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Abstract

In Russell’s Ramified Theory of Types RTT, two hierarchical concepts dom-
inate: orders and types. The use of orders has as a consequence that the logic
part of RTT is predicative. The concept of order however, is almost dead
since Ramsey eliminated it from RTT. This is why we find Church’s simple
theory of types (which uses the type concept without the order one) at the
bottom of the Barendregt Cube rather than RTT. Despite the disappearence
of orders which have a strong correlation with predicativity, predicative logic
still plays an influential role in Computer Science. An important example is
the proof checker Nuprl, which is based on Martin-L6f’s Type Theory which
uses type universes. Those type universes, and also degrees of expressions in
AUTOMATH, are closely related to orders. In this paper, we show that orders
have not disappeared from modern logic and computer science, rather, orders
play a crucial role in understanding the hierarchy of modern systems. In order
to achieve our goal, we concentrate on Nuprl.

The novelty of our paper lies in: 1) the revival of Russell’s orders, 2) the
placing of the historical system RTT underlying the famous Principia Mathe-
matica in a context with a modern system of computer mathematics (Nuprl)
and modern type theories (Martin-Lo6f’s type theory and PTSs), and 3) the
presentation of a complex type system (Nuprl) as a simple and compact PTS.

1 Introduction

The Ramified Theory of Types (RTT) was developed by Bertrand Russell [21, 25] in
order to solve the paradoxes that resulted from Frege’s “Grundgesetze der Arith-
metik” [6]. It has a double hierarchy: one of types (which can be seen as an
elementary version of Church’s well-known Simple Theory of Types [2]) and one
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of orders, which can be compared with Kripke’s Hierarchy of Truths, see [13, 11].
The hierarchy of orders is less known, as it became unpopular when Ramsey [19]
and Hilbert and Ackermann [7] showed that one can avoid the paradoxes without
this hierarchy. Furthermore, even though it became widely acknowledged that the
paradoxes can be avoided without the use of orders, we believe that many logicians
are (maybe unconsiously) influenced by the hierarchy of orders when constructing
(non-paradoxical) theories. Moreover, orders can elegantly explain some useful hi-
erarchies. As an example, when Kripke wanted to build a logical theory [13] which
has its own truth predicate (something not straightforward according to Tarski’s
hierarchy of truths [24], in which the truth predicate is not definable), he used a
hierarchy of languages which could elegantly be explained via the notion of orders
as is shown in [11]. Similarly, when Martin-Lof’s impredicative type theory was
shown to suffer from the paradox, he moved to the predicative version in [15] and
has since, built layers of universes that again could be elegantly explained by orders.
Also, orders are closely related to the degree of expression notion of AUTOMATH
[18].

Logic based on the double hierarchy of orders and types is usually called pred-
icative. The difference between predicative and impredicative logic may seem small,
nevertheless, this small difference can have some drastic consequences in fundamen-
tal mathematics. When constructing the real numbers out of the rationals (with
Dedekind-cuts), the Theorem of the Lowest Upper Bound!, is not provable in pred-
icative logic (see [23]). The Theorem of the Lowest Upper Bound is, however, one
of the most fundamental theorems in real analysis.

Many modern type systems are impredicative. For instance, the systems of the
Barendregt cube [1] that have the rule “(0, x)” are all impredicative. Hence, a proof
checker like Coq [5], based on the Calculus of Constructions [4], is itself founded on
impredicative logic.

Nevertheless, mathematics with predicative logic is possible, and from a con-
structive point of view it is even attractive. For instance, the proof checker Nuprl
[3, 10] is based on predicative logic yet many mathematical theories can be devel-
oped using this proof checker (see [9]).

Nuprl’s type theory is related to type theories proposed by Martin-Lof [16],
used as a foundation for constructive mathematics. Nuprl’s logic is related to its
type theory via the well-known propositions-as-types embedding, also known as the
Curry-Howard-de Bruijn isomorphism (see [8]). It is constructive on two points: it
is based on intuitionistic logic (as is the Curry-Howard-de Bruijn isomorphism) and
it is based on predicative logic.

In this paper, we will try to establish the relation between predicative logic
as present in modern type theory (we concentrate on Nuprl because Martin-Lof’s
type theory is one of the richest and most expressive predicative type theories)
and Russell’s Ramified Type Theory RTT. This has many advantages, the most
important of which is the formulation of the informal notion of universe hierarchy
in these modern predicative logics using Russell’s notion of order. There are however
many important bonuses that result from our study:

1. We give the first presentation of the proof checker Nuprl as a PTS. In Section
2 we give a formal description of a part of the type system of Nuprl as a Pure
Type System (PTS) [22]. The systems of the Barendregt cube are examples
of PTSs. Nuprl in PTS style enables us to formalize the concept of order in
Nuprl and to show its correctness. This order classifies types and terms of
Nuprl into their relevant hierarchy.

I This Theorem states that any non-empty set of real numbers with an upper bound has a least
upper bound.



2. We give a formal presentation of RTT. Such a formal presentation is not given
in “Principia” [25]. In Section 3 we present a simplified formalization of RTT,
which is based on a more extensive formalization given in [14].

3. We give the first account of embedding RTT in a relevant modern type theory.
This is done in Section 4, where we present an embedding of RT'T in Nuprl’s
type system.

4. Our study is the first to connect RTT to the modern way of writing type theory
as a PTS. As we present Nuprl within the framework of PTSs in Section 2,
and as we present an embedding of RT'T in Nuprl’s type system in Section 4,
we also obtain a description of RTT in PTS-style.

5. Our study is the first to show that orders in the historical system RTT corre-
spond to orders in a very powerful modern system Nuprl.

6. Finally, our paper places the historical system underlying Principia Mathe-
matica in a context with a modern system of computer mathematics (Nuprl)
and modern type theories (Martin-Lof’s type theory and Pure Type Systems).

2 The Nuprl type system

2a A fragment of Nuprl in PTS-style

We give a description of a part of the type system on which Nuprl is based (see
[9, 3]). We don’t give a full presentation of all of Nuprl’s type constructors, as we
will only need parts of it. The description of the typing rules is given in a natural
deduction style similar to that used in the Barendregt Cube [1], and Pure Type
Systems [22].

Below we assume V to be a set of variables, Z to be the set of integers, and
S = {1, *2,...} a set of sorts. The intuition behind the sort x, is that it represents
the propositions (and, more general, the types) of order < a. *, corresponds to
the Universe of Types U, in [9, 16]. L represents the undefined or a contradiction.
Application and abstraction (A and II) are familiar from PTSs. The remaining
notions represent cartesian products, pairing, and first and second projections.

Definition 2.1 (Terms) The set of terms T is defined by the following abstract
syntax:

Tu=S|V|L|Z|TT|[AV:T.T | OV:T.T | T x T | (T, T) | 71 (T) | m2(T)

We let o, 3,,y,z,... range over V; m,n,... over Z and A,B,M,N,a,b over T.
When 2 does not occur free in B, we write A — B for IIz:A.B. Free and bound
variables are defined as usual. FV(A4) and BV(A) denote the set of free and bound
variables of A. A[z:=B] denotes the term in which all the free occurrences of z in
A have been replaced by B. Syntactic equality of terms is taken modulo renaming
of bound variables. This allows us to assume the following:

Convention 2.2 (Barendregt’s Convention) Names of bound variables differ
from the free ones in a term. Moreover, we use different bound names for different
bound variables.

