
E�ciency of �-calculi with explicit substitutions�Fairouz Kamareddine and Alejandro R��os yAugust 30, 1996AbstractWe introduce a criterion of e�ciency to simulate �-reduction in calculi of explicitsubstitutions and we apply it to several calculi: ��, ��*, ��, �s, �t and �u. The latteris presented here for the �rst time and may be considered as an e�cient variant of �s.The results of this paper imply that calculi �a la �s are usually more e�cient at simulating�-reduction than calculi in the ��-style. In fact, we prove that �t is more e�cient than�� and that �u is more e�cient than ��, ��* and �s. We also give counterexamples toshow that all other comparisons are impossible.1 IntroductionThe classical �-calculus (cf. [2]) deals with substitution in an implicit way. This means thatthe computations to perform substitution are usually described with operators which do notbelong to the language of the �-calculus. There has however been an interest in formalisingsubstitution explicitly in order to provide a theoretical framework for the implementationof functional programming languages. Several calculi including new operators to denotesubstitution and new rules to handle these operators have been proposed. Amongst thesecalculi we mention C��� (cf. [6]); the calculi of categorical combinators (cf. [4]); ��, ��*,��SP (cf. [1, 5, 14]) referred to as the ��-family; '�BLT (cf. [7]); �� (cf. [3]) and �� (cf.[13]) which are descendants of the ��-family; �s (cf. [8]), �se (cf. [11]) and �t (cf. [10]).This article will focus on ��, ��*, ��, �s, �t and �u which is an e�cient version of �spresented here for the �rst time. All these calculi are rewriting systems on a set of terms thatcontain the classical terms of the �-calculus (pure terms). All of them possess a rule to start�-reduction (the only rule of the �-calculus) and a set of rules to compute the substitutiongenerated by this starting rule.Since calculi with explicit substitutions are intended to extend the classical �-calculus, itis expected that �-reduction could be recovered in some way within these calculi, for instance,if �� is an explicit substitution calculus, we may have for pure terms a; b:1. one step simulation: if a!� b then a!!�� b.2. big step simulation: if a!!� b and b is in �-normal form then a!!�� b.The calculi ��, ��*, ��, �s, �t, �u have the property of one step simulation and weconcentrate in this paper on the e�ciency of this simulation which implies the big step one,�This work was carried out under EPSRC grant GR/K25014.yDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,Scotland, fax: +44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk1



leaving the study of the e�ciency of the latter for future work. Our criterion of e�ciency isessentially the following: we say that the calculus ��1 is more e�cient than the calculus ��2if for every simulation of a classical �-step in ��2 there is a shorter simulation in ��1.There are reasons why we do not consider the other calculi. For example, �� (the onlycalculus that) simulates just a big step �-reduction (and hence it does not make sense tostudy its e�ciency in our sense), whereas �se, '�BLT and ��SP are less interesting becausethey are less behaved calculi of explicit substitutions.In section 2 we introduce the notation, recall the calculi, present the �u-calculus and givethe formal statement of the criterion of e�ciency to simulate �-reduction.In section 3 we use our criterion to compare several of the above mentioned calculi. Weconclude that �t is more e�cient than ��, and that �u is more e�cient than �s, �� and ��*.In section 4 we give counterexamples to show the calculi that are incomparable accordingto our criterion, namely: �t cannot be compared with �u, �s, �� and ��*; �u cannot becompared with �� and �t; �s cannot be compared with �t, ��, �� and ��*. We show alsothat, surprisingly, no comparison is possible between any two calculi in the ��-style.We conclude with a summary of the results obtained.2 PreliminariesWe introduce the notation we shall use concerning rewriting, recall the essential properties ofreduction systems, present the various calculi that will be the subject of our study of e�ciencyand introduce the criterion of comparison.De�nition 1 Let A be a set and R a binary relation on A , i.e. a subset of A � A . Wedenote the fact (a; b) 2 R by a !R b or a ! b when the context is clear enough. Wecall reduction this relation and reduction system, the pair (A;R) . We denote with =!Rthe reexive closure of R , with !!R or just !! the reexive and transitive closure of Rand with !!