Efficiency of A-calculi with explicit substitutions®

Fairouz Kamareddine and Alejandro Rios T

August 30, 1996

Abstract

We introduce a criterion of efficiency to simulate [-reduction in calculi of explicit
substitutions and we apply it to several calculi: Ao, Aoy, Av, As, At and Au. The latter
is presented here for the first time and may be considered as an efficient variant of As.
The results of this paper imply that calculi a4 la As are usually more efficient at simulating
F-reduction than calculi in the Ao-style. In fact, we prove that At is more efficient than
Av and that Au is more efficient than Av, Aoy and As. We also give counterexamples to
show that all other comparisons are impossible.

1 Introduction

The classical A-calculus (cf. [2]) deals with substitution in an implicit way. This means that
the computations to perform substitution are usually described with operators which do not
belong to the language of the A-calculus. There has however been an interest in formalising
substitution explicitly in order to provide a theoretical framework for the implementation
of functional programming languages. Several calculi including new operators to denote
substitution and new rules to handle these operators have been proposed. Amongst these
calculi we mention C'Aé¢ (cf. [6]); the calculi of categorical combinators (cf. [4]); Ao, Aoy,
Aosp (cf. [1, 5, 14]) referred to as the Ao-family; oo BLT (cf. [7]); Av (cf. [3]) and AC (cf.
[13]) which are descendants of the Ao-family; As (cf. [8]), As. (cf. [11]) and At (cf. [10]).

This article will focus on Ao, Aoy, Av, As, At and Au which is an efficient version of As
presented here for the first time. All these calculi are rewriting systems on a set of terms that
contain the classical terms of the A-calculus (pure terms). All of them possess a rule to start
f-reduction (the only rule of the A-calculus) and a set of rules to compute the substitution
generated by this starting rule.

Since calculi with explicit substitutions are intended to extend the classical A-calculus, it
is expected that G-reduction could be recovered in some way within these calculi, for instance,
if A¢ is an explicit substitution calculus, we may have for pure terms a, b:

1. one step simulation: if a —5 b then a —)¢ b.
2. big step simulation: if a —5 b and b is in B-normal form then a —» ¢ b.

The calculi Ao, Aoy, Av, As, At, Au have the property of one step simulation and we
concentrate in this paper on the efliciency of this simulation which implies the big step one,

*This work was carried out under EPSRC grant GR/K25014.
"Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ,
Scotland, fax: 4+44 41 330 4913, email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.uk

leaving the study of the efficiency of the latter for future work. Our criterion of efficiency is
essentially the following: we say that the calculus A&y is more efficient than the calculus A&,
if for every simulation of a classical g-step in A&; there is a shorter simulation in A&;.

There are reasons why we do not consider the other calculi. For example, A((the only
calculus that) simulates just a big step f-reduction (and hence it does not make sense to
study its efficiency in our sense), whereas As., o BLT and Aogp are less interesting because
they are less behaved calculi of explicit substitutions.

In section 2 we introduce the notation, recall the calculi, present the Au-calculus and give
the formal statement of the criterion of efficiency to simulate f-reduction.

In section 3 we use our criterion to compare several of the above mentioned calculi. We
conclude that At is more efficient than Av, and that Au is more efficient than As, Av and Aoy,

In section 4 we give counterexamples to show the calculi that are incomparable according
to our criterion, namely: At cannot be compared with Au, As, Ao and Aoy,; Au cannot be
compared with Ao and Af; As cannot be compared with Af, Av, Ao and Ao,. We show also
that, surprisingly, no comparison is possible between any two calculi in the Ao-style.

We conclude with a summary of the results obtained.

2 Preliminaries

We introduce the notation we shall use concerning rewriting, recall the essential properties of
reduction systems, present the various calculi that will be the subject of our study of efficiency
and introduce the criterion of comparison.

Definition 1 lLet A be a set and R a binary relation on A, i.e. a subset of A x A. We
denote the fact (a,b) € R by a —p b or a — b when the context is clear enough. We
call reduction this relation and reduction system, the pair (A, R). We denote with =g
the reflexive closure of R, with —»r or just —» the reflexive and transitive closure of R
and with —»}S or just —st the transitive closure of R. When a — b we say there exists
a derivation from a to b. By a —" b, we mean that the derivation consists of n steps of
reduction and call n the length of the derivation.

Definition 2 Let R be a reduction on A. We define (local) confluence or (W)CR ((weakly)
Church Rosser) as follows:

1. R is WCR whenVa,b,ce A IddeA(la - bANa—c)=(b—»dANc—d).

2. R is CR whenVa,b,ce A I3decA((a »bANa—»c)=(b—»dANc—»d).

Definition 3 Let R be a reduction on A. We say that a € A is an R-normal form (R-nf
for short) if there exists no b € A such that a — b and we say that b has a normal form if
there exists a nf a such that b — a. R is strongly normalising or SN if there is no infinite
sequence (a;);~q in A such that a; — a;41 for all ¢ > 0.

Remark 1 Confluence of R guarantees unicily of R-normal forms and SN ensures their
existence. When there exists a unique R-normal form of a term a, it is denoted by R(a).