We take the axioms:

(—3): (Ax:T.A)B —3 A[z:=B]

(—=¢) :m((A,B)) =+ A and m((4, B)) =, B.

We define the reduction relations —3 and —, generated by the above two axioms
respectively (with the usual compatibility rules of course). —»g and —», are the



reflexive transitive closures of —3 and —,. We define moreover =3, and —»g,
in the obvious way and take =g, to be the symmetric closure of —%3,. We define
contexts and some related properties:

Definition 2.3 (Contexts) A context is a finite list z1:A44,...,2,:4,, of declara-
tions z;:A4;. {x1,...,z,} is called the domain of the context. If ', A are contexts
then we write [' C A if all declarations in I' are also in A. We let I'; A range over
contexts.

Definition 2.4 (Derivable statements) A statement I' - A : B is derivable if it
can be deduced by repeated application of the rules below:

FL:*g F o, :#p401  (n € IN)

(Axioms) F 7 Fn:Z (neZ)
T'FA:x, .
(Start) ToAFoA (z is I'-fresh)
'kEM:N PEA:x, .
(Weak) T o AF M N (x is T'-fresh)
'FA:x, z:AF B :x,
T1-f
(IT-form) TF (lz:A.B) : #,
A T,z:AFb:B [+ (Iz:A.B) : %,
I'F (Az:AD) : (IIz:A.B)
T+ M : (Ilz:A.B) TFN:A
(App) L'+ MN : Blz:=N]
(x-form) T'FA:x, I'+B:x,
morm TF(AxDB):#n
(Pairs) 'a:A '-b6:B C'F(AXB): %y,
s TF (a,0): (AxDB)
TFM:(AxB)
Lefi
(Left) TFm(M): A
_ Ik M:(AxB)
h
(Right) TFm(M):B
'FM:A I'-B:x, A =3, B
(Conv) TFM:B
©) T'FA:x,
- FFA:*TL+1

To those familiar with PTSs and/or Nuprl, the above rules are straightforward.
Some remarks are due however:

1. The rule (II-form) may look restrictive. This is not the case however due
to the inclusion rule (C). Rather, it is fair to say that (C) simplifies the
formulation without sacrifying expressivity.

2. A type universe U, of Nuprl is closed under the construction of dependent
cartesian products. We use non-dependent cartesian products (x-form) . We
refrain from introducing dependent cartesian products for two reasons: they
are not needed for the purpose of the paper and they involve many complica-
tions that will obscure our main objectives.

3. The inclusion rule (C) is interesting on its own. We will see below that it
leads to the loss of unicity of types. However, unicity of types is valued in
many PTSs but not in Nuprl or Martin-Lo6f’s type theory. We will in any
case derive a version of unicity of types that is faithful to this idea of a term



having many types in Nuprl. That is, we will derive that if we collapse the
orders, then a term will have only one type.

4. Nuprl itself is implicitly rather than explicitly typed. That is, Nuprl uses
terms of the form Az.B rather than Ax:A.B. There is a huge literature in pro-
gramming language theory and design which discusses the tradeoffs between
both styles. Our reason for the explicitly typed style in Nuprl is due to the
fact that PTSs deal with explicitly typed systems and it is not obvious how
to extend them to the implicitly typed style.

Now we define some notions familiar from PTSs.
Definition 2.5
e ['is called legal if there are A, B such that ' - A : B;
e A is called legal if there are I', B such that ' A: Bor ' F B : A;
e A is called a I'-term if there is B such that ’F A: Bor ' F B : A;

e A is called a I'-type if there is n such that I'+ A : x,,.

We now show some PTS properties of the Nuprl type system. Omitted proofs are
as in [1].

Theorem 2.6 (Church Rosser Theorem for —3 and —,)
1. If A —»3 By and A —»3 B> then there is C' such that By —»3 C and By =3 C.
2. If A—», By and A —», B> then there is C' such that By —», C and By —», C.

PROOF: 2: any orthogonal term rewrite system (hence (T,—,)) is Church Rosser
(see [12]). O

Theorem 2.7 (Church Rosser Theorem for —g3,)

1. If A =3 By and A =, By then 3C such that B1 =, C, and either By =5 C
or By, =C;

2. If A= By and A =%, B> then 3C such that By —, C, and either By =35 C
or By, =C;

3. If A—»p3 B1 and A =, Bs then 3C such that By =, C and By =3 C;
4. —ao has the Church Rosser property.

Proor: 1: induction on the structure of A. 2: use 1. 3: use 2. 4: use 3 and
Theorem 2.6. g

Lemma 2.8 (Free Variable Lemma) Assume z1:A4;,...,2,:A, F B : C. Then
o The xy,...,x, are distinct;
o FV(B)UFV(C) CH{x1,...,zn};
e For each i there is m such that ©1:Ay,...,x; 1:A; 1 F A; @ %, a

Lemma 2.9 (Start Lemma) Assume I' is a legal context. Then I' b L : %,
FZ:x,TFn:Z foranyn € Z, and T' + %,:%,41 for any n > 1. Moreover,
L'k x:C for all x:C € T. a



Lemma 2.10 (Transitivity Lemma) Let I', A be legal contexts such that T+ x :
C for all z:C € A. Then AFA:B=TFA:B.

Lemma 2.11 (Substitution Lemma)
IfT,2:A),AFB:C and '+ D : A then ', A[z:=D] \ B[z:=D] : C[x:=D].

Lemma 2.12 (Thinning Lemma)

Let ') A be legal contexts, T CA. THFA:B=AF A:B.

Lemma 2.13 (Generation Lemma)

1. If T' %y, : C then C =g4 %y for a m > n, and if C # %, then ' = C : %, for
somep > 1.

2. IfI'- L :C then C =g4 *m, for some m > 1, and if C # xp, then ' C : %,
for some p > 1.

3. IfT'+7Z: C then C =5 *m, for somem > 1, and if C Z x,,, then '+ C : %,
for some p > 1.

4. IfT'Fn:C then C =g, Z, and if C £ Z then T+ C : %, for some p > 1.

5. If 'z : C then there is B such that z:B € I', and either B =3, C, or there
are m,n withm < n and B =go *m, C =go *n. If C Z B then I' - C : %, for
some p > 1.

6. If T' + (Ilz:A.B) : C then there is m such that T F A : %, D, 2:AF B : %,
and C =gg %, for an>m. If C # %, then ' - C : %, for some p > 1.

7. If T F (Az:A.D) : C then there are m, B such that T+ (Ilx:A.B) : %, D, x:A F
b: B and C =p, llz:A.B. If C #l2:A.B thenI' - C : %, for some p > 1.

8. IfT'+ AB : C then there are z, P,Q such that '+ A : (Iz:P.QQ), '+ B : P
and either C =g, Q[z:=B)], or there are m,n with m < n and Q[z:=B] =3,
*m and C =go *,,. If C # Q[x:=B] then ' C : %, for some p > 1.

