
Calculi of Generalised �-Reduction and Explicit Substitutions:The Type Free and Simply Typed Versions�Fairouz Kamareddine and Alejandro R��os J. B. WellsUniversity of GlasgowDepartment of Computing Science17 Lilybank GardensGlasgow G12 8QQ, ScotlandFAX: +44 141 330 4913ffairouz,riosg@dcs.gla.ac.ukhttp://www.dcs.gla.ac.uk/research/beauty
Boston UniversityCollege of Arts and SciencesDepartment of Computer Science111 Cummington Street, Room 138Boston, MA 02215, U.S.A.FAX: +1 617 353 6457jbw@cs.bu.eduhttp://www.cs.bu.edu/~jbwApril 11, 1997AbstractExtending the �-calculus with either explicit substitution or generalised reduction has been the subjectof extensive research recently and still has many open problems. This paper is the �rst investigation intothe properties of a calculus combining both generalised reduction and explicit substitutions. We presenta calculus, �gs, that combines a calculus of explicit substitution, �s, and a calculus with generalizedreduction, �g. We believe that �gs is a useful extension of the �-calculus because it allows postponment ofwork in two di�erent but complementary ways. Moreover, �gs (and also �s) satis�es desirable propertiesof calculi of explicit substitutions and generalised reductions. In particular, we show that �gs preservesstrong normalisation, is a conservative extension of �g, and simulates �-reduction of �g and the classical�-calculus. Furthermore, we study the simply typed versions of �s and �gs and show that well typedterms are strongly normalising and that other properties such as typing of subterms and subject reductionhold. Our proof of the preservation of strong normalisation (PSN) is based on the minimal derivationmethod. It is however much simpler because we prove the commutation of arbitrary internal and externalreductions. Moreover, we use one proof to show both the preservation of �-strong normalisation in �sand the preservation of �g-strong normalisation in �gs. We remark that the technique of these proofs isnot suitable for calculi without explicit substitutions (e.g. the preservation of �-strong normalisation in�g requires a di�erent technique).1 Introduction1.1 The �-calculus with generalized reductionIn the term ((�x:�y:N)P)Q, the abstraction starting with �x and the argument P form the redex (�x:�y:N)P .When this redex is contracted, the abstraction starting with �y and Q will in turn form a redex. What isimportant is that the only argument the abstraction starting with �y (or some residual of this abstraction)can ever have is Q (or some residual of Q). This fact has been exploited by many researchers and reductionhas been extended so that the implicit redex based on the matching �y and Q is given the same priority asthe intervening redex.An initial attempt to generalize the notion of redex might be to de�ne a rule like the following:(�x:�y :N)PQ! (�x:N [y:=Q])P�This work is supported by EPSRC grants GR/K25014 and GR/L36963 and by NSF grant CCR-9417382.1

It quickly becomes evident that this is not su�cient. For example, the proposed rule does not allow directlyreducing the binding of y to Q in the term A � (�z :(�x:�y :N)P)RQ. We shall exploit the notion of a wellbalanced segment (sometimes known as a �-chain), which is the special case of one-hole contexts given bythis grammar: S ::= [�] j (S[�x:[�]])M j S[S]Using balanced segments, generalized reduction is then given by this rule:S[�x:M]N ! S[M [x:=N]]We �nd the above de�nition of well-balanced segments and generalised reduction rather cumbersome andbelieve that a more elegant de�nition can be given. In order to do so, we change from the classical notationto the item notation. Instead of writing �x:M , we write (�x)M and instead of MN we write (N�)M . Itemnotation has many advantages as shown in [21, 22]. Let us illustrate here with the term A given abovewhich we write in item notation as in Figure 1. We see immediately that the redexes originate from the
(Q�) (R�) (�z) (P�) (�x) (�y) NFigure 1: Redexes in item notation in term Acouples (Q�)(�y), (R�)(�z) and (P�)(�x). Moreover, (Q�)(R�)(�z)(P�)(�x)(�y) is a well-balanced segment.This natural matching was not present in the classical notation. We call items of the form (P�) and (�x),application and abstraction items respectively. With item notation, generalised reduction is written as:(M�)s(�x)N !g� sfN [x :=M]g for s well-balanced. (Here, f and g are used for grouping purposes so thatno confusion arises.) For example,(Q�)(R�)(�z)(P�)(�x)(�y)N !g� (R�)(�z)(P�)(�x)fN [y := Q]gSurely this is clearer than writing (�z :(�x:�y:N)P)RQ!g� (�z :(�x:N [y := Q]P)R.Generalized reduction was �rst introduced by Nederpelt in 1973 to aid in proving the strong normalizationof AUTOMATH [39]. Kamareddine and Nederpelt have shown how generalised reduction makes moreredexes visible, allowing exibility in reducing a term [21]. Bloo, Kamareddine, and Nederpelt show thatwith generalised reduction one may indeed avoid size explosion without the cost of a longer reduction pathand that simultaneously the �-calculus can be elegantly extended with de�nitions which result in shortertype derivations [7]. Generalised reduction is strongly normalising [7] for all systems of the �-cube [4]and preserves the strong normalisation of ordinary �-reduction [19]. In particular, generalized reductionallows the postponement of K-reductions (which discard their argument) after I-reductions (which use theirargument in at least one place).An alternative approach to generalized reduction which has been followed by many researchers is to useone of these two local transformations:(�) ((�x:N)P)Q! (�x:NQ)P() (�x:�y:N)P ! �y:(�x:N)PThese rules transform terms to make more redexes visible to the ordinary notion of �-reduction. For example,the rule makes sure that �y and Q in the example A above can form a redex before the redex based on �xand P is contracted. Also, ((�x:�y:N)P)Q !� (�x:(�y:N)Q)P and hence both � and put �y next to its2

matching argument. The � rule moves the argument next to its matching � whereas moves the � next toits matching argument.Obviously, � and are related to generalised reduction. in fact, � and transform terms in order to makemore potential redexes visible and then conventional �-reduction can be used to contract those newly visibleredexes. Generalised reduction on the other hand, performs reduction on the potential redexes withouthaving to bother to make them into classical redexes. Now, we go back to the above example, where withgeneralised reduction we got: (�z :(�x:�y :N)P)RQ!g� (�z :(�x:N [y := Q])P)R. We illustrate how � and work:(�z :(�x:�y:N)P)RQ!� (�z :(�x:�y:N)PQ)R!� (�z :(�x:(�y :N)Q)P)R!� (�z :(�x:N [y := Q])P)R(�z :(�x:�y:N)P)RQ! (�z :�y(�x:N)P)RQ! (�y(�z :(�x:N)P)R)Q!� (�z :(�x:N [y := Q])P)RFinally, note that in item notation it is easier to describe � and . We illustrate with � and the aboveexample:We can reshu�e the term (Q�)(R�)(�z)(P�)(�x)(�y)N to (R�)(�z)(P�)(�x)(Q�)(�y)N in order to trans-form the bracketing structure ff gf gg into f gf gf g, where all the redexes correspond to adjacent `f' and`g'. In other words, Figure 1 can be redrawn using the �-reduction twice in Figure 2.
(R�) (�z) (P�) (�x) (Q�) (�y) NFigure 2: �-normal forms in item notation for term AThe � rule can be applied to both explicitly and implicitly typed systems. However, the transfer of to explicitly typed systems is not straightforward, since in these systems the type of y in the term Amay be a�ected by the reducible pair of �x and P . For example, it is �ne to write ((�x:�:�y:x:y)z)u !�(�x:�:(�y:x:y)u)z but not to write ((�x:�:�y:x:y)z)u! (�y:x:(�x:�:y)z)u.1Local transformations like and � began to appear in the literature around 1989. (See [29] for a summary).Regnier [41] introduces the notion of a premier redex which is similar to the redex based on �y and Q above(which we call a generalised redex). Later, he uses � and (and calls the combination �) to show thatthe perpetual reduction strategy �nds the longest reduction path when the term is Strongly Normalising(SN) [42]. Vidal also introduces similar reductions [46]. Kfoury, Tiuryn, and Urzyczyn use � (and otherreductions) to show that typability in ML is equivalent to acyclic semi-uni�cation [27]. Sabry and Felleisendescribe a relationship between a reduction similar to � and a particular style of CPS [44]. De Groote [13]uses � and Kfoury and Wells [30] use to reduce the problem of �-strong normalisation to the problemof weak normalisation (WN) for related reductions. Kfoury and Wells use � and to reduce typabilityin the rank-2 restriction of system F to the problem of acyclic semi-uni�cation [28]. Klop, S�rensen, andXi [31, 47, 45] use related reductions to reduce SN to WN. Finally, [2] uses � (called \let-C") as a part of ananalysis of how to represent sharing in a call-by-need language implementation in a formal calculus.1.2 The �-calculus with explicit substitutionMost literature on the �-calculus treats substitution as an atomic operation and leaves implicit the actualcomputational steps necessary to perform substitution. Substitution is usually de�ned with operators whichdo not belong to the language of the �-calculus. In any real implementation, the substitution required by1An alternative is to apply to the type erasure of the term, which may be quite complicated to express in terms of thetype-annotated term. 3

