
Generalized �-reduction and explicit substitutions �Fairouz Kamareddine and Alejandro R��os yMay 2, 1996AbstractExtending the �-calculus with either explicit substitution or generalised reduction hasbeen the subject of extensive research recently which still has many open problems. Due tothis reason, the properties of a calculus combining both generalised reduction and explicitsubstitutions have never been studied. This paper presents such a calculus �sg and showsthat it is a desirable extension of the �-calculus. In particular, we show that �sg preservesstrong normalisation, is sound and it simulates classical �-reduction. Furthermore, westudy the simply typed �-calculus extended with both generalised reduction and explicitsubstitution and show that well-typed terms are strongly normalising and that otherproperties such as subtyping and subject reduction hold.1 Introduction1.1 The �-calculus with generalised reductionIn ((�x:�y:N)P)Q, the function starting with �x and the argument P result in the redex(�x:�y:N)P which when contracted will turn the function starting with �y and Q into aredex. This fact has been exploited by many researchers and reduction has been extended sothat the future redex based on the matching �y and Q is given the same priority as the otherredex. Attempts at generalising reduction can be summarized by three axioms:(�) ((�x:N)P)Q! (�x:NQ)P , () (�x:�y:N)P ! �y:(�x:N)P ,(C) ((�x:�y:N)P)Q! (�y:(�x:N)P)Q.These (related) rules attempt to make more redexes visible. C for example, makes surethat �y and Q form a redex even before the redex based on �x and P is contracted. Due tocompatibility, implies C . Moreover, ((�x:�y:N)P)Q!� (�x:(�y:N)Q)P and hence both �and C put � adjacently next to its matching argument. � moves the argument next to itsmatching � whereas C moves the � next to its matching argument. � can be equally appliedto explicitly and implicitly typed systems. The transfer of or C to explicitly typed systemsis not straightforward however, since in these systems, the type of y may be a�ected by thereducible pair �x; P . For example, it is �ne to write ((�x:�:�y:x:y)z)u!� (�x:�:(�y:x:y)u)z butnot to write ((�x:�:�y:x:y)z)u!C (�y:x:(�x:�:y)z)u. For this reason, we study �-like rules inthis paper. Now, we discuss where generalised reduction has been used (cf. [25]).[31] introduces the notion of a premier redex which is similar to the redex based on �yand Q above (which we call generalised redex). [32] uses � and (and calls the combination�This work was carried out under EPSRC grant GR/K25014.yDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk1

�) to show that the perpetual reduction strategy �nds the longest reduction path when theterm is Strongly Normalising (SN). [35] also introduces reductions similar to those of [32].Furthermore, [23] uses � (and other reductions) to show that typability in ML is equivalentto acyclic semi-uni�cation. [34] uses a reduction which has some common themes with �. [29]and [11] use � whereas [26] uses to reduce the problem of �-strong normalisation to theproblem of weak normalisation for related reductions. [24] uses � and to reduce typability inthe rank-2 restriction of the 2nd order �-calculus to the problem of acyclic semi-uni�cation.[2] uses � (called \let-C") as a part of an analysis of how to implement sharing in a reallanguage interpreter in a way that directly corresponds to a formal calculus. [19] uses amore extended version of � where Q and N are not only separated by the redex (�x:N)Pbut by many redexes (ordinary and generalised). [19] shows that generalised reduction makesmore redexes visible allowing exibility in reducing a term. [6] shows that with generalisedreduction one may indeed avoid size explosion without the cost of a longer reduction pathand that �-calculus can be elegantly extended with de�nitions which result in shorter typederivations. Generalised reduction is strongly normalising (cf. [6]) for all systems of the cube(cf. [3]) and preserves strong normalisation of classical reduction (cf. [16]).1.2 The �-calculus with explicit substitutionFunctional programming and in particular partial evaluation may bene�t from explicit subs-titution. For example, given xx[x := y], we may not be interested in having yy as the resultof xx[x := y] but rather only yx[x := y]. In other words, we only substitute one occurrenceof x by y and continue the substitution later. This issue of being able to follow substitutionand decide how much to do and how much to postpone, has become a major one in func-tional language implementation (cf. [30]). Another wish is to execute substitutions only whennecessary. For this purpose one may decide to postpone substitutions as long as possible(\lazy evaluations"). This can yield pro�ts, since substitution is an ine�cient, maybe evenexploding, process by the many repetitions it causes. This is the ground for the so-calledgraph reduction (cf. [30]). Most theorem provers (Nuprl [7], Coq [12], HOL [13]) use explicitsubstitutions in their implementation in order to replace locally (rather than globally) someabbreviated term. This avoids explosion when it is necessary that a variable be replaced bya huge term only in speci�c places so that a certain theorem can be proved.Most literature on the �-calculus considers substitution as an implicit operation. It meansthat the computations to perform substitution are usually