
Explicit substitutions for control operators?Gilles Barthe??, Fairouz Kamareddine???, and Alejandro R��osyAbstract. The ��-calculus is a �-calculus with a local operator closely related to normal-isation procedures in classical logic and control operators in functional programming. Weintroduce ��exp, an explicit substitution calculus for ��, show it preserves strong normali-sation and that its simply typed version is strongly normalising. Interestingly, ��exp is the�rst example for which the decency method of showing preservation of strong normalisation(PSN) works whereas the structure preserving method which is based on the decency methoddoes not. In particular, ��exp is a very simple calculus yet is not structure preserving. Thisshows that the structure preserving notion intended to give a general description of calculiof explicit substitution that satisfy PSN, is restrictive. To our knowledge, ��exp is the �rstcalculus of explicit substitution that is not structure preserving.51 IntroductionExplicit substitutions were introduced in [1] as a bridge between �-calculus and its implementation.The fundamental idea is simple: in order to provide a full account of the computations involved incomputing a �-term, one must describe a method to compute substitutions.Over the last �ve years most of the research in the area has focused on one speci�c problem,the Preservation of Strong Normalisation (PSN):is every strongly normalising term of the traditional �-calculus strongly normalising withrespect to a given calculus of explicit substitutions?In 1994, Melli�es settled in the negative the problem of PSN for the original calculus of explicitsubstitutions �� [25]. Since then, various calculi with the PSN property have been proposed (seefor example [5, 19, 8, 26]). The di�culties in achieving PSN for �-calculus raise the question of thegenerality of explicit substitutions:can explicit substitutions provide a bridge between the higher-order rewriting systems usedin functional programming and their implementation?In this paper, we provide a partial (and preliminary) answer to this question by extending theparadigmof explicit substitutions to �-calculi with control operators. In a �rst instance, we considera speci�c calculus with control operators, called �� (see [30]), and de�ne its explicit substitutionvariant ��exp. Then we prove that the ��exp preserves SN and deduce that the simply typed��exp calculus is strongly normalizing.There are at least three reasons to consider such an extension:1. control operators play a crucial role in functional programming languages, such as LISP [31],SML [2], Scheme [13], etc. We will only be able to claim a positive answer to the above questionif the theory of explicit substitutions can be extended to control operators;? This work is supported by NWO and the British council under UK/Dutch joint scienti�c research projectJRP240 and EPSRC grant GR/K 25014. We are grateful for Roel Bloo for his observation that the RPOmethod of Bloo and Geuvers, contrary to the structure preserving method, does apply to ��exp.?? CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands, email gilles@cwi.nl??? University of Glasgow, Department of Computing Science, 17 Lilybank Gardens, Glasgow G12 8QQ,Scotland, UK, email fairouz@dcs.gla.ac.uky Address as Kamareddine, email rios@dcs.gla.ac.uk5 According to Bloo, ��exp is a calculus he and Rose have been looking for for sometime.

2. control operators and explicit substitutions both have applications in theorem proving andproof theory.6 The former are used in classical theorem proving and the latter to representincomplete proofs. By studying explicit substitutions with control operators, we lay the foun-dations for a classical theorem prover with the ability to handle incomplete proofs and for aclassical proof theory based on explicit substitutions.3. control operators fundamentally di�er from �-calculus in that they are not structure-preservingin the sense of [9]. As a result, the technique developed to prove PSN for explicit substitutioncalculi using the structure preserving notion (see [9]) cannot be carried over to calculi withcontrol operators. In fact, we will show that the decency method [6] can be adapted to oursetting whereas the structure-preserving method [9] cannot despite the fact that it is based onthe decency method. This makes ��exp the �rst calculus which shows the limitations of thestructure preserving notion which was intended to give some genertalisations for proving PSN.The undertaking of this paper is to provide a representative case study which enables one to see:1. if the theory of explicit substitutions can be generalised to higher-order rewriting systems;2. which methods are best suited to carry over such a generalisation.It should be noted here that the minimal derivation method (see [5, 19]) and the RPO method(see [7]) of showing PSN do apply to ��exp. We chose the decency method because it is the oneused by Bloo and Rose in their structure preserving method. We include the proof using minimalderivation as an appendix for the interested reader. Applying the RPO technique requires �ndingthe correct labelling and goes through in a straightforward manner as Bloo observed.Prerequisites and terminology We assume some basic familiarity with �-calculus [4] and abstractrewriting [21] and use b / a to say that b is a subterm of a. The compatible closure of a notion ofreduction R will always be denoted by !R. Compatibility itself is de�ned as usual and the � caseis treated like the � case. The reexive and transitive closure of!R will be denoted by!!R. Whenthere is at least one reduction step, we write !!+R. Finally, we let SN(R) denote the set of stronglynormalising terms w.r.t. !R.2 The ��-calculusIn this section we describe the syntax of the ��-calculus where the reduction rules are closelyrelated to normalisation procedures for classical natural deduction and to reduction rules for controloperators (see [30]). We use :[:=:] to denote the usual (meta-theoretical) substitution. Free andbound variables are de�ned as usual and FV(a) (resp. BV(a)) denotes the free (resp. bound)variables of the term a. In the de�nitions of :[:=:], FV and BV, � is treated like �.De�nition 11. The set T of (pure) terms is given by the abstract syntax:T = V j TT j �V:T j�V:T where V = fxn : n 2 INg2. �-reduction !� is de�ned as the compatible closure of (�x:a) b !� a[b=x]3. �-reduction !� is de�ned to be !�1 [!�2 [!�3 where �i-reduction for 1 � i � 3 is de�nedto be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[�w:y (w b)=x] if y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)4. !��= (!� [!�).6 See [14, 28, 33] for applications of control operators in theorem proving, [27, 24] for applications ofexplicit substitutions in theorem proving, [3, 11, 15, 23, 28, 29, 30] for applications of control operatorsin proof theory and [12, 17, 32] for applications of explicit substitutions in proof theory.