�-reduction (and similar higher-order operations) must be implemented via smaller operations. Thus, thereis a conceptual gap between the theory of the �-calculus and its implementation in programming languagesand proof assistants. Explicit substitution attempts to bridge this gap without abandoning the setting ofthe �-calculus.By representing substitutions in the structure of terms and by providing (�rst-order) reductions to prop-agate the substitutions, explicit substitution provides a number of bene�ts. A major bene�t is that explicitsubstitution allows more exibility in ordering work. Propagating substitutions through a particular subtermcan wait until the subterm is the focus of computation. This allows all of these substitutions to be done atonce, thus improving locality of reference. Obtaining more control over the ordering of work has become animportant issue in functional programming language implementation (cf. [40]). The exibility provided byexplicit substitution also allows postponing unneeded work inde�nitely (i.e., avoiding it completely). Thiscan yield pro�ts, since implicit substitution can be an ine�cient, maybe even exploding, process by the manyrepetitions it causes. Another bene�t is that explicit substitution allows formal modeling of the techniquesused in real implementations, e.g., environments. Because explicit substitution is closer to real implementa-tions, it has the potential to provide a more accurate cost model. (This possibility is particularly interestingin light of the di�culty encountered in formulating a useful cost model in terms of graph reduction [33, 40].)Proof assistants may bene�t from explicit substitution, due to the desire to perform substitutions locallyand in a formal manner. Local substitutions are needed as follows. Given xx[x:=y], one may not be interestedin having yy as the result of xx[x:=y] but rather only yx[x:=y]. In other words, one only substitutes oneoccurrence of x by y and continues the substitution later. Theorem provers like Nuprl [8] and HOL [14]implement substitution which allows the local replacement of some abbreviated term. This avoids a sizeexplosion when it is necessary to replace a variable by a huge term only in speci�c places to prove a certaintheorem.Formalization helps in studying the termination and conuence properties of systems. Without formal-isation, important properties such as the correctness of substitutions often remain unestablished, causingmistrust in the implementation. As the implementation of substitution in many theorem provers is not basedon a formal system, it is not clear what properties their underlying substitution has, nor can their imple-mentations be compared. Thus, it helps to have a choice of explicit substitution systems whose propertieshave already been established. This is witnessed by the recent theorem prover ALF, which is formally basedon Martin-L�of's type theory with explicit substitution [34]. Another justi�cation for explicit substitutionin theorem proving is that some researchers believe \tactics" can be replaced by the notion of incompleteproofs, which are believed to need explicit substitutions [37, 34].The last �fteen years have seen an increasing interest in formalising substitution explicitly; various calculiincluding new operators to denote substitution have been proposed. Amongst these calculi we mentionC��� [12]; the calculi of categorical combinators [9]; �� [1], ��* [10], ��SP [43], referred to as the ��-family;�� [5], a descendant of the ��-family; '�BLT [20], �exp [6], �s [23], �se [26], and �� [36]. All these calculi(except �exp) are described in a de Bruijn setting where natural numbers play the role of variables.In [23], we extended the �-calculus with explicit substitutions by turning de Bruijn's meta-operatorsinto object-operators, thus o�ering a style of explicit substitution that di�ers from that of ��. The resultingcalculus �s remains intuitively as close to the �-calculus as possible for a calculus of explicit substitution. Animportant motivation for introducing the �s-calculus [23] was to provide a calculus of explicit substitutionswhich would both preserve strong normalisation and have a conuent extension on open terms [26]. Thereare calculi of explicit substitutions which are conuent on open terms, e.g. ��* [10] and �� [36], but theyalso have important disadvantages. Melli�es proved that ��* (as well as both the rest of the ��-familyand the categorical combinators) does not preserve strong normalisation [35]. There are also calculi whichpreserve strong normalization, e.g., the ��-calculus [5], but this calculus is not conuent on open terms.Recently, the ��-calculus (cf. [36]) has been proposed as a calculus which preserves strong normalisation andis itself conuent on open terms. The ��-calculus works with two new applications that allow the passageof substitutions within classical applications only if these applications have a head variable. This is done tocut the branch of the critical pair which is responsible for the non-conuence of �� on open terms. Hence,�� preserves strong normalisation and is itself conuent on open terms. Unfortunately, �� is not able tosimulate one step �-reduction as shown in [36]. Instead, it simulates only a \big step" �-reduction. On theother hand, �s has been extended to �se which is conuent on open terms (cf. [26]) and simulates one step�-reduction but the preservation of strong normalisation for the extension �se is still an open problem.4

1.3 Combining generalised reduction and explicit substitutionWe have already explained the separate usefulness of generalised reduction and explicit substitutions. Themain bene�ts of these concepts are similar: both emphasize exibility in the ordering of operations. Inparticular, both generalized reduction and explicit substitution allow the postponement of work, but indi�erent, complementary ways. On one side, generalized reduction always allows unnecessary K-redexesto be bypassed. Explicit substitution will not in general allow this, since reducing the K-redex might benecessary to expose an essential I-redex. Similarly, on the other side, explicit substitution allows bypassingany work inside a subterm that will be discarded later. However, generalized reduction does not provide anymeans for performing only those parts of a substitution that will be used later. Thus, we can see that theirbene�ts are complementary.We claim that a system with the combination of generalized reduction and explicit substitution is moreadvantageous than a system with each concept separately. Obviously, if the bene�ts of both are desiredsimultaneously, it is important to study the combination, a task which this paper performs. Before thecombination can be safely used, it must be checked that this combination is sound and safe exactly like ithas been checked that each of explicit substitutions and generalised reductions separately are sound and safe.This paper shows that extending the �-calculus with both concepts results in theories that are conuent,preserve termination, and simulate �-reduction.Generalised reduction (g�), has never before been introduced in a de Bruijn setting. Explicit substitutionhas almost always been presented in a de Bruijn setting. Since explicit substitution calculi are usually writtenwith de Bruijn indices, we combine g�-reduction and explicit substitution in a de Bruijn setting, giving the�rst calculus of generalised reduction �a la de Bruijn2. As we need to describe generalised redexes in anelegant way, we use a notation for �-terms suitable for this purpose, the item notation [22].In Section 2 we introduce the calculus of generalised reduction, the �g-calculus, in item notation withde Bruijn indices and prove its conuence. In Section 3 we introduce the �s-calculus and extend it intothe �gs-calculus by adding the necessary reductions to simulate !g� . We show that �gs is a conservativeextension of �g, it simulates g� and is conuent. In Section 4 we prove that the �gs-calculus preserves�g-strong normalisation (i.e., a is �g-SN) a is �gs-SN) and that the �s-calculus preserves the �-strongnormalisation. We conclude that a is �-SN , a is �s-SN , a is �g-SN , a is �gs-SN. In Section 5 thesimply typed versions of the �s- and �gs-calculi are presented and subject reduction, typing of subterms,strong normalisation of well typed terms, and other properties are proved.2 The �g-calculusWe assume familiarity with the �-calculus and its various notions like reduction, contexts, etc. Where nototherwise de�ned, we follow the conventions of Barendregt [3, 4]. Nevertheless, we present some basic neededde�nitions in what follows:De�nition 2.1. [Reduction Notations]Let A be a set and r a binary relation on A . We denote the fact (a; b) 2 r by a!r b or a! b when thecontext is clear enough. We denote:1. r� or �!r or just �! , the reexive closure r .2. r+ or !+r or just !+; the transitive closure of r .3. r� or !!r or just !! the reexive and transitive closure of r . When a !! b we say there exists areduction sequence from a to b .4. =r the reexive, symmetric and transitive closure of !r. That is, =r is the least equivalence relationcontaining !r.5. = for syntactic identity and write a = b when a and b are syntactically identical.2The main advantages of de Bruijn's notation is that it allows to get rid of Barendregt's variable convention (which insiststhat free variables be di�erent from bound ones and that if �x and �y occur in a term, then x must be distinct than y), since�-congruent terms are syntactically identical. 5

De�nition 2.2. [Reduction Relations and Systems] For a given set of rewrite rules r on a set A, wecall r-reduction, the reduction relation of the r-calculus (i.e., the least compatible relation containing therules of r). If R is a reduction relation on a set A, we say that (A;R) is a Reduction System.3De�nition 2.3. [Conluence and Church Rosser]Let R be a reduction relation on A . For R, we de�ne local conuence (or Weak Church Rosser WCR),conuence (or Church Rosser CR) and strong conuence (or Strong Church Rosser SCR) respectively asfollows:1. WCR: 8a; b; c 2 A 9d 2 A : (a !R; b ^ a !R c)) (b !!R d ^ c !!R d) :2. CR: 8a; b; c 2 A 9d 2 A : (a !!R b ^ a !!R c)) (b !!R d ^ c !!R d) :3. SCR: 8a; b; c 2 A 9d 2 A : (a !R b ^ a !R c)) (b !R d ^ c !R d) :De�nition 2.4. [Normal Forms and Normalisation]Let R be a reduction relation on A .� We say that a 2 A is an R-normal form (R-nf for short) if there exists no b 2 A such that a!R b .� We say that b has an R-normal form if there exists an R-normal form a such that b!!R a . In thiscase, we say b is R-normalising.� We say that R is weakly normalising (WN) if every a 2 A has an R-normal form.� We say that R is strongly normalising (SN) if there is no in�nite sequence (ai)i�0 in A such thatai !R ai+1 for all i � 0 .� We say that a termM is strongly R-normalisaing if there are no in�nite R-reduction sequences startingat M .� When no confusion arises, then R may be omitted and we speak simply of normal forms or normalisa-tion.Note that conuence of R guarantees unicity of R-normal forms. In that case, the R-normal form ofa , if it exists, is denoted by R(a) . Strong normalisation implies weak normalisation and therefore theexistence of normal forms. The following lemma is an important connection between strong normalisationand conuence (its proof can be found in [3], proposition 3.1.25):Lemma 2.5 (Newman).Every strongly normalising, locally conuent reduction relation is conuent.We assume familiarity with de Bruijn notation. For example, �x:�y :(x(�z :zx))y is written in ordinaryde Bruijn notation as �(�(2(�(13))1)) and �x:�y:xy as ��(21). To translate free variables, we assume a �xedordered list of binders (written from left to right) � � � ; �z ; �y; �x and pre�x it to the term to be translated.Hence, �x:yz translates as �34 whereas �x:zy translates as �43. Since generalized �-reduction is betterdescribed in item notation, we adopt the item syntax (see [21, 22] for the advantages of item notation) andwrite a b as (b �)a and �a as (�)a. The � symbol informs us that we are dealing with an application, just like� informs us that there is an abstraction.De�nition 2.6. The set of terms �, is de�ned by the grammar � ::= N j (� �)� j (�)�. We let a; b; : : :range over � and m;n; : : : over N (positive natural numbers).4 We write a / b when a is a subterm of b.A reduction ! is compatible on � when for all a; b; c 2 �, it holds that a ! b implies (a �)c ! (b �)c,(c �)a! (c �)b, and (�)a! (�)b.3Note that we depart from [3], De�nition 3.1.1, where a reduction relation is not only compatible, but also reexive andtransitive. Our reason for doing so is that we want to keep the notation for the reduction system simpler.4Our use of N as the set of positive natural numbers may be considered non-standard by computer scientists who insist onhaving the number 0 as an element of N. 6