+R or just !!+ the transitive closure of R . When a !! b we say there existsa derivation from a to b . By a !!n b, we mean that the derivation consists of n steps ofreduction and call n the length of the derivation.De�nition 2 Let R be a reduction on A . We de�ne (local) conuence or (W)CR ((weakly)Church Rosser) as follows:1. R is WCR when 8a; b; c 2 A 9d 2 A ((a ! b ^ a ! c)) (b !! d ^ c !! d)).2. R is CR when 8a; b; c 2 A 9d 2 A ((a !! b ^ a !! c)) (b !! d ^ c !! d)).De�nition 3 Let R be a reduction on A . We say that a 2 A is an R-normal form (R-nffor short) if there exists no b 2 A such that a ! b and we say that b has a normal form ifthere exists a nf a such that b!! a . R is strongly normalising or SN if there is no in�nitesequence (ai)i�0 in A such that ai ! ai+1 for all i � 0 .Remark 1 Conuence of R guarantees unicity of R-normal forms and SN ensures theirexistence. When there exists a unique R-normal form of a term a , it is denoted by R(a) .2.1 Calculi �a la ��In this section, we introduce the ��-calculi (for � 2 f�; �DB; �*; �g) which work on 2-sortedterms: (proper) terms and substitutions. The ��-calculus was introduced in [1] and the version2



presented there uses only the de Bruijn index 1 and the other de Bruijn indices are coded.We introduce here another version, denoted ��DB, which uses all the de Bruijn indices andhence is at the same level with the other calculi studied in this paper. We introduce ��DBbecause it could be argued that the coding of the de Bruijn indices could change the statusof �� with respect to e�ciency results. However, we show that �� and ��DB have the samebehaviour as far as comparison of e�ciency with the other calculi studied here is concerned.The ��*-calculus is a variation of the ��-calculus that is conuent on open terms (terms withvariables of sort term and substitution). As all the calculi in the ��-family were shown in [12]not to possess the Preservation of Strong Normalisation property (PSN), the ��-calculus (cf.[3]) removes the composition of substitutions to guarantee PSN.For every �, we use a; b; c; : : : to range over the set of terms ��t, and s; t; : : : to range overthe set of substitutions ��s. We use �� to denote the set of rules of the ��-calculus (whichcontains a rule (Beta)) and take the �-calculus to be the calculus whose rules are ���f(Beta)g.The ��-calculus is the reduction system (��;!��), where !�� is the least compatible (withthe corresponding operators) reduction on �� generated by the set of rules ��.For every � 2 f�; �*; �g, we have that (see [1, 5, 3]) the �-calculus is SN and the ��-calculusis conuent on closed terms. Moreover, only the ��*-calculus is conuent on open terms andonly the ��-calculus satis�es PSN.De�nition 4 (The ��-calculus) Terms and substitutions of the ��-calculus are given by:��t ::= 1 j ��t��t j ���t j ��t[��s] ��s ::= id j " j ��t � ��s j ��s � ��sFor s 2 ��, sn is de�ned by: s1 = s, sn+1 = s � sn. The index n is coded as 1["n�1].The set of rules �� is given as follows:(Beta) (�a) b �! a [b � id](VarId) 1 [id] �! 1(VarCons) 1 [a � s] �! a(App) (a b)[s] �! (a [s]) (b [s])(Abs) (�a)[s] �! �(a [1 � (s � ")])(Clos) (a [s])[t] �! a [s � t](IdL) id � s �! s(ShiftId) " � id �! "(ShiftCons) " � (a � s) �! s(Map) (a � s) � t �! a [t] � (s � t)(Ass) (s � t) � u �! s � (t � u)De�nition 5 (The ��DB-calculus) The syntax of ��DB is exactly that of the ��-calculusexcept that 1 is replaced by IN. The set, ��DB, of rules of the ��DB-calculus is �� where(VarId) is replaced by a[id] ! a plus the three extra rules: n+ 1[a � s] ! n[s], n["] ! n+ 1and n[" �s]! n+ 1[s].De�nition 6 (The ��*-calculus) Terms and substitutions of the ��*-calculus are given by:��t* ::= IN j��t*��t* j ���t* j ��t*[��s*] ��s* ::= id j " j * (��s*) j��t* ���s* j ��s*���s*For s 2 ��s*, sn is given by: s1 = s, sn+1 = s�sn and *n (s) by: *0 (s)=s, *n+1 (s)=*(*n (s)).The set of rules ��* is given as follows: 3



