Explicit substitutions for control operators*

Gilles Barthe** | Fairouz Kamareddine®*, and Alejandro Rios'

Abstract. The AA-calculus is a A-calculus with a local operator closely related to normal-
1sation procedures in classical logic and control operators in functional programming. We
introduce AAexp, an explicit substitution calculus for XA, show it preserves strong normali-
sation and that its simply typed version is strongly normalising. Interestingly, AAexp is the
first example for which the decency method of showing preservation of strong normalisation
(PSN) works whereas the structure preserving method which is based on the decency method
does not. In particular, AAexp s a very simple calculus yet 1s not structure preserving. This
shows that the structure preserving notion intended to give a general description of calculi
of explicit substitution that satisfy PSN, is restrictive. To our knowledge, \Aexp s the first
calculus of explicit substitution that is not structure preserving.”

1 Introduction

Explicit substitutions were introduced in [1] as a bridge between A-calculus and its implementation.
The fundamental idea is simple: in order to provide a full account of the computations involved in
computing a A-term, one must describe a method to compute substitutions.

Over the last five years most of the research in the area has focused on one specific problem,
the Preservation of Strong Normalisation (PSN):

1s every strongly normalising term of the traditional A-calculus strongly normalising with
respect to a given calculus of explicit substitutions?

In 1994, Melliés settled in the negative the problem of PSN for the original calculus of explicit
substitutions Ac [25]. Since then, various calculi with the PSN property have been proposed (see
for example [5, 19, 8, 26]). The difficulties in achieving PSN for A-calculus raise the question of the
generality of explicit substitutions:

can explicit substitutions provide a bridge between the higher-order rewriting systems used
i functional programming and their implementation?

In this paper, we provide a partial (and preliminary) answer to this question by extending the
paradigm of explicit substitutions to A-calculi with control operators. In a first instance, we consider
a specific calculus with control operators, called AA (see [30]), and define its explicit substitution
variant AAexp. Then we prove that the AAexp preserves SN and deduce that the simply typed
AAexp calculus is strongly normalizing.

There are at least three reasons to consider such an extension:

1. control operators play a crucial role in functional programming languages, such as LISP [31],
SML [2], Scheme [13], etc. We will only be able to claim a positive answer to the above question
if the theory of explicit substitutions can be extended to control operators;

* This work is supported by NWO and the British council under UK/Dutch joint scientific research project
JRP240 and EPSRC grant GR/K 25014. We are grateful for Roel Bloo for his observation that the RPO
method of Bloo and Geuvers, contrary to the structure preserving method, does apply to AAexp.

** CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands, email gilles@cwi.nl
*** University of Glasgow, Department of Computing Science, 17 Lilybank Gardens, Glasgow G12 8QQ,
Scotland, UK, email fairouz@dcs.gla.ac.uk
T Address as Kamareddine, email rios@dcs.gla.ac.uk
® According to Bloo, AAexp is a calculus he and Rose have been looking for for sometime.

2. control operators and explicit substitutions both have applications in theorem proving and
proof theory.® The former are used in classical theorem proving and the latter to represent
incomplete proofs. By studying explicit substitutions with control operators, we lay the foun-
dations for a classical theorem prover with the ability to handle incomplete proofs and for a
classical proof theory based on explicit substitutions.

3. control operators fundamentally differ from A-calculus in that they are not structure-preserving
in the sense of [9]. As a result, the technique developed to prove PSN for explicit substitution
calculi using the structure preserving notion (see [9]) cannot be carried over to calculi with
control operators. In fact, we will show that the decency method [6] can be adapted to our
setting whereas the structure-preserving method [9] cannot despite the fact that it is based on
the decency method. This makes AAexp the first calculus which shows the limitations of the
structure preserving notion which was intended to give some genertalisations for proving PSN.

The undertaking of this paper is to provide a representative case study which enables one to see:

1. if the theory of explicit substitutions can be generalised to higher-order rewriting systems;
2. which methods are best suited to carry over such a generalisation.

It should be noted here that the minimal derivation method (see [5, 19]) and the RPO method
(see [7]) of showing PSN do apply to AAexp. We chose the decency method because it is the one
used by Bloo and Rose in their structure preserving method. We include the proof using minimal
derivation as an appendix for the interested reader. Applying the RPO technique requires finding
the correct labelling and goes through in a straightforward manner as Bloo observed.

Prerequisites and terminology We assume some basic familiarity with A-calculus [4] and abstract
rewriting [21] and use b <a to say that b is a subterm of a. The compatible closure of a notion of
reduction R will always be denoted by —g. Compatibility itself is defined as usual and the A case
is treated like the A case. The reflexive and transitive closure of — g will be denoted by —px. When
there 1s at least one reduction step, we write —»}';L. Finally, we let SN(R) denote the set of strongly
normalising terms w.r.t. —g.

2 The AA-calculus

In this section we describe the syntax of the AA-calculus where the reduction rules are closely
related to normalisation procedures for classical natural deduction and to reduction rules for control
operators (see [30]). We use .[./.] to denote the usual (meta-theoretical) substitution. Free and
bound variables are defined as usual and FV(a) (resp. BV(a)) denotes the free (resp. bound)
variables of the term a. In the definitions of .[./.], FV and BV, A is treated like A.