described with operators which donot belong to the language of the �-calculus. The last �fteen years however, have seenan interest in formalising substitution explicitly; various calculi including new operators todenote substitution have been proposed. Amongst these calculi we mention C��� (cf. [10]);the calculi of categorical combinators (cf. [8]); ��, ��*, ��SP (cf. [1], [9], [33]) referred to asthe ��-family; �� (cf. [4]), a descendant of the ��-family; '�BLT (cf. [18]), �exp (cf. [5]),�s (cf. [20]), �se (cf. [22]) and �� (cf. [28]). All these calculi (except �exp) are described ina de Bruijn setting where natural numbers play the role of the classical variables.In [20], we extended the �-calculus with explicit substitutions by turning de Bruijn's meta-operators into object-operators o�ering a style of explicit substitution that di�ers from that of��. The resulting calculus, �s, remains as close as possible to the �-calculus from an intuitivepoint of view. The main interest in introducing the �s-calculus (cf. [20]) was to provide acalculus of explicit substitutions which would both preserve strong normalisation and have aconuent extension on open terms (cf. [22]). There are calculi of explicit substitutions which2

are conuent on open terms: the ��*-calculus (cf. [15] and [9]), but the non-preservation ofstrong normalisation for ��*, as well as for the rest of the ��-family and for the categoricalcombinators, has recently been proved (cf. [27]). There are also calculi which satisfy thepreservation property: the ��-calculus (cf. [4]), but this calculus is not conuent on openterms. Moreover, in order to get a conuent extension, the introduction of a compositionoperator for substitutions seemed unavoidable, but precisely this operator was the cause ofthe non-preservation of strong normalisation as shown in [27]. The ��-calculus (cf. [28]) solvedthe problem by introducing two new applications that allow the passage of substitutions withinclassical applications only if these applications have a head variable. This is done to cut thebranch of the critical pair which is responsible for the non-conuence of �� on open terms.Hence, �� preserves strong normalisation and is itself conuent on open terms. Unfortunately,�� is not able to simulate one step of clasical �-reduction as shown in [28], it simulates only a\big step" �-reduction. This lack of the simulation property is an uncommon feature amongcalculi of explicit substitutions. On the other hand, the �s-calculus has been extended to�se which is conuent on open terms (cf. [22]) and simulates one step �-reduction but thepreservation of strong normalisation is still an open problem.1.3 The �-calculus with generalised reduction and explicit substitutionAll the research mentioned above is a living proof for the importance and usefulness of gener-alised reduction and explicit substitutions. Moreover, a system where reduction is generalisedand substitution is explicit, gives a more exible way of evaluating programs where step-wisesubstitution and the ability of reducing more redexes, may help in interleaving redexes in away that might play a great role in lazy evaluation and parallel reduction.Before such a combination can be used as a powerful basis for programming, we need tocheck that this combination is sound and safe exactly like we checked that each of explicitsubstitutions and generalised reductions are sound and safe to use. We need to check thatextending the �-calculus with both concepts results in theories that are conuent, preservetermination, and simulate �-reduction. This is what this paper does.Generalised reduction g�, has never been introduced in a de Bruijn setting. Explicitsubstitution, has almost always been presented in a de Bruijn setting. For this reason, wecombine g�-reduction and explicit substitution in a de Bruijn setting giving the �rst calculusof generalised reduction �a la de Bruijn. As we need to describe generalised redexes in anelegant way, we use a notation suitable for this purpose the item notation (cf. [17]).In Section 2 we introduce the calculus of generalised reduction, the �g-calculus, in itemnotation with de Bruijn indices and prove its conuence.In Section 3 we recall the �s-calculus and extend it with g�-reduction, into the �sg-calculus. We show that �sg is sound with respect to �g, simulates g� and is conuent.In Section 4 we prove that the �sg-calculus preserves �s-strong normalisation (i.e. a is�s-SN) a is �sg-SN) and conclude that a is �-SN, a is �s-SN, a is �g-SN, a is �sg-SN.In Section 5 the simply typed versions of the �s- and �sg-calculi are presented and subjectreduction, subtyping, and strong normalisation of well typed terms are proved.2 The �g-calculusWe assume familiarity with de Bruijn notation. For instance, �x:�y:xy is written as ��(21)and �x:�y:(x(�z:zx))y as �(�(2(�(13))1)). To translate free variables, we assume a �xed3

