
A Correspondence between Nuprl, the Rami�edTheory of Types and Pure Type Systems�Fairouz Kamareddiney Twan LaanzUniversity of GlasgowDepartment of Computing Science17 Lilybank GardensGlasgow G12 8QQ, ScotlandFAX: +44 141 330 4913fairouz@dcs.gla.ac.ukhttp://www.dcs.gla.ac.uk/research/beauty
Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB EindhovenThe NetherlandsFAX: +31 40 2463992laan@win.tue.nl

AbstractIn Russell's Rami�ed Theory of Types rtt, two hierarchical concepts dom-inate: orders and types. The use of orders has as a consequence that the logicpart of rtt is predicative. The concept of order however, is almost deadsince Ramsey eliminated it from rtt. This is why we �nd Church's simpletheory of types (which uses the type concept without the order one) at thebottom of the Barendregt Cube rather than rtt. Despite the disappearenceof orders which have a strong correlation with predicativity, predicative logicstill plays an in
uential role in Computer Science. An important example isthe proof checker Nuprl, which is based on Martin-L�of's Type Theory whichuses type universes. Those type universes, and also degrees of expressions inAutomath, are closely related to orders. In this paper, we show that ordershave not disappeared from modern logic and computer science, rather, ordersplay a crucial role in understanding the hierarchy of modern systems. In orderto achieve our goal, we concentrate on Nuprl.The novelty of our paper lies in: 1) the revival of Russell's orders, 2) theplacing of the historical system rtt underlying the famous Principia Mathe-matica in a context with a modern system of computer mathematics (Nuprl)and modern type theories (Martin-L�of's type theory and PTSs), and 3) thepresentation of a complex type system (Nuprl) as a simple and compact PTS.1 IntroductionThe Rami�ed Theory of Types (rtt) was developed by Bertrand Russell [21, 25] inorder to solve the paradoxes that resulted from Frege's \Grundgesetze der Arith-metik" [6]. It has a double hierarchy: one of types (which can be seen as anelementary version of Church's well-known Simple Theory of Types [2]) and one�This work is partially supported by EPSRC grant GR/K 25014. The authors are grateful forsome useful discussions with Roel Bloo, Herman Geuvers, Jan Zwanenburg and Joe Wells. We arealso grateful for the useful remarks and suggestions of an anonymous referee.yKamareddine is grateful to Assaf Kfoury and Joe Wells for their hospitality at Boston Uni-versity during the preparation of this article.zLaan is supported by the Co-operation Centre Tilburg and Eindhoven Universities. He isgrateful to the Department of Computing Science, University of Glasgow, for their hospitality and�nancial support when preparing this article. 1

of orders, which can be compared with Kripke's Hierarchy of Truths, see [13, 11].The hierarchy of orders is less known, as it became unpopular when Ramsey [19]and Hilbert and Ackermann [7] showed that one can avoid the paradoxes withoutthis hierarchy. Furthermore, even though it became widely acknowledged that theparadoxes can be avoided without the use of orders, we believe that many logiciansare (maybe unconsiously) in
uenced by the hierarchy of orders when constructing(non-paradoxical) theories. Moreover, orders can elegantly explain some useful hi-erarchies. As an example, when Kripke wanted to build a logical theory [13] whichhas its own truth predicate (something not straightforward according to Tarski'shierarchy of truths [24], in which the truth predicate is not de�nable), he used ahierarchy of languages which could elegantly be explained via the notion of ordersas is shown in [11]. Similarly, when Martin-L�of's impredicative type theory wasshown to su�er from the paradox, he moved to the predicative version in [15] andhas since, built layers of universes that again could be elegantly explained by orders.Also, orders are closely related to the degree of expression notion of Automath[18].Logic based on the double hierarchy of orders and types is usually called pred-icative. The di�erence between predicative and impredicative logic may seem small,nevertheless, this small di�erence can have some drastic consequences in fundamen-tal mathematics. When constructing the real numbers out of the rationals (withDedekind-cuts), the Theorem of the Lowest Upper Bound1, is not provable in pred-icative logic (see [23]). The Theorem of the Lowest Upper Bound is, however, oneof the most fundamental theorems in real analysis.Many modern type systems are impredicative. For instance, the systems of theBarendregt cube [1] that have the rule \(2; �)" are all impredicative. Hence, a proofchecker like Coq [5], based on the Calculus of Constructions [4], is itself founded onimpredicative logic.Nevertheless, mathematics with predicative logic is possible, and from a con-structive point of view it is even attractive. For instance, the proof checker Nuprl[3, 10] is based on predicative logic yet many mathematical theories can be devel-oped using this proof checker (see [9]).Nuprl's type theory is related to type theories proposed by Martin-L�of [16],used as a foundation for constructive mathematics. Nuprl's logic is related to itstype theory via the well-known propositions-as-types embedding, also known as theCurry-Howard-de Bruijn isomorphism (see [8]). It is constructive on two points: itis based on intuitionistic logic (as is the Curry-Howard-de Bruijn isomorphism) andit is based on predicative logic.In this paper, we will try to establish the relation between predicative logicas present in modern type theory (we concentrate on Nuprl because Martin-L�of'stype theory is one of the richest and most expressive predicative type theories)and Russell's Rami�ed Type Theory rtt. This has many advantages, the mostimportant of which is the formulation of the informal notion of universe hierarchyin these modern predicative logics using Russell's notion of order. There are howevermany important bonuses that result from our study:1. We give the �rst presentation of the proof checker Nuprl as a PTS. In Section2 we give a formal description of a part of the type system of Nuprl as a PureType System (PTS) [22]. The systems of the Barendregt cube are examplesof PTSs. Nuprl in PTS style enables us to formalize the concept of order inNuprl and to show its correctness. This order classi�es types and terms ofNuprl into their relevant hierarchy.1This Theorem states that any non-empty set of real numbers with an upper bound has a leastupper bound. 2

2. We give a formal presentation of rtt. Such a formal presentation is not givenin \Principia" [25]. In Section 3 we present a simpli�ed formalization of rtt,which is based on a more extensive formalization given in [14].3. We give the �rst account of embedding rtt in a relevant modern type theory.This is done in Section 4, where we present an embedding of rtt in Nuprl'stype system.4. Our study is the �rst to connect rtt to the modern way of writing type theoryas a PTS. As we present Nuprl within the framework of PTSs in Section 2,and as we present an embedding of rtt in Nuprl's type system in Section 4,we also obtain a description of rtt in PTS-style.5. Our study is the �rst to show that orders in the historical system rtt corre-spond to orders in a very powerful modern system Nuprl.6. Finally, our paper places the historical system underlying Principia Mathe-matica in a context with a modern system of computer mathematics (Nuprl)and modern type theories (Martin-L�of's type theory and Pure Type Systems).2 The Nuprl type system2a A fragment of Nuprl in PTS-styleWe give a description of a part of the type system on which Nuprl is based (see[9, 3]). We don't give a full presentation of all of Nuprl's type constructors, as wewill only need parts of it. The description of the typing rules is given in a naturaldeduction style similar to that used in the Barendregt Cube [1], and Pure TypeSystems [22].Below we assume V to be a set of variables, Z to be the set of integers, andS= f�1; �2; : : :g a set of sorts. The intuition behind the sort �a is that it representsthe propositions (and, more general, the types) of order � a. �a corresponds tothe Universe of Types Ua in [9, 16]. ? represents the unde�ned or a contradiction.Application and abstraction (� and �) are familiar from PTSs. The remainingnotions represent cartesian products, pairing, and �rst and second projections.De�nition 2.1 (Terms) The set of terms T is de�ned by the following abstractsyntax:T ::= S j V j ? j Z j TT j �V:T:T j �V:T:T j T � T j hT;Ti j �1(T) j �2(T)We let �; �; x; y; z; : : : range over V; m;n; : : : over Z and A;B;M;N; a; b over T.When x does not occur free in B, we write A ! B for �x:A:B. Free and boundvariables are de�ned as usual. fv(A) and bv(A) denote the set of free and boundvariables of A. A[x:=B] denotes the term in which all the free occurrences of x inA have been replaced by B. Syntactic equality of terms is taken modulo renamingof bound variables. This allows us to assume the following:Convention 2.2 (Barendregt's Convention) Names of bound variables di�erfrom the free ones in a term. Moreover, we use di�erent bound names for di�erentbound variables.We take the axioms:(!�) : (�x:T:A)B !� A[x:=B](!�) : �1(hA;Bi)!� A and �2(hA;Bi)!� B.We de�ne the reduction relations!� and!� generated by the above two axiomsrespectively (with the usual compatibility rules of course). !!� and !!� are the3