We let x; y; z; w; : : : range over V and a; b; c; : : : range over T . We consider terms modulo �-conversion (generalised over �) and assume the variable convention (VC) of [4] which guaranteesthat in any context, names of free variables are di�erent from bound ones and that di�erent boundvariables are used for di�erent �'s and �'s. In particular, in a[b=x], we assume that x 62 FV(b). Weuse O to range over f�;�g.Proposition 2 (see [30]) !�� is conuent (CR).We de�ne the ��-norm ��(a) of a pure term a as the maximal number of ��-reduction steps in areduction starting from a. This will be used in the proof of PSN using the decency method.Lemma 3 If (Ox:b)c is a subterm of a pure term a and ��(a) <1 then ��(c) < ��(a).Proof: By induction on the structure of a. 2Lemma 4 The following holds:1. If x 6= y and x 62 FV(c) then a[b=x][c=y] = a[c=y][b[c=y]=x].2. If a!�� a0 then a[b=x]!�� a0[b=x].3. If b!�� b0 then a[b=x]!!�� a[b0=x]; if x 2 FV(a) then a[b=x]!!+�� a[b0=x].4. If a!!�� a0 and b!!�� b0 then a[b=x]!!�� a0[b0=x].5. ��(a) � ��(a[b=x]).Proof: 1, 2 and 3 are by induction on the structure of a. 4 is a corollary of 2 and 3. 5: A ��-reduction path starting with a gives by 2 a path of the same length starting with a[b=x]. 23 The ��exp-calculusThe ��exp-calculus is obtained from �� by giving an explicit treatment of substitutions.De�nition 51. The set T e of terms of the ��exp-calculus is given by the abstract syntax:T e = V j T eT e j �V:T e j�V:T e j T e[V := T e] where V = fxn : n 2 IN:g Note that T � T e2. �-reduction !� is de�ned as the compatible closure of (�x:a) b !� a[x := b]3. �-reduction !� is de�ned to be !�1 [!�2 [!�3 where �i-reduction for 1 � i � 3 is de�nedto be the compatible closure of the corresponding i-rule:(�x:a) b !�1 �y:a[x := �w:y (w b)] y; w 62 FV(b); y 6= w�x:x a !�2 a if x 62 FV(a)�x:x (�y:x a)!�3 a if x; y 62 FV(a)4. �-reduction !� is de�ned as the compatible closure ofx[x := b] !� by[x := b] !� y if x 6= y(a a0)[x := b] !� (a[x := b]) (a0[x := b])(Oy:a)[x := b]!� Oy:(a[x := b]) if y 62 FV(b)5. !���= (!� [!� [!�).Again we let a; b; c; : : : range over T e and generalise �-conversion by taking a[x := b] to be �-equalto a0[y := b0] if b0 is �-equal to b and a0 is �-equal to a[y=x] for y 62 FV(a) n fxg. FV(a), BV(a)and VC over T e are generalised by treating a[x := b] as we would treat �x : b:a in typed �-calculi.In particular, FV(a[x := b]) = FV(b) [(FV(a) n fxg), and when we write (�y:a)[x := b], it isassumed that x 6= y and x; y 62 FV(b). Meta-substitution is generalised over T e by adding theclause: a[x := b][c=y] = a[c=y][x := b[c=y]].If x 62 FV(a), the free variables of b are not substitutable free variables of a[x := b]. For thisreason, we follow [8] and give the following de�nition:

De�nition 6 For any term a, we de�ne the set of substitutable free variables of a, denoted �FV(a)by the rules:�FV(x) = fxg �FV(ab) = �FV(a) [�FV(b) �FV(Ox:a) = �FV(a) n fxg�FV(a[x := b]) = ��FV(a) if x 62 FV(a)(�FV(a) n fxg)[�FV(b) if x 2 FV(a)Hence �FV(x[y := z]) = fxg whereas FV(x[y := z]) = fx; zg for distinct x; y; z.The following shows amongst other things that !� is SN and CR and that ��-reduction issound in ��exp. This will be used to show the simulation of ��-reduction and the CR of ��exp.Lemma 7 Let a; b 2 T e. The following holds:1. !� is SN and CR. Hence, every term c 2 T e has a unique �-normal form, denoted �(c).2. �(ab) = �(a)�(b), �(�x:a) = �x:�(a), �(�x:a) = �x:�(a).3. �(a[x := b]) = �(a)[�(b)=x]4. If a!� b then �(a) = �(b) and �FV(a) = �FV(b).5. If a!� b then �(a)!!� �(b)6. If a!� b then �(a)!!� �(b)7. If a!!��� b then �(a)!!�� �(b) and ��(�(b)) � ��(�(a)).8. Let y; w 62 FV(b) and y 6= w. It holds that ��(�(�w:y(wb0))) = ��(�(b0)) and that b0 2 SN(���)i� �w:y(wb0) 2 SN(���).Proof: The proofs of 1-5 are analogous to the proofs of the corresponding results for !x (see[7]), whose rules are our �-rules except the �-transition. We just remark that the function used toprove SN should be here extended with h(�x:a) = h(a) + 1. 6 is by induction on a. The �rst halfof 7 is a corollary of 4, 5 and 6 and implies the second half. 8 is straightforward. 2The following lemma shows that ��exp is powerful enough to simulate ��-reduction:Lemma 8 (Simulation of ��-reduction) For pure terms a; b: if a!�� b then a!!+��� b.Proof: By induction on a using Lemma 7.2 and .3. 