9. IfT' F (A X B) : C then there is m such that ' - A : %, I' F B : %, and
C =p5 *p for an >m. If C # x, then ' C : x, for some p > 1.

10. If T+ (a,b) : C then there are m, A, B such that TF (A X B) : %,,, T'Fa: A,
F'Fb:BandC =, AXB. If CZAXB thenT'\-C : %, for somep > 1.

11. If T F 7;(M) : C then there are Ay, As such that T - M : (A1 x As) and either
C =po A; or there are m,n with m <n and A; =go *m and C =g, *p.

ProorF: Tedious but straightforward induction on the derivation I' - M : C'. We
only show two cases:

(Conversion:) I'F M : C because ' - C : %, ' - M : C' and C =3, C'. We treat
only the case M = AB, the others are similar or easier. With the induction
hypothesis, determine z, P, such that I' v A : (Iz:P.Q), T’ v B : P. If
Q[r:=B] =p, C' then also Q[z:=B] =g, C; if m < n such that Q[z:=B] =g,
*n, and C' =g, *, then also C =g, *,.

(C): T'F M : %441 because I' = M : %;. Notice that, by the induction hypothesis,
the cases M =n and M = Ax:A.b are impossible. We treat the case M = AB;
the other cases are similar or easier. By the induction hypothesis, there are
z,P,Q such that T' - A : (Iz:P.Q), I' F B : P. If %, =g, Q[z:=B] then take
m =k and n = k + 1; if there are m' < n' such that Q[z:=B] =g, *, and
%), =go *n then notice that £k = n’ by the Church Russer Theorem, and take
m=m'andn==Fk+1. O



Corollary 2.14 (Correctness of Types)
IfT'F A: B then there isn > 1 such that '+ B : x,,.

PRrROOF: Induction on I' F A : B with the help of the Generation Lemma and the
Substitution Lemma for the cases A= M N, A = (M) and A = mo(M). O

Theorem 2.15 (Subject Reduction)
IfT-A:B and A —p, A thenT - A" : B.

PROOF: As is usual in the literature, we use induction on I' - A : B to prove
simultaneously

eI'FA:BT —»3I"=I"FA:B;

eI'FA:B,A—-g A =TFA:B. a

Corollary 2.16 (—»3, preserves I'-terms)
If Ais a T'-term and A —g, A' then A' is a I-term.

PROOF: We only prove the case A -3, A'. IfT' - A : B then by Subject Reduction,
'HA:Band A" is a I-term. If I' - B : A then by correctness of types '+ A : %,
for some n and we use Subject Reduction. a

Due to (C), Unicity of Types doesn’t hold for Nuprl. For example, L : %; and
L : %9. A weak version however, is possible. This version collapses the different
levels of *’s into *;:

Definition 2.17 For each term A we define a term |A| as follows:

[ %m | = %1 |Mz:A.B| = Iz:A.|B|
|z == |4 x B| = [A] x |B|
|1 =1 | (4, B) | = (|Al],|Bl)
Z| = Z |1 (M)| = w1 (| M])
|MN]| = [M]|N| |ma (M) = m2 (| M])

[Az:A.b| = Ax:A.|b]|

Theorem 2.18 (Weak Unicity of Types)
IfTFA:By and T+ A : By then |B1| =3, |Ba|.

Proor: Induction on the structure of A. We only treat A = (Az:M.N). By
Lemma 2.13, 3D,, D with B; =g, Illz:M.D;, and I',z:M = N : D;. By the in-
duction hypothesis, |D1| =g |D2|. Hence, |B1| =go |Ilz:M.Dy| = Hz:M.|D1| =g,
Oz:M.|Ds| = |Hx:M.Ds| =3, |Ba|. O

2b  Orders in Nuprl

Correctness of Types makes the following lemma and definition possible:

Lemma 2.19 If A is a I'-term then 3 a I'-term B, An > 1 such thatT' - A : B : x,,.

ProoF: Aisa'-term = 3 -term B with'FA: BorI'FB: A If'F A: B,
then by Correctness of Types I3n > 1 where ' A: B : x,. If ' - B : A then again
by Correctness of Types dn > 1 where I' - A : %,, and hence by Start and Thinning,
DA, kpq1. O

Note that by Corollary 2.16, if A is a I-term then for any A’ where A —»3, A', A’
is a I'-term. There are also A" =g, A where A /g, A’ yet A’ is a [-term. For
example, take A = (Az : [Iz : #1. %1 .xa)b and A" = (\y : *1.by)a. For this reason,
we introduce the following definition:



Definition 2.20 (I'-terms modulo A)
We define [A]r = {A’|A is [-term and A =g, A'}.

Now, we define the order of a term:

Definition 2.21 (Order of a Term)

Assume A is a [-term. We define ordr(A), the order of A in I', as the smallest
natural number a (i.e. @ > 0) for which there are A’ € [A]r and B such that
'FA :B:%gq1.

Let us explain the intuition behind this definition. The order of a term A must be
the smallest natural number n such that the type of A is of type x,11. By (C),
we get that for any m > n, the type of A is also of type *,,. This captures the
notion of orders a la Russell. If A itself is a type and n is the order of of A, then
not only the type of A is of type #,41, but also A —»3, A’ for some A’ of type %,
(see Lemma 2.29). Moreover, *,, can be regarded as the type of types of order < n
(Corollary 2.30) and a term is always of a lower order than its type (Corollary 2.31).
More importantly also, is the fact that a function can never take arguments of a
higher order than itself (Lemma 2.33).

Of course, we want to make sure that any element =g, to A has the same
order as A. For this reason, we defined order as above by finding one A’ in [A]r
which gives us the minimal n in question. Even better, there is such an A’ where
A —» g, A’ rather than only A =g, A’. The following lemma shows this:

Lemma 2.22 Let A be a I'-term and ordr (A) = a. The following holds:
1. If A" € [A]r then ordr(A) = ordr(A').
2. There are A" and B such that T - A" : B : %411 and A —»g, A'.

PROOF: 1: easy. 2: by definition of ordr(A4), 3A"” =g, A and B where I' F A" :
B : x,41. By Church Rosser, A, A” have a common reduct, say A’. By Subject
Reduction, ' A" : B : *441. ]

Corollary 2.23
For a T-term A in Bo-normal form and ordr(A) = a, 3B where TH A : B : %441.

PROOF: Determine, with Lemma 2.22, A" and B such that A -3, A' and ' F A :
B :x4,11. As A is in normal form, A' = A. O

In what follows, we prove some elementary properties of ordp(A). The first such
property states that the order of a term does not change if the context is expanded:

Lemma 2.24 (Orders are invariant under context expansion)

IfT'FA:B and ', z:C is legal, then ordr(A) = ordr ..c(4).

PROOF: Let a = ordr 4.c(A). (>) By Thinning, - A" : P = T',z:C + A’ : Pforall
A" =g, Aand P,soordr(A4) > a. (<)3A"' =g, Aand PwithT',x:C - A" : P : %,4;.
By Lemma 2.22, assume A —»3, A’. By Lemma 2.11, I' b A'[z:=C] : Plz:=C] :
*g+1. As FV(A') C Fv(4) C dom(I"), = ¢ Fv(A'). Hence A' = A'[z:=C], so
I'F A" : Plz:=C] : %441 and ordr(A4) < ordr ..c(4). ]

Corollary 2.25 If A is a [-term and A D T is legal then orda(A) = ordp(A4).

