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F. D. Kamareddine 2 February 2000A Century of Complexity

1900 2000Main way informationtravels in soiety: paper eletri signals, radioNumber of parts inomplex mahine: 10,000 (loomotive) 1,000,000,000 (CPU)Worst onsequenes ofsingle mahine failure: 100s die end of all life?Likelihood a mahineinludes a omputer: very low very high
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F. D. Kamareddine 2 February 2000The Need for Some Kind of Formalism

� Beause of the inreasing interdependeny of systems and the faster andmore automati travel of information, failures an have a wide impat. Soorretness is important.� Modern tehnologial systems are just too ompliated for humans to reasonabout unaided, so automation is needed.� Systems have so many possible states that testing is often impratial. Itseems that proofs are needed to over in�nitely many situations.� So some kind of formalism is needed to aid in design and to ensure safety.
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F. D. Kamareddine 2 February 2000What Kind of Formalisms?

A reasoning formalism should at least be:� Corret: Only orret statements an be \proven".� Adequate: Needed properties in the problem domain an be stated and proved.� Feasible: The resoures (money, time) used in stating and proving neededproperties must be within pratial limits.
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F. D. Kamareddine 2 February 2000What Kind of Formalisms?

Assuming a minimally aeptable formalism, we would also like it to be:� EÆient: Costs of both the reasoning proess and the thing being reasonedabout should be minimized.� Supportive of reuse: Slight spei�ation hanges should not fore reprovingproperties for an entire system. Libraries of pre-proved statements should bewell supported.� Elegant: The ore of the reasoning formalism should be as simple as possible,to aid in reasoning about the formalism itself.
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F. D. Kamareddine 2 February 2000Logis, Types, and Rewriting

Logis, types, and rewriting are� elegant, as we an formulate and (automate) lear rules of how they work(e.g., from A and A! B we an dedue B),� adequate (we an express a lot in these tiny formalisms), and� able to be shown orret.Logis, types, and rewriting have existed in various sine from the times of theanient Babylonians and Greeks (e.g., Eulid, Aristotle, et.).Heriot-Watt University: Inaugural Letures 2000 5



F. D. Kamareddine 2 February 2000Proofs? Logis? What are they?

� A proof is the guarantee of some statement provided by a rigorous explanationstated using some logi.� A logi is a formalism for statements and proofs of statements. A logi usuallyhas axioms (statements \for free") and rules for ombining already provenstatements to prove more statements.� Why do we believe the explanation of a proof? Beause a proved statement isderived step by step from expliit assumptions using a trusted logi.� There has been an explosion of new logis in the 20th entury. How do weknow whih ones to trust? Fund us and we will tell you : : :Heriot-Watt University: Inaugural Letures 2000 6



F. D. Kamareddine 2 February 2000A Brief History of Logi (Aristotle)

� Aristotle (384{322 B.C.) wanted a set of rules that would be powerful enoughfor most intuitively valid proofs.� Aristotle orretly stated that proof searh is harder than proof heking:Given a proof of a statement, one an hek that it is a orret proof.Given a statement, one may not be able to �nd the proof.Aristotle's intuitions on this have been on�rmed by G�odel, Turing, and others.
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F. D. Kamareddine 2 February 2000A Brief History of Logi (Leibniz)

� Leibniz (1646{1717) oneived of automated dedution, i.e., to �nd{ a language L in whih arbitrary onepts ould be formulated, and{ a mahine to determine the orretness of statements in L.� Suh a mahine an not work for every statement aording to Aristotle and(later results by) G�odel and Turing.
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F. D. Kamareddine 2 February 2000A Brief History of Logi (Cantor, Peano, Frege)