2Theorem 9 The ��exp-calculus is conuent.Proof: We use the interpretation method [10, 16]. If a!!��� b1 and a !!��� b2 then by Lemma7.7, �(a)!!�� �(bi), for i 2 f1; 2g, and by CR of ��, 9c such that �(bi)!!�� c, and by Lemma 8�(bi)!!��� c. Hence, bi !!��� c. 2Finally, the following is the converse of the generalised PSN result we are aiming for:Lemma 10 Let a 2 T e. a 2 SN(���) =) for all subterms b of a, �(b) 2 SN(��),Proof: Assume 9b / a where �(b) 62 SN(��) and let �(b) !�� b1 !�� b2 !�� : : : be an in�nitederivation. As b!!� �(b), then by Lemma 8, the derivation b!!��� �(b)!!+��� b1 !!+��� b2 !!+���: : : is in�nite. Absurd as b / a and a 2 SN(���). 2Corollary 11 If a is a pure term such that a 2 SN(���), then a 2 SN(��).4 Preservation of Strong NormalisationThe question arises whether every term a 2 T which is in SN(��) is also in SN(���) (i.e. whether��exp preserves ��-strong normalisation). We start by de�ning two notions:De�nition 121. A term a 2 T obeys the preservation of strong normalisation (PSN) property if:a 2 SN(��) =) a 2 SN(���).

2. A term a 2 T e obeys the generalised preservation of strong normalisation (GPSN) property if:(8b / a:�(b) 2 SN(��)) =) a 2 SN(���).The GPSN property is a mild generalization of the PSN property. In our view, the GPSN propertyis more fundamental than the PSN property for two reasons:1. the GPSN property applies to all terms, not only the pure ones;2. for most typed �-calculi with explicit substitutions, strong normalisation is an immediateconsequence of the GPSN property and of strong normalisation of the standard calculus withoutexplicit substitutions.Lemma 13 Let a 2 T . a obeys GPSN () a obeys PSN.Proof: =)) Assume a obeys GPSN and a 2 SN(��). If a 62 SN(���) then, as a obeys GPSN,there exists b / a of a such that �(b) 62 SN(��). Since a is pure, b is pure and hence b 62 SN(��).Therefore a 62 SN(��). Absurd.(=) Assume a obeys PSN and 8b / a:�(b) 2 SN(��). As a / a and a is pure, we get a 2 SN(��).Hence, as a obeys PSN, a 2 SN(���) and so a obeys GPSN. 24.1 Structure-preserving calculiIn a recent paper [9], Bloo and Rose describe how to construct an explicit substitution CRS froman arbitrary CRS.7 Moreover they show that PSN holds for a restricted class of CRSs, which theycall structure-preserving.Unfortunately, PSN for the ��exp-calculus cannot be derived from [9]. Indeed, the �rst �-rewrite rule is written in the CRS framework as (�x:X(x)) Y ! �y:X(�w:y (w Y)). The conditionof structure-preserving requires the argument �w:y (w Y) of the meta-application in the right-handside to be a subterm of the left-hand side. Obviously this is not the case.It is interesting to notice that it is decidable whether a CRS is structure-preserving: one onlyneeds to look at the rules and ensure that certain syntactic conditions are satis�ed. In the case ofthe ��exp calculus, one must know the behavior of the whole reduction relation to prove PSN. Inparticular one must know that every redex in an instance �w:y (w a) of �w:y (w Y) can be tracedback and thus must occur in a.4.2 Proving PSN with the decency methodWe shall prove that the ��exp-calculus preserves strong normalization using the technique ofdecency introduced in [6] to prove that �exp preserves �-SN. First, we de�ne the following notion:De�nition 14 We say that [x := b] is superuous in a if x is not a substitutable free variableof the term in the scope of [x := b] in a (recall that we treat, from the point of view of binding,c[x := b] as we would treat �x : b:c). A reduction a !��� b is called superuous if the contractedredex in a is part of d for [x := d] superuous in a.A superuous reduction, similarly to the internal reduction of De�nition 28, concentrates on re-duction inside b for [x := b] being a substitution item. A reduction is superuous if the contractedredex is internal and the substitution item [x := b] in which it occurs does not bind any substitutionoccurrence of x. The following lemma is similar to Lemma 29. Note that the use of !!+�� ratherthan !�� is due to the fact that a non superuous redex is either external, or internal inside an[x := d] where there are occurrences of x in a that are within the scope of [x := d].Lemma 15 If a !�� b where a substitution [x := d] is generated and the reduction a !��1 b isnot superuous, then �(a)!!+�� �(b).7 The theory of Combinatory Reduction Systems was developed by J-W. Klop (see [20, 22]).