For example, (�x�y :zxy)(�x:yx) !� �u:z(�x:yx)u which in de Bruijn notation is (��521)(�31) !��4(�41)1, is expressed in de Bruijn item notation as ((�)(1�)3�)(�)(�)(1�)(2�)5 !� (�)(1�)((�)(1�)4�)4.Note that we did not simply replace 2 in (�)(1�)(2�)5 by (�)(1�)3. Instead, we decreased 5 as one �disappeared, and incremented the free variables of (�)(1�)3 as they occur within the scope of one more �.For incrementing the free variables we need updating functions U ik, where k tests for free variables and i� 1is the value by which a variable, if free, must be incremented:De�nition 2.7. The updating functions U ik : �! � for k � 0 and i � 1 are de�ned inductively:U ik((a �)b) = (U ik(a) �)U ik(b)U ik((�)a) = (�)(U ik+1(a)) U ik(n) = (n+ i� 1 if n > k,n if n � k.Now in the following we de�ne meta-substitution. The last equality substitutes the intended variable(when n = j) by the updated term. If n is not the intended variable, it is decreased by 1 if it is free (casen > j) as one � has disappeared and if it is bound (case n < j) it remains unaltered.De�nition 2.8. The meta-substitutions at level j, for j � 1, of a term b 2 � in a term a 2 �, denotedaffj bgg, are de�ned inductively on a as follows:((a1�)a2)ffj bgg = ((a1ffj bgg)�)(a2ffj bgg)((�)c)ffj bgg = (�)(cffj+1 bgg) nffj bgg =8><>:n� 1 if n > j,U j0 (b) if n = j,n if n < j.The following lemma establishes the properties of meta-substitution and updating.Lemma 2.9. Let a; b; c 2 �. The following properties hold:1. For k < n < k + i: (U ik(a))ffn bgg = U i�1k (a)2. For l � k < l+ j: U ik(U jl (a)) = U j+i�1l (a)3. For l + j � k + 1: U ik(U jl (a)) = U jl (U ik+1�j(a))4. For k + i � n: (U ik(a))ffn bgg = U ik(affn� i+ 1 bgg)5. For n � k + 1: U ik(affn bgg) = (U ik+1(a))ffn U ik�n+1(b)gg6. For i � n: affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cggggProof. The proof is by induction on a. The proof of 4 requires 2 with l = 0; the proof of 6 uses 1 and 4 bothwith k = 0; �nally, 3 with l = 0 is needed to prove 5.In order to introduce generalised �-reduction we need some de�nitions (cf. [22]).De�nition 2.10. Items, segments and well-balanced segments (w.b.) are de�ned respectively by:I ::= (� �) j (�) S ::= � j I S W ::= � j (��)W(�) j W Wwhere � is the empty segment. Hence, a segment is a sequence of items. (a �) and (�) are called a �-itemand a �-item, respectively. We let I , J , : : : range over I; S, S0, : : : over S; and W , U , : : : over W . For asegment S, lenS, is given by len� = 0 and len(I S) = 1 + lenS. The number of main �-items in S, #�(S),is given by #�(�) = 0 and #�((a �)S) = #�(S) and #�((�)S) = 1 +#�(S).De�nition 2.11 (�-Calculus). The �-calculus (�a la de Bruijn) is the reduction system (�;!�), where!� is the least compatible reduction on � generated by the �-rule: (a�)(�)b! bff1 agg.De�nition 2.12 (�g-Calculus). The �g-calculus is the reduction system (�;!g�), where !g� denotesgeneralized �-reduction, the least compatible reduction on � generated by the g�-rule:(a�)W (�)b!W (bff1 U#�(W)+10 (a)gg) where W is well-balancedRemark 2.13. The �-rule is an instance of the g�-rule. (Take W = � and check that U10 (a) = a.)7

Now, let us briey explain the relation between!g� and!� and! given in the introduction. It wouldbe helpful if we write !� and ! in item notation:(Q�)(P�)(�x)N !� (P�)(�x)(Q�)N (P�)(�x)(�y)N ! (�y)(P�)(�x)NNote how in !�, the start of a redex (P�)(�x) is moved (or reshu�ed) giving (Q�) the chance to �nd itsmatching (�) in N . In ! the same happens but now it is (�y) which is given the chance to look for itsmatching (��). Only once reshu�ing has taken place, can the newly found redex be contracted. !g� onthe other hand avoids reshu�ing and contracts the redex as soon as it sees the matching of � and �.In the following, we extend the de�nitions of updating and meta-substitution to cover segments and provesome useful properties.De�nition 2.14. Let S 2 S, a; b 2 �, k � 0 and n; i � 1. We de�ne U ik(S) and Sffn agg by:U ik(�) = � �ffn agg = �U ik((b �)S) = (U ik(b) �)U ik(S) ((b �)S)ffn agg = (bffn agg �)(Sffn agg)U ik((�)S) = (�)(U ik+1(S)) ((�)S)ffn agg = (�)(Sffn+1 agg)Lemma 2.15. Let S; T be segments and a; b 2 �. The following hold:1. U ik(S T) = U ik(S)U ik+#�(S)(T) and U ik(S a) = U ik(S)U ik+#�(S)(a).2. len(S) = len(U ik(S)) and #�(S) = #�(U ik(S)) and if S is w.b. then U ik(S) is w.b.3. (S �)ffn agg = Sffn agg �ffn+#�(S) agg for � a segment or a term.4. len(S) = len(Sffn agg) and #�(S) = #�(Sffn agg). If S is w.b. then Sffn agg is w.b.Proof. 1. and 3. By induction on S. 2. and 4. By induction on S using 1. and 3. respectively.Lemma 2.16 (Preservation of �-Equivalence). Let a; b 2 �. If a!!g� b then a =� b.Proof. It is su�cient to prove by induction on a that a !g� b implies a =� b. We will only prove theparticular base case a = (c�)W (�)d !g� W (dff1 U#�(W)+10 (c)gg) = b, with W 6= �, since the other casesare simpler. We prove this case by a nested induction on lenW . Observe that W = (e�)W1(�)W2, whereW1 and W2 are well balanced, because W 6= �. Let w1 = #�(W1) and w2 = #�(W2). We have the followingequalities, where in the justi�cations \IH" means the induction hypothesis and the numbers are lemmas:(c�)W (�)d= (c�)(e�)W1(�)W2(�)d(IH) =� (c�)W1((W2(�)d)ff1 Uw1+10 (e)gg)(2.15.3) = (c�)W1(W2ff1 Uw1+10 (e)gg)(�)(dff2+ w2 Uw1+10 (e)gg)(IH & 2.15.4) =� W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+10 (c)gg)(2.9.1) = W1(W2ff1 Uw1+10 (e)gg)(dff2+ w2 Uw1+10 (e)ggff1 Uw1+w2+20 (c)ff1+ w2 Uw1+10 (e)gggg)(2.9.6) = W1(W2ff1 Uw1+10 (e)gg)(dff1 Uw1+w2+20 (c)ggff1+ w2 Uw1+10 (e)gg)(2.15.3 & 2.15.4) = W1((W2(dff1 Uw1+w2+20 (c)gg))ff1 Uw1+10 (e)gg)(IH) =� (e�)W1(�)W2(dff1 Uw1+w2+20 (c)gg)= W (dff1 U#�(W)+10 (c)gg)Theorem 2.17 (Conuence of �g). The �g-calculus is conuent.Proof. This proof is the de Bruijn version of the proof given in [21]. Let a !!g� b and a !!g� c. ByLemma 2.16, a =� b and a =� c, hence b =� c. By conuence of �, 9d 2 � where b !!� d and c !!� d. ByRemark 2.13, b!!g� d and c!!g� d.There are, as we mentioned in the introduction, various notions of generalised reduction. For other proofsof conuence of some of these notions, we refer the reader to [2, 13, 19, 30, 31].Finally, the following ensures the good passage of g�-reduction through ff gg and U ik:8

Lemma 2.18. Let a; b; c; d 2 �. The following hold:1. If c!g� d then U ik(c)!g� U ik(d).2. If c!g� d then affn cgg !!g� affn dgg.3. If a!g� b then affn cgg !g� bffn cgg.Proof.1. By induction on c. We only prove the base case where c = (c1�)W (�)c3, W well balanced, and d =W (c3ff1 U#�(W)+10 (c1)gg). U ik(c)= U ik((c1�)W (�)c3)(2.15.1) = (U ik(c1)�)(U ik(W))(�)U ik+#�(W)+1(c3)(2.15.2) !g� (U ik(W))((U ik+#�(W)+1(c3))ff1 U#�(W)+10 (U ik(c1))gg)(2.9.3) = (U ik(W))((U ik+#�(W)+1(c3))ff1 U ik+#�(W)(U#�(W)+10 (c1))gg)(2.9.5) = (U ik(W))U ik+#�(W)(c3ff1 U#�(W)+10 (c1)gg)(2.15.1) = U ik(W (c3ff1 U#�(W)+10 (c1)gg))= U ik(d)2. By induction on a using 1.3. By induction on a. We only prove the base case: a = (a1�)W (�)a2 and b =W (a2ff1 U#�(W)+10 (a1)gg).affi cgg= ((a1�)W (�)a2)ffi cgg(2.15.3) = (a1ffi cgg�)(Wffi cgg)(�)(a2ffi+#�(W) + 1 cgg)(2.15.4) !g� Wffi cgg(a2ffi+#�(W) + 1 cggff1 U#�(W)+10 (a1ffi cgg)gg)(2.9.4) = Wffi cgg(a2ffi+#�(W) + 1 cggff1 (U#�(W)+10 (a1))ffi+#�(W) cgggg)(2.9.6) = Wffi cgg(a2ff1 U#�(W)+10 (a1)ggffi+#�(W) cgg)(2.15.3) = (W (a2ff1 U#�(W)+10 (a1)gg))ffi cgg= bffi cgg3 The �s- and �gs-calculiThe ��-calculus (cf. [1]) reects in its choice of operators and rules the calculus of categorical combinators(cf. [9]). The main innovation of the ��-calculus is the division of terms in two sorts: sort term andsort substitution. We depart from this style of explicit substitutions in two ways. First, we keep theclassical and unique sort term of the �-calculus. Second, we do not use some of the categorical operators,especially those which are not present in the classical �-calculus. We introduce new operators which reectthe substitution and updating that are only present in the meta-language of the �-calculus. By doing so, webelieve that our calculi are closer to the �-calculus from an intuitive point of view, rather than a categoricalone.A calculus accommodating explicit substitution via explicit rewrite rules in the �-calculus was �rstpresented in [20]. In that article, the intention was to introduce the philosophy in general and the calculusobtained did not possess neither conuence nor preservation of strong normalisation. In [23] the part ofthe calculus that was conuent and preserved strong normalisation was singled out. In this paper, we takethat part (�s) and extend it with generalised reduction. We start this section by presenting the �s- and�gs-calculi and then by studying their properties.The �s-calculus is obtained by internalising the meta-operators of De�nitions 2.7 and 2.8 in order tohandle substitutions explicitly. Therefore, the syntax of the �s-calculus is obtained by adding to � twofamilies of operators:1. Explicit substitution operators f�jgj�1 where (b �j)a stands for a where all free occurrences of thevariable representing the index j are to be substituted by the appropriately updated b.9