ordered list of binders (written from left to right) � � � ; �z; �y; �x and pre�x it to the termto be translated. Hence, �x:yz translates as �34 whereas �x:zy translates as �43. Sincegeneralized �-reduction is easily described in item notation, we adopt the item syntax (cf.[19, 17]) and write a b as (b �)a and �:a as (�)a.De�nition 1 The set of terms �, is de�ned as follows: � ::= IN j (� �)� j (�)�We let a; b; : : : range over � and m;n; : : : over IN (positive natural numbers). Throughout,a = b means that a and b are syntactically identical. A reduction ! is compatible on � whenfor all a; b; c 2 �, a! b implies (a �)c! (b �)c, (c �)a! (c �)b and (�)a! (�)b.(�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u translates to (��521)(�31) !� �4(�41)1. Note thatwe did not simply replace 2 in �521 by �31. Instead, we decreased 5 as one � disappeared,and incremented the free variables of �31 as they occur within the scope of one more �. Forincrementing the free variables we need updating functions U ik, where k tests for free variablesand i� 1 is the value by which a variable, if free, must be incremented:De�nition 2 The updating functions U ik : �! � for k � 0 and i � 1 are de�ned inductively:U ik((a �)b) = (U ik(a) �)U ik(b)U ik((�)a) = (�)(U ik+1(a)) U ik(n) = (n+ i� 1 if n > kn if n � k :Now we de�ne meta-substitution. The last equality substitutes the intended variable (whenn = j) by the updated term. If n is not the intended variable, it is decreased by 1 if it is free(case n > j) as one � has disappeared and if it is bound (case n < j) it remains unaltered.De�nition 3 The meta-substitutions at level j , for j � 1 , of a term b 2 � in a terma 2 � , denoted affj bgg , is de�ned inductively on a as follows:((a1�)a2)ffj bgg = ((a1ffj bgg)�)(a2ffj bgg)((�)c)ffj bgg = (�)(cffj+ 1 bgg) nffj bgg = 8><>: n� 1 if n > jU j0 (b) if n = jn if n < j :The following lemma establishes the properties of meta-substitution and updating (cf. [20]):Lemma 1 Let a; b; c 2 �.1. For k < n < k + i we have: U i�1k (a) = U ik(a)ffn bgg .2. For l � k < l+ j we have: U ik(U jl (a)) = U j+i�1l (a) :3. For k + i � n we have: U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :4. For i � n we have: affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cgggg :5. For l+ j � k + 1 we have: U ik(U jl (a)) = U jl (U ik+1�j(a)) .6. For n � k + 1 we have: U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :In order to introduce generalized �-reduction we need some de�ntions.De�nition 4 Items, segments and well-balanced segments (w.b.) are de�ned respectively by:I ::= (� �) j (�) S ::= � j I S W ::= � j (��)W(�) j WWwhere � is the empty segment. Hence, a segment is a sequence of items. (a �) and (�) arecalled �- and �-item respectively. We let I, J, ... range over I; S, S0, ... over S and W , U , ...over W. For a segment S, lg S, is given by: lg � = 0, lg(I S) = 1+ lgS. The number of main�-items in S, N(S), is given by: N(�) = 0, N((a �)S) = N(S) and N((�)S) = 1 +N(S).4

De�nition 5 The �-calculus (�a la de Bruijn) is the reduction system (�;!�), where !� isthe least compatible reduction on � generated by the �-rule: (a�)(�)b! aff1 bgg.De�nition 6 Generalized �, noted !g�, is the least compatible reduction on � generated by:(g�-rule) (a�)W (�)b! W (bff1 UN(W)+10 (a)gg) where W is well-balanced.The �g-calculus is the reduction system (�;!g�).Remark 1 The �-rule is an instance of the g�-rule.(Take W = � and check U10 (a) = a.)We shall de�ne updating and meta-substitution for segments and prove some useful properties.De�nition 7 Let S 2 S, a; b 2 �, k � 0 and n; i � 1. We de�ne U ik(S) and Sffn agg by:U ik(�) = � �ffn agg = �U ik((b �)S) = (U ik(b) �)U ik(S) ((b �)S)ffn agg = (bffn agg �)(Sffn agg)U ik((�)S) = (�)(U ik+1(S)) ((�)S)ffn agg = (�)(Sffn+ 1 agg)Lemma 2 Let S; T be segments and a; b 2 �. The following hold:1. U ik(S T) = U ik(S)U ik+N(S)(T) and U ik(S a) = U ik(S)U ik+N(S)(a)2. lg(S) = lg(U ik(S)) , N(S) = N(U ik(S)) and if S is w.b. then U ik(S) is w.b.3. (S �)ffn agg = Sffn agg �ffn+ N (S) agg for � a segment or a term4. lg(S) = lg(Sffn agg) , N(S) = N(Sffn agg) ; if S is w.b. then Sffn agg is w.b.Proof: 1. and 3. Induction on S. 2. and 4. Induction on S using 1. and 3. respectively. 2Lemma 3 Let a; b 2 �. If a!!g� b then a =� b.Proof: We prove a!g� b) a =� b by induction on a. We just prove by induction on lgW ,the case (c�)W (�)d!g� W (dff1 UN(W)+10 (c)gg). Remark that W = (e�)W1(�)W2, whereW1 and W2 are well balanced. Let w1 = N(W1) and w2 = N(W2).(c�)W (�)d= (c�)(e�)W1(�)W2(�)d IH=� (c�)W1((W2(�)d)ff1 Uw1+10 (e)ggL 2:3= (c�)W1(W2ff1 Uw1+10 (e)gg)(�)(dff2+ w2 Uw1+10 (e)gg)IH &L2:4=� W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+10 (c)gg)L 1:1= W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+20 (c)ff1+ w2 Uw1+10 (e)gggg)L 1:4= W1(W2ff1 Uw1+10 (e)gg)dff1 Uw1+w2+20 (c)ggff1+ w2 Uw1+10 (e)ggL 2:3&L 2:4= W1(W2(dff1 Uw1+w2+20 (c)gg)ff1 Uw1+10 (e)gg)IH=� (e�)W1(�)W2(dff1 Uw1+w2+20 (c)gg) = W (dff1 UN(W)+10 (c)gg) 2Theorem 1 (Conuence of �g) The �g-calculus is conuent.Proof: This proof is the de Bruijn version of the proof given in [19].Let a !!g� b and a !!g� c. By lemma 3, a =� b and a =� c, hence b =� c. By conuence of�, 9d 2 � where b!!� d and c!!� d. By Remark 1, b!!g� d and c!!g� d. 2Finally, the following ensures the good passage of g�-reduction through ff gg and U ik:Lemma 4 Let a; b; c; d 2 �. The following hold:1. If c!g� d then U ik(c)!g� U ik(d) .2. If c!g� d then affn cgg !!g� affn dgg .3. If a!g� b then affn cgg !g� bffn cgg .5