Definition 1
1. The set T of (pure) terms is given by the abstract syntax:
T =V I|TT|AV.T|AV.T where V.= {x, :n € N}

2. B-reduction —p is defined as the compatible closure of (Ax.a) b —p5 a[b/z]
3. p-reduction —, 1s defined to be —,, U —,, U —,, where pi-reduction for 1 <i < 3 is defined
to be the compatible closure of the corresponding t-rule:

(Az.a) b =y Ay.a[Aw.y (w b)/x] ify,w & FV(b),y #w
Az.x a —pu, @ if © ¢ FV(a)
Az.x (Ay.x a) —,, a if x,y & FV(a)

4o —pu=(—=p U —p).

® See [14, 28, 33] for applications of control operators in theorem proving, [27, 24] for applications of
explicit substitutions in theorem proving, [3, 11, 15, 23, 28, 29, 30] for applications of control operators
in proof theory and [12; 17, 32] for applications of explicit substitutions in proof theory.

We let z,y,z,w,... range over V and a,b,¢c,... range over T. We consider terms modulo a-
conversion (generalised over A) and assume the variable convention (VC) of [4] which guarantees
that in any context, names of free variables are different from bound ones and that different bound
variables are used for different A’s and A’s. In particular, in a[b/z], we assume that = € FV(b). We
use O to range over {\, A}.

Proposition 2 (see [30]) — 3, is confluent (CR).

We define the Su-norm Su(a) of a pure term a as the maximal number of Su-reduction steps in a
reduction starting from a. This will be used in the proof of PSN using the decency method.

Lemma 3 If (Ox.b)c is a subterm of a pure term a and Bu(a) < oo then Bu(ec) < fula).

Proof: By induction on the structure of a. a
Lemma 4 The following holds:

Ife# y and o ¢ FV(e) then alb/alle/) = ale/ylble/s)/+).

If a —p, d then a[b/z] —p, d'[b/z].

If b —p, b then alb/x]—p, alb!/x]; if © € FV(a) then a[b/x]—»;u afb’/z].
If a—py a' and b—, b then alb/x]—p, a'[b//2].

Bu(a) < Bulalb/x]).

Proof: 1, 2 and 3 are by induction on the structure of a. 4 is a corollary of 2 and 3. 5: A Gu-
reduction path starting with a gives by 2 a path of the same length starting with a[b/«]. O

Grds o te =

3 The AAexp-calculus

The AAexp-calculus 1s obtained from AA by giving an explicit treatment of substitutions.
Definition 5
1. The set T® of terms of the XAexp-calculus is given by the abstract syntax:

T = V|TT? | AV.TC | AVT | TV :=T°] where V={x, :n € N.} Note that T CT®

2. B-reduction —p is defined as the compatible closure of (Ax.a) b —p a[z :=1b]
3. p-reduction — . is defined to be —,, U —,, U—,, where &-reductio_n for 1 <1< 3 is defined
to be the compatible closure of the corresponding i-rule:

(Az.a) b Ay.alr = dwy (wb)] y,w € FV(b),y £ w
Az.x a if x € FV(a)
Az.x (Ay.x a) — if 2,y & FV(a)

TTH
Tpe @
ns @

4. o-reduction —, is defined as the compatible closure of

z[x = b —5 b

ylz = b] —o Y ife#y

(a a)[x :=b] —, (alx :=0]) (d'[x :=b])

(Oy.a)[x :=b] —, Oy.(a]z :=b]) if y & FV(b)

5. —pusc= (—>EU _>EU —>U),

Again we let a, b, ¢, ... range over T° and generalise a-conversion by taking af[:= b] to be a-equal
to a'ly := '] if ¥ is a-equal to b and ' is a-equal to aly/z] for y & FV(a) \ {z}. FV(a), BV(a)
and VC over T are generalised by treating a[z := b] as we would treat Az : b.a in typed A-calculi.
In particular, FV(a[z := b]) = FV(b) U (FV(a) \ {#}), and when we write (Ay.a)[z = b], it is
assumed that z # y and »,y ¢ FV(b). Meta-substitution is generalised over T by adding the
clause: a[z := b][¢/y] = ale/y][x := blc/y]].

If © & FV(a), the free variables of b are not substitutable free variables of a[z := b]. For this
reason, we follow [8] and give the following definition:

Definition 6 For any term a, we define the set of substitutable free variables of a, denoted cFV(a)
by the rules:

oFV(z) = {z} F(\T/I(:\/)(ab) =oFV(a) U 0";\/(2 FVa) oFV(Ox.a) = cFV(a) \ {z}
oFV(a[z := b)) = { (oFV(a) \ {&}) U oFV(b) if € FV(a)

Hence oFV(z[y := z]) = {x} whereas FV(z[y := z]) = {x, z} for distinct z,y, 2.
The following shows amongst other things that —, is SN and CR and that Fu-reduction is
sound in AAexp. This will be used to show the simulation of Fu-reduction and the CR of AAexp.