(Beta) (�a) b �! a [b � id](App) (a b)[s] �! (a [s]) (b [s])(Abs) (�a)[s] �! �(a [* (s)])(Clos) (a [s])[t] �! a [s � t](Varshift1) n ["] �! n+ 1(Varshift2) n [" � s] �! n+ 1 [s](FVarCons) 1 [a � s] �! a(RVarCons) n+ 1 [a � s] �! n [s](FVarLift1) 1 [* (s)] �! 1(FVarLift2) 1 [* (s) � t] �! 1 [t](RVarLift1) n+ 1 [* (s)] �! n[s � "](RVarLift2) n+ 1 [* (s) � t] �! n[s � (" � t)](Map) (a � s) � t �! a [t] � (s � t)(Ass) (s � t) � u �! s � (t � u)(ShiftCons) " � (a � s) �! s(ShiftLift1) " � * (s) �! s � "(ShiftLift2) " � (* (s) � t) �! s � (" � t)(Lift1) * (s)� * (t) �! * (s � t)(Lift2) * (s) � (* (t) � u) �! * (s � t) � u(LiftEnv) * (s) � (a � t) �! a � (s � t)(IdL) id � s �! s(IdR) s � id �! s(LiftId) * (id) �! id(Id) a [id] �! aDe�nition 7 (The ��-calculus) Terms and substitutions of the ��-calculus are given by:��t ::= IN j ��t��t j ���t j ��t[��s] ��s ::=" j * (��s) j ��tFor a 2 ��t, s 2 ��s, *n (s) is given by: *0 (s)=s, *n+1 (s)=*(*n (s)) and a[s]i by: a[s]0=a,a[s]n+1=(a[s]n)[s]. The set of rules �� is given as follows:(Beta) (�a) b �! a [b=](App) (a b)[s] �! (a [s]) (b [s])(Abs) (�a)[s] �! �(a [* (s)])(FVar) 1 [a=] �! a(RVar) n+ 1 [a=] �! n(FVarLift) 1 [* (s)] �! 1(RVarLift) n + 1 [* (s)] �! n [s] ["](VarShift) n ["] �! n+ 12.2 Calculi �a la �sCalculi �a la �s avoid introducing two di�erent sets of entities and insist on remaining close tothe syntax of the �-calculus. Next to � and abstraction, they introduce substitution (�; &) and4



updating ('; �) operators. We shall introduce three such calculi: �s, �t and �u. We let a; b; c;etc. range over the sets of terms �s, �t and �u. A term containing neither substitution norupdating operators is called a pure term. For � 2 fs; t; ug, the ��- and �-calculi are de�nedas in the previous section (take �- or &-generation instead of Beta) from a set of rules �� or �.The �s-calculus was introduced in [8] with the aim of providing a calculus that preservesstrong normalisation and has a conuent extension on open terms [11]. The �t-calculus is avariant of �s that updates partially, as the ��-calculi do. The �u-calculus is introduced herefor the �rst time and is only a slight (yet more e�cient) variation of �s.For � 2 fs; t; ug, we have that (see [8, 10, 9]) the �-calculus is SN, the ��-calculus isconuent on closed terms and satis�es PSN. Moreover, the ��-calculus for � 2 fs; ug has aconuent extension on open terms.De�nition 8 (The �s-calculus) Terms of the �s-calculus are given by:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :and the set of rules �s is given as follows:�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destruction n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! � n+ i� 1 if n > kn if n � kDe�nition 9 (The �t-calculus) Terms of the �t-calculus are given by:�t ::= IN j �t�t j ��t j �t & i�t j �k�t where i � 1 ; k � 0 :For a 2 �t, �ika is given by: �0ka = a, �i+1k (a) = �k(�ik(a)).The set of rules �t is given as follows:&-generation (�a) b �! a &1 b&-�-transition (�a) &ib �! �(a &i+1 �0(b))&-app-transition (a1 a2) &ib �! (a1 &ib) (a2 &ib)&-destruction n &ib �! 8<: n� 1 if n > ib if n = in if n < i�-�-transition �k(�a) �! �(�k+1 a)�-app-transition �k(a1 a2) �! (�k a1) (�k a2)�-destruction �k n �! � n+ 1 if n > kn if n � k5



The main di�erence between �t and �s can be summarized as follows: the �t-calculus gen-erates a partial updating when a substitution is evaluated on an abstraction (i.e. introducesan operator �0 in the &-�-transition rule) whereas the �s-calculus produces a global updatingwhen performing substitutions (i.e. introduces a 'i0 operator in the �-destruction rule, casen = i). The �t-calculus shares this mechanism of partial updatings with the ��-caculi, ��and �� since all of them introduce an updating operator in their (Abs)-rule.De�nition 10 (The �u-calculus) Terms of the �u-calculus are given by:�u ::= IN j �u�u j ��u j �u �j�u j 'ik�u where i � 2; j � 1; k � 0 :and the set of rules �u is given as follows:�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destruction n�ib �! 8>><>>: n� 1 if n > i'i0 b if n = i > 1b if n = i = 1n if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! � n+ i� 1 if n > kn if n � kThe only di�erence between �s and �u is that in the �-destruction rule the case n = i = 1is treated in a more e�cient way by �u, which does not introduce the operator '10 since thecomputation '10(b) will �nally evaluate to b.2.3 The criterionWe give now a formal presentation of the criterion we use to compare the di�erent calculi.De�nition 11 Let a; b 2 � such that a !