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Mathematics and Computing ScienceEindhoven University of TechnologyP.O.Box 5135600 MB EindhovenThe NetherlandsFAX: +31 40 2463992fbloo, wsinrpng@win.tue.nlAbstractTyped �-calculus uses two abstraction symbols (� and �) which are usually treatedin di�erent ways: �x:�:x has as type the abstraction �x:�:� yet �x:�:� has type 2 ratherthan an abstraction; moreover, (�x:A:B)C is allowed and �-reduction evaluates it, but(�x:A:B)C is rarely allowed. Furthermore, there is a general consensus that � and � aredi�erent abstraction operators. While we agree with this general consensus, we �nd itnonetheless important to allow �- to act as an abstraction operator. Moreover, experiencewith AUTOMATH and the recent revivals of �-reduction as in [KN 95b, PM 97], illustratethe elegance of giving �-redexes some similar status to �-redexes. Alas however, �-reduction in the �-cube faces serious problems as shown in [KN 95b, PM 97]: it is notsafe as regards subject reduction, it does not satisfy type correctness, it loses the propertythat the type of an expression is well-formed and it fails to make any expression thatcontains a �-redex well-formed.In this paper, we propose a solution to all those problems. The solution is to usea concept that is heavily present in most implementations of programming languagesand theorem provers: abbreviations (viz. by means of a de�nition) or let expressions.We will show that the �-cube extended with �-conversion and abbreviations satis�es allthe desirable properties of the cube and does not face any of the serious problems of�-reduction. We believe that this extension of the �-cube is very useful: it gives a fullformal study of two concepts (�-reduction and abbreviations) that are useful for theoremproving and programming languages.1 Introduction�-reduction and using names to abbreviate large expressions, are useful for automating mathe-matics, for theorem proving and for programming languages. Evidence of this is their presencein the various implementations of mathematics, theorem proving and programming languages.In what follows, we explicit the advantages and/or problems of these two concepts and weexplain why combining them is even more useful.
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1.1 On �-reductionType theory has almost always been studied without �-conversion (which is the analogue of�-conversion on product type level). That is, !�: (�x:A:b)C !� b[x := C] is always assumedbut not !�: (�x:A:B)C !� B[x := C]. The exceptions to this are: some AUTOMATH-languages in [NGV 94], the �-cube extended with �-reduction in [KN 95b] and the intermedi-ate language in compilers for source languages as in [PM 97]. We claim that !� is desirablefor the following reasons:A. � is, in a sense, a kind of �. In higher order type theory, arrow-types of the formA ! B are replaced by dependent products �x:A:B, where x may be free in B, and thus Bdepends on x. This means that abstraction can be over types: �x:A:B as well as over terms:�x:A:b. But, once we allow abstraction over types, it would be nice to discuss the reductionrules which govern these types. In fact, � is indeed a kind of � as regards the abstractionover a variable and hence is eligible for an application.B. Compatibility. Here are two important rules in the �-cube:(abstraction rule) �:hx : Ai ` b : B � ` �x:A:B : S� ` �x:A:b : �x:A:B(application rule) � ` F : �x:A:B � ` a : A� ` Fa : B[x := a]The (abstraction rule) may be regarded as the compatibility property for the typing withrespect to abstraction. That is: b : B ) �x:A:b : �x:A:B.The compatibility property for the typing with respect to application is lost however. Infact, from the (application rule), one does not have: F : �x:A:B ) Fa : (�x:A:B)a,but instead F : �x:A:B ) Fa : B[x := a].To get compatibility for the typing with respect to application, one needs to add !� andto change the (application rule) to:(new application rule) � ` F : �x:A:B � ` a : A� ` Fa : (�x:A:B)aC. The AUTOMATH experience. One might argue that implicit �-reduction (as is thecase of the ordinary �-cube with the (application rule) above) is closer to intuition in the mostusual applications. However, experiences with the AUTOMATH-languages ([NGV 94]), con-taining explicit �-reduction, demonstrated that there exists no formal or informal objectionagainst the use of this explicit �-reduction in natural applications of type systems.D. Preference types, higher degrees, conversion. In [KN 95b], �-reduction was shownto have various advantages which include calculating the preference type �(�; A) of a term Ain a context �, the ability of incorporating di�erent degrees (rather than just the two, � and�, as in the �-cube), the splitting of � ` A : B into � ` A (A is typable in �) and �(�; A) = B(B is convertible to the preference type of A), and the getting rid of the following rule of the�-cube:(conversion rule) � ` A : B � ` B0 : S B = B0� ` A : B0E. Programming Languages. In programming language studies, a thriving area is thatof the use of richly-typed intermediate languages in sophisticated compilers for higher-order,2