2.1 Calculi ala \o

In this section, we introduce the Aé-calculi (for £ € {o,0pB, 04, v}) which work on 2-sorted
terms: (proper) terms and substitutions. The Ao-calculus was introduced in [1] and the version

presented there uses only the de Bruijn index 1 and the other de Bruijn indices are coded.
We introduce here another version, denoted Aopp, which uses all the de Bruijn indices and
hence is at the same level with the other calculi studied in this paper. We introduce Aopp
because it could be argued that the coding of the de Bruijn indices could change the status
of Ao with respect to efficiency results. However, we show that Ae and Aopp have the same
behaviour as far as comparison of efficiency with the other calculi studied here is concerned.
The Aoy-calculus is a variation of the Ao-calculus that is confluent on open terms (terms with
variables of sort term and substitution). As all the calculi in the Ao-family were shown in [12]
not to possess the Preservation of Strong Normalisation property (PSN), the Av-calculus (cf.
[3]) removes the composition of substitutions to guarantee PSN.

For every &, we use a,b,c, ... to range over the set of terms A¢', and s,t,... to range over
the set of substitutions A*. We use A to denote the set of rules of the Aé-calculus (which
contains a rule (Beta)) and take the &-calculus to be the calculus whose rules are A\{—{(Beta)}.
The Aé-calculus is the reduction system (A, —\¢), where —\¢ is the least compatible (with
the corresponding operators) reduction on A€ generated by the set of rules A&.

For every € € {0, 04, v}, we have that (see [1, 5, 3]) the {-calculus is SN and the A¢-calculus
is confluent on closed terms. Moreover, only the Aoy-calculus is confluent on open terms and
only the Av-calculus satisfies PSN.

Definition 4 (The Ao-calculus) Terms and substitutions of the Ao-calculus are given by:
Act =1] Ad'Ac’ | AAo! | Ac'[Ac?] Ac® ==id | T | Aot -Ao® | Ao® o Ac?®

For s € Ao, " is defined by: s = s, s"T1 = s0s". The index n is coded as 1[1"~1].

The set of rules Ao is given as follows:

(Beta) (Aa)b — alb-id]
(Varld) 1[id] — 1
(VarCons) 1la-s] — a

(App) @l — (als) (bls)
(Abs) (Aa)[s] — Ala[t-(so1)])
(Clos) (a[s])[t] — alsof]
(1dL) idos — s

(Shiftld) toid — 7
(ShiftCons) to(a-s) —

(Map) (a-s)ot — aft]-(sot)
(Ass) (sot)you — so(tou)

Definition 5 (The Aopp-calculus) The syntax of Aopp is exactly that of the \o-calculus
except that 1 is replaced by IN. The set, Aoppg, of rules of the Aopp-calculus is Ao where
(Varld) is replaced by a[id] — a plus the three extra rules: n+ 1[a - s] — n[s], n[t] > n+1
and n[t os] = n+ 1[s].

Definition 6 (The Ao,-calculus) Terms and substitutions of the Aoy-calculus are given by:

Aol == IN| Aot Aol | Ao | Aol[Ac?] Aop w=id| 1| ft (Aoj) | Aok-Aol | AoioAa;
For s € Aas, s" is given by: s' = s, s"t1 = s05™ and " (s) by: 10 (s)=s, 1" (s) = (1" (s)).
The set of rules Aoy, is given as follows:

(Beta) (Aa) b
(App) (ab)ls]
(Abs) (als]
(Clos) ()1
(Varshift1) n[1]
(Varshift2) n[f o s]
(FVarCons) 1[a - s]
(RVarCons) n+1fa- s
(FVarLifti) 1 (s)]
(FVarLift2) 1[fr(s) o]
(RVarLift1) n+ 1[1(s)]
(RVarLift2) n+ 1[f(s) o]
(Map) (a-s)ot
(Ass) (sot)ou
(ShiftCons) to(a-s)
(ShiftLift1) T ot (s)
(ShiftLift2) to(fr(s)ot)
(Lift1) H(s)o 1)
L)) o (D) ou)
(LiftEnv) f1(s) o (a-t)
(1dL) idos
(IdR) soid
(Liftld) 1 (id)
(1d) a [id]

L

Definition 7 (The Av-calculus) Terms and substitutions of the Av-calculus are given by:
Avt = IN | AvlAvt | AA0! | Av![Av?]
Fora € Avt, s € Av®, " (s) is given by: §°(s) =5, 17T (8) = (1" (s)) and a[s] by: a[s]°=a,

a[s]" Tt = (a[s]")[s]. The set of rules Av is given as follows:

Av® ==t | (Av®) | Av?

(Beta) (Aa) b
(App) (ab)ls]
(Abs) (als]
(FVar) 1[a/]
(RVar) n+1[a/]
(FVarLift) 1 (s)]
(RVarLift) n—+ 1[{r(s)]
(VarShift) n[1]

A A

Q

[6/]
(a[s]) (& s])
(a[fr(s)])

= B Q >

=]

[s1 (1]

2.2 Calculi a la As

4

Calculi & la As avoid introducing two different sets of entities and insist on remaining close to
the syntax of the A-calculus. Next to A and abstraction, they introduce substitution (¢,<) and

updating (¢,) operators. We shall introduce three such calculi: As, At and Au. We let a, b, ¢,
etc. range over the sets of terms As, At and Au. A term containing neither substitution nor
updating operators is called a pure term. For & € {s,t, u}, the A{- and &-calculi are defined
as in the previous section (take o- or <-generation instead of Beta) from a set of rules A€ or €.