Lemma 7 Let a,b € T°. The following holds:

—o 15 SN and CR. Hence, every term ¢ € T® has a unique o-normal form, denoted o(c).
o(ab) = o(a)o(b), o(Az.a) = Az.o(a), o(Az.a) = Ax.o(a).

o(afz := b]) = o(a)[o(b)/]

Ifa —; b then o(a) = o(b) and oFV(a) = oFV(b).

If a —p b then o(a) —5 o(b)

Ifa—ub then o(a) —, o(b)

If a —pus b then o(a) —»@M a(b) and Bu(o(b)) < Bu(o(a)).

Lety,w & FV(b) and y # w. It holds that Bu(o(Aw.y(wd"))) = Bu(a (b)) and that b’ € SN(Buo)
iff Aw.y(wb') € SN(Buo).

Proof: The proofs of 1-5 are analogous to the proofs of the corresponding results for —, (see

[7]), whose rules are our o-rules except the A-transition. We just remark that the function used to

prove SN should be here extended with h(Ax.a) = h(a) 4+ 1. 6 is by induction on a. The first half

of 7 1s a corollary of 4, 5 and 6 and implies the second half. 8 is straightforward. a
The following lemma shows that AAexp is powerful enough to simulate Fu-reduction:

™ R > S o e~

Lemma 8 (Simulation of fu-reduction) For pure terms a,b: if a —p, b then a —»;W b.

Proof: By induction on « using Lemma 7.2 and .3. i
Theorem 9 The AAexp-calculus is confluent.

Proof: We use the interpretation method [10, 16]. If a —Bus b1 and a —Bus bs then by Lemma

7.7, 0(a) —p, o(b;), for i € {1,2}, and by CR of AA, e such that o(b;) —p, ¢, and by Lemma 8

o(bs) —guo c. Hence, b; —Buo C. m|
Finally, the following is the converse of the generalised PSN result we are aiming for:

Lemma 10 Let a € T°. a € SN(Buo) = for all subterms b of a, o(b) € SN(Bu),

Proof: Assume 3b < a where o(b) ¢ SN(Fp) and let o(b) —p, b1 —psu b2 —gpu - - be an infinite

derivation. As b —, o(b), then by Lemma 8, the derivation b —Buo a(b) —»;_W by —»ﬁw b —»;W

. Is Infinite. Absurd as b<a and a € SN(ﬁ_ﬂU). O

Corollary 11 If a is a pure term such that a € SN(Buc), then a € SN(Bu).

4 Preservation of Strong Normalisation

The question arises whether every term a € 1" which is in SN(By) is also in SN(Bpuo) (i.e. whether
AAexp preserves Bu-strong normalisation). We start by defining two notions:

Definition 12

1. A term a €T obeys the preservation of strong normalisation (PSN) property if:
a € SN(Bp) = a € SN(Guo).

2. Aterm a € T® obeys the generalised preservation of strong normalisation (GPSN) property if:
(Vbaa.o(b) € SN(Bu)) = a € SN(Buo).

The GPSN property 1s a mild generalization of the PSN property. In our view, the GPSN property
is more fundamental than the PSN property for two reasons:

1. the GPSN property applies to all terms, not only the pure ones;

2. for most typed A-calculi with explicit substitutions, strong normalisation is an immediate
consequence of the GPSN property and of strong normalisation of the standard calculus without
explicit substitutions.

Lemma 13 Let a € T. a obeys GPSN <= a obeys PSN.

Proof: —) Assume a obeys GPSN and a € SN(Bu). If a & SN(Buo) then, as a obeys GPSN,
there exists b < a of a such that o(b) ¢ SN(Bpu). Since a is pure, b is pure and hence b & SN(Bu).
Therefore a ¢ SN(Bu). Absurd.

<) Assume a obeys PSN and Vb < a.o(b) € SN(Sp). As a<a and a is pure, we get a € SN(Bpu).
Hence, as a obeys PSN, a € SN(fuo) and so a obeys GPSN. a

4.1 Structure-preserving calculi

In a recent paper [9], Bloo and Rose describe how to construct an explicit substitution CRS from
an arbitrary CRS.” Moreover they show that PSN holds for a restricted class of CRSs, which they
call structure-preserving.

Unfortunately, PSN for the AAexp-calculus cannot be derived from [9]. Indeed, the first p-
rewrite rule is written in the CRS framework as (pz. X (2)) Y — py. X (Aw.y (w Y)). The condition
of structure-preserving requires the argument Aw.y (w Y') of the meta-application in the right-hand
side to be a subterm of the left-hand side. Obviously this is not the case.

It is interesting to notice that it is decidable whether a CRS is structure-preserving: one only
needs to look at the rules and ensure that certain syntactic conditions are satisfied. In the case of
the AAexp calculus, one must know the behavior of the whole reduction relation to prove PSN. In
particular one must know that every redex in an instance Aw.y (w a) of Aw.y (wY') can be traced
back and thus must occur in a.