The late 1800s saw the beginnings of serious formalization:� Cantor began formalizing set theory [1, 2℄ and made ontributions to numbertheory.� Peano formalized arithmeti [14℄, but did not treat logi or quanti�ation.� Frege's Begri�sshrift [5℄ (1879) was the �rst formalisation of logi whihpresented logial onepts via symbols rather than natural language. Frege'sGrundgesetze der Arithmetik [6, 8℄, alled later by others Naive SetTheory (NST), ould handle elementary arithmeti, set theory, logi, andquanti�ation.Heriot-Watt University: Inaugural Letures 2000 9



F. D. Kamareddine 2 February 2000A Brief History of Logi (Frege's Set Theory)

� Frege's NST allowed a preise de�nition of the vital onept of the funtion. Asa result, NST ould inlude not only funtions that take numbers as argumentsand return numbers as results, but also funtions that an take and returnother sorts of arguments, inluding funtions. These powerful funtions werethe key to the formalization of logi in NST.� Frege was autious: ordinary funtions ould only take \objets" as arguments,not other funtions. However, to gain important expressive power, he alloweda way to turn a funtion into an objet representing its graph.� Unfortunately, this led to a paradox, due to the impliit possibility of self-appliation of funtions.Heriot-Watt University: Inaugural Letures 2000 10



F. D. Kamareddine 2 February 2000A Brief History of Logi (Russell's Paradox)

� In 1902, Russell suggested [15℄ and Frege ompleted the argument [7℄ thata paradox ould our in NST. First, one an de�ne S to be \the set of allsets whih do not ontain themselves". Then, one an prove both of thesestatements in NST: S 2 S S =2 S� In fat, the same paradox ould be enoded in the systems of Cantor andPeano. As a result, all three systems were inonsistent | not only ould everytrue statement be proved but also every false one! (Three-valued logi ansolve this, but is unsatisfatory for other reasons.) Logi was in a risis.� In 1908, Russell suggested the use of types to solve the problem [16℄.Heriot-Watt University: Inaugural Letures 2000 11



F. D. Kamareddine 2 February 2000A Brief History of Types (Eulid)

� Eulid's Elements (ira 325 B.C.) begins with:1. A point is that whih has no part;2. A line is breadthless length....15. A irle is a plane �gure ontained by one line suh that all the straightlines falling upon it from one point among those lying within the �gure areequal to one another.� Although the above seems to merely de�ne points, lines, and irles, it showsmore importantly that Eulid distinguished between them. Eulid alwaysmentioned to whih lass (points, lines, et.) an objet belonged.
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F. D. Kamareddine 2 February 2000A Brief History of Types (Eulid)

� By distinguishing lasses of objets, Eulid prevented undesired situations, likeonsidering whether two points (instead of two lines) are parallel.� Undesired results? Eulid himself would probably have said: impossible results.When onsidering whether two objets were parallel, intuition impliitly foredhim to think about the type of the objets. As intuition does not support thenotion of parallel points, he did not even try to undertake suh a onstrution.� In this manner, types have always been present in mathematis, although theywere not notied expliitly until the late 1800s. If you have studied geometry,then you have some (impliit) understanding of types.
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F. D. Kamareddine 2 February 2000A Brief History of Types (Paradox Threats)

� Starting in the 1800s, mathematial systems beame less intuitive, for severalreasons:{ Very omplex or abstrat systems.{ Formal systems.{ Something with less intuition than a human using the systems: a omputer.� These situations are paradox threats. An example is Frege's NST. In suhases, there is not enough intuition to ativate the (impliit) type theory towarn against an impossible situation. Reasoning proeeds within the impossiblesituation and then obtains a result that may be wrong or paradoxial.
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F. D. Kamareddine 2 February 2000Example Failures due to Type Errors

An untyped omputer program may reeive instrutions from a �rst-year studentto add the number 3 to the word \four" (instead of the number 4). Theomputer is unaware that \four" is not a number and the result of 3 + \four"is unpreditable. The omputer may� give an answer that is learly wrong (for example, true),� give no answer at all, or� give an answer that is not so learly wrong (for example, 6).Espeially the last situation is highly undesirable.Heriot-Watt University: Inaugural Letures 2000 15