Proof: 1. By induction on c. We just check case c = (c1�)W (�)c3, W well balanced, andd = W (c3ff1 UN(W)+10 (c1)gg):U ik(c) = U ik((c1�)W (�)c3) L2:1= (U ik(c1)�)U ik(W)(�)U ik+N(W)+1(c3)L2:2!g�U ik(W)(U ik+N(W)+1(c3)ff1 UN(W)+10 (U ik(c1))gg) L 1:5=U ik(W)(U ik+N(W)+1(c3)ff1 U ik+N(W)(UN(W)+10 (c1))gg) L 1:6=U ik(W)U ik+N(W)(c3ff1 UN(W)+10 (c1)gg) L 2:1= U ik(W (c3ff1 UN(W)+10 (c1)gg)) = U ik(d).2. By induction on a using 1. .3. Induction on a. We prove case a = (a1�)W (�)a2 and b = W (a2ff1 UN(W)+10 (a1)gg):affi cgg = ((a1�)W (�)a2)ffi cgg L 2:3=(a1ffi cgg�)(Wffi cgg)(�)(a2ffi+N (W) + 1 cgg)L2:4!g�Wffi cgg(a2ffi+N (W) + 1 cggff1 UN(W)+10 (a1ffi cgg)gg) L 1:3=Wffi cgg(a2ffi+N (W) + 1 cggff1 UN(W)+10 (a1)ffi+ N (W) cgggg) L 1:4=Wffi cgg(a2ff1 UN(W)+10 (a1)ggffi+ N (W) cgg) L 2:3=(W (a2ff1 UN(W)+10 (a1)gg))ffi cgg = bffi cgg 23 The �s- and �sg-calculiThe idea is to handle explicitly the meta-operators of de�nitions 2 and 3. Therefore, thesyntax of the �s-calculus is obtained by adding to � two families of operators:1. Explicit substitution operators f �jgj�1 where (b �j)a stands for a where all free occurrencesof the variable representing the index j are to be substituted by b.2. Updating operators f'ikgk�0 i�1 necessary for working with de Bruijn numbers.De�nition 8 The set of terms, noted �s , of the �s-calculus is given as follows:�s ::= IN j (�s �)�s j (�)�s j (�s �j)�s j ('ik)�s where j; i � 1 ; k � 0.We let a; b; c range over �s. A term (a �j)b is called a closure. Furthermore, a term containingneither �'s nor ''s is called a pure term. � denotes the set of pure terms. ��-segments arethose whose main items are either �- or �-items, i.e. DL ::= � j (�s �)DL j (�)DL.A reduction ! on �s is compatible if for all a; b; c 2 �s, if a ! b then (a �)c! (b �)c,(c �)a! (c �)b, (�)a! (�)b, (a �j)c! (b �j)c, (c �j)a! (c �j)b and ('ik)a! ('ik)b.De�nition 9 Items, segments and well-balanced segments for �s are de�ned as follows:Is ::= (�s �)j(�)j(�s �j)j('ik) Ss ::= �jIsSs Ws ::= �j(�s �)Ws(�)jWsWsWe let I, J, ... range over Is; S, S0, ... over Ss and W , U , ... over Ws. We call (a �j) and('ik), �- and '-item respectively. lg(S) is trivially extended to S 2 Ss and N(S) is extendedby: N((a �j)S) = N(S) and N(('ik)S) = N(S).As �s-calculus should carry out updating and substitution explicitly, we include a set of ruleswhich are the equations in de�nitions 2 and 3 oriented from left to right.De�nition 10 The �s-calculus is the reduction system (�s;!�s), where !�s is the leastcompatible reduction on �s generated by the rules given in Figure 1. We use �s to denotethis set of rules. The calculus of substitutions associated with the �s-calculus is the reductionsystem generated by the set of rules s = �s� f�-generationg and we call it the s-calculus.The �sg-calculus is the calculus whose set of rules is �sg = �s+ fg�-generationg where:6

(�-generation) (b �)(�)a �! (b �1)a�-�-transition (b �j)(�)a �! (�)(b �j+1)a�-app-transition (b �j)(a1�)a2 �! ((b �j)a1�) (b �j)a2�-destruction (b �j)n �! 8><>: n� 1 if n > j('j0)b if n = jn if n < j'-�-transition ('ik)(�)a �! (�)('ik+1)a'-app-transition ('ik)(a1�)a2 �! (('ik)a1�)('ik)a2'-destruction ('ik)n �! (n+ i� 1 if n > kn if n � kFigure 1: The �s-calculusg�-generation (b �)W (�)a �! W (('N(W)+10)b �1)a W well balanced, W 6= ��-generation starts �-reduction by generating a substitution operator (�1). �-app and �-�allow this operator to travel throughout the term until its arrival to the variables. If a variableshould be a�ected by the substitution, �-destruction (case j = n) carries out the substitutionby the updated term, thus introducing the updating operators. Finally the '-rules computethe updating. We state now the following theorem of the �s-calculus (cf. [22]).Theorem 2 The s-calculus is strongly normalising and conuent on �s, hence s-normalforms are unique. The set of s-normal forms is exactly �. Furthermore, if s(a) denotes thes-normal form of a, then for every a; b 2 �s: s((a �)b) = (s(a) �)s(b) , s((�)a) = (�)(s(a)) ,s(('ik)a) = U ik(s(a)) and s((b �j)a) = s(a)ffj s(b)gg .Lemma 5 Let a; b 2 �s , a!��gen b) s(a)!!� s(b) and a!g��gen b) s(a)!!g� s(b).Proof: Induction on a using Lemma 4 and Thm. 2. For the second item note that if W iswell balanced then s(W a) = s(W)s(a), where the s-nf of a ��-segment is given by: s(�) = �,s((a �)S) = (s(a) �)s(S) and s((�)S) = (�)s(S). 2Corollary 1 Let a; b 2 �s , if a!!�sg b then s(a)!!g� s(b).Corollary 2 (Soundness) Let a; b 2 � , if a!!�sg b then a!!g� b.This last corollary says that the �sg-calculus is correct with respect to the �g-calculus, i.e.�sg-derivations of pure terms ending with pure terms can also be derived in the �g-calculus.Moreover, the �sg-calculus is powerful enough to simulate g�-reduction.Lemma 6 (Simulation of g�-reduction) Let a; b 2 �, if a!g� b then a!!�sg b.Proof: Induction on a using Lemma 4. 27

Theorem 3 (Conuence of �sg) The �sg-calculus is conuent on �s.Proof: We use the interpretation method (cf. [14, 9]). We interpret the �sg-calculus intothe �g-calculus via s-normalisation:a �����������sg@@@@R@@@@R�sg bc --s --s--s s(a) s(b)s(c)����������g�@@@@R@@@@Rg� @@@@R@@@@Rg�����������g� dThm. 1The existence of the arrows s(a) !!g� s(b) and s(a) !!g� s(c) is guaranteed by Corollary 1.We can close the diagram thanks to the conuence of the �g-calculus and �nally Lemma 6ensures s(b)!!�sg d and s(b)!!�sg d proving thus the conuence for the �sg-calculus. 24 The �sg-calculus preserves �s-SNThe technique used in this section to prove preservation of strong normalisation (PSN) is thesame used in [4] to prove PSN for �� and in [20] to prove PSN for �s.Notation 1 We write a 2 �-SN resp. a 2 �r-SN when a is strongly normalising in the�-calculus resp. in the �r-calculus for r 2 fg; sg; sg. We write a !p b to denote that p isthe occurrence of the redex which is contracted. Therefore a!