The As-calculus was introduced in [8] with the aim of providing a calculus that preserves
strong normalisation and has a confluent extension on open terms [11]. The At-calculus is a
variant of As that updates partially, as the Ao-calculi do. The Au-calculus is introduced here
for the first time and is only a slight (yet more efficient) variation of As.

For & € {s,t,u}, we have that (see [8, 10, 9]) the &-calculus is SN, the Aé-calculus is
confluent on closed terms and satisfies PSN. Moreover, the A¢-calculus for & € {s,u} has a
confluent extension on open terms.

Definition 8 (The As-calculus) Terms of the As-calculus are given by:

As:=IN | AsAs | AMs | Asc'As | ¢tAs where i>1, k>0.
and the set of rules \s is given as follows:
o-generation Aa)b — aold
o-A-transition (Aa)o'b — A ao'tlh)
o-app-transition (ayaz)otb — (ay o'b) (ag oih)
n—1 if n>z¢
o-destruction no'h — wpb if n=1
n if n<
p-A-transition i (Aa) — /\(QDZH a)
p-app-transition pilaras) — (phar) (oL a2)
p-destruction ¢l n { nti-t il >k
) k n if n<k

At == 1IN | AtAt | AAt | AtG'At | G, AL

Definition 9 (The Mt-calculus) Terms of the At-calculus are given by:

where 1>1, k>0.

For a € At, 0ia is given by: 8%a = a, 0.7 (a) = 6,(0}.(a)).
The set of rules At is given as follows:

¢-generation Aa)b — acld
s-A-transition (Aa)s'h — A(asitOo(b))
s-app-transition (ayas) st — (a15'b) (azs'h)
n—1 if n>1
¢-destruction n¢'h —» b if n=1
n if n<i
f-A-transition Ox(Aa) — A(0k410)
f-app-transition Or(araz) — (O a1) (O az2)
. n+1 if n>k
@-destruction fin { 0 it n<k

The main difference between At and As can be summarized as follows: the At-calculus gen-
erates a partial updating when a substitution is evaluated on an abstraction (i.e. introduces
an operator fy in the ¢-A-transition rule) whereas the As-calculus produces a global updating
when performing substitutions (i.e. introduces a @} operator in the o-destruction rule, case
n = 1). The At-calculus shares this mechanism of partial updatings with the Ao-caculi, A\v
and A(since all of them introduce an updating operator in their (Abs)-rule.

Definition 10 (The Au-calculus) Terms of the Au-calculus are given by:
Auz=IN | AuAu | AMu | Auc/Au | oiAu where i>2, j>1, k> 0.
and the set of rules Au is given as follows:

o-generation Aa)b — aold
o-A-transition (Aa) it — Aaoitlh)
o-app-transition (a1 az) A — (a1 O'ib) (az U'ib)
n—1 if n>i
o-destruction no'b — ZDZ b i Z z z z 1
n if n<
p-A-transition i (Aa) — /\(QDZH a)
p-app-transition gj(araz) — (¢, a1) (g}, az)
p-destruction pin — { 2—1— i-1 i Z z Z

The only difference between As and Aw is that in the o-destruction rule the case n =1 =1
is treated in a more efficient way by Au, which does not introduce the operator ¢} since the
computation o} (b) will finally evaluate to b.

2.3 The criterion

We give now a formal presentation of the criterion we use to compare the different calculi.

Definition 11 Let a,b € A such that a« —5 b, a simulation of this 3-reduction in A for
¢ € {o,04,v,5,t,u} is a A,-derivation a —, ¢ —»¢ &(c) = b where r is the rule starting
((Beta) for the calculi in the Ao-style and o- or s-generation for the calculi in the As-style)
applied to the same redex as the redex in a —g b. We say that the \¢-calculus simulates
B-reduction if every B-reduction a —g b has a simulation in A.

The following was shown for each of the calculi we consider (see the relevant articles):
Lemma 1 For € {o,0,,v,s,t,u}, A simulates 3-reduction.

Definition 12 Let &,& € {0, 04, v, s,t,u}. The A -calculus is more efficient (in simulating
one step g-reductions) than the A;-calculus, denoted \&; < A&; if

1. for every classical 3-reduction a —g b and every Ay-simulation a —*Ne, b there exists a
A& -simulation a —»;”51 b such that m < n.

2. there exist a classical 3-reduction a —g b and a A& -simulation a —Ne, b such that for
every A§z-simulation a —%,, b we have m < n.

It is easy to verify that < is transitive and asymetric.

3 Establishing efficiency

In this section we put the criterion at work. The main idea is to define functions (denoted
with @) which evaluate the length of the derivations of certain families of terms that contain
the contracta of the (Beta)- rules (eg. a[b/] in Av). For Av it is possible to prove that all
these derivations have the same length, whereas for Ao, our functions compute just the length
of the shortest derivation. To define these (Q-functions we need to define another functions
(denoted with M) which evalute the length of the derivations of updatings. For the scope of
this section, only the M-functions are needed for At and Au.