F. D. Kamareddine 2 February 2000A Brief History of Types (Russell)

� To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russellpresribed avoiding self-referene and self-appliation in his \viious irlepriniple":Whatever involves all of a olletion must not be one of the olletion.� Russell implemented this in his Rami�ed Theory of Types (RTT) [16℄ whihused types and orders. Self-appliation was prevented by foring funtions oforder k to be applied only to arguments of order less than k.� This was arried out further by Russell and Whitehead in the famous PrinipiaMathematia [17℄ (1910-1912), whih founded mathematis on logi, as far aspossible, avoiding paradoxes.Heriot-Watt University: Inaugural Letures 2000 16



F. D. Kamareddine 2 February 2000A Brief History of Types (Russell)

� For example, in RTT, one an de�ne a funtion \+" whih is restrited to beapplied only to integers.� Although RTT was orret, unlike NST, the types of RTT have turned outinstead to be too restritive for mathematis and omputer siene where �xedpoints (to mention one example) play an important role. RTT also foresdupliation of the de�nitions of the number system, the boolean algebra, et.,at every level.� The exploration of the middle ground between these two extremes has ledto many systems, most of them in the ontext of the �-alulus, the �rsthigher-order rewriting system.Heriot-Watt University: Inaugural Letures 2000 17



F. D. Kamareddine 2 February 2000A Quik Introdution to Rewriting

We all know how to do algebra:(a+ b)� a by rule x+ y = y + x= (b+ a)� a by rule x� y = x+ (�y)= (b+ a) + (�a) by rule (x+ y) + z = x+ (y + z)= b+ (a+ (�a)) by rule x+ (�x) = 0= b+ 0 by rule x+ 0 = x= bRewriting is the ation of replaing a subexpression whih is mathed by aninstane of one side of a rule by the orresponding instane of the other side ofthe same rule. If you have studied algebra, then you are skilled at rewriting.Heriot-Watt University: Inaugural Letures 2000 18



F. D. Kamareddine 2 February 2000Important Issues in Rewriting

� Orientation: Usually, most rules an only be used from left to right asin x + 0 ! x. Forward use of the oriented rules represents progress inomputation. Unoriented rules usually do trivial work as in x+ y = y + x.� Termination: It is desirable to show that rewriting halts, i.e., to avoid in�nitesequenes of the form P ! P1 ! P2 ! � � �.� Conuene: The result of rewriting is independent of the order in the rules areused. For example, 1 + 2 + 3 should rewrite to 6, no matter how we evaluateit.
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F. D. Kamareddine 2 February 2000A Brief History of Rewriting (Anients)

� When the Greeks introdued logi they did not have modern-style rewriting.� The Babylonians on the other hand, developed tehniques for symboliomputations through their work on algebra. This an be viewed as rewriting.� The Arabs of ourse �rst introdued algebra in lose to its modern form.
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F. D. Kamareddine 2 February 2000A Brief History of Rewriting (�-Calulus)

� In the late 1800s, Frege identi�ed the abstration priniple: Any expressionmentioning some symbol in zero or more plaes an be turned into a funtionby abstrating over that symbol.� Introdued in the 1930s, Churh's �-alulus made funtion abstration anoperator. For example, (�x: x + 5) represents the (unnamed) mathematialfuntion whih takes as input any number and returns as output the result ofadding 5 to that number.� The �-alulus provides higher-order rewriting, allowing equations like:f((�x: x+ (1=x))5) = f(5 + (1=5)) = f(5 + 0:2) = f(5:2)Heriot-Watt University: Inaugural Letures 2000 21