� b means that the reductiontakes place at the root. If no speci�cation is made the reduction must be understood as a�sg-reduction. We denote by � the pre�x order between occurrences of a term. Hence if p; qare occurrences of the term a such that p � q, and we write ap (resp. aq) for the subterm ofa at occurrence p (resp. q), then aq is a subterm of ap.For example, if a = 2�3((�1)4), we have a1 = 2, a2 = (�1)4, a21 = �1, a211 = 1, a22 = 4.Since, for instance, 2 � 21, a21 is a subterm of a2.The following three lemmas assert that all the �'s in the last term of a derivation beginningwith a �-term must have been created at some previous step by a (generalized) �-generationand trace the history of these closures. The �rst lemma deals with one-step derivation wherethe redex is at the root; the second generalises the �rst; the third treats arbitrary derivations.Lemma 7 If a!� C[(e �i)d] then one of the following must hold:1. a = (e �)(�)d, C = 2 and i = 1.2. a = (e0 �)W (�)d, W 6= �, C = W2, e = ('N(W)+10)e0 and i = 1.3. a = C 0[(e �j)d0] for some context C0, some term d0 and some natural j.Proof: Since the reduction is at the root, we must check for every rule a! a0 in �sg that if(e �i)d occurs in a0 then either 1. or 2. or 3. follows. We just check the interesting rules:(�-gen) : a = (c �)(�)b and a0 = (c �1)b. If (e �i)d matches (c �1)d then 1. Else (e �i)d mustoccur within b or c and hence 3. with j = i and d0 = d.(g�-gen) : a = (c �)W (�)b, W 6= � and a0 = W (('N(W)+10)c �1)b. If (e �i)d matches(('N(W)+10)c �1)d then 2. Else (e �i)d occurs in b, c or W , hence 3. with j = i, d0 = d.8

(�-�-trans) : a = (c �h)(�)b and a0 = (�)(c �h+1)b. If (e �i)d matches (c �h+1)b then 3. withj = i� 1, d0 = (�)d. Else (e �i)d occurs in b or c, hence 3. with j = i, d0 = d. 2Lemma 8 If a! C[(e �i)d] then one of the following must hold:1. a = C[(e �)(�)d] and i = 1.2. a = C 0[(e0 �)W (�)d], C = C0[W2], e = ('N(W)+10)e0 and i = 1.3. a = C 0[(e0 �i)d0] where e0 = e or e0 ! e.Proof: Induction on a, using lemma 7 for the reductions at the root. 2Lemma 9 Let a1 ! : : :! an ! an+1 = C[(e �i)d]. There exists e0; d02�s such that e0 !! eand, either a1 = C0[(e0 �j)d0] or for some k � n and w.b. segment W , ak = C0[(e0 �)W (�)d0]and ak+1 = C0[W (('N(W)+10)e0 �1)d0] or, if W = �, ak+1 = C 0[(e0 �1)d0].Proof: Induction on n and use the previous lemma. 2We de�ne now internal and external reductions. An internal reduction takes place some-where at the left of a �i operator. An external reduction is a non-internal one. Our de�nitionis inductive rather than starting from the notion of internal and external position as in [4].De�nition 11 The reduction int�!�sg is de�ned by the following rules:a �!�sg b(a �i)c int�!�sg (b �i)c a int�!�sg b(a �)c int�!�sg (b �)c a int�!�sg b(c �)a int�!�sg (c �)ba int�!�sg b(�)a int�!�sg (�)b a int�!�sg b(c �i)a int�!�sg (c �i)b a int�!�sg b('ik)a int�!�sg ('ik)bTherefore, int�!�sg is the least compatible relation closed under a �!�sg b(a �i)c int�!�sg (b �i)c .De�nition 12 The reduction ext�!s is de�ned by induction. The axioms are the rules of thes-calculus and the inference rules are the following:a ext�!s b(a �)c ext�!s (b �)c a ext�!s b(c �)a ext�!s (c �)b a ext�!s b(�)a ext�!s (�)b a ext�!s b(c �i)a ext�!s (c �i)b a ext�!s b('ik)a ext�!s ('ik)bAn external (generalized) �-generation is de�ned by the rule (g)�-generation taken as an ax-iom and the �ve inference rules stated above where ext�!s is replaced by ext�!(g)��gen .Remark 2 By inspecting the inference rules one can check that a int�!�sg n is impossible and:� If a int�!�sg (�)b then a = (�)c and c int�!�sg b .� If a int�!�sg (c �)b then a = (e �)d and ((d int�!�sg b and e = c) or (e int�!�sg c and d = b)).Note that a ext�!s b(a �i)c ext�!s (b �i)c and a ext�!(g)��gen b(a �i)c ext�!(g)��gen (b �i)c are excluded from the de�ni-tions of external s-reduction and external (generalized) �-generation, respectively. Thus, asexpected, external reductions will not occur at the left of a �i operator. This enables us towrite +!� instead of !!� in the following proposition (compare with Lemma 5).9

Proposition 1 Let a; b 2 �s. a ext�!��genb) s(a) +!�s(b) and a ext�!g��genb) s(a) +!g�s(b) .Proof: Induction on a, similar to the proof of Lemma 5. The point is that in the casea = c �id, the reduction cannot take place within d because it is external, and this is the onlycase that forced us to consider the reexive-transitive closure because of lemma 4.2. 2The following lemma is needed in Lemma 11 and hence in the Preservation Theorem.Lemma 10 (Commutation Lemma) Let a; b 2 �s such that s(a) 2 �-SN and s(a) = s(b).If a int�!�sg : ext�!s b then a ext�!+s : int�!�!�sg b .Proof: By a careful induction on a while analysing the positions of the redexes. The proofis exactly the same as the proof of the Commutation Lemma in [20] 2Lemma 11 Let a 2 �g-SN\�. For every in�nite �sg-derivation a !�sg b1 !�sg � � � !�sgbn !�sg � � �, there exists N such that for i � N all the reductions bi !�sg bi+1 are internal.Proof: An in�nite �sg-derivation must contain in�nite (g)�-generations, since the s-calculusis SN, and the �rst rule must be a (g)�-generation beacuse a is a pure term. Hence it lookslike: a = a1 !(g)��gen a01 !!s a2 !(g)��gen a02 !!s � � � !!s an !