3.1 Mt 1s more efficient than \v

We introduce a set of terms Ag C At on which induction will be used to define M* (a function
that computes the length of derivations of updatings in At). We are mainly interested in pure
terms, which are contained in Ag, but the introduction of Ay is necessary since it provides a
strong induction hypothesis to prove the auxiliary results needed.

Definition 13 Ay := IN | AgAg | Ay | OxAy , where k > 0. The length of terms in Ay is
defined by: Lg(n) =1, Lg(ab) = Lg(a) + Le(b) + 1, Lg(Aa) = Lg(0ra) = Lo(a) + 1.

By induction on a € Ay we mean induction on Lg(a).
Remark 2 Let a € Ag and k > 0, then Lg(a) > Lg(t(0ra)).

Proof: By induction on a. The interesting case is when a = 6,,b. By IH we have
Lg(b) > Lg(t(0,,0)) and since Lg(a) > Lg(b), we apply again the IH (now to ¢(,,b)) to
obtain Lg(t(0,,0)) > Lg(t(0x(t(6,,0)))) = Le(t(0x(6,,0))). Hence, Lg(a) > Ly(t(8ra)). O

The next remark will be used frequently without explicit mention.
Remark 3 Ifa € Ay and a —; b then b € Ag.

Proof: Easy induction on a. a

Definition 14 We define M' : Ay — IN by induction as follows:
Min)=1 MYab)=M"a)+M'(b)+1 M'(Aa)=MY(a)+1 MY Ora)=M"(t(0ra))+M'a)

Remark that the definition is correct thanks to remark 2.
Lemma 2 For a € Ay, every t-derivation of 8xa to its t-normal form has length M (a).

Proof: By induction on the weight P(a) used to prove SN for the t-calculus (see [10]). The
basic case (¢ = n) is immediate, since all the derivations of f;n to its nf have length 1. We
proceed now by a case analysis. We just treat the case a = be since the argument is similar
for the other cases.

Let us consider a derivation D of 8 (bc) to its nf.

If the first step is internal, say b — b/, we know by IH (P(b'c) < P(bc)) that every
derivation of @5 (b'c) to its nf has length M*(b'c) = M*(b') + M*(c) + 1. But IH (now applied
to b (P(b) < P(bc)) and b’ (P(b') < P(bc)) and the fact that 650 — 6;,b) also gives M (V') =
M*(b)—1. Hence M'(b'c)=M"(b)+M"*(c)=M"(bc)—1. Therefore, the length of D is M*(bc).

If the first step is 0 (bc) — 05 (b)0k(c), since there are no rules in ¢ which contract an
application, every derivation of 6 (b)8(c) to its nf, has length (IH applied to b and ¢) M*(b) +
M'(c) = M*(bc) — 1. Therefore, the length of D is again M?(bc). o

Corollary 1 For a € Ay, all the t-derivations of 0};(1 to its t-normal form have the same
length, namely (i — 1)M*(t(a)) + M'(a).

Proof: Prove first by induction on a € Ag, using Remark 2, that M'(t(a)) = M'(t(6a)),
then use this result to prove, by induction on j > 1 that M'(t(a)) = M*(t(6]a)). Use now
Definition 14 and the two previous results to show, by induction on [> 1, that M*(.(a)) =
IM'(t(a)) + M'(a). Finally, use Lemma 2 and the last result with [= ¢ — 1 to prove the
corollary. Remark that it is in this proof that the hypothesis a € Ay is essential and hence
the necessity of Definition 13. a

Now we are going to prove the corresponding results for Av. Since the proofs are analogous,
we just state the results.

Definition 15 At = IN | AtAy | M4 | A" (1)] , where k > 0. The length of terms in
Ay is given by: Ly(n) = 1 Ly(ab) = Ly(a) + L1(b) + 1 Li(Aa) = Li(a[t* (D)]) = Ly(a) + 1.

Remark 4 Let a € Ay and k > 0, then Ly(a) > Ly(v(a[f* (1)]))-
Remark 5 Ifa € Ay and a —, b then b € A4.

Definition 16 For k > 0, we define M} : Ag — IN as follows:
M“(n)—{ 2k+1 if n>k My (ab) = My (a) + Mg (b) +1 My (Aa) = M (a)+1
U -1 i n<k MGl (D)) = MY (o(alf (D)) + M; (a)

Lemma 3 For a € Ay, all the v-derivations of a[* (1)] to its v-nf have length M} (a).

Proof: By induction on the weight used to show SN for the v-calculus (cf. [3]) and case
analysis. a

Corollary 2 For a € Ay, all the v-derivations of a[ft* (1)]* to its v-normal form have the
same length, namely (i — 1)M} (v(a)) + M} (a).

Definition 17 Let a, b € A and i > 0, we define Q7 (a,b) by induction on a:

2011 fn>itl Qv (cd, b) = Q¥ (c,b) + Q¥ (d, b) + 1
Qv(n,b)={ 2n—1 if n<itl g i
i1+ MEB)+1 if n=i+1 Qi (Ac,b) = QY1 (c,b) +1

Lemma 4 Leta, b€ A and i > 0, all the v-derivations of a[* (b/)] to its v-nf have the same
length, namely Q7 (a,b).