re
exive transitive closures of !� and !� . We de�ne moreover !�� and !!��in the obvious way and take =�� to be the symmetric closure of !!��. We de�necontexts and some related properties:De�nition 2.3 (Contexts) A context is a �nite list x1:A1; : : : ; xn:An of declara-tions xi:Ai. fx1; : : : ; xng is called the domain of the context. If �;� are contextsthen we write � � � if all declarations in � are also in �. We let �;� range overcontexts.De�nition 2.4 (Derivable statements) A statement � ` A : B is derivable if itcan be deduced by repeated application of the rules below:(Axioms) ` ? : �1 ` �n : �n+1 (n 2 IN)` Z : �1 ` n : Z (n 2 Z)(Start) � ` A : �n�; x:A ` x:A (x is �-fresh)(Weak) � `M : N � ` A : �n�; x:A `M : N (x is �-fresh)(�-form) � ` A : �n �; x:A ` B : �n� ` (�x:A:B) : �n(�) �; x:A ` b : B � ` (�x:A:B) : �n� ` (�x:A:b) : (�x:A:B)(App) � `M : (�x:A:B) � ` N : A� `MN : B[x:=N](�-form) � ` A : �n � ` B : �n� ` (A�B) : �n(Pairs) � ` a : A � ` b : B � ` (A�B) : �m� ` ha; bi : (A�B)(Left) � `M : (A�B)� ` �1(M) : A(Right) � `M : (A�B)� ` �2(M) : B(Conv) � `M : A � ` B : �n A =�� B� `M : B(�) � ` A : �n� ` A : �n+1To those familiar with PTSs and/or Nuprl, the above rules are straightforward.Some remarks are due however:1. The rule (�-form) may look restrictive. This is not the case however dueto the inclusion rule (�). Rather, it is fair to say that (�) simpli�es theformulation without sacrifying expressivity.2. A type universe Un of Nuprl is closed under the construction of dependentcartesian products. We use non-dependent cartesian products (�-form) . Werefrain from introducing dependent cartesian products for two reasons: theyare not needed for the purpose of the paper and they involve many complica-tions that will obscure our main objectives.3. The inclusion rule (�) is interesting on its own. We will see below that itleads to the loss of unicity of types. However, unicity of types is valued inmany PTSs but not in Nuprl or Martin-L�of's type theory. We will in anycase derive a version of unicity of types that is faithful to this idea of a term4

having many types in Nuprl. That is, we will derive that if we collapse theorders, then a term will have only one type.4. Nuprl itself is implicitly rather than explicitly typed. That is, Nuprl usesterms of the form �x:B rather than �x:A:B. There is a huge literature in pro-gramming language theory and design which discusses the tradeo�s betweenboth styles. Our reason for the explicitly typed style in Nuprl is due to thefact that PTSs deal with explicitly typed systems and it is not obvious howto extend them to the implicitly typed style.Now we de�ne some notions familiar from PTSs.De�nition 2.5� � is called legal if there are A;B such that � ` A : B;� A is called legal if there are �; B such that � ` A : B or � ` B : A;� A is called a �-term if there is B such that � ` A : B or � ` B : A;� A is called a �-type if there is n such that � ` A : �n.We now show some PTS properties of the Nuprl type system. Omitted proofs areas in [1].Theorem 2.6 (Church Rosser Theorem for !� and !�)1. If A!!� B1 and A!!� B2 then there is C such that B1 !!� C and B2 !!� C.2. If A!!� B1 and A!!� B2 then there is C such that B1 !!� C and B2 !!� C.Proof: 2: any orthogonal term rewrite system (hence (T;!�)) is Church Rosser(see [12]). 2Theorem 2.7 (Church Rosser Theorem for !��)1. If A!� B1 and A!� B2 then 9C such that B1 !!� C, and either B2 !� Cor B2 � C;2. If A!� B1 and A!!� B2 then 9C such that B1 !!� C, and either B2 !� Cor B2 � C;3. If A!!� B1 and A!!� B2 then 9C such that B1 !!� C and B2 !!� C;4. !�� has the Church Rosser property.Proof: 1: induction on the structure of A. 2: use 1. 3: use 2. 4: use 3 andTheorem 2.6. 2Lemma 2.8 (Free Variable Lemma) Assume x1:A1; : : : ; xn:An ` B : C. Then� The x1; : : : ; xn are distinct;� fv(B) [fv(C) � fx1; : : : ; xng;� For each i there is m such that x1:A1; : : : ; xi�1:Ai�1 ` Ai : �m. 2Lemma 2.9 (Start Lemma) Assume � is a legal context. Then � ` ? : �1,� ` Z : �1, � ` n : Z for any n 2 Z, and � ` �n:�n+1 for any n � 1. Moreover,� ` x:C for all x:C 2 �. 25

Lemma 2.10 (Transitivity Lemma) Let �, � be legal contexts such that � ` x :C for all x:C 2 �. Then � ` A : B) � ` A : B.Lemma 2.11 (Substitution Lemma)If �; x:A;� ` B : C and � ` D : A then �;�[x:=D] ` B[x:=D] : C[x:=D].Lemma 2.12 (Thinning Lemma)Let �;� be legal contexts, � � �. � ` A : B) � ` A : B.Lemma 2.13 (Generation Lemma)1. If � ` �n : C then C =�� �m for a m > n, and if C 6� �m then � ` C : �p forsome p � 1.2. If � ` ? : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.3. If � ` Z : C then C =�� �m for some m � 1, and if C 6� �m then � ` C : �pfor some p � 1.4. If � ` n : C then C =�� Z, and if C 6� Z then � ` C : �p for some p � 1.5. If � ` x : C then there is B such that x:B 2 �, and either B =�� C, or thereare m;n with m < n and B =�� �m, C =�� �n. If C 6� B then � ` C : �p forsome p � 1.6. If � ` (�x:A:B) : C then there is m such that � ` A : �m, �; x:A ` B : �mand C =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.7. If � ` (�x:A:b) : C then there are m;B such that � ` (�x:A:B) : �m, �; x:A `b : B and C =�� �x:A:B. If C 6� �x:A:B then � ` C : �p for some p � 1.8. If � ` AB : C then there are x; P;Q such that � ` A : (�x:P:Q), � ` B : Pand either C =�� Q[x:=B], or there are m;n with m < n and Q[x:=B] =���m and C =�� �n. If C 6� Q[x:=B] then � ` C : �p for some p � 1.9. If � ` (A � B) : C then there is m such that � ` A : �m, � ` B : �m andC =�� �n for a n � m. If C 6� �n then � ` C : �p for some p � 1.10. If � ` ha; bi : C then there are m;A;B such that � ` (A�B) : �m, � ` a : A,� ` b : B and C =�� A�B. If C 6� A�B then � ` C : �p for some p � 1.11. If � ` �i(M) : C then there are A1; A2 such that � `M : (A1�A2) and eitherC =�� Ai or there are m;n with m < n and Ai =�� �m and C =�� �n.Proof: Tedious but straightforward induction on the derivation � ` M : C. Weonly show two cases:(Conversion:) � `M : C because � ` C : �p, � `M : C 0 and C =�� C 0. We treatonly the case M � AB, the others are similar or easier. With the inductionhypothesis, determine x; P;Q such that � ` A : (�x:P:Q), � ` B : P . IfQ[x:=B] =�� C 0 then also Q[x:=B] =�� C; if m < n such that Q[x:=B] =���m and C 0 =�� �n then also C =�� �n.(�): � ` M : �k+1 because � ` M : �k. Notice that, by the induction hypothesis,the casesM � n and M � �x:A:b are impossible. We treat the caseM � AB;the other cases are similar or easier. By the induction hypothesis, there arex; P;Q such that � ` A : (�x:P:Q), � ` B : P . If �k =�� Q[x:=B] then takem = k and n = k + 1; if there are m0 < n0 such that Q[x:=B] =�� �m0 and�k =�� �n0 then notice that k = n0 by the Church Russer Theorem, and takem = m0 and n = k + 1. 26