Proof: By induction on the structure of a using Lemmas 4 and 7. 2The following is crucial to the GPSN proof. It imposes the condition that in decent terms, forany [x := b], either b 2 SN(���) or all ��-derivations starting at �(b) are �nite.De�nition 16{ A term a is called decent if for every [x := b] in a, b 2 SN(���).{ A term a is called decent of order n if for every [x := b] in a, b 2 SN(���) or ��(�(b)) < n.Note that if a is decent and ��(�(a)) <1, then a is decent of order ��(�(a)) + 1.Finally, the following notion of ancestor, aims to achieve similar conditions to those shown inLemmas 26 and 27. It is related to what is referred to as \backtracking" in the minimal deriva-tion method. Note that we use \)a" to denote an application item. For example, in (�x:a)b theapplication item is)b.8De�nition 17 For a reduction a !!��� a0, we de�ne the notion of the ancestor of a substitutionitem [x := d] in a0 as follows:{ If a !��� a0 and b = b0 or if b !��� b0 and a = a0 then [x := b0] in a0[x := b0] has ancestor[x := b] in a[x := b].{ In the following reductions, the �rst underlined item (which may be an application written \):00)is ancestor of the second underlined item:(bc)[x := a] !��� (b[x := a])c[x := a](bc)[x := a] !��� (b[x := a])c[x := a](Oy:b)[x := a]!��� Oy:b[x := a]((�x:b)a) !��� b[x := a]((�x:a)b) !��� �y:a[x := �w:y(wb)]{ The ancestor relation behaves as expected in the confrontation with �-reductions; i.e., if �[x :=a] is a context in which [x := a] appears, then:(�y:b)�[x := a] !��� b[y := �[x := a]](�y:b)�[x := a] !��� �z:b[y := �w:z(w�[x := a])](�y:�[x := a])b !��� �[x := a][y := b](�y:�[x := a])b !��� �z:�[x := a][y := �w:z(wb)](Oy:�[x := a])[z := b]!��� Oy:�[x := a][z := b](Oy:b)[z := �[x := a]]!��� Oy:b[z := �[x := a]](bc)[z := �[x := a]] !��� b[z := �[x := a]]c[z := �[x := a]](b�[x := a])[y := c] !��� b[y := c]�[x := a][y := c](�[x := a]b)[y := c] !��� �[x := a][y := c]b[y := c]{ The ancestor relation is compatible; e.g.: if a!��� a0 where [x := b0] in a0 has ancestor [x := b]resp.,)b in a, and if c!��� c0 then [x := b0] in a0c0 has ancestor [x := b] resp.,)b in ac.The ancestor notion gives a full characterisation of how a substitution item might have beengenerated. It achieves the same aims of Lemmas 26 and 27 but in an alternative way.Lemma 18 If a!��� a0 and [x := b0] is in a0, then one of the following holds:{ Exactly one [x := b] in a is an ancestor of [x := b0] in a0 and b!!��� b0.{ [x := b0] has an application item)b as ancestor with b = b0 or b0 = �w:y(wb) for somey; w 62 FV(b) and y 6= w.8 One can even go further as in [18] by calling �x the � item but this is not needed here.