The order of a term does not increase under substitution:

Lemma 2.26 (Substitution does not lead to order increase)
IfT,2:A)AFB:C and '+ D : A then ordr z.a,a(B) > ordr ale:—p)(Blz:=D]).



Proor: I'' = I'w:A,A; T" = I A[z:=D]; b = ordr/(B). 3IP,B' =3, B s.t.
Ik B': P:%4q. By Lemma 2.11 I''  B'[z:=D)] : P[z:=D] : %p41. Blx:=D] =3,
B'[z:=D], so b > ordypn (B[z:=D]). a

Note here that ordr ..a,a(B) = ordp a[e:=p)(B[z:=D]) does not hold in general:
take I' = yix;. Then I',z:%y F %y and I’ F yixy, and (by Lemma 2.32 below)
ordr ¢:+, () = 2 and ordr (z[z:=y]) = ordr(y) = 1.

2c¢ Evaluating the order of a Nuprl term

In this subsection, we attempt to provide a procedure that evaluates the order of
almost any Nuprl term. We use the word almost because we are able to say how
the order of almost all complex terms (like A x B) is evaluated in term of the orders
of the components (A and B). The only case that fails is that of an application.
We cannot evaluate the order of AB precisely in terms of the orders of A and B.
Rather, in the case of an application AB, we can only establish that the order of
AB is < the order of A.
We begin by evaluating the order of the first and second projections:

Lemma 2.27 (Order of Projections)
For aT-term (A, B), ordr (w1 ((A, B))) = ordr(A) and ordr (w2 ({A, B))) = ordr(B).

Proo¥r: This is a direct corollary of Lemma 2.22. m|
The orders of constants and sorts are easy to calculate:

Lemma 2.28 (Orders of constants and sorts) Let I' be a legal context. Then
ordr(*,) =a+ 1, ordp(L) =1, ordr(Z) = 1, and ordr(n) = 0.

PROOF:

o As 'k %4 : %41 @ *q42, ordp(%,) < a+ 1. Now assume I' F A’ : P : %, for an
A" =g, %, (hence A" —» 3, *,). By repeated Subject Reduction, I' F %, : P : #y.
By Generation, P =g, *. for a ¢ > a (hence P —»g, *.). By repeated Subject
Reduction, I' - %, : %3, so again by Generation, 3d > c where %, =g, *4. Hence
d=0b,s0a<c<b,sob>a+2,so0ordp(x,) > a+ 1.

e Notice that by the Start Lemma, ' F L : %; : %5 so ordp(Ll) < 1. Now
assume I' - A’ : P : % for an A" =g, L. Notice that L is in normal form,
so A" —»g, L and by repeated Subject Reduction, I' - L : P : %;. By
the Generation Lemma, P =g, *;, and as #; is in normal form, P —#g, *;.
By repeated Subject Reduction, I' F %y : %y, which contradicts the fact that
ordp(¥1) = 2.

e The proof for 7 is similar to that for L.

e By the Start Lemma, ' F n : Z : %1, so ordr(n) < 0. ordr(n) < 0 is not
possible. a

The following lemma and its corollaries are not only needed for evaluating the
order of the remaining items, but they are also informative about the order of a
term. This lemma says that for any I-type B, there is always B’ of type *ordr (B)
such that B —» 3, B'. It also confirms that %, can be seen as the type of types
(propositions) of order < a (Corollary 2.30) and that a term is always of a lower

order than its type (Corollary 2.31).

Lemma 2.29 (A type B reduces to a type B’ of type *ord(B))
Let B be a I'-type and b = ordp(B). B’ such that '+ B’ : %, and B —3, B'.



PROOF: AssumeI'F B : %,. By Lemma 2.22, 3B’ and P such that I' - B’ : P : %44
and B —»3, B'. By Weak Unicity of Types 2.18, |P| =g, | *p |, say: P =go *,.
Hence P —%34 *4.

e By repeated Subject Reduction, I' - %, : %p41 @ %p40. By Lemma 2.28, b+ 1 >
q+1,s0b>q.

e By the Conversion Rule, I' - B’ : %, : %,41, so by definition of b, ¢ > b.
We find: ¢ = b, s0 P =g, %3, S0 I' = B’ @ %y, O

Corollary 2.30 (x, is the type of types of order < a)
If P is a D-type in Bo-normal form, then T+ P : x, < ordr(P) < a.

ProoF: Let p = ordp(P). “=" is by definition of ordy(P); for “<=”, by Lemma
2.29, 3P' where I' - P' : %, and P —»g, P'. As P is in normal form, P’ = P, so
['F P :x,. Since p < a, repeated use of (C) derives I' - P : ,. a

Corollary 2.31 (A term is of a lower order than its type)
IfT+ A: B then ordr(A) < ordr(B).

Proor: Let a = ordp(A4), b = ordp(B). B is a type, so by Lemma 2.29, 3B’ where
'+ B :%,and B =3, B'. I' - A: B, so by conversion, ' F A : B : %,. By
definition of a, b > a + 1, so b > a. O

In the above corollary, ordr(A) = ordr(B) — 1 does not hold: take ' = 0, A = %
and B = x3. This is as expected because, by the inclusion rule (C), once A is of
type *,, it is of type x,, for any m > n.

So far, we can calculate the order of projections (Lemma 2.27) and the order of
sorts and constants (Lemma 2.28). Now, we present methods to calculate the order
of almost all the other terms:

Lemma 2.32 Let C be a I'-term. The following holds:
1. If C = x where x:A € T" then ordr(x) = ordp(A4) — 1.
2. If C =11z:A.B then ordr (Ilz:A.B) = max(ordr(A), ordr ¢.4(B)).
3. If C = Az:A.b then ordr(Az:A.b) = max(ordp (A) — 1, ordr 4:4(b)).
4. If C = Ax B or C = (A, B) then ordr(C) = max(ordr(A),ordr(B)).

PRrOOF: 1: Let m = ordr(z). {From Corollary 2.23, 3B with T'F z : B : %,,41. As
m + 1 is minimal, ordr(B) = m + 1. By the Generation Lemma, A =3, B. Hence,
ordr(A) = m + 1. Note that the case A =g, *n, P =g¢ *, with n < p does not
hold as m is minimal.

2: Let a = ordp(A), b = ordp 4:4(B), and p = ordr(llz:A.B). By Lemma 2.29,
as [Ix : A.B is a I-type, 3P with ' - P : %, and Ilz:A.B —%3, P. P must be of
the form Ilx:A,.B;, where A =3, A; and B =3, Bi. By Lemmas 2.29 and 2.13,
JA, and By such that I' - Ay : %4, [,2:A - By : %, A 3, Ay and B —»g,
B,. By Church Rosser, A; and A, have a common reduct Asz; By and Bs have a
common reduct Bs. By repeated Subject Reduction: T' - Ag:xg; T x:A B Bgixg.
As A —»p, As and B —» 3, Bs, Subject Reduction gives I' - (IIx:A3.Bs) : *,. Now,
p = max(a, b) as follows:

e By Generation Idm < p with I' - A3 : %, and ', z:A3 - B3 : x,,. By Transi-
tivity, [, :A + Bs : *,,. Hence a,b < m < p.
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e AsT" F Az : %, and T',2:A3 - Bs : x, so by repeated application of (C),
' Azt *max(ap) and Iy 2:A3 = B3 @ *pax(ap)- By (II-form), T'F (Tlz: A3.B3)
*max(a,b), and so p < max(a,b).