Corollary 2.14 (Correctness of Types)If � ` A : B then there is n � 1 such that � ` B : �n.Proof: Induction on � ` A : B with the help of the Generation Lemma and theSubstitution Lemma for the cases A �MN , A � �1(M) and A � �2(M). 2Theorem 2.15 (Subject Reduction)If � ` A : B and A!�� A0 then � ` A0 : B.Proof: As is usual in the literature, we use induction on � ` A : B to provesimultaneously� � ` A : B;�!� �0) �0 ` A : B;� � ` A : B;A!� A0) � ` A0 : B. 2Corollary 2.16 (!!�� preserves �-terms)If A is a �-term and A!!�� A0 then A0 is a �-term.Proof: We only prove the case A!�� A0. If � ` A : B then by Subject Reduction,� ` A0 : B and A0 is a �-term. If � ` B : A then by correctness of types � ` A : �nfor some n and we use Subject Reduction. 2Due to (�), Unicity of Types doesn't hold for Nuprl. For example, ? : �1 and? : �2. A weak version however, is possible. This version collapses the di�erentlevels of �'s into �1:De�nition 2.17 For each term A we de�ne a term jAj as follows:j �m j = �1 j�x:A:Bj = �x:A:jBjjxj = x jA�Bj = jAj � jBjj?j = ? j hA;Bi j = hjAj; jBjijZj= Z j�1(M)j = �1(jM j)jMN j = jM jjN j j�2(M)j = �2(jM j)j�x:A:bj = �x:A:jbjTheorem 2.18 (Weak Unicity of Types)If � ` A : B1 and � ` A : B2 then jB1j =�� jB2j.Proof: Induction on the structure of A. We only treat A � (�x:M:N). ByLemma 2.13, 9D1, D2 with Bj =�� �x:M:Dj , and �; x:M ` N : Dj . By the in-duction hypothesis, jD1j =�� jD2j. Hence, jB1j =�� j�x:M:D1j � �x:M:jD1j =���x:M:jD2j � j�x:M:D2j =�� jB2j. 22b Orders in NuprlCorrectness of Types makes the following lemma and de�nition possible:Lemma 2.19 If A is a �-term then 9 a �-term B, 9n � 1 such that � ` A : B : �n.Proof: A is a �-term) 9 �-term B with � ` A : B or � ` B : A. If � ` A : B,then by Correctness of Types 9n � 1 where � ` A : B : �n. If � ` B : A then againby Correctness of Types 9n � 1 where � ` A : �n and hence by Start and Thinning,� ` A : �n : �n+1. 2Note that by Corollary 2.16, if A is a �-term then for any A0 where A!!�� A0, A0is a �-term. There are also A0 =�� A where A 6!!�� A0 yet A0 is a �-term. Forexample, take A = (�x : �z : �1: �1 :xa)b and A0 = (�y : �1:by)a. For this reason,we introduce the following de�nition: 7

De�nition 2.20 (�-terms modulo A)We de�ne [A]� = fA0jA0 is �-term and A =�� A0g.Now, we de�ne the order of a term:De�nition 2.21 (Order of a Term)Assume A is a �-term. We de�ne ord�(A), the order of A in �, as the smallestnatural number a (i.e. a � 0) for which there are A0 2 [A]� and B such that� ` A0 : B : �a+1.Let us explain the intuition behind this de�nition. The order of a term A must bethe smallest natural number n such that the type of A is of type �n+1. By (�),we get that for any m > n, the type of A is also of type �m. This captures thenotion of orders �a la Russell. If A itself is a type and n is the order of of A, thennot only the type of A is of type �n+1, but also A !!�� A0 for some A0 of type �n(see Lemma 2.29). Moreover, �n can be regarded as the type of types of order � n(Corollary 2.30) and a term is always of a lower order than its type (Corollary 2.31).More importantly also, is the fact that a function can never take arguments of ahigher order than itself (Lemma 2.33).Of course, we want to make sure that any element =�� to A has the sameorder as A. For this reason, we de�ned order as above by �nding one A0 in [A]�which gives us the minimal n in question. Even better, there is such an A0 whereA!!�� A0 rather than only A =�� A0. The following lemma shows this:Lemma 2.22 Let A be a �-term and ord�(A) = a. The following holds:1. If A0 2 [A]� then ord�(A) = ord�(A0).2. There are A0 and B such that � ` A0 : B : �a+1 and A!!�� A0.Proof: 1: easy. 2: by de�nition of ord�(A), 9A00 =�� A and B where � ` A00 :B : �a+1. By Church Rosser, A, A00 have a common reduct, say A0. By SubjectReduction, � ` A0 : B : �a+1. 2Corollary 2.23For a �-term A in ��-normal form and ord�(A) = a, 9B where � ` A : B : �a+1.Proof: Determine, with Lemma 2.22, A0 and B such that A!!�� A0 and � ` A0 :B : �a+1. As A is in normal form, A0 � A. 2In what follows, we prove some elementary properties of ord�(A). The �rst suchproperty states that the order of a term does not change if the context is expanded:Lemma 2.24 (Orders are invariant under context expansion)If � ` A : B and �; x:C is legal, then ord�(A) = ord�;x:C(A).Proof: Let a = ord�;x:C(A). (�) By Thinning, � ` A0 : P) �; x:C ` A0 : P for allA0 =�� A and P , so ord�(A) � a. (�) 9A0 =�� A and P with �; x:C ` A0 : P : �a+1.By Lemma 2.22, assume A !!�� A0. By Lemma 2.11, � ` A0[x:=C] : P [x:=C] :�a+1. As fv(A0) � fv(A) � dom(�), x 62 fv(A0). Hence A0 � A0[x:=C], so� ` A0 : P [x:=C] : �a+1 and ord�(A) � ord�;x:C(A). 2Corollary 2.25 If A is a �-term and � � � is legal then ord�(A) = ord�(A).The order of a term does not increase under substitution:Lemma 2.26 (Substitution does not lead to order increase)If �; x:A;� ` B : C and � ` D : A then ord�;x:A;�(B) � ord�;�[x:=D](B[x:=D]).8