4.2 Proving PSN with the decency method

We shall prove that the AAexp-calculus preserves strong normalization using the technique of
decency introduced in [6] to prove that Aexp preserves 3-SN. First, we define the following notion:

Definition 14 We say that [x = b] is superfluous in a if @ is not a substitutable free variable
of the term in the scope of [x := b] in a (recall that we treat, from the point of view of binding,
cle := b] as we would treat Az : b.c). A reduction a —g,, b is called superfluous if the contracted

redex in a is part of d for [x := d] superfluous in a.

A superfluous reduction, similarly to the internal reduction of Definition 28, concentrates on re-
duction inside b for [# := b] being a substitution item. A reduction is superfluous if the contracted
redex is internal and the substitution item [« := b] in which it occurs does not bind any substitution
occurrence of . The following lemma is similar to Lemma 29. Note that the use of —»;u rather
than —p, is due to the fact that a non superfluous redex is either external, or internal inside an
[¢ := d] where there are occurrences of « in a that are within the scope of [z := d].

Lemma 15 If a —g, b where a substitution [x := d] is generated and the reduction a —pg,, b is

not superfluous, then o(a) —»2;“ a(b).

" The theory of Combinatory Reduction Systems was developed by J-W. Klop (see [20, 22]).

Proof: By induction on the structure of a using Lemmas 4 and 7. i
The following is crucial to the GPSN proof. It imposes the condition that in decent terms, for
any [z := b], either b € SN(Bpuo) or all Fu-derivations starting at o(b) are finite.

Definition 16

— A term a is called decent if for every [z := b] in a, b € SN(fuo).
— A term a is called decent of order n if for every [z :=b] in a, b € SN(Buc) or fu(a(b)) < n.

Note that if a is decent and Su(o(a)) < oo, then a is decent of order Bu(o(a)) + 1.

Finally, the following notion of ancestor, aims to achieve similar conditions to those shown in
Lemmas 26 and 27. It is related to what is referred to as “backtracking” in the minimal deriva-
tion method. Note that we use “)a” to denote an application item. For example, in (Az.a)b the
application item is)b.

Definition 17 For a reduction a —g,, o', we define the notion of the ancestor of a substitution
item [x :=d] in a' as follows:

— Ifa —puo @’ and b =1b" or if b —pu, V' and a = a' then [x := V] in o'[x := V] has ancestor
[z := b] in alz := b].

— In the following reductions, the first underlined item (which may be an application written ©).")
1s ancestor of the second underlined item:

(bo)[z :=a] —puos (b[z :=d])clz :=a
(bo)[z :=a] —puos (b[z :=a])c[z :=a
(Oy D = a] — 0 Oybli = a]
((Az.b)a) —puo b[z 1= d]

((Az.a)b) —pus Ay.alr = Aw.y(wb)]

— The ancestor relation behaves as expected in the confrontation with o-reductions; i.e., if {[x =
a] is a conlext in which [x := a] appears, then:

Cubele = —puo By = €z = a]

(Ay.b)¢[z := a] —puo Az.bly := Adw.z(wlz := d])]
ble =)b —po €le = ally = 1]

(Ay.llx :=a])b —ppe Az.[z 1= ally := Aw.z(wb)]
(Oylz = a])[z := b] —puo Oyl := a][z :=]

(Oy.b)[z == ¢[x := a]] —puo Oy.blz := €[z :=]

(be)lz = €le =all —po bz = Elo = allels = €l = al]
(bl = aDlyi= e — o By o= cléx 1= ally =]

€[z = ab)ly =] —puo £l = dlly = by =]

— The ancestor relation is compatible; e.g.: if a _W/w a’ where [x := V'] in o’ has ancestor [x := b]
resp.,)b in a, and if ¢ —pguo ¢ then [x:=b] in d’c’ has ancestor [x .= b] resp.,)b in ac.

The ancestor notion gives a full characterisation of how a substitution item might have been
generated. It achieves the same aims of Lemmas 26 and 27 but in an alternative way.

Lemma 18 Ifa —pu- a and [z := V'] is in d’, then one of the following holds:

— Ezactly one [x :=b] in a is an ancestor of [x .= V] in a’ and b —p5,, b'.

— [# := b'] has an application item)b as ancestor with b = b’ or b = Aw.y(wb) for some

y,w & FV(b) and y # w.

& Ome can even go further as in [18] by calling Az the X item but this is not needed here.

Proof: By induction on the structure of a. a
The following is informative about the subterms b of a term @ that are not part of substitution

items [y := d] in a. Tt says that for any such b, performing some meta-substitutions on o(b) results

in a subterm of o(a). Moreover, if b = (Oz.b')c and if Bu(o(a)) < oo, then Su(c(c)) < Bu(c(a)).

Lemma 19

1. If b is a subterm of a, b is not part of d for [y := d] in a, then Im,x1,... 2p, €1,...Cm such
that o(b)[e1/x1][ca/®a] . . [em/Tm] is a subterm of o(a).

2. If (Oz.b)c is a sublerm of a which is not part of d for any [y :=d] in a, and if Bp(c(a)) < oo
then pu(a(c)) < pu(o(a)).