� b, a simulation of this �-reduction in �� for� 2 f�; �*; �; s; t; ug is a ��-derivation a !r c !!� �(c) = b where r is the rule starting �((Beta) for the calculi in the ��-style and �- or &-generation for the calculi in the �s-style)applied to the same redex as the redex in a !� b. We say that the ��-calculus simulates�-reduction if every �-reduction a!� b has a simulation in ��.The following was shown for each of the calculi we consider (see the relevant articles):Lemma 1 For � 2 f�; �*; �; s; t; ug, �� simulates �-reduction.De�nition 12 Let �1; �2 2 f�; �*; �; s; t; ug. The ��1-calculus is more e�cient (in simulatingone step �-reductions) than the ��2-calculus, denoted ��1 � ��2 if1. for every classical �-reduction a!� b and every ��2-simulation a!!n��2 b there exists a��1-simulation a!!m��1 b such that m � n.2. there exist a classical �-reduction a !� b and a ��1-simulation a !!m��1 b such that forevery ��2-simulation a!!n��2 b we have m < n.It is easy to verify that � is transitive and asymetric.6



3 Establishing e�ciencyIn this section we put the criterion at work. The main idea is to de�ne functions (denotedwith Q) which evaluate the length of the derivations of certain families of terms that containthe contracta of the (Beta)- rules (eg. a[b=] in ��). For �� it is possible to prove that allthese derivations have the same length, whereas for ��* our functions compute just the lengthof the shortest derivation. To de�ne these Q-functions we need to de�ne another functions(denoted with M) which evalute the length of the derivations of updatings. For the scope ofthis section, only the M -functions are needed for �t and �u.3.1 �t is more e�cient than ��We introduce a set of terms �� � �t on which induction will be used to de�ne M t (a functionthat computes the length of derivations of updatings in �t). We are mainly interested in pureterms, which are contained in ��, but the introduction of �� is necessary since it provides astrong induction hypothesis to prove the auxiliary results needed.De�nition 13 �� ::= IN j ���� j ��� j �k�� , where k � 0. The length of terms in �� isde�ned by: L�(n) = 1; L�(ab) = L�(a) + L�(b) + 1; L�(�a) = L�(�ka) = L�(a) + 1 .By induction on a 2 �� we mean induction on L�(a).Remark 2 Let a 2 �� and k � 0, then L�(a) � L�(t(�ka)).Proof: By induction on a. The interesting case is when a = �mb. By IH we haveL�(b) � L�(t(�mb)) and since L�(a) > L�(b), we apply again the IH (now to t(�mb)) toobtain L�(t(�mb)) � L�(t(�k(t(�mb)))) = L�(t(�k(�mb))). Hence, L�(a) � L�(t(�ka)). 2The next remark will be used frequently without explicit mention.Remark 3 If a 2 �� and a!t b then b 2 ��.Proof: Easy induction on a. 2De�nition 14 We de�ne M t : �� ! IN by induction as follows:M t(n)=1 M t(ab)=M t(a)+M t(b)+1 M t(�a)=M t(a)+1 M t(�ka)=M t(t(�ka))+M t(a)Remark that the de�nition is correct thanks to remark 2.Lemma 2 For a 2 ��, every t-derivation of �ka to its t-normal form has length M t(a).Proof: By induction on the weight P (a) used to prove SN for the t-calculus (see [10]). Thebasic case (a = n) is immediate, since all the derivations of �kn to its nf have length 1. Weproceed now by a case analysis. We just treat the case a = bc since the argument is similarfor the other cases.Let us consider a derivation D of �k(bc) to its nf.If the �rst step is internal, say b ! b0, we know by IH (P (b0c) < P (bc)) that everyderivation of �k(b0c) to its nf has length M t(b0c) = M t(b0) +M t(c) + 1. But IH (now appliedto b (P (b) < P (bc)) and b0 (P (b0) < P (bc)) and the fact that �kb! �kb0) also gives M t(b0) =M t(b)�1. Hence M t(b0c)=M t(b)+M t(c)=M t(bc)�1. Therefore, the length of D is M t(bc).If the �rst step is �k(bc) ! �k(b)�k(c), since there are no rules in t which contract anapplication, every derivation of �k(b)�k(c) to its nf, has length (IH applied to b and c)M t(b)+M t(c) = M t(bc)� 1. Therefore, the length of D is again M t(bc). 27