Proof: By induction on the structure of a. 2The following is informative about the subterms b of a term a that are not part of substitutionitems [y := d] in a. It says that for any such b, performing some meta-substitutions on �(b) resultsin a subterm of �(a). Moreover, if b = (Ox:b0)c and if ��(�(a)) <1, then ��(�(c)) < ��(�(a)).Lemma 191. If b is a subterm of a, b is not part of d for [y := d] in a, then 9m;x1; : : :xm, c1; : : : cm suchthat �(b)[c1=x1][c2=x2] : : : [cm=xm] is a subterm of �(a).2. If (Ox:b)c is a subterm of a which is not part of d for any [y := d] in a, and if ��(�(a)) <1then ��(�(c)) < ��(�(a)).Proof: 1: By induction on the structure of a. 2: (Ox:�(b))�(c)[c1=x1] : : : [cm=xm] is a subterm of�(a) for some ci; xi; 1 � i � m, by 1 and Lemma 7. Hence, using Lemma 4.5, ��(((Ox:�(b))�(c))) ���(�(a)). Now, by Lemma 3, as (Ox:�(b))�(c) is pure, ��(�(c)) < ��(�(a)). 2The following lemma is the key to proving GPSN. It says that any ��� reduct a0 of a decentterm a whose �-normal form has no in�nite ��-derivations, is itself decent and its �-normal formhas no in�nite ��-derivations.Lemma 20 If a is a term such that �(�(a)) < 1, a is decent, then for any ���-reduct a0 of a,a0 is decent of order ��(�(a)).Proof: By induction on the number of reduction steps in a !!��� a0. If a !!��� a then as a isdecent, a is decent of order ��(�(a)).Assume a!!��� a00 !��� a0 where a00 is decent of order ��(�(a)).Let [x := b] in a0. We must show that b 2 SN(���) or ��(�(b)) < ��(�(a)).The ancestor of [x := b] in a00 is either:1. [x := b0] in a00 where b0 !!��� b2.)b in a00 and (�x:c)b!��� c[x := b] is the contracted redex in a00 !��� a0.3.)b0 in a00 where (�x:c)b0 !��� c[x := �w:y(wb0)] is the contracted redex in a00 !��� a0 andb = �w:y(wb0).In the �rst case, as a00 is decent of order ��(�(a)), then either b0 2 SN(���) or ��(�(b0)) <��(�(a)). Hence, b 2 SN(���) or ��(�(b)) � ��(�(b0)) < ��(�(a)) using Lemma 7.In the second case, if)b is not part of d for some [y := d] in a00, then by Lemma 19, as��(�(a00)) <1, ��(�(b)) < ��(�(a00)) � ��(�(a)) by Lemma 7. If)b is part of d for some [y := d]in a00, then we may assume that there is no [z := e] such that)b is part of e and [z := e] is partof d. Then as a00 is decent, either d 2 SN(���) or ��(�(d)) < ��(�(a00)). If d 2 SN(���) thenb 2 SN(���). If ��(�(d)) < ��(�(a00)) � ��(�(a)) then as (�x:c)b is not part of some [z := e] ind, we get by Lemma 19 that ��(��(b)) < ��(��(d)). Hence, ��(��(b)) < ��(��(a)).The third case is similar to the second but note that ��(�(�w:y(wb0))) = ��(��(b0)) byLemma 7, and b0 2 SN(���) i� �w:y(wb0) 2 SN(���). 2Finally, any decent term whose �-normal form does not have an in�nite ��-derivation, is itself���-strongly normalising:Theorem 21 If a is a term such that ��(�(a)) <1 and a is decent, then a 2 SN(���).Proof: By induction on ��(�(a)) < 1. We only treat the inductive case. Take a decent a suchthat ��(�(a)) <1 and 8 decent a0 where ��(�(a0)) < ��(�(a)) we have a0 2 SN(���).By Lemma 20, all !���-reducts of a are decent of order ��(�(a)). Let us show that a 2SN(���). Assume the contrary and take an in�nite derivation a!��� a1 !��� a2 : : :.As � is SN (Lemma 7), this derivation can be written as a!!� b1 !�� c1 !!� b2 !�� c2 : : :.Again by Lemma 7, �(a) = �(b1)!!�� �(c1)!!�� �(c2)!!�� : : :.By Lemma 15 and the fact that ��(�(a)) < 1, only �nitely many of the reductions bm !�� cmare not superuous. Otherwise, we will have an in�nite ��-derivation starting at �(a) which is

impossible since ��(�(a)) < 1. Let bM !�� cM be the last non-superuous !��-reduction andde�ne h2 as follows:h2(x) = 1 h2(ab) = h2(a) + h2(b) + 1h2(Ox:b) = h2(b) + 1 h2(a[x := b]) = �h2(a):(h2(b) + 2) if x 2 �FV(b)2h2(a) otherwiseIt is easy to prove by induction on the structure of terms that:{ If a!��� b is superuous then h2(a) = h2(b){ If a!� b is not superuous then h2(a) > h2(b).Now, 9N > M such that 8n � N , h2(cn) = h2(cN), as 8n > M , bn !��1 cn is superuous. Hence,h2(bn) = h2(cn). Moreover, h2(d) <1 for any term d.Now, look at the part of the derivation: cN !!� bN+1 !�� cN+1 !!� : : :.We know that in this derivation, all ��-reduction steps are superuous. As 8n � N , h2(cn) =h2(cN) = h2(bn) = h2(bn+1), it must be also the case that cn !!� bn+1 is superuous for alln � N , otherwise, h2(cn) > h2(bn+1), contradiction.Hence, one [x := d] in cN has an in�nite ���-derivation. Otherwise, there wouldn't be anin�nite ���-derivation starting at cN , contradicting in�nity of cN !!� bN+1 !�� cN+1 : : :.Now, take one innermost [x := d] in cN which has an in�nite ���-derivation. Then d is decent. AscN is a ���-reduct of a, then cN is decent of order ��(�(a)) by Lemma 20. Moreover, ��(�(d)) <��(�(a)).Hence, by IH, as ��(�(d)) < ��(�(a)) and d is decent, we get that d 2 SN(���). Absurd. 