(g)��gen a0n !!s � � � . ByProposition 1, there must be only a �nite number of external (g)�-generations (otherwisewe construct an in�nite �g-derivation contradicting the hypothesis a 2 �g-SN). Thereforethere exists P such that for i � P we have ai int�!(g)��gen a0i. Furthermore, by Lemma 5,s(ai)!!(g)� s(a0i) for all i, and thereforea = s(a) = s(a1)!!(g)� s(a01) = s(a2)!!(g)� s(a02) = � � � = s(an)!!(g)� s(a0n) = � � �Since a 2 �g-SN, we conclude that s(ai) 2 �g-SN for all i and therefore there exists M � Psuch that for i � M we have s(ai) = s(a0i). We claim that there exists N �M such that fori � N all the s-rewrites are also internal. Otherwise, there would be an in�nity of externals-rewrites and at least one copy of each of these external rewrites can be brought, by theCommutation Lemma, in front of aM , and so generate an in�nite s-derivation beginning ataM , which is a contradiction. This intuitive idea can be formally stated as:Fact: If there exists an in�nite derivation aM ext�!�!ns b �!�!m c ext�!s d �! � � � where allthe rewrites in b �!�! c are either ext�!s or int�!�sg , then there exists an in�nite derivationaM ext�!�!n+1s b0 �!�! d �! � � � .Proof of Fact: By an easy induction on m, using the Commutation Lemma. We remarkthat M has been so chosen in order to satisfy the hypothesis of this lemma. 2In order to prove the Preservation Theorem we need two de�nitions.De�nition 13 An in�nite �sg-derivation a1 ! � � � ! an ! � � � is minimal if for every stepai!p �sg ai+1, every other derivation beginning with ai!q �sg a0i+1 where p � q, is �nite.The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps withina subterm of the actual redex, then an in�nite derivation is impossible.De�nition 14 The syntax of skeletons and the skeleton of a term are de�ned as follows:Skeletons K ::= IN j (K �)K j (�)K j ([:] �j)K j ('ik)KSk(n) = n Sk((a �)b) = (Sk(a) �)Sk(b) Sk((b �i)a) = ([:] �i)Sk(a)Sk((�)a) = (�)Sk(a) Sk(('ik)a) = ('ik)Sk(a)10

Remark 3 Let a; b 2 �s. If a int�!�sg b then Sk(a) = Sk(b).Theorem 4 (Preservation of �s-SN) For every a 2 �, if a is strongly normalising in the�s-calculus then a is strongly normalising in the �sg-calculus.Proof: Suppose a 2 �s-SN, a 62 �sg-SN. Let us consider a minimal in�nite �sg-derivationD : a ! a1 ! � � � ! an ! � � � . Lemma 11 gives N such that for i � N , ai ! ai+1 isinternal. Hence, by Remark 3, Sk(ai) = Sk(ai+1) for i � N . As there are only a �nitenumber of closures in Sk(aN) and as the reductions within these closures are independent,an in�nite subderivation of D must take place within the same and unique closure in Sk(aN)and, evidently, this subderivation is also minimal. Let us call it D0 and let C be the contextsuch that aN = C[(d �i)c] and (d �i)c is the closure where D0 takes place. Therefore we have:D0 : aN = C[(d �i)c] int�!�sg C[(d1 �i)c] int�!�sg � � � int�!�sg C[(dn �i)c] int�!�sg � � �Since a is a pure term, Lemma 9 ensures the existence of I � N such that eitheraI = C 0[(d0 �)(�)c0]! aI+1 = C 0[(d0�1)c0] and d0 !! d oraI = C 0[(d0 �)W (�)c0]! aI+1 = C 0[W (('N(W)+10)d0�1)c0] and d0 !! d.Let us consider in the �rst and second cases respectively, the following in�nite derivations:D00 : a!! aI !! C 0[(d�)(�)c0]! C 0[(d1�)(�)c0]! � � � ! C 0[(dn�)(�)c0]! � � �D000 : a!! aI !! C0[(d�)W (�)c0]! C0[(d1�)W (�)c0]! � � � ! C 0[(dn�)W (�)c0]! � � �In D00 and D000, the redex in aI is within d0 which is a proper subterm of (d0 �)(�)c0 (of(d0 �)W (�)c0 in the second case), whereas in D the redex in aI is (d0 �)(�)c0 (in the secondcase (d0 �)W (�)c0) and this contradicts the minimality of D. 2Corollary 3 For every a 2 �, the following equivalences hold:a 2 �g-SN, a 2 �sg-SN, a 2 �-SN, a 2 �s-SNProof: By Remark 1 and Theorem 4, a 2 �s-SN , a 2 �sg-SN. Due to [16], a 2 �-SN ,a 2 �g-SN. Due to [20], a 2 �-SN, a 2 �s-SN. Hence the corollary. 25 The typed �s- and �sg-calculiWe prove �sg-SN of well typed terms using the technique developped in [21] to prove �s-SN and suggested to us by P.-A. Melli�es as a successful technique to prove ��-SN (personalcommunication).We recall the syntax and typing rules for the simply typed �-calculus in de Bruijn no-tation. The types are generated from a set of basic types T with the binary type operator!. Environments are lists of types. Typed terms di�er from the untyped ones only in theabstractions which are now marked with the type of the abstracted variable.De�nition 15 The syntax for the simply typed �-terms is given as follows:Types T ::= T j T ! TEnvironments E ::= nil j T ; ETerms �t ::= n j (�t �)�t j (T �)�tWe let A, B, ... range over T ; E, E1, ... over E and a, b, ... over �t.11

The typing rules are given by the typing system L1 as follows:(L1� var) A;E ` 1 : A (L1� �) A;E ` b : BE ` (A�)b : A! B(L1� varn) E ` n : BA;E ` n+ 1 : B (L1� app) E ` b : A! B E ` a : AE ` (a �)b : BBefore presenting the simply typed �s- and �sg-calculi we introduce the following notationconcerning environments. If E is the environment E1; E2; : : : ; En, we shall use the notationE�i for the environment Ei; Ei+1; : : : ; En, analogously E�i stands for E1; : : : ; Ei, etc.De�nition 16 The syntax for the simply typed �s-terms is given as follows:�st ::= IN j (�st �)�st j (T �)�st j (�st �i)�st j ('ik)�st i � 1 ; k � 0.Types and environments are as above. The typing rules of the system Ls1 are as follows:The rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app are exactly the same as L1-var, L1-varn,L1-� and L1-app, respectively. The new rules