3: Let a = ordr(A), m = ordr(Az:A.b), n = ordr ..a(b). By Lemma 2.22, 3P, Q
where ' F P : Q : %541 and Az:A.b =3, P. Observe that P = Az:A'.b' for some
ALY with A =, A" and b —»5, b'. By the Generation Lemma, 3B such that
[Lo:A" VY : Band Q =g, [Iz:A'.B. Now m + 1 = ordr(Q) = ordr (Ilz:A'.B) =
ordr (IIz:A.B) = max(a, ordr ..4(B)) by 2 above. Now m = max(a — 1,n) because
m + 1 = max(a,n + 1) as is seen by the two cases:

e m + 1 = a. By the Transitivity Lemma, I',z:A + o' : B. By Corollary 2.31:
ordpr z:4(b') =n < ordr 4.4(B), so m + 1 = max(a,n + 1).

e m+1=ordr.a(B) >a. 3B, 0" with ', z:A' F V" : B : %,41 and b’ —» g, b".
By Transitivity, I', z:A F " : B' : x,,41. With the Il and A rule: T' F (Az:A.b") :
(Ilz:A.B') : *max(a,nt1). Hence, max(a,n +1) > m+1, and as a < m + 1,
n+l1>m+landn>m. AsT,z:AF b : B, n <ordr ;.4(B) = m+1. Hence
n =m and m + 1 = max(a,n + 1).

4: Case C' = A x B is similar to 2. Case C' = (A, B) is similar to 3. |

As M N may be a redex, its order is harder to determine. We can, however, prove
the following;:

Lemma 2.33 (The order of an application)
IfTF M :1lz:P.Q and T'F N : P then ordp(N),ordp (M N) < ordp(M).

Proor: Let m = ordp(M). IM',R such that ' - M' : R : %41 and M —
—gs M'. By Subject Reduction, I' - M’ : Ilz:P.Q), so by Weak Unicity of Types,
|R| =g» |IIz:P.Q| = Iz:P.|Q|. By Church Rosser IR’ such that R —»5, R’ and
Oz:P.|Q| s |R'|. Also, R’ must be of the form IIz:P'.Q)', where P —»3, P’ and
|Q] —g- |Q'|- By Subject Reduction and Conversion, I' F M’ : (IIx:P'.Q") : #pt1.
As m is minimal, ordp (Iz:P'.Q") = m+1. Now, m = ordp (M) = ordp (Ilz: P'.Q") —
1 = max(ordpr(P’) — 1,0rdr 4.p (Q') — 1) > ordp(P') — 1 = ordp(P) — 1 > ordp(N).
By conversion, I' - N : P!, so' F M'N : Q'[z:=N]. As MN =g, M'N, we have
ordr (M N) = ordp(M'N) < ordr(Q'[z:=N]) < ordr ..p (Q') < ordr(Ilz:P'.Q") =
m + 1, so ordr (M N) < m. O

This shows that a function can never take an argument of higher order, and that
the order of a term can not increase when applying an argument to that term.

3 The Ramified Theory of Types RTT

In this section we give a short, formal description of Russell’s Ramified Theory
of Types (RTT). This formalisation is both faithful to Russell’s original informal
presentation and compatible with the present formulations of type theories. The
basic aim of RTT is to exclude the logical paradoxes from logic by eliminating all
self-references. An extended philosophical motivation for this theory can be found
in [25], pages 38-55. We will not go into the full details of the formalisation of RTT
(these details can be found in [14], the presentation by Russell himself in “Principia”
is informal).

In Subsection 3a we introduce propositional functions. In Subsection 3b we
assign types to some of these propositional functions. Paradoxical propositional
functions are, of course, not typeable.
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3a Propositional Functions

In this section we shall describe the set of propositions and propositional functions
which Whitehead and Russell use in “Principia”. We give a modernised, formal
definition which corresponds to the description in “Principia”. At the basis of the
system of our formalization there is

e an infinite set A of individual-symbols and an infinite set V of variables;

e an infinite set R of relation-symbols together with an arity map a: R — INT.

0-ary relations are not explicitly used in “Principia” but could be added without
problems. Since functions are relations in Principia, we will not introduce a special
set of function symbols.

We assume that {ai,as,...} C A4A; {x,x1,%2,...,¥,¥1,--+,%,21,...} C V; and
that {R,Rq,...,S,S1,...} € R. We will use the letters z,y,z,x1,... as meta-
variables over V, and R, Ry, ... as meta-variables over R. Note that variables are
written in typewriter style and that meta-variables are written in ¢talics: x denotes
one, fized object in V whilst = denotes an arbitrary object of V.

We assume that there is an order (e.g. alphabetical) on the collection V, and
write x < y if the variable x is ordered before the variable y. In particular, we
assume that

x<x <. <y<yn<...<z<z < ...

We also have the logical symbols A, = and V in our alphabet, and the non-logical
symbols: parentheses and the comma. Note that Russell used classical logic (intu-
itionistic logic wasn’t widespread when “Principia” appeared) and hence he didn’t
need to make symbols like V, —, 3 primitive.

Definition 3.1 (Propositional functions)
We define a collection F of propositional functions, and for each element f of F we
simultaneously define the collection Fv(f) of free variables of f:

1. f ReR and il,---,ia(R) € AUV then R(il,...,ia(R)) e F.
. . def . .
FV(R(“;"'azu(R))) = {217"'7211(1%)}01);

2. IfzeV,ne N and ky,...,k, € AUV UF, then z(ky,...,k,) € F.

ev(z(ke, - k) {2 ke, kel OV

If n = 0, we write z() so as to distinguish the propositional function z() from
the variable z;?

3. If f,g € Fthen fAg € Fand -f € F. rVv(fAg) = Fv(f) UFv(g);
Pv(=f) < pv();
4. If f € F and z € vV(f) then Vz[f] € F. rv(Vz[f]) = rV(f) \ {z}.

5. All propositional functions can be constructed by using the rules 1, 2, 3 and
4 above.

We use the letters f, g, h as meta-variables over F and similar to Convention 2.2,
we assume that bound variables differ from free ones and that different bound
variables have different names.

A propositional function f is a proposition in which some parts (the free vari-
ables) have been left undetermined. It will turn into a proposition as soon as we

2 A variable is not a propositional function. See [20], Chapter vii: “The variable”, p.94 of the
7th impression.
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assign values to all its free variables. In this light, a proposition can be seen as a
degenerated propositional function (with 0 free variables).