typed source languages ([PJ 96, SA 95, TA 96]). The latest language [PM 97] proposes toreduce the number of data types and the volume of code required in the compiler by gettingrid of all duplications. To do this, [PM 97] uses the whole �-cube extended with �-reductionand gives the following explanation:� This isolates reduction into one set of rules =�.� With the old application rule, matters get very complicated when one adds furtherexpressions (such as let and case).� In a compiler, �-reduction allows to separate the type �nder from the evaluator since `no longer mentions substitution. One �rst extracts the type and only then evaluates it.All the above are reasons why it is interesting to study �-conversion in the �-cube. Alashowever, �-conversion added to the �-cube is not a straightforward adding of (�x:A:B)C !�B[x := C] and of the (new application rule) (see [KN 95b]). Changing in the �-cube the(application rule) to the (new application rule) results in the following problems:1. The correctness of types no longer holds. With �-reduction, one can have � ` A :B without B � 2 or 9S : � ` B : S. For example, hz : �i:hx : zi ` (�y:z:y)x : (�y:z:z)xyet (�y:z :z)x 6� 2 and 8S : hz : �i:hx : zi 6` (�y:z:z)x : S. The problem arises because ofthe new terms that contain �-redexes (which did not exist in the �-cube) and because[KN 95b] showed that in the �-cube extended with �-reduction:(") 8�; A;B;C; x; S : � 6` (�x:A:B)C : S2. The system is no longer safe. More precisely, subject reduction (SR) fails. That is,with �-reduction and the (new application rule), � ` A : B and A!! A0 may not imply� ` A0 : B. For example, hz : �i:hx : zi ` (�y:z:y)x : (�y:z:z)x and (�y:z:y)x ! x, butone can't show hz : �i:hx : zi ` x : (�y:z:z)x. To show this last formula, one needs to usethe above (conversion rule) and for this, one needs that 9S:hz : �i:hx : zi ` (�y:z:z)x : S.But (") in 1 above make this impossible.3. The type of an expression may not be well-formed. This is related to typecorrectness above. We say that A is well-formed if A � 2 or 9�; B : � ` A : B. Nowtake hz : �i:hx : zi ` (�y:z:y)x : (�y:z:z)x. The type of (�y:z:y)x, namely (�y:z:z)x isnot well-formed because for every �; B;� 6` (�y:z:z)x : B as [KN 95b] showed that:("") If � ` A : B then neither � nor A contain �-redexes and if B contained a �-redex,then B is itself that �-redex.4. �-redexes are not well-formed. From ("") above, no expression that contains a�-redex is well-formed.Despite these shortcomings of �-reduction, [PM 97] claims that its advantages are persuasive.In this paper we will repair the shortcomings of �-reduction. It is amazing that the way torepair the problem is itself a very useful way in type theory: the use of abbreviations.
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1.2 On abbreviationsIn many type theories and lambda calculi, there is no formal possibility to use abbreviations,i.e. to introduce names for large expressions which can be used several times in a program or aproof. This possibility is essential for practical use, and indeed implementations of Pure TypeSystems such as Coq [Dow 91], Lego [LP 92] and Nuprl [Con 86] do provide this possibility.Moreover, most implementations of programming languages (Haskell, ML, CAML, etc.) usenames for large expressions via a familiar programming language concept: let expressions.Example 1.1 Let id : A! A be (�x:A:x) in (�y:A!A:id)id abbreviates the complex expres-sion (�x:A:x) as id in a more complex expression in which id occurs two times.The intended meaning of \let x : A be a in b" is that a can be substituted for x in theexpression b. In a sense, the expression let x : A be a in b is similar to (�x:A:b)a. It is notintended however to necessarily replace all the occurrences of x in b by a. Nor is it intendedthat such a let expression is a part of our term. Rather, the let expression will live in theenvironment (or context) in which we evaluate or reason about the expression.One of the advantages of the expression let x : A be a in b over the redex (�x:A:b)ais that it is convenient to have the freedom of substituting only some of the occurrences ofan expression in a given formula. Another advantage is e�ciency; one evaluates a in letx : A be a in b only once, even in lazy languages. A further advantage is that using x tobe a in b can be used to type b e�ciently, since the type A of a has to be calculated onlyonce. Furthermore, practical experiences with type systems show that let expressions areabsolutely indispensable for any realistic application. Without let expressions, terms soonbecome forbiddingly complicated. By using let expressions one can