Proof: 1: By induction on the structure of a. 2: (Ox.c(b))o(c)[c1/x1] .. [em/2m] is a subterm of
o(a) for some ¢;, 25,1 < i < m, by 1 and Lemma 7. Hence, using Lemma 4.5, Su(((Oz.o(b))o(c))) <
Bu(o(a)). Now, by Lemma 3, as (Ox.o(b))o(c) is pure, Su(o(c)) < fu(o(a)). O

The following lemma is the key to proving GPSN. It says that any Suo reduct @’ of a decent
term @ whose o-normal form has no infinite Gu-derivations, is itself decent and its o-normal form
has no infinite Gu-derivations.

Lemma 20 If a is a term such that f(o(a)) < oo, a is decent, then for any Buo-reduct a’ of a,
a' is decent of order Bu(o(a)).

Proof: By induction on the number of reduction steps in a —p,, @¢'. If @ — 5, a then as a is
decent, a is decent of order Bu(o(a)). o o

Assume ¢ —guo @' —p,0 @' where o'’ is decent of order Fu(o(a)).

Let [z :=b] in o’. We must show that b & SN(Bua) or Bu(a(b)) < Bu(o(a)).

The ancestor of [« := b] in a” is either:

1. [:=b]in a” where b’ —p,, b

2.)b in @’ and (Az.c)b —p,, clx 1= b] is the contracted redex in @’ —4,, .

3.)b in a” where (Awx.c)b’ —p.0 c[z = Aw.y(wh')] is the contracted redex in a” —4,, @’ and
b= dw.y(wh'). o o

In the first case, as a’’ is decent of order Gu(c(a)), then either b € SN(Buc) or Bu(o(b’)) <
Bu(o(a)). Hence, b € SN(Bua) or fu(a(b)) < Bu(o(b')) < Bu(o(a)) using Lemma 7.

In the second case, if)b is not part of d for some [y := d] in a”, then by Lemma 19, as
Bu(o(a")) < oo, Bu(a(b)) < Bu(e(a")) < pu(o(a)) by Lemma 7. If)b is part of d for some [y := d]
in a”, then we may assume that there is no [z := €] such that)b is part of e and [z := €] is part

of d. Then as a” is decent, either d € SN(Fuo) or fu(o(d)) < Bu(a(a”)). If d € SN(Suo) then
b€ SN(Bua). If Bu(o(d)) < Bu(a(a”)) < Bu(o(a)) then as (Az.c)b is not part of some [z := €] in
d, we get by Lemma 19 that Bu(uc(b)) < Bu(po(d)). Hence, Su(puo(b)) < fu(po(a)).
The third case is similar to the second but note that Su(c(Aw.y(wb'))) = Bu(pe(b’)) by
Lemma 7, and &' € SN(Buo) iff dw.y(wb') € SN(Bpo). a
Finally, any decent term whose o-normal form does not have an infinite fpu-derivation, is itself
Buo-strongly normalising:
Theorem 21 Ifa is a term such that fu(o(a)) < oo and a is decent, then a € SN(Fuo).

Proof: By induction on fu(c(a)) < co. We only treat the inductive case. Take a decent a such
that Gu(o(a)) < oo and V decent a’ where fu(a(a’)) < Bu(o(a)) we have a’ € SN(Buo).

By Lemma 20, all —g,,-reducts of a are decent of order Su(o(a)). Let us show that a €
SN(Bpco). Assume the coﬁary and take an infinite derivation @ —gus a1 —gus a2
As o is SN (Lemma 7), this derivation can be written as a —, by __Wu c1 —p by — B Co ...
Again by Lemma 7, o(a) = 0(b1) —p, 0(c1) —pu 0(c2) —gu - . o o
By Lemma 15 and the fact that Su(o(a)) < oo, only finitely many of the reductions by, —g, ¢m
are not superfluous. Otherwise, we will have an infinite fp-derivation starting at o(a) which is

impossible since Fu(o(a)) < co. Let bar — 5, car be the last non-superfluous —p,-reduction and
define hy as follows: T T

hz(l‘) =1 hz(ab) = hz(a) + hz(b) + 1)
ha(Ox.b) = ha(b) + 1 ho(alz = b]) = {;Z(Zc(tl.)(hz(b) +2) :)ftﬁefwgev(b)

It is easy to prove by induction on the structure of terms that:

— Ifa — o b is superfluous then hy(a) = ha(b)
— If a —, b is not superfluous then ha(a) > ha(b).

Now, 3N > M such that Vn > N, ho(cn) = ha(en), as Vn > M, b, —p,, ¢y is superfluous. Hence,
ha(by) = ha(e,). Moreover, hy(d) < oo for any term d. o

Now, look at the part of the derivation: cy —5 byt1 —pu CN41 —0 - - -
We know that in this derivation, all Su-reduction steps are_superﬂuous. As ¥n > N, ha(e,) =
ha(en) = ha(bn) = ha(bpg1), it must be also the case that ¢, —s, bny1 is superfluous for all
n > N, otherwise, ha(cn) > ha(bpy1), contradiction.