(�-generation) (b �)(�)a �! (b �1)a(�-�-transition) (b �j)(�)a �! (�)(b �j+1)a(�-�-transition) (b �j)(a1�)a2 �! ((b �j)a1�) (b �j)a2(�-destruction) (b �j)n �! 8><>:n� 1 if n > j,('j0)b if n = j,n if n < j.('-�-transition) ('ik)(�)a �! (�)('ik+1)a('-�-transition) ('ik)(a1�)a2 �! (('ik)a1�)('ik)a2('-destruction) ('ik)n �! (n+ i� 1 if n > k,n if n � k.Figure 3: The �s-calculus2. Updating operators f'ikgk�0i�1 necessary for working with de Bruijn indices.De�nition 3.1. The set of terms of the �s-calculus, denoted �s, is given as follows:�s ::= N j (�s �)�s j (�)�s j (�s �j)�s j ('ik)�s where j; i � 1 and k � 0We let a, b, and c range over �s. A term (a �j)b is called a closure. Furthermore, a term containing neither�'s nor ''s is called a pure term. The symbol � denotes the set of pure terms. The set DL of ��-segmentsis the set whose main items are either �-items or �-items, i.e., DL ::= � j (�s �)DL j (�)DL. As usual,a reduction ! on �s is compatible if for all a; b; c 2 �s, if a ! b then (a �)c ! (b �)c, (c �)a ! (c �)b,(�)a! (�)b, (a �j)c! (b �j)c, (c �j)a! (c �j)b and ('ik)a! ('ik)b.De�nition 3.2. Items, segments and well-balanced segments for �s are de�ned as follows:Is ::= (�s �) j (�) j (�s �j) j ('ik)Ss ::= � j IsSsWs ::= � j (�s �)Ws(�) j WsWsWe let I , J , : : : range over Is; S, S0, : : : over Ss; and W , U , : : : overWs. We call (a �j) and ('ik), a �-itemand a '-item respectively. The notion len(S) is trivially extended to S 2 Ss in the obvious way and #�(S)is extended by declaring that #�((a �j)S) = #�(S) and #�(('ik)S) = #�(S).As the �s-calculus updates and substitutes explicitly, we include a set of rules which are the equationsin De�nitions 2.7 and 2.8 oriented from left to right.De�nition 3.3 (�s-Calculus). The �s-calculus is the reduction system (�s;!�s), where !�s is the leastcompatible reduction on �s generated by the rules given in Figure 3. We use �s to denote this set of rules.De�nition 3.4 (s-Calculus). The calculus of substitutions associated with the �s-calculus is the reductionsystem generated by the set of rules s = �s� f(�-generation)g and we call it the s-calculus.De�nition 3.5 (Notation for s-Normal Forms). We use s(a) to denote the s-normal form of a. De�nes(S) for a ��-segment by s(�) = � and s((a �)S) = (s(a) �)s(S) and s((�)S) = (�)s(S).De�nition 3.6 (�gs-Calculus). The �gs-calculus is the calculus whose set of rules consists of �gs where�gs = �s [f(g�-generation)g and:(g�-generation) : (b �)W (�)a �!W (('#�(W)+10)b �1)a where W well balanced and W 6= �10

Note that in the �gs-calculus we do not merge (�-generation) and (g�-generation) into the following:(new g�-generation) : (b �)W (�)a �!W (('#�(W)+10)b �1)a where W well balancedThe reason for this lies in the fact that (new g�-generation) does not generalise (�-generation) of the �s-calculus. That is, (b�)(�)a !�-gen (b�1)a yet (b�)(�)a!new g�-gen (('10b)�1)a.The (�-generation) rule starts the simulation of a �-reduction by generating a substitution operator (�1).The (�-�-transition) and (�-�-transition) rules propagate copies of this operator throughout the term untilthey arrive at the variable occurrences. If a variable should be a�ected by the substitution, the (�-destruction)rule (case j = n) carries out the substitution by the updated term, thus introducing the updating operators.Finally the '-rules compute the updating.We state now the following theorem of the �s-calculus.Theorem 3.7. The following holds:1. The s-calculus is strongly normalising and conuent on �s.2. All s-normal forms are unique.3. The set of s-normal forms is exactly �.4. For every a; b 2 �s, the following hold:1: s((a �)b) = (s(a) �)s(b) 2: s((�)a) = (�)(s(a))3: s(('ik)a) = U ik(s(a)) 4: s((b �j)a) = s(a)ffj s(b)ggProof.1. We de�ne recursively a weight function W :W (n) = 1 W ((a�)b) =W (a) +W (b) + 1 W ((�)a) =W (a) + 1W (('ik)a) = 2W (a) W ((b �j)a) = 2W (a)(W (b) + 1)It is easy to show by induction on a that a!s b implies W (a) > W (b), hence the s-calculus is stronglynormalising.As for conuence, note �rst that the reduction !s is locally conuent because there are no criticalpairs and the theorem of Knuth-Bendix applies trivially. Finally, Newman's Lemma (see Lemma 2.5)guarantees conuence.2. The existence and unicity of s-normal forms (s-nf) is guaranteed by 1.3. Check �rst by induction on a that (b �i)a and ('ik)a are not s-normal forms. Then check by inductionon a that if a is an s-nf then a 2 �. Conclude by observing that every term in � is in s-nf.4. 4.1 and 4.2 hold because there are no s-rules whose left-hand side is an application or an abstraction.4.3 is shown as follows: �rst show the equality for terms in s-nf, i.e. use an inductive argument onc 2 � to show s(('ik)c) = U ik(s(c)). Let now a 2 �s, s(('ik)a) = s(('ik)s(a)) = U ik(s(s(a))) = U ik(s(a)).4.4 is shown similarly to (and using) 4.3.Lemma 3.8. Let a; b 2 �s. Then both of these statements hold:1. If a!�-gen b then s(a)!!� s(b).2. If a!g�-gen b then s(a)!!g� s(b).Proof. The �rst claim is proved by induction on a using Lemma 2.18 and Theorem 3.7. For the secondclaim, we need the following additional argument. Observe that for any ��-segment S it holds that s(S a) =s(S)s(a). Then note that if W is well balanced then it is a ��-segment and thus s(W a) = s(W)s(a).11

Corollary 3.9. Let a; b 2 �s. Then both of these statements hold:1. If a!!�s b then s(a)!!� s(b).2. If a!!�gs b then s(a)!!g� s(b).Corollary 3.10 (Conservative Extension). Let a; b 2 �. Then both of these statements hold:1. If a!!�s b then a!!� b.2. If a!!�gs b then a!!g� b.This last corollary says that the �(g)s-calculus is correct with respect to the �(g)-calculus, i.e., if a�(g)s-reduction sequence begins and ends with pure terms, there is a �(g)-reduction sequence beginning andending with the same terms.Moreover, the �(g)s-calculus is powerful enough to simulate (g)�-reduction.Lemma 3.11 (Simulation of (g)�-Reduction). Let a; b 2 �. Then the following statements hold:1. If a!� b then a!+�s b.2. If a!g� b then a!+�gs b.Proof. 1 is by induction on a. As usual the interesting case is when a = (�c)d and b = cff1 dgg. In thiscase: (�c)d!��gen c�1d!!s s(c�1d) T3:7= s(c)ff1 s(d)gg c;d2�= cff1 dgg.2 is by induction on a using Theorem 3.7.Corollary 3.12. Let a 2 �. The following hold:1. If a is strongly normalising in the �s-calculus, then a is strongly normalising in the �-calculus.2. If a is strongly normalising in the �gs-calculus, then a is strongly normalising in the �g-calculus.We prove now the conuence of �s and �gs on ground terms. We remark that not even �s is conuent onopen terms. As a matter of fact, in order to obtain conuence on open terms, certain rules must be added.The calculus thus obtained, �se has been shown conuent (cf. [26]). The combination of �se with generalisedreduction has not yet been studied.Theorem 3.13 (Conuence of �s and �gs). The �s and �gs-calculi are conuent on �s.Proof. We use the interpretation method (cf. [16, 10]). To prove conuence of the �s-calculus, remove allthe (g)'s from the proof below. For the conuence of the �gs-calculus, leave the (g)'s but remove the ()'sthat embrace the g's. The proof goes as follows:We interpret the �(g)s-calculus into the �(g)-calculus via s-normalisation:b s(b)a s(a) Thm. 2.17 dc s(c)
�(g)s s�(g)s

s
s

(g)�
(g)� (g)� �(g)s

(g)� �(g)sThe existence of the arrows s(a) !!(g)� s(b) and s(a) !!(g)� s(c) is guaranteed by Corollary 3.9. We canclose the diamond thanks to the conuence of the �(g)-calculus. Finally, Lemma 3.11 ensures s(b)!!�(g)s dand s(b)!!�(g)s d proving thus the conuence for the �(g)s-calculus.12