avoid such an explosionin complexity. This is, by the way, a very natural thing to do: the apparatus of mathematics,for instance, is unimaginable without a form of let expressions (viz. de�nitions).There exist already two formal studies of let expressions in the �-cube [BKN 96, SP 93]where those let expressions are called de�nitions. In this paper we di�er from both accountsand use the simplest way of renaming large expressions and describe such renaming as ab-breviations. We di�er from [SP 93] in that we do not introduce new terms (let terms) intoour syntax and do not extend �-reduction to deal with those new terms. We di�er from[BKN 96] in that we do not use nested de�nitions, which are needed for generalised reductionin [BKN 96] and not for �-reduction.We write hx : Aia to describe that x of type A, abbreviates a. We include abbreviationsin contexts such that if an abbreviation occurs in a context then it can be used anywhere inthe term we are reasoning about in that context.In this paper, we will use abbreviations to repair all the problems of �-reduction men-tioned in Subsection 1.1. During this process, we shall show that the �-cube extended withabbreviations satis�es all its original properties.1.3 On combining abbreviations and �-reductionsWe shall show in this paper that the �-cube extended with both abbreviations and �-reduction(!� and the new application rule), preserves all its original properties (including safety,correctness of types and well-formedness of the type of an expression) and allows a non-limited occurrence of �-redexes in the well-formed terms. This means that abbreviations(being important on their own) have repaired the problems of �-reduction in the �-cube. Letus here explain why the shortcomings of �-reduction disappear with abbreviations:4



Looking at the four problems of �-reduction in Subsection 1.1, one sees that one needs tobe able to type �-redexes. This is not possible if the �-cube was simply extended with the(new application rule) and !� as [KN 95b] showed. There are several ways one can follow:A. In�nite levels of abstractions One may abandon the two levels (� and �) as used inthe current type systems and reformulate all type theory using di�erent levels of �'s, wheresay, �0 is what we call �, �1 is the �, etc. Then, one will be able to give every �nx:A:B thetype �n+1x:A :C where C is a type of B, and the current type theory will be reproduced at eachlevel. This would be rather interesting to investigate, but we feel it a drastic change fromcurrent type theory and we are not sure what complications or contradictions will arise fromdi�erent levels of �'s. We leave it as a point for future research.B. Abbreviations One may introduce (�- and �-) redexes as a separate (compound) term,which can be typed using abbreviations. In the type, the abbreviation is unfolded. The ideais simple: extend contexts with abbreviations and add the following rule:(abb rule) �:hx : AiB ` C : D� ` (�x:A:C)B : D[x := B] where � 2 f�;�gThis rule says that if C : D can be typed using the abbreviation that x of type A is B, then(�x:A:C)B : D[x := B] can be typed without this abbreviation. This simple extension solvesall the problems of �-reduction mentioned in Subsection 1.1. Here is how:1. Type correctness. We demonstrate this with the example of problem 1 of Subsec-tion 1.1. Recall that we have hz : �i:hx : zi ` (�y:z:y)x : (�y:z:z)x and want that,9S : hz : �i:hx : zi ` (�y:z:z)x : S. Here is how the latter formula now holds:hz : �i:hx : zi ` z : � (start and weakening)hz : �i:hx : zi:hy : zix ` z : � (weakening)hz : �i:hx : zi ` (�y:z :z)x : �[y := x] � � (abb rule)2. Safety or subject reduction. We demonstrate this with the example of problem2 of Subsection 1.1. Recall that we have hz : �i:hx : zi ` (�y:z:y)x : (�y:z:z)x and(�y:z:y)x! x and we need to show that hz : �i:hx : zi ` x : (�y:z:z)x. Here is how thelatter formula now holds:a: hz : �i:hx : zi ` x : z (start and weakening)b: hz : �i:hx : zi ` (�y:z:z)x : � (from 1 above)hz : �i:hx : zi ` x : (�y:z:z)x (conversion, a, b, and z = (�y:z:z)x)3. Well-formedness of the types of expressions. We demonstrate this with theexample of problem 3 of Subsection 1.1. Recall that we have hz : �i:hx : zi ` (�y:z:y)x :(�y:z:z)x and we want to show that (�y:z :z)x is typable (note that (�y:z:z)x 6� 2). By1 above, we have that hz : �i:hx : zi ` (�y:z:z)x : �.4. Unlimited �-redexes. �-redexes can now occur in contexts, terms, and types and allexpected ones are indeed well-formed.Remark 4.2, Lemma 4.12 and Theorem 4.13 will show that indeed all the problems of �-reduction are solved. Intuitively, the reason is that abbreviations keep information in thecontext about the de�ned values of variables.We divide the paper as follows: 5