Proof: �0 = �; x:A;�; �00 = �;�[x:=D]; b = ord�0(B). 9P;B0 =�� B s.t.�0 ` B0 : P : �b+1. By Lemma 2.11 �00 ` B0[x:=D] : P [x:=D] : �b+1. B[x:=D] =��B0[x:=D], so b � ord�00(B[x:=D]). 2Note here that ord�;x:A;�(B) = ord�;�[x:=D](B[x:=D]) does not hold in general:take � � y:�1. Then �; x:�2 ` x:�2 and � ` y:�2, and (by Lemma 2.32 below)ord�;x:�2(x) = 2 and ord�(x[x:=y]) = ord�(y) = 1.2c Evaluating the order of a Nuprl termIn this subsection, we attempt to provide a procedure that evaluates the order ofalmost any Nuprl term. We use the word almost because we are able to say howthe order of almost all complex terms (like A�B) is evaluated in term of the ordersof the components (A and B). The only case that fails is that of an application.We cannot evaluate the order of AB precisely in terms of the orders of A and B.Rather, in the case of an application AB, we can only establish that the order ofAB is � the order of A.We begin by evaluating the order of the �rst and second projections:Lemma 2.27 (Order of Projections)For a �-term hA;Bi, ord�(�1(hA;Bi)) = ord�(A) and ord�(�2(hA;Bi)) = ord�(B).Proof: This is a direct corollary of Lemma 2.22. 2The orders of constants and sorts are easy to calculate:Lemma 2.28 (Orders of constants and sorts) Let � be a legal context. Thenord�(�a) = a+ 1, ord�(?) = 1, ord�(Z) = 1, and ord�(n) = 0.Proof:� As � ` �a : �a+1 : �a+2, ord�(�a) � a+ 1. Now assume � ` A0 : P : �b for anA0 =�� �a (hence A0 !!�� �a). By repeated Subject Reduction, � ` �a : P : �b.By Generation, P =�� �c for a c > a (hence P !!�� �c). By repeated SubjectReduction, � ` �c : �b, so again by Generation, 9d > c where �b =�� �d. Henced = b, so a < c < b, so b � a+ 2, so ord�(�a) � a+ 1.� Notice that by the Start Lemma, � ` ? : �1 : �2 so ord�(?) � 1. Nowassume � ` A0 : P : �1 for an A0 =�� ?. Notice that ? is in normal form,so A0 !!�� ? and by repeated Subject Reduction, � ` ? : P : �1. Bythe Generation Lemma, P =�� �1, and as �1 is in normal form, P !!�� �1.By repeated Subject Reduction, � ` �1 : �1, which contradicts the fact thatord�(�1) = 2.� The proof for Z is similar to that for ?.� By the Start Lemma, � ` n : Z : �1, so ord�(n) � 0. ord�(n) < 0 is notpossible. 2The following lemma and its corollaries are not only needed for evaluating theorder of the remaining items, but they are also informative about the order of aterm. This lemma says that for any �-type B, there is always B0 of type �ord�(B)such that B !!�� B0. It also con�rms that �a can be seen as the type of types(propositions) of order � a (Corollary 2.30) and that a term is always of a lowerorder than its type (Corollary 2.31).Lemma 2.29 (A type B reduces to a type B0 of type �ord(B))Let B be a �-type and b = ord�(B). 9B0 such that � ` B0 : �b and B !!�� B0.9

Proof: Assume � ` B : �p. By Lemma 2.22, 9B0 and P such that � ` B0 : P : �b+1and B !!�� B0. By Weak Unicity of Types 2.18, jP j =�� j �p j, say: P =�� �q.Hence P !!�� �q.� By repeated Subject Reduction, � ` �q : �b+1 : �b+2. By Lemma 2.28, b+1 �q + 1, so b � q.� By the Conversion Rule, � ` B0 : �q : �q+1, so by de�nition of b, q � b.We �nd: q = b, so P =�� �b, so � ` B0 : �b. 2Corollary 2.30 (�a is the type of types of order � a)If P is a �-type in ��-normal form, then � ` P : �a , ord�(P) � a.Proof: Let p = ord�(P). \)" is by de�nition of ord�(P); for \(", by Lemma2.29, 9P 0 where � ` P 0 : �p and P !!�� P 0. As P is in normal form, P 0 � P , so� ` P : �p. Since p � a, repeated use of (�) derives � ` P : �a. 2Corollary 2.31 (A term is of a lower order than its type)If � ` A : B then ord�(A) < ord�(B).Proof: Let a = ord�(A), b = ord�(B). B is a type, so by Lemma 2.29, 9B0 where� ` B0 : �b and B !!�� B0. � ` A : B, so by conversion, � ` A : B0 : �b. Byde�nition of a, b � a+ 1, so b > a. 2In the above corollary, ord�(A) = ord�(B) � 1 does not hold: take � = ;, A � �1and B � �3. This is as expected because, by the inclusion rule (�), once A is oftype �n, it is of type �m for any m � n.So far, we can calculate the order of projections (Lemma 2.27) and the order ofsorts and constants (Lemma 2.28). Now, we present methods to calculate the orderof almost all the other terms:Lemma 2.32 Let C be a �-term. The following holds:1. If C � x where x:A 2 � then ord�(x) = ord�(A)� 1.2. If C � �x:A:B then ord�(�x:A:B) = max(ord�(A); ord�;x:A(B)).3. If C � �x:A:b then ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b)).4. If C � A�B or C � hA;Bi then ord�(C) = max(ord�(A); ord�(B)).Proof: 1: Let m = ord�(x). >From Corollary 2.23, 9B with � ` x : B : �m+1. Asm+ 1 is minimal, ord�(B) = m+ 1. By the Generation Lemma, A =�� B. Hence,ord�(A) = m + 1. Note that the case A =�� �n, P =�� �p with n < p does nothold as m is minimal.2: Let a = ord�(A), b = ord�;x:A(B), and p = ord�(�x:A:B). By Lemma 2.29,as �x : A:B is a �-type, 9P with � ` P : �p and �x:A:B !!�� P . P must be ofthe form �x:A1:B1, where A !!�� A1 and B !!�� B1. By Lemmas 2.29 and 2.13,9A2 and B2 such that � ` A2 : �a, �; x:A ` B2 : �b, A !!�� A2 and B !!��B2. By Church Rosser, A1 and A2 have a common reduct A3; B1 and B2 have acommon reduct B3. By repeated Subject Reduction: � ` A3:�a; �; x:A ` B3:�b.As A!!�� A3 and B !!�� B3, Subject Reduction gives � ` (�x:A3:B3) : �p. Now,p = max(a; b) as follows:� By Generation 9m � p with � ` A3 : �m and �; x:A3 ` B3 : �m. By Transi-tivity, �; x:A ` B3 : �m. Hence a; b � m � p.10