It will be clear now what the intuition behind propositional function of the form
R(i1,...,iaR)), fAg, 7f and Vz[f] is. The intuition behind propositional functions
of the second kind is not so obvious. z(ki,...,ky) is a propositional function of
higher order: z is a variable for a propositional function with n free variables; the
argument list ki1, . .., ky, indicates what should be substituted® for these free variables
as soon as one assigns such a propositional function to z.

Notice that there are propositional functions of the form z(kq, ..., k,) (where z €
V) but that expressions of the form f(ky,...,ky), where f € F, are not propositional
functions. Even substituting f for z in z(ky, ..., k,) does not lead to f(ki,...,kn),
as the notion of substitution in RTT is quite different from the usual notion of
substitution in first order logic .

Example 3.2 Here are some higher-order propositional functions (pfs) from math-
ematics:
1. The pfs z(x) and z(y) in the definition of Leibniz-equality: Vz[z(x) <> z(y)].
2. The pfs z(0), z(x) and z(y) in the formulation of complete induction:
[2(0) — (Vx¥y[z(x) = (S(x,y) > 2(y))])] = Yxlz(x)].
3. The pf z() in the formulation of the law of the excluded middle: Vz[z() V —z()].

3b Ramified Types

Not all propositional functions should be allowed in our language. For instance,
the expression —z(z) is a perfectly legal element of F, nevertheless, it is the propo-
sitional function that makes it possible to derive the Russell Paradox. Therefore,
types are introduced.

Definition 3.3 (Ramified Types)
The ramified types 7 are defined inductively as follows:

1. % is a ramified type (0 is called the order of this type);

2. If t1,...,t, are ramified types of orders ai,...,a, respectively, and a >
max(ai,...,a,), then (t1,...,t,)* is a ramified type of order a (if n = 0
then take a > 1);

3. All ramified types can be constructed using the rules 1 and 2.

(% is the type of individuals, and (t,...,t,)® is the type of the propositional func-
tions with n free variables, say x1,-..,z,, such that if we assign values k; of type
t; to @1, ..., k, of type t,, to x,, then we obtain a proposition. The type () is the
type of propositions of order a.

Russell strictly divides his propositional functions in orders. For instance, both
Vp[p() A =p()] and R(a) are propositions, but of different level: The first presumes
a full collection of propositions, hence it cannot belong to the same collection of
propositions as the propositions p over which it quantifies (among which R(a)). This
led Russell to make Vp[p() A =p()] belong to a type of a higher order (level) than
the order of R(a). This can already be seen in the definition of ramified types:
(t1,...,t,)% can only be a type if a is strictly greater than each of the orders of the
tiS.

3In Principia, it is not clear how such substitutions are carried out. One must depend on
intuition and on how substitution is used in the Principia. It is quite hard and elaborate to give
a proper definition of substitution.
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Definition 3.4 Let zy,...,z, be a list of distinct variables, and t¢i,...,t, be a
list of ramified types. We call zy:t1,...,2,:t, a context and call {x;,...,z,} its
domain.

We write I' - f : ¢ to express that f € F has type ¢ in context I', and extend the
variable convention to contexts: If x is bound in f, then z does not occur in the
domain of I'.

We use I', A to range over contexts and ty,ts,... to range over types. To avoid
confusion we sometimes write Fy for derivability in the Nuprl type system, and Fg
for derivability in RTT.

We now present the typing rules for RTT. These rules are derived from and
equivalent to the rules in [14], which are as close as possible to Russell’s original
ideas. We change our notation for propositional functions slightly: Instead of Vz[f]
we write Va:t[f], where ¢ is some ramified type.

Definition 3.5 (Typing Rules for RTT)
e If c€ A, then I' F ¢ : ° for any context I

o If f e F, and z; < ... < x, are the free variables of f, and t1,...,t, are
types such that z;:t; € T, then T'F f: (t1,...,t,)® if and only if

— If f = R(i1, ... ,iq(r)) then t; = ° for all i, and a = 1;

— If f = z(ki1,. .., kn) then there are uy, . . ., u,, such that z:(uy, ..., uy,)* €
I, and I' F k;:u; for all k; € AU F, and k;:u; € T for all k; € V;

— If f = fi A f2 then there are uy?,u5* such that I' F f; : u}* and a =
max(ay, as);
if f=-f then Tk f': (t1,...,t0)"

— If f =Va:ty[f'] then 35 where ', z:to = f': (t1,...,t5-1,t0,85,. .., tn)%

Example 3.6 —x(x) is not typeable in any context I. If I' - —x(x) : ¢ then ¢
must be of the form (u)?, with x:u € T', as —x(x) has one free variable. Hence
[+ x(x) : (u)?, and by Unicity of Types below, u = (u')*!, with x : v’ € . As T
is a context, u = u', hence u = (u)*~!. Absurd.

An important result (whose proof follows directly from the definition of T' F f : ¢)
is the following:

Theorem 3.7 (Unicity of Types) IfT'F f:t and T+ f:u thent =u.

4 RTT in Nuprl

We present a straightforward embedding of RT'T in the type theory of Nuprl written
as a PTS (Section 2). The embedding will consist of two parts: First we give a
representation of the ramified types in Nuprl (Subsection 4a), then we represent
the typable propositional functions in Nuprl (Subsection 4b).

4a Ramified Types in Nuprl

The main clue to our embedding is the interpretation of x,, as the sort containing all
order-n-propositions. There is a small difference in that Nuprl considers any term
of type %, to be of type *,41 as well. This means that any proposition of order n
can be interpreted as a proposition of order n + 1 as well. This inclusion is not a
feature of RTT; yet it isn’t a serious extension.
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Another small point is that Russell doesn’t specify his underlying set of “indi-
viduals” and that we want to use Z as translation of this underlying set. Therefore,
we will assume that the set A of RTT-individuals is equal to the set Z of integers.
Recall that, when = ¢ FV(B), we write Ilz : A.B as A — B.

Definition 4.1 Define a mapping 7 : 7 — T as follows:

def def

T(O) ¥ Z and T((#,...,t9)) S T(E9) - . T(t2) —

Note that T(()*) = *, and T does indeed interpret the type of order-a-propositions
as *,. Moreover, translations of ramified types are typable in Nuprl:

Lemma 4.2 If t* is a ramified type of order a then Fx T(t%) : *q41.
PROOF: Induction on the construction of ramified types. a

When we speak of a ramified type t* of order a, we actually mean that the terms
that are of type t* have order a. T'(¢t*) itself should, therefore, have order a + 1 in
Nuprl. Indeed, we can prove:

Lemma 4.3 If T is a legal context then ordr (T (t*)) = a + 1.

Proor: Induction on ramified types. T'(:°) = Z and ordr(Z) = 1 by Lemma 2.28.
Now assume ordr(T'(t;*)) = a; + 1 for i = 1,...,n. Notice that

ordr (T((t1*,...,ty™)")) = ordr(T(t]*) — ... = T(ty™) = %4)
222 max(ordp (T(t9)), . .., ordp (T(t2%)), ordr (x4))
228 1 max(a1+1,...,an+1,a+1)a>:aia+1|:l

4b Propositional Functions of RTT in Nuprl

We extend the mapping 7" of Definition 4.1 so that a propositional function with free
variables 1 < ... < x, will be translated into a A-term of the form Azq:ty - - z,:t,. A4,

where A itself is not of the form Az:t.A’. For notational convenience, T is extended
to A and V as well.