1. In Section 2, we set up the machinery for both abbreviations and �-reduction.2. In Section 3, we introduce the original relation of the �-cube `� and the extendedrelation `�� as in [KN 95b]. We list the properties of both `� and `��.3. In Section 4, we introduce `re which is `r (for r = � or ��) extended with abbreviations.We show that all the properties of the �-cube remain valid for `re. This establishes thatextending the �-cube with abbreviations or with both abbreviations and �-reductionresults in a well-behaved system. Due to the elegance of our presentation, we provealmost all the results for `re rather than separately prove them for `�e and `��e.2 The Formal MachineryThe systems of the �-cube (see [Ba 92]), are based on a set of pseudo-expressions or terms Tde�ned by the following abstract syntax:T = � j2 j V j T T j �V :T :Twhere � 2 f�;�g, V is an in�nite collection of variables over which �; �; x; y; z; : : : range, �and 2 are sorts over which S; S1; S2; : : : range. We let A;B; a; b : : : range over T .Bound and free variables and substitution are de�ned as usual where the binding powerof � is similar to that of �. We write BV (A) and FV (A) to represent the bound andfree variables of A respectively. We write A[x := B] to denote the term where all the freeoccurrences of x in A have been replaced by B. Furthermore, we take terms to be equivalentup to variable renaming and � for syntactic equality. For example, we take �x:A:x � �y:A:y.We assume moreover, the Barendregt variable convention which is formally stated as follows:Convention 2.1 (BC: Barendregt's Convention)Names of bound variables will always be chosen such that they di�er from the free ones in aterm. Moreover, di�erent abstraction operators have di�erent variables as subscript. Hence,we will not have (�x:A:x)x, but (�y:A:y)x instead.Terms are related via a reduction relation !r. We assume the usual de�nition of the com-patibility of a reduction relation, and de�ne !!r to be its re
exive transitive closure and =rto be its equivalence closure. We take r 2 f�; ��g throughout and use the relations: !� and!�� generated by: (�x:A:B)C !� B[x := C], and (�x:A:B)C !�� B[x := C] respectively.In the following de�nition, declarations are familiar from the �-cube. �0 says that chang-ing a declaration into an abbreviation which preserves that declaration, does not decrease theinformation in the pseudocontext. We let d; d1; d2; : : : range over declarations and abbrevia-tions and �;�;�0;�1;�2; : : : over pseudocontexts.De�nition 2.2 (declarations, abbreviations, pseudocontexts, �0)1. A declaration d is of the form hx : Ai. We de�ne var(d) � x and type(d) � A.2. An abbreviation d is of the form hx : AiB and uses x of type A to abbreviate B. Wede�ne var(d), type(d) and ab(d) to be x, A, and B respectively.3. A pseudocontext � is a (possibly empty) concatenation of declarations and abbreviationsd1:d2: � � � :dn such that if i 6= j, then var(di) 6� var(dj).6



4. De�ne dom(�) = fvar(d) j d 2 �g, �-decl = fd 2 � j d is a declaration g and �-abb =fd 2 � j d is an abbreviation g. Note that dom(�) = fvar(d) j d 2 �-decl[ �-abbg.5. De�ne �0 between pseudocontexts as the least re
exive transitive relation satisfying:� �:� �0 �:d:� for d a declaration or an abbreviation.� �:hx : Ai:� �0 �:hx : AiB:�In the rest of this section, we let ` be a notion of derivability. The following is familiar:De�nition 2.3 Let � be a pseudocontext.1. A : B is called a statement. A and B are its subject and predicate.2. � `r A : B is called a judgement, and � `r A : B : C denotes � `r A : B ^ � `r B : C.3. � is called legal if 9P;Q 2 T such that � `r P : Q.4. A 2 T is called a �-term if 9B 2 T [� `r A : B _ � `r B : A].5. A 2 T is called legal if 9�[A is a �-term].The following is needed in the conversion rule where we replace A =r B by � `r A =ab B.De�nition 2.4 (Abbreviational r-equality) For all pseudocontexts � we de�ne the binary re-lation � `r � =ab � to be the equivalence relation generated by� if A =r B then � `r A =ab B� if d 2 �-abb and A;B 2 T such that B arises from A by substituting one particular freeoccurrence of var(d) in A by ab(d), then � `r A =ab B.Remark 2.5 If no abbreviations are present in � then � `r A =ab B is the same as A =r B.The following de�nition groups some preconditions of some typing rules. For example, insteadof postulating for the start rule (in the case of a declaration) that � ` type(d) : S andvar(d) 62 �, we say � � d. This becomes particularly useful in the case of abbreviations.De�nition 2.6 For d 2 �-abb [ �-decl, we say � invites d, notation � � d, i�� �:d is a pseudocontext� � `r type(d) : S for some sort S.� if d is an abbreviation then � `r ab(d) : type(d)Finally, the following de�nition is again familiar from the �-cube, but we extend it to deal withabbreviations. That is, � `r (�x:A:C)B (recall that � 2 f�;�g) i� � `r x : A, � `r B : A,�:hx : Ai ` C and � `r x =ab B.De�nition 2.7 Let � be a pseudocontext. Let d; d1; : : : ; dn be declarations and abbreviations.We de�ne � `r d and � `r d1 � � � dn as follows:� If d is a declaration then � `r d i� � `r var(d) : type(d). Else, if d is an abbreviationthen � `r d i� � `r var(d) : type(d) ^ � `r ab(d) : type(d) ^ � `r var(d) =ab ab(d).� � `r d1 � � � dn i� �:d1: � � � :di�1 `r di for all 1 � i � n.7