� As � ` A3 : �a and �; x:A3 ` B3 : �b, so by repeated application of (�),� ` A3 : �max(a;b) and �; x:A3 ` B3 : �max(a;b). By (�-form), � ` (�x:A3:B3) :�max(a;b), and so p � max(a; b).3: Let a = ord�(A), m = ord�(�x:A:b), n = ord�;x:A(b). By Lemma 2.22, 9P;Qwhere � ` P : Q : �m+1 and �x:A:b !!�� P . Observe that P � �x:A0:b0 for someA0; b0 with A !!�� A0 and b !!�� b0. By the Generation Lemma, 9B such that�; x:A0 ` b0 : B and Q =�� �x:A0:B. Now m + 1 = ord�(Q) = ord�(�x:A0:B) =ord�(�x:A:B) = max(a; ord�;x:A(B)) by 2 above. Now m = max(a� 1; n) becausem+ 1 = max(a; n+ 1) as is seen by the two cases:� m + 1 = a. By the Transitivity Lemma, �; x:A ` b0 : B. By Corollary 2.31:ord�;x:A(b0) = n < ord�;x:A(B), so m+ 1 = max(a; n+ 1).� m+1 = ord�;x:A(B) > a. 9B0, b00 with �; x:A0 ` b00 : B0 : �n+1 and b0 !!�� b00.By Transitivity, �; x:A ` b00 : B0 : �n+1. With the � and � rule: � ` (�x:A:b00) :(�x:A:B0) : �max(a;n+1). Hence, max(a; n + 1) � m + 1, and as a < m + 1,n+1 � m+1 and n � m. As �; x:A ` b0 : B, n < ord�;x:A(B) = m+1. Hencen = m and m+ 1 = max(a; n+ 1).4: Case C � A�B is similar to 2. Case C � hA;Bi is similar to 3. 2As MN may be a redex, its order is harder to determine. We can, however, provethe following:Lemma 2.33 (The order of an application)If � `M : �x:P:Q and � ` N : P then ord�(N); ord�(MN) � ord�(M).Proof: Let m = ord�(M). 9M 0; R such that � ` M 0 : R : �m+1 and M !!�� M 0. By Subject Reduction, � ` M 0 : �x:P:Q, so by Weak Unicity of Types,jRj =�� j�x:P:Qj � �x:P:jQj. By Church Rosser 9R0 such that R !!�� R0 and�x:P:jQj !!�� jR0j. Also, R0 must be of the form �x:P 0:Q0, where P !!�� P 0 andjQj !!�� jQ0j. By Subject Reduction and Conversion, � `M 0 : (�x:P 0:Q0) : �m+1.Asm is minimal, ord�(�x:P 0:Q0) = m+1. Now, m = ord�(M) = ord�(�x:P 0:Q0)�1 = max(ord�(P 0)� 1; ord�;x:P 0(Q0)� 1) � ord�(P 0)� 1 = ord�(P)� 1 � ord�(N).By conversion, � ` N : P 0, so � ` M 0N : Q0[x:=N]. As MN =�� M 0N , we haveord�(MN) = ord�(M 0N) < ord�(Q0[x:=N]) � ord�;x:P 0(Q0) � ord�(�x:P 0:Q0) =m+ 1, so ord�(MN) � m. 2This shows that a function can never take an argument of higher order, and thatthe order of a term can not increase when applying an argument to that term.3 The Rami�ed Theory of Types rttIn this section we give a short, formal description of Russell's Rami�ed Theoryof Types (rtt). This formalisation is both faithful to Russell's original informalpresentation and compatible with the present formulations of type theories. Thebasic aim of rtt is to exclude the logical paradoxes from logic by eliminating allself-references. An extended philosophical motivation for this theory can be foundin [25], pages 38{55. We will not go into the full details of the formalisation of rtt(these details can be found in [14], the presentation by Russell himself in \Principia"is informal).In Subsection 3a we introduce propositional functions. In Subsection 3b weassign types to some of these propositional functions. Paradoxical propositionalfunctions are, of course, not typeable. 11

3a Propositional FunctionsIn this section we shall describe the set of propositions and propositional functionswhich Whitehead and Russell use in \Principia". We give a modernised, formalde�nition which corresponds to the description in \Principia". At the basis of thesystem of our formalization there is� an in�nite set A of individual-symbols and an in�nite set V of variables ;� an in�nite set R of relation-symbols together with an arity map a : R ! IN+.0-ary relations are not explicitly used in \Principia" but could be added withoutproblems. Since functions are relations in Principia, we will not introduce a specialset of function symbols.We assume that fa1; a2; : : :g � A; fx; x1; x2; : : : ; y; y1; : : : ; z; z1; : : :g � V ; andthat fR; R1; : : : ; S; S1; : : :g � R. We will use the letters x; y; z; x1; : : : as meta-variables over V , and R;R1; : : : as meta-variables over R. Note that variables arewritten in typewriter style and that meta-variables are written in italics: x denotesone, �xed object in V whilst x denotes an arbitrary object of V .We assume that there is an order (e.g. alphabetical) on the collection V , andwrite x < y if the variable x is ordered before the variable y. In particular, weassume that x < x1 < : : : < y < y1 < : : : < z < z1 < : : :We also have the logical symbols ^, : and 8 in our alphabet, and the non-logicalsymbols: parentheses and the comma. Note that Russell used classical logic (intu-itionistic logic wasn't widespread when \Principia" appeared) and hence he didn'tneed to make symbols like _, !, 9 primitive.De�nition 3.1 (Propositional functions)We de�ne a collection F of propositional functions , and for each element f of F wesimultaneously de�ne the collection fv(f) of free variables of f :1. If R 2 R and i1; : : : ; ia(R) 2 A [V then R(i1; : : : ; ia(R)) 2 F .fv(R(i1; : : : ; ia(R))) def= fi1; : : : ; ia(R)g \ V ;2. If z 2 V , n 2 IN and k1; : : : ; kn 2 A [V [F , then z(k1; : : : ; kn) 2 F .fv(z(k1; : : : ; kn)) def= fz; k1; : : : ; kng \ V .If n = 0, we write z() so as to distinguish the propositional function z() fromthe variable z;23. If f; g 2 F then f ^ g 2 F and :f 2 F . fv(f ^ g) def= fv(f) [fv(g);fv(:f) def= fv(f);4. If f 2 F and x 2 fv(f) then 8x[f] 2 F . fv(8x[f]) = fv(f) n fxg.5. All propositional functions can be constructed by using the rules 1, 2, 3 and4 above.We use the letters f; g; h as meta-variables over F and similar to Convention 2.2,we assume that bound variables di�er from free ones and that di�erent boundvariables have di�erent names.A propositional function f is a proposition in which some parts (the free vari-ables) have been left undetermined. It will turn into a proposition as soon as we2A variable is not a propositional function. See [20], Chapter viii: \The variable", p.94 of the7th impression. 12

assign values to all its free variables. In this light, a proposition can be seen as adegenerated propositional function (with 0 free variables).It will be clear now what the intuition behind propositional function of the formR(i1; : : : ; ia(R)), f^g, :f and 8x[f] is. The intuition behind propositional functionsof the second kind is not so obvious. z(k1; : : : ; kn) is a propositional function ofhigher order: z is a variable for a propositional function with n free variables; theargument list k1; : : : ; kn indicates what should be substituted3 for these free variablesas soon as one assigns such a propositional function to z.Notice that there are propositional functions of the form z(k1; : : : ; kn) (where z 2V) but that expressions of the form f(k1; : : : ; kn), where f 2 F , are not propositionalfunctions. Even substituting f for z in z(k1; : : : ; kn) does not lead to f(k1; : : : ; kn),as the notion of substitution in rtt is quite di�erent from the usual notion ofsubstitution in �rst order logic .Example 3.2 Here are some higher-order propositional functions (pfs) from math-ematics:1. The pfs z(x) and z(y) in the de�nition of Leibniz-equality: 8z[z(x)$ z(y)].2. The pfs z(0), z(x) and z(y) in the formulation of complete induction:[z(0)! (8x8y[z(x)! (S(x; y)! z(y))])]! 8x[z(x)].3. The pf z() in the formulation of the law of the excluded middle: 8z[z() _ :z()].3b Rami�ed TypesNot all propositional functions should be allowed in our language. For instance,the expression :x(x) is a perfectly legal element of F , nevertheless, it is the propo-sitional function that makes it possible to derive the Russell Paradox. Therefore,types are introduced.De�nition 3.3 (Rami�ed Types)The rami�ed types T are de�ned inductively as follows:1. �0 is a rami�ed type (0 is called the order of this type);2. If t1; : : : ; tn are rami�ed types of orders a1; : : : ; an respectively, and a >max(a1; : : : ; an), then (t1; : : : ; tn)a is a rami�ed type of order a (if n = 0then take a � 1);3. All rami�ed types can be constructed using the rules 1 and 2.�0 is the type of individuals, and (t1; : : : ; tn)a is the type of the propositional func-tions with n free variables, say x1; : : : ; xn, such that if we assign values k1 of typet1 to x1, . . . , kn of type tn to xn, then we obtain a proposition. The type ()a is thetype of propositions of order a.Russell strictly divides his propositional functions in orders. For instance, both8p[p() ^ :p()] and R(a) are propositions, but of di�erent level: The �rst presumesa full collection of propositions, hence it cannot belong to the same collection ofpropositions as the propositions p over which it quanti�es (among which R(a)). Thisled Russell to make 8p[p() ^ :p()] belong to a type of a higher order (level) thanthe order of R(a). This can already be seen in the de�nition of rami�ed types:(t1; : : : ; tn)a can only be a type if a is strictly greater than each of the orders of thetis.3In Principia, it is not clear how such substitutions are carried out. One must depend onintuition and on how substitution is used in the Principia. It is quite hard and elaborate to givea proper de�nition of substitution. 13