Corollary 1 For a 2 ��, all the t-derivations of �ika to its t-normal form have the samelength, namely (i� 1)M t(t(a)) +M t(a).Proof: Prove �rst by induction on a 2 ��, using Remark 2, that M t(t(a)) = M t(t(�ka)),then use this result to prove, by induction on j � 1 that M t(t(a)) = M t(t(�jka)). Use nowDe�nition 14 and the two previous results to show, by induction on l � 1, that M t(�lk(a)) =lM t(t(a)) + M t(a). Finally, use Lemma 2 and the last result with l = i � 1 to prove thecorollary. Remark that it is in this proof that the hypothesis a 2 �� is essential and hencethe necessity of De�nition 13. 2Now we are going to prove the corresponding results for ��. Since the proofs are analogous,we just state the results.De�nition 15 �" ::= IN j �"�" j ��" j �"[*k (")] , where k � 0. The length of terms in�" is given by: L"(n) = 1 L"(ab) = L"(a) + L"(b) + 1 L"(�a) = L"(a[*k (")]) = L"(a) + 1 .Remark 4 Let a 2 �" and k � 0, then L"(a) � L"(�(a[*k (")])).Remark 5 If a 2 �" and a!� b then b 2 �".De�nition 16 For k � 0, we de�ne M�k : �� ! IN as follows:M�k (n) = ( 2k + 1 if n > k M�k (ab) = M�k (a) +M�k (b) + 1 M�k (�a) = M�k+1(a) + 12n� 1 if n � k M�k (a[*p (")]) = M�k (�(a[*p(")])) +M�p (a)Lemma 3 For a 2 �", all the �-derivations of a[*k (")] to its �-nf have length M�k (a).Proof: By induction on the weight used to show SN for the �-calculus (cf. [3]) and caseanalysis. 2Corollary 2 For a 2 �", all the �-derivations of a[*k (")]i to its �-normal form have thesame length, namely (i� 1)M�k (�(a)) +M�k (a).De�nition 17 Let a; b 2 � and i � 0, we de�ne Q�i (a; b) by induction on a:Q�i (n; b) = 8><>: 2i+ 1 if n > i+ 12n� 1 if n < i+ 1i(1 +M�0 (b)) + 1 if n = i+ 1 Q�i (cd; b) = Q�i (c; b) +Q�i (d; b) + 1Q�i (�c; b) = Q�i+1(c; b) + 1Lemma 4 Let a; b 2 � and i � 0, all the �-derivations of a[*i (b=)] to its �-nf have the samelength, namely Q�i (a; b).Proof: Easy induction on a 2 �. Remark that for a = n there is only one derivation whoselength is easy to compute. When n = i+ 1, use Corollary 2. 2Lemma 5 Let a; b 2 � and i � 0, there exists a derivation of a& i+1(�i0b) to its t-nf whoselength is less than or equal to Q�i (a; b).Proof: By induction on a reducing always at the root. For the case a = i+ 1 use the factthat M�0 (b) �M t(b) (induction on b 2 �) and Corollary 1. 28



Theorem 1 �t is more e�cient than ��.Proof: We prove that for every a 2 � and every ��-derivation a!B b!!m� �(b) there existsn � m such that a!&�gen c!!nt t(c) by induction on a.The interesting case is a = (�d)e !B d[e=] !!m �(d[e=]). By Lemma 4 we know thatm = Q�0(d; e) and Lemma 5 gives a derivation d &1e!!nt t(d &1e) such that n � Q�0(d; e).To check the second condition in De�nition 12 remark that there are an in�nity of casesfor which the inequality is strict. For instance, let us consider the term (�� : : :�n)a withm �'s and n > m > 1. It is easy to check, using the function Q�m�1 de�ned above that3m � 2 reductions are needed to simulate �-reduction in ��, whereas only m + 1 reductionsare su�cient in �t. Remark that for m > n the number of reductions needed in �� is alsostrictly greater than the number needed in �t. 23.2 �u is more e�cient than ��*De�nition 18 For k � 0 and i � 1, we de�ne M*ki : �! IN by induction as follows:M*ki(n) = ( 2n� 1 if n < k + 12(k+ i)� 1 if n � k + 1 M*ki(ab) = M*ki(a) +M*ki(b) + 1M*ki(�a) = M*k+1 i(a) + 1Lemma 6 For a 2 �, every �*-derivation of a[*k ("i)] to its �*-nf has length M*ki(a).Proof: By induction on a controlling all the possible �*-derivations. 2De�nition 19 For k � 0 and i � 1, we de�ne Q*k : �� �! IN by induction as follows:Q*k(n; c) = 8>>><>>>: 2n� 1 if n < k + 1M*0 n�1(c)+n+1 if n = k + 1; k > 01 if n = 1; k = 02k + 3 if n > k + 1 Q*k(ab; c) = Q*k(a; c) +Q*k(b; c) + 1Q*k(�a; c) = Q*k+1(a; c) + 1Lemma 7 If a; b2�, the shortest �*-derivation of a[*k(b�id)] to its �*-nf has length Q*k(a; b).Proof: By induction on a controlling all the possible �*-derivations. 2De�nition 20 For k � 0 and i � 2, we de�ne Mu : �! IN by induction as follows:Mu(n) = 1 Mu(ab) = Mu(a) +Mu(b) + 1 Mu(�a) = Mu(a) + 1Lemma 8 For a 2 �, every u-derivation of 'ika to its u-normal form has length Mu(a).Proof: By induction on a. Remark that every derivation of 'ika must begin with a reductionat the root since a 2 �. 2Lemma 9 For every a; b 2 �, k � 0 there exists a u-derivation of a�k+1b to its u-nf whoselength is less than or equal to Q*k(a; b).Proof: By induction on a. The interesting case is a = k+ 1 and the result follows fromLemmas 6, 8 and the fact Mu(b) �M*0i(b), which is easily proved by induction on b. 2Theorem 2 �u is more e�cient than ��*. 9