3 Extending the �-cube with �-reductionIn the �-cube as presented in [Ba 92], the only declarations allowed are of the form hx : Ai.Hence there are no abbreviations in the contexts. Therefore, � � d is of the form � � hx : Aiand means that � ` A : S for some S and that x is fresh in �; A. Moreover, recall thatvar(hx : Ai) � x and type(hx : Ai) � A and �-reduction is not allowed.De�nition 3.1 (`�)The axioms and rules of the �-cube are as follows (d is a declaration, =ab is =�):(axiom) hi `� � : 2(start rule) � � d�:d `� var(d) : type(d)(weakening rule) � � d � `� D : E�:d `� D : E(formation rule) � `� A : S1 �:hx : Ai `� B : S2� `� �x:A:B : S2 if (S1; S2) is a rule(abstraction rule) �:hx : Ai `� b : B � `� �x:A:B : S� `� �x:A:b : �x:A:B(application rule) � `� F : �x:A:B � `� a : A� `� Fa : B[x := a](conversion rule) � `� A : B � `� B0 : S � `� B =ab B0� `� A : B0Each of the eight systems of the �-cube is obtained by taking the (S1; S2) rules allowed froma subset of f(�; �); (�;2); (2; �); (2;2)g. These systems are given in the following table:System Set of speci�c rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)[KN 95b] extended this �-cube by changing!!� to!!�� and by changing `� to `�� (notethat � `�� B =ab B0 is the same as B =�� B0, as there are no abbreviations):De�nition 3.2 (`��)`�� is `� where � is replaced by �� throughout, and the application rule changes to:(new application rule) � `�� F : �x:A:B � `�� a : A� `�� Fa : (�x:A:B)a8



Now we list some properties of `� and `�� without proofs (see [KN 95b]). These properties(except of course the loss of type correctness, of SR and the non well-formedness of sometypes and of �-redexes) will be established for the �-cube extended with either abbreviationsalone, or with both abbreviations and �-reduction in Section 4.Theorem 3.3 (The Church Rosser Theorem CR, for !!r, r = � or ��)If A!!r B and A!!r C then there exists D such that B !!r D and C !!r D 2Lemma 3.4 (Start Lemma for `r for r = � or ��)Let � be a `r-legal context. Then � `r � : 2 and 8d 2 �[� `r d]. 2Lemma 3.5 (Correctness of types for `�, not for `��)For r = �, but not for r = �� we have:If � `r A : B then (B � 2 or � `r B : S for some sort S).(cf. the counterexample of Subsection 1.1, Problem 1.) 2Lemma 3.6 (Subject Reduction SR, for `�, not for `��)For r = �, but not for r = �� we have:If � `r A : B and A!!� A0 then � `r A0 : B(cf. Subsection 1.1, Problem 2.) 2However, a weak form of SR holds for `��. First we need the following de�nition whichremoves all �-redexes of a `��-legal term:De�nition 3.7 For A `��-legal, let Â be C[x := D] if A � (�x:B :C)D and A otherwise.Lemma 3.8 (Weak Subject Reduction for `�� and !!��)� `�� A : B ^A!!�� A0 ) � `�� A0 : B̂ 2Lemma 3.9 (Well-formedness of types for `�, not for `��)For r = �, but not for r = �� we have:If � `r A : B then B = 2 or 9C : � `r B : C.(cf. Subsection 1.1, Problem 3.) 2Lemma 3.10 (Non-well-formedness of �-redexes)For no �, A, B and C there is D such that � `�� (�x:A:B)C : D.(cf. Subsection 1.1, Problem 4.) 2Lemma 3.11 (Uniqueness of Types for `r and !!r for r = � or ��)� `r A : B1 ^ � `r A : B2 ) B1 =r B2 2Theorem 3.12 (Strong Normalisation with respect to `r and !r for r = � or ��)If A is `r-legal then SN!!r(A); i.e. A is strongly normalising with respect to !r. 2In the rest of the paper, we use the �-cube to denote the �-cube extended with �-reductionand with the new application rule. We write �-cube for either the �- or the �-cube. Recallthat r 2 f�; ��g and � 2 f�;�g. 9



4 Extending the �-cube with abbreviationsWe shall extend the derivation rules of `r so that we can use abbreviations in the context.The rules remain unchanged except for the following points:� One rule, the (abb rule), is added.� Not only declarations but also abbreviations are allowed in contexts.� The use of � ` B =ab B0 in the conversion rule really has an e�ect, since =ab is now areal extension of =r and � may contain abbreviations necessary to establish B =ab B0.Note that the intended scope of hx : Ai in �:hx : AiB:� `r C : D is �; C and D. This iswhat should be expected since the scope in �:hx : Ai:� `r C : D is the same.De�nition 4.1 (Axioms and rules of the �-cube extended with abbreviations: d ranges overdeclarations and abbreviations. Recall that when r = �, � is only � everywhere.)We extend the relation `r to `re by adding the following abbreviation rule:(abb rule) �:hx : AiB `re C : D� `re (�x:A:C)B : D[x := B]The (abb rule) says that if C : D can be deduced using an abbreviation d � hx : AiB, then(�x:A:C)B will be of type D where d has been unfolded in D.Remark 4.2 (Well-Formedness of �-redexes for `��e) From the (abb rule) and the (newapplication rule), if � `��e A : B then both A and B may contain �-redexes.Remark 4.3 When considering an abbreviation in a term to be equivalent to a redex, the(abb rule) is quite natural: for instance, deriving a type for (�x:�:x)y via abbreviating yto be x gives the same type as the derivation via abstraction followed by application (let� � h� : �i:hy : �i):(abb rule) �:hx : �iy `re x : �� `re (�x:�:x)y : �[x := y](appl) (abstr) �:hx : �i `re x : � � `re (�x:�:�) : �� `re �x:�:x : �x:�:� � `re y : �� `re (�x:�:x)y : �[x := y]Let us now give an example which shows why abbreviations are useful:Example 4.4 h� : �i:hy : �i 6`r (��:�:(�x:�:x)y)� : �. We need y : � to be able to type(�x:�:x)y. Looking carefully however, we �nd that (��:�:(�x:�:x)y)� is abbreviating � by�. So here is how the above derivation can be obtained using abbreviations (we present ashort-cut and do not mention all the steps, nor the names of the rules):h� : �i:hy : �i:h� : �i� `re �x:�:x : �x:�:�h� : �i:hy : �i:h� : �i� `re y : �h� : �i:hy : �i:h� : �i� `re � =ab �h� : �i:hy : �i:h� : �i� `re y : �h� : �i:hy : �i:h� : �i� `re (�x:�:x)y : �h� : �i:hy : �i `re (��:�:(�x:�:x)y)� : �[� := �]h� : �i:hy : �i `re (��:�:(�x:�:x)y)� : �10



Remark 4.5 In [BKN 96], we introduced a notion of generalised de�nitions which, like ab-breviations, bind a name to a complex expression. In [BKN 96] however, de�nitions werenested. Such nesting is unnecessary for the reductions we are using in the present paper.In [BKN 96], reduction was generalised due to the use of a useful notation (see [KN 95a]).With that generalisation of reduction (which may contract some redex r before other redexesupon which this r depends have been contracted), de�nitions had to be nested to mirror thisgeneralised reduction.In the present paper, we do not consider generalised reduction or nested de�nitions. In-stead, we study ordinary (non-nested) de�nitions combined with �-reduction. We note thatany abbreviation in the sense of the present paper is also a de�nition in the sense of [BKN 96]when the notation is changed. Furthermore any type derivation with abbreviations in thispaper (not involving �-reduction) is also a type derivation with de�nitions in [BKN 96]. Thatis, if � `�e A : B then I(�) `e I(A) : I(B) where `e is the type derivation of [BKN 96] andI translates terms to the notation of [KN 95a].Now, we go through the usual properties of the �-cube showing that they hold for `re.Lemma 4.6 (Free variable Lemma for `re)Let � be a legal context such that � `re B : C. Then the following holds:1. If d and d0 are two di�erent elements of �-decl[ �-abb, then var(d) 6� var(d0).2. FV (B); FV (C) � dom(�).3. If � � �1:d:�2 then FV (d) � dom(�1).Proof: All by induction on the derivation of � `re B : C. 2Lemma 4.7 (Start Lemma for `re)Let � be a legal context. Then � `re � : 2 and 8d 2 �[� `re d].Proof: � legal ) 9B;C[� `re B : C]; now use induction on the derivation of � `re B : C.2Lemma 4.8 (Transitivity Lemma for `re)Let � and � be legal contexts such that � ` �.1. If � `re A =ab B then � `re A =ab B.2. If � `re A : B then � `re A : B.Proof:1. For all d 2 �, � `re var(d) =ab ab(d). If A0 results from A by replacing one freeoccurrence of var(d) in A by ab(d), then � `re A =ab A0 by repeating the process ofproving � `re var(d) =ab ab(a) on the particular occurrence of var(d) in A.2. Induction on the derivation � `re A : B, using 1 in the case of the conversion rule. 2Note in the following lemmas how de�nitions behave well in thinning and substitution.Lemma 4.9 (Thinning Lemma for `re) 11



1. If �1:�2 `re A =ab B, �1:�:�2 is a legal context, then �1:�:�2 `re A =ab B.2. If � and � are legal contexts such that � �0 � and if � `re A : B, then � `re A : B.Proof: 1. is by induction on the derivation �1:�2 `re A =ab B. 2. is as follows:� If �:� `re A : B, � `re C : S, x is fresh, then also �:hx : Ci:� `re A : B. We showthis by induction on the derivation �:� `re A : B using 1. for conversion.� If �:� `re A : B, � `re C : D : S, x is fresh, then also �:hx : DiC:� `re A : B. Weshow this by induction on the derivation �:� `re A : B.� If �:hx : Ai:� `re B : C, � `re D : A, then �:hx : AiD:� `re B : C is shown byinduction on the derivation �:hx : Ai:� `re B : C (for conversion, use 1.; note that�:hx : Ai:� `re B1 =ab B2 is equivalent to �:� `re B1 =ab B2). 2Lemma 4.10 (Substitution Lemma for `re)Let d = hx : CiD, �d = �[x := D], Ad = A[x := D] and Bd = B[x := D].1. If �:d:� `re A =ab B, A and B are �:d:�-legal, then �:�d `re Ad =ab Bd.2. If B is a �:d-legal term, then �:d `re B =ab Bd.3. If �:d:� `re A : B, then �:�d `re Ad : Bd.4. If �:hx : Ci:� `re A : B and � `re D : C, then �:�d `re Ad : Bd.Proof: 1. Induction on the derivation rules of =ab. 2. Induction on the structure of B.3. Induction on the derivation rules, using 1., 2. and thinning. 