Hence, one [z := d] in ex has an infinite Buo-derivation. Otherwise, there wouldn’t be an
infinite Fpo-derivation starting at cy, contradi(ﬁlg infinity of ey —5 byy1 —8u N1 - - -
Now, take one innermost [# := d] in ¢x which has an infinite Suc-derivation. Then d is decent. As
en is a Buo-reduct of a, then ey is decent of order Bu(c(a)) by Lemma 20. Moreover, fu(a(d)) <
B (a));

Hence, by TH, as fu(o(d)) < fu(o(a)) and d is decent, we get that d € SN(Speo). Absurd. O

Now, the proof of GPSN is immediate: o

Theorem 22 (Generalised Preservation of Strong Normalisation)
Let a € T°, if every subterm b of a satisfies o(b) € SN(Bpu), then a € SN(Guo).

Proof: By induction on the structure of a. As a is a subterm of a, then o(a) € SN(Bu) and so
Bu(o(a)) < co. Let [z := b] in @ where IH holds for b. Then & € SN(Suo) and hence a is decent.
So by Theorem 21, a € SN(SBuc). O

5 A type-assignment for AAexp

In [30], a classical type-assignment system for AA is presented. The type-assignment system is
simply typed, with a specific type L standing for absurdity. A is typed with double negation.

Definition 23

1. The set of types is given by the abstract syntaz: T = L|T — T

2. A wvariable declaration s a pair x : A where x €V and A€ T.

3. A context ts a finite list of declarations I' = x1 1 Ay, ..., 2 1 Ay such thal i # j = x; # ;. If
I'=ux1:Ay,...,xn : Ay 1s a context, B € T and x does not occur in I', then ',z : B is used
to denote the context xy: Ay,..., 2, : An,x: B.

The set of contexts is denoted by C.

The derivability relation b3, C C x T x T is defined as follows (using the standard notation):

Al

Iz:Abg,a:B

—_— A)yer A
(var) o a e AE N v A= B
I'tgpa:A—B I'Fg,b: A INe:A— Lbg,a: L
A
(ap) I'tguab: B (4) I'bpu Aza: A

6. The derwability relation g,,C C X T° x T 1s defined by the above rules and the new rule:

F,J;:AI—@_Wa:B FI—@_WI):A
I'bpus alr :=b]: B

(subst)

The following lemma establishes three basic properties:
Lemma 24

1. Subject Reduction: if I'bguo a: A and a —pus b, then I'Fgus b Al
2. Conservativity: if I' bg,o a @ A then I' kg, o(a) : A
3. Closure under subterms: every subterm of a well-typed term is well-typed.

Proof: By an easy induction on the derivation of I g, a : A. a
The following proposition establishes that the simply typed version of AAexp is SN. Its proof
is simple thanks to the generalised PSN.

Proposition 25

1. If I'kgua: A, then a € SN(Bpu).
2. If I'tpus at A, then a € SN(Buo).

Proof: 1. is proved in [30]. 2: assume « is a term of minimal length such that I" Fg,, a : A and
a & SN(Bpo). By Lemma 24.2 and 1 above, ¢(a) € SN(Bu). By GPSN (Theorem_35), a must
therefore contain a strict subterm b such that ¢(b) € SN(Fy). By Lemma 8, — 3, C—3,0, hence it
follows that (b) & SN(Buo) and so b & SN(Buc). By Lemma 24.3, b is a well-typed term. This
contradicts the minimality of a. a

6 Conclusion

We have introduced a calculus of explicit substitutions AAexp for the calculus AA and proved that
PSN holds. Moreover we have shown that the typed AAexp-calculus is strongly normalizing using
a new method based on a mild generalization of PSN.

To our knowledge, AAexp is the first calculus with explicit substitutions which is not structure-
preserving. Its study has revealed two importants points:

1. one may be able to prove PSN for a class of CRSs substantially bigger than the class of
structure-preserving CRSs.
2. not all approaches to prove PSN for A-calculi with explicit substitutions are generalisable.

We are currently investigating whether the minimal derivation technique could prove useful in gen-
eralizing the results of [9]. It would be interesting to provide some general conditions for a CRS to
have PSN. Ideally one would be able to provide some very weak (probably undecidable) conditions
equivalent to PSN. The condition of structure-preserving will then appear as a specialization of
these conditions.

Another area which remains open 1is explicit substitutions for non-local control operators: the
A-operator considered in this paper is compatible (reduction rules apply in all contexts) and local
(does not refer to contexts). Some other control operators are non-local and manipulate contexts.
It remains a challenge to determine whether such calculi with non-local control operators have
the PSN property. Interestingly, such calculi will require an explicit handling of contexts so their
explicit variants will probably be equational term-rewriting systems (the equational part taking
care of contexts). This subject is left for future work.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional
Programming, 1(4):375-416, 1991.
. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[SV]

3. F. Barbanera and S. Berardi. Continuations and simple types: A strong normalization result. In ACM
SIGPLAN Workshop on Continuations, 1992.

. H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.

5. 7. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit substitutions
which preserves strong normalisation. Journal of Functional Programming, 1995.

e

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical Report CS-95-08,

Department of Mathematics and Computing Science, Findhoven University of Technology, 1995.

R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalisation. Technical Report
(CS-96-10, Department of Mathematics and Computing Science, Eindhoven University of Technology,
1996.