Proof: We prove that for every a 2 � and every ��*-derivation a !Beta b !!m�* �*(b) thereexists n � m such that a!��gen c!!nu u(c) by induction on a.The interesting case is a = (�d)e!Beta d[e � id]!!m �*(d[e � id]). By Lemma 7 we knowthat m � Q*0(d; e) and Lemma 9 gives a derivation d �1e!!nu u(d �1e) such that n � Q*0(d; e).Now, to check the second condition in De�nition 12, it is easy to compute to 6 thelength of the shortest simulation in ��* (there are only 2 such simulations) of the �-reduction(��2)1! �2, whereas the only simulation of this reduction in �u has length 4. 23.3 �u is more e�cient than ��In this section we use the functions de�ned in the two previous sections to prove that �u ismore e�cient than ��.Lemma 10 For every a; b 2 �, i � 0 there exists a u-derivation of a�i+1b to its u-nf whoselength is less than or equal to Q�i (a; b).Proof: By induction on a. The interesting case is a = i+ 1 and the result follows fromCorollary 2, Lemma 8 and the fact Mu(b) � i(1 +M�0 (b)), proved by induction on b. 2Theorem 3 �u is more e�cient than ��.Proof: Analogous to the proof of Theorem 2. Just check that the only simulation of (��2)1!�2 in �� has length 5. 23.4 �u is more e�cient than �sThe proof of e�ciency in this section is simpler than the previous ones since �u and �s areclosely related. We need �rst an easy lemma:Lemma 11 For i � 2 and b 2 � every s-derivation of 'i0(b) to its s-nf is also a u-derivation.Proof: Easy induction on b. 2Lemma 12 For every a; b 2 �, i � 1 and s-derivation of a �ib to its s-nf of length m, thereexists an u-derivation of a �ib to its u-nf whose length is less than or equal to m.Proof: By induction on a. The interesting case is i > 1 and a = i. The result followsfrom Lemma 11 which gives a u-derivation of the same length. Remark that we have a strictinequality when i = 1 and a = i. 2Theorem 4 �u is more e�cient than �s.Proof: Show, as in Thm. 2, that for every a 2 � and every �s-derivation a!��gen b!!ms s(b)there exists n � m such that a!��gen b!!nu u(c) by induction on a.To check the second condition, consider the �-reduction (�1)1 ! 1. There is only onesimulation in �s with length 4 and there is only one simulation in �u with length 3. 210



4 Non-comparable calculiTo show that two calculi, say ��1 and ��2 cannot be compared with our criterion it is enoughto �nd two classical �-reductions a!� b and c!� d such that1. There is a shorter simulation a!!��1 b than the shortest simulation a!!��2 b.2. There is a shorter simulation c!!��2 d than the shortest simulation c!!��1 d.If this is the case we say that ��1 and ��2 are incomparable, and we write ��1 6����2.Since �� works in a more \atomized" way (the *-operator of ��* and �� may be de-composed in �� as * (s) = 1 � (s � ") and the =-operator of �� may be decomposed in ��as a= = a � id) it is tempting to assume that ��, even its version with uncoded de Bruijnindices, would be less e�cient than �� and ��*. However this is not the case. As a matter offact there is an in�nite family of terms for which �� performs better than �� and ��*, andfurthermore, for these terms, �� also performs better than �s and �u.The terms we are going to consider are (��(2 2))1n, where an is de�ned by induction onn as a1 = a, an+1 = a an. There is only one �-redex at the root and (��(2 2))1n!� �(2n2n).We study now the simulation of this �-reduction in the di�erent calculi.Lemma 13 There is a ��-derivation of (��(2 2))1n to its ��-nf whose length is n+9 and a��DB-derivation whose length is 2n+ 7.Proof: Here is the derivation in ��:(��(2 2))1n = (��(1["] 1["]))1n! (�(1["] 1["]))[1n � id]! �((1["] 1["])[1 � ((1n � id)� ")])!�((1["] 1["])[1 � (1n["] � (id� "))])!!n�1 �((1["] 1["])[1 � ((1["])n � (id� "))])!�((1["][1�(1["])n�(id�")]) (1["][1�(1["])n�(id�")]))! �((1[" �(1�(1["])n�(id�"))]) (1["][1�(1["])n�(id�")]))!�((1[(1["])n � (id� ")]) (1["][1 � ((1["])n � (id� "))]))! �((1["])n (1["][1 � ((1["])n � (id� "))]))!!3�((1["])n(1["])n) = �(2n2n)Here is the derivation in ��DB:(��(2 2))1n ! (�(2 2))[1n � id]! �((2 2)[1 � ((1n � id)� ")])! �((2 2)[1 � (1n["] � (id� "))])!!n�1�((2 2)[1�((1["])n�(id� "))])!!n �((2 2)[1�(2n�(id� "))])! �((2[1�(2n�(id� "))]) (2[1�(2n�(id� "))]))!