4 Preservation of Strong NormalisationWe show in this section that the �s-calculus preserves the �-calculus strong normalisation and that the�gs-calculus preserves the �g-calculus strong normalisation.The technique used in this section to prove preservation of strong normalisation (PSN) is an adaptationof the minimal derivation method used in [5] to prove PSN for �� and in [23] to prove PSN for �s. Ourproof includes the �rst proof of the commutation of arbitrary external and internal reduction. Moreover, wegive an inductive and elegant de�nition of internal/external reduction instead of the one that depends oninternal and external positions as in [5]. Finally, we introduce a syntactic notion of skeletons that will bevery informative about internal and external reduction. The elegance of our presentation is reected by thefact that one proof is enough to achieve both preservation results above.Notation 4.1. We write a 2 �-SN resp. a 2 �r-SN when a is strongly normalising in the �-calculus resp.in the �r-calculus for r 2 fg; gs; sg. We write a �!p b to denote that p is the position of the redex which iscontracted. Therefore a �!� b means that the reduction takes place at the root. We denote by � the pre�xorder between positions in a term. Hence if p, q are positions in the term a such that p � q, and we writeap (resp. aq) for the subterm of a at position p (resp. q), then aq is a subterm of ap.For example, if a = ((4�)(�)1�3)2, we have a1 = 2, a2 = (4�)(�)1, a21 = (�)1, a211 = 1, a22 = 4. Forexample, since 2 � 21, it must hold that a21 is a subterm of a2.The following three lemmas assert that all the �'s in the last term of a reduction sequence beginningwith a �-term must have been created at some previous step by a (generalized) ((g)�-generation) and tracethe history of these closures. The �rst lemma deals with one-step reduction where the redex is at the root;the second generalises the �rst; the third treats arbitrary reduction sequences.Lemma 4.2. Let !2 f!�s;!�gsg. If a �!� C[(e �i)d] then one of the following must hold:1. a = (e �)(�)d, C = [�], and i = 1.2. !=!�gs, a = (e0 �)W (�)d, W 6= �, C =W [�], e = ('#�(W)+10)e0, and i = 1.3. a = C 0[(e �j)d0] for some context C 0, some term d0 and j 2 fi� 1; ig.Proof. Since the reduction is at the root, we must check for every rule a ! a0 that if (e �i)d occurs in a0then one of the three possibilities follows. We supply proofs only for the interesting rules:(�-generation) : a = (c �)(�)b and a0 = (c �1)b. If (e �i)d matches (c �1)d then 1. Else (e �i)d must occurwithin b or c and hence 3. with j = i and d0 = d.(g�-generation) : Occurs only if!=!�gs. a = (c �)W (�)b,W 6= � and a0 =W (('#�(W)+10)c �1)b. If (e �i)dis (('#�(W)+10)c �1)d then 2. Else (e �i)d occurs in b, c or W , hence 3. with j = i, d0 = d.(�-�-transition) : a = (c �h)(�)b and a0 = (�)(c �h+1)b. If (e �i)d matches (c �h+1)b then 3. with j = i� 1,d0 = (�)d. Else (e �i)d occurs in b or c, hence 3. with j = i, d0 = d.Lemma 4.3. Let !2 f!�s;!�gsg. If a! C[(e �i)d] then one of the following must hold:1. a = C[(e �)(�)d] and i = 1.2. !=!�gs, a = C 0[(e0 �)W (�)d], C = C 0[W [�]], e = ('#�(W)+10)e0, and i = 1.3. a = C 0[(e0 �j)d0] where e0 = e or e0 ! e and j 2 fi� 1; ig.Proof. Induction on a, using lemma 4.2 for the reductions at the root.Lemma 4.4. Let !2 f!�s;!�gsg. Let a1 ! : : : ! an ! an+1 = C[(e �i)d]. There exists e0; d0 2 �s anda context C 0[�] such that e0 !! e and one of the following holds:1. ak = C 0[(e0 �)(�)d0] and ak+1 = C 0[(e0 �1)d0] for some k � n.13

2. !=!�gs, ak = C 0[(e0 �)W (�)d0] and ak+1 = C 0[W (e00 �1)d0] and e00 = ('#�(W)+10)e0 for k � n andw.b. W .3. a1 = C 0[(e0 �j)d0] where j � i.Proof. Induction on n and use the previous lemma.We de�ne now internal and external reductions. An internal reduction takes place somewhere at theleft of a �i operator. An external reduction is a non-internal one. Our de�nition is inductive rather thanstarting from the notion of internal and external position as in [5].De�nition 4.5 (Internal Reduction).For any notion of reduction r, the reduction int��!r is de�ned by the following rules:a �!r b(a �i)c int��!r (b �i)c a int��!r b(a �)c int��!r (b �)c a int��!r b(c �)a int��!r (c �)ba int��!r b(�)a int��!r (�)b a int��!r b(c �i)a int��!r (c �i)b a int��!r b('ik)a int��!r ('ik)bTherefore, int��!r is the least compatible relation closed under a �!r b(a �i)c int��!r (b �i)c .Remark 4.6. By inspecting the inference rules one can check that:1. If a int��!r (�)b then a = (�)c and c int��!r b.2. If a int��!r (c �)b then a = (e �)d and ((d int��!r b and e = c) or (e int��!r c and d = b)).3. If a int��!r W (�)b with W well-balanced, then one of the following holds:� a =W (�)b0 with b0 int��!r b.� W =W1(b01�)W2(�)W3 where W1, W2, and W3 are well-balanced, a =W1(b1�)W2(�)W3(�)b andb1 int��!r b01.4. a int��!r n is impossible.De�nition 4.7 (External Reduction). For any notion of reduction r, the reduction ext��!r is de�ned byinduction. The axioms are the rules of r and the inference rules are the following:a ext��!r b(a �)c ext��!r (b �)c a ext��!r b(c �)a ext��!r (c �)ba ext��!r b(�)a ext��!r (�)b a ext��!r b(c �i)a ext��!r (c �i)b a ext��!r b('ik)a ext��!r ('ik)bNote that the potential rule a ext��!r b(a �i)c ext��!r (b �i)c is excluded from the de�nition of external reduction.Thus, as expected, external reductions will not occur at the left of a �i operator. This enables us to write!+� instead of !!� in the following proposition (compare with Lemma 3.8).Proposition 4.8. Let a; b 2 �s. a ext��!�-gen b) s(a)!+� s(b) and a ext��!g�-gen b) s(a)!+g� s(b) .Proof. By induction on a (as in Lemma 3.8). Note that when a = (d �i)c, the reduction cannot take placewithin d because it is external, and this is the only case that forced us to consider the reexive-transitiveclosure because of Lemma 2.18.2. 14

The following is needed in Lemma 4.11 and hence in the Preservation Theorem. Note that we departfrom the traditional minimal derivation method (which we call here minimal reduction sequence method)which commutes internal �r-steps and external s-steps and assumes that s(a) is �-SN and that s(a) = s(b).Instead, we commute arbitrary internal and external reduction and drop the extra assumptions concerningSN and the s-normal forms. Our generality enables us to simplify the proof of the commutation lemma(no need to always check (during the induction) that terms are �-SN and evaluate the s-normal forms).Moreover, our commutation of arbitrary internal and external reduction simpli�es Lemma 4.11 needed inthe proof of PSN. In particular, Lemma 4.11 drops the condition that the term is strongly normalising andits proof is very simple.Lemma 4.9 (Commutation of Internal/External Reduction).Let a; b 2 �s and r 2 fs; gsg. If a int��!�r � ext��!�r b then a ext��!+�r � int�!!�r b.Remark 4.10. The ext��!+�r can represent 1 or 2 steps. The 2-step use is necessary when the internal stepchanges an external redex from (a �n)n to (a0�n)n and the external step uses (�-destruction) to destroy thisredex, producing 'n0a0. The int�!!�r can represent 0, 1, or 2 steps. The 0-step case is necessary when the 2-stepcase of ext��!+�r occurs (already mentioned) or when the internal step changes an external redex from (a �i)n to(a0�i)n and i 6= n and the external step uses (�-destruction) to destroy this redex, discarding the subterm a0.The 2-step case happens when the internal step changes an external redex from (a �i)(b �)c to (a0 �i)(b �)cand the external step uses the (�-�-transition) rule to duplicate the �-item producing ((a0 �i)b �)(a0 �i)c.Proof. By induction on a analysing the positions of the redexes. We give the proof for r = gs. The basiccase which is a = n is trivial.a = (a2�)a1 : Since we are dealing with an internal reduction there are only two possibilities: a1 int��!�gs a01or a2 int��!�gs a02. Let us study, for instance, the �rst one. There are four cases:� a = (a2�)a1 int��!�gs (a2�)a01 ext��!�gs (a2�)a001 and a1 int��!�gs a01 ext��!�gs a001 . Therefore, by inductionhypothesis, a1 ext��!+�gs � int�!!�gs a001 , and then (a2�)a1 ext��!+�gs � int�!!�gs (a2�)a001 .� a = (a2�)a1 int��!�gs (a2�)a01 ext��!�gs (a02�)a01 with a1 int��!�gs a01 and a2 ext��!�gs a02. We can simplycommute the reductions: a = (a2�)a1 ext��!�gs (a02�)a1 int��!�gs (a02�)a01.� a = (a2�)a1 int��!�gs (a2�)(�)a01 ext��!�gs (a2�1)a01 with a1 int��!�gs (�)a01. Hence, by remark 4.6,a1 = (�)b1 with b1 int��!�gs a01. Now, (a2�)a1 = (a2�)(�)b1 ext��!�gs (a2�1)b1 int��!�gs (a2�1)a01.� a = (a2�)a1 int��!�gs (a2�)W (�)a01 ext��!�gs W (('#�(W)+1)a2�1)a01 with W well-balanced anda1 int��!�gs W (�)a01. Hence, by remark 4.6.3, there are two cases:{ Case a1 =W (�)b1 where b1 int��!�gs a01. Thena = (a2�)W (�)b1 ext��!�gs W (('#�(W)+1)a2�1)b1 int��!�gs W (('#�(W)+1)a2�1)a01{ Case a1 = W1(b1�)W2(�)W3(�)a01 and W = W1(b01�)W2(�)W3 where W1;W2;W3 well-balanced and b1 int��!�gs b01. Then,a = (a2�)W1(b1�)W2(�)W3(�)a01 ext��!�gs W1(b1�)W2(�)W3(('#�(W)+1)a2�1)a01int��!�gs W1(b01�)W2(�)W3(('#�(W)+1)a2�1)a01 =W (('#�(W)+1a2)�1)a01a = (�)a1 : The reduction must take place within a1 and we use the induction hypothesis.a = (a2 �i)a1 : Again, as we are analysing an internal reduction, two cases arise:a1 int��!�gs a01 : The external reduction can only take place within a01 or at the root:� a = (a2 �i)a1 int��!�gs (a2 �i)a01 ext��!�gs (a2 �i)a001 and a1 int��!�gs a01 ext��!�gs a001 . We can nowapply the induction hypothesis to a1 int��!�gs a01 ext��!�gs a001 to obtain a1 ext��!+�gs � int�!!�gs a001 ,and hence (a2 �i)a1 ext��!+�gs � int�!!�gs (a2 �i)a001 .15