De�nition 3.4 Let x1; : : : ; xn be a list of distinct variables, and t1; : : : ; tn be alist of rami�ed types. We call x1:t1; : : : ; xn:tn a context and call fx1; : : : ; xng itsdomain.We write � ` f : t to express that f 2 F has type t in context �, and extend thevariable convention to contexts: If x is bound in f , then x does not occur in thedomain of �.We use �;� to range over contexts and t1; t2; : : : to range over types. To avoidconfusion we sometimes write `n for derivability in the Nuprl type system, and `rfor derivability in rtt.We now present the typing rules for rtt. These rules are derived from andequivalent to the rules in [14], which are as close as possible to Russell's originalideas. We change our notation for propositional functions slightly: Instead of 8x[f]we write 8x:t[f], where t is some rami�ed type.De�nition 3.5 (Typing Rules for rtt)� If c 2 A, then � ` c : �0 for any context �;� If f 2 F , and x1 < : : : < xn are the free variables of f , and t1; : : : ; tn aretypes such that xi:ti 2 �, then � ` f : (t1; : : : ; tn)a if and only if{ If f � R(i1; : : : ; ia(R)) then ti = �0 for all i, and a = 1;{ If f � z(k1; : : : ; km) then there are u1; : : : ; um such that z:(u1; : : : ; um)a�1 2�, and � ` ki:ui for all ki 2 A [F , and ki:ui 2 � for all ki 2 V ;{ If f � f1 ^ f2 then there are ua11 ; ua22 such that � ` fi : uaii and a =max(a1; a2);if f � :f 0 then � ` f 0 : (t1; : : : ; tn)a.{ If f � 8x:t0[f 0] then 9j where �; x:t0 ` f 0 : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a.Example 3.6 :x(x) is not typeable in any context �. If � ` :x(x) : t then tmust be of the form (u)a, with x:u 2 �, as :x(x) has one free variable. Hence� ` x(x) : (u)a, and by Unicity of Types below, u � (u0)a�1, with x : u0 2 �. As �is a context, u � u0, hence u � (u)a�1. Absurd.An important result (whose proof follows directly from the de�nition of � ` f : t)is the following:Theorem 3.7 (Unicity of Types) If � ` f : t and � ` f : u then t � u.4 RTT in NuprlWe present a straightforward embedding of rtt in the type theory of Nuprl writtenas a PTS (Section 2). The embedding will consist of two parts: First we give arepresentation of the rami�ed types in Nuprl (Subsection 4a), then we representthe typable propositional functions in Nuprl (Subsection 4b).4a Rami�ed Types in NuprlThe main clue to our embedding is the interpretation of �n as the sort containing allorder-n-propositions. There is a small di�erence in that Nuprl considers any termof type �n to be of type �n+1 as well. This means that any proposition of order ncan be interpreted as a proposition of order n + 1 as well. This inclusion is not afeature of rtt; yet it isn't a serious extension.14

Another small point is that Russell doesn't specify his underlying set of \indi-viduals" and that we want to use Z as translation of this underlying set. Therefore,we will assume that the set A of rtt-individuals is equal to the set Z of integers.Recall that, when x 62 fv(B), we write �x : A:B as A! B.De�nition 4.1 De�ne a mapping T : T ! T as follows:T (�0) def= Z and T ((ta11 ; : : : ; tann)a) def= T (ta11)! : : : T (tann)! �aNote that T (()a) = �a and T does indeed interpret the type of order-a-propositionsas �a. Moreover, translations of rami�ed types are typable in Nuprl:Lemma 4.2 If ta is a rami�ed type of order a then `n T (ta) : �a+1.Proof: Induction on the construction of rami�ed types. 2When we speak of a rami�ed type ta of order a, we actually mean that the termsthat are of type ta have order a. T (ta) itself should, therefore, have order a+ 1 inNuprl. Indeed, we can prove:Lemma 4.3 If � is a legal context then ord�(T (ta)) = a+ 1.Proof: Induction on rami�ed types. T (�0) = Z and ord�(Z) = 1 by Lemma 2.28.Now assume ord�(T (taii)) = ai + 1 for i = 1; : : : ; n. Notice thatord�(T ((ta11 ; : : : ; tann)a)) = ord�(T (ta11)! : : :! T (tann)! �a)2.32= max(ord�(T (ta11)); : : : ; ord�(T (tann)); ord�(�a))2.28, IH= max(a1 + 1; : : : ; an + 1; a+ 1) a > ai= a+ 124b Propositional Functions of rtt in NuprlWe extend the mapping T of De�nition 4.1 so that a propositional function with freevariables x1 < : : : < xn will be translated into a �-term of the form �x1:t1 � � �xn:tn:A,where A itself is not of the form �x:t:A0. For notational convenience, T is extendedto A and V as well.De�nition 4.4 Let � be a rtt-context. We extend T to the sets A, V and F .If i 2 A [V then T (i) def= i. Now let f 2 F and assume f has free variablesx1 < : : : < xn, such that xi:ti 2 �.� If f = R(i1; : : : ; ia(R)) then T (f) def= �x1:T (t1) � � �xn:T (tn):Ri1 � � � ia(R)� If f = z(k1; : : : ; km) then T (f) def= �x1:T (t1) � � �xn:T (tn):zT (k1) � � �T (km);� If f = g1 ^ g2, and gi has free variables yi1 < : : : < yimi , then T (gi) ��yi1:ui1 � � � yimi :uimi :Gi for some term Gi.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G1 �G2.� If f = :g, then T (g) � �x1:T (t1) � � �xn:T (tn):G for some term G.Let T (f) def= �x1:T (t1) � � �xn:T (tn):G! ?.� If f = 8x:t:g thenT (g) � �x1:T (t1) � � �xi:T (ti):x:T (t):xi+1:T (ti+1) � � �xn:T (tn):Gfor some term G. Let T (f) def= �x1:T (t1) � � �xn:T (tn):�x:T (t):G.15