are:(Ls1� �) E�i ` b : B E<i; B; E�i ` a : AE ` (b �i)a : A (Ls1� ') E�k; E�k+i ` a : AE ` ('ik)a : AThe simply typed �s- and �sg-calculi are de�ned by the same rules of the correspondinguntyped versions, except that abstractions in the typed versions are marked with types.De�nition 17 We say that a 2 �st is a well typed term if there exists an environment Eand a type A such that E `Ls1 a : A. We note �swt the set of well typed terms.The aim of this section is to prove that every well typed �s-term a is �sg-SN (and hence�s-SN). To do so, we show �swt � � � �sg-SN, where� = fa 2 �st : for every subterm b of a; s(b) 2 �g-SNg.To prove �swt � � (Proposition 2) we need to establish some useful results such as subjectreduction, soundness of typing and typing of subterms:Lemma 12 Let S be a segment, A; B types and a; b; c 2 �st. The following hold:1. E ` S(('i0)a �)(c �)(B�)b : A i� E ` S(c �)(B�)(('i+10)a �)b : A2. E ` S(('i0)('j0)a �)b : A i� E ` S(('i+j�10)a �)b : A3. E ` S(a �)(B�)b : A i� E ` S(a �1)b : AProof: All by induction on S. Here is the proof of two cases of the �rst item:S = � : E ` (('i0)a �)(c �)(B�)b : A i� there exists C such thatE ` (c �)(B�)b : C ! A and E ` ('i0)a : C i�E ` (B �)b : B ! (C ! A) and E ` c : B and E�i ` a : C i�B; E ` b : C ! A and E ` c : B and (B; E)�i+1 ` a : C i�B; E ` b : C ! A and E ` c : B and B; E ` ('i+10)a : C i�B; E ` (('i+10)a �)b : A and E ` c : B i�E ` (B �)(('i+10)a �)b : B ! A; and E ` c : B i�E ` (c �)(B�)(('i+10)a �)b : AS = (C �)S0 : E ` (C �)S 0(('i0)a �)(c �)(B�)b : A i� there exists D such thatA = C ! D and C; E ` S0(('i0)a �)(c �)(B�)b : D i� (IH)C; E ` S0(c �)(B�)(('i+10)a �)b : D i� E ` (C �)S 0(c �)(B�)(('i+10)a �)b : A . 212

Lemma 13 (Shu�e Lemma) Let S be an arbitrary segment, W a well balanced segmentand a; b 2 �st, then E ` S(a �)W b : A i� E ` SW (('N(W)+10)a �) b : A .Proof: By induction on W . If W = �, it is immediate since E0 ` d : D i� E 0 ` ('10)d : D.Let us assume W = (c �)U(B�)V , with U; V well balanced.E ` S(a �)(c �)U(B�)V b : A i� (IH) E ` S(a �)U(('N(U)+10)c �)(B�)V b : A i� (IH)E ` SU(('N(U)+10)a �)(('N(U)+10)c �)(B�)V b : A i� (Lemma 12.1)E ` SU(('N(U)+10)c �)(B�)(('N(U)+20)a �)V b : A i� (IH, twice)E ` S(c �)U(B�)V (('N(V)+10)('N(U)+20)a �)b : A i� (Lemma 12.2)E ` S(c �)U(B�)V (('N(V)+N(U)+20)a �)b : A 2Lemma 14 (Subject reduction) If E `Ls1 a : A and a!�sg b then E `Ls1 b : A.Proof: By induction on a. If the reduction is not at the root, use IH. If it is, check thatfor each rule a ! b we have E `Ls1 a : A implies E `Ls1 b : A. Case �-generation, uselemma 12.3. Case generalized �-generation: If E ` (a �)W (B�)b : A then, by Lemma 13,E ` W (('N(W)+10)a �)(B�)b : A and, by Lemma 12.3, E ` W (('N(W)+10)a �1)b : A . 2Corollary 4 Let E `Ls1 a : A, if a!!�sg b then E `Ls1 b : A.Lemma 15 (Typing of subterms) If a 2 �swt and b is a subterm of a then b 2 �swt.Proof: By induction on a. If b is not an immediate subterm of a, use the induction hypothesis.Otherwise, the last rule used to type a must contain a premise in which b is typed. 2Lemma 16 (Soundness of typing) If a 2 �t and E `Ls1 a : A then E `L1 a : A.Proof: Easy induction on a. 2Proposition 2 �swt � � .Proof: Let a 2 �swt and let b a subterm of a. By Lemma 15, b 2 �swt and by Corollary 4,s(b) 2 �swt. Since s(b) 2 � (Thm. 2), Lemma 16 yields that s(b) is L1-typable, and it iswell known that classical typable �-terms are strongly normalising in the �-calculus. Hence,s(b) 2 �-SN and, by preservation (Corollary 3), s(b) 2 �g-SN. Therefore a 2 �. 2We prove now � � �sg-SN.Lemma 17 If a 2 � then for every in�nite �s-derivation a !�s b1 !�s � � � !�s bn !�s � � �,there exists N such that for i � N all the reductions bi !�s bi+1 are internal.Proof: The proof is almost the same as the proof of lemma 11. 2Proposition 3 For every a 2 �st, if a 2 � then a 2 �sg-SN.Proof: Suppose there exists a0 2 � and a0 62 �sg-SN, then there must exist a term a ofminimal size such that a 2 � and a 62 �sg-SN.Let us consider a minimal in�nite �sg-derivation D : a ! a1 ! � � � ! an ! � � � andfollow the proof of Theorem 4 to obtain: 13

D0 : aN = C[(d �i)c] int�!�sg C[(d1 �i)c] int�!�sg � � � int�!�sg C[(dn �i)c] int�!�sg � � �Now three possibilities arise from lemma 9. Two of them have been considered in the proofof Theorem 4 and contradicted the minimality of D. Let us consider the third one:a = C0[(d0 �i)c0] where d0 !! d. But now we have d0!! d! d1 ! � � � ! dn ! � � � . Since d0 isa subterm of a, d0 2 �, contradicting our choice of a with minimal size. 2Therefore we conclude, using Propositions 2 and 3 and Corollary 3:Theorem 5 Every well typed �s-term is strongly normalising in the �sg-calculus.Corollary 5 Every well typed �s-term is strongly normalising in the �s-calculus.6 ConclusionIn this paper, we started from the fact that generalised reduction and explicit substitutionhave been playing a vital role in useful extensions of the �-calculus but have never beencombined together. We commented that the combination might indeed join both bene�tsand hence a �-calculus extended with both needs to be studied. We presented such a calculusand showed that it possesses most of the important properties that have been the center ofresearch for each concept on its own. In particular, we showed that the resulting calculusis conuent, sound and simulates �-reduction. We showed moreover that it preserves strongnormalisation of the