Proof: Easy induction on ¢ € A. Remark that for @ = n there is only one derivation whose
length is easy to compute. When n = i+ 1, use Corollary 2. a

Lemma 5 Let a, b € A and ¢ > 0, there exisls a derivation of ag”’l(%b) to its t-nf whose
length is less than or equal to Q¥ (a,b).

Proof: By induction on a reducing always at the root. For the case ¢ = i + 1 use the fact
that MY (b) > M*(b) (induction on b € A) and Corollary 1.]

Theorem 1 At is more efficient than Av.

Proof: We prove that for every a € A and every Av-derivation a —p b —»]" v(b) there exists
n < m such that @ —c_4e, ¢ =7 t(c) by induction on a.

The interesting case is ¢ = (Ad)e —p dle/] =™ wv(d[e/]). By Lemma 4 we know that
m = Qy(d, e) and Lemma 5 gives a derivation dc'e —7 t(ds'e) such that n < QY(d, e).

To check the second condition in Definition 12 remark that there are an infinity of cases
for which the inequality is strict. For instance, let us consider the term (AX...An)a with
m ANsand n > m > 1. It is easy to check, using the function @, _; defined above that
3m — 2 reductions are needed to simulate g-reduction in Av, whereas only m + 1 reductions
are suflicient in Af. Remark that for m > n the number of reductions needed in Av is also
strictly greater than the number needed in At. a

3.2)u is more efficient than Mo,
Definition 18 For k > 0 and ¢ > 1, we define M. : A — IN by induction as follows:
o 2n —1 if n<k+1 M (ab) = MI(a) + M (b)+ 1
My (m) = 2k +49)—1 if n>k+1 MIL(a)= M .(a)+1
z ki = Mpy1y
Lemma 6 For a € A, every oy-derivation of a[{t* (19)] to its oy-nf has length M].(a).

Proof: By induction on a controlling all the possible o,-derivations. a

Definition 19 Fork > 0 and i > 1, we define Qg A X A — IN by induction as follows:

m— 1 if n<k+l
Ql(n,c) = ME,_(e)+n+1 if n=k+1, k>0 Qilab,¢) = Qf(a,¢) + QF(b,c) + 1
R 1 Zf n=1k=0 QF(Aa,e) = Qf, (a,¢) +1
2k +3 if n>k+1

Lemma 7 Ifa,b€A, the shortest a,-derivation of a[{t*(b-id)] to its o4-nf has length Q7 (a,b).
Proof: By induction on a controlling all the possible o,-derivations. a

Definition 20 For k > 0 and i > 2, we define M* : A — IN by induction as follows:
M"(n)=1 M*(ab) = M"(a)+ M*(b)+1 M"(Aa)=M"(a)+1

Lemma 8 Fora € A, every u-derivation of c,o};a to its u-normal form has length M"(a).

Proof: By induction on a. Remark that every derivation of c,o};a must begin with a reduction
at the root since a € A. O

Lemma 9 For every a,b € A, k > 0 there exists a u-derivation of ac*tb to its u-nf whose
length is less than or equal to Q7 (a,b).

Proof: By induction on a. The interesting case is ¢« = k+ 1 and the result follows from
Lemmas 6, 8 and the fact M*(b) < MJ.(b), which is easily proved by induction on b. a

Theorem 2 Au is more efficient than Aoy.

Proof: We prove that for every a € A and every Agy-derivation @ —peta b =5 o4(b) there
exists n < m such that ¢ —,_4, ¢ =7 u(c) by induction on a.
The interesting case is a = (Ad)e —petq dle - id] =™ o4(d[e - id]). By Lemma 7 we know
that m > Q) (d, e) and Lemma 9 gives a derivation d o'e =" u(d o'e) such that n < Qf(d, e).
Now, to check the second condition in Definition 12, it is easy to compute to 6 the
length of the shortest simulation in Ao, (there are only 2 such simulations) of the 3-reduction
(AA2)1 — A2, whereas the only simulation of this reduction in Au has length 4. O

3.3 JAu is more efficient than \v

In this section we use the functions defined in the two previous sections to prove that Au is
more efficient than Av.

Lemma 10 For every a,b € A, i > 0 there exists a u-derivation of ac*t'b to its u-nf whose
length is less than or equal to Q)7 (a,b).

Proof: By induction on a. The interesting case is ¢« = i+ 1 and the result follows from
Corollary 2, Lemma 8 and the fact M*(b) < ¢(1+ M{ (b)), proved by induction on b. O

Theorem 3 Au is more efficient than Av.

Proof: Analogous to the proof of Theorem 2. Just check that the only simulation of (AA2)1 —
A2 in Av has length 5. O

3.4 JAu is more efficient than As

The proof of efficiency in this section is simpler than the previous ones since Au and As are
closely related. We need first an easy lemmas:

Lemma 11 Fori> 2 and b € A every s-derivation of 996(()) to its s-nf is also a u-derivation.
Proof: Easy induction on b. a

Lemma 12 For every a,b € A, i > 1 and s-derivation of a o'b to its s-nf of length m, there
exists an u-derivation of a o'b to its u-nf whose length is less than or equal to m.

Proof: By induction on a. The interesting case is ¢ > 1 and a = i. The result follows
from Lemma 11 which gives a u-derivation of the same length. Remark that we have a strict
inequality when ¢ = 1 and a = 1. a

Theorem 4 Au is more efficient than As.