4. Idem. 2Lemma 4.11 (Generation Lemma for `re)1. � `re S : C ) S � �;� `re C =ab 2; and if C 6� 2 then � `re C : S0 for some sort S0.2. If � `re x : A then for some d 2 �, x � var(d), � `re A =ab type(d) and � `re A : Sfor some sort S.3. If � `re �x:A:B : C then for some D and sort S: �:hx : Ai `re B : D, � `re �x:A:D : S,� `re �x:A:D =ab C and if �x:A:D 6� C then � `re C : S0 for some sort S0.4. If � `re �x:A:B : C then for some sorts S1; S2: � `re A : S1, �:hx : Ai `re B : S2,(S1; S2) is a rule, � `re C =ab S2 and if S2 6� C then � `re C : S for some sort S.5. If � `re Fa : C, F 6� �x:A:B, then for some D;E: � `re a : D, � `re F : �x:D:E,� `re T =ab C and if T 6� C then � `re C : S for some S, where T � (�x:D:E)a ifr = �� and T � E[x := a] if r = �.6. If � `re (�x:A:D)B : C, then �:hx : AiB `re D : CProof: 1., 2., 3., 4. and 5. follow by induction on the derivations (use Thinning). As to 6.,an easy induction on the derivation rules shows that one of the following holds:� �:hx : AiB `re D : E;� `re E[x := B] =ab C and E[x := B] 6� C ) 9S:� `re C : S.12



� � `re B : F , � `re �x:A:D : �y:F :G, � `re C =ab T and if T 6� C where T � (�y:F :G)Bif r = �� and T � G[y := B] if r = �, then � `re C : S for some sort S.In both cases use thinning and conversion; in the second case use also 3. 2Now, recall that correctness of types fails for `�� but holds for `�. Here we show it for `re.Lemma 4.12 (Correctness (and hence well-formedness) of Types for `re)If � `re A : B then B � 2 or � `re B : S for some sort S.Proof: By induction on the derivation rules. The interesting cases are:� Abbreviation: If � `re (�x:A:D)B : C[x := B] where �:hx : AiB `re D : C, then by IH,C � 2 or 9S;�:hx : AiB `re C : S. If C � 2 then C[x := B] � 2; else, by SubstitutionLemma � `re C[x := B] : S[x := B] � S.� Application: If � `��e Fa : (�x:A:B)a where � `��e F : �x:A:B and � `��e a : A,then by IH, 9S;� `��e �x:A:B : S. By Generation �:hx : Ai `��e B : S. By Thinning�:hx : Aia `��e B : S and by the (abb rule) � `��e (�x:A:B)a : S[x := a] � S. 2From correctness of types for `re, we can establish its subject reduction.Theorem 4.13 (Subject Reduction for `re and !!r)If � `re A : B and A!!r A0 then � `re A0 : B.Proof: We prove by simultaneous induction on the derivation rules:1. If � `re A : B and �0 results from contracting one of the terms in the declarations andabbreviations of � by a one step r-reduction, then �0 `re A : B2. If � `re A : B and A!r A0 then � `re A0 : BWe will only treat the case r = ��. If (axiom): easy. If (start rule): we consider the cased � hx : AiB, A!�� A0. The other cases are similar or easy. We have: �:hx : AiB `��e x :A where � � hx : AiB, i.e. � `��e B : A : S. By IH, � `��e A0 : S. By IH and conversion� `��e B : A0. Hence �:hx : A0iB `��e x : A0 and again by conversion �:hx : A0iB `��e x : A.If (weak), (formation), (conversion) or (abstraction): use IH (and conversion for (abstrac-tion)). Now we treat the rest:� (abbreviation): � `��e (�x:A:D)B : C[x := B] where �:hx : AiB `��e D : C. Now�0 `��e (�x:A:D)B : C[x := B], � `��e (�x:A:D0)B : C[x := B] and � `��e (�x:A0 :D)B :C[x := B] by IH. Furthermore, if B !�� B0 then � `��e C[x := B] =ab C[x := B0]and by IH and the (abb rule) we get � `��e (�x:A:D)B0 : C[x := B0]. Now by Lemma4.12, C � 2 or 9S;�:hx : AiB `��e C : S. If C � 2 then C[x := B] � C � C[x := B0].Else, by the Substitution Lemma � `��e C[x := B] : S[x := B] � S, so by conversion� `��e (�x:A:D)B0 : C[x := B].For the last possibility, (�x:A:D)B !�� D[x := B], we remark that by the SubstitutionLemma we get out of �:hx : AiB `��e D : C that � `��e D[x := B] : C[x := B].� (application): � `��e Fa : (�x:A:B)a where � `��e F : �x:A:B and � `��e a : A. Then�0 `��e Fa : (�x:A:B)a and � `��e F 0a : (�x:A:B)a by IH, and � `��e Fa0 : (�x:A:B)abecause by IH � `��e Fa0 : (�x:A:B)a0, by Lemma 4.12 9S;� `��e (�x:A:B)a : S, so byconversion � `��e Fa0 : (�x:A:B)a. 13



Now the crucial case: F � (�y:C :D), Fa !�� D[y := a]. Then � `��e (�y:C :D)a :(�x:A:B)a so by Generation �:hy : Cia `��e D : (�x:A:B)a, now by Substitution � `��eD[y := a] : ((�x:A:B)a)[y := a], but by BC ((�x:A:B)a)[y := a] � (�x:A:B)a. 2The proof of strong normalisation (SN) is based on SN of the �-cube extended with abbrevi-ations as in [BKN 96]. SN!!r(A) denotes A strongly normalising with respect to !r.Theorem 4.14 (Strong Normalisation for the �-cube with respect to `�e and !�)If A is a `�e-legal term then SN!!� (A).Proof: By Remark 4.5, `�e is a subset of `e of [BKN 96] in that if � `�e A : B then� `e A : B. Now, SN for `�e follows from that of `e (see [BKN 96] for the lengthy butstandard proof (similar to that of [Geu 95]) of SN for `e which can be adapted to `�e). 2SN of `��e is a consequence of that of `�e. First we change �-redexes into �-redexes.De�nition 4.15� For all pseudo-expressions A we de�ne eA to be the term A where in all �-redexes the�-symbol has been changed into a �-symbol, creating a lambda-redex instead.