� a = (a2 �i)a1 int��!�gs (a2 �i)a01 ext��!�gs b and a1 int��!�gs a01, and the external reduction takesplace at the root. We study the three possible rules:{ (�-�-transition) : We have a01 = (�)c0 and b = (�)(a2�i+1)c0. Remark 4.6.1 ensures thata1 = (�)c and c int��!�gs c0. We can then commute:a = (a2 �i)a1 = (a2 �i)(�)c ext��!�gs (�)(a2�i+1)c int��!�gs (�)(a2�i+1)c0 = b{ (�-�-transition) : We have a01 = (c0�)d0 and b = ((a2 �i)c0�)(a2 �i)d0. Remark 4.6.2ensures that a1 = (c�)d and, either c int��!�gs c0 and d = d0, or d int��!�gs d0 and c = c0. Inboth cases we can commute as in the previous case.{ (�-destruction) : We have a01 = n and this is impossible by Remark 4.6.4.a2 !�gs a02 : As in the previous case, the external reduction can take place within a1 or at the root:� a = (a2 �i)a1 int��!�gs (a02 �i)a1 ext��!�gs (a02 �i)a01 and and a1 ext��!�gs a01. We can commute toobtain: a = (a2 �i)a1 ext��!�gs (a2 �i)a01 int��!�gs (a02 �i)a01.� a = (a2 �i)a1 int��!�gs (a02 �i)a1 ext��!�gs b and the external reduction takes place at the root.We study the three possible rules:{ (�-�-transition) : We have a1 = (�)c and b = (�)(a02�i+1)c. We can commute:a = (a2 �i)a1 = (a2 �i)(�)c ext��!�gs (�)(a2�i+1)c int��!�gs (�)(a02�i+1)c = b{ (�-�-trans) : We have a1 = (c�)d and b = ((a02 �i)c�)(a02 �i)d. We can commute generatingtwo internal steps: a = (a2 �i)a1 = (a2 �i)(c�)d ext��!�gs ((a2 �i)c�)(a2 �i)dint��!�gs ((a02 �i)c�)(a2 �i)d int��!�gs ((a02 �i)c)(a02 �i)d = b{ (�-destruction) : We have a1 = n. If n > i then b = n� 1. But (a2 �i)n ext��!�gs n� 1.If n < i then b = n. But (a2 �i)n ext��!�gs n. If n = i then b = ('i0)a02. We must nowconsider whether a2 !�s a02 is external or internal. If it is internal we can commute toobtain: a = (a2 �i)a1 = (a2 �i)n ext��!�gs ('i0)a2 int��!�gs ('i0)a02 = bIf it is external, we get:a = (a2 �i)a1 = (a2 �i)n ext��!�gs ('i0)a2 ext��!�gs ('i0)a02 = bgiving us a ext��!+�gs b int�!!�gs b.a = ('ik)a1 : Two possibilities according to the position of the external reduction.� ('ik)a1 int��!�gs ('ik)a01 ext��!�gs ('ik)a001 and a1 int��!�gs a01 ext��!�gs a001 . Use induction hypothesis.� ('ik)a1 int��!�gs ('ik)a01 ext��!�gs b and a1 int��!�gs a01 and the external reduction takes place at theroot. Three rules are possible:{ ('-�-trans) : We have a01 = (�)c0 and b = (�)('ik+1)c0. Remark 4.6.1 ensures that a1 = (�)cand c int��!�gs c0. We can then commute:a = ('ik)a1 = ('ik)(�)c ext��!�gs (�)('ik+1)c int��!�gs (�)('ik+1)c0 = b{ ('-�-trans) : We have a01 = (c0�)d0 and b = (('ikc0)�)('ik)d0. Remark 4.6.2 ensures thata1 = (c�)d and, either c int��!�gs c0 and d = d0, or d int��!�gs d0 and c = c0. In both cases wecan commute as in the previous case.{ ('-dest) : We have a01 = n and this is impossible by Remark 4.6.4.16

Lemma 4.11. Let a 2 �s and r 2 fs; gsg. For every in�nite �r-reduction sequence a!�r b1 !�r � � � !�rbn !�r � � �, one of these two possibilities holds:1. There exists N such that for i � N it holds that bi int��!�r bi+1, i.e., all the reductions beyond the N thstep are internal.2. There exists an in�nite external �r-reduction sequence:a ext��!�r c1 ext��!�r � � � ext��!�r cn ext��!�r � � �Proof. Suppose there are an in�nite number of external steps in the given reduction sequence. Then byrepeated use of the Commutation Lemma (4.9), we construct an in�nite external reduction sequence startingfrom a. Otherwise, there is some N such that all steps past the Nth are internal.In order to prove the Preservation Theorem (Theorem 4.15) we need two de�nitions.De�nition 4.12. Let r 2 fs; gsg. An in�nite �r-reduction sequence a1 ! � � � ! an ! � � � is minimal if forevery step ai �!p �r ai+1, every other reduction sequence beginning with ai �!q �r a0i+1 where p � q, is �nite.The idea of a minimal reduction sequence is that at every step, it picks a redex as deeply nested aspossible without preventing an in�nite reduction. If one changes any one of its steps to rewrite a redexwithin a subterm of the original redex, then an in�nite reduction sequence is impossible.De�nition 4.13. The syntax of skeletons and the skeleton of a term are de�ned as follows:Skeletons K ::= N j (K �)K j (�)K j ([�]�j)K j ('ik)KSk(n) = n Sk((a �)b) = (Sk(a) �)Sk(b) Sk((b �i)a) = ([�]�i)Sk(a)Sk((�)a) = (�)Sk(a) Sk(('ik)a) = ('ik)Sk(a)Remark 4.14. A de�nition of internal and external reduction equivalent to de�nitions 4.5 and 4.7 is thefollowing. Let a; b 2 �s. a int��!r b, (a!r b and Sk(a) = Sk(b))a ext��!r b, (a!r b and Sk(a) 6= Sk(b))In other words, skeletons provide a syntax that is informative about what kind of r-reduction takes place.In particular, the following two properties hold:1. Each occurrence of [�] in Sk(a) corresponds to an external closure of a (i.e. a closure that is not atthe left of any other closure), and this correspondence is a bijection.2. Internal closures (those which are at the left of another closure) vanish in the skeleton.Theorem 4.15 (Preservation of Strong Normalisation). Let a 2 �. The following hold:1. If a is strongly normalising in the �-calculus then a is strongly normalising in the �s-calculus.2. If a is strongly normalising in the �g-calculus then a is strongly normalising in the �gs-calculus.Proof. The proof of 1 is obtained by replacing in the proof below, �g by �, �gs by �s and by dropping thesecond case that lemma 4.4 gives. We prove 2.Assume a 2 �g-SN, a 62 �gs-SN and take a minimal in�nite �gs-reduction sequenceD : a!�gs a1 !�gs � � � ! an !�gs � � �Lemma 4.11 gives N such that for i � N , ai !�gs ai+1 is internal. (Note that case 2 of Lemma 4.11 cannothold. Otherwise, by Proposition 4.8, there would be an in�nite �g-reduction sequence starting at a andhence, a 62 �g-SN. Contradiction.) By Remark 4.14, Sk(ai) = Sk(ai+1) for i � N . As there are only a�nite number of closures in Sk(aN) and as the reductions within these closures are independent, an in�nite17