Proof: Show, asin Thm. 2, that for every a € A and every As-derivation ¢ —,_ge, b —7" 5(b)
there exists n < m such that @ —,_4e, b —, u(c) by induction on a.

To check the second condition, consider the S-reduction (A1)1 — 1. There is only one
simulation in As with length 4 and there is only one simulation in Au with length 3. O

10

4 Non-comparable calculi

To show that two calculi, say A& and A&, cannot be compared with our criterion it is enough
to find two classical 3-reductions @ —5 b and ¢ =3 d such that

1. There is a shorter simulation a —#,¢, b than the shortest simulation a —\¢, b.

2. There is a shorter simulation ¢ —#,¢, d than the shortest simulation ¢ —%,¢, d.

If this is the case we say that A& and A& are incomparable, and we write A& < AE,.

Since Ao works in a more “atomized” way (the f-operator of Ao, and Av may be de-
composed in Ao as f} (s) = 1-(so 1) and the /-operator of Av may be decomposed in Ao
as a/ = a-id) it is tempting to assume that Ao, even its version with uncoded de Bruijn
indices, would be less efficient than Av and Ao,. However this is not the case. As a matter of
fact there is an infinite family of terms for which Ao performs better than Av and Aoy, and
furthermore, for these terms, Ao also performs better than As and Awu.

The terms we are going to consider are (AX(22))1", where a” is defined by induction on
n as al = a, a®! = aa”. There is only one f-redex at the root and (AX(22))1" —5 A(272").
We study now the simulation of this f-reduction in the different calculi.

Lemma 13 There is a Ao-derivation of (AN(22))1" to its Ao-nf whose length is n+9 and a
Aopp-derivation whose length is 2n 4 7.

Proof: Here is the derivation in Ac:

(AA(22))1" = (AA(L[T] L[1])1" — (A(L[1] 1]
A2 2Dt - (2" [1] - (ido 1))]) ="~ M((1
A D)™ @do 1)]) (L[] [2(2[t])™(ido 1)
AL - (ido D)]) (2[1[2 - ((2[1])™ - (ddo
AN A[D)™) = A(2m2")

Here is the derivation in Aoppg:
(AN(22))1" = (A(22))[1" - id] = A((22)[1 - (1" - id)o 1)]) = A((22)[L - (17[1] - (ido 1))]) "1
A((22)[L-((A[t])"-(ido 1))]) =™ A((22)[L- (27 (ido 1))]) — A((2[L-(2"-(ido 1))]) (2[1- (2" (ido 1))])) —
A((2[27 - (ido 1)]) (2[1 - (27 - (ido 1))])) — (2" (2[1 - (2" - (ido 1))])) —»* A(272") O

Lemma 14 FEvery Av-derivation of (AX(22))1" to its Av-nf has length 4n + 5.
)

:j

NI -dd] = AT LD[L - (17 - id)o 1)]) —
JDIL - (([1D)" - (ido 1))]) =

)) = AT o(2-(2[t])™(ido1))]) (1 [1][L-(2[1])" (ldOT)]))—>
ND) = AL (1)L - (([1])" - (éde 1))])) =

[t}

(11

]
(1]

—

Proof: Every derivation of (A\(22)
(AA(22))1" = (A(22))[1"/] = AM(22)[(17 /)]) = AL (17/)]) (21 (17/)])

[
Now, the two occurrences of 2[{} (1"/)] cannot interact since no abstraction will ever appear
in the first occurrence. Therefore, it is enough to show that every derivation of 2[{ (17/)]
has length 2n + 1. But this is a consequence of Lemma 4 and the fact that M} (1") = 2n— 1,
which is easily shown by induction on n. a

1" must begin as follows:

Lemma 15 Every Au-derivation of (AX(22))1" to its Au-nf has length 4n + 3.

Proof: Every Au-derivation of (AA(22))1" must begin as follows:

(AX(22))1" = (A(22))0' 1™ = A((22)0%1™) = A((20717) (20%17))
Now, the two occurrences of 2021" cannot interact and therefore, it is enough to show that
every derivation of 2021” has length 2n. There is only one redex in 2621", whose contraction
gives ©2(1") and by Lemma 8 every derivation of ©2(1") has length M*(1") which is easily
computable to 2n — 1 by induction on n. a

11

Lemma 16 For a € A, every s-derivation of c,o};a to its s-normal form has length M"(a).
Proof: By induction on a. Identical to the proof of Lemma 8. a
Lemma 17 Every As-derivation of (AX(22))1" to its As-nf has length 4n + 3.

Proof: Analogous to the proof of Lemma 15, using Lemma 16. O
Lemma 18 There is a At-derivation of (A(22))1" to its At-nf whose length is 2n + 4.

Proof: Here is the derivation in At: (AA(22))1" — (A(22))0'1™ — A((22)s%05(1")) =1
A(22)s%(Bo1)™) =™ A((22)s22™) — A((26227) (26%2™)) —»2 A(2"27) O

Lemma 19 The shortest Aoy-derivation of (AN(22))1" to its Aoy-nf has length 4n + 7.