� For a context � � d1: � � � :dn we de�ne e� to be fd1: � � � :fdn, where ghx : Ai � hx : eAi andghx : AiB � hx : eAi eB.Lemma 4.16 If � `��e A : B then e� `�e eA : eB.Proof: Induction on the derivation rules of `��e. All rules except the (new applicationrule) are trivial since they are also rules in `�e.If � `��e Fa : (�x:A:B)a results from � `��e F : �x:A:B and � `��e a : A. Then by IHe� `�e eF : �x:eA: eB and e� `�e ea : eA, so by application of `�e, e� `�e eF ea : eB[x := ea].As e� `�e eF : �x:eA: eB, we also get e�:hx : eAi `�e eB : S and hence by thinning and the (abbrule) for `�e, e� `�e (�x:eA: eB)ea : S, so by conversion e� `�e eF ea : (�x:eA: eB)ea.But F cannot contain a �-symbol which will mix with a in Fa to form a �-redex. Other-wise, by generation on � `��e F : �x:A:B, 9S, � `��e �x:A:B =ab S. But this is impossible,hence fFa � eF ea. 2Theorem 4.17 (Strong Normalisation for the �-cube with respect to `��e and !��)If A is a `��e-legal term then SN!!��(A).Proof: If A is `��e-legal then eA is `�e-legal by Lemma 4.16 and hence SN!!�( eA) (The-orem 4.14). Due to Subject Reduction, as no �-redexes can be created in the course of !�-reduction of eA, therefore SN!!�( eA) implies SN!!��(A). 2See [KN 95b, BKN 96] for other properties of the �-cube with �-reduction or abbreviations.5 ConclusionIn type theory, abstraction is done via both � and � and one writes either �x:A:B or �x:A:B.Reduction or evaluation however, usually only operates on �-redexes. Hence, one alwaysevaluates (�x:A:B)C to B[x := C] and almost never evaluates (�x:A:B)C to B[x := C].An exception to this is the AUTOMATH notation where the distinction between � and �14



�-cube(CR, SN) �abb-cube(CR, SN, SR, TC, WF)�-cube(CR, SN, SR, TC, WF)
@@@@R ����	�abb-cube (CR, SN, SR,TC,WF)

@@@@R����	
Figure 1: Properties of the �-cube with various extensionsis absent and one writes [x : A]B to express either �x:A:B or �x:A:B. In all type systemshowever (including AUTOMATH and the system of this paper), there is a distinction between� and �. The various accounts di�er in how large such distinction is.We believe that present type theory makes such a distinction too large. As we have seen,applications of type systems need �-reduction. AUTOMATH did introduce �-reduction,but its formal properties were only established for the �rst time in [KN 95b] and later theproblems were reconsidered in [PM 97].In this paper, we made � behave more like an abstraction operator and gave it the right tobe applied to a term. We did not however let a �-abstraction be typed by another abstraction.Otherwise, one will need more abstraction operators than � and � and such study may lead toin�nite levels of abstraction operators as discussed in Subsection 1.3. Our choice was to keepthe type of a �-term as a simple sort given by the formation rule yet, to type a �-redex usingabbreviations. To do this, we typed (�x:A:C)B in � by typing C in �:hx : AiB. Our additionof abbreviations (which are di�erent in this paper from the existing notions of de�nitions inthe literature), is simple and worth studying. Furthermore, this addition enabled us to solvethe problems of the �-cube that were left open in [KN 95b].There are many arguments why �-reduction and abbreviations must be considered anda system combining both of them without losing any of the nice properties of the �-cube iscertainly worth considering. Moreover, we �nd it intreaguing that so far in the literature,abbreviations have been added for reasons of e�ciency of implementation and not becausethey solve theoretical problems. In this paper, we have shown that abbreviations solve theproblems of the �-cube extended with �-reduction. In [BKN 96], we show that de�nitionssolve the problem of subject reduction in the �-cube extended with a notion of generalisedreduction. The reason why abbreviations solve these problems is that they keep informationin the context on the de�ned values of some variables. This information might have beenremoved when some reductions in the term take place and so keeping the abbreviation in thecontext preserves this information.Hence, our paper contributes to other work on de�nitions not only in that it o�ers a simpleand attractive account of de�nitions or abbreviations which keeps all the original properties ofthe �-cube, but also shows that abbreviations are theoretically important and should hencebe introduced in the �-cube. Figure 1 summarizes our results in this paper where we usethe following notational conventions: CR, SN, SR and TC stand for Church Rosser, strongnormalisation, subject reduction and type correctness; WF stands for well-formedness of thetype of an expression, �abb-cube is the �-cube extended with abbreviations for � = � or �.A question may now occur to the reader: \if our paper is concerned with abstractions via15
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