unextended �-calculus and of the �-calculus extended with each of thetwo concepts independently. We studied furthermore, the simply typed version of our calculusof explicit substitution and generalised reduction and showed that it has again the importantproperties such as subject reduction, soundness of subtyping, typing of subterms and strongnormalisation of well typed terms.Now that a calculus combining both concepts have been shown to be theoretically correct,it would be interesting to extend our calculus �sg to one that is conuent on open terms asis the tradition with calculi of explicit substitution. It would be also interesting to studythe polymorphically (rather than the simply) typed version of �sg. These are issues we areinvestigating at the moment.References[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal of FunctionalProgramming, 1(4):375{416, 1991.[2] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call by need lambda calculus.Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM, 1995.[3] H. Barendregt. �-calculi with types. Handbook of Logic in Computer Science, II, 1992.[4] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicit substitutionswhich preserves strong normalisation. Personal communication, 1995.[5] R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical Report 95-08,Department of Mathematics and Computing Science, Eindhoven University of Technology, 1995.[6] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube with De�nitions and Gener-alised Reduction. To appear in Information and Computation, 1996.[7] R. Constable et al. Implementing Mathematics with the NUPRL Development System. Prentice-Hall, 1986.[8] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pit-man, 1986. Revised edition : Birkh�auser (1993).14

[9] P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuence properties of weak and strong calculi ofexplicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.[10] N. G. de Bruijn. A namefree lambda calculus with facilities for internal de�nition of expressionsand segments. Technical Report TH-Report 78-WSK-03, Department of Mathematics, EindhovenUniversity of Technology, 1978.[11] P. de Groote. The conservation theorem revisited. Int'l Conf. Typed Lambda Calculi and Appli-cations LNCS, 664, 1993.[12] G. Dowek et al. The coq proof assistant version 5.6, users guide. Technical Report 134, INRIA,1991.[13] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for HigherOrder Logic. Cambridge University Press, 1993.[14] T. Hardin. Conuence Results for the Pure Strong Categorical Logic CCL : �-calculi as Subsys-tems of CCL. Theoretical Computer Science, 65(2):291{342, 1989.[15] T. Hardin and J.-J. L�evy. A Conuent Calculus of Substitutions. France-Japan Arti�cial Intelli-gence and Computer Science Symposium, December 1989.[16] F. Kamareddine. A reduction relation for which postponement of k-contractions, conservationand preservation of strong normalisation hold. Technical report, Glasgow University, 1996.[17] F. Kamareddine and R. Nederpelt. A useful �-notation. Theoretical Computer Science, 155:85{109, 1996.[18] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. International Journal ofFoundations of Computer Science, 4(3):197{240, 1993.[19] F. Kamareddine and R. P. Nederpelt. Generalising reduction in the �-calculus. Journal ofFunctional Programming, 5(4):637{651, 1995.[20] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions. Proceedingsof PLILP'95. Lecture Notes in Computer Science, 982:45{62, 1995.[21] F. Kamareddine and A. R��os. The �s-calculus: its typed and its extended versions. Technicalreport, Department of Computing Science, University of Glasgow, 1995.[22] F. Kamareddine and A. R��os. Extending a �-calculus with Explicit Substitution which preservesStrong Normalisation into a Conuent Calculus on Open Terms. Submitted, 1996.[23] A. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. ACM, 41(2):368{398, 1994.[24] A. Kfoury and J. Wells. A direct algorithm for type inference in the rank-2 fragment of the secondorder �-calculus. Proc. 1994 ACM Conf. LISP Funct. Program., 1994.[25] A. Kfoury and J. Wells. Addendum to new notions of reduction and non-semantic proofs of�-strong normalisation in typed �-calculi. Technical report, Boston University, 1995.[26] A. Kfoury and J. Wells. New notions of reductions and non-semantic proofs of �-strong normal-isation in typed �-calculi. LICS, 1995.[27] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate in Proceedings ofTLCA'95. Lecture Notes in Computer Science, 902, 1995.[28] C. A. Mu~noz Hurtado. Conuence and preservation of strong normalisation in an explicit subs-titutions calculus. Technical Report 2762, INRIA, Rocquencourt, December 1995.[29] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. North-Holland,Amsterdam, 1994.[30] S. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.[31] L. Regnier. Lambda calcul et r�eseaux. PhD thesis, Paris 7, 1992.[32] L. Regnier. Une �equivalence sur les lambda termes. Theoretical Computer Science, 126:281{292,1994.[33] A. R��os. Contribution �a l'�etude des �-calculs avec substitutions explicites. PhD thesis, Universit�ede Paris 7, 1993.[34] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. Proc. 1992ACM Conf. LISP Funct. Program., pages 288{298, 1992.[35] D. Vidal. Nouvelles notions de r�eduction en lambda calcul. PhD thesis, Universit�e de Nancy 1,1989. 15