Proof: Every Ao,-derivation of (AA(22))1™ must begin as follows:
(AM(22))1" = (A(22))[1"-4d] = A(22)[1r (17 - d)]) = A((2[N (17~ id)]) (2[1r (17 - id)]))

Now, the two occurrences of 2[f} (1" -4d)] cannot interact and therefore, it is enough to verify
that the shortest derivation of 2[{} (1”-4d)] to its Ao,-nf has length 2n+ 2. This is easily done
using Lemma 7 and the fact that MJ, (1") = 2n — 1, proved by induction on n. a

4.1 Au and Mt are incomparable

Lemmas 15 and 18 prove that the reductions (AA(22))1" — A(272") with n > 1 show Au £ At

On the other hand, (AAA3)1 — AA3 shows that At £ Au. In fact, it is easy to check that
every simulation (there are 5) in At of (AAA3)1 — AA3 has length 6, whereas in Au the unique
simulation of this g-reduction has length 5.

4.2)Au and Ao are incomparable

Lemmas 15 and 13 prove that the reductions (AX(22))1" — A(2"2") with n > 3 show Au £ Ao

and Au £ Aoppg.
On the other hand, it is immediate to verify that (A2)1 — 1 has unique simulations in

Au, Ao and Aopp with respective lengths 2, 4 and 3. Therefore, Ao £ Au and Aopp £ Au.

4.3 M and)s are incomparable

Lemmas 17 and 18 prove that the reductions (AA(22))1" — A(272") with n > 1 show As £ At.
On the other hand, (AAA3)1 — AA3 shows that At £ As. In fact, as in Section 4.1 it is
easy to check that every simulation of this S-reduction in As has length 5.

4.4 M and Ao are incomparable

The simulation in At of (A2)1 — 1 requires only 2 steps and hence (see Section 4.2) Ao A At
and Aopp £ At.

To show At £ Aopg, consider the f-reduction at the root of (AAAA4)((
possible to achieve the simulation in 19 steps in Aopp (let s = ((A1)(A1))-id):

(AAAE)(A1)(A1)) = (AMNG)[s] =2 AAA(&[1-((1-((1(s0 1)) T))o 1)]) — AAA(B[(2-((1(—
MG (- (so 1))e Do D) = AMA2[((1-(s0 7))o 1o 1]) =2 AM([L[H[H] - (((so) Te M) —

A)(AL)). Tt is

12

AA(t[((so1)o1)o1]) =2 AMAA(1lso 17]) = AMA(L[((A1) (A1) [17]-(ido 12)]) = AAA(((AL)(A1))[1?]) —
AA(ADIEPDAD D) =2 AMAQ[L-(17 o)) (AQ[L-(12 0 1)]))) =2 AAA((A) (A1)

We must prove now that no simulation in At of this S-reduction can be achieved in less than
19 steps. To do this we are going to prove a general result about Af. In Section 3.1 we have
begun to study At in order to compare it with Av. Remark the analogy between Lemma 2
and Lemma 3 we aim now to a lemma which should correspond to Lemma 4, i.e. a result
which will enable us to calculate the length of the t-derivations of a’b. Unfortunately, not
all the derivations have the same length as for Av. Furthermore, there is no easy way to
compute the length of the shortest derivation as for Ao, (see Lemma 7). Hence, it does not
seem easy to obtain such a general result. However, the shortest derivation of a ¢'b can always
be calculated when a does not contain applications (like our example) and we proceed now
to show it. The notions used here were introduced in Section 3.1.

Definition 21 We define N : Ay — IN recursively as follows:
N@m)=0 N(ab)=N(a)+N(®) N(Aa)=N(a) N(Oa)= M'(a)

Lemma 20 For a € Ag, every t-derivation of a to its t-nf has length N(a).

Proof: By induction on the weight P(b) used to prove SN for the ¢-calculus and case analysis.
The proof is analogous to the proof of Lemma 2. a

Definition 22 Let A~ == IN | AA™, i.e. A~ is the set of A-terms which do not contain
applications. For i > 1, we define Qt : A= x Ag — N by induction as follows:
1 if n#1
t _ t — 0!
Qz (n7 b) { N(b) _I_ 1 Zf n—=1 Qz(Aav b) Qz—l—l(av OOb) —I_ 1
Lemma 21 Fora € A=, b € Ag and i > 1 the shortest derivation of a<'b to its t-nf has
length Q(a,b).

Proof: Analogous to the proof of Lemma 2 using Lemma 20 for the case a = 1. O

Now, since our simulation starts as (AAAA4)((A1)(A1)) — (AAA4)s ((A1)(A1)), we use the
previous lemma to conclude that every simulation of the g-reduction at the root has length
20. Therefore, At £ Aopp.

4.5 M and Mo, are incomparable

The simulation in Aoy of (A2)1 — 1 requires 4 steps and hence (see Section 4.4) Aoy £ At.
To show At £ Ao, we use the results of the previous subsection and the fact that there is

a simulation in Ao, of the G-reduction at the root in (AAAA4)((A1)(A1)) whose length is 14.

Here it is (we denote again s = ((A1)(A1)) - id):

(M) (A1) (A1) = (AAAG)[s] =% ML ()] =3 AMA(t[s 0 1)) —

AA[(A)A)[17] - (ido 12)]) = MA((A) (A))[17]) —

AMADIEDIADIZ]) =2 AN (1)) AL (19)D)) =2 AMAA(A1)(A1))

4.6)s and Ao are incomparable

Lemmas 17 and 13 prove that the reductions (AA(22))1" — A(2"2") with n > 3 show As £ Ao
and As £ Aoppg.