Definition 4.4 Let I be a RTT-context. We extend T to the sets A, V and F.

If i € AUV then T'(3) ' . Now let f € F and assume f has free variables
r1 <...< Xy, such that z;:t; € T.

o It f = R(ir,...,iqr) then T(f) © \a1:T(t1) - - - 2T (tn).Ris - -ia(r)

o If f = z(ki, ..., km) then T(f) = Aay:T(t1) -+ 20T () 2T (k1) - - T (k)3

o If f = g1 A g2, and g; has free variables y;1 < ... < Yim,, then T'(g;) =
AYi1:Ui1 - - Yim, “Uim, -G for some term G;.

Let T(f) € \a1:T(t1) - 20:T (£0).G1 x Ga.

o If f =g, then T'(g) = Ax1:T(t1) - - - T (t5).G for some term G.
Let T(f) € a1 T(t1) - - 02T (80).G — L.

o If f =Vu:t.g then
T(g) = Ae1:T(t1) - xp:T () x:T(t).wivr: T (tir1) - - T (t0).G

for some term G. Let T(f) < \o1:T(t1) - - 2n:T (tn) T T (¢).G.
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The extension of 7" as defined above also depends on the context I'. Normally it
will be clear which context I' is meant. If confusion arises, we write 7T to indicate
the context in question.
It is important to notice that, for propositions f, T'(f) is exactly the interpre-
tation of f provided by the Curry-Howard-de Bruijn isomorphism.
Finally, we define a special Nuprl-context I'y which contains information on the
a(R) times Z

——
relation and individual symbols of RTT by: T'g &' {R:Z—...>7Z — % |ReR}.

We assume R to be finite for the moment, so that I'y is finite as well, and
therefore is a Nuprl-context. 'y is legal, as we have by Z — ... = Z — %1 : %9,

The following theorem states that the embedding T respects the type structure
of RTT. This means that we can see Nuprl as an extension of the Ramified Theory
of Types.

Theorem 4.5 (Nuprl extends RTT) If ' Fg f : ¢ then o bx T(f) : T'(2).

PRroOOF: Induction on the definition of I' g f : ¢t. If [ F ¢ : «® because ¢ € Z then
c:Z, € Tg,s0 Ty F c:7Z. Now assume f € F, f has free variables 71 < ... < z,,,
and t1,...,t, where z;;t; € T'fori = 1,...,n, and ' b f : (t1,...,tn)* By
Lemma 4.2, by T'(¢;) : *,, for some a;. Hence, by the Start and Weakening rules,
we add z;:T'(t;) one by one to the context I'yp, obtaining a legal context 'y =
Lo, z1:T(t1),...,2,:T(t,). We only treat the case f = Va:ty[g]:

If f = V.’L'to[g] then El] such that F,;L'Cto "R g : (tl,...,tj_l,to,tj,...,tn)a. By
the induction hypothesis, I'o = T'(g) : T'(t1) = --- = T(tj—1) = T(to) — T'(t;) —
-+ = T(tp) = *,. By the Generation Lemma,

Lo, z1:T(t1),...,xj—1:T(tj—1),x:T(to), x;:T(t;),...,xn:T(ty) FN G : %, where g =
Azy - zjo1xx; - Tn.G. As the types of the variables in the context are indepen-
dent from each other, we also have I';,x:T(tp) FN G : *,. As the order of type
to is smaller than a, we have I'y Fn T'(to) : *, (Lemma 4.2), so by (II-form):
[y By 2T (t).G : %4. By A-abstracting over all the variables in Fv(f) we obtain
Lo N T(f):T(t). O

It would be nice if we could also prove a kind of opposite of Theorem 4.5. However,
the statement “If I'o Fn T'(f) : T'(t) then there is a context I such that T Fgr f: ¢”
is not true. We can derive Iy bnx T'(Vz:u°[R(z)]) : *, for any n > 1. Nevertheless,
we have I' Fr Vzu®[R(x)] : ()! for all RrT-contexts I, so by Unicity of Types 3.7
it is impossible that I' Fg Vau’[R(x)] : ()" for any n > 1. It is clear that this
difference between RTT and Nuprl is caused by the type inclusion rule C, which is
only present in Nuprl, and not in RTT. We do have a partial result, however:

Lemma 4.6 IfI'Fr f: (t]',...,t0)* and 1 < ... < z,, are the free variables of
f, then ordr, (T (Ve 3. - - - Ve, t2 [f])) = a.

Proor: Induction on the definition of I Fr f : (¢]*,...,t%)*. Note that x;:t;" € T’
for all 4, and [ Fg Va1:t]* - - - Va,:t [ f] : )* Let I'; = Lo, a1:T(87%), ...,z T (57).
We only treat the case f = z(ki,..., km); the other cases are similar. z € FvV(f),
say: z = xp. Aszpity” €T, a, = a—1. Hence ordr, (z) = ordr, (T'(t;"))—1 = a—1.
By 2.33, ordr, (2T (k1) - - - T'(km)) < a— 1. Hence

ordp, (T'(Va1:t]" - - -V, %[ f])) =
ordp, (Hz1:T(t7"). - - - My T (t%).2T (k1) - - - T'(km,))

max(ordr, (27'(k1) - T'(ky,)), max; <, (ordr, (T'(t)))
max(ordr, (27 (k1) - - T'(km)), maxij<n(a; + 1)) =a, +1=a

O

Corollary 4.7 IfT' Fgr f: ()* then ordr, (T(f)) = a.
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5 Conclusions

In this paper we focus on Nuprl and describe a fragment of it as a Pure Type
System AN. A type universe U,, (n > 1) of Nuprl contains certain basis types, and
is closed under the construction of dependent product types and cartesian products.
Moreover, U, is an element of U,,11, and all types in U, also belong to U,;. We
represent the type universe U, by the PTS sort *,. Closure under the construction
of dependent products is given by rule (x,, x,), and the fact that U, is element of
U,.+1 is represented by the PTS axiom *,, : x,41. We extend this PTS as follows:

e For cartesian products, we introduce the rule L'k Alr:l_*’hl ~ A2F:|_*:L42 “¥n
Canonical inhabitants of 4; x A, are terms of the form (a;, as), where a; : A;.
I'ka: A1 X A2

e We also introduce the projection functions 7;: m

together with a reduction relation generated by the axiom 7;({a1, az2)) =, a;.

e As U,, C U,41, we introduce an inclusion rule (C): %

A type universe U,, in Nuprl is closed under the construction of dependent cartesian
products, but as we do not need dependent cartesian products in the paper, we don’t
introduce them.

The system AN thus obtained has many properties of usual PTSs, like Church-
Rosser (for —3.), Subject Reduction and Correctness of Types. With rule (C), we
lose Unicity of Types, but we can prove a weakened version of it.