reduction sequence D0 can be formed by taking steps from D such that all steps take place within a singleclosure in Sk(aN) and D0 is also minimal. Let C be the context such that aN = C[(d �i)c] and (d �i)c is theclosure where D0 takes place:D0 : aN = C[(d �i)c] int��!�gs C[(d1 �i)c] int��!�gs � � � int��!�gs C[(dn �i)c] int��!�gs � � �Since a is a pure term, Lemma 4.4 ensures the existence of I � N such that one of the following holds:1. aI = C 0[(d0 �)(�)c0]!�gs aI+1 = C 0[(d0�1)c0] and d0 !!�gs d2. aI = C 0[(d0 �)W (�)c0]!�gs aI+1 = C 0[W (('#�(W)+10)d0�1)c0] and d0 !!�gs dLet us consider in the �rst and second cases respectively, the following in�nite �gs-reduction sequences:D00 : a!!�gs aI !!�gs C 0[(d�)(�)c0]!�gs C 0[(d1�)(�)c0]!�gs � � � !�gs C 0[(dn�)(�)c0]!�gs � � �D000 : a!!�gs aI !!�gs C 0[(d�)W (�)c0]!�gs C 0[(d1�)W (�)c0]!�gs � � � !�gs C 0[(dn�)W (�)c0]!�gs � � �In D00 and D000, the redex in aI is within d0 which is a proper subterm of (d0 �)(�)c0 (of (d0 �)W (�)c0 in thesecond case), whereas in D0 the redex in aI is (d0 �)(�)c0 (in the second case (d0 �)W (�)c0) and this contradictsthe minimality of D0.Theorem 4.16. For every a 2 �, the following equivalences hold:a 2 �-SN, a 2 �s-SN and a 2 �g-SN, a 2 �gs-SNProof. By Lemma 3.12 and Theorem 4.15.In order to complete the picture, we need to use a result of [19]:Theorem 4.17. Let a 2 �. It holds that: a 2 �-SN, a 2 �g-SNCorollary 4.18. For every a 2 �, the following equivalences hold:a 2 �g-SN, a 2 �-SN, a 2 �s-SN, a 2 �gs-SNNote that the main preservation results that we show in this paper (Theorem 4.15) are concerned withsubstitution calculi. That is, we show that if a 2 �r-SN then a 2 �rs-SN for �r 2 f�; �gg. What we donot show in this paper is the preservation result concerned with generalised reduction. That is, we do notprove a 2 �-SN) a 2 �g-SN. Rather, we take the result of [19]. The reason for this is that the minimalderivation method and even our adaptation of it are not suited to prove PSN for calculi that do not explicitsubstitutions. In fact, the whole idea of internal and external reduction and of skeletons is based aroundsubstitutions. It is also fair to say that generalised reduction did not play any role in the proof of PSN(despite its role in proofs of SN as shown in [30, 31, 39]).5 The typed �s- and �gs-calculiOur calculi of explicit substitutions �s and �gs possess a very nice property that other calculi of explicitsubstitutions do not possess. Namely, the simply typed versions of �s and �gs are strongly normalising.The ��-calculus of [15] does not possess this property as is shown by Melli�es in [35] and only very recentlyits weak normalisation on open terms has been shown to hold in [15]. The simply typed �� of [5] is stronglynormalising however, it is not conuent on open terms. In fact, our calculi �s and �gs are the �rst calculi ofexplicit substitutions whose simply typed versions are strongly normalising (cf. [24, 25]) and which possessa conuent extension on open terms (we have shown the conuence of the extension of �s on open terms;although the extension for �gs on open terms has not yet been investigated, we believe that the details aresimilar to those for �s).In this section, we present the simply typed versions of �s and �gs and prove the strong normalisationof the well typed terms using the technique developed in [24] to prove �s-SN and suggested to us by P.-A.Melli�es as a successful technique to prove ��-SN (personal communication).18

We recall the syntax and typing rules for the simply typed �-calculus in de Bruijn notation. The typesare generated from a set of basic types T with the binary type operator!. Environments are lists of types.Typed terms di�er from the untyped ones only in the abstractions which are now marked with the type ofthe abstracted variable.De�nition 5.1 (�t and L1). The syntax for the simply typed �-terms is given as follows:Types T ::= T j T ! TEnvironments E ::= nil j T ; ETerms �t ::= N j (�t �)�t j (T �)�tWe let A, B, : : : range over T ; E, E1, : : : over E ; and a, b, : : : over �t. The typing rules are given by thetyping system L1 as follows:(L1-var) A;E ` 1 : A (L1-abs) A;E ` b : BE ` (A�)b : A! B(L1-varn) E ` n : BA;E ` n+ 1 : B (L1-app) E ` b : A! B; E ` a : AE ` (a �)b : BBefore presenting the simply typed �s-calculus and �sg-calculus we introduce the following notationconcerning environments. If E is the environment A1; A2; : : : ; An, we shall use the notation E�i for theenvironment Ai; Ai+1; : : : ; An. Analogously, E�i stands for A1; : : : ; Ai. The notations E<i and E>i arede�ned similarly.De�nition 5.2 (�st and Ls1). The syntax for the simply typed �s-terms is given as follows:�st ::= N j (�st �)�st j (T �)�st j (�st �i)�st j ('ik)�st where i � 1; k � 0Types and environments are as above. The typing rules of the system Ls1 are as follows. The rules Ls1-var,Ls1-varn, Ls1-abs and Ls1-app are exactly the same as L1-var, L1-varn, L1-abs and L1-app, respectively.The new rules are:(Ls1-�) E�i ` b : B; E<i; B;E�i ` a : AE ` (b �i)a : A (Ls1-') E�k; E�k+i ` a : AE ` ('ik)a : AThe reduction rules of the simply typed �s- and �sg-calculi are given by the same rules of the correspondinguntyped versions, except that abstractions in the typed versions are marked with types.We say that a : A is derivable in some type system X 2 fL1;Ls1g from an environment E, notationE `X a : A if and only if E ` a : A can be produced by the typing rules of the system X. We say thata 2 �st is well typed if there exists an environment E and a type A such that E `Ls1 a : A. The symbol�swt denotes the set of well typed terms.The aim of this section is to prove that every well typed �s-term a is �gs-SN (and hence �s-SN). To doso, we show �swt � � � �gs-SN, where� = f a 2 �st j for every subterm b of a; s(b) 2 �g-SN gTo prove �swt � � (Proposition 5.10) we need to establish some useful results such as subject reduction,soundness of typing (i.e., Ls1 is a conservative extension of L1), and typing of subterms:Lemma 5.3. Let E a type environment, A, B types and a; b; c 2 �st. The following holds:1. E ` (('i0)a �)(c �)(B �)b : A i� E ` (c �)(B �)(('i+10)a �)b : A2. E ` ('i0)('j0)a : A i� E ` ('i+j�10)a : A3. E ` (a �)(B �)b : A i� E ` (a �1)b : A19

Proof. We supply only the proof of the �rst item, since the others are similar.E ` (('i0)a �)(c �)(B �)b : Ai� 9C: (E ` (c �)(B �)b : C ! A and E ` ('i0)a : C)i� 9C: (E ` (B �)b : B ! (C ! A) and E ` c : B and E�i ` a : C)i� 9C: (B;E ` b : C ! A and E ` c : B and (B; E)�i+1 ` a : C)i� 9C: (B;E ` b : C ! A and E ` c : B and B;E ` ('i+10)a : C)i� (B;E ` (('i+10)a �)b : A and E ` c : B)i� (E ` (B �)(('i+10)a �)b : B ! A and E ` c : B)i� E ` (c �)(B �)(('i+10)a �)b : ALemma 5.4. Let C be a context and a; b 2 �st. E will range over type environments and A over types.The following holds:(8E;A: (E ` a : A, E ` b : A))) (8E;A: (E ` C[a] : A, E ` C[b] : A))Proof. By induction on C.The following lemma is necessary in the case of generalised reduction.Lemma 5.5 (Shu�e Lemma). Let S be an arbitrary segment, W a well balanced segment and a; b 2 �st,then E ` S(a �)W b : A i� E ` SW (('#�(W)+10)a �) b : A.Proof. By induction on W using Lemmas 5.3 and 5.4. If W = �, it is immediate since E0 ` d : D i�E0 ` ('10)d : D. Let us assume W = (c �)U(B �)V , with U; V well balanced. The following statements areequivalent: E ` S(a �)(c �)U(B �)V b : A(IH) i� E ` S(a �)U(('#�(U)+10)c �)(B �)V b : A(IH) i� E ` SU(('#�(U)+10)a �)(('#�(U)+10)c �)(B �)V b : A(5.3.1, 5.4) i� E ` SU(('#�(U)+10)c �)(B �)(('#�(U)+20)a �)V b : A(IH, twice) i� E ` S(c �)U(B �)V (('#�(V)+10)('#�(U)+20)a �)b : A(5.3.2, 5.4) i� E ` S(c �)U(B �)V (('#�(V)+#�(U)+20)a �)b : ALemma 5.6 (Subject Reduction). Let r 2 fs; gsg. If E `Ls1 a : A and a!�r b then E `Ls1 b : A.Proof. By induction on a. If the reduction is not at the root, use IH. If it is, check that for each rulea ! b we have E `Ls1 a : A implies E `Ls1 b : A. For the case of (�-generation), use Lemma 5.3.3.For the case of (g�-generation) and r = gs, if E ` (a �)W (B �)b : A then, by Lemma 5.5, we have E `W (('#�(W)+10)a �)(B �)b : A and, by Lemma 5.3.3, we conclude E ` W (('#�(W)+10)a �1)b : A. The otherrules are proven by similar reasoning.Corollary 5.7. Let r 2 fs; gsg and E `Ls1 a : A. If a!!�r b then E `Ls1 b : A.Lemma 5.8 (Typing of Subterms). If a 2 �swt and b / a then b 2 �swt.Proof. By induction on a. If b is not an immediate subterm of a, use the induction hypothesis. Otherwise,the last rule used to type a must contain a premise in which b is typed.Lemma 5.9 (Conservative Extension of Typing). If a 2 �t and E `Ls1 a : A then E `L1 a : A.Proof. Easy induction on a.Proposition 5.10. �swt � �.Proof. Let a 2 �swt and b a subterm of a. By Lemma 5.8, b 2 �swt and by Corollary 5.7, s(b) 2 �swt. Sinces(b) 2 � (Thm. 3.7), Lemma 5.9 yields that s(b) is L1-typable, and it is well known that classical typable�-terms are strongly normalising in the �-calculus. Hence, s(b) 2 �-SN and, by preservation (Corollary 4.18),s(b) 2 �g-SN. Therefore a 2 �. 20