The extension of T as de�ned above also depends on the context �. Normally itwill be clear which context � is meant. If confusion arises, we write T� to indicatethe context in question.It is important to notice that, for propositions f , T (f) is exactly the interpre-tation of f provided by the Curry-Howard-de Bruijn isomorphism.Finally, we de�ne a special Nuprl-context �0 which contains information on therelation and individual symbols of rtt by: �0 def= fR : a(R) times Zz }| {Z! : : :! Z! �1 j R 2 Rg.We assume R to be �nite for the moment, so that �0 is �nite as well, andtherefore is a Nuprl-context. �0 is legal, as we have `n Z! : : :! Z! �1 : �2.The following theorem states that the embedding T respects the type structureof rtt. This means that we can see Nuprl as an extension of the Rami�ed Theoryof Types.Theorem 4.5 (Nuprl extends rtt) If � `r f : t then �0 `n T (f) : T (t).Proof: Induction on the de�nition of � `r f : t. If � ` c : �0 because c 2 Z thenc:Z 2 �0, so �0 ` c : Z. Now assume f 2 F , f has free variables x1 < : : : < xn,and t1; : : : ; tn where xi:ti 2 � for i = 1; : : : ; n, and � `r f : (t1; : : : ; tn)a. ByLemma 4.2, `n T (ti) : �ai for some ai. Hence, by the Start and Weakening rules,we add xi:T (ti) one by one to the context �0, obtaining a legal context �1 =�0; x1:T (t1); : : : ; xn:T (tn). We only treat the case f = 8x:t0[g]:If f = 8x:t0[g] then 9j such that �; x:t0 `r g : (t1; : : : ; tj�1; t0; tj ; : : : ; tn)a. Bythe induction hypothesis, �0 ` T (g) : T (t1) ! � � � ! T (tj�1) ! T (t0) ! T (tj) !� � � ! T (tn)! �a. By the Generation Lemma,�0; x1:T (t1); : : : ; xj�1:T (tj�1); x:T (t0); xj :T (tj); : : : ; xn:T (tn) `n G : �a where g ��x1 � � �xj�1xxj � � �xn:G. As the types of the variables in the context are indepen-dent from each other, we also have �1; x:T (t0) `n G : �a. As the order of typet0 is smaller than a, we have �1 `n T (t0) : �a (Lemma 4.2), so by (�-form):�1 `n �x:T (t0):G : �a. By �-abstracting over all the variables in fv(f) we obtain�0 `n T (f) : T (t). 2It would be nice if we could also prove a kind of opposite of Theorem 4.5. However,the statement \If �0 `n T (f) : T (t) then there is a context � such that � `r f : t"is not true. We can derive �0 `n T (8x:�0[R(x)]) : �n for any n � 1. Nevertheless,we have � `r 8x:�0[R(x)] : ()1 for all rtt-contexts �, so by Unicity of Types 3.7it is impossible that � `r 8x:�0[R(x)] : ()n for any n > 1. It is clear that thisdi�erence between rtt and Nuprl is caused by the type inclusion rule �, which isonly present in Nuprl, and not in rtt. We do have a partial result, however:Lemma 4.6 If � `r f : (ta11 ; : : : ; tann)a and x1 < : : : < xn are the free variables off , then ord�0(T (8x1:ta11 : � � � 8xn:tann [f])) = a.Proof: Induction on the de�nition of � `r f : (ta11 ; : : : ; tann)a. Note that xi:taii 2 �for all i, and � `r 8x1:ta11 � � � 8xn:tann [f] : ()a. Let �i � �0; x1:T (ta11); : : : ; xi:T (taii).We only treat the case f � z(k1; : : : ; km); the other cases are similar. z 2 fv(f),say: z � xp. As xp:tapp 2 �, ap = a�1. Hence ord�n(z) = ord�n(T (tapp))�1 = a�1.By 2.33, ord�n(zT (k1) � � �T (km)) � a� 1. Henceord�0(T (8x1:ta11 � � � 8xn:tann [f])) =ord�0(�x1:T (ta11): � � ��xn:T (tann):zT (k1) � � �T (km)) =max(ord�n(zT (k1) � � �T (km));maxi�n(ord�i(T (taii))) =max(ord�n(zT (k1) � � �T (km));maxi�n(ai + 1)) = ap + 1 = a 2Corollary 4.7 If � `r f : ()a then ord�0(T (f)) = a.16

5 ConclusionsIn this paper we focus on Nuprl and describe a fragment of it as a Pure TypeSystem �N. A type universe Un (n � 1) of Nuprl contains certain basis types, andis closed under the construction of dependent product types and cartesian products.Moreover, Un is an element of Un+1 , and all types in Un also belong to Un+1 . Werepresent the type universe Un by the PTS sort �n. Closure under the constructionof dependent products is given by rule (�n; �n), and the fact that Un is element ofUn+1 is represented by the PTS axiom �n : �n+1. We extend this PTS as follows:� For cartesian products, we introduce the rule � ` A1 : �n � ` A2 : �n� ` A1 �A2 : �nCanonical inhabitants of A1�A2 are terms of the form ha1; a2i, where ai : Ai.� We also introduce the projection functions �i: � ` a : A1 �A2� ` �i(a) : Aitogether with a reduction relation generated by the axiom �i(ha1; a2i)!� ai.� As Un � Un+1 , we introduce an inclusion rule (�): � ` A : �n� ` A : �n+1A type universe Un in Nuprl is closed under the construction of dependent cartesianproducts, but as we do not need dependent cartesian products in the paper, we don'tintroduce them.The system �N thus obtained has many properties of usual PTSs, like Church-Rosser (for !��), Subject Reduction and Correctness of Types. With rule (�), welose Unicity of Types, but we can prove a weakened version of it.Let � be a context for �N. Due to correctness of types, for each �-type A thereis n � 1 such that � ` A : �n. (compare this to Nuprl: each type in Nuprl belongsto some type universe Un). We call the smallest n for which � ` A : �n the orderof A (in �), notation ord�(A). We generalize this de�nition to arbitrary �-terms A:ord�(A) is the minimal n for which there is B such that � ` A : B : �n. We provesome elementary properties of ord�(A):� ord�(A) = ord�(A) if � is legal and � � �;� ord�(�n) = n+ 1;� If � ` A : B then ord�(A) < ord�(B);� If x:A 2 � then ord�(x) = ord�(A)� 1;� ord�(�x:A:B) = max(ord�(A); ord�;x:A(B));� ord�(�x:A:b) = max(ord�(A)� 1; ord�;x:A(b));� ord�(hA1; A2i) = ord�(A1 �A2) = max(ord�(A1); ord�(A2)).We show that the orders in �N (and thus the type universes in Nuprl) are closely re-lated to orders in rtt by looking at translations of rtt propositions to �N types viaa propositions-as-types embedding T : We prove that if f is an order-n propositionin rtt, then ord�0(T (f)) = n. Here, �0 is some basic context that contains onlysome type information of the relation symbols that are used in rtt. We concludethat our formulation of Nuprl as a PTS is faithful to the idea behind universes inMartin-L�of's type theory and our de�nition of order on Nuprl terms captures thehierarchy of universes in Nuprl and provides an elegant comparison between Nuprland rtt. As a bonus, we get a description of rtt in a propositions-as-types stylein which the notion of order is maintained.There are more similarities between rtt and Nuprl. Both Nuprl and rtt havea kind of higher order substitution (see Chapter 5 of [10] and Section 3 of [14]). Weare currently investigating the similarities between both notions of substitution.Now we stop to explain the philosophy of our approach and the novelty of whatwe have provided. We also discuss future research that might be sparkled by ourpaper. 17