Let T be a context for AN. Due to correctness of types, for each I'-type A there
is n > 1 such that I' - A : x,,. (compare this to Nuprl: each type in Nuprl belongs
to some type universe U, ). We call the smallest n for which I' F A : %, the order
of A (in T'), notation ordr(A). We generalize this definition to arbitrary I'-terms A:
ordr(A) is the minimal n for which there is B such that I' - A : B : %,,. We prove
some elementary properties of ordr(A):

eordp(A) = orda(A) if A is legal and A D T

eordy(*,) =n + 1;

o If ' A : B then ordr(A) < ordr(B);

o If :A € T then ordr(z) = ordr(4) — 1;

e ordr(IIx:A.B) = max(ordr (A), ordr ..a(B));

e ordp (Az:A.b) = max(ordp(A4) — 1,0ordr 2.4 (D));

eordp({A;, A2)) = ordp(A4; x Az) = max(ordp(Ay),ordr(As)).

We show that the orders in AN (and thus the type universes in Nuprl) are closely re-
lated to orders in RT'T by looking at translations of RT'T propositions to AN types via
a propositions-as-types embedding 7: We prove that if f is an order-n proposition
in RTT, then ordp, (T'(f)) = n. Here, I'y is some basic context that contains only
some type information of the relation symbols that are used in RTT. We conclude
that our formulation of Nuprl as a PTS is faithful to the idea behind universes in
Martin-Lo6f’s type theory and our definition of order on Nuprl terms captures the
hierarchy of universes in Nuprl and provides an elegant comparison between Nuprl
and RTT. As a bonus, we get a description of RTT in a propositions-as-types style
in which the notion of order is maintained.

There are more similarities between RTT and Nuprl. Both Nuprl and RTT have
a kind of higher order substitution (see Chapter 5 of [10] and Section 3 of [14]). We
are currently investigating the similarities between both notions of substitution.

Now we stop to explain the philosophy of our approach and the novelty of what
we have provided. We also discuss future research that might be sparkled by our

paper.
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At the beginning of this century, the paradoxes led to many new formulations
of logical systems and an amazing variety of ideas and approaches. Later on, some
of these ideas where abandoned when they shouldn’t have. Even more, some of
the ideas proposed were found later to contribute nothing to the solution of the
paradoxes. For example, even though ZF set theory uses the foundation axiom, it
is quite clear now that it is the separation rather than the foundation axiom which
was responsible for the avoidance of the paradoxes.

Our standpoint in this paper is not to defend one line against another. Rather,
we aim to clarify the different notions and philosophies assumed in the foundation
of logic. In this paper, our chosen notion is that of Russell’s orders as found in
the famous Ramified Theory of Types RI'T. Russell, whose contribution to modern
logic is historical, avoided the paradox (that he himself discovered) by adopting
two layers: types and orders. Later it was found that orders contributed nothing
to the avoidance of the paradox and Ramsey’s work led to the abandonment of
Russell’s orders. It is not clear to us whether Russell did actually know that orders
do not contribute to the avoidance of the paradox. We believe however that his
intuition of using orders (as well as types) is a solid one and we have seen this
intuition being repeated in many predicative styles logics. In [11], we show that
Russell’s orders come back in Kripke’s account of levels of truths. In this paper, we
show that Russell’s orders are present in Martin-Lo6f’s type theory and the proof
checker Nuprl. Of course the word “orders” is not used by Kripke, Martin-L6f and
Constable. Our study however shows that formally representing (with orders) the
informal hierarchies of these systems is informative about these hierarchies, about
the systems themselves and about the philosophies behind them.

Not only does our paper revive the “order” concept, and show its usefulness
for explaining basic hierarchies and philosophies in modern systems, but also, our
paper places the historical system underlying Principia Mathematica in a context
with a modern system of computer mathematics (Nuprl) and modern type theories
(Martin-Lof’s type theory and PTSs). Our main results concerning the relationship
between these various systems can be summarised as follows (we take Fr (resp. Fy)
to stand for type derivation in RTT (resp. in Nuprl), and assume a translation T
from types and functions in RTT into Nuprl; also I'g is a basic Nuprl-context which
contains information on the relation and individual symbols of RTT):

1. The system (underlying) Nuprl can be seen as a simple extension of a PTS.
2. RI'T can be embedded in Nuprl.

3. Hence RTT can be regarded as a PTS.

4. Nuprl extends RTT in the sense that if I' Fg f : ¢ then T Fx T'(f) : T'(¢).

A number of questions on extending these results remain open. These questions are
as follows:

1. Since Martin-Lo6f’s type theory, Nuprl and RTT have as aim to be a foundation
of mathematics, one should have an interpretation of the most basic systems
of logic: predicate logic (Pred) in RTT. This would be nice and the advantages
of relating RTT, PTSs and Nuprl would carry over to Pred as well. Moreover,
one would get the following picture: Pred < RIT < Nuprl < PTSs.

2. We have shown that Nuprl extends RTT (see 4 above). It would be nice to
answer whether Nuprl is a conservative extension of RTT.

Questions 1 and 2 are very interesting and must be the subject of future research.
We have thought about them and up to this stage, no clear answer has been found.
Question 1 causes difficulties precisely because Russell’s notion of substitution is
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different from substitution as is used in modern logic and type theory. We have
come a long way at formalising in modern style Russell’s ideas and theory. There
is still work to be done in this field and we believe that this work might prove very
useful to modern computer science. It may be the case for example that parallel
computation may well benefit from Russell’s substitution. These are issues we are
investigating at the moment.

Question 2 has been partially attempted in the paper. We have said that the
converse of Theorem 4.5 does not hold. We have given as a reason for this the
inclusion rule (C) which is only present in Nuprl and not in RTT. As shown in the
paper, RTT enjoys the unicity of types property whereas Nuprl does not. Here we
explain intuitively this problem caused by the difference between Nuprl and RTT
and give our opinion of how future directions in establishing a form of conservativity
must be followed.

We know from the fact that Nuprl extends RTT that I' Fr f : ¢t then I'y Fy
T(f):T(t). Now, let us take this example:

['Fgr Vol [R(2)]: () =

Do Fn T(Vz:O[R(x)]) : %1 =S

To bx T(Vz2O[R(2)]) : #n = T(()") for any n > 1 Aunicity of types in RTT

[ g Vol [R(x)] : ()" for any n > 1.

This means that we cannot go back from Nuprl to RIT.

We can however do something about that. The idea is to establish the order of
the Nuprl term A and to only go in the opposite direction of Theorem 4.5 when
the type of A is %, and a is the order of A. Hence in our example above, as 1 is
the order of T'(Vz:°[R(x)]), we can only go back with Ty Fn T'(Vz:u’[R(z)]) : *1
obtaining the valid typing I Fg Va:u’[R(x)] : ()*.

We have provided a partial result related to this question (given by Lemma 4.6
and Corollary 4.7) which says that for any Russell typable propositional function
f of order a, we can establish that its Nuprl order is also a and hence when we
try and mimick the Nuprl typing in RTT, we should only restrict ourselves to doing
this when the Nuprl type is %, and a is the order of the Nuprl term avoiding the
inclusion rule as much as possible. This is already a powerful result. Of course, it
remains that we fully work out a translation from Nuprl to RTT and show in what
way it can be said that RTT extends Nuprl. This will involve a huge technicality
concerning RTT’s substitution and free variables. It is left as a subject for future
research.
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