2Now, the proof of GPSN is immediate:Theorem 22 (Generalised Preservation of Strong Normalisation)Let a 2 T e, if every subterm b of a satis�es �(b) 2 SN(��), then a 2 SN(���).Proof: By induction on the structure of a. As a is a subterm of a, then �(a) 2 SN(��) and so��(�(a)) < 1. Let [x := b] in a where IH holds for b. Then b 2 SN(���) and hence a is decent.So by Theorem 21, a 2 SN(���). 25 A type-assignment for ��expIn [30], a classical type-assignment system for �� is presented. The type-assignment system issimply typed, with a speci�c type ? standing for absurdity. � is typed with double negation.De�nition 231. The set of types is given by the abstract syntax: T = ? j T ! T2. A variable declaration is a pair x : A where x 2 V and A 2 T .3. A context is a �nite list of declarations � = x1 : A1; : : : ; xn : An such that i 6= j) xi 6= xj . If� = x1 : A1; : : : ; xn : An is a context, B 2 T and x does not occur in � , then �; x : B is usedto denote the context x1 : A1; : : : ; xn : An; x : B.4. The set of contexts is denoted by C.5. The derivability relation `��� C � T � T is de�ned as follows (using the standard notation):(var) � `�� x : A if (x : A) 2 � (�) �; x : A `�� a : B� `�� �x:a : A! B(ap) � `�� a : A! B � `�� b : A� `�� a b : B (�) �; x : A!? `�� a : ?� `�� �x:a : A6. The derivability relation `���� C � T e � T is de�ned by the above rules and the new rule:(subst) �; x : A `��� a : B � `��� b : A� `��� a[x := b] : B

The following lemma establishes three basic properties:Lemma 241. Subject Reduction: if � `��� a : A and a!��� b, then � `��� b : A.2. Conservativity: if � `��� a : A then � `�� �(a) : A.3. Closure under subterms: every subterm of a well-typed term is well-typed.Proof: By an easy induction on the derivation of � `��� a : A. 2The following proposition establishes that the simply typed version of ��exp is SN. Its proofis simple thanks to the generalised PSN.Proposition 251. If � `�� a : A, then a 2 SN(��).2. If � `��� a : A, then a 2 SN(���).Proof: 1. is proved in [30]. 2: assume a is a term of minimal length such that � `��� a : A anda 62 SN(���). By Lemma 24.2 and 1 above, �(a) 2 SN(��). By GPSN (Theorem 35), a musttherefore contain a strict subterm b such that �(b) 62 SN(��). By Lemma 8,!���!!��� , hence itfollows that �(b) 62 SN(���) and so b 62 SN(���). By Lemma 24.3, b is a well-typed term. Thiscontradicts the minimality of a. 26 ConclusionWe have introduced a calculus of explicit substitutions ��exp for the calculus �� and proved thatPSN holds. Moreover we have shown that the typed ��exp-calculus is strongly normalizing usinga new method based on a mild generalization of PSN.To our knowledge, ��exp is the �rst calculus with explicit substitutions which is not structure-preserving. Its study has revealed two importants points:1. one may be able to prove PSN for a class of CRSs substantially bigger than the class ofstructure-preserving CRSs.2. not all approaches to prove PSN for �-calculi with explicit substitutions are generalisable.We are currently investigating whether the minimal derivation technique could prove useful in gen-eralizing the results of [9]. It would be interesting to provide some general conditions for a CRS tohave PSN. Ideally one would be able to provide some very weak (probably undecidable) conditionsequivalent to PSN. The condition of structure-preserving will then appear as a specialization ofthese conditions.Another area which remains open is explicit substitutions for non-local control operators: the�-operator considered in this paper is compatible (reduction rules apply in all contexts) and local(does not refer to contexts). Some other control operators are non-local and manipulate contexts.It remains a challenge to determine whether such calculi with non-local control operators havethe PSN property. Interestingly, such calculi will require an explicit handling of contexts so theirexplicit variants will probably be equational term-rewriting systems (the equational part takingcare of contexts). This subject is left for future work.References1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal of FunctionalProgramming, 1(4):375{416, 1991.2. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.3. F. Barbanera and S. Berardi. Continuations and simple types: A strong normalization result. In ACMSIGPLAN Workshop on Continuations, 1992.4. H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.5. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicit substitutionswhich preserves strong normalisation. Journal of Functional Programming, 1995.