F. D. Kamareddine 2 February 2000A Brief History of Rewriting (�-Calulus)

� The type-free �-alulus, whih an be seen as a small omputer programminglanguage, is an exellent theory of funtions | it an represent all omputablefuntions.� Churh intended the type-free �-alulus with logial operators to provide afoundation for mathematis. Unfortunately, Russell's paradox ould also beenoded in the type-free �-alulus, rendering its use for logi inorret.� Churh introdued the simply typed �-alulus (STLC) [3℄ to provide logiwhile avoiding Russell's paradox in a manner similar to RTT. Unfortunately,like RTT, the STLC is too restritive. A modern, slightly less restritivedesendant of this approah is the so-alled \higher-order logi" (HOL).Heriot-Watt University: Inaugural Letures 2000 22



F. D. Kamareddine 2 February 2000The Convergene of Logis, Types, and Rewriting

� Heyting [10℄, Kolmogorov [12℄, Curry and Feys [4℄ (improved by Howard [11℄),and de Bruijn [13℄ all observed the \propositions as types" or \proofs as terms"(PAT) orrespondene.� In PAT, logial operators are embedded in the types of �-terms rather than inthe terms and �-terms are viewed as proofs of the propositions represented bytheir types.� Advantages of PAT inlude the ability to manipulate proofs, easier supportfor independent proof heking, the possibility of the extration of omputerprograms from proofs, and the ability to prove the onsisteny of the logi viathe termination of the rewriting system.Heriot-Watt University: Inaugural Letures 2000 23



F. D. Kamareddine 2 February 2000My Work: Item Notation

� Item notation (similar to the notation of de Bruijn's AUTOMATH) writesfuntion abstration as (�x)M instead of (�x:M) and funtion appliation as(NÆ)M instead of M N .� Some of my work has explored some of the huge number of tehnial advantagesof item notation over Churh's notation, too many to list here. If you are usingChurh's notation, then you should immediately swith to item notation.� In addition, I have obtained a variety of results using item notation whihwould have been muh more diÆult to �nd otherwise, e.g., various resultswith expliit substitution, also an extension of !� whih is onuent andonserves strong normalization.Heriot-Watt University: Inaugural Letures 2000 24



F. D. Kamareddine 2 February 2000My Work: Impliit Redexes

� In the �-term (nÆ)(+Æ)(�f)(mÆ)(�x)(�y)(yÆ)(xÆ)f , the pairs (+Æ)(�f) and(mÆ)(�x) are �-redexes. The pair (nÆ)(�y) is an impliit �-redex, whih wouldbe revealed by ontrating the two expliit redexes.� It is quite desirable to have the option of ontrating impliit redexes diretly(generalized �-redution). Also, there are simple transformations whihexpose impliit �-redexes without ontrating any �-redexes, orrespondingto permutative onversions of logi and having onnetions with the CPStransformation and lazy evaluation.� My work has proven a number of useful properties of generalized �-redutionand transformations whih expose impliit �-redexes.Heriot-Watt University: Inaugural Letures 2000 25



F. D. Kamareddine 2 February 2000My Work: De�nitions

� Many type theories allow ertain steps if two types or terms are onvertible.It is essential for pratial use of these systems (e.g., in theorem proverimplementations suh as Nuprl, Coq, Lego, et.) to be able to use de�nitionsin the ontext in deiding these questions of onvertibility.� For example, aess to de�nitions is needed to be able to show that(aÆ)(�x:�)(�y:x)(�f :a!a)(yÆ)f is typable, beause the knowledge that x isan abbreviation for a is not usable in typing the subexpression (yÆ)f .� My work has proven many important properties of type systems with de�nitions.
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F. D. Kamareddine 2 February 2000My Work: Expliit Substitutions

� Systems of expliit substitution bridge the gap between the meta-theory ofsubstitution and binding and the steps needed to implement these onepts.� My work has provided expliit substitution aluli having many desirableproperties. They (1) simulate one step �-redution, (2) are onuent (on losedterms), (3) preserve strong normalisation (have PSN), (4) have assoiatedaluli of substitutions that are SN, (5) have simply typed versions that areSN, (6) possess onuent extensions on open terms whih have WN.
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