. R. Bloo and K. Rose. Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection. Computer Science in the Netherlands, 1995.

. R. Bloo and K. Rose. Combinatory reduction systems with explicit substitutions that preserve strong

normalisation. RTA ’96, 1996. To appear.

P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of explicit
substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992. To appear in the JACM.

P. de Groote. On the relation between the Ap-calculus and the syntactic theory of sequential control.
In Logic Programming and Automated Reasoning, volume 822 of Lecture Notes in Computer Science,
pages 31-43. Springer-Verlag, 1994.

G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions. In Proceed-
ings of the Tenth Annual Symposium on Logic in Computer Science, pages 366-374. IEEE Computer
Society Press, 1995.

R.K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.

R. Constable et al. Implementing Mathematics with the NUPRIL Development System. Prentice-Hall,
1986.

T.G. Griffin. A formulae-as-types notion of control. In Principles of Programming Languages, pages
47-58. ACM Press, 1990.

T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL : A-calculi as Subsystems
of CCL. Theoretical Computer Science, 65(2):291-342, 1989.

H. Herbelin. Elimination des coupures dans les sequents qu’on calcule. PhD thesis, Université de Paris
7,1994.

F. Kamareddine and R. P. Nederpelt. A useful A-notation. Theoretical Computer Science, 155:85-109,
1996.

F. Kamareddine and A. Rios. A A-calculus a la de Bruijn with explicit substitutions. Proceedings of
PLILP’95. Lecture Notes in Computer Science, 982:45-62, 1995.

J.-W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts, 27, 1980.

J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, 11, 1992.

J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Introduction
and survey. Theoretical Computer Science, 121:279-308, 1993.

J.-L. Krivine. Classical logic, storage operators, and second-order A-calculus. Annals of Pure and
Applied Logic, 68:53-78, 1994.

L. Magnusson. The implementation of ALF: a proof editor based on Martin-Lof’s monomorphic type
theory with explicit substitution. PhD thesis, Department of Computer Science, Chalmers University,
1994.

P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate, in proceedings of tlca’95.
Lecture Notes in Computer Science, 902, 1995.

C. Mutioz. Confluence and preservation of strong normalisation in an explicit substitutions calculus.
Technical report, INRIA, Rocquencourt, 1995. To appear in LICS ’96.

C. Munoz. Proof representation in type theory: State of the art. Accepted to be presented in the
XXII Latinamerican Conference of Informatics CLEI Panel 96, June 3-7, 1996, Santafé de Bogota,
Colombia, April 1996.

C. Murthy. FExtracting Constructive Contents from Classical Proofs. PhD thesis, Cornell University,
1990.

M. Parigot. Ap-calculus: An algorithmic interpretation of classical natural deduction. In International
Conference on Logic Programming and Automated Reasoning, volume 624 of Lecture Notes in Computer
Science, pages 190-201. Springer-Verlag, 1992.

N.J. Rehof and M.H. Sgrensen. The Aa calculus. In M. Hagiya and J. Mitchell, editors, Theoretical
Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages 516-542.
Springer-Verlag, 1994.

G. L. Steele. Common Lisp: The Language. Digital Press, Bedford, MA, 1984.

A. Tasistro. Formulation of Martin-Lof’s theory of types with explicit substitutions. Master’s thesis,
Chalmers University, 1993.

J. Underwood. Aspects of the computational content of proofs. PhD thesis, Cornell University, 1994.

A Proving PSN with the minimal derivation technique

We shall prove that AAexp preserves strong normalization using the technique of minimal deriva-
tions used in [5] to prove that Av preserves 5-SN and in [19] to prove that As preserves 3-SN. First,
we backtrack the substitutions operators in the derivations via the following two lemmas.

Lemma 26 Let a,¢,d € T° and C a context, such that a —g,, C{clz := d]}, then one of the
following must hold: T

1. a=C{(Az.c)d}
2. 3b € T® and a context C' such that a = C'{(Ax.c)b}, d = Aw.y(wb) and C'{Ay{}} =C.
5. 3, d' € T¢ and a context C" such that a = C'{c'[z := d']} withd' = d or d' —pu. d.

Proof: By induction on a. a

Lemma 27 Lel a1 —puo - —puc dn —puo Al = Ce|z := d]}, then there exists ¢/, d' € T®
and a contert C" such that one of the following must hold:

1. ap = C'{c'[x = d']} with d' —pu0 d.

2. 3k < n such that ay = C'{(Azx.c')d'} and apy1 = C'{[x .= d']} with d' —p,, d.

3. Jk <n with ap = C'{(Az.c)d'}, apy1 = C{Ay. [z := dw.y(wd)]} end dw.y(wd') —g,0 d.

Proof: Induction on the length of the derivation using the previous lemma. ad

In order to apply the minimal derivation technique we define internal and external reductions.
This has been done either by defining first internal and external positions as in [5] or by giving a
direct inductive definition as in [19]. We choose here another equivalent but simpler presentation:

Definition 28 A reduction — over T¢ is internal, denoted a dnt, b, if there exists a context C
such that a = Cle[z :=d]}, d — d' and b = C{c[x = d']}.