At the beginning of this century, the paradoxes led to many new formulationsof logical systems and an amazing variety of ideas and approaches. Later on, someof these ideas where abandoned when they shouldn't have. Even more, some ofthe ideas proposed were found later to contribute nothing to the solution of theparadoxes. For example, even though ZF set theory uses the foundation axiom, itis quite clear now that it is the separation rather than the foundation axiom whichwas responsible for the avoidance of the paradoxes.Our standpoint in this paper is not to defend one line against another. Rather,we aim to clarify the di�erent notions and philosophies assumed in the foundationof logic. In this paper, our chosen notion is that of Russell's orders as found inthe famous Rami�ed Theory of Types rtt. Russell, whose contribution to modernlogic is historical, avoided the paradox (that he himself discovered) by adoptingtwo layers: types and orders. Later it was found that orders contributed nothingto the avoidance of the paradox and Ramsey's work led to the abandonment ofRussell's orders. It is not clear to us whether Russell did actually know that ordersdo not contribute to the avoidance of the paradox. We believe however that hisintuition of using orders (as well as types) is a solid one and we have seen thisintuition being repeated in many predicative styles logics. In [11], we show thatRussell's orders come back in Kripke's account of levels of truths. In this paper, weshow that Russell's orders are present in Martin-L�of's type theory and the proofchecker Nuprl. Of course the word \orders" is not used by Kripke, Martin-L�of andConstable. Our study however shows that formally representing (with orders) theinformal hierarchies of these systems is informative about these hierarchies, aboutthe systems themselves and about the philosophies behind them.Not only does our paper revive the \order" concept, and show its usefulnessfor explaining basic hierarchies and philosophies in modern systems, but also, ourpaper places the historical system underlying Principia Mathematica in a contextwith a modern system of computer mathematics (Nuprl) and modern type theories(Martin-L�of's type theory and PTSs). Our main results concerning the relationshipbetween these various systems can be summarised as follows (we take `r (resp. `n)to stand for type derivation in rtt (resp. in Nuprl), and assume a translation Tfrom types and functions in rtt into Nuprl; also �0 is a basic Nuprl-context whichcontains information on the relation and individual symbols of rtt):1. The system (underlying) Nuprl can be seen as a simple extension of a PTS.2. rtt can be embedded in Nuprl.3. Hence rtt can be regarded as a PTS.4. Nuprl extends rtt in the sense that if � `r f : t then �0 `n T (f) : T (t).A number of questions on extending these results remain open. These questions areas follows:1. Since Martin-L�of's type theory, Nuprl and rtt have as aim to be a foundationof mathematics, one should have an interpretation of the most basic systemsof logic: predicate logic (Pred) in rtt. This would be nice and the advantagesof relating rtt, PTSs and Nuprl would carry over to Pred as well. Moreover,one would get the following picture: Pred < rtt < Nuprl < PTSs.2. We have shown that Nuprl extends rtt (see 4 above). It would be nice toanswer whether Nuprl is a conservative extension of rtt.Questions 1 and 2 are very interesting and must be the subject of future research.We have thought about them and up to this stage, no clear answer has been found.Question 1 causes di�culties precisely because Russell's notion of substitution is18

di�erent from substitution as is used in modern logic and type theory. We havecome a long way at formalising in modern style Russell's ideas and theory. Thereis still work to be done in this �eld and we believe that this work might prove veryuseful to modern computer science. It may be the case for example that parallelcomputation may well bene�t from Russell's substitution. These are issues we areinvestigating at the moment.Question 2 has been partially attempted in the paper. We have said that theconverse of Theorem 4.5 does not hold. We have given as a reason for this theinclusion rule (�) which is only present in Nuprl and not in rtt. As shown in thepaper, rtt enjoys the unicity of types property whereas Nuprl does not. Here weexplain intuitively this problem caused by the di�erence between Nuprl and rttand give our opinion of how future directions in establishing a form of conservativitymust be followed.We know from the fact that Nuprl extends rtt that � `r f : t then �0 `nT (f) : T (t). Now, let us take this example:� `r 8x:�0[R(x)] : ()1)�0 `n T (8x:�0[R(x)]) : �1)(�)�0 `n T (8x:�0[R(x)]) : �n � T (()n) for any n � 1 6)unicity of types in rtt� `r 8x:�0[R(x)] : ()n for any n > 1.This means that we cannot go back from Nuprl to rtt.We can however do something about that. The idea is to establish the order ofthe Nuprl term A and to only go in the opposite direction of Theorem 4.5 whenthe type of A is �a and a is the order of A. Hence in our example above, as 1 isthe order of T (8x:�0[R(x)]), we can only go back with �0 `n T (8x:�0[R(x)]) : �1obtaining the valid typing � `r 8x:�0[R(x)] : ()1.We have provided a partial result related to this question (given by Lemma 4.6and Corollary 4.7) which says that for any Russell typable propositional functionf of order a, we can establish that its Nuprl order is also a and hence when wetry and mimick the Nuprl typing in rtt, we should only restrict ourselves to doingthis when the Nuprl type is �a and a is the order of the Nuprl term avoiding theinclusion rule as much as possible. This is already a powerful result. Of course, itremains that we fully work out a translation from Nuprl to rtt and show in whatway it can be said that rtt extends Nuprl. This will involve a huge technicalityconcerning rtt's substitution and free variables. It is left as a subject for futureresearch.References[1] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov Gabbay, and T.S.E.Maibaum, editors, Handbook of Logic in Computer Science 2: Background: ComputationalStructures, 117{309. OUP, 1992.[2] A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,5:56{68, 1940.[3] R.L. Constable et al. Implementing Maths with the Nuprl Proof Development System.Prentice-Hall, 1986.[4] T. Coquand and G. Huet. The calculus of constructions. Information and Computation,76:95{120, 1988.[5] G. Dowek et al. The Coq proof assistant version 5.6, Users guide. Rapport de recherche 134,INRIA, 1991.[6] G. Frege. Grundgesetze der Arithmetik, begri�sschriftlich abgeleitet, I + II. Pohle, Jena,1892 and 1903. 19

[7] D. Hilbert and W. Ackermann. Grundz�uge der Theoretischen Logik. Die Grundlehrender Mathematischen Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag,Berlin, �rst edition, 1928.[8] W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin and J.R. Hindley,editors, To H.B. Curry: Essays on Combinatory Logic, �-Calculus and Formalism, 479{490,1980. Academic Press.[9] P.B. Jackson. Enhancing the Nuprl Pro� Development System and Applying it to Compu-tational Abstract Algebra. PhD thesis, Cornell University, Ithaca, New York, 1995.[10] P.B. Jackson. The Nuprl proof development system, Version 4.1 reference manual and user'sguide. Cornell University, Department of Computing Science, Ithaca, New York., 1995.[11] F. Kamareddine and T. Laan. A re
ection on Russell's rami�ed types and Kripke's hierarchyof truths. Journal of the Interest Group in Pure and Applied Logic 4(2), 1996.[12] J.W. Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum,editors, Handbook of Logic in Computer Science 2: Background: Computational Structures,pages 1{116. OUP, 1992.[13] S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690{716, 1975.[14] T.D.L. Laan. A modern elaboration of the Rami�ed Theory of Types. Studia Logica, 57:243{278, 1996.[15] P. Martin-L�of. An intuitionistic theory of types: predicative part. In H.E. Rose and J.Shepherdson, editors, logic Colloquium '73. North Holland, 1975.[16] P. Martin-L�of. Constructive mathematics and computer programming. In Sixth InternationalCongress for Logic, Methodology and Philosophy of Science, 153{175, Amsterdam, 1982.North-Holland.[17] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.[18] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath.Studies in Logic and the Foundations of Mathematics 133. North-Holland, Amsterdam, 1994.[19] F.P. Ramsey. The foundations of mathematics. Proc. of the London Mathematical Society,338{384, 1925.[20] B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.[21] B. Russell. Mathematical logic as based on the theory of types. American Journal ofMathematics, 30, 1908.[22] J. Terlouw. Een nadere bewijstheoretische analyse van GSTT's. Technical report, Depart-ment of Computer Science, University of Nijmegen, 1989.[23] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das Kontinuum und andereMonographien, Chelsea Pub.Comp., New York, 1960.[24] A. Tarski. Der Wahrheitsbegri� in den formalisierten Sprachen. Studia Philosophica, 1:261{405, 1936. German translation by L. Blauwstein from the Polish original (1933) with apostscript added.[25] A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 19101,19272.
20