�((1[2n � (id� ")]) (2[1 � (2n � (id� "))]))! �(2n (2[1 � (2n � (id� "))]))!!2 �(2n2n) 2Lemma 14 Every ��-derivation of (��(2 2))1n to its ��-nf has length 4n+ 5.Proof: Every derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n=]! �((2 2)[* (1n=)])! �((2[* (1n=)]) (2[* (1n=)]))Now, the two occurrences of 2[* (1n=)] cannot interact since no abstraction will ever appearin the �rst occurrence. Therefore, it is enough to show that every derivation of 2[* (1n=)]has length 2n+1. But this is a consequence of Lemma 4 and the fact that M�0 (1n) = 2n� 1,which is easily shown by induction on n. 2Lemma 15 Every �u-derivation of (��(2 2))1n to its �u-nf has length 4n+ 3.Proof: Every �u-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))�11n ! �((2 2)�21n)! �((2�21n) (2�21n))Now, the two occurrences of 2�21n cannot interact and therefore, it is enough to show thatevery derivation of 2�21n has length 2n. There is only one redex in 2�21n, whose contractiongives '20(1n) and by Lemma 8 every derivation of '20(1n) has length Mu(1n) which is easilycomputable to 2n� 1 by induction on n. 211



Lemma 16 For a 2 �, every s-derivation of 'ika to its s-normal form has length Mu(a).Proof: By induction on a. Identical to the proof of Lemma 8. 2Lemma 17 Every �s-derivation of (��(2 2))1n to its �s-nf has length 4n+ 3.Proof: Analogous to the proof of Lemma 15, using Lemma 16. 2Lemma 18 There is a �t-derivation of (��(2 2))1n to its �t-nf whose length is 2n+ 4.Proof: Here is the derivation in �t: (��(2 2))1n ! (�(2 2))�11n ! �((2 2)&2�0(1n))!!n�1�((2 2)&2(�01)n)!!n �((2 2)&22n)! �((2&22n) (2&22n))!!2 �(2n2n) 2Lemma 19 The shortest ��*-derivation of (��(2 2))1n to its ��*-nf has length 4n+ 7.Proof: Every ��*-derivation of (��(2 2))1n must begin as follows:(��(2 2))1n ! (�(2 2))[1n � id]! �((2 2)[* (1n � id)])! �((2[* (1n� id)]) (2[* (1n � id)]))Now, the two occurrences of 2[* (1n � id)] cannot interact and therefore, it is enough to verifythat the shortest derivation of 2[* (1n� id)] to its ��*-nf has length 2n+2. This is easily doneusing Lemma 7 and the fact that M*01(1n) = 2n� 1, proved by induction on n. 24.1 �u and �t are incomparableLemmas 15 and 18 prove that the reductions (��(2 2))1n! �(2n2n) with n � 1 show �u 6� �t.On the other hand, (���3)1! ��3 shows that �t 6� �u. In fact, it is easy to check thatevery simulation (there are 5) in �t of (���3)1! ��3 has length 6, whereas in �u the uniquesimulation of this �-reduction has length 5.4.2 �u and �� are incomparableLemmas 15 and 13 prove that the reductions (��(2 2))1n ! �(2n2n) with n � 3 show �u 6� ��and �u 6� ��DB.On the other hand, it is immediate to verify that (�2)1 ! 1 has unique simulations in�u, �� and ��DB with respective lengths 2, 4 and 3. Therefore, �� 6� �u and ��DB 6� �u.4.3 �t and �s are incomparableLemmas 17 and 18 prove that the reductions (��(2 2))1n! �(2n2n) with n � 1 show �s 6� �t.On the other hand, (���3)1 ! ��3 shows that �t 6� �s. In fact, as in Section 4.1 it iseasy to check that every simulation of this �-reduction in �s has length 5.4.4 �t and �� are incomparableThe simulation in �t of (�2)1! 1 requires only 2 steps and hence (see Section 4.2) �� 6� �tand ��DB 6� �t.To show �t 6� ��DB, consider the �-reduction at the root of (����4)((�1)(�1)). It ispossible to achieve the simulation in 19 steps in ��DB (let s = ((�1)(�1))�id):(����4)((�1)(�1)) ! (���4)[s]!!3 ���(4[1�((1�((1�(s�"))�"))�")])! ���(3[(1�((1�(s�"))�"))�"])!���(3[1["] � (((1 � (s� "))� ")� ")]) ! ���(2[((1 � (s� "))� ")� "]) !!2 ���(2[1["]["] �(((s� ")� ")� ")]) !12



���(1[((s�")�")�"])!!2 ���(1[s�"3])! ���(1[((�1)(�1))["3]�(id�"3)])! ���(((�1)(�1))["3])!���(((�1)["3])((�1)["3]))!!2 ���((�(1[1�("3 �")])) (�(1[1�("3 �")])))!!2 ���((�1)(�1))We must prove now that no simulation in �t of this �-reduction can be achieved in less than19 steps. To do this we are going to prove a general result about �t. In Section 3.1 we havebegun to study �t in order to compare it with ��. Remark the analogy between Lemma 2and Lemma 3 we aim now to a lemma which should correspond to Lemma 4, i.e. a resultwhich will enable us to calculate the length of the t-derivations of a & ib. Unfortunately, notall the derivations have the same length as for ��. Furthermore, there is no easy way tocompute the length of the shortest derivation as for ��* (see Lemma 7). Hence, it does notseem easy to obtain such a general result. However, the shortest derivation of a & ib can alwaysbe calculated when a does not contain applications (like our example) and we proceed nowto show it. The notions used here were introduced in Section 3.1.De�nition 21 We de�ne N : �� ! IN recursively as follows:N(n) = 0 N(ab) = N(a) +N(b) N(�a) = N(a) N(�ka) = M t(a)Lemma 20 For a 2 ��, every t-derivation of a to its t-nf has length N(a).Proof: By induction on the weight P (b) used to prove SN for the t-calculus and case analysis.The proof is analogous to the proof of Lemma 2. 