Proposition 5.11. � � �gs-SN.Proof. Suppose there exists a0 2 � and a0 62 �gs-SN, then there must exist a term a of minimal size suchthat a 2 � and a 62 �gs-SN. Let us consider a minimal in�nite �gs-derivation D : a! a1 ! � � � ! an ! � � �and follow the proof of Theorem 4.15 to obtain:D0 : aN = C[(d �i)c] int��!�gs C[(d1 �i)c] int��!�gs � � � int��!�gs C[(dn �i)c] int��!�gs � � �(Again, as we argued in Theorem 4.15, case 2 of Lemma 4.11 is discarded. This is because, a 2 �)s(a) 2 �g-SN and Proposition 4.8 would yield a contradiction if case 2 of lemma 4.11 holds.) Now threepossibilities arise from Lemma 4.4. Two of them have been considered in the proof of Theorem 4.15 andcontradicted the minimality of D. Take the third one, that a = C 0[(d0 �i)c0] where d0 !! d. Now we haved0 !! d ! d1 ! � � � ! dn ! � � �. Since d0 is a subterm of a, it must be the case that d0 2 �, contradictingour choice of a with minimal size.Therefore we conclude, using Propositions 5.10 and 5.11 and Corollary 4.18:Theorem 5.12. Every well typed �s-term is strongly normalising in the �gs-calculus.Corollary 5.13. Every well typed �s-term is strongly normalising in the �s-calculus.6 ConclusionIn this paper, we �rst explained the relevance and bene�ts of both generalized reduction and explicit substi-tution. We discussed alternatives and presented the research history behind the two concepts. We explainedthat they have never been combined together and we commented that the combination might indeed joinboth bene�ts and hence a �-calculus extended with both needed to be studied.Then we introduced �g, the �rst system of generalized reduction using de Bruijn indices. We proved�g conuent and sound (i.e., preserves �-equivalence) and complete (properly contains �-reduction) withrespect to the ordinary �-calculus with de Bruijn indices.Building on this success, we then introduced �gs, the �rst system combining generalized reduction withexplicit substitution. For this combination, we relied on the proven explicit substitution technology of the�s-calculus. We proved �gs sound (a conservative extension) and complete (simulating g�-reduction) withrespect to �g. We proved that �gs preserves the strong normalization (PSN) of terms which are terminatingin �g, �s, and the ordinary �-calculus (all with de Bruijn indices). Our proof of PSN included the �rst proofof the commutation of arbitrary external and internal reductions and is simpler than the standard proof ofPSN using the traditional method of minimal derivations.We proceeded further and added simple types to both �s and �gs (simultaneously) in the form of thetype system Ls1. By proving the strong normalization (SN) of well typed terms under �gs-reduction (andtherefore also under �s-reduction), we have provided the �rst typed systems of explicit substitution andgeneralised reduction with the SN property. We proved �gs (and therefore also �s) has the essential propertyof subject reduction with respect to Ls1 typing. We also proved typing for Ls1 is sound (a conservativeextension) and complete (a proper extension) with respect to the simply typed �-calculus and has typing ofsubterms.Now that a calculus combining both concepts have been shown to be theoretically correct, it would beinteresting to extend our calculus �gs to one that is conuent on open terms as is the tradition with calculiof explicit substitution. It would be also interesting to study the polymorphically (rather than the simply)typed version of �gs. These are issues we are investigating at the moment. We are also investigating thecorrespondence of our calculus to methods that implement sharing to test if the analysis of sharing givenin [2] can be recast in an elegant fashion in our calculus.References[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit substitutions. J. Funct. Prog., 1(4):375{416, 1991.21

[2] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus. In Conf.Rec. 22nd Ann. ACM Symp. Principles Programming Languages, 1995.[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984.[4] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, eds.,Handbook of Logic in Computer Science, vol. 2, chapter 2, pp. 117{309. Oxford University Press, 1992.[5] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicit substitutions whichpreserves strong normalisation. J. Funct. Prog., 6(5), 1996.[6] R. Bloo. Preservation of strong normalisation for explicit substitution. Technical Report 95-08, Department ofMathematics and Computing Science, Eindhoven University of Technology, 1995.[7] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt cube with de�nitions and generalised reduction.Inf. & Comput., 126(2):123{143, May 1996.[8] R. Constable et al. Implementing Mathematics with the NUPRL Development System. Prentice-Hall, 1986.[9] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman, 1986.Revised edition published by Birkh�auser in 1993.[10] P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuence properties of weak and strong calculi of explicit substitutions.J. ACM, 43(2):362{397, Mar. 1996.[11] P.-L. Curien and T. Hardin and A. R��os. Strong Normalisation of Substitutions. Proceedings of MFCS'92,Lecture Notes in Computer Science 629, pages 209-217, ed I.M. Havel and V. Koubek, Springer-Verlag, 1992.[12] N. G. de Bruijn. A namefree lambda calculus with facilities for internal de�nition of expressions and segments.Technical Report TH-Report 78-WSK-03, Department of Mathematics, Eindhoven University of Technology,1978.[13] P. de Groote. The conservation theorem revisited. In Int'l Conf. Typed Lambda Calculi and Applications, vol.664 of LNCS, pp. 163{178. Springer-Verlag, Mar. 1993.[14] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher OrderLogic. Cambridge University Press, 1993.[15] Jean Goubault-Larrecq. A Proof of Weak Termination of the Simply Typed ��-Calculus. Technical Report No3090, INRIA, January 1997.[16] T. Hardin. Conuence results for the pure strong categorical logic CCL: �-calculi as subsystems of CCL. Theor.Comp. Sc., 65(2):291{342, 1989.[17] T. Hardin and A. Laville. Proof of Termination of the Rewriting System SUBST on CCL. Theoretical ComputerScience 46:305{312, 1986.[18] G. Huet. Conuent Reductions: Abstract Properties and Applications to Term Rewriting System. Journal ofthe Association for Computing Machinery 27:797{821, 1980.[19] F. Kamareddine. A reduction relation for which postponement of k-contractions, conservation and preservationof strong normalisation hold. Technical Report TR-1996-11, Univ. of Glasgow, Glasgow G12 8QQ, Scotland,Mar. 1996.[20] F. Kamareddine and R. Nederpelt. On stepwise explicit substitution. International Journal of Foundations ofComputer Science, 4(3):197{240, 1993.[21] F. Kamareddine and R. Nederpelt. Generalising reduction in the �-calculus. J. Funct. Prog., 5(4):637{651,1995.[22] F. Kamareddine and R. Nederpelt. A useful �-notation. Theoretical Computer Science, 155:85{109, 1996.[23] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitution. In 7th InternationalSymppsium of Programming Languages: Implementation, Logics & Programs, PLILP '95, vol. 982 of LNCS, pp.45{62. Springer-Verlag, 1995. 22

[24] F. Kamareddine and A. R��os. The �s-calculus: Its typed and its extended versions. Technical Report TR-95-13,Department of Computing Science, University of Glasgow, 1995.[25] F. Kamareddine and A. R��os. A Generalised �-reduction and Explicit Substitutions. In 8th InternationalSymppsium of Programming Languages: Implementation, Logics & Programs, PLILP '96, vol. 1140 of LNCS,pp. 378{392. Springer-Verlag, 1996.[26] F. Kamareddine and A. R��os. Extending a �-calculus with explicit substitution which preserves strong normal-isation into a conuent calculus on open terms. Journal of Functional Programming, 7(4), 1997. To appear.[27] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Journal of ACM, 41(2):368{398, March1994.[28] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second-order�-calculus. In Proceedings 1994 ACM Conference LISP Functional Programmming, 1994.[29] A. J. Kfoury and J. B. Wells. Addendum to \New notions of reduction and non-semantic proofs of �-strongnormalization in typed �-calculi". Tech. Rep. 95-007, Comp. Sci. Dept., Boston Univ., 1995.[30] A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs of �-strong normalization intyped �-calculi. In Proc. 10th Ann. IEEE Symp. Logic in Computer Sci., pp. 311{321, 1995.[31] J. W. Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre Tracts. MathematischCentrum, Amsterdam, 1980. Ph.D. Thesis.[32] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. Computational Problems in AbstractAlgebra, ed J. Leech, 263-297, Pergamon Press, 1970.[33] J. L. Lawall and H. Mairson. Optimality and ine�ciency: What isn't a cost model of the lambda calculus? InProc. 1996 ACM SIGPLAN Int'l Conf. Functional Programming, pp. 92{101, 1996.[34] L. Magnusson. The Implementation of ALF { A proof editor Based on Martin-L�of's Monomorphic Type Theorywith Explicit Substitution. PhD thesis, Chalmers University of Technology and Goteborg University, Jan. 1995.[35] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate. In Second Int'l Conf. Typed LambdaCalculi and Applications. Springer-Verlag, Apr. 1995.[36] C. A. Mu~noz Hurtado. Conuence and preservation of strong normalisation in an explicit substitutions calculus.In Proc. 11th Ann. IEEE Symp. Logic in Computer Sci., pp. 440{447, 1996.[37] C. A. Mu~noz Hurtado. Proof representation in type theory: State of the art. In Proceedings, XXII Latin-American Conference of Informatics CLEI Panel '96, Santaf�e de Bogot�a, Colombia, June 1996.[38] R. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected Papers on Automath. North-Holland, Amsterdam,1994.[39] R. P. Nederpelt. Strong Normalization for a Typed Lambda Calculus with Lambda Structured Types. PhD thesis,Technische Hogeschool Eindhoven, 1973. Appears as a chapter in [38].[40] S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.[41] L. Regnier. Lambda Calcul et R�eseaux. PhD thesis, Universit�e de Paris VII, 1992.[42] L. Regnier. Une �equivalence sur les lambda-termes. Theor. Comp. Sc., 126:281{292, 1994. In French.[43] A. R��os. Contribution �a l' �Etude des �-Calculs avec Substitutions Explicites. PhD thesis, Universit�e de Paris VII,1993.[44] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. LISP and Symbolic Com-putation, 6(3/4):289, Nov. 1993.[45] M. H. S�rensen. Strong normalization from weak normalization in typed �-calculi. Journal of Information andComuptation. To appear.[46] D. Vidal. Nouvelles Notions de R�eduction en Lambda-Calcul. Th�ese de Doctorat, Universit�e de Nancy 1, Feb.1989. 23

[47] H. Xi. On weak and strong normalizations. Technical Report 96-187, Carnegie Mellon University, 1996.[48] H. Zantema. Termination of term rewriting: interpretation and type elimination. Journal of Symbolic Compu-tation 17(1): 23{50, 1994.

24