On the other hand, it is immediate to verify that (A2)1 — 1 has a unique simulation in
As of length 2 and hence (see Section 4.2) Ao £ As and Aopp £ As.

13

4.7)s and Ao, are incomparable

It is immediate to verify that (A1)1 — 1 has unique simulations in As and Aoy of respective
lengths 3 and 2. Therefore, As £ Aoy,

On the other hand, the simulations in As and Aoy, of (A2)1 — 1 (see Sections 4.5 and 4.6)
show that Ao, £ As.

4.8)s and \v are incomparable

The reduction (AA2)1 — A2 has unique simulations in As and Av of respective lengths 4 and
5. Therefore, Av £ As.

On the other hand, (A1)1 — 1 has a unique simulation in Av of length 2 and hence (see
Section 4.7) As £ Av.

4.9 Mo and Av are incomparable

Lemmas 14 and 13 prove that the reductions (AX(22))1" — A(2"2") with n > 2 show Av £ Ao
and Av £ Aoppg.

On the other hand, it is easy to verify that the shortest simulation in Ao (there are only
9), resp. Aopp (there are only 5), of (AA2)1 — A2 has length 7, resp. 6, and hence (see
Section 4.8) Ao £ Av and Aopp £ Av.

4.10 Mo and Mo, are incomparable

Lemmas 19 and 13 prove that the reductions (AA(22))1" — A(272") with n > 1 show
Aoy £ Ao and Aoy £ Aopp.

On the other hand, there is a simulation in Aoy, of (AA3)1 — A2 of length 7:

(AX3)1 — (A3)[L4d] — A(3[h (14d)]) = A(2[(Lid)o1]) = A(2[L[t](ido1)]) = A(L[ido1]) = A(1[1]) — A2
whereas it is easy to check that every simulation (there are only 14) in Ao of this S-reduction
has length 8. Therefore, Ao £ Aoy,

Unfortunately, the previous example does not work to show Aopg £ Ag,. It is easy to
find a simulation in Aoy of (AAA3)1 — AA3 of length 9. However, in Aopp every simulation
of this f-reduction has length at least 11. This can be checked by hand (even if there are
thousands of derivations there is a lot of redundancy) or a simple program can do the work.

4.11 Mo, and Mv are incomparable

The shortest simulation (there are only 2) in Aoy, of (AA2)1 — A2 has length 6 and hence (see
Section 4.8) Aoy £ Av.

On the other hand, there is a Aoy-simulation of (AAAA4)(11) — AAA(44) of length 16:
(AAAA4) (L 1) = (AAAD)[(1 1) - id] =3 A& ((1 1) - id)]) =2 AN (L[((1 1) - id)o 7)) —
AA[(2 [17] - (ido 12)]) = AL 1)[17]) = MALT]) =" A (44)
whereas the length of every simulation in Av can be easily evaluated to 17: in fact, every
derivation must start as: (AAAA4)(11) — (AAA4)[(11)/] and then apply Lemma 4 with ¢ = 0.
Therefore, Av £ Aoy,.

14

5

Conclusion

We summarize in the following table the results obtained so far. The table must be entered
from the left, thus the information given, for instance, in position (1,3) is to be read as
Au < As, whereas the information in position (3,1) is As > Au.

Au | M | As | Av | Ao | Aoy
Au || = || < | < || <
AUl | = |4 | < |+ |+
VRN [N [PAN ey [y Ay R
YRR N RN R i 2 R
Ao |l | |4 |# | = | +
Aog || = | |+ |+ |+ | =

References

(1]

[2]
[3]

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional
Programming, 1(4):375-416, 1991.

H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.

7. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit substitutions
which preserves strong normalisation. Journal of Functional Programming, 1995.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pit-

man, 1986. Revised edition : Birkhauser (1993).

P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of
explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.

N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expressions
and segments. Technical Report TH-Report 78-WSK-03, Department of Mathematics, Eindhoven
University of Technology, 1978.

F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. International Journal of
Foundations of Computer Science, 4(3):197-240, 1993.

F. Kamareddine and A. Rios. A A-calculus & la de Bruijn with explicit substitutions. Proceedings
of PLILP’95. Lecture Notes in Computer Science, 982:45-62, 1995.

F. Kamareddine and A. Rios. An efficient calculus of substitutions. Technical report, Glasgow
University, 1996.

F. Kamareddine and A. Rios. Bridging de Bruijn indices and variable names in explicit substitu-
tions calculi. Technical report, Glasgow University, 1996.

F. Kamareddine and A. Rios. The confluence of the As.-calculus via a generalized interpretation
method. Technical report, Glasgow University, 1996.

P.-A. Mellies. Typed A-calculi with explicit substitutions may not terminate in Proceedings of
TLCA’95. Lecture Notes in Computer Science, 902, 1995.

C. A. Munoz Hurtado. Confluence and preservation of strong normalisation in an explicit subs-

titutions calculus. LICS 96, 1996.

A. Rios. Contribution a Uétude des A-calculs avec substitutions explicites. PhD thesis, Université

de Paris 7, 1993.

15