2De�nition 22 Let �� ::= IN j ��� , i.e. �� is the set of �-terms which do not containapplications. For i � 1, we de�ne Qti : �� � �� ! IN by induction as follows:Qti(n; b) = ( 1 if n 6= iN(b) + 1 if n = i Qti(�a; b) = Qti+1(a; �0b) + 1Lemma 21 For a 2 ��, b 2 �� and i � 1 the shortest derivation of a & ib to its t-nf haslength Qti(a; b).Proof: Analogous to the proof of Lemma 2 using Lemma 20 for the case a = i. 2Now, since our simulation starts as (����4)((�1)(�1))! (���4)&1((�1)(�1)), we use theprevious lemma to conclude that every simulation of the �-reduction at the root has length20. Therefore, �t 6� ��DB.4.5 �t and ��* are incomparableThe simulation in ��* of (�2)1! 1 requires 4 steps and hence (see Section 4.4) ��* 6� �t.To show �t 6� ��* we use the results of the previous subsection and the fact that there isa simulation in ��* of the �-reduction at the root in (����4)((�1)(�1)) whose length is 14.Here it is (we denote again s = ((�1)(�1)) � id):(����4)((�1)(�1)) ! (���4)[s]!!3 ���(4[*3 (s)]!!3 ���(1[s � "3])!���(1[((�1)(�1))["3] � (id� "3)])! ���(((�1)(�1))["3])!���(((�1)["3])((�1)["3]))!!2 ���((�(1[* ("3)])) (�(1[* ("3)])))!!2 ���((�1)(�1))4.6 �s and �� are incomparableLemmas 17 and 13 prove that the reductions (��(2 2))1n! �(2n2n) with n � 3 show �s 6� ��and �s 6� ��DB.On the other hand, it is immediate to verify that (�2)1 ! 1 has a unique simulation in�s of length 2 and hence (see Section 4.2) �� 6� �s and ��DB 6� �s.13



4.7 �s and ��* are incomparableIt is immediate to verify that (�1)1! 1 has unique simulations in �s and ��* of respectivelengths 3 and 2. Therefore, �s 6� ��*.On the other hand, the simulations in �s and ��* of (�2)1! 1 (see Sections 4.5 and 4.6)show that ��* 6� �s.4.8 �s and �� are incomparableThe reduction (��2)1! �2 has unique simulations in �s and �� of respective lengths 4 and5. Therefore, �� 6� �s.On the other hand, (�1)1! 1 has a unique simulation in �� of length 2 and hence (seeSection 4.7) �s 6� ��.4.9 �� and �� are incomparableLemmas 14 and 13 prove that the reductions (��(2 2))1n! �(2n2n) with n � 2 show �� 6� ��and �� 6� ��DB.On the other hand, it is easy to verify that the shortest simulation in �� (there are only9), resp. ��DB (there are only 5), of (��2)1 ! �2 has length 7, resp. 6, and hence (seeSection 4.8) �� 6� �� and ��DB 6� ��.4.10 �� and ��* are incomparableLemmas 19 and 13 prove that the reductions (��(2 2))1n ! �(2n2n) with n � 1 show��* 6� �� and ��* 6� ��DB.On the other hand, there is a simulation in ��* of (��3)1! �2 of length 7:(��3)1! (�3)[1�id]! �(3[* (1�id)])! �(2[(1�id)�"])! �(2[1["]�(id�")])! �(1[id�"])! �(1["])! �2whereas it is easy to check that every simulation (there are only 14) in �� of this �-reductionhas length 8. Therefore, �� 6� ��*.Unfortunately, the previous example does not work to show ��DB 6� ��*. It is easy to�nd a simulation in ��* of (���3)1! ��3 of length 9. However, in ��DB every simulationof this �-reduction has length at least 11. This can be checked by hand (even if there arethousands of derivations there is a lot of redundancy) or a simple program can do the work.4.11 ��* and �� are incomparableThe shortest simulation (there are only 2) in ��* of (��2)1! �2 has length 6 and hence (seeSection 4.8) ��* 6� ��.On the other hand, there is a ��*-simulation of (����4)(11)! ���(4 4) of length 16:(����4)(1 1) ! (���4)[(1 1) � id]!!3 ���(4[*3 ((1 1) � id)])!!3 ���(1[((1 1) � id)� "3])!���(1[(1 1)["3] � (id� "3)])! ���((1 1)["3])! ���(1["3] 1["3])!!6 ���(4 4)whereas the length of every simulation in �� can be easily evaluated to 17: in fact, everyderivation must start as: (����4)(11)! (���4)[(1 1)=] and then apply Lemma 4 with i = 0.Therefore, �� 6� ��*. 14
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