6. R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical Report CS-95-08,Department of Mathematics and Computing Science, Eindhoven University of Technology, 1995.7. R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalisation. Technical ReportCS-96-10, Department of Mathematics and Computing Science, Eindhoven University of Technology,1996.8. R. Bloo and K. Rose. Preservation of strong normalisation in named lambda calculi with explicitsubstitution and garbage collection. Computer Science in the Netherlands, 1995.9. R. Bloo and K. Rose. Combinatory reduction systems with explicit substitutions that preserve strongnormalisation. RTA '96, 1996. To appear.10. P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuence properties of weak and strong calculi of explicitsubstitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992. To appear in the JACM.11. P. de Groote. On the relation between the ��-calculus and the syntactic theory of sequential control.In Logic Programming and Automated Reasoning, volume 822 of Lecture Notes in Computer Science,pages 31{43. Springer-Verlag, 1994.12. G. Dowek, T. Hardin, and C. Kirchner. Higher-order uni�cation via explicit substitutions. In Proceed-ings of the Tenth Annual Symposium on Logic in Computer Science, pages 366{374. IEEE ComputerSociety Press, 1995.13. R.K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.14. R. Constable et al. Implementing Mathematics with the NUPRL Development System. Prentice-Hall,1986.15. T.G. Gri�n. A formulae-as-types notion of control. In Principles of Programming Languages, pages47{58. ACM Press, 1990.16. T. Hardin. Conuence Results for the Pure Strong Categorical Logic CCL : �-calculi as Subsystemsof CCL. Theoretical Computer Science, 65(2):291{342, 1989.17. H. Herbelin. Elimination des coupures dans les sequents qu'on calcule. PhD thesis, Universit�e de Paris7, 1994.18. F. Kamareddine and R. P. Nederpelt. A useful �-notation. Theoretical Computer Science, 155:85{109,1996.19. F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions. Proceedings ofPLILP'95. Lecture Notes in Computer Science, 982:45{62, 1995.20. J.-W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts, 27, 1980.21. J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992.22. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Introductionand survey. Theoretical Computer Science, 121:279{308, 1993.23. J.-L. Krivine. Classical logic, storage operators, and second-order �-calculus. Annals of Pure andApplied Logic, 68:53{78, 1994.24. L. Magnusson. The implementation of ALF: a proof editor based on Martin-L�of's monomorphic typetheory with explicit substitution. PhD thesis, Department of Computer Science, Chalmers University,1994.25. P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate, in proceedings of tlca'95.Lecture Notes in Computer Science, 902, 1995.26. C. Mu~noz. Conuence and preservation of strong normalisation in an explicit substitutions calculus.Technical report, INRIA, Rocquencourt, 1995. To appear in LICS '96.27. C. Mu~noz. Proof representation in type theory: State of the art. Accepted to be presented in theXXII Latinamerican Conference of Informatics CLEI Panel 96, June 3{7, 1996, Santaf�e de Bogot�a,Colombia, April 1996.28. C. Murthy. Extracting Constructive Contents from Classical Proofs. PhD thesis, Cornell University,1990.29. M. Parigot. ��-calculus: An algorithmic interpretation of classical natural deduction. In InternationalConference on Logic Programming and AutomatedReasoning, volume 624 of Lecture Notes in ComputerScience, pages 190{201. Springer-Verlag, 1992.30. N.J. Rehof and M.H. S�rensen. The �� calculus. In M. Hagiya and J. Mitchell, editors, TheoreticalAspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages 516{542.Springer-Verlag, 1994.31. G. L. Steele. Common Lisp: The Language. Digital Press, Bedford, MA, 1984.32. A. Tasistro. Formulation of Martin-L�of's theory of types with explicit substitutions. Master's thesis,Chalmers University, 1993.33. J. Underwood. Aspects of the computational content of proofs. PhD thesis, Cornell University, 1994.

A Proving PSN with the minimal derivation techniqueWe shall prove that ��exp preserves strong normalization using the technique of minimal deriva-tions used in [5] to prove that �� preserves �-SN and in [19] to prove that �s preserves �-SN. First,we backtrack the substitutions operators in the derivations via the following two lemmas.Lemma 26 Let a; c; d 2 T e and C a context, such that a !��� Cfc[x := d]g, then one of thefollowing must hold:1. a = Cf(�x:c)dg2. 9b 2 T e and a context C0 such that a = C0f(�x:c)bg, d = �w:y(wb) and C 0f�y:f gg = C.3. 9c0; d0 2 T e and a context C 0 such that a = C0fc0[x := d0]g with d0 = d or d0 !��� d.Proof: By induction on a. 2Lemma 27 Let a1 !��� : : : !��� an !��� an+1 = Cfc[x := d]g, then there exists c0; d0 2 T eand a context C 0 such that one of the following must hold:1. a1 = C0fc0[x := d0]g with d0 !!��� d.2. 9k � n such that ak = C0f(�x:c0)d0g and ak+1 = C0fc0[x := d0]g with d0 !!��� d.3. 9k � n with ak = C0f(�x:c0)d0g, ak+1 = C0f�y:c0[x := �w:y(wd0)]g and �w:y(wd0)!!��� d.Proof: Induction on the length of the derivation using the previous lemma. 2In order to apply the minimal derivation technique we de�ne internal and external reductions.This has been done either by de�ning �rst internal and external positions as in [5] or by giving adirect inductive de�nition as in [19]. We choose here another equivalent but simpler presentation:De�nition 28 A reduction �! over T e is internal, denoted a int�! b, if there exists a context Csuch that a = Cfc[x := d]g, d �! d0 and b = Cfc[x := d0]g.A reduction over T e is external, denoted a ext�! b, when it is not internal.The following is a slight but essential variation of Lemma 7 cases 5 and 6. A step of external �and � is studied and the lemma ensures that we have exactly one step of �- or �-reduction betweenthe corresponding �-normal forms.Lemma 29 Let a; b 2 T e.1. If a ext�!� b then �(a) !� �(b) .2. If a ext�!� b then �(a) !� �(b) .Proof: Induction on a in a similar fashion to cases 5 and 6 of Lemma 7. Now, the point is that inthe case a = c[x := d], the reduction cannot take place within d because it is external, and this isthe only case that forced us to consider the reexive-transitive closure in Lemma 7. 2The following lemma plays a fundamental role in Lemma 31 and hence in the GeneralisedPreservation theorem. Its proof follows the lines of the Commutation Lemma given in [19].Lemma 30 (Commutation Lemma) Let a; b 2 T e such that �(a) 2 SN(��) and �(a) = �(b).If a int�!��� : ext�!� b then a ext�!+� : int�!�!���b .Proof: By a careful induction on a, analysing the positions of the redexes. 2Lemma 31 Let a 2 T e such that for every subterm b of a, �(b) 2 SN(��). For every in�nite���-derivation a!��� b1 !��� � � � !��� bn !��� � � �, there exists N such that for i � N all thereductions bi !�� bi+1 are internal.

Proof: The proof follows the lines of Lemma 16 in [19] and requires the Commutation Lemma. 2In order to prove the Generalised Preservation Theorem we need two de�nitions.De�nition 32 An in�nite ���-derivation D : a1 !��� � � � !��� an !��� � � � is minimal iffor every step of reduction ai !��� ai+1, every other derivation which contracts a redex that is aproper subterm of the redex contracted in D is �nite.The intuitive idea of a minimal derivation is that if one rewrites at least one of its steps withina subterm of the actual redex, then an in�nite derivation is impossible.De�nition 33 Skeletons are de�ned by the following syntax:SkeletonsK ::= V jK K j �V:K j�V:K jK[V := 2] where 2 is a fresh symbolThe skeleton of a term a is de�ned by induction as follows:Sk(x) = x Sk(a b) = Sk(a)Sk(b) Sk(a[x := b]) = Sk(a)[x := 2]Sk(�x:a) = �x:Sk(a) Sk(�x:a) = �x:Sk(a)Remark 34 If a int�!���b then Sk(a) = Sk(b).Theorem 35 (Generalised Preservation of strong normalisation)Let a 2 T e, if every subterm b of a satis�es �(b) 2 SN(��), then a 2 SN(���).Proof: Let us assume the existence of a 2 T e with minimal length such that for every subterm bof a, �(b) 2 SN(��) and a 62 SN(���). Let us consider a minimal in�nite derivation D : a !���a1 !��� � � � !��� an !��� � � � . By lemma 31, there exists N , such that for i � N , ai !��� ai+1is internal. Therefore, by the previous remark, Sk(ai) = Sk(ai+1) for i � N . As there are only a�nite number of closures in Sk(aN) and as the reductions within these closures are independent,an in�nite subderivation of D must take place within the same and unique closure in Sk(aN) and,evidently, this subderivation is also minimal. Let us call it D0 and let C be the context such thataN = Cfc[x := d]g and c[x := d] is the closure where D0 takes place. Therefore we have:D0 : aN = Cfc[x := d]g int�!���Cfc[x := d1]g int�!�!���Cfc[x := dn]g int�!��� � � �Lemma 27 gives rise to three possibilities:1. a = C0fc0[x := d0]g with d0 !!��� d.2. 9I � N such that aI = C 0f(�x:c0)d0g !��� aI+1 = C0fc0[x := d0]g and d0 !!��� d.3. 9I � N : aI = C0f(�x:c0)d0g !��� aI+1 = C0f�y:c0[x := �w:y(wd0)]g and �w:y(wd0) !!���d.In the �rst case, we have an in�nite derivation d0 !!��� d !��� d1 !!��� : : :, and since d0 is asubterm of a, for every subterm c of d0, �(c) 2 SN(��) as well. This contradicts the fact that awas chosen with minimal length.In the second case, let us consider the following derivation D00:a!!��� aI = C0f(�x:c0)d0g !!��� C0f(�x:c0)dg !��� C 0[(�x:c0)d1]!!��� C0f(�x:c0)dng ! � � �In the third case, since �w:y(wd0)!!��� d, necessarily d = �w:y(wb) with d0 !!��� b. Furthermore,since d!!+��� di, necessarily di = �w:y(wbi) with b!!+��� bi. Consider D000:a!!��� aI = C0f(�x:c0)d0g !!��� C0f(�x:c0)bg !��� C0[(�x:c0)b1]!!��� C0f(�x:c0)bng ! � � �In D00 (resp. D000) the redex in aI is within d0, a proper subterm of (�x:c0)d0 (resp. (�x:c0)d0),whereas in D the redex in aI is (�x:c0)d0 (resp. (�x:c0)d0). This contradicts minimality of D. 2This article was processed using the LATEX macro package with LLNCS style