A reduction over T° is external, denoted a L, b, when it 1s not internal.

The following is a slight but essential variation of Lemma 7 cases 5 and 6. A step of external 3

and p is studied and the lemma ensures that we have exactly one step of 3- or p-reduction between
the corresponding o-normal forms.

Lemma 29 Leta, b€ T°.

1. If aﬂ@b then o(a) —p o(b).
2. If aﬂﬂb then o(a) —, o(b).

Proof: Induction on a in a similar fashion to cases 5 and 6 of Lemma 7. Now, the point is that in
the case a = ¢[x := d], the reduction cannot take place within d because it is external, and this is
the only case that forced us to consider the reflexive-transitive closure in Lemma 7. a

The following lemma plays a fundamental role in Lemma 31 and hence in the Generalised
Preservation theorem. Its proof follows the lines of the Commutation Lemma given in [19].

Lemma 30 (Commutation Lemma) Let a, b € T° such that o(a) € SN(Bu) and o(a) = o(b).

t t t t
a2 then o 25t 2y

Proof: By a careful induction on «a, analysing the positions of the redexes. a

Lemma 31 Let a € T° such that for every subterm b of a, o(b) € SN(Bu). For every infinite
ﬁ_ua-derivation @ —guc U1 —guo - —Buc bn —8us -, there exists N such that for i > N all the
reductions b; — g, bi; are internal. o

Proof: The proof follows the lines of Lemma 16 in [19] and requires the Commutation Lemma. O
In order to prove the Generalised Preservation Theorem we need two definitions.

Definition 32 An nfinite Suo-derivation D : ay —Buo " —Bpo An —puc s minimal ¢f
for every step of reduction a; —puo aiy1, every other derwation which contracts a redev that is a
proper subterm of the redex confracted in D is finite.

The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps within
a subterm of the actual redex, then an infinite derivation is impossible.

Definition 33 Skeletons are defined by the following syntax:

Skeletons K .=V | K K

([V :=0] where O is a fresh symbol
The skeleton of a term a s defined by induction as follows:

Sk(x)=u Sk(ab) = Sk(a)Sk(b) Sk([:=b]) = Sk(a)[z := O]
Sk(Ax.a) = Ax.Sk(a) Sk(Azx.a) = Ax.Sk(a)

Remark 34 If a % 5,,b then Sk(a) = Sk(b).

Theorem 35 (Generalised Preservation of strong normalisation)
Let a € T, if every subterm b of a satisfies o(b) € SN(Bp), then a € SN(Buo).

Proof: Let us assume the existence of a € T° with minimal length such that for every subterm &
of a, o(b) € SN(Fp) and a ¢ SN(ﬁuU) Let us consider a minimal infinite derivation D : a —gus
@1 —puc ** —pus Un —puc . By lemma 31, there exists NV, such that for ¢ > N, a; —Buo iyl
is internal. Therefore, by the previous remark, Sk(a;) = Sk(a;41) for ¢ > N. As there are only a
finite number of closures in Sk(an) and as the reductions within these closures are independent,
an infinite subderivation of D must take place within the same and unique closure in Sk(ay) and,
evidently, this subderivation is also minimal. Let us call it D’ and let C' be the context such that
any = C{e[z := d]} and ¢z := d] is the closure where D’ takes place. Therefore we have:

int int int

D' ¢ ay = Cef == dl} —pus Clelr = di]} —pus Cefw := dn]} —puo -+
Lemma 27 gives rise to three possibilities:

Loa=C{[z:=d]} with d' —p,s d.

2. 3I < N such that ay = C"{(Ax.c)d'} —puo aryr = C'{c'[x:=d']} and d' —py, d.

3. 3 < N:iap = C{(Aw.c)d'} —pus arpr = C'{Ay.d[x:= Awy(wd)]} and Adw.y(wd') —pu0
d.

In the first case, we have an infinite derivation d’ —Buo d — Buo dy —Buo - and since d' is a
subterm of a, for every subterm ¢ of d’, o(¢) € SN(Bu) as well. This contradicts the fact that a
was chosen With minimal length.

In the second case, let us consider the following derivation D”:

a —puo ar = C'{(Az.d)d'} —pus C'{(Ax.c)d} —pus C'l(Ax.c)d1] —pu0 C'{(Ax.c)dy} — - -

In the third case, since /\w.y(wdT) — 50 d, necessarily d = Aw. y(wbh) with d’ —>guo b. Furthermore,
since d —»g’w d;, necessarily d; = /\wjg(wbi) with b —»ﬁw b;. Consider D"': B

@ —pu0 ar = C'{(Ax.c)d'} —puo C{(A2.¢)b} —pu0 C'[(Ax.¢Yb1] =50 C'{(Ax.)by} — - -
In DT(resp. D"y the redex in a; is within d’, a proper subterm of (ﬂ‘.c’)d’ (resp. (Az.c)d),
whereas in D the redex in ay is (Az.¢/)d’ (resp. (Ax.c')d’). This contradicts minimality of D. O

This article was processed using the BTEX macro package with LLNCS style

