X and L1-app, respectively. The new rules are:

FEsiFb:B E<Z",B,E2i|—a:A (Lsl — o) Esk,Ezk_!_il—a:A
Etr(bo)a: A EF (¢ )a: A

The simply typed As- and Asg-calculi are defined by the same rules of the corresponding

untyped versions, except that abstractions in the typed versions are marked with types.

(Lsl — o)

Definition 17 We say that a € As; is a well typed term if there exists an environment F
and a type A such that F Frg1 a1 A. We note As,; the set of well typed terms.

The aim of this section is to prove that every well typed As-term a is Asg-SN (and hence
As-SN). To do so, we show As,; C = C As¢g-SN, where

= = {a € As, : for every subterm b of a, s(b) € Ag-SN}.
To prove As,; C = (Proposition 2) we need to establish some useful results such as subject
reduction, soundness of typing and typing of subterms:

Lemma 12 Let S be a segment, A, B types and a, b, ¢ € As;. The following hold:
1. EF S((¢h)ad)(c8)(BAb: A iff EF S(c8)(BN)((¢5ad)b: A
2. B+ S(()(¢h)ad)o: A iff EFS((est? " ad)b: A
3. EFS@8)(BMNb: A iff EFS(ac')b: A

Proof: All by induction on S. Here is the proof of two cases of the first item:

S=¢: EF((¢h)ad)(cd)(BA)b: A iff there exists C such that
Er(c§)(BAb:C = A and EF (¢))a: C iff
EF(BMNb:B— (C—A) and FrFc:B and By Fa:C iff
B, EFb:C— A and EFc:B and (B, E)siqg Fa:C iff
B,EFb:C = A and Etc:B and B, EF (p5)a: C iff
B, E*F ((¢5ad)b: A and EtFc: B iff
EF(BN((gstYad)b: B— A;and EFc: B iff
EF (e8)(BN)((¢5thad)b: A

S=(CNS": EF(CNS((¢h)ad)(c8)(BA)b: A iff there exists D such that
A=C—=D and C, E+ S ((¢4)ad)(cd)(BA)b: D iff (IH)
C, EFS"(e8)(BAN)((e5TYad)b: D iff EF (CA)S'(c& (BN ((p5™)ad)b: A. O

12



Lemma 13 (Shuffle Lemma) Let S be an arbitrary segment, W a well balanced segment

and a, b € Asy, then EF S(ad)Wh: A iff EFSW((¢h " ™as)b:A.

Proof: By induction on W. If W = ¢, it is immediate since £’ d : D iff E' F (o8)d : D.
Let us assume W = (c§)U(BA)V, with U, V well balanced.

EF S(ad)(cHUBNVH: A iff (IH) EF Sas)U((e) e s)(BAVb: A iff (TH)
EFSU(eh ™6 6) (oYY es)(BA)V b : A iff (Lemma 12.1)

EFSU(eh ™) (BA (e O Ha5)Vh: A iff (TH, twice)

EFS(esUBNV (e O (N0 5)b: A iff (Lemma 12.2)

EF S(esUBNV (g DTNy 5yp: A 0

Lemma 14 (Subject reduction) If F'tbypg a: A and a — )55 b then Elbpg b: A.

Proof: By induction on a. If the reduction is not at the root, use IH. If it is, check that
for each rule @ — b we have F b1 a : A implies F Fpg1 b @ A. Case o-generation, use
lemma 12.3. Case generalized o-generation: If F' + (a )W (BA)b: A then, by Lemma 13,

E W((cpév(w)“)a S)(BA)b: A and, by Lemma 12.3, F'+ W((c,oév(w)ﬂ)a ol)b: A. o
Corollary 4 Let g1 a: A, if a —$)\s9 b then El1e1 b1 Al
Lemma 15 (Typing of subterms) If a € As,; and b is a subterm of a then b € Asyy;.

Proof: By induction on a. If bis not an immediate subterm of a, use the induction hypothesis.
Otherwise, the last rule used to type @ must contain a premise in which b is typed. O

Lemma 16 (Soundness of typing) Ifa € Ay and Ebyg1 a: A then Fbpy a: A.
Proof: Easy induction on a. a
Proposition 2 As,; C =.

Proof: Let a € As,; and let b a subterm of a. By Lemma 15, b € As,; and by Corollary 4,

s(b) € Asy. Since s(b) € A (Thm. 2), Lemma 16 yields that s(b) is L1-typable, and it is

well known that classical typable A-terms are strongly normalising in the A-calculus. Hence,

s(b) € A-SN and, by preservation (Corollary 3), s(b) € Ag-SN. Therefore a € =. ]
We prove now = C Asg-SN.

Lemma 17 If a € = then for every infinite As-derivation a —xs b1 —xg -+ —xs 0 —2s =+
there exists N such that for i > N all the reductions b; — s bj41 are internal.

Proof: The proof is almost the same as the proof of lemma 11. a
Proposition 3 For every a € Asy, if a € = then a € Asg-SN.

Proof: Suppose there exists ' € = and o’ ¢ Asg-SN, then there must exist a term a of
minimal size such that @ € = and a € Asg-SN.

Let us consider a minimal infinite Asg-derivation D : ¢ — a;y — --- — a, — --- and
follow the proof of Theorem 4 to obtain:

13



D' ay =C(d O'i)C] ﬂ>Asg C[(dy Ui)C] E>Asg e E>Asg Cl(d, Ui)c] Eﬂsg T
Now three possibilities arise from lemma 9. Two of them have been considered in the proof
of Theorem 4 and contradicted the minimality of D. Let us consider the third one:
a = C"[(d'¢")¢'] where d' — d. But now we have d — d — dy — -+ — d,, — ---. Since d' is
a subterm of a, d’ € Z, contradicting our choice of a with minimal size. a
Therefore we conclude, using Propositions 2 and 3 and Corollary 3:

Theorem 5 Fvery well typed As-term is strongly normalising in the Asg-calculus.

Corollary 5 FEvery well typed As-term is strongly normalising in the As-calculus.

6 Conclusion

In this paper, we started from the fact that generalised reduction and explicit substitution
have been playing a vital role in useful extensions of the A-calculus but have never been
combined together. We commented that the combination might indeed join both benefits
and hence a A-calculus extended with both needs to be studied. We presented such a calculus
and showed that it possesses most of the important properties that have been the center of
research for each concept on its own. In particular, we showed that the resulting calculus
is confluent, sound and simulates S-reduction. We showed moreover that it preserves strong
normalisation of the unextended A-calculus and of the A-calculus extended with each of the
two concepts independently. We studied furthermore, the simply typed version of our calculus
of explicit substitution and generalised reduction and showed that it has again the important
properties such as subject reduction, soundness of subtyping, typing of subterms and strong
normalisation of well typed terms.

Now that a calculus combining both concepts have been shown to be theoretically correct,
it would be interesting to extend our calculus Asg to one that is confluent on open terms as
is the tradition with calculi of explicit substitution. It would be also interesting to study
the polymorphically (rather than the simply) typed version of Asg. These are